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Abstract

The outsourcing of the design and manufacturing of integrated circuits (ICs) in the cur-

rent horizontal semiconductor integration flow includes untrusted entities that have posed

various security threats, such as overproduction of ICs, sale of out-of-specification/rejected

ICs, and piracy of Intellectual Properties (IPs). Logic Locking is a well-accepted protection

technique against the aforementioned threats, where the original design is modified by incor-

porating additional key gates in the netlist, resulting in a key-dependent functional circuit.

The original functionality of the chip is recovered once it is programmed with the secret key,

otherwise, it produces incorrect results for some input patterns. Over the past decade, differ-

ent attacks have been proposed to break logic locking, simultaneously motivating researchers

to develop more secure countermeasures. This thesis presents novel fault injection attacks

based on stuck-at fault analysis, which can be used to break a secure logic locking technique.

The proposed attacks are based on self-referencing, where the secret key is determined by

injecting faults in the key lines to perform either differential fault analysis (DFA) with its

fault-free counterpart or direct key extraction at the primary output through sensitization.

A commercial ATPG tool is used to generate test patterns that detect stuck-at faults on

the key lines, which will be used to determine the secret key from the external fault-induced

functional IC. One test pattern is sufficient to determine one key bit, which results in at

most |K| test patterns to determine the entire secret key of size |K|. However, The num-

ber of test patterns decreases when stuck-at faults on different key wires can be targeted

simultaneously. The laser fault injection tool is used during the experimentation to induce

external faults on the circuit implemented in the FPGA to demonstrate the effectiveness of

the attack methodology. The proposed attack is generic to break any logic locked circuits.
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Chapter 1

Introduction

Over the last few decades, the impact of globalization has transformed the semiconductor

manufacturing and testing industry from vertical to horizontal integration. The continuous

trend of device scaling has enabled the designer to incorporate more functionality in a system-

on-chip (SoC) by adopting lower technology nodes to increase performance and reduce the

overall area and cost of an SoC. At present, majority of the SoC design companies or design

houses no longer manufacture chips and maintain a foundry (fab) of their own due to cost for

building and maintaining such foundries [2] and the increased complexity in the fabrication

process as new technology is adopted. As a result, the semiconductor industry has moved

towards horizontal integration, where an SoC designer acquires intellectual properties (IPs)

from many different vendors and sends the design to a foundry for manufacturing, which is

generally located offshore.

In order to reduce cost and development time for the integrated circuit (IC), the most

effective way is the reuse of designs or intellectual property (IP). The development and

verification of these IPs require time and effort but copying or modifying the IP for illegal

re-distribution or re-use leads to security risk and economic loss. Intellectual property (IP)

infringement has emerged as a serious threat where restricting an adversary to gain the design

information has become very difficult. The threat of IP piracy or theft arises mainly from

physical reverse engineering of the IC or the outsourcing of the design for manufacturing.

The layer-by-layer reverse engineering of the IC by an untrusted entity can lead to the

extraction of the gate-level netlist exposing the complete or targeted part of the design.

Also, vulnerability arises when the design is outsourced to a potential untrusted foundry

for fabrication. In this case, the layout is possessed by the untrusted foundry which can
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create the IC netlist that can be overproduced leading to IP infringement. In general, this

leaves the designer with no control over the possibility of IP piracy carried out by different

untrusted entities.

The hardware layers that were assumed to be trusted, are no longer true with the

outsourcing of IC fabrication in a globalized and distributed design flow including multiple

entities. Third-party IPs, fabrication, and test facilities of chips represent security threats

to the current horizontal integration of the production. The security threats posed by these

entities include – (i) overproduction of ICs [3, 4, 5, 6, 7, 8, 9], where an untrusted foundry

fabricates more chips without the consent of the SoC designer in order to generate revenue

by selling them in the market, (ii) sale of out-of-specification/rejected ICs [9, 10], and (iii)

IP piracy [11, 12, 13, 14], where an entity in the supply chain can use, modify and/or sell

functional IPs illegally, (iv) Recycling of ICs [15, 16, 13], where an used/old chip is sold in

the market as new and (v) tampering with a hardware Trojan [17, 5, 12, 18]. Over the years,

researchers have proposed different techniques to prevent the aforementioned attacks and

they are IC metering [3, 4, 6, 19], logic locking [3, 20, 9], hardware watermarking [21, 22, 23],

recycled IC [24, 25, 26, 27] and hardware Trojan detection [28, 29, 30, 31, 32, 33].

1.1 Motivation

Logic locking has emerged as the most prominent method to address the threats in-

curred from untrusted manufacturing. In logic locking, the design of a circuit is locked so

that the circuit produces incorrect results in normal operation unless a correct secret key is

programmed into the chip. Figure 1.1 shows an abstract view of logic locking where the key

is stored in a tamper-proof non-volatile memory. Subramanyan et al. [34] first showed that

a locked circuit can efficiently be broken using key-pruning oracle-guided Boolean Satisfia-

bility (SAT) analysis. Since then, many different versions of SAT-based attacks have been

launched on logic locking [35], and the solutions have been proposed to mitigate these attacks

as well [36, 37, 9, 10, 38, 39, 40, 41, 42]. Can we safely state that a logic locking technique
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Figure 1.1: An abstract view of the logic locking technique.

is completely secure even if we achieve complete SAT resistivity? Note that an untrusted

foundry has many more effective means to determine the secret key without performing SAT

analysis [43, 44, 45, 46].

An adversary such as an untrusted foundry who has access to most advanced equipment,

such as a micro-probing station, scanning electron microscope (SEM), etc. is capable of

attacking any chip with physical attacks. The concept of fault injection attacks have been

studied extensively on the security of cryptographic primitives such as AES, RSA, etc. [47,

48, 49, 50, 51, 52]. The attack aims towards intentionally disturbing the computation of the

crypto-systems through invasive or non-invasive techniques, in order to extract information

regarding the secret key from the erroneous output. The security of logic locking has never

been exposed to such attacks before in the literature. However, it is important to study

the security of a SoC design against all the existing attack to categorize it as a robust

countermeasure against all the threats in the IC supply chain. With this motivation and

discussion, we present the vulnerability of logic locking techniques against the fault injection

attacks to undermine its security by extracting the secret key.

1.2 Contributions

In this thesis, we show how an adversary can extract the secret key from a locked netlist,

even if all the existing countermeasures are in place. We propose novel attacks to break any
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key-based logic locking technique using the fault injection attack. The primary contributions

of this thesis are as follows:

• Firstly, we demonstrate how an adversary can perform differential fault analysis us-

ing the functional ICs (programmed with correct key). The differential fault analy-

sis (DFA) attack on logic locking is motivated by the test pattern generation for VLSI

circuits. For DFA, an input pattern that produces incorrect response for only one key

bit while keeping the other key bits at the faulty states is required. To generate such a

test pattern, we propose to use constrained automatic test pattern generation (ATPG)

algorithm, which is widely popular for testing of VLSI circuits. When we apply a con-

strained sa1 pattern to a key line, the hypothesis key bit becomes 1 if the responses

of the fault-free and faulty circuits are the same, otherwise, the key value is 0 [53].

The proposed attack is self-referencing and does not require any complex analysis (i.e.,

SAT).

• We propose a novel fault injection based key sensitization attack. It requires a test

pattern that sensitizes the key bit to the primary output irrespective of other keys

in the circuit. However, it is highly likely to observe the inter-dependency of the key

gates in locking techniques to mask/block the key propagation. We formulate the fault

injection approach to assist in key propagation and it also limits the overall number

of constraints and corresponding external faults required. It is an iterative method

where we perform logic cone analysis through our proposed algorithm on the netlist

to determine the constraints required through the identification of key dependency.

The key bits lying in the same logic cone and blocking the propagation of targeted

key bits are induced with an external fault on the functional IC. When we apply the

ATPG generated test pattern to detect stuck-at fault (saf ) on the key lines to the fault

induced functional chip, the key information is observed at the output.
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• We demonstrate and validate our proposed attack by performing the laser fault in-

jection on a Kintex-7 FPGA. The technology-dependent gate-level netlist for locked

ISCAS’85 [54, 55] is generated from Synopsys Design Compiler [56], which is used

in Synopsys Tetramax [57] for test pattern generation. The netlist is then converted

to a technology-independent netlist and implemented in Xilinx Vivado without any

optimization so that the saf patterns can be applied to the FPGA.

1.3 Organization of the thesis

The rest of the thesis is organized as follows: an overview of different logic locking

techniques and existing attacks along with fault injection techniques is provided in Section 2.

The proposed attack based on differential fault analysis and its methodology to extract

the secret key from any locked circuit are described in Section 3. Next, the proposed key

sensitization attack using fault injection is presented in section 4. We present the results

for the implementation of the proposed attack on different logic locked benchmark circuits

in section 5. Finally, we provide the future research directions and conclude the thesis in

Section 6.
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Chapter 2

Background and Related work

In this chapter, we discuss a few fundamentals that are essential for understanding

the core concept of this thesis. Then, we provide a comprehensive survey of the relevant

contributions across the research community.

2.1 Logic Locking

The challenges for protecting a circuit against hardware security threats have been

the driving force for the development of different techniques to limit the amount of circuit

information that can be recovered by an adversary. Logic locking has emerged as a field of

significant interest from the researchers, as it can provide complete protection against IC

overproduction and IP piracy. Different researchers have proposed to use logic locking to

prevent hardware Trojans as well [58, 59, 60, 61, 62, 63].

The objective of logic locking is to obfuscate the inner details of the circuit and making

it infeasible for an adversary to reconstruct the original netlist. Logic Locking hides the

functionality of the circuit by inserting additional logic gates into the original design, which

we termed as key gates. In addition to the original inputs, the locked circuit needs secret key

inputs to key gates from on-chip tamper-proof memory (TM) (see Figure 2.1 for details). The

correct functionality of the design is obtained when the key inputs receive the proper secret

key value. Applying an invalid key to the key gates would result in incorrect functionality

of the locked design that will produce incorrect output responses for the circuit. Note that

for a secure locked circuit, the design details cannot be recovered using reverse engineering.
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Figure 2.1: Different logic locking techniques, where the secret key (K) is programmed in a
tamper-proof memory (TM). (a) Original circuit. (b) XOR-based locking. (c) MUX-based
locking. (d) LUT-based locking.

2.2 Relevant Work

Different logic locking methods were devised over the years and can be categorized

into three different categories. First, XOR-based logic locking, shown in Figure 2.1.(b), has

received much attention due to its simplicity. In this technique, a set of XOR or XNOR

gates are inserted as key gates [3, 20, 9, 64, 65, 10, 66, 38, 67]. The secret key is stored in

tamper-proof memory (TM), and connections are made from TM to the key gates. Second,

in the MUX-based logic locking technique [68, 69], multiplexers (MUX) are inserted so that

one of its input is correct, which is the original net of the circuit. The other input of the

MUX is incorrect, which is a dummy net randomly selected from the netlist. This technique

is shown in Figure 2.1.(c). The select signal of the MUX is associated with the key bit from

the tamper-proof memory. The correct signal goes through the MUX upon applying valid

key value, otherwise incorrect signal propagates in the netlist. Third, in LUT-based logic

locking, [8, 70, 60], shown in Figure 2.1.(d), a look-up table with several key inputs is used

to lock the netlist. The LUTs replace a combinational logic in the design making it difficult

to predict the output as it depends on several different key values

The research community has proposed several attacks to exploit the security vulnerabil-

ity on a logic locked circuit. Subramanyan et al. [34] first showed that a locked circuit can be

broken using Boolean Satisfiability (SAT) analysis. The SAT attack algorithm, attributed as

an oracle-guided attack, requires a locked netlist, which can be recovered using reverse engi-

neering and functional chip with a valid key stored/programmed in its tamper-proof memory.
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In this attack, an adversary can query an activated chip and observe the response. Note that

the SAT attack requires access to the internal nodes of the circuit through the scan chains,

which is common in today’s netlist for implementing Design-for-Testability (DFT) [71]. The

SAT attack works iteratively to eliminate incorrect key values from the key space using dis-

tinguishing input patters (DIPs). A DIP is defined as an input pattern for which two sets

of hypothesis keys produce complementary results. By comparing these with the output of

an unlocked chip, one set of hypothesis keys is discarded. The SAT attack works efficiently

as it discards multiple hypothesis keys in one iteration. Thereafter, SAT resiliency became

an important security metric to demonstrate the security of logic locking techniques.

As a result, researchers have focused on improving and developing locking techniques to

be resilient against the SAT attack. Subsequent work in this direction suggested to includ

SAT resilient blocks into the design itself such as Anti-SAT [64, 72], SARLock [65] or perform

cyclic obfuscation [73]. These proposed techniques use one-point functions that corrupts

internal node value in the original netlist to produce incorrect outputs when supplied with

a wrong key value. However, the traditional SAT resiliency of such techniques could not

prevent them against other attacks that included removal/bypass attack [74], double DIP

attack [75], CLIC-A [76] attack, Approximate SAT attack [77], and Cyclic SAT [78].

Due to limitations of SARlock, Yasin et al. developed an improved version of this design

and referred to as TTLock [66], where the original design itself is modified to produce cor-

rupted/inverted results upon applying an incorrect key for a single input pattern. To provide

more flexibility in the number of protected input patterns, stripped functionality based logic

locking (SFLL) [67] was proposed. The design is no longer the same as the original design

due to stripped parts of the functionality resulting in erroneous output. A separate restore

unit is responsible for removing this error in the output supplying correct key values to it.

However, Subramanyan et al. has shown recently that SFLL can be defeated through FALL

attack [79]. The attack is built on 3 primary steps, namely, structural analysis, functional

analysis, and key confirmation. The structural analysis is performed to identify the gates
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that are the output of the cube stripping function in SFLL. After identification of these can-

didate gates, the functional analysis targets the property of cube stripping functions, which

results in a set of potential key values. Finally, the key confirmation algorithm identifies the

correct key from the set of potential key values.

Currently, secure solutions from the logic design point of view include modifications

in the original circuit [37, 42, 80, 41]. The SFLL-rem is another variant of the parent

stripped functionality based logic locking technique which relies on performing functionality

stripping through the injected stuck-at fault [37]. A fault is injected in the netlist and the

circuit logic gates stripped corresponding to the injected fault. All the failing patterns are

now reported based on the comparison with the original netlist. Amongst all the patterns, a

single pattern is chosen for which the circuit will produce erroneous output, while the circuit

is reconstructed for the remaining failing patterns through the ECO tool. This result in the

stripped circuit which produces erroneous output for particular input pattern. To correct the

output for this pattern, a restore unit is implemented which is basically a comparator circuit.

The same pattern is also stored as the key. Once the same pattern appears at the input and

it matches with the key, the output of the comparator becomes logic 1 which XOR’s with

the erroneous output to correct it. This SFLL-rem method has been demonstrated resilient

to SAT as well as FALL attacks.

As the SAT-attack is based on the availability of accessing the internal states of a circuit

through the scan chains, Guin et al. proposed placing multiple flip-flops capturing signals

controlled by different key bits at the same level of the parallel scan chains, which were used

in current test compression methodologies [9]. However, a vulnerability existed in this design,

when an adversary performs multi-cycle tests, such as delay tests (transition delay faults and

path delay faults) [71]. This leads to the necessity for developing a new design-for-security

(DFS) architecture to prevent leaking of the key during any manufacturing tests [10, 38]. This

design prevents scanning out the internal states of design after a chip is being activated and

the keys are programmed/stored in the circuit. Other research groups have also demonstrated
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resiliency against the SAT attack by restricting the scan-access and preventing key leakage

through scan-chain by performing sequential locking [81, 82, 83]. Rahman et al. proposed

the dynamic obfuscation of the scan-chain through the presence of LFSR circuit and shadow

chain structure. It was predominantly shown resilient to SAT attack, however, it was shown

vulnerable to other attack [84, 85]. Sequential locking techniques are mainly demonstrated

vulnerable to SAT/model-checker based attacks [86, 87].

Additionally, an adversary such as an untrusted foundry who has access to most ad-

vanced equipment is also capable of attacking any chip with physical attacks [88]. Apart from

SAT-based attacks, probing attacks [89, 90] have also shown serious threats to the security

of logic locking, where an attacker makes contact with the probes at signal wires in order to

extract sensitive information, mainly, the secret key. With the help of a focused ion beam

(FIB), a powerful circuit editing tool that can mill and deposit material with nanoscale pre-

cision, an attacker can circumvent protection mechanisms and reach wires carrying sensitive

information. However, the countermeasures reflect the complexity of shield-structure and

nanopyramid structures as the defense, making it difficult to perform these attacks [91, 92].

Another prominent physical attack includes tampering the netlist with a hardware Tro-

jan to leak the secret key to the primary output. Jain et al. demonstrated how an untrusted

foundry can tamper the netlist to insert the hardware Trojan, either combinational or se-

quential hardware Trojan that evades manufacturing or production test (e.g. stuck-at fault,

etc.) [44, 29]. Under normal condition, the circuits functions correctly. However, upon acti-

vation of the Trojan through the primary inputs, the payload is delivered to leak the secret

key directly to the primary output through the multiplexer (MUX). Moreover, the design of

sequential Trojan requires satisfying the trigger condition R times to activate the Trojan.

Only the adversary has the knowledge regarding the maximum counter value (R) making

it very difficult for detection as it highly unlikely that same input pattern appear R times

consecutively during the normal functioning of the circuit. Recently, Zhang et al. proposed

an oracle less attack to extract the key from locked circuits [45, 93]. The notion of this
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attack is to compare the locked and unlocked instances of repeated Boolean functions in the

netlist to predict the key. A solution was also proposed to countermeasure the attack as

well. Despite many solutions proposed over the years, none of the logic locking techniques

can be categorized to provide complete security.

2.3 Fault Injection Methods

Over the years, several threats and methods have emerged to break a cryptosystem

without performing either mathematical analysis or brute force attacks. Using these attacks,

an adversary can subvert the security of protection schemes, primarily through extracting

or estimating the secret key using physical attacks. Fault injection attacks, intentionally

disturb the computation of cryptosystems in order to induce errors at the output response. To

achieve this, external fault injection is performed through invasive or non-invasive techniques.

This is followed by the exploitation of erroneous output to extract information from the

device.

Fault based analysis on cryptosystems was first presented theoretically by Boneh et al.

on RSA [94]. This contribution initiated a new research direction to study the effect of fault

attacks on cryptographic devices. The comparison between the correct and faulty encryption

results has been demonstrated as an effective attack to obtain information regarding the

secret key [95, 96]. These can be realized into different categories:

• Clock Glitch: The devices under attack are supplied with an altered clock signal which

contains a shorter clock pulse than the normal operating clock pulse. For successfully induc-

ing a fault, these clock glitches applied are much shorter than the tolerable variation limit in

clock pulse for the circuit. This results in setup time violations in the circuit and skipping

of instructions from the correct order of execution [97, 98].

• Power Variation: This technique can be further bifurcated into two subcategories: either

the malicious entity may choose to provide low power supply to the system (also abbreviated
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as underfeeding) or the adversary may choose to influence the power line with spikes. This

adversely affects the set-up time and influences the normal execution of operations. The state

elements in the circuit are triggered without the input reaching any stable value, causing a

state transition to skip operations or altering the sequence of execution [99, 100, 101].

• Electromagnetic Pulses/Radiation: The eddy current generated by an active coil can be

used to precisely inject faults at specific location in the chip. This method doesn’t require

the chip to be decapsulated in order to inject the fault. However, the adversary is required to

possess information regarding specific modules and their location inside the chip [102, 103].

• Laser : Fault injection using laser is also regarded as a very efficient method because it can

precisely induce a fault at an individual register to change its value [104]. For optical fault

injection, the laser can be focused at a specific region of the chip from the backside or front

side. However, due to metal layers on the front side, it is preferred to perform the attack on

the backside of the chip. Skorobogatov et al. [105] first demonstrated the effectiveness of this

method by using a flashgun to inject fault to flip a bit in SRAM cell. Several other research

groups also utilized and proposed different variants of this method to study the security of

cryptographic primitives [47, 48, 49, 50].

• Focused-ion Beam (FIB): The most effective and expensive fault injection technique is

devised with focused ion beam (FIB) [106]. Technological advancement of this method

enables it to cut/connect wires and even operate through various layers of the IC fabricated

in the latest technology nodes [107].

• Software Implemented Fault Injection: This technique produces errors through software

that would have been produced when a fault targeted the hardware. It involves the modi-

fication of the program running on the target system to provide the ability to perform the

fault injection. It does not require dedicated complex hardware, gate-level netlist or RTL

models that are described in hardware description languages. The faults are injected in
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accessible memory cells such as registers and memories through software that represent the

most sensitive zones of the chip [108, 109, 110].

In this chapter, we introduced the fundamental concept of logic locking and surveyed

relevant literature that are essential for understanding the work presented in this thesis.

We conclude that the existing methods mainly focus on SAT-resiliency as an important

security metric to define the strength of any logic locking scheme. Additionally, different

fault injection techniques are studied to understand how an adversary can attack the design

without performing SAT analysis.
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Chapter 3

ATPG Guided Differential Fault Analysis Methodology

The general hardware security strategy adopted for designing and manufacturing a cir-

cuit involves a logic locking technique, where a chip is locked by storing a secret key in the

tamper-proof memory. As this secret key is the same for all the chips manufactured with

the same design, finding this key from one chip undermines the security resulted from logic

locking. An adversary can determine the secret key by injecting faults at the key regis-

ters [111, 43], which hold the key value during normal operation, and performing differential

fault analysis (DFA). With this motivation, we extend the concept of fault injection attacks

on logic locking to study the vulnerability of locking techniques and undermine its security.

3.1 Threat Model

The threat model defines the traits of an adversary and its position in the IC manu-

facturing and supply chain. It is very important to know an attacker’s capabilities and its

resources/tools to estimate its potential to launch the attack. The design house or entity

designing the chip is assumed to be trusted. The attacker is assumed to be an untrusted

foundry or a reverse engineer having access to the following:

• The attacker has access to the locked netlist of a circuit. An untrusted foundry has

access to all the layout information which can be extracted from the GDSII or OASIS

file. Also, a locked netlist can be constructed from layer-by-layer reverse engineering

of the fabricated chip with advanced technological tools [106]. The attacker has the

capability to determine the location of the tamper-proof memory. It can be trivial for

an adversary to find the location of the key register in a netlist, as it can easily trace

the route from the tamper-proof memory.
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• The attacker has possession of an unlocked and fully functional chip, which can be

easily acquired from the market.

• A fault injection equipment is necessary to launch the attack. It is not necessary to

use high-end fault injection equipment. The basic requirement is to inject faults at the

key registers (all the flip-flops) location on a de-packaged/packaged chip.

Notations: An original circuit, and its locked version are denoted by CO and CL, respec-

tively. The two versions of fault-injected CL are represented as CF and CA. CF represents a

locked circuit where all the key lines (|K|) are injected with logic 1 (logic 0) faults, denoted

as a faulty circuit. CA represents the same locked circuit where (|K| − 1) key lines are in-

jected with the same logic 1 (logic 0) faults, leaving one key line fault free. We denote this

circuit as a fault-free circuit for DFA. Both functional chips are loaded with the correct key

in its tamper-proof memory. A fault is injected at the key register using a fault injection

method (see details in Chapter 5). For any given circuit, we assume the primary inputs (PI)

of size |PI|, primary outputs (PO) of size |PO|, and secret key (K) size of |K|. We also use

key lines or key registers alternatively throughout this thesis as their effects are the same on

a circuit. Note that saf is an abstract representation of a defect to generate test patterns,

whereas, an injected fault is the manifestation of a faulty logic state due to fault injection.

3.2 Differential Fault Analysis Attack Methodology

The proposed fault injection attack relies on differential fault analysis, where the re-

sponses of two instances of faulty and fault-free circuits are compared to determine the

secret key. An adversary can use any fault injection methods (see the details in Section 2.3)

to create the faulty chip. However, we will not perform traditional fault injection methods

to demonstrate the attack. Instead, we create a faulty circuit by partial reconfiguration,

which is common in FPGA environment. Note that the primary objective of this thesis is

to present a very powerful attack to break any logic locking technique.
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Figure 3.1: The abstract representation of the proposed ATPG guided differntial fault anal-
ysis attack.

Figure 3.1 shows an abstract representation of the proposed fault ATPG guided differ-

ential fault analysis attack. The fault-free circuit (CA) is an unlocked chip bought from the

market whose key-bits needs to be retrieved. Except the key-bit which is targeted to be

extracted, all remaining key registers are fixed to a particular faulty value of either 0 or 1

corresponding to the selected fault. While, faulty circuit (CF ) is the same chip, which is

injected with a particular fault to keep all the key registers or interconnects to faulty value

of logic 1 or 0. One input pattern is first applied to CA and its response is collected. The

same input pattern is then applied to the CF to collect the faulty response. The output

responses are XORed to find any mismatch. If both the circuits differ in their responses, the

XORed output will be 1, otherwise, it will be 0. If we find an input pattern that produces a

conflicting results for both CA and CF only for one key bit, the key value can be predicted.

The key value is same as the injected fault value if the XORed output is of logic 0, otherwise,

the key value is complementary to the injected fault.

The proposed attack can be described as follows:

• Step-1 : The first step is to select an input pattern that produces complementary results

for the fault-free (CA) and faulty (CF ) circuits. The input pattern needs to satisfy the
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following property – it must sensitize only one key bit to the primary output(s). In

other words, only the response of one key bit is visible at the PI keeping all other key

bits at logic 1s (or 0s). If this property is not satisfied, it will be impractical to reach a

conclusion regarding the value of a key bit. Multiple key combinations can result the

same. Now the question is how can we find if such a pattern exists in the entire input

space (ξ).

To meet this requirement, our method relies on stuck-at faults (saf ) based con-

strained ATPG to obtain the specific input test patterns (see details in Section 3.3).

Considering the fact that adversary has access to the locked netlist (CL), it can gener-

ate test patterns to detect sa1 or sa0 at any key lines and adding constraints to other

key lines (logic 1 and 0 for sa1 and sa0, respectively). A single fault, either sa0 or sa1

on a key line is sufficient to determine the value of that key bit. Therefore, we have

selected sa1 and the following sections are explained considering this fault only. This

process is iterated over all the key-bits to obtain |K| test patterns. The algorithm to

generate the complete test pattern set is provided in Algorithm section 3.3.

• Step-2 : The complete set of generated test patterns are applied to fault-induced func-

tional circuit (CF ). The circuit is obtained by injecting logic 1 fault on the key registers

if sa1 is selected in the previous step, else, the circuit is injected with logic 0 fault for

sa0. The responses are collected for later comparison with the fault-free responses. For

(CA), the test patterns are applied such that it matches the fault modifications in the

circuit. For example, the test pattern for the first key is applied to the circuit when the

circuit instance does not pertain any fault on its corresponding key register and holds

the correct key value while, the remaining key registers are set to logic 1 (for sa1 ) or

0 (for sa0 ). For the next key-bit, (CA) instance is created by excluding this selected

key bit from any fault while keeping all the other key registers to logic 1 (for sa1 ) or
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0 (for sa0 ). This process is repeated for all key bits and their responses are collected

for comparison in the next step.

• Step-3 : The adversary will make the decision regarding the key value from the ob-

served differences in the output responses of (CA) and (CF ). For any test pattern

corresponding to a particular key bit, when the output of both the circuits is same, it

implies that the injected fault on the key lines in a CF circuit is same as the correct

key bit, only then output of both the ICs will be same. Otherwise, when CF and CA

differ in their output response, it concludes the correct key bit is complementary to

the induced fault. This process is repeated for all key bits. In this manner, the key

value can be extracted by comparing the output responses of both circuits for the same

primary input pattern.

3.2.1 Examples

In this section, we present two example circuits to illustrate the proposed attack. Test

pattern generation for detecting stuck-at faults at the key lines are described using the D-

Algorithm [71]. Combinational circuits are chosen as an example for simplicity. However,

the attack is valid for sequential circuits as well as it can be transformed into a combinational

circuit in the scan mode, where all the internal flip-flops can be reached directly through the

scan chains [71].

Figure 3.4 shows a simple locked circuit with a 2-bit key, where the effect of one key does

not impact the other key. The circuit has six inputs (PI = 6) and two outputs (PO = 2).

It is necessary to generate a test pattern that detects a saf at k0 with constraint k1 = 1,

which is shown in Figure 3.4.(a). D is assigned after the sa1 at the key line k0. D is defined

as logic 1 for a good circuit and logic 0 for a faulty one [71]. To activate this fault, the

ATPG tool will assign a logic 0 at k0. It is required to propagate D to any of the primary

outputs. For example, 1 at the output of gate G1 will result in D at the output of key gate

Gk0 . Inputs [x0 x1] = [1 1] can satisfy this condition since G1 is an AND gate. Next, D
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Figure 3.2: Test pattern generation for the test circuit locked with a 2-bit secret key, con-
sidering a sa1 at key line k0 with constraint k1 = 1. Test pattern, P1 = [11110X] will be
applied to the faulty circuit CF and CA to perform DFA.

appears at n4 for [x2 x3] = [1 1]. Finally to propagate D at the output y0, x4 needs to be

put to logic 0 as G4 is an OR gate. As a result, D is observed at the output y0 for primary

input P1 = [x0 x1 x2 x3 x4 x5] = [1 1 1 1 0 X]. Note that the output y0 will have

complementary values for k0 = 0 and k0 = 1 when we apply P1 at the input.

This property of the input patterns will be used in DFA to recover the secret key. Similar

analysis can be performed to detect a saf D on key line k1.

After generating the test pattern P1 for the sa1 at key line k0, the next step is to perform

differential fault analysis between the responses of the CF and CA. As this pattern detects

a sa1 at line k0, the faulty response will be propagated to the output y0. The test pattern

is applied first to the faulty chip CF , injected with a logic 1 fault on k0 and k1 (shown in

red color on the key inputs), and its response is captured, which is shown in Figure 3.3.

The output response observed at y0 is logic 1 for CF . The same test pattern is applied to

fault-free functional chip CA which is injected with a logic 1 fault on k1 (represented with red

color on k1 input in Figure 3.3) and no fault on k0. With reference to Figure 3.3.(a), if the

correct value for the key bit k0 stored in tamper-proof memory is logic 0 (shown with green
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Figure 3.3: DFA attack using the generated test pattern P1 = [11110X] to determine the
key-bit k0 based on the response for CF and CA. (a) The output Y

′
0 = 1, when the stored

key k0 is complementary to the injected fault (logic 1) on CF (b) The output Y
′
0 = 0, when

the stored key k0 is same as the the injected fault (logic 1) on CF

color on key input k0 in CA), then output at y0 = 1. Upon comparing the outputs of the

two circuit (i.e. CF and CA) through the XOR gate (Gy0), if the output Y
′
0 is logic 1, which

indicated that the two circuit instances produced different outputs. This also implies that

the correct key value for k0 is complementary to the injected fault on k0 in CF circuits, hence

k0 = 0. Similarly, if the correct stored value for k0 is logic 1 (as shown in Figure 3.3.(b)

with green color input k0), the two circuit instances, CF and CA, produces the same output.

This implies that the XOR between the corresponding outputs for CF and CA will produces

Y
′
0 = 0, indicating that the logic 1 fault injected on key register k0 in CF is the correct value

for the key bit k0. Similarly, the test pattern for detecting a sa1 at k1 can be applied to

extract its value based on the difference between the two circuit instances.

Figure 3.4 shows our proposed attack on the same test circuit locked with a 3-bit secret

key, where the propagation of k0 is dependent on k1 and vice versa. The attack targets all
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Figure 3.4: Test pattern generation for the test circuit locked with a 3-bit secret key, where
the propagation of k0 is dependent on k1 and vice versa. Test pattern generation considering
a sa1 at key line k0 with constraint k1 = 1 and k2 = 1. Test pattern, P1 = [1 1 0 1 0 X] will
be applied to the faulty circuit CF and CA to perform DFA.

the key bits separately like before. First, we target to find out the value of k0. A test pattern

P1 is generated to detect a sa1 fault at k0 with constraint k1 = 1 and k2 = 1. As the value

of k1 is known during the pattern generation, the effect of the sa1 at k0 will be propagated

to the primary output y0. For a fault value D at k0, if [x0 x1] = [1 1] then D propagates to

n2. To propagate the value at n2 to the output of G3, its other input (n4) needs to attain

logic 1. Since k1 = 1 due to injected fault which is set as a constraint in ATPG tool, n4 = 1

for n3 = 0 which implies [x2 x3] = [0 1]. At last, x4 = 0 propagates D propagates the value

at n5 to the primary output y0. The output y0 can be observed as D for the test pattern

P1 = [1 1 0 1 0 X]. Finally, this pattern P1 needs to be applied to both CA and CF to

determine the value of k0.

Once the test pattern is generated, the output response for CF and CA needs to be

compared for this test pattern to perform DFA, as shown in Figure 3.5. To determine k0, CF

includes logic 1 fault on k0, k1 and k2 (shown in red color on the key inputs in CF circuit),

injected through a fault injection tool. Whereas, CA has the same fault (i.e. logic 1) on the
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Figure 3.5: DFA attack using the generated test pattern P1 = [1 1 0 1 0 X] to determine the
key-bit k0 based on the response for CF and CA. (a) The output Y

′
0 = 1, when the stored

key k0 is complementary to the injected fault (logic 1) on CF (b) The output Y
′
0 = 0, when

the stored key k0 is same as the the injected fault (logic 1) on CF .

key inputs k1 and k2 (represented with red color on key inputs in CA circuit), excluding k0.

Consider that the correct key value stored for k0 is equal to 0 (see Figure 3.5.(a), represented

in green on k0 in CA), the output responses for CF and CA are not the same which is indicated

by Y
′
0 = 1, when XOR operation is performed between the y0 output of CF and CA. This

reflects that the injected fault on k0 in CF is complementary to the correct value of k0 stored

in the tamper-proof memory. Figure 3.5.(b) shows the case when the correct value k0 = 1

(represented with green color on k0). Upon performing the XOR operation between the y0

output of the two respective instances, resultant Y
′
0 = 1. This implies that CF and CA

produced the same output, which also indicates that the injected fault (logic 1) on k0 in CF

circuit is indeed the correct value for the key. Similar analysis can be performed for other

two key bits, k1 and k2. In this manner, the correct key can be retrieved by preforming the

differential fault analysis on logic locking.

22



3.3 Test Pattern Generation

To generate the test pattern set, an automated process relying on constrained ATPG

is performed. The detailed steps to be followed are provided in Algorithm 1. Synopsys

Design Compiler [56] is utilized to generate the technology dependent gate level netlist and

its test protocol from the RTL design. A test protocol is required for specifying signals and

initialization requirements associated with design rule checking in Synopsys TetraMAX [57].

Automatic test generation tool TetraMAX generates the test patterns for the respective

faults along with constraints for the locked gate level netlist.

Algorithm 1: Test pattern generation for constrained ATPG

Input : Locked gate-level netlist (CL), test protocol (T ), and standard cell
library

Output: Test pattern (P) set

1 Read the locked netlist (CL) ;
2 Read standard cell library ;
3 Run design rule check with test protocol generated from design compiler ;
4 Determine key size |K| from CL ;
5 for i← 0 to (|K| − 1) do
6 Add a sa1 fault at key line ki ;
7 for j ← 0 to (|K| − 1) do
8 if i 6= j then
9 Add constraint at kj to logic 1 ;

10 else

11 end
12 Run ATPG to detect the fault ;
13 Add the test pattern, Pi to the pattern set, P ;
14 Remove all faults ;
15 Remove all constraints ;

16 end
17 Report the test pattern set, P ;

The inputs to the algorithm are locked gate-level netlist (CL), Design Compiler gener-

ated test protocol (T ) and the standard cell library. The algorithm starts with reading the

locked netlist and standard cell library (Lines 1-2). The ATPG tool runs the design rule

check with the test protocol obtained from the Design Compiler to check for any violation
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(Line 3). Only upon completion of this step, the fault model environment is set up in the

tool. The size of the key (|K|) is determined by analyzing CL (Line 4). The remaining key

lines are selected one by one to generate test patterns (Line 5). A stuck-at-0 fault is added

at the ith key line to generate Pi (Line 6). The ATPG constraints (logic 1) are added to

other key lines (Lines 7-10). A test pattern Pi is generated to detect the sa1 at the ith key

line (Lines 12-13) and added to the pattern set, P . All the added constrains and faults are

removed to generate the (i + 1)th test pattern (Lines 14-15). Finally, the algorithm reports

all the test patterns, P (Line 17).

3.4 Complexity Analysis on Logic Locking

The complexity of the proposed ATPG guided fault injection attack is linear with the

key size (K). In this section, we show how the proposed attack is very effective at breaking

any logic locking technique. However, the fault injection time may vary depending the

effectiveness of the equipment. It is practically instantaneous to obtain the secret key once

the responses are collected from the CA and CF .

Lemma 3.4.1 One input pattern is sufficient to recover one key bit.

A single test pattern is sufficient to detect a saf if such a fault is not redundant [71].

A redundant fault results from a redundant logic that cannot be exercised from the inputs.

As the key gates are placed to modify the functionality, it cannot be a redundant logic. As

there exists one test pattern to detect a saf at the key line, it can be used to recover one

key bit.

Theorem 3.4.2 The attack recovers the entire secret key, K using at most |K| number of

test patterns, i.e.,

TP[fK(CL) = f(CO)] ≤ |K| (3.1)

where, fK() represents the functionality with K as the key.
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A CL with a |K|-bit key is injected with a saf fault on every key lines. As the proposed

attack requires one test pattern to obtain one key bit (see Lemma 3.4.1), the upper bound of

the number of test patters is |K|. However, a single pattern can detect two or more stuck-at

faults on the key lines if their effect is visible in different logic cones (e.g., different outputs).

As a result, the required number of test patterns to recover the entire key (K) can be less

than |K|.

Theorem 3.4.3 ATPG guided DFA attack is applicable to strong logic locking [58], where

pairwise key gates are inserted to block the propagation of one key by the other.

In strong logic locking, the propagation of one key is blocked due to the other key.

However, (|K| − 1) faults are injected at (|K| − 1) key lines except for the one whose value

needs to be determined. Once an external fault is injected to the functional chip, the key

value is fixed and no longer remains unknown. Hence, the proposed attack is applicable to

strong logic locking.

In this chapter, we demonstrated how differential fault analysis can be performed on logic

locking techniques to extract the key bit and undermine its security. The complete steps for

the attack including the efficient test pattern generation using constrained ATPG is proposed.

Then, we discussed how fault injection methods can assist in performing the differential fault

analysis on functional chips for the generated test patterns, where constraints are converted

to external induced faults.
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Chapter 4

ATPG Guided Key Sensitization Attack Methodology

The important aspect for any logic locking technique is to conceal the secret to ob-

scure the circuit functionality. An adversary with the intention of exposing the key can

directly observe the key information by propagating the key value, either at the primary

output or through scan-chain by applying a suitable input pattern. The differential at-

tack methodology demonstrated in the previous chapter requires large number of constraints

while generating the test pattern and corresponding external injected faults on the func-

tional circuits as well. Moreover, differential fault analysis requires creating the two different

functional circuit instances (i.e. fault-free and faulty) for comparison. This chapter presents

a novel ATPG-guided key sensitization attack that overcomes the drawbacks of the previous

method. Additionally, a functional chip is sufficient to launch the attack which requires

much less number of external faults to be injected. The threat model remains consistent

with the previous chapter, where an untrusted foundry or an reverse engineer is assumed to

be the adversary. The attacker possess an unlocked functional chip, loaded with the correct

key in its tamper-proof memory. Also, it has access to the locked netlist and the capability

to inject fault with the fault injection equipment.

4.1 Key Sensitization Methodology

The proposed fault injection attack relies on sensitizing the key bits, where an input

pattern is chosen such that it results in directly the value at any primary output irrespective

of the other key bits in the circuit. To mask the information of other keys, a practical fault

injection approach described in Section 4.2 can be used. Figure 4.1 shows an abstract rep-

resentation of our proposed approach. For an input pattern, the output responses collected
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Figure 4.1: The abstract representation of the proposed ATPG guided key sensitization
attack using fault injection on logic locked circuit.

for the fault induced functional chip reveals key bits. To generate such an input pattern, we

utilise the stuck-at fault based test pattern generation which is a common VLSI testing. A

single stuck-at fault detection on the key inputs is sufficient to generate the test pattern that

activates the fault and propagates it to the observable primary output. The entire process

can be divided into two critical steps described as follows:

• Step-1 : To begin with, the first step includes the selection of an input pattern that

leads to the exposure of the key bit to the primary output from a functional chip. In

other words, an input is required such that it satisfies the condition on all the internal

nodes of the circuit to propagate the key value to the primary output. However, it is

very likely to observe the inter-dependency of the key bits such that the propagation of

a particular key bit to the primary output is not possible as one/more key bit(s) may

mask or block the propagation. As the adversary do not possess the correct key value

for other key bit(s), it will be impractical to obtain such an input pattern. To generate

the input patterns, we utilise the Automatic test pattern generation tool (ATPG) [71].

The basic idea of ATPG is to generate a pattern for stuck-at fault at a key line so that
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a key bit can be propagated to an output. As the adversary do not know the value

for other key bits, using the unconstrained ATPG will not help in generating the test

vector because one one/more other keys may block propagation of the targeted key

input. Fault injection is an efficient possible solution to this problem, so that ATPG

can set a constrain on these other key bits as 1 (or 0) depending on the corresponding

to the injected faults, and generate a test pattern.

To effectively generate a test pattern that can sensitize multiple key bits with less

number of injected faults, logic cone analysis needs to be performed so that we can

identify groups of keys for each cones and also the primary output at which they can

be observed. When we target a particular key bit to be sensitized, the other key bits in

the same cone are the only ones blocking the propagation. That is reason, only these

the key bits in the same cone needs to be constrained. In the abstract circuit view

shown in Figure 4.1, the logic cone analysis revealed the different logic cones in the

circuit and the key bits associated in the respective cones. Note that the sequential

elements are not shown here for simplicity of understanding, however, with access to

the internal scan chains (test architecture), any sequential circuit can be converted to

individual combinational circuits [71]. A test pattern can detect a saf (e.g., sa1 or

sa0 ) at key line k0 while other key lines k1−kp are constrained to logic 1 (or 0) as they

lie in the same logic cone (LCp). This is mainly because other keys in that particular

cone (LCp) shows dependency while generating the test pattern for k0. The same test

pattern can also be used to detect a saf at key line kp+1 while all the keys in the logic

cone (LCr) are constraint with logic 1 (or 0). Additionally, a saf detection on kq can

also be included in this test pattern because kq belongs to a separate logic cone (LCq),

where all the other in that cone kq+1 . . . k|K| will be added with the constraint. This

is mainly due to no dependency within the three logic cones (i.e. LCp, LCq, and LCr)

and their responses being observable at different primary outputs.
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• Step-2 : The next step involves the extraction of the targeted key bit(s) from the func-

tional chip loaded with the correct key in its tamper-proof memory, using the test

pattern generated in the previous step. We need to first inject faults at the con-

strained key lines (registers) using any practical fault injection methods. Any external

fault injection methods can used to obtain the fault injected circuit as mentioned in

section 2.3. The test pattern obtained in the previous step is then applied to the fault-

induced functional chip. This will lead to the exposure of the targeted key bit(s) to

a their corresponding primary output associated with their logic cones. Once these

key bit(s) are determined, the test pattern generation for the next targeted key bit(s)

in the same or different logic cones is performed. Once the correct value of a key is

determined for a particular cone, this correct key value shall be used as a constraint at

its key input in the ATPG. The above two steps are repeated for other key bits unless

all the key bits are determined for a cone. This reduces the overall number of the faults

to be induced as only the keys affecting the key propagation through a particular logic

cone are induced with the fault. Additionally, once a key bit is known already, that key

register need not be injected with external fault for the next input pattern as it already

holds the correct value in in its tamper-proof memory which is used as the constraint.

Moreover, multiple test patterns can be combined together into a single pattern if the

targeted key bits lies in different logic cones propagating at different primary output

with no conflicts at the primary inputs to reduce the overall number of test patterns.

4.1.1 Example

In this section, an example circuit is presented to illustrate the proposed attack on

logic locking. The D-Algorithm is used to describe the test pattern generation for detecting

stuck-at faults at the key inputs/wires [71]. For simplicity, a combinational logic circuit is

chosen as an example. However, with scan access, any sequential circuit can be transformed
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Figure 4.2: Key sensitization attack on a test circuit locked with 3-bit key (a) Test pattern
generation after performing logic cone analysis to identify keys in LCp and LCq to detect sa1
on k0 and k2 with constraint k1 = 1. Test pattern P1 = [1 1 X 0 0 X 1 X] will be applied
to fault induced functional chip (b) The same test pattern is applied to the functional chip
induced with external logic 1 fault on k1 to extract k0 and k2.

into a combinational circuit in the scan mode, where all the internal flip-flops can be reached

directly through the testability architecture (i.e. scan chain).

Figure 4.2 shows the proposed attack on the combinational test circuit, locked with a

3-bit secret key. The circuit consists of six inputs (|PI| = 8) and two outputs (|PO| = 2).

Before generating the test pattern, it is important to analyze the circuit to identify the key

bit in different logic cones which will assist in determining the number of constraints required

and also the number of key bits that can be determined with every test pattern. The cone

analysis reveals that k0 and k1 are in LCp, while k2 are in LCq and these two groups can

be targeted simultaneously. First, we target the key bits k0 and k2. The test pattern is

generated to detect a sa1 at k0 and k2. However, since k0 and k1 are in LCp, a constraint of

k1 = 1 is required which is shown in Figure 4.2.(a). D is assigned after the sa1 at the key

line k0 and k2. From logic point of view, D is represented as logic 1 for a good circuit and

logic 0 for a faulty one [71]. To activate these faults, the ATPG tool will assign a logic 0 at

k0 and k2. First, we analyze the fault propagation for k0 in logic cone (LCp). As the value of
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k1 is constraint during the pattern generation, the effect of the sa1 at k0 will be propagated

to the primary output y0. A fault value D at k0 propagates D to n2, if [x0 x1] = [1 1] as

G1 is an AND gate. To propagate the value at n2 to the output of G3, its other input (n4)

needs to attain logic 1. To satisfy this, we put n3 = 0 and k1 = 1 already due to injected

fault which is set as a constraint in ATPG tool. This implies [x2 x3] = [X1]. Finally to

propagate the D to the primary output y0, x4 is set to logic 0. Similarly, if we analyze logic

cone (LCq), the response for the sa1 on k2 will be observed at y1. The D represented on k2

can be observed at n7 when n6 = 0. To satisfy this primary inputs [x3 x5] = [0 X] as

G5 is an AND gate. The D propagates to the primary output y1 to detect sa1 on k2 when

n8 is 1, implies [x6 x7] = [1 X]. Test pattern P1 = [x1x2 . . . x7] = [1 1 X 0 0 X 1 X]

can detect sa1 faults at key lines k0 and k2. Figure 4.2.(b) shows the attack to extract k0

and k2 from the functional chip which is injected with a logic 1 fault on the key register

k1, corresponding to the constraint. The logic value obtained at output node y0,and y1 are

k0 and k2, respectively. Next, we need to generate the next pattern P2 for extracting key

k1, while we add a constraint at key line k0 as its correct value extracted from the previous

pattern. Note that we do not need to put a constraint at k2 as the propagation of k1 is not

dependent on k2 because they belong to different logic cones.

4.2 Fault-injection Approach

Fault-injection attack has been widely used in the past to extract secret assets and by-

passing security measures in the device [112]. An adversary can use several fault-injection ap-

proaches depending on the budget and expertise. The basic fault-injection approach includes

voltage, timing, electromagnetic, and laser-based fault-injection methods [113, 114, 115].

Laser-fault injection (LFI) offers the most precision in both spatial and temporal domains

during the operation of the chip, hence, used for deploying DFA attack for extracting the

secret key. Laser with photon energy higher than silicon bandgap energy used to induce
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faults in an integrated circuit [115]. Therefore, the laser with a wavelength less than 1.1 µm

is used in our experiment. The LFI attack can be completed in the following steps:

• Sample Preparation: LFI can be injected from both frontside and backside of the chip.

However, the interconnecting metal layers at the front of the die obstruct the optical path of

photons. On the other hand, the absence of any metal obstacle or reflective coating at the

backside of the die allows an adversary to access the transistors with the laser. In a typical

packaged chip (bondwire IC), the backside can be exposed by wet etching. Nonetheless, the

flip-chip substrate is typically covered with a metallic lid, which can be easily removed to

expose the silicon die. The backside of the silicon can be further polished to 30 – 100 µm to

reduce the power loss along the laser path due to photon absorption phenomena [116, 115].

• Target Localization and Fault-injection: The method of localizing key-register loca-

tion depends on the capability and asset availability to an adversary. An adversary, like an

untrusted foundry or an expert reverse engineer, can localize the key location, i.e., tamper-

proof memory, key-register, key-gates by analyzing the GDSII or partial/full-blown reverse

engineering. Once the target is localized, an attacker needs to identify the fault sensitive lo-

cation for injecting fault. Localizing the most reverse biased P-N junction in the key-register

can be identified as the potential candidate for fault-injection [116]. Therefore, depending

on logic 1 (logic 0) fault, the laser can be applied to the drain location of the p-type (n-type)

MOS transistors for fault injection.

Another challenge is that a single laser source can only inject a single fault at once.

Therefore, the fault can be injected in a sequential order where the laser source can be moved

from one key-register to another for injecting fault. After localizing the targeted key registers,

an adversary can automate the sequential fault-injection process with the help of computer

vision and image processing [117, 30]. Since the key is imperative for the IP operation, it is

safe to assume that once secure boot-up is complete, the locking key will remain stored in

the key-register during the operation of IP [111, 43]. Therefore, an adversary can initiate the

fault-injection method after the secure boot-up of the chip is complete. An adversary can
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identify the clock-cycle required for secure-boot up by monitoring the power consumption of

the circuit.

In this chapter, we demonstrated how ATPG-guided key sensitization attack relying on

fault injection can be performed on logic locking. This attack overcomes the drawbacks of the

previous differential fault analysis in terms of the number of constraints and corresponding

faults required. Next, we discussed the laser fault injection approach, which is an efficient

fault injection approach due to its high spatial and positional resolution capability.
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Chapter 5

Experimental Results

In this chapter, we demonstrate the hardware implementation of the proposed novel

fault injection attack methodologies presented in Chapter 3 and Chapter 4. The experiment

is performed on FPGA, however, it is valid on any ASIC/SoC as well. Moreover, the attack

is also valid for large industrial design compared to the small benchmark circuits selected

for the experimentation. We first discuss the experiment setup and steps involved in it.

Thereafter, we present provide the details for laser fault injection tool and how it is used to

perform induce faults on the circuit implemented in the FPGA.

To evaluate the effectiveness of our proposed attack, we adopted and performed the laser

fault injection technique on a Kintex-7 FPGA, which is used as the device-under-test (DUT).

Different benchmark circuits are implemented in a Kintex-7 FPGA, where the faults are

injected on the key registers. The complete experimentation flow is shown in the Figure 5.1.

First, the RTL netlist for ISCAS’99 benchmark circuits [54] are synthesized using 32nm

technology libraries in Synopsys Design Compiler [56]. The technology-dependent gate-level

locked netlist is given to the Synopsys TetraMAX ATPG tool [57] to generate test pattern

set P using Algorithm 1. The same netlist is then converted into a technology-independent

gate-level Verilog code using our in-house PERL script. This is primarily done to assure that

the circuit implemented in the FPGA is exactly the same circuit for which the test pattern

set is generated. Otherwise, fault propagation cannot be ensured. The implemented circuit

in FPGA for ISCAS’85 c432 is shown in Figure 5.2. Fault injection is performed on the

circuit loaded into the FPGA, which leads to the instances of faulty and fault-free circuits

by laser-induced faults on the key registers. Additionally, the implemented design includes

a separate universal asynchronous receiver/transmitter (UART) module, which is used for
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communication between the computer and the FPGA. The inputs are applied through the

real-term monitor and responses are collected on the same. Once the response for any key-

bit is obtained, the step is repeated for all the key bits in a benchmark circuit. Finally,

the key-bits are exposed through the comparison between the corresponding instances of the

circuits as explained in Section 3.2.

RTL Netlist

Synopsys Design Compiler

(Synthesize the netlist)

Technology-dependent locked 

netlist

Synopsys TetraMAX

(sa1 fault)

Generate the test 

pattern set (P)

Convert to technology 
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Xilinx Vivado Design Suite 

(without optimization)

FPGA Implementation

With Laser Fault 

Injection

Collect faulty and Fault-

free responses

CF(PO) = CA(PO) ?

Key-bit = 0 Key-bit = 1

No Yes

Apply

Figure 5.1: Methodology for ATPG guided fault injection attacks in Kintex-7 FPGA
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Figure 5.2: Vivado Design Suite generated design for c432 benchmark targeting Kintex-7
FPGA

5.1 Laser Fault Injection Attack

The laser fault injection (LFI) setup is provided by a Hamamatsu PHEMOS-1000 FA

microscope as shown in 5.3, available in FICS Research SeCurity and AssuraNce (SCAN)

Lab at the University of Florida [1]. Specifically, the LFI experimentation was performed

by our collaborators at University of Florida. The equipment consists of a diode pulse laser

source (Hamamatsu C9215-06) with a wavelength of 1064 nm. Three objective lenses were

used during this work: 5x/0:14 NA, 20x/0:4 NA, 50x/0:76 NA. The 50x lens is equipped

with a correction ring for silicon substrate thickness. The laser diode have two operation

modes – a) low power (200 mW ) pulse mode, and b) high power (800 mW ) impulse mode.

The high power impulse mode can be used for laser fault injection. The laser power can be

adjusted from 2% to 100% in 0.5% steps. Photon emission analysis [118] is used to localize

the implemented locked circuitry in the DUT. Thereafter, The DUT is placed under the laser

source for LFI. A trigger signal is fed to the PHEMOS-1000 to synchronize the LFI with

DUT operation. Once the device reaches a stable state after power-on, the laser is triggered
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Figure 5.3: The FPGA board placed under the lens for laser-fault injection at the target
registers[1].

on target key-registers. After the fault injection, we have to guarantee that the device is

still functioning as expected and has not entered into a completely dysfunctional state. The

laser triggering timing can be checked by a digital oscilloscope for greater precision.

We have performed and verified our results for different benchmark circuits implemented

with random logic locking (RLL) [119], strong interference-based logic locking (SLL) [20] and

fault-based stripped functionality logic locking (SFLL-Fault) [120]. For RLL, we selected

locked instances of c432 and c2670 benchmark circuits with a 32-bit key and 128-bit key

respectively obtained from Trust-hub [55]. For SLL, we selected c1355 and c1908 locked

benchmarks with 128-key bits, also obtained from Trust-Hub. We also implemented the

attack on the circuit locked with a combination of SFLL-fault (40-bit key) and RLL (40-bit

key) technique. We successfully recovered the entire key for all the circuits which proves the

effectiveness of our proposed ATPG-guided fault injection attack.

This chapter presented the experimentation flow and results to validate the proposed

fault injection attack. With the use of a laser fault injection tool, the key registers for the

circuits implemented in the FPGA can targeted to perform the attack methods proposed in

this thesis to undermine the security of logic locking techniques.
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Chapter 6

Future Research Direction and Conclusion

The security of a logic locking technique can be tied together with the detection and

avoidance of fault injection attacks. Developing a SAT-resilient logic locking is not suffi-

cient enough to prevent IC overproduction or to protect IPs. It is required to address the

detection of external fault injection attacks and prevent them. The countermeasures to se-

cure the device against such techniques involve modification either at the design or package.

The design-based defense techniques detect a fault by using recalculation or error detection

code [121, 122]. These methods are regarded efficient for cryptographic primitives where

duplication of the hardware blocks (e.g., s-box) is possible. However, these methods cannot

be applied for logic locking as the key gates are distributed in the entire design. Meanwhile,

at the package level, sensor structures are studied to restrict the vulnerability against exter-

nal fault injection [123, 124], where a sensor detects an attempt of fault injection and takes

a respective action of powering down or flushing internal storage. However, these sensors

works on detection of a bit-flip, which can reveal the crucial information regarding the key

value. If no alarm is raised, one can infer the value of a key bit is the same as the injected

fault [125]. Besides, Li at el. also demonstrate an attack using side-channel analysis [126].

Despite various countermeasures, the community still lacks a robust countermeasure against

laser fault injection. Once the detection of external fault injection attacks is ensured, an

SoC designer can choose a SAT-resistant logic locking to prevent IC overproduction and IP

piracy.

The future research work will focus on preventing these proposed fault injection attacks

on logic locking through restricting the attacker’s access to the locked netlist such that test

pattern generation through ATPG is prevented. To do so, we plan to develop a design-level
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obfuscation technique, where it is difficult to determine the functionality of the gates. Addi-

tionally, we plan to implement these ATPG-guided fault injection attack on cryptographic

IP core and develop the preventive measure as well.

In conclusion, we have presented novel ATPG-guided stuck-at fault based attacks to

undermine the security of any logic locking technique. Both the attacks presented in this

thesis relies on injecting faults on the key registers through hardware to expose the secret

key from the functional IC for the ATPG generated test patterns. We have demonstrated

and validated the attack on circuits implemented in the FPGA using the laser fault injection

method. The results depicted the success of the proposed attack on different logic locking

techniques, irrespective of their SAT resiliency. The detection and prevention against such

physical attacks is very important to achieve the robust hardware security solution against

the emerging threats due to untrusted semiconductor manufacturing and supply chain.
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