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Abstract 
 
 

Presence of strong magnetic fields (B ≥ 1.0 T) in magnetized dusty plasma experiments can 

result in a variety of phenomena in the background plasma and in the dust cloud. In the background 

plasma, the magnetic field induces a new type of filamentary structures that are extended in the 

plasma parallel to the external magnetic field. Filamentary structures are defined as regions within 

the plasma that have distinct properties such as optical brightness and appear in the plasma in 

different forms such as columns and target or spiral like structures. Some of the effects of strong 

magnetic field on dust particles include rotation of dust particles around the filaments and the 

formation of imposed, ordered structures in the dust cloud due to placing a wire mesh in the plasma 

bulk (gridding phenomenon). Gridding of a dust cloud suspended in a magnetized plasma is 

defined as the flow of the dust particles along paths which have the same shape and size of a metal 

mesh embedded in the bulk of the discharge. Both filamentation and gridding phenomena are 

primarily observed at high magnetic fields (B ≥ 1.0 T) and low pressure (P ≤ 100 m Torr)/low-

temperature electric discharges (electron temperatures of few electron-volts and room temperature 

ions) and therefore they are thought to be originating from the same underlying physics. To 

investigate the origin and the characteristics of these phenomena, a 3-dimensional (3D) fluid model 

has been developed that can reproduce the experimental observations and enables us to investigate 

the physics of the filamentation and gridding phenomena. In this 3D model, plasma fluid equations 

are solved along with Poisson’s equation. The simulation using this model revealed that 

filamentation is the consequence of the difference between the reduced diffusion of the electrons 

and ions across the magnetic field.  In the presence of strong magnetic fields, electrons mainly 

flow parallel to the field lines while the less magnetized ions can also have a limited cross-field 
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diffusion which results in non-ambipolar diffusion of the plasma. This non-ambipolar diffusion is 

thought to be the underlying physics behind filamentation phenomenon.  
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magnetized plasma. __________________________________________________________ 117 

Figure 5.2 X-Y cross section of electron density profile in a magnetized argon plasma in presence 

of a metal sheet with four small square holes, placed below the top electrode. The width of the 
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square holes 1.4 mm. The background plasma density is 5.0 ×1014 m-3, applied magnetic field is 

1.0 T, and pressure is P = 12 Pa. The small holes in the metal sheet break the symmetry of the 

configuration and cause the formation of filamentary structures in the magnetized plasma without 

adding an initial perturbation to it. The dark mask on the graph indicates the location of the metal 

sheet. _____________________________________________________________________ 118 
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1 Introduction 
 
 
**It has to be noted that parts of this dissertation have been already published in a few 

articles [1]- [5]. 

Plasma is a combination of electrons, ions and usually neutral atoms that move in random 

directions and is often electrically neutral. Debye Shielding is the main characteristic of plasmas 

through which the charged particles in the plasma exhibit collective behavior in shielding any 

source of electric potential [6]. By increasing the temperature of a solid to its melting temperature, 

it becomes liquid and increasing the temperature of the liquid converts it into gas. If the gas 

temperature is then sufficiently increased, the gas molecules can decompose to create a mixture of 

neutral atoms, electrons and ions which is called plasma state. Therefore plasma is usually called 

the fourth state of matter  [7].  

In another definition, complex (dusty) plasma, is defined as a four-component plasma 

which includes electrons, ions, neutral gas atoms, and charged solid particles. These dust particles 

in dusty plasmas can have diameters from nanometers to microns. Due to higher mobility of the 

electrons compared to ions, the dust particles usually become negatively charged in a laboratory 

dusty plasma  [8] [9]. In these systems with micron-sized particles, the dust can acquire charges of 

the order ~1000 to 5000 elementary charges [10] [11]. Therefore, considering their large mass 

(~10-14 to 10-15 kg for silica dust particles) compared to the mass of electrons and ions, the charge-

to-mass ratio of the dust particles is quite small (10 -12 – 10 -13 𝑒 𝑚!7 , where “e” is the elementary 

charge and me is the mass of an electron)  [12]-[14].  

Many of the plasma environments, such as the plasmas in fusion devices and astrophysical 

systems, are subjected to magnetic fields [15] [16]. Therefore, recent interest in dusty plasma 
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physics has included investigation of magnetized dusty plasmas (MDPs) in which an external 

magnetic field is applied to magnetize the electrons, ions, and eventually the dust particles. Due to 

the small charge-to-mass ratio of the dust particles, large magnetic fields of B ≥ 1.0 T are needed 

in order for the magnetic force on the dust particles to be comparable to the other forces that are 

acting upon them. With the recent development of relatively low cost, low maintenance variable 

field superconducting magnets that can produce magnetic fields of several Tesla, it has now 

become technologically feasible to explore phenomena in low temperature, weakly ionized 

plasmas that are subjected to high magnetic fields.  As a result, this regime, which has been 

relatively unexplored, has become accessible and experiments reveal a wide variety of previously 

unidentified plasma and dusty plasma phenomena. This work seeks to develop a self-consistent 

numerical model to understand the behavior of low temperature plasma under the influence of 

large magnetic fields and make qualitative comparisons with experimental observations.   

A commonly used configuration for studying MDPs is a parallel plate capacitively coupled 

plasma (CCP) sustained in a rare gas such as argon having pressures of a few to hundreds of Pa’s 

(Pascal), at powers of a few to tens of Watts with external magnetic fields of the order B ≥ 1.0 T  

applied perpendicular to the electrodes. The presence of strong magnetic fields in the plasma 

experiments with and without dust particles can lead to phenomena such as shear flow and Kelvin-

Helmholtz instabilities [17]-[19], E×B drift of the plasma and dust particles [20], dust particle 

charge fluctuation [21], dust crystallization [22] and, of particular interest to the current work, 

plasma filamentation and gridding of the dust particles  [23]-[28].  

The filamentation phenomenon is defined as the formation of optically bright structures 

that are extended in the bulk of the magnetized plasma parallel to the magnetic field. By contrast, 

the gridding phenomenon is the alignment of dust particles in MDPs to the spatial structure of a 
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metal mesh placed in the plasma bulk or in the top electrode.  Through this work, it will be shown 

that the gridding phenomenon arise from the plasma filaments imposed by the metal mesh 

embedded in the plasma and filamentation and gridding phenomena indeed share the same 

underlying physics. Through the results of numerical simulations, the underlying physics behind 

these two phenomena will be studied.  

 

1.1 Formation of Filamentary Patterns in Magnetized Plasmas  
 

Pattern formation and self-organization have been observed in a variety of natural and 

laboratory systems [29]-[39]. In plasma systems, self-organized patterns have been observed in 

arc discharges [40]-[45], glow discharges [46]-[48], streamers [49]-[51] and dielectric barrier 

discharges [52]-[54]. Examples of these pattern formations in plasmas are displayed in figure 1.1. 

This section will discuss a few different types of pattern formation in plasmas especially the 

formation of filamentary structures in low-pressure, low-temperature magnetized plasmas. 

Plasma environments that produce self-organized patterns often have large aspect ratios, 

suggesting that plasma-surface interactions play a dominating role [55] in these phenomena.  For 

a cylindrical plasma chamber, aspect ratio is defined as the ratio of the radius of the chamber to its 

height. In a magnetized plasma, the motion of the charged components is further limited across 

the magnetic field lines and therefore it takes longer for the charge species to diffuse across the 

magnetic field to the side walls of the plasma chamber. As a result, the presence of the magnetic 

field increases the effective aspect ratio of the plasma and it can support the formation of self-

organized structures.   

The presence of the magnetic field can stimulate instabilities in the plasma that, in return, 

can lead to the formation of self-organized patterns.  In the low temperature isothermal plasma 
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regime, Kent et al. performed experiments and modeling of self-organization triggered by a 

transverse Kelvin-Helmholtz instability in a Q-machine [19].  In their experiments the neutral gas 

pressure was very low (P = 2×10-4 Pa), the electron and ion temperature was about 0.2 eV, and 

the magnetic field was varying from 0.05-0.5 T. Shear-flow instability in plasmas under the 

influence of a magnetic field (B ≤ 0.5 T) can lead to vortex or spiral structure formation as was 

reported in the references  [56]-[58]. The main characteristic of this type of pattern formation is 

the flow of the plasma in the chamber. Also, Driscoll et al. reported on how relaxation of a 2D 

turbulence in a magnetized electron column (a single component plasma) can develop filamentary 

structures [59].  

Multiple numerical and analytical models have been developed to explain pattern 

formation in magnetized plasmas.  Evolution and saturation of Kelvin-Helmholtz instabilities at 

the interface of a shear flow configuration in the presence of parallel and antiparallel magnetic 

fields, have been investigated by Keppens et al. [60].  Kono et al. [61] [62] reproduced the 

formation of spiral structures in a magnetized rotating plasma using numerical simulations and 

showed that the degree of thermodynamic non-equilibrium and thermal instability play the main 

role in this type of pattern formation. 

It is noted that in the aforementioned examples, self-organized patterns form in magnetized 

electric discharges in which the plasma is either isothermal (Te=Ti)  at very low-pressure and low-

temperature regime  [19],  single species electron plasma [59], flowing against a wall, or it is in 

rotation inside the plasma chamber to impose Kelvin-Helmholtz or shear-flow instabilities  to 

appear [56]-[62]. The strength of the applied magnetic field in these experiments could be as high 

as 0.5 T. 
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(a) 

(b) 

(c) 

Figure 1.1: Examples of pattern formation in plasma. (a) Patterns in a high-pressure argon dielectric barrier 

discharge [53]. (b) Patterns in atmospheric pressure glow discharge, [46]. (c) Different patterns in DC and AC 

planar discharges, [47] and [48]. 

 



6 
 

Self-organized patterns are also likely to form in stationary plasmas at low gas pressures 

(P ≤ 40 Pa), low power deposition (power ≤ 40 W), non-isothermal low temperature (electron 

temperature ≤ 5 eV and room temperature ions) exposed to strong magnetic fields (magnetic field 

≥ 0.5 T)  [23]-[25] [63]. In this regime, single column plasma filaments and/or filamentary patterns 

form parallel to the magnetic field and perpendicular to the electrodes of the plasma chamber. 

These filamentary structures are diagnosed by their optical emission and bridge the inter-electrode 

gap in the plasma. The filaments are typically non-stationary and often form patterns of dots, 

circles and spirals when viewed from the top  [24]. The typical spacing of the filaments is a few 

millimeters having a width or diameter of 1-2 millimeters. The filaments appear to maintain their 

gap-crossing bright structures while moving horizontally parallel to the electrodes. This motion 

may be oscillatory with a spatial period of up to 1 cm or moving many millimeters to a few 

centimeters, from one quasi-stationary position to another.  

  The first observations of the phenomena were reported by Konopka et al. [23] and it was 

further studied by Schwabe, et al. [24] and Bandyopadhyay et al. [64]. In these works, different 

aspects of pattern formation in magnetized RF-plasmas have been investigated as a function of 

pressure and magnetic field strength. More recent experiments using the Magnetized Dusty Plasma 

eXperiment (MDPX) at Auburn University [25] have confirmed a number of the earlier 

observations. [2] [25]-[27] [65] 

An experimental example of these filamentary structures is shown in figure 1.2. Here, the 

filaments are observed in visible light emission from an argon CCP plasma in the MDPX device 

at Auburn University. The filaments form between a powered, 30 cm diameter, lower electrode 

and a grounded, 30 cm diameter, upper electrode that has a 15 cm diameter hole that is covered by 

an indium-tin-oxide (ITO)-coated (i.e., conducting surface) glass plate. The filaments are viewed  
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Figure 1.2 Filaments observed in the visible light in an argon CCP plasma in the Magnetized Dusty Plasma 

Experiment (MDPX) device.  The filaments are viewed through an indium-tin-oxide coated glass plate 

embedded in the top electrode.  The gray “spots” and spiral structures are the filaments that are formed in the 

plasma.  The neutral pressure is p = 13.3 Pa and the magnetic field was B = 1.0 T.  The applied RF power is 

increasing from: (a) 5 W, (b) 15 W, (c) 25 W and (d) 40 W.  At low power, individual filaments (near the center) 

and concentric circular structures are observed [1]. 
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through a 25 cm diameter viewport from above the vacuum chamber. For this experiment, the 

neutral pressure was fixed at p = 13.3 Pa and the magnetic field was B = 1.0 T. The applied RF 

power is increasing from figure 1.2(a) to 1.2(d). At low power, individual filaments (near the 

center) and concentric circular structures are observed. With increasing power, the individual 

filaments and the circular structures become less pronounced and start to fade. 

Unlike pattern formation in other plasma regimes, this recent category of pattern formation 

is lacking an extensive study. Exploring plasma pattern formation in the presence of strong 

magnetic fields could also help to explore filamentary pattern formation imposed by a metal mesh 

placed in the bulk of the plasma and the appearance of gridding phenomenon. 

 

1.2 Gridding Phenomenon in Magnetized Dusty Plasma Experiments 
 
In dusty plasmas, under conditions of B ≥ 0.5 T and in the presence of shaped electrode 

boundaries (e.g., using a wire mesh), it has been observed that the dust particles levitated in the 

plasma can form “imposed, ordered structures” whose spatial patterns reflect the spatial ordering 

of the electrode boundaries [26]-[28].  The appearance of this “gridding” phenomenon and the 

filamentation occur under similar conditions in the plasma.  Although these are distinct features of 

plasmas and dusty plasmas at high magnetic fields, their concurrence suggests that they may arise 

in the plasma as a result of similar physical principles.  This section will begin with a discussion 

on the observed properties of the gridding phenomenon and will discuss the potential similarities 

with the filamentation. 

Dusty plasmas are unique platforms for the study of non-ideal systems. The Coulomb 

coupling parameter is defined for dusty plasmas as G = Zdq2Nd1/3/Td, where Zd is dust charge 

number, q is the elementary charge, Nd is the dust particles number density and Td is the particles 
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kinetic temperature [67]. This parameter is a measure of Coulombic potential energy compared to 

the random thermal energy of the system [66]. G can have a range that extends from much less 

than 1 (i.e., gas-like behavior) to several hundred (i.e., solid-like behavior), making dusty plasmas 

an ideal platform for investigating thermodynamic transitions [67]-[70], soliton wave 

propagation [71] [72], and self-organization [73]-[75]. Also, These plasmas have been a topic of 

interest in studying astrophysical objects [76], such as interstellar clouds [77] [78], planetary 

rings [79] [80], comet tails [81] [82], and controlled plasma systems [83] such as fusion devices 

where hot ablated material from the walls can cause disruptions [84] [85]. In a variety of low 

temperature plasma applications, such as plasma etching for microelectronics fabrication [86] or  

nano-particle synthesis in plasma, [87] [88] controlling the presence of these solid particles can be 

of technological and industrial importance.  

Recently, Thomas et al. [26] [27] reported on the observation of a new phenomenon in 

MDPX device at Auburn University. In these studies in which a wire mesh was embedded in the 

top electrode of the MDPX, it was observed that at magnetic fields of B ≥ 0.5 T, the dust particles 

would begin to flow along paths which had the same shape and size of the mesh. These imposed 

ordered structures were primarily observed at high magnetic fields and low pressure (P ≤ 40 Pa).  

Hall et al.  [28] noted that the behavior of the dust particles in the imposed structures are correlated 

to the ion dynamics.  It was shown that the effects of the imposed, ordered structures become more 

prevalent as the ions became increasingly magnetized. It is thought that the presence of the wire 

mesh, imposes a spatial potential structure that can trap the dust particles. An example of this 

phenomenon [28] is displayed in figure 1.3. The figure shows the imposed flow of the dust 

particles matching the spatial structure of a metal mesh placed below the top electrode in the 

MDPX device. The image of the dust particles flow is obtained by summing over 600 video frames. 
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Since the wires width and their spacing are very small (≤ 1 mm), this mesh configuration would 

not allow for spatially resolved probe measurements. Therefore, a wide mesh (called “waffle” 

electrode) was designed to enable detailed probe measurements beneath the mesh wires (see figure 

1.4). In the experiments on gridding phenomenon using the newly designed “waffle” electrode, it 

was shown that the location where the dust particles get trapped beneath the mesh wires can vary 

with the width of the mesh. Figure 1.5 shows the side-view of the position of dust particles beneath 

the “waffle” electrode.   

In figure 1.5, the locations of the wires of the “waffle” electrode are indicated using red 

rectangles. The yellow arrows point to the dust particles.  The position of the dust particles is 

displayed for two cases with and without applied magnetic field and a neutral pressure of 3.3 Pa. 

At B = 0 the dust particles are randomly distributed beneath the “waffle” electrode and do not get 

affected by it, while at B = 1.02 T, the dust particles are mostly trapped beneath the edges of the 

“waffle” electrode wires. As mentioned earlier, because of the very fine structure of the narrow 

mesh displayed in figure 1.3.a, it is not experimentally possible to define the exact location of the 

trapped dust particles in that experiment (figure 1.3.b) with respect to the mesh wires. 

 

1.3 Motivation of the Work 
 

The dust pattern formation and filamentation of magnetized plasmas can occur 

simultaneously in the plasma and the presence of dust particles does not significantly affect the 

filamentation [24].  Both phenomena critically depend on the magnetic field and neutral gas 

pressure and only appear in plasmas/dusty plasmas that are exposed to strong magnetic fields(𝐵 ≥

0.5	T). The neutral gas pressure is an important factor in both filamentation and gridding as both 

processes become degraded at high pressures [24] [28]. Therefore, the motivation of this work was  
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B = 1.2 T 
P = 6 pa 

(a) 

(b) 

Figure 1.3 An example of gridding phenomenon in magnetized 

dusty plasma experiments. a) The metal mesh that is placed below 

the top electrode in the MDPX device. b) Summed image of the dust 

particles flow through paths imposed by the spatial structure of the 

metal mesh in (a) [28]. 
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Figure 1.4: Top down view of the “waffle electrode in the vacuum chamber of 

MDPX [3]. 
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Figure 1.5: The position of dust particles beneath the electrode with and without 

applied magnetic field for a neutral pressure of 3.3 Pa and “waffle” electrode bias 

of +40 V. The positions of the wires of the “waffle” electrode are indicated red 

rectangles. The yellow arrows point to the dust particles.  At B = 0 the dust particles 

are randomly distributed beneath the “waffle” electrode and do not get affected by 

it while at B = 1.02 T, the dust particles are mostly trapped beneath the edges of the 

“waffle” electrode wires [3]. 
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to consider whether these phenomena arise from the same underlying physical mechanism. This 

work will show that these two phenomena arise due to the effects of strong magnetic field on the 

cross-field diffusion of electrons/ions and the presence of the metal mesh creates the gridding 

phenomenon by imposing filamentation in the magnetized dusty plasmas.  

Study of these phenomena is relatively new and there have been few theoretical or 

numerical investigations on either the gridding [89] or on filamentation [1] [2] [90]. The biggest 

challenge in the experimental investigation of these phenomena is that, these highly magnetized 

plasmas are poorly diagnosed. The measurements of the properties of low-temperature plasmas 

such as plasma density and temperature are normally done using local probe measurements. 

Measurements from theses regular probes are significantly distorted in the presence of magnetic 

field and there exists very limited theoretical guidance for interpreting probe measurements at high 

magnetic field.  Furthermore, the use of optical diagnostics approaches such as emission 

spectroscopy or laser induced fluorescence are also severely limited under the typical operating 

conditions where these studies are performed. Consequently, in order to investigate these rather 

new phenomena in these highly magnetized electric discharges, theoretical and numerical studies 

are crucial.  

To study the underlying physics behind filamentation and gridding phenomena, a 3-

dimensional (3D) fluid model is developed. In this 3D model, the plasma fluid equations are solved 

along with the Poisson’s equation. Also, because of the need to run the model to resolve both 

electron and ion fluids at realistic mass ratios, the model is GPU accelerated using NVIDIA 

CUDA [91].  

The simulation model will be used to explore a wide range of experimental configurations 

to attempt to reveal the key physical processes that are driving the filamentation/gridding 
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processes. Trying to simulate the detailed geometry and arrangements of the experiments would 

create unnecessary complications. For example, the cylindrical geometry of the plasma chamber 

and the details of the power deposition configuration in the experiments are not believed to be 

playing a critical role in determining the formation of the filaments. Therefore, a 3D rectangular 

grid is used to model a plasma chamber in these simulations. For cases that overlap with 

experimental conditions, qualitative comparisons will be made with experimental data.  However, 

the ultimate goal here is to gain understanding of the physics of the filamentation and gridding and 

to use that insight to guide the next generation of experimental and computational research on this 

topic.  

Using results from numerical simulations, the origins of plasma filamentation and dust 

particles gridding in low-pressure/low-temperature magnetized electric discharges are discussed. 

Although the motivation of this work is in the use of magnetized CCPs in the study of dusty 

plasmas, cross-magnetic field transport is also an important phenomenon in many applications of 

low temperature plasmas, such as magnetrons [92] and Hall effect thrusters [93]. Discovering the 

underlying physics would allow to derive an analytical description and potentially give an insight 

into pattern formation and self-organization for other environments which are governed by a 

similar set of equations such as those based on anisotropic heat transfer. 

The following chapters of this dissertation are presented as follows.  In Chapter 2, there 

will be a discussion on the numerical model and the simulation algorithm.  In Chapter 3, the 

simulation results for filamentation and gridding phenomena will be presented, and the results will 

be discussed. Finally, Chapter 4 will present a summary of the work and present a brief discussion 

of new insights for future experiments that could be performed based on these numerical studies. 
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2 Numerical Model 
 
 

The experimental observations of filamentation in low-pressure and low-temperature 

discharges would benefit from computational modeling to aid in interpreting the experiments and 

determining the origin of the filaments. As discussed in Chapter 1, there have only been a few 

limited attempts to model these strongly magnetized, low-temperature and low-pressure plasma 

systems. In this chapter, Sec. 2.1 will discuss some previous works that have used two-dimensional 

numerical models to understand the properties of filamentation.  It is these works that motivated 

the development of the 3D fluid model that is the basis of this dissertation.  Sec. 2.2 will introduce 

the two-fluid plasma equations and the required boundary conditions that form the physics basis 

for the numerical models. Sec. 2.3 will then present an assessment of the different numerical 

approaches that are considered in order to perform the calculations and the benefits/limitations of 

each one. Finally, Sec. 2.4 will discuss the algorithm and the implementation of the numerical 

model. 

 

2.1 Previous 2D Studies of Pattern Formation in Magnetized Plasmas 
 

There have been recent 2-dimensional (2D) simulations on filamentation phenomenon in 

low-pressure, low-temperature, magnetized plasmas [1] [90].  In reference [90], the formation of 

filamentary structures in a magnetized plasma is studied using a 2D kinetic model. In this model, 

neutral pressure is assumed to be very low (0.01 Pa) and the weak magnetic field (0.0025-0.005 

T) is oblique to the electrodes. Although the article presents a very good discussion on dependency 

of the filamentary structures on electron’s Larmor radius and Debye length, the orientation of 

magnetic field with respect to the electrodes and the magnitudes of pressure and magnetic field in 

this article, are not comparable to the experiments presented in the current work.  
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In reference [1], Menati et al. have investigated the dependency of the filamentary 

structures on the dielectric strength and secondary electron emission from the electrodes. In this 

article, the origins of plasma filaments in low pressure, argon CCPs are discussed using results 

from computational investigations performed on Hybrid Plasma Equipment Model 

(HPEM) [94] [95]. The goal of this 2D simulation was to offer new insights for a particular 

experimental configuration that could lead to the formation of filaments and to motivate continued 

experimental studies. The article indicates that the filaments are quasi-stationary structures that 

originate from statistical variations in the local plasma potential and charging of surfaces. 

Consistent with the experimental observations by Schwabe et al., [24], the filaments dissipate as  

magnetization parameter, 𝜒 = "!"#

#$%&
= $%&	(!)&	*+!!	,)-.

$%&	/0+%+)1$23
	~ 4

5
 (i.e., strength of magnetic field/gas 

number density) decreases.  In the HPEM simulations, the onset of filaments occurs at B = 0.01 – 

0.05 T for gas pressure of 5.3 Pa.   For B = 0.1 T, the filaments begin to dissipate in the simulations 

for pressures exceeding 33.3-40 Pa.  

The configuration of the CCP investigated in the HPEM simulations is a metal powered 

electrode and a grounded metal electrode placed behind a dielectric window. In these simulations, the 

strongest correlation of filaments with operating conditions is the surface conductivity of the dielectric 

window. Despite the interesting results, the simulations using HPEM fail to reproduce some important 

aspects of the experiments. For instance, in these simulations, filaments do not form if the grounded 

electrode opposite the powered electrode is directly exposed to the plasma or if the dielectric has 

significant surface conductivity. A sample of the electron density profile from HPEM as a function of 

electrode conductivity is given in figure 2.1. It can be seen in this figure that, by increasing the 

conductivity of the window covering the lower electrode (which is considered to be a dielectric by 

default), the filaments begin to dissipate in the configuration.  
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Figure 2.1: Y-Z Electron density profile at the center of a plasma chamber for Bz = 0.35 T as a function 

of the lower electrode conductivity obtained from HPEM. The top electrode is fully metallic. The 

default conductivity of the dielectric is 10-10Ω-1cm. Increasing the electrode conductivity to 10-4Ω-1cm, 

has little effect on the filaments. As conductivity is increased to 10-3Ω-1cm and higher, the filaments 

begin to dissipate. Contour labels are multipliers of 1010 cm-3 and give electron density at different 

locations in the chamber [1]. 
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Also, due to the fact that HPEM is a 2D model, it does not reveal the differences between 

different filamentary patterns such as individual columns, spiral and target like structures by only 

providing a side view of these patterns. HPEM is mainly developed to duplicate real plasma sources 

employed in microelectronics and semiconductor industry. In the model, setting the neutral gas 

pressure and input power will automatically give rise to other plasma parameters such as electron/ion 

temperature, ionization fraction, and electron/ion densities. Despite practical applications of this aspect 

of HPEM, it does not allow for independently controlling individual plasma parameters which is 

crucial for studying the physics of filamentation phenomenon as will be discussed later. Therefore, 

despite revealing some aspects of filamentation phenomenon, two previous models are not able to 

fully capture the underlying physics behind the phenomenon. 

To determine the nature of the observed filamentation instability, a 3D fluid model was 

developed here at Auburn University. The numerical model is intended to cover the dynamics of 

the electrons and ions, subject to neutral collisions, and to understand how those dynamics could 

cause the formation of filamentary structures in the plasma. The model will show how a density 

perturbation, in form of a single column, aligned to the magnetic field direction, will result in a 

series of filamentary structures parallel to the magnetic field. This fluid model is also modified by 

adding a metal mesh in the bulk of the plasma to investigate the gridding phenomenon. It is shown 

through these sets of simulations that filamentation and gridding phenomena can be indeed 

explained through the same physical mechanism.   

 

2.2 Assumptions and Base Set of Equations for the Numerical Model 
 

 The development of the 3D model was influenced by choosing the minimum set of 

plasma transport equations that would address the phenomena of filamentation and gridding while 

also being numerically efficient.  It has to be mentioned here that, since the time scale of the 
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dynamics of the dust particles is much longer than that of the electrons and ions (see equation 2.1), 

developing a 3D model including the dust particles along with the electrons and ions is not practical 

at the moment. Therefore, only electrons, ions and neutral particles as the background gas are 

considered in the current 3D model and dust particles are not included. Such a complete model 

will be the subject of future studies.  

∆𝑡6789:;<=9=7><,@A7BB7<C ≫
D

E#'
, D
E('

		  , α  = e, i  (for electrons and ions),                                   (2.1) 

 
in which ∆𝑡6789:;<=9=7><,@A7BB7<C  is dynamics time scale of the filaments, 𝜔,F is plasma frequency, 

and 𝜔GF is cyclotron frequency for species α.  

In the 3D model, the electric potential φ is obtained from the solution of Poisson’s equation:  

 

𝛻H𝜑 = #
I
                                (2.2) 

 
where r is the charge density given by e(ni – ne), and e is the electric permittivity that we have 

assumed to be constant throughout the plasmas.  The dynamics of the plasma fluid elements of the 

individual species α  (= e, i - for electrons and ions) are addressed by the fluid equation of motion: 

 

𝑞F𝑛F(𝑬 + 𝑽F × 𝑩) 	− 𝜵𝑃F −𝑚F𝑛F𝜐FJ&𝑽F 	= 𝑚F𝑛F(
K𝑽'
K𝒕
+ (𝑽F 	. 𝜵)𝑽F),                           (2.3)            

 

where, qa is charge, na is density, E is electric field vector given by -Ñj , Va is velocity vector, B 

is magnetic field vector, Pa is pressure, ma is mass, and ʋa-n is collision frequency with neutral 

atoms. 

It is assumed that the background neutral gas is stationary and contributes to the plasma 

only through collisions with electrons and ions. We do not consider separate fluid equations for 

the neutrals and we have not included excited states of the gas in the model. Additionally, in order 
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to further simplify the model, the plasma is considered to be isothermal with no heat transfer, so 

we do not solve for electron/ion temperatures and assume that they are constant (typically Te = 2 

eV and Ti = 0.025 eV) [20] [96]-[98]. The plasma is sustained by a simple ionization model that 

will be discussed in detail later in this section.  

Our experiments have shown that the dynamical timescale of the filamentary structures, 

once they are established, is of the order of seconds and thus much slower than the dynamics of 

electrons and ions. Therefore, for slow evolution of the phenomenon (steady state), by neglecting 

acceleration and the nonlinear term on the right-hand side of equation (2.3), we get: 

𝑞!𝑛!(𝑬 + 𝑽! × 𝑩)	− 𝜵𝑃 −𝑚!𝑛!𝜐!"𝑽! 	= 0                                                                  (2.4) 
 

 

The flux of each species, ( Г𝜶), is given by: 

 

			Г𝜶 = 𝑛F𝑽𝜶 ,               (2.5) 
 

The collision frequencies are calculated using: 

			ʋF& = 𝑛/𝜎F𝑉-.,               (2.6) 
 

in which, 𝑛/ is the neutral gas density, 𝜎F is electron/ion collision cross-section with neutral atoms, 

and 𝑉-. is the electron/ion average thermal velocity. All Collision cross sections are obtained from 

recent resources [99]-[101] based on the assumed electron/ion temperatures in the simulations.  

Finally, we solve the continuity equation that governs the relation between the fluxes of 

the electrons/ions and their local densities including the source and the loss terms: 
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!"#
!#

	+ 𝛻 ∙ Гα = 	 𝜎𝐼 −	𝜎𝐿,                                            (2.7) 
    
 
in which 𝜎I and 𝜎L are ionization and recombination rates, respectively.  

Unlike equation (2.4), we keep the time derivative term in continuity equation to cover the 

slow dynamics of the plasma filamentation. Without the time derivative in equation (2.7) the whole 

model will be time independent and we cannot investigate the time evolution of the pattern 

formation in the plasma. This approach has been employed in many previous plasma simulations, 

as a validated approach to allow a system to evolve to a steady state as described in the following 

references [102]-[110].  Because our systems are weakly ionized with ionization fractions of the 

order 10-6 to 10-8, electron-ion and electron-electron collisions can be neglected.  

In solving equation (2.7), therefore, we assume that electron-ion recombination only takes 

place on the surfaces of the discharge (sL = 0 in the bulk of plasma), while ionization occurs only 

in the bulk of the plasma.  That is, there is no secondary electron emission from the walls of the 

chamber. If the total number of electrons in the simulation is Si, and the total number of the lost 

particles at the walls for a given time interval is assumed to be SL, our ionization model reads: 

𝜎Q = 	𝛾𝑛!(𝑥, 𝑦, 𝑧)                               (2.8) 
 

𝛾 = 	 R)
R*J	R)

,                                     (2.9)       

 

 

With electrons and ions produced at the same rate proportional to the local electron density, the 

continuity equation in the bulk of the plasma becomes: 
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	+ 𝛻 ∙ Гα = 	𝛾𝑛𝑒(𝑥, 𝑦, 𝑧)                     (2.10)                     
 

The loss rate of the electrons to the walls is more than the ions due to their smaller mass 

and higher mobility. Therefore, in order to sustain the plasma in our simulation, we keep the overall 

number of electrons constant by replacing any losses of electrons to the walls through the proposed 

ionization model. For each ionization process, an electron/ion pair is added to the bulk of the 

plasma at the target temperatures (mostly Te = 2 eV and Ti = 0.025 eV). In this ionization model, 

the total number of the added ions in each cycle of the simulation are more than the number of 

ions lost at the walls, but this slight excess of ions will eventually diffuse towards the walls and 

steady state will be reached. To show that steady state will be achieved through this model, the 

total number of electrons and ions in the simulation as a function of time are depicted in figure 2.2. 
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Figure 2.2: Total number of electrons (red line) and ions (black line) 

in the simulation over time. 
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2.3 Different Numerical Methods Employed in the 3D Model 
 
 In order to use the 3D model, appropriate numerical methods should be employed to 

discretize and numerically solve these equations. There are various methods for numerically 

solving the selected set of equations in our 3D model. In any model, the numerical methods are 

picked based on the efficiency to minimize the run time of the model and the required accuracy to 

minimize the error in the results obtained from the model in order to gain the expected 

spatial/temporal resolution in the solutions. The next few subsections briefly discuss different 

numerical methods utilized to build the 3D model. There are three main numerical methods used 

in the development of the code: (a) the finite difference method for evaluating the electric field 

vector and to discretize all partial derivative terms in the model equations, (b) the successive over 

relaxation method for solving Poisson’s equation, and (c) the Runge-Kutta method for solving the 

continuity equation. 

 

2.3.1 Finite Difference Method 
 
 Throughout Physics and other fields of science, partial derivatives appear frequently in the 

mathematical equations describing a variety of systems. Finding exact analytical solutions to these 

equations is rare and therefore numerical analysis of these equations through computer programing 

has become a crucial part of any scientific research. By that means, it is necessary to find a 

numerical form for partial derivatives that could be employed in computer programing. The most 

common way to discretize partial derivatives is using Finite Difference (FD) method.  

For a given function f(x), any mathematical equation in the form of f(x+b) – f(x+a) is called 

a finite difference of function f(x). In this context, three different forms of finite difference 

approximation of partial derivative of f(x) at an arbitrary point can be defined:  
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Forward-Difference:   𝑓(𝑥Z ) = 	 K*
KT
=	 *(TV∆T)J*(T)

∆T
,                                        (2.11) 

 

Backward-Difference:             𝑓(𝑥Z ) = 	 K*
KT
=	 *(T)J*(TJ∆T)

∆T
,                                                                 (2.12) 

 

Central-Difference:             𝑓(𝑥Z ) = 	 K*
KT
=	 *(TV∆T)J*(TJ∆T)

H∆T
,                                                        (2.13) 

  

Here, the smaller the value of Δx is considered, the better the approximation of the partial 

derivative will be obtained. These three equations give numerical approximations of the slope of 

f(x) at an arbitrary point. An example of these approximations for x = x0 is displayed in figure 2.3.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Finite difference approximations of the slope of f(x) at x0 in 

which P-B is the forward-difference approximation, A-P is backward-

difference approximation, and A-B is central-difference approximation.   
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By assuming x = iΔx ≡ i for numerical applications on a computational grid, equations 

(2.11)-(2.13) can be rewritten as: 

 

Forward-Difference:   K*
KT
=	 *($VD)J*($)

∆T
,                                                    (2.14) 

 

Backward-Difference:             K*
KT
=	 *($)J*($JD)

∆T
,                                                                                 (2.15) 

 

Central-Difference:             K*
KT
=	 *($VD)J*($JD)

H∆T
,                                                                            (2.16) 

 

in which f(i+1) ≡ f(x+Δx), f(i) ≡ f(x), and f(i-1) ≡ f(x-Δx). 

 Although finite difference approximation of partial derivatives is explained here with 

respect to variable x, it can be applied in the same way for partial derivative with respect to time. 

In general the process will be the same for finite difference approximation of partial derivatives 

with respect to any of the variables x, y, z, or t in the function f(x,y,z,t). In this case the function 

f(x,y,z,t) can be expressed as: 

 

𝑓(𝑥, 𝑦, 𝑧, 𝑡) ≡ 𝑓(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑙∆𝑡) ≡ 𝑓(𝑖, 𝑗, 𝑘, 𝑙)                                                                                     (2.17) 

 

FD method is used to discretize any partial derivative in our equation set. In some equations 

such as calculating electric field vector from the plasma potential (E = -Ñj), and solving 

momentum equation (equation 2.4), FD is sufficient to calculate the required variables. On the 

other hand, in solving Poisson’s equation and continuity equation, FD is only used to discretize 

the equation so that more advanced methods can be applied to solve the equations. 
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2.3.2 Successive Over Relaxation (SOR) Method  
 
 Beyond the 1-D PDEs described in Sec. 2.3.1, a reliable method is required to solve more 

complex second order PDEs. The general form of second-order PDE’s in 2D (X, Y) is given 

by  [83]: 

 

𝐴 K+*(T,0)
KT+

+ 2𝐵 K+*(T,0)
KTK0

+ 𝐶 K+*(T,0)
K0+

= 𝐷 K*(T,0)
KT

	+ 𝐸 K*(T,0)
K0

+ 𝐹𝑓(𝑥, 𝑦) + 𝐺,    (2.18)  

 

in which A-G are coefficient of the PDE which can be a function of x, y or be constant and f(x,y) 

is a function of variables x and y. The goal of solving a PDE is to find f(x,y) for given boundary 

condition and initial value. In equation (2.18), by letting the coefficients to be positive, negative, 

or zero, different classes of PDE’s such as hyperbolic (B2 – 4AC > 0), elliptic (B2 – 4AC < 0) or 

parabolic (B2 – 4AC = 0) can be obtained [111]. One of the most famous forms of equation 1 is 

Poisson’s equation which is obtained for A = C = 1, B = D = E = F = 0, and G to be a function of 

variables x and y: 

  

K+*(T,0)
KT+

+ K+*(T,0)
K0+

= 𝐺(𝑥, 𝑦)                                            (2.19) 

 

Poisson’s equation appears in a variety of problems such as electrostatics, magnetostatics, 

diffusion, heat conduction, groundwater flow, pressurized membrane, and elastic torsion [112]. 

Similar to many other PDE’s, when solving Poisson’s equation, it is often very hard to find exact 

analytical solutions and therefore, numerical solutions must be employed. In order to numerically 

solve Poisson’s equation, first the equation must be discretized using finite difference method. 



28 
 

Therefore, by using central finite difference approximation for the two terms on the left-hand side 

of equation (2.19) and ignoring the terms including Δx2 or Δy2, we get: 

 

K+*(T,0)
KT+

=	 *($VD,Y)JH*($,Y)V*($JD,Y)
∆T+

,                                 (2.20) 

 

K+*(T,0)
K0+

=	 *($,YVD)JH*($,Y)V*($,YJD)
∆0+

,                                      (2.21) 

 

in which (i,j) represent (iΔx,jΔy) ≡ (x,y). By substituting equations (2.20) and (2.21) in equation 

(2.19) and assuming ∆𝑥	=	∆𝑦 = h, we get: 

 

𝑓(𝑖, 𝑗) = D
Z
e	𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖 − 1, 𝑗)𝑓 + 𝑓(𝑖, 𝑗 + 1) + 𝑓(𝑖, 𝑗 − 1) − ℎH𝐺(𝑖, 𝑗)f,                          (2.22) 

 

which gives the value of function f at point (i,j) in terms of its values in the neighboring points as 

it is schematically drawn in figure 2.4.  

Band matrix and iterative methods are two major ways to numerically solve equation (2.22). The 

band matrix method is usually used to solve limited number of equations (in our case the total 

number of grid points in the computational space). By contrast, iterative methods can handle large 

systems of simultaneous equations and therefore are more often used in numerical simulation of 

physical systems. In iterative methods, an initial estimate of the solution of  f  at (i,j) is assumed to 

obtain a second estimate of the solution using the governing PDE. In the same way, the next 

estimates of the PDE solution are calculated using the previous estimates until the solution reaches 

convergence. Also, there are three different iterative methods; Gauss-Seidle, Jacobi and 

Successive Over Relaxation (SOR) method.  Among these three methods, SOR method converges  
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Figure 2.4: The relation between the value of function f at point (i,j) and its values in the neighboring 

points in x and y direction as described by equation 2.22. 
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faster than the other two and its implementation is also more straightforward so, it is used more 

frequently in numerical simulations. 

To apply SOR method, the residual term R(i,j), which is the amount by which the 

approximation of f(i,j) differs from the exact solution of equation (2.22), is defined at (i,j): 

 

𝑅(𝑖, 𝑗) = 𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖 − 1, 𝑗) + 𝑓(𝑖, 𝑗 + 1) + 𝑓(𝑖, 𝑗 − 1) − ℎH𝐺(𝑖, 𝑗) − 4	𝑓(𝑖, 𝑗),             (2.23) 

 

R(i,j) can be also viewed as a correction that could be added to the estimate of f(i,j), in 

order to improve it. By repeating this process, the initial approximation of f(i,j) gets closer step by 

step to its actual solution. Then, the SOR algorithm can be written as:    

 

𝑓[VD(𝑖, 𝑗) = 	𝑓[(𝑖, 𝑗) +	E
Z
𝑅[(𝑖, 𝑗)	,                                                                                                                       (2.24) 

 

in which 𝑓[VD(𝑖, 𝑗) is the (k+1)th approximation of f(i,j), 𝑓[(𝑖, 𝑗) is the (k)th approximation of 

f(i,j), 𝑅[(𝑖, 𝑗) is the (k)th approximation of the residual term defined by equation (2.23), and ω is 

called relaxation factor which has a value between 1 and 2 and is picked in a way to guarantee 

enhance the convergence of  SOR method.  ω only depends on the number of grid points and the 

number of dimensions in the computational space. For a 3D computational space with m, n, and l 

grid points in X, Y, and Z direction, ω is given by [113]: 

 

ω = H
DV	\7<	[G%3,-(-.(^>\

/
!V	 ^>\

/
&V	 ^>\

/
0 	))

                                                                                                                     (2.25) 
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2.3.3 Runge-Kutta Method   
 
 The most repeated differential equations in physics and other fields of science are the ones 

in the form of: 

 

K0
KT
= 	𝑓(𝑥, 𝑦)                                                                                                                (2.26) 

 

This form of differential equations are specifically interesting because even the higher orders of 

this differential equation can still be represented in the form presented in equation (2.26). For 

instance, for a second order differential equation given as:  

 

K+_
KT+

= 	𝑔(𝑥, 𝑧),                                                                                                                (2.27) 

 

if a dummy function is defined as 𝑦 = 	 K_
KT

, then equation (2.27) will be taking the exact form as 

equation (2.26). Therefore, the method of solving the first order differential equation can be also 

applied for solving higher order equations. 

 Several methods have been proposed to numerically solve equation (2.26). The most 

straightforward method is Euler’s method. If we consider Δx = h as the step size, Euler’s method 

gives the finite difference approximation of equation (2.26) as:  

 

0	(&VD)J	0(&)
.

= 	𝑓(𝑥, 𝑦),                                                                                                                                            (2.28) 
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in which yn+1 ≡  y(xn+1) = y ((n+1)h) and yn ≡  y(xn) = y (nh). In Euler’s method the right-hand 

side of equation (2.26) is evaluated using forward-finite-difference method. Equation (2.28) can 

be rearranged as: 

 

𝑦	&VD =	𝑦& + ℎ𝑓(𝑥, 𝑦)                                                                                                         (2.29) 

 

Equation (2.29) is used to numerically find yn+1 (the value of function y at point xn+1 = 

(n+1)h) knowing yn (the value of function y at point xn = nh). It has to be mentioned again that the 

variable x can be any arbitrary variable. For instance, if the derivative in equation (2.26) is taken 

with respect to time, then the problem becomes solving an initial condition differential equation.  

In order to solve for yn+1 in equation (2.29), first the function f(x,y); which is the slope of function 

y(x), should be evaluated. Indeed, the question that needs to be answered is that “which set of (x,y) 

[(xn, yn) or (xn+1, yn+1)] should be used to evaluate f(x,y)?” 

If f(x,y) is evaluated at point (xn, yn), the method is called Euler method: 

 

𝑘D = 	𝑓(𝑥&, 𝑦&)                                                                                                                                  (2.30) 

 

𝑦	&VD =	𝑦& + 𝑘D                                                                                                                                (2.31) 

 

 So, Euler method is assuming a linear relationship between yn+1 and yn which of course is 

not always correct and therefore despite the easy procedure for the application of Euler method, 

the method is not very accurate and not very common. Assuming y(xn) = yn (initial value problem), 

the Euler Method is schematically depicted in figure 2.5.  
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Figure 2.5: Schematic graph of Euler method to numerically find the value of y at xn+1 knowing its 

value at xn. 

xn 

yn 

xn + h 

yn+1 

slope = k1 = f(xn, yn) 
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Euler method has an accuracy of the order of (h) which is the selected step size for the 

numerical solution [111]. Among different methods that can numerically solve equation (2.26) 

with a high level of accuracy, Runge-Kutta method has been widely adopted. Different orders of 

Runge-Kutta method are defined based on multiple evaluations of function f(x, y) in equation 

(2.26) that can yield different levels of accuracy. Here, second order and fourth order Runge-Kutta 

method will be explained and the other orders of this method can be calculated through the same 

procedure. Second order Runge-Kutta method includes three steps. In step 1, function f(x, y) will 

be evaluated at the point (xn, yn) to give k1 = f(xn, yn). In step 2, function f(x, y) will be evaluated 

at the point (xn+ .
H
 , yn+𝑘D

.
H
	) that yields  k2 = f(xn+.

H
, yn+𝑘D

.
H
	). In step 3, k2 is used in the final 

step to solve for y(xn+h) through the equation yn+1 = yn + k2h. The steps in the second order Runge-

Kutta method are: 

 

Step 1:  𝑘D = 	𝑓(𝑥&, 𝑦&),	                                                                                               (2.32) 

 
Step 2:  𝑘H = 	𝑓(𝑥& +

.
H
, 𝑦& + 𝑘D

.
H
	),          (2.33) 

 
Step 3:  𝑦	&VD =	𝑦& +	ℎ	𝑘H            (2.34) 

  

These steps are schematically depicted in figure 2.6. The accuracy of second order Runge-

Kutta method is of the order of (h2) [111]. In order to reach higher levels of accuracy, higher orders 

of Runge-Kutta method can be employed. Fourth order Runge-Kutta method is one of the most 

common forms of Runge-Kutta method that is easy to apply and provides an accuracy of the order 

of (h4). In the fourth order Runge-Kutta method, five steps have to be taken to numerically 

calculate y(xn+h) knowing y(xn): 
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Figure 2.6: Schematic graph of second order Runge-Kutta method to numerically find the value of y at 

xn+1 knowing its value at xn. In step 1, function f(x, y) will be evaluated at the point (xn, yn) to give k1 = f(xn, 

yn). In step 2, function f(x, y) will be evaluated at the point (xn+ 𝒉
𝟐
 , yn+𝒌𝟏

𝒉
𝟐
	) that yields  k2 = f(xn+

𝒉
𝟐
, yn+𝒌𝟏

𝒉
𝟐
	). 

In step 3, k2 is used in the final step to solve for y(xn+h) through the equation yn+1 = yn + k2h. 
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Step 1:  𝑘D = 	𝑓(𝑥&, 𝑦&),	                                                                                               (2.35) 

Step 2:  𝑘H = 	𝑓(𝑥& +
.
H
, 𝑦& + 𝑘D

.
H
	),          (2.36) 

Step 3:  𝑘` = 	𝑓(𝑥& +
.
H
, 𝑦& + 𝑘H

.
H
	),          (2.37) 

Step 4:  𝑘Z = 	𝑓(𝑥& + ℎ, 𝑦& + 𝑘`),          (2.38) 

Step 5:  𝑦	&VD =	𝑦& +	
.
a
	(𝑘D + 2𝑘H + 2𝑘` + 𝑘Z)                                             (2.39) 

So, in 4th order Runge-Kutta method, the function f(x, y) is evaluated at four different points 

(different sets of (x, y)) and in the final step the weighted average of these four different estimate 

of f(x, y) is used to numerically calculate y(xn+h). Now that y(xn+h) is evaluated through 4th order 

Runge-Kutta method, the same procedure should be repeated to evaluate y(xn+2h) and the next 

points after that. 

In our 3D model, 4th order Runge-Kutta method is used to solve the continuity equation. 

The time evolution of the model is only implemented in this equation and therefore, an accurate 

and stable solution for it, is crucial. 

 
 
2.4 Algorithm and Computational Space 
 

In order to numerically solve the selected set of equations, the computational space must 

be discretized into mesh points at which the physical variables are going to be evaluated. The 

plasma source in our model is assumed to be rectangular and a 3D multi-mesh configuration is 

used to simulate plasma chamber with metal walls on all sides. As shown in figure 2.7, the electric 

potential and electron/ion densities are calculated on the main mesh points (black circles in figure 
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2.7), while electric field and electron/ion fluxes are derived at midpoints between two main mesh 

points in X, Y and Z direction.   

The Successive Over-Relaxation (SOR) method [113] is employed to solve Poisson’s 

equation with the boundary condition of zero potential at the metal walls.  The electric field at the 

midpoints is then calculated from the potential which will be substituted into the momentum 

equation to evaluate the electron/ion fluxes at halfway between the main mesh points.  A 4th order 

Runge-Kutta method is used to evaluate continuity equation, equation (2.10), and update electron 

and ion densities on the grid.  Once this step is completed, the simulation is advanced to the next 

time step. The overall simulation algorithm is illustrated in figure 2.8.  

Typical electron density and temperature in the MDPX device at B = 0 are 4-10×1014 m-3 

and 2-4 eV respectively. In the simulations, a uniform plasma at a background electron/ion density 

of 1-15×1014 m-3 is considered with an applied, uniform magnetic field (0.8-2.0 T) in Z direction. 

The electron and ion temperatures are initialized at 1.5-3 eV and 0.025 eV respectively and are 

assumed to be constant. The volume of the simulated plasma is 6.3 cm×6.3 cm×4.2 cm.  

It was noted in the experiments and other simulations that, electron Debye length and ion 

mean-free-path play a role in the filamentation and gridding phenomena  [24] [90].  Therefore, in 

various simulations, the grid size in X/Y direction (perpendicular to the magnetic field) is assumed 

to be hx = 3.5×10-4 m or 2×10-4 to be smaller than these two characteristic lengths.  In Z direction 

(parallel to the magnetic field) on the other hand, the grid size is considered to be hz = 6×10-4 m. 

Since the fluxes and the dynamic of the charged species parallel to the magnetic field will not be 

affected by the magnetic field, the mesh spacing in this direction is considered larger than the 

spacing perpendicular to the magnetic field.  This is computationally beneficial, resulting in a 

reduction of the total number of grid points.  
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Figure 2.7: The multi-mesh computational grid. The electric potential and electron/ion densities 

are calculated on the main grid points (black circles) while the electric field and electron/ion fluxes 

are obtained at the corresponding midpoints. 
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Figure 2.8: The simulation algorithm  
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Since our simulation is explicit, in order to avoid numerical instabilities, a simulation time 

step of 10-11 s is used in most of the simulations to ensure that the time step is not larger than the 

dielectric relaxation time of the plasma [114]: 

𝛥𝑡1 =	
I4
b

                      (40)                         
 

where 𝜎 is the plasma conductivity.  

The time step in the simulation is very small and the dynamic of the filaments in the 

filamentation experiments occur at timescales of the order of milliseconds to seconds. As a result, 

it is not currently feasible to simulate the dynamic of the filaments in the chamber with respect to 

each other. Also, the equations are solved using a graphics processing unit (GPU) parallel code 

using NVIDIA CUDA [91] to accelerate the simulation. Table 2.1 presents typical length and time 

scales for the plasma parameters mentioned above. 

 

 

 

 
 
 
 
 

Table 2.2: Typical length and time scale in the simulation for a plasma density of 5×1014, electron temperature 

of 2.5 eV, room temperature ion, neutral gas pressure of 10 Pa, and 1.0 T magnetic field. In this table Δx is step 

size in X and Y direction, λDe is electron Debye length, rLi is ion Larmor radius, λi is ion mean-free-path, Lx is 

the length of the plasma chamber in X and Y direction, Δt is time step, 𝝎𝒑𝒆 is electron plasma frequency, 𝝎𝒄𝒊 

is ion gyro-frequency, ʋ𝒊 is ion collision frequency and tf is typical time scale for the motion of filaments with 

respect to each other in the experiments. 

 

 

Δx = 3.5×10-4 m λDe ≈ 5.0 ×10-4 m rLi ≈ 2.5×10-4 m λi ≈ 7 ×10-4 m Lx ≈ 6 cm 

Δt = 1×10-11 s D
E#9

 ≈ 9.0×10-10 s D
E($

 ≈ 2.0×10-7 s D
ʋ$

 ≈ 1.5×10-6s  tf  ≈ 1ms–1s   
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Simulations are performed by varying pressure, plasma density (power), electron 

temperature, gas type, and the height of the plasma chamber to independently discover the effect 

of these parameters on filamentation and gridding phenomena. For the simulations of gridding 

phenomenon, an additional variable of the width of the mesh wires is also considered. In all of 

these cases, filamentary structures form in the plasma in the X-Y plane transverse to the magnetic 

field, while along the magnetic field (Z direction), the density behaves like a one-dimensional 

plasma. Consequently, we mostly look at the pattern formation as seen from the top (X-Y plane 

cross-section) and the simulations are stopped at about t = 20-40 µs (2-4×106 time steps of 

simulation) at which the patterns are stablished. About this time scale, the filamentary structures 

are fully formed in the simulation and their shapes do not significantly change.  

After defining the mesh configuration and the simulation algorithm as the last steps, 

everything is set in model and it can be run. In the first simulations, filamentation and gridding 

phenomena should be generated and then their physics could be explored by repeating the 

simulation using different plasma parameters. It is noted that, although, the simulations presented 

here are inspired by the experimental observations of filamentation and gridding phenomena, the 

simulations are not exactly duplicating any experimental set up. For instance, in the most 

filamentation and gridding experiments a circular ring was placed on the lower electrode for the 

confinement of the plasma but, a rectangular plasma chamber is assumed in the numerical 

simulations of these phenomena. The rectangular configuration was picked because it was noticed 

in the experiments that the shape of the plasma chamber was not an important factor in the 

formation of filamentary patterns and also solving a set of differential equations in cylindrical 

coordinate system would require difficult computational implementation.  
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3 Filamentation of Magnetized Plasmas 
 
 

It is believed that filamentary patterns imposed by a metal mesh placed in the bulk of a 

strongly magnetized plasma are responsible for gridding phenomenon. Therefore, studying 

filamentation phenomenon is not only important for understanding the behavior of strongly 

magnetized plasmas but also to accurately explain the gridding phenomenon. This chapter starts 

with presenting benchmarking simulations for filamentation phenomenon in section 3.1. In section 

3.2, the simulation results for filamentation under variation of different plasma parameters will be 

presented and discussed in section 3.3.  

 

3.1 Benchmarking Simulations 

Before trying to simulate filamentation phenomenon, it would be useful to evaluate the 

performance of the model in the simulation of a uniform unmagnetized plasma.  Therefore, a 

rectangular plasma chamber with grounded metal walls is considered, which is displayed in figure 

3.1. The chamber contains uniform argon plasma (ne = ni = 5.4 × 1014 m-3) with constant electron 

and ion temperatures of Te= 2.5 eV and Ti= 0.025 eV, respectively. Figure 3.2 displays a horizontal 

(X-Y) cross section of the electron density and plasma potential profile from the simulation of the 

unmagnetized plasma. Although different in magnitude, the shape of ion density profile is similar 

to that of the electrons and is not shown here. The simulation is terminated at t = 40 µs and the 

cross-section profiles are taken from the middle of the plasma chamber at Z = 2.1 cm. It can be 

seen in these figures that, in the absence of a perturbation and magnetic field, electrons/ions simply 

diffuse to the walls of the plasma chamber and recombine there. Due to the much higher mobility  
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Figure 3.1: Schematic drawing of the rectangular plasma chamber with grounded metal 

walls, considered in the simulation of filamentation phenomenon.  
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Figure 3.2: X-Y cross section of the electrons density (a) and plasma potential (b) profile from 

the simulation of the unmagnetized plasma. The solid black line indicates where the top plots 

have been taken from. The background plasma density is 5.4×1014 m-3, the neutral pressure is 

9 Pa, and the electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV. In the absence of 

magnetic field and perturbation, the plasma simply diffuses to the walls without generating 

any significant phenomenon.  The formation of plasma sheath is clearly seen near the walls.  
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of the electrons, the loss of the electrons is more than the ions and the plasma is electropositive. It 

is seen in these figures that sheath regions have formed self-consistently near the walls. 

In the second benchmarking simulation, a magnetic field of B = 0.8 T is applied to the 

plasma in negative Z direction. Since no perturbation is added to break the homogeneity of the 

magnetized plasma, the electrons and ions diffuse to the walls of the plasma chamber mostly 

parallel to the magnetic field. Figure 3.3 displays the X-Y cross section of electron density and 

plasma potential profile at the midplane of this undisturbed magnetized plasma at t = 40 µs. Even 

in presence of magnetic field filamentary patterns are not forming in the uniform plasma and the 

only significant phenomenon is what seems to be the excitation of Kelvin-Helmholtz instability in 

the sheath regions of the plasma.  The excitation of Kelvin-Helmholtz instability is due to the 

rotation of the plasma (E × B drift of the electrons and ions) against the walls. The plasma is again 

electro-positive, but because of the lower rate of plasma loss to the walls in the magnetized plasma, 

the plasma potential is smaller compared to the unmagnetized plasma (see figure 3.2(b)).  

To trigger the formation of filamentary patterns, some form of perturbation must be introduced to 

the magnetized plasma to break the symmetry of the model. Therefore, we chose to introduce a 

high-density plasma column along Z direction (parallel to the magnetic field) to break the initial 

homogeneity of the background plasma. The introduced perturbation to the plasma has a density 

10 times the background plasma, a diameter of about 2 mm, and is extended from the top to the 

bottom electrode, as it is depicted in figure 3.4 for t = 0 s. Although the perturbation is considered 

to be 10 times the background plasma density, a smaller perturbation would result in the same 

pattern configuration but the smaller the initial perturbation, the longer it takes for the patterns to 

appear in the plasma. 
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Figure 3.3: X-Y cross section of electron density and plasma potential profile in the middle of the 

undisturbed magnetized plasma at t = 40 µs. The only significant phenomenon in this plasma is the excitation 

of Kelvin-Helmholtz instability in the sheath region of the plasma due to rotation of the plasma against the 

walls under the effect of magnetic field. B = 0.8 T is applied to the plasma, the background plasma density 

is 5.4×1014 m-3, the neutral pressure is 9 Pa, and the electron and ion temperature are Te = 2.5 eV and Ti = 

0.025 eV.  
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Figure 3.4: Cross section of initial electron density at t = 0 s 

with a high density column introduced to break the 

homogeneity of the plasma. a) side view (Y = 3.2 cm), b) top 

view (Z = 2.1 cm). 
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By introducing the perturbation to the background uniform plasma, the filamentary patterns 

emerge in the magnetized plasma. The same filamentary patterns appear in the electron/ion density 

as well as in the plasma potential which can be seen in the example presented in figure 3.5. The 

X-Y cross-section profiles presented in this figure are taken from the middle of the plasma chamber 

at Z = 2.1 cm, and the X-Z cross section profile is taken at Y = 3.2 cm. In all other simulations, the 

X-Y and X-Z cross section profiles are taken at the same points. In figure 3.5, the background 

plasma density is 5.0×1014 m-3, neutral gas pressure is 9 Pa, the applied magnetic field is 0.8 T, 

electron temperature is Te = 2.5 ev, and ion temperature is Ti = 0.025 ev.  

Each graph in figure 3.5 is labeled with a set of three length parameters; (ri (mm), λi (mm), 

λDe (mm)), which represent ion gyro-radius, ion-neutral mean-free-path, and electrons Debye 

length, respectively. In an unmagnetized plasma, these parameters are calculated through the 

following equations: 

 

𝑟$ =	
($d:;$
e4

                                                          (3.1)        

                      

𝜆$ =
d:;$
ʋ$

               (3.2) 

 

𝜆f! =	n
I4g<h9
!+&9

              (3.3) 

 

in which 𝑚$ is the mass of the ions, 𝑉-.$ is thermal velocity of the ions, q is the charge of the ions, 

B is the magnetic field, ʋ$ is ion-neutral collision frequency, 𝜀i is electric permittivity of free 

space, 𝐾j is the Boltzmann constant, 𝑇! is electron temperature, e is the unit charge, and ne is the 
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background electron density.  

 
Similar to figure 3.3, instabilities appear in the sheath regions of figure 3.5. The instabilities 

can be seen in both electrons and ions X-Y density profiles. These also seem to be again Kelvin-

Helmholtz instabilities due to the E × B drift of the electrons and ions, moving in the same 

direction (counter-clockwise) in both profiles. It is noted that E × B drift is independent of the 

electric charge and is the same for electrons and ions. Also, from 3.5.d, it is clear that the 

filamentary patterns are extended in the bulk of the plasma parallel to the applied magnetic field. 

Another feature of figure 3.5 is that, the shape of the filamentary patterns in X-Y cross section 

profile of the electron density, ion density, and plasma potential are the same and the patterns are 

uniformly extended in the bulk of the plasma in Z direction. Because of this similarity, the rest of 

this work will primarily present just the X-Y electron density plots.  

In order to numerically compare the filamentation properties of the plots of plasma 

simulations under different conditions, we define a dimensionless filamentation parameter “F” as 

below: 

 

𝐹 = 	 1=
k"
𝑛*                                     (3.4) 

 

in which, ds is the distance from the first filamentary ring to the sheath edge perpendicular to the 

magnetic field, wf is the average width of the filamentary rings, and nf is the total number of the 

filamentary rings in the plasma as viewed from the top. These parameters are indicated on the 

electron density profile example featured in figure 3.6. The higher the filamentation parameter is 

in an specific graph, the higher the number of filamentary rings in the graph and the narrower those 

filamentary rings are. 
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Figure 3.5: Top view of an example of filamentary pattern formation in: a) electron density, b) ion density, and 

c) plasma potential. The side view of electron density profile is given in (d). The X-Y cross-section profiles 

presented in this figure are taken from the middle of the plasma chamber at Z = 2.1 cm, and the X-Z cross section 

profile is taken at Y = 3.2 cm. The background plasma density is 5.0×1015 m-3, neutral gas pressure is 9 Pa, the 

applied magnetic field is 1.0 T, electron temperature is Te = 2.5 eV, and ion temperature is Ti = 0.025 eV. Each 

graph is labeled with a set of three length values; (ri (mm), λi (mm), λDe (mm)), which represent ion gyro-radius, 

ion-neutral mean-free-path and electron Debye length respectively. 

B 

B B 
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Figure 3.6: Example of filamentary structures in electron density profile to indicate the length parameters 

needed to calculate the defined equation for filamentation parameter (equation 3.4).  Filamentation parameter 

for these graphs are calculated to be  𝟑𝟎. 𝟔 = 	 𝟏𝟕.𝟏𝟓	𝒎𝒎
𝟐.𝟖		𝒎𝒎

× 𝟓 in (a) and 𝟖𝟒 =	 𝟏𝟖	𝒎𝒎
𝟏.𝟓		𝒎𝒎

× 𝟕 in (b).  

(a) 

(b) 
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3.2 Simulation results 

 In this section, the results of the filament simulations are presented.  In order to gain an 

insight into the physical processes that govern this process, a series of simulations are performed 

that consider key variables, one at a time.  These variables include neutral gas pressure (neutral 

density), electron/ion density, gas species, and the gap between the electrodes.  We will show that 

controlling these control parameters correspond to particular plasma scale lengths, specifically the 

electron Debye length, ion-neutral mean-free-path, and ion gyro-radius.  This work will show that 

these length scales (and ratios of these length scales) may be important in determining the 

properties of the filaments.   

 In general, all of the simulations will start with a uniform background plasm (equal density 

for ions and electrons) within the 6.3 cm × 6.3 cm × 4.2 cm simulation volume. The constant 

electrons and ions temperatures are Te= 2.5 eV, and Ti= 0.025 eV, respectively and remain constant 

for the duration of the simulations. A perturbation in the form of a high-density plasma column 

with a density 10 times that of the background plasma, is introduced at the geometric center of the 

plasma chamber to trigger the formation of the filamentary patterns.  

 

3.2.1 Filamentation Under Variation of Neutral Gas Pressure 

In order to see the effect of neutral gas pressure on pattern formation in magnetized 

plasmas, the pressure was varied while other plasma parameters were kept constant. In these 

simulations, the electron/ion densities were ne= ni = 5.4×1015 m-3, electron temperature was Te = 

2.5 eV, ion temperature was Ti = 0.025 eV, and magnetic field was B = 0.8 T. The neutral gas 

pressure was varied from 2.5 Pa to 46 Pa (18.75 mTorr to 345 mTorr). The X-Y cross section of 

the electron density profiles for these simulations are displayed in figure 3.7.  
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  B 

Figure 3.7: X-Y cross section of the electron density profile in magnetized argon plasma at different neutral gas 

pressure. a) 46 Pa, b) 31 Pa, c) 15 Pa, d) 10 Pa, e) 5 Pa, f) 2.5 Pa. The electron/ion densities are 5.4 ×1014 m-3, the 

plasma is exposed to B = 0.8 T magnetic field, Te = 2.5 eV and Ti = 0.025 eV. The profiles are taken from the 

middle of the plasma chamber at Z = 2.1 cm. The set of three length parameters; (ri (mm), λi (mm), λDe (mm)), is 

also displayed on each graph. By decreasing the pressure (increasing ion mean-free-path) the pattern formed in 

the plasma get narrower and transition from target like to spiral structures. The graph of filamentation 

parameter for these plots is given in figure 3.10.  
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The same patterns appear in the ion density and plasma potential profile and therefore they 

are not being shown here. From figure 3.7, it can be seen that by decreasing the pressure (increasing 

ion mean-free-path) the pattern formed in the plasma get narrower and transition from target like 

to spiral structures. Also, it can be seen in figure 3.7.a that, when the ion mean-free-path gets 

smaller than the ions gyro-radius at high pressures, no pattern forms in a magnetized plasma. This 

observation was checked with different sets of plasma parameters.  

Based on the definition given in equation 3.4, our filamentation parameter is calculated for 

the six cases displayed in figures 3.7. Figure 3.8 shows the variation of the filamentation parameter 

with the ions mean-free-path. It can be seen in this figure that by increasing the mean-free-path 

(decreasing neutral gas pressure), the filamentation parameter increases significantly (second order 

relation). Also, the filamentation parameter drops to zero as the mean-free-path drops below the 

ion gyro-radius. Therefore, it can be said that the higher the fraction of  "$
+$

 (ions Hall parameter) 

gets, the degree of filamentation increases. 

The side view (X-Z cross section) of the filamentary patterns displayed in figure 3.7 are 

presented in figure 3.9. These graphs are in agreement with the experimental observations 

presented in references [23] and [24]. It is clear from these plots that the filamentary patterns are 

uniformly extended in Z direction along the magnetic field and behave like a one-dimensional 

system. Therefore, we believe that it is sufficient to rely only upon the X-Y plots to provide visual 

evidence for the formation of the filaments. This also demonstrates that, the actual characteristic 

of the pattern formation cannot be deduced from only looking into the side view of these structures, 

which was also noticed through the numerical works in reference [85], and a 3D modeling is 

needed to precisely analyze the phenomenon.  
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Figure 3.8: Filamentation parameter for argon plasma as a function of ion mean-free 

path. The red lines show upper and lower error margins in the measurement of the 

filamentation parameter. By increasing the mean-free-path (decreasing neutral gas 

pressure), filamentation parameter increases significantly (second order relation). Also, 

the magnetization drops to zero as the mean-free-path drops below the ion gyro-radius. 
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Figure 3.9: X-Z cross section of the electron density profile in magnetized argon plasma at different neutral gas 

pressure. These are the side view of the plots presented in figure 3.7. a) 46 Pa, b) 31 Pa, c) 15 Pa, d) 10 Pa, e) 5 

Pa, f) 2.5 Pa. The electron/ion densities are 5.4 ×1014 m-3, the plasma is exposed to B = 0.8 T magnetic field, Te = 

2.5 eV and Ti = 0.025 eV. The profiles are taken from the middle of the plasma chamber at Y = 3.2 cm. The set of 

three length parameters; (ri (mm), λi (mm), λDe (mm)), is also displayed on each graph. By decreasing the pressure 

(increasing ion mean-free-path) more filaments appear in the plasma and they also get narrower. 
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  To check the observations in figures 3.7.a, 3.8 and 3.9.a that ion gyro-radius must be 

smaller than ions mean-free-path in order to form filamentary structures, the ion gyro-radius (ri) 

was reduced to 0.1 mm by increasing the magnetic field from 0.8 T to 1.6 T. Figure 3.10, shows 

the X-Y cross section of the electron density profile for this case. It is clear from this graph that, 

by decreasing the ion gyro-radius below the ion mean-free-path, filamentary patterns form again 

in the plasma compared to figures 3.7.a and 3.9.a. This observation was also tested and 

demonstrated in simulations using different sets of plasma parameters. 

Moreover, the continuous patterns formed in these simulations are rectangular closer to the 

walls and more curved in the center of the discharge. This suggests that the rectangular boundary 

condition assumed in these simulations is imposing its shape to the filamentary patterns. It is noted 

that in the experiments, a circular ring was usually placed on the electrode which may be enforcing 

the observed circular patterns.  

In addition to that, the whole plasma rotates due to the presence of magnetic field as it has 

been also observed in the experiments. The flow of the plasma along the walls and the strong 

electric field due to the plasma sheath in that region, results in what seems to be Kelvin-Helmholtz 

instability. These instabilities cause the roughness of the plasma near the walls. These instabilities 

are suppressed at higher pressures due to higher collision rates with neutral atoms, as it can be 

noticed in figures 3.7.b and 3.7.c. The average speed of the rotation of the plasma due to E×B drift 

of the electrons and ions was measured to be approximately 300 m/s for the case presented in figure 

3.7.d which is enough to generate Kelvin-Helmholtz instability [115].  

3.2.2 Filamentation Under Variation of Background Plasma Density  

In another set of simulations, the background plasma density was varied while all other 

parameters were kept constant (P = 12 Pa, B = 0.8 T, Te = 2.5 eV, and Ti = 0.025 eV). Due to the  
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Figure 3.10: X-Y cross section of the electron density profile in argon plasma for P = 46 Pa and 

ne = ni = 5.4 ×1014 m-3, Te = 2.5 eV and Ti = 0.025 eV, exposed to 1.6 T magnetic field. The set of 

three length parameters; (ri (mm), λi (mm), λDe (mm)), is also displayed on the graph. This graph 

compared to graph 3.7.a and 3.9.a, shows the formation of filamentary structures in magnetized 

plasma, when the ion mean-free-path is larger than the ions gyro-radius in the plasma.  
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contribution of the electron density to the electron Debye length (equation 3.3), this set of 

simulations is equivalent to changing electron Debye length while keeping other length parameters 

constant. The X-Y cross section of the electron density profiles for these simulations are displayed 

in figure 3.11. 

It can be seen in figure 3.11 that, by increasing the electron Debye length (decreasing the 

electron/ion densities), the number of rectangular filamentary loops in the plasma decrease and 

these patterns get wider. Also, similar to the role of ion mean-free-path, if the electron Debye 

length is less than the ions gyro-radius, no significant pattern forms in the plasma (see figure 

3.11.a). Filamentation parameter for argon plasma as a function of the electron Debye length is 

given in figure 3.12. The filamentation parameter decreases exponentially as the electron Debye 

length increases.  

The variation of the filamentation parameter with the electron Debye length behaves 

differently from than the role of collisions.  One concern is whether the scale size and/or 

boundaries of the simulation region are affecting the formation of the filaments. The plasma sheath 

is typically a couple of electrons Debye lengths in size [7] (~ 0.5-1 cm from each side) extending 

from the boundaries of the simulation space.  The total width of the simulated chamber is only 

about 6 cm which by considering the central perturbation region (about 2 cm) does not leave 

enough room for the filamentary patterns to develop in the plasma.  

Despite this exponential increasing of filamentation with decreasing electron Debye length, 

it drops to zero as the Debye length becomes smaller than the ions gyro-radius. To check this 

observation, the ion gyro-radius (ri) was reduced to 0.1 mm by increasing the magnetic field from 

0.8 T to 1.6 T. Figure 3.13, depicts the horizontal electron density profile for this case in which 

narrow filamentary structure forms in the plasma as the ri drops below the Debye length. 
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Figure 3.11: X-Y cross section of the electron density profile in magnetized argon plasma at different 

electron/ion densities. a) 3.4 ×1015 m-3, b) 2 ×1015 m-3, c) 1.1 ×1015 m-3, d) 5.4 ×1014 m-3, e) 2.7 ×1014 

m-3, f) 1.35 ×1014 m-3. Except for case (b), in all other cases, neutral gas pressure is P = 12 Pa, the 

plasma is exposed to B = 0.8 T magnetic field, Te = 2.5 eV and Ti = 0.025 eV. The set of three length 

parameters; (ri (mm), λi (mm), λDe (mm)), is also displayed on each graph. By decreasing the 

electron/ion density (increasing Debye length) the pattern formed in the plasma get wider and 

include less filamentary rectangular loops. The graph of filamentation parameter for these plots is 

given in figure 3.12. 

(0.21, 0.91, 0. 5) 

(d) 

ne (m-3) 

(0.21, 0.91, 0.27) 

(b) 
0 

   
   

   
  2

   
   

   
   

4 
   

   
   

  6
   

   
   

   
  

(0.21, 0.91, 0. 35) 

Y
 (c

m
) 

(c) 

ne (m-3) 
0 

   
   

   
  2

   
   

   
   

4 
   

   
   

  6
   

   
   

   
  

(0.21, 0.91, 0. 19) 

Y
 (c

m
) 

(a) 

B 

0                2                 4                6              

(0.21, 0.91, 1. 0) 

X (cm) 

(f) 

0                2                 4                6              

0 
   

   
   

  2
   

   
   

   
4 

   
   

   
  6

   
   

   
   

  

(0.21, 0.91, 0. 71) 

X (cm) 

Y
 (c

m
) 

(e) 



61 
 

  

  

Figure 3.12: Filamentation parameter of argon plasma as a function of the electrons Debye length. The red 

lines show upper and lower error margins in the measurement of the filamentation parameter. Filamentation 

parameter increases exponentially by decreasing the Debye length and drops to zero as Debye length becomes 

smaller than the ions gyro-radius 

Indicating the ion gyro-radius line: x = ri 
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Figure 3.13: X-Y cross section of the electron density profile in argon plasma for P = 10 Pa and 

ne = ni = 3.4 ×1015 m-3, Te = 2.5 eV and Ti = 0.025 eV, exposed to 1.6 T magnetic field. The set of 

three length parameters; (ri (mm), λi (mm), λDe (mm)), is also displayed on the graph. This graph 

compared to graph 15.a, shows that when the ion gyro-radius is made smaller than the electron 

Debye length, the filaments can re-form in the plasma. 
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3.2.3 Filamentation Under Variation of the Gap Between the Electrodes 

It was observed in the experiments that the pattern formation in magnetized plasmas can be also 

affected by the gap between the top and the bottom electrodes; increasing the gap between the top 

and the bottom electrodes weakens the filamentation. This observation was also tested through 

numerical simulations. Figure 3.14 depicts the variation of the pattern formation in magnetized 

argon plasma at pressure of P = 9 Pa exposed to B = 1.0 T magnetic field. Shown in this figure 

are the formation of filaments with increasing gap size from (a) 1 cm to (f) 10.4 cm.  Case (c) is 

the “nominal” gap of 4.2 cm. The graphs in figure 3.14 show that with increasing separation 

between the electrodes, there is a suppression of the filamentation.  Notably, with gaps that are > 

8cm, the filamentary patterns are not effectively forming in the argon plasma. The maximum 

vertical distances between the electrodes of the discharge to facilitate the formation of filamentary 

patterns, might change depending on other plasma parameters. Figure 3.15 displays the variation 

of the filamentation parameter with the gap between the electrodes which shows how significantly 

it increases as the gap between the electrodes is decreased.   

 

3.2.4 Filamentation under Variation of Gas Type 

Finally, the formation of filamentary patterns in different gas types (Ne, Ar, Kr) at a 

constant plasma density of 5×1014 m-3, pressure of 9 Pa and B = 1.0 T, is shown in figure 3.16.  In 

this figure, the magnetization parameter is 78.4, 30.5 and 5.8 for Ne, Ar, and Kr respectively 

meaning the filamentary structures are narrower and closer to one another for Ne and get wider for 

Ar and Kr. Since the collision cross-sections for heavier atoms are higher, the ion-neutral collision 

mean-free-path will be shorter for heavier atoms at the same electron/ion temperatures. The mass 

of the ions also affects the ion gyro-radius and the ion gyro-radius of Kr is twice of that of Ar and  
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Figure 3.14: X-Y cross section profile of filamentary pattern formation in magnetized argon plasma at 

pressure of P = 9 Pa, Te = 2.5 ev, Ti = 0.025 ev, and ne = ni = 5.0 ×1014 m-3, exposed to B = 1.0 T magnetic field. 

The vertical gap between the top and the bottom electrode is different for different graphs. a) 1 cm, b) 2.1 

cm, c) 4.2 cm, d) 6.1 cm, e) 8 cm, and f) 10.4 cm. The set of three length parameters; (ri (mm), λi (mm), λDe 

(mm)), is also displayed on each graph. If the electrodes are too close or too far from each other, filamentary 

patterns are not effectively forming in the plasma. The graph of filamentation parameter for these plots is 

given in figure 3.15. 
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Figure 3.15: Variation of filamentation parameter with the gap between the electrodes. The red lines show 

upper and lower error margins in the measurement of the filamentation parameter. Filamentation parameter 

significantly increases as the gap between the electrodes is decreased.   
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Figure 3.16: Pattern formation in Ne, Ar, and Kr at plasma density of 5×1014 m-3 and neutral gas pressure 

of 10 pa. a) Ne, b) Ar, c) Kr. In all the cases, the plasma is exposed to B = 1.0 T magnetic field, Te = 2.5 eV, 

and Ti = 0.025 eV.  
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is quadruple the ion gyro-radius of Ne. This suggests again that with lower fraction of  "$
+$

, the 

filamentation parameter of the plasma is reduced. These results are consistent with the graphs 

presented in figures 3.7 and 3.8. 

 

3.3 Discussion on the Results of Filamentation Simulations  

 Without collisions with other species, the electrons and ions would not be able to diffuse 

across the magnetic field in a highly magnetized plasma. The derivation of the cross magnetic field 

diffusion of the electrons and ions in a magnetized plasma is described in many standard plasma 

physics textbooks [6] [7].  If electron/ion temperatures in the plasma are assumed to be constant 

(𝜵𝑃! = 𝐾'𝑇!𝜵𝑛!), equation 2.4 can be rewritten as: 

𝑞!𝑛!(𝑬 + 𝑽! × 𝑩)	− 𝐾'𝑇!𝜵𝑛! −𝑚!𝑛!𝜐!𝑽! 	= 0                                                    (3.5) 
 
 

where, qa is charge, na is density, E is electric field, Va is velocity vector, B is magnetic field 

vector, Pa is pressure, ma is mass, and ʋa is collision frequency with neutral atoms. 

In cylindrical coordinate system, if it is assumed that 𝐁	 = Bi	𝒛t, the radial and azimuthal 

elements of the electrons/ions fluxes (fluxes of the particles perpendicular to the magnetic field) 

can be derived as described in  [6] [7]: 

 

Г!( =	±𝜇!𝑛!𝐸( − 𝐷!∇𝑛𝑟 	+	
)!"
ʋ"
Г!+                              (3.6) 

 

Г!+ =	±𝜇!𝑛!𝐸+ − 𝐷!∇𝑛𝜑 	−	
)!"
ʋ"
Г!(                         (3.7)   
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in which ГF+ is the radial element of the flux, ГFn is the azimuthal element of the flux, 𝜇F is 

mobility, Dα is diffusion coefficient,  𝜔GF 	is cyclotron frequency, and ʋ! is the collision frequency 

with neutral atoms for species α. The coefficients in equations 3.6 and 3.7 are defined as below:  

𝜇! =	
,"

-"ʋ"
                                (3.8) 

𝐷! =	
.#/"
-"ʋ"

                                (3.9) 

𝜔0! =	
,"1$
-"

                              (3.10) 

ʋ! = 𝑛2𝜎!𝑉34,                (3.11) 
 

Solving for ГF+ and ГFn in equations 3.6 and 3.7, the general form of the electrons/ions 

flux components perpendicular to the magnetic field ( ГFo) can be derived as:  

 

ГFowwwwwww⃗ = ±𝜇Fo𝑛F𝐸owwww⃗ − 𝐷Fo∇𝑛owwwwwww⃗ + 	
Г'Dqqqqqqqq⃗ VГ'Eqqqqqqqq⃗

DV	 ʋ'
+

G('+

	              (3.12) 

 

𝜇!% =	
5"

67	&!"
'

ʋ"'

                              (3.13) 

𝐷!% =	
9"

67	&!"
'

ʋ"'

                              (3.14) 

Although derivation of equation 3.12 was done in cylindrical coordinate system, the form 

of the cross magnetic field diffusion is general and can be used for any other coordinate systems. 
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In this equation, Г𝜶𝑬 and Г𝜶𝑫 are the fluxes due to E×B and diamagnetic drift (𝛁𝑛 × 𝑩) 

respectively. These terms indicate the contribution of azimuthal components of electric field and 

density gradient into the radial element of the flux and vice versa. The E×B and diamagnetic drift 

exist only in presence of magnetic field and are defined as below:  

Г𝜶𝑬 =	𝑛𝛼
𝑬×𝑩
44+

                      (3.15) 

Г𝜶𝑫 =	−
g<h'
e'44+

	𝛁𝑛 × 𝑩                                                (3.16) 

 In the last term in equation 3.12, the diffusion due to E×B and diamagnetic drift, (Г𝜶𝑬 and 

Г𝜶𝑫), are slowed down by collisions while the first two terms will have non-zero values only due 

to the collisions of electrons/ions with each other and with the neutral gas atoms. It has to be noted 

that mobility and diffusion coefficients perpendicular to the magnetic field are modified by a factor 

of (1 +	E'
+

ʋ('+
 )-1 and decrease with increasing the applied magnetic field. Also, the fraction of  E'

ʋ('
  

in the modification coefficients is the Hall parameter and is mathematically the same as   "'
+'

 , as 

discussed in the previous section.  

Moreover, as it can be seen in the schematic drawing in figure 3.18, when target like 

filamentary patterns are formed in the magnetized plasma, Eφ  and  ;""
;+

  are equal to zero due to 

the symmetry of the structure. Therefore, from equation 3 .12 we get: 

Г𝜶𝒓 = ±𝜇Fo𝑛F𝐸+ − 𝐷Fo∇𝑛+ 	                                            (3.17) 

 

ГFn =	
D

DV	 ʋ'
+

G('+

	(− 𝑛𝛼wJ
44

+ g<h'
e'44

	∇𝑛+ 	)                                (3.18) 
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Considering equations 3.8-3.11 and 3.13-3.14, it can be easily obtained from equation 3.18 

that  [7]: 

ГFn =	−
E('
ʋ'
	ГF+                                                        (3.19) 

ГFn = −E('
ʋ'
(±𝜇Fo𝑛F𝐸+ − 𝐷Fo∇𝑛+ 	)                    (3.20) 

 

Therefore, for target-like (circular) filamentary patterns, it can be said that 𝐸+ and ∇𝑛+ 

cause a flux of particles not only in radial direction but also in the azimuthal direction due to the 

presence of the magnetic field. Equation 3.17 is specifically interesting in the limit that ʋ$ =	𝜔G$ 

(𝜆$ =	𝑟$), from equation 3.16-3.19 we get: 

Г$n = −Г$+ = − D
H
(𝜇𝑖𝑛$𝐸+ −𝐷𝑖∇𝑛+ 	)                    (3.21) 

 

which means that that 𝐸+ and ∇𝑛+ contribute equally to the radial and azimuthal ion fluxes. This 

is the threshold limit for magnetization of the ions (where ions’ Hall parameter equals one). At 

high pressure for which ʋ$ >	𝜔G$, where the ions are not magnetized enough to make at least one 

full rotation before colliding with a neutral gas atom.  

Figure 3.18 displays the variation of perpendicular mobility and diffusion coefficient of the 

electrons and ions with pressure, for a magnetized argon plasma exposed to 0.8 T magnetic field. 

The electron and ion temperatures are assumed to be 2.5 eV and 0.025 eV respectively. It can be 

seen in this figure that the perpendicular mobility and diffusion coefficients of the electrons/ions 

first increase with the pressure and then decrease, but the mobility and diffusion coefficient of the 

ions reach their maxima before the electrons. At a critical pressure (P = 44.75 Pa for the presumed 

plasma parameters here) we get ʋ$ =	𝜔G$ (𝜆$ =	𝑟$) and the mobility and diffusion coefficient of  
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E = Er 𝒓t 
 
 
𝛁𝒏 =	∇+n	𝒓t 

Filamentary rings 

Figure 3.17: Schematic drawing of target like filamentary structure formed in a 

magnetized plasma. Due to symmetry of the structure, both electric field and gradient 

of density are radial in the body of the plasma far enough from the walls.  
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Indication of the critical pressure for 𝜆$ =	𝑟$   

Figure 3.18: The variation of perpendicular mobility and diffusion coefficients of the electrons and 

ions with pressure, for magnetized argon plasma exposed to 0.8 T magnetic field. The electron and 

ion temperatures are assumed to be 2.5 eV and 0.025 eV respectively.	 
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the ions start to decrease with pressure. By contrary, the mobility and diffusion of the electrons are 

still increasing with pressure at this limit. These effects together, will wash out the patterns formed 

in the plasma and as a result, filamentary patterns are not forming in the magnetized plasma as 𝜆$ 

gets smaller than ri or when the pressure goes beyond the critical pressure.  

The approach for deriving the limit of ʋ$ =	𝜔G$ (𝜆$ =	𝑟$) was based on the assumption 

that a radial electric field exists in filamented magnetized plasmas perpendicular to the magnetic 

field. To justify the presence of such an electric field, it has to be noted that although the 

filamentary patterns in the electron and ion density profile are exactly the same, the numerical 

values of these densities are slightly different from each other. Figure 3.19 shows the filamentary 

patterns formed in electron and ion density profiles in an argon plasma at pressure of 9 Pa exposed 

to 1.0 T magnetic field.  As it can be seen in figure 3.19.c, the electron density in the depletion 

regions of a filamented magnetized plasma, drops more than the ions, resulting in a higher number 

of the ions in these regions. This higher number of the ions in the depletion region gives rise to a 

pattern in the plasma potential profile (figure 3.19.d), which is the same as that of the electron/ion 

density profiles. Due to symmetry, this potential profile creates only a horizontal component in the 

central part of the plasma, as displayed in figure 3.20. 

Another interesting point in figures 3.19 and 3.20 is the waveform (sine and cosine function 

form) of the electron/ion density, plasma potential and electric field profiles. If a filament and its 

neighboring depletion region is considered to have different width in general, piecewise functions 

can be assumed for describing the electron/ion densities: 

𝑛! =	�
𝑛i +	𝑛!D sin(

x+
k"	
)																																						0 ≤ 𝑟 < 𝑤*

𝑛i −	𝑛!H sin(
x(+Jk")

kK
)															𝑤* ≤ 𝑟 ≤ 𝑤* +𝑤1

	                 (3.22) 
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Figure 3.19: X-Y cross section electron density profile (a), ion density profile (b), their differences in the 

filamentary and depletion regions (c), and the resultant plasma potential profile (d), in the middle of an argon 

plasma chamber at pressure of 9 Pa, exposed to 1.0 T magnetic field. Initial plasma density is uniform of the 

order 5×1014 m-3 and electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively. The electron 

density drops more than the ion density in the depletion regions, resulting in a higher number of ions in these 

regions which gives rise to a pattern in the plasma potential profile which is exactly the same as that of 

electron/ion density profiles. 
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Figure 3.20: a) X-Y cross section of plasma potential profile in the middle of a magnetized argon 

plasma chamber at pressure of 9 Pa exposed to 1.0 T magnetic field. Initial plasma density is 

uniform of the order 5×1014 m-3 and electron and ion temperature are Te = 2.5 eV and Ti = 0.025 

eV respectively. b) Magnified plasma potential in the section indicated with a black box in part 

(a), c) The resultant electric field due to the plasma potential displayed in part (b). The electric 

field in this part of the plasma only has a horizontal component (Ex).  
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𝑛$ = 	 �
𝑛i + 	𝑛$D sin �

x+
k"	
)																																						0 ≤ 𝑟 < 𝑤*

𝑛i − 	𝑛$H sin(
x(+Jk"y

kK
� 															𝑤* ≤ 𝑟 ≤ 𝑤* +𝑤1

	                                                      (3.23)                              

in which n0 is the background electron/ion density (mostly n0 = 5.4 ×1014 m-3 in the presented 

simulations), n1e is the rise of electron density in the filament relative to n0, n2e is the drop of 

electron density in the depletion region relative to n0, n1i is the rise of ion density in the filament 

relative to n0, n2i is the drop of ion density in the depletion region relative to n0, wf is the width of 

the filament, and wd is the width of the depletion region. These quantities are displayed on the 

schematic drawing in figure 3.21. 

 Although both electric field and gradient of density push the electrons from the filament to 

the depletion region, the mobility and diffusion coefficient of the electrons in magnetized plasmas 

is too small (at pressures below the critical pressure), to make this process happen. Also, at the 

boundary of the filament and depletion region (r = wf  in figure 3.21), the repulsive force from the 

excess of the ions in the depletion region cancels out the gradient of ions density from the filament 

to the depletion region. These two effects together maintain the filamentary structure formed in 

the magnetized plasma. Therefore, when the filamentary pattern is fully established, the cross 

magnetic field diffusion of the ions becomes zero and from equation 3.17 we get: 

𝜇$o𝑛$𝐸+ = 𝐷$o∇𝑛$ 	                                                        (3.24) 

 

Also, using electron and ion density, Poisson’s equation in the plasma can be written as: 

𝛻 ∙ 𝑬 = 	 𝑒(&$−&9)𝜀0
	                                                      (3.25) 
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ni = n0 + ni1 
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ne 

Figure 3.21: Schematic drawing of consecutive filament and depletion region in “r” direction for a 

cylindrically symmetric filamentary pattern (like the one shown in figure 28). Also, the graph of the 

electron and ion densities as a function of position is drawn on the figure. The graph of electron density is 

drawn in red and the graph of ion density is drawn in black. 



78 
 

in which E is the electric field vector, and e is unit charge. Plugging in for the densities from 

equations 3.22 and 3.23, and by considering cylindrical symmetry in target like filamentary 

patterns (E = Er): 

 
 
!)?
!*

	 = 	
+(𝑛𝑖1,𝑛𝑒1)

-@
sin(

𝜋𝑟

𝑤𝑓	
)																													0 ≤ 𝑟 < 𝑤𝑓                                    (3.26) 

 
!)?
!*

	 = 	
+(𝑛𝑒2,𝑛𝑖2)

-@
sin(

𝜋(𝑟−𝑤𝑓)

𝑤𝑑	
)																𝑤𝑓 ≤ 𝑟 ≤ 𝑤𝑓 + 𝑤𝑑                           (3.27) 

 

By considering 𝐸+ 	= 	−𝐸i𝑐𝑜𝑠(
x+
k"	
) in the filamentary region (0 ≤ 𝑟 < 𝑤*), and plugging 

it into equation 3.26 we get: 

𝐸. = 	
+(𝑛𝑖1,𝑛𝑒1)

/-@
𝑤0                                               (3.28) 

 

Therefore, at the boundary of the filament and depletion region (r = wf in figure 3.21), 

equation 3.24 gives: 

−𝜇$o(𝑛i +	𝑛$D 𝑠𝑖𝑛
x+
k"	
) 𝐸i𝑐𝑜𝑠(

x+
k"	
) = 𝐷$o

𝜕
𝜕𝑟 (𝑛i +	𝑛$D 𝑠𝑖𝑛(

x+
k"	
)) 									at								𝑟	 = 	𝑤*			   (3.29) 

 

⇒			−𝜇$o𝑛iEi = 𝐷$o
x&$-
k"	

																		                                           (3.30) 

By plugging in for 𝜇$o, 𝐷$o, and Ei from equations 3.13, 3.14 and 3.28 respectively: 

 

⇒				 𝑒
2&4
𝜋𝜀0

(𝑛!D− 𝑛$D)𝑤𝑓 = 𝐾j𝑇$
x&$-
k"	

																		                                                    (3.31) 

 

⇒				𝑤*H =
𝜀0g<h$
𝑒2&4

	 x+&$-
(&9-−&$-)

																		                                                                (3.32) 
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⇒				𝑤*H = 𝜆𝐷𝑖
2 x+&$-
(&9-−&$-)

																		                                                                            (3.33) 

 

in which λDi is the ions Debye length.  

In the same way, by starting from equation 3.27 and following the same steps, we can 

calculate the width of the depletion regions as: 

𝑤1H = 𝜆𝐷𝑖
2 x+&$+
(&9+−&$+)

																		                                                                                       (3.34) 

 

Although equations 3.33 and 3.34 need the unknown variables of 𝑛$D, 𝑛!D, 𝑛$H, and 𝑛!H to 

give the exact equation for calculating the width of filaments and depletion regions in a filamentary 

structure, they are still very interesting equations. According to these equations, by increasing the 

background plasma density (decreasing λDi), the width of the filaments and depletion regions or 

equivalently filamentation parameter (equation 3.4) should increase. This conclusion is consistent 

with the results depicted in figure 3.12. 

At steady state, by integrating the continuity equations for electrons and ions over the 

volume of one depletion region or one filament, we can get two more equations in each region to 

be solved along with equations 3.33 and 3.34 to get the exact value of wf and wd. Unfortunately, 

these sets of equations can only be solved numerically. These sets of equations are given below: 

⎩
⎨

⎧∫
(∇. Г$ −	𝜎Q + 𝜎�)𝑑𝑣 = 0	
∫(∇. Г! −	𝜎Q + 𝜎�)𝑑𝑣 = 0	

𝑤*H = 𝜆𝐷𝑖
2 x+&$-
(&9-−&$-)

															
                                          (Solve over the full volume of one filament) 
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⎩
⎨

⎧∫(∇. Г$ −	𝜎Q + 𝜎�)𝑑𝑣 = 0	
∫(∇. Г! −	𝜎Q + 𝜎�)𝑑𝑣 = 0	

𝑤1H = 𝜆𝐷𝑖
2 x+&$+
(&9+−&$+)

															
                             (Solve over the full volume of one depletion region) 

The variables 𝑛$D, 𝑛!D, 𝑛$H, and 𝑛!H can be functions of the gap between the electrodes and 

plasma parameters such as pressure and magnetic field.  

Based on all data presented in this section through fluid simulations of filamentary pattern 

formation in magnetized plasmas, the following procedure can be assumed for the formation of 

filamentary structures in electric discharges exposed to strong magnetic fields:  

1- In a highly magnetized plasma, a fluctuation in the plasma density grows in time as the 

electrons and ions are trapped in the magnetic field and local instabilities in the plasma do 

not simply get washed out as they would in a non-magnetized plasma. The enhanced 

plasma density can only expand parallel to the magnetic field, finally becoming a single 

filament parallel to the magnetic field lines. 

2- In the filament as well as the rest of the plasma, electrons which are much more magnetized 

and much lighter than ions diffuse faster than ions to the walls parallel to the magnetic 

field, leaving the heavy ions behind. Since the density is enhanced in the filament, the loss 

of the electrons will be relatively higher too, giving the filament a relatively higher 

potential than the neighboring points. This relatively higher potential results in a radial 

electric field pointed out of the filament and perpendicular to the magnetic field. 

3- Although the strong magnetic field reduces the cross magnetic field diffusion of the 

electrons and ions, these cross magnetic field diffusions are never reduced to zero. 

Specifically for the ions, their larger mass compared to the electrons helps them have a 

limited diffusion across magnetic field through their collisions with the neutral atoms [7]. 
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This is mostly because the cross magnetic field mobility of the ions is much more than that 

of the electrons as it was also noted in figure 3.17. With the help of this relatively high 

mobility, the radial electric field of the positively charged filament expels the nearby ions 

outward. 

4-  The expelled ions sit at a distance from the filament where the electric field is not as strong 

and the inward gradient of density of the ions can cancel out the repulsive force of the 

electric field. Now, the first filamentary ring around the central filament has been 

stablished. These rippled ions in the first filamentary ring, repel the nearby ions and 

therefore establishing the next filamentary ring through the same process. 

5-  The slightly higher density of the ions in the established filamentary rings, slightly hinders 

the parallel diffusion of the electrons, creating a region with enhanced electron and ion 

densities which as it grows further in time, forms what we call here a filamentary ring 

extended in the plasma parallel to the magnetic field. 

6- The regions in between the filamentary rings that a fraction of their ions has been repelled, 

allow for more electrons to diffuse to the walls parallel to the magnetic field to compensate 

for the repelled ions. As the time passes, these regions get more repelled ions and more 

diffused electrons parallel to the magnetic field resulting in a region which we call a 

depletion region. In this process the diffusion of plasma is non-ambipolar in cross-field 

direction which is one of the important outcomes of the transport of electrons/ions under 

the effects of strong magnetic field. 

7- Having an excess of ions in the depletion region makes up for the gradient of density 

pointing from filamentary rings towards the depletion regions and therefore maintains the 

filamentary structure. If the electrons could have some effective diffusion across magnetic 
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field, they would move from the filamentary rings into the depletion region as both electric 

field and gradient of density are pushing them to these regions.   

8- If the pressure is too high (more than the critical pressure), then the cross magnetic field 

diffusion coefficient of the electrons will be high to help electrons diffuse from the 

filamentary regions to the depletion regions. Also, the high number of collisions of the ions 

with the neutral atoms at high pressure, no longer helps them diffuse across the magnetic 

field but decreases the cross magnetic field mobility and diffusion coefficient of the ions 

as it was shown in figure 3.17. These two effects together interrupt the filamentary pattern 

formation in magnetized plasmas at pressure beyond critical pressure.  

9- Moreover, if the vertical distance between the top and bottom electrodes is too long, then 

the electrons have enough time to diffuse across the magnetic field before the excess of the 

electrons could diffuse to the electrodes parallel to the magnetic field. In this case the 

diffusion of plasma will be ambipolar in cross-field direction. This explains why the 

filamentary patterns do not form in a long column of plasma.  

10-  In presence of the magnetic field, the random walk diffusion of the ions, due to collisions, 

across the magnetic field happens at steps equal to the gyro-radius of the ions rather than 

ions mean-free-path [7]. Therefore, if the Debye length is smaller than the ions gyro-radius, 

the electric field gets shielded by the plasma over lengths smaller than the random walk 

steps and filamentary patterns do not form in the magnetized plasma. Based on this fact 

and the balance between density gradient and electric force on the ions at the filament-

depletion boundary, the dependency of the width and center to center distance between the 

filaments on electron’s Debye length and ion mean-free-path is justified.  
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11- Therefore, in a given time interval, the rate of the electron loss in the depletion regions is 

more than the filamentary rings. This loss occurs parallel to the magnetic field to the 

electrodes. As a result, the currents (and equivalently the horizontal electric field) in the 

electrodes should be pointing from the filamentary rings to the depletion regions. Since 

electrons move in opposite direction of the electric field, these currents prevent 

accumulation of the electron at the top and bottom of the depletion regions to guarantee an 

equipotential metallic surface. Figures 3.22 and 3.23 which show the electric field vector 

at the top electrode (perpendicular to the magnetic field lines) of an argon plasma chamber, 

confirm this assumption. 
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Figure 3.22: (a) X-Y cross section of electron density profile in the middle of an argon plasma chamber at 

pressure of 10 Pa exposed to 0.8 T magnetic field. Initial plasma density is uniform of the order 5.4×1014 m-3 

and electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively. (b) the electric field vector 

orientation at the top electrode (perpendicular to the magnetic field lines). Also, the X-Y regions of interest 

are indicated with red boxes which are displayed in more details in figure 3.23. 
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Figure 3.23: X-Y cross section of electron density profile (a), Plasma potential (b) in the middle of the argon 

plasma chamber, and the electric field vector orientation at the top electrode (c). All three plots are from the 

same X-Y region of interest indicated with red boxes in figure 3.22.  
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4 Gridding of Dust Particles in Magnetized Dusty Plasmas 

 
In a magnetized dusty plasma experiment, gridding phenomenon, as referred to in this 

work, is defined as the organization of dust particles into “imposed, ordered structures” whose 

spatial patterns reflect the spatial ordering of a wire mesh placed in the bulk of the 

plasma [26]- [28]. The investigation on different aspects of filamentation phenomenon in the 

previous chapter helped us to gain an insight into the physics of gridding phenomenon. Through 

the simulation of filamentation phenomenon, we know how the imposed filamentation by a wire 

mesh can create a potential structure to trap the dust particles in magnetized dusty plasmas. Not 

only are the results of the simulation phenomenon going to be used in studying gridding 

phenomenon, but also, the 3D model used in the simulation of filamentation is slightly modified 

to be applied in the simulation of gridding phenomenon.   

In this chapter, section 4.1 will introduce the model/geometry for the simulations of 

gridding phenomenon and presents a benchmarking simulation of the phenomenon. In section 4.2, 

the simulation results for gridding phenomenon under variation of different plasma parameters and 

mesh configurations will be presented. Finally, these results will be discussed in section 4.3. 

 

4.1 Benchmarking Simulations For Gridding Phenomenon 

The numerical model used in the simulation of the gridding phenomenon is similar to the 

one used for the simulation of the filamentation. The key difference between the two models is the 

presence of a grounded metal mesh added below the top electrode in the gridding model. In this 

model, the metal mesh breaks the symmetry of the plasma to form the gridding structure in the 

plasma and no density perturbation is needed. Figure 4.1 displays a schematic picture of the plasma  
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Figure 4.1: Schematic picture of the rectangular plasma chamber with a metal mesh placed below 

the top electrode as it is considered in the numerical simulations of gridding phenomenon. The 

picture is not drawn to scale. 
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chamber considered in the simulation of gridding phenomenon.  

All of the walls of the plasma chamber as well as the wire mesh placed below the top 

electrode in the simulations are assumed to be grounded. In the gridding experiments a bias voltage 

is often applied to the metal mesh. However, the nature of the gridding phenomenon does not 

significantly depend on the bias voltage, and despite some slight differences, the experimental 

results with unbiased mesh are in agreement with the results with biased mesh. Also, since the 

energy equation is not included in our model, applying a bias voltage to the mesh would cause 

unnecessary technical difficulties.   

The plasma gas is assumed to be argon with uniform electron/ion densities throughout the 

plasma chamber (ne = ni = 5.0 × 1014 m-3).  The constant temperatures of the electrons and ions 

are set to be 2.5 eV and 0.025 eV respectively. Through different simulations it was observed that 

the filamentary patterns due to the presence of the metal mesh appear in the magnetized plasma at 

time scale of about 20-40 µs which was also confirmed previously in the simulations of 

filamentation phenomenon. Therefore, the numerical data shown, represent 25 µs simulation of 

the plasma. The time step in the simulations is assumed to be Δt = 1×10-11 s, spatial step size in Z 

direction to be hz = 6×10-4 m, and in X /Y directions to be hx = 3.5×10-4 m. 

Before trying to simulate gridding phenomenon, it is useful to check the performance of 

the model in the absence of magnetic field. A metal mesh with wires of width w = 1.4 mm is 

considered in the bulk of the plasma at Δz = 1 cm below the top electrode and the gap between the 

wires of the mesh is d = 8 mm (see figure 4.1). The neutral gas pressure is set to be P = 12 Pa. 

Figure 4.2 displays the top view (X-Y cross section)) of the electron density profile and the plasma 

potential profile obtained from the simulation of the unmagnetized plasma in presence of the metal 

mesh. The ion density profile is similar to that of the electrons and is not shown here. 
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Figure 4.2: X-Y cross section of: (a) electron density profile, and (b) plasma potential profile, in an 

unmagnetized plasma in presence of a metal mesh with wires of width w = 1.4 mm. The white 

dashed lines indicate the location of the mesh wires. The solid black line indicates where the top 

plots have been taken from. Initial plasma density is uniform of the order 5×1014 m-3, electron and 

ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively, and P = 12 Pa. In the absence of 

magnetic field, no patterns are forming in the plasma in presence of the metal mesh.  
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The simulation is terminated at t = 30 µs and the cross-section profiles are taken from the 

middle of the plasma chamber at Z = 2.1 cm. It can be seen in these figures that, in the absence of 

magnetic field, the metal mesh has not affected the plasma at all. Since similar to the chamber 

walls, the metal mesh is assumed to be grounded, the electrons/ions simply diffuse to the walls 

and to the metal mesh and recombine there. Consequently, no pattern is forming in the 

unmagnetized plasma in presence of the metal mesh.  

In order to evaluate the performance of the gridding model in presence of magnetic field, 

1.0 T magnetic field is applied to the plasma in negative Z direction. The top-view of the electron 

density profile and plasma potential and the side-view of the electron density profile for this 

simulation are displayed in figure 4.3. The side-view of the electron density profile is presented 

only for the region beneath the metal mesh and away from the sidewalls of the plasma chamber. 

The spatial profile of the ion density is the same as electron density profile and therefore not shown 

here. It can be seen in this figure that the presence of the metal mesh has imposed filamentary 

patterns in the electron density and plasma potential profiles parallel to the magnetic field. The 

same as the graphs presented for filamentation phenomenon, each gridding phenomenon graph is 

also labeled with a set of three length values; (ri (mm), λi (mm), λDe (mm)), which represent ion 

gyro-radius, ion mean-free-path and electron Debye length respectively.  

 In the presence of the strong magnetic field, the diffusion of electrons and ions 

perpendicular to the magnetic field is reduced and they mostly diffuse parallel to the magnetic 

field to the mesh and to the electrodes. Consequently, depletion regions form right below the wires 

of  the  mesh which will be called  primary depletion regions.  Additional depletion  regions appear  
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Figure 4.3: (a) X-Y and (b) X-Z cross section of the electron density profile, and (c) X-Y cross section of the plasma 

potential profile of an argon plasma at pressure of 12 Pa exposed to B = 1.0 T magnetic field. Initial plasma density 

is 5×1014 m-3 and electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively. A metal mesh with 

wires of width w = 1.4 mm is placed Δz = 1 cm below the top electrode. The X-Y profile is taken at Z = 1.5 cm and 

the X-Z profile is taken at Y = 3 cm.  The X-Z cross section is only displayed from the bottom electrode to the mesh 

in Z direction and away from the sheath regions in X direction. The locations of the mesh wires are indicated using 

white lines. The filamentary patterns imposed by the metal mesh can be seen in both electron density and plasma 

potential profiles and are extended in the bulk of the plasma parallel to the magnetic field.  
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halfway between the primary depletion regions in the gap between the wires, which will be called 

secondary depletion regions (see figure 4.3 (b)). The secondary depletion regions did not appear 

in plasmas where the gap between the mesh wires was less than d = 3 mm. Because of the very 

fine structure of the narrow meshes which is comparable to the size of the most probes, the 

formation of the secondary depletion regions has not yet been experimentally investigated.  

 Also, it is clear in figure 4.3.c that similar to the filamentation phenomenon, the plasma 

potential in the depletion regions is higher than the neighboring points. This plasma potential 

structure that is extended into the bulk of the plasma parallel to the magnetic field may be 

responsible for the observation of gridding phenomenon in dusty plasma experiments in presence 

of a metal mesh. 

 
 
 
4.2 Simulation Results 

The simulations of gridding phenomenon (without added dust particles) will show how the 

presence of a metal mesh imposes filamentary structures to the plasma and in return, these 

filamentary structures impose a potential structure that extends along the external magnetic field 

in the plasma. This potential structure is responsible for trapping the dust particles in a dusty 

plasma experiment and causes the phenomenon that is called gridding of the dust particles. Also, 

in addition to varying pressure, electron/ion density, and magnetic field, the gridding phenomenon 

is studied using three different metal meshes with the wires of width w = 1.4 mm, 2.8 mm and 5.2 

mm. 
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4.2.1 Variation of Gridding Phenomenon with Pressure 
 

To investigate the effect of varying pressure on imposed filamentation by a metal mesh 

(gridding phenomenon), the simulation for the mesh with narrow wires of width w = 1.4 mm, and 

gap of d = 8 mm, was repeated for pressures of 4 Pa, 6 Pa, 9 pa, 18 Pa, and 30 Pa. Figure 4.4 

displays the electron density profile for these simulations. 

It can be seen in figure 4.4 that, by decreasing pressure (increasing the ion mean-free-path), 

the secondary depletion regions do not form in the plasma and at very low pressures even the 

imposed patterns by the mesh, get disturbed. Similar to filamentation in chapter 3, the evolution 

of imposed filamentation also depends on the cross magnetic field diffusion of the ions from 

beneath the wires (depletion regions) to the gap regions. The simulation results presented here are 

believed to arise from a similar physical mechanism as discussed in Sec. 3.3.  

The cross magnetic field diffusion of the ions increases with pressure as long as the 

pressure is below a critical pressure (see figure 3.18). If the gap between the wires is large enough 

compared to the ion mean-free-path and electron Debye length, the cross magnetic field diffusion 

of the ions from beneath the mesh wires to the gap between the wires, not only guarantees the 

formation of the imposed filamentation (gridding phenomenon), but also can lead to the emergence 

of secondary depletion regions in the gap between the mesh wires. By decreasing the neutral 

pressure, the cross magnetic field diffusion of the ions also decreases, resulting in elimination of 

the secondary depletion regions (at P = 9 Pa for the given plasma parameters in the presented 

simulations), and at even lower pressures (4 Pa and 6 Pa in the presented simulations) disturbing 

the formation of the imposed filamentation in presence of the metal mesh. 
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Figure 4.4: Electron density profile in a magnetized argon plasma in presence of a metal mesh placed 

below the top electrode. The width of the mesh wires is w = 1.4 mm and the gap between these wires is 

d = 8 mm. Initial plasma density is uniform of the order 5×1014 m-3, electron and ion temperature are Te 

= 2.5 eV and Ti = 0.025 eV respectively, and B = 1.0 T. The neural pressure is different for different 

graphs, a) 30 Pa, b) 18 Pa, c) 12 Pa, d) 9 Pa, e) 6 Pa, f) 4 Pa. By decreasing pressure (increasing ion 

mean-free-path), the secondary depletion regions don’t form in the plasma and at very low pressures 

even the imposed pattern by the mesh gets disturbed. The white dashed lines indicate the location of 

the mesh wires. 
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4.2.2 Variation of Gridding Phenomenon with Background Plasma Density 

 
Variation of plasma density in the simulations is equivalent to the variation of power 

deposition into the plasma in the experiments. Figure 4.5 displays the variation of the imposed 

filamentation with background plasma density (electron’s Debye length). The metal mesh 

considered in these simulations has again wires of width w = 1.4 mm with gaps of d = 8 mm 

between them. Also, the neutral gas pressure is assumed to be 12 Pa. It is noticed in this figure 

that, by increasing background plasma density (decreasing electron Debye length), additional 

filamentary patterns form in the gap between the mesh wires.  

 In the simulations of the filamentation phenomenon, the width of the filamentary patterns 

and the center-to-center distance between them is controlled by different plasma parameters 

including plasma density and neutral gas pressure. In these simulations, the plasma density and 

neutral gas pressure also play a similar role.  These results first show the presence of a higher 

plasma potential beneath the mesh wires (see figure 4.3.c) generates an outward electric field to 

repel a fraction of the extra ions. These repelled ions then remain at a distance few Debye length 

away, where there is a balance between the electric force and density gradient on the ions. Since 

ions are repelled into the gaps from the depletion regions beneath two neighboring wires, when 

the gap between the mesh wires is more than a couple of Debye lengths, it enables the formation 

of secondary filamentary structures in the gap between the wires. This is consistent with the 

observation that when the Debye length is 1.2 mm (ne = 1.0 ×1014 m-3) in figure 4.5.a the secondary 

filaments are not forming in the gap between the wires while as the Debye length gets smaller in 

the next figures, secondary filamentary structures appear in the gap regions.  

 

 



96 
 

 

 

  

Figure 4.5: X-Y cross section of Electron density profile in a magnetized argon plasma in presence 

of a metal mesh placed below the top electrode. Electron and ion temperature are Te = 2.5 eV and 

Ti = 0.025 eV respectively, P = 12 Pa and B = 1.0 T. The width of the mesh wires is w = 1.4 mm and 

the gap between these wires is d = 8 mm. The background plasma density is different for different 

graphs, a) 1.0 ×1014 m-3, b) 5.0 ×1014 m-3, c) 1.0 ×1015 m-3, d) 2.5 ×1015 m-3. By increasing 

background plasma density (decreasing electron Debye length), additional filamentary pattern 

form in the gap between the mesh wires. The white dashed lines indicate the location of the mesh 

wires. 
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4.2.3 Variation of Gridding Phenomenon with the Applied Magnetic Field 

Variation of the magnetic field can affect the cross magnetic field diffusion of the electrons 

and ions. The variation of the imposed filamentation by a metal mesh in an argon plasma with the 

applied magnetic fields is displayed in figure 4.6. The metal mesh considered in these simulations 

has wires of width w = 1.4 mm with a gap of d = 8 mm between them, neutral pressure is assumed 

to be 12 Pa and the background plasma density is considered to be 5.0 ×1014 m-3. It can be seen in 

this figure that, by increasing the applied magnetic field, the imposed filamentation gets more 

organized with sharp edges, and secondary filamentary structure do not appear in the plasma. This 

is because by increasing the magnetic field applied to the plasma, the ions gyro-radius decreases. 

As mentioned before,  the random walk diffusion of the ions due to collisions across the magnetic 

field lines happens at steps equal to the gyro-radius of the ions rather than ions mean-free-path [7]. 

Equivalently, in highly magnetized plasmas the cross magnetic field mobility and diffusion 

coefficient of the ions decreases (see equations 3.13 and 3.14). Therefore, as the cross magnetic 

field diffusion of the ions is interrupted at higher magnetic fields, the formation of secondary 

depletion regions is disturbed and even the primary depletion regions would need more time to 

appear in the plasma. 

 

4.2.4 Variation of Gridding Phenomenon with the Width of Mesh Wires 

In order to further investigate the gridding phenomenon, the simulations at P = 12 Pa and 

plasma density of 5.0 ×1014 m-3 were repeated using two other meshes with wires of width w = 2.8 

mm and w = 5.2 mm. The gap between the mesh wires was still considered to be d = 8mm. The 

electron density profile and the plasma potential for these two cases are presented in figures 4.7 

and 4.8 respectively. It is clear from these figures that by increasing the width of the mesh wires  
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Figure 4.6: Electron density profile in a magnetized argon plasma in presence of metal mesh placed below the 

top electrode. The width of the mesh wires is w = 1.4 mm and the gap between these wires is d = 8 mm. The 

plasma is exposed to different magnetic fields, a) 1.0 T, b) 1.5 T, c) 2.5 T. The white dashed lines indicate the 

location of the mesh wires. By increasing the applied magnetic field, the imposed filamentation gets more 

organized with sharp edges and secondary filamentary structure do not appear in the plasma.  
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(w), the density and potential profiles transition from one depletion region to two depletion regions 

beneath the wires of the mesh. Also, these two depletion regions tend to form at the edges of the 

wires compared to the one depletion region for the narrow meshes that would appear right below 

the wires of the mesh (see figure 4.2). This difference in the location of the depletion regions, also 

shifts the regions with higher plasma potential to the locations corresponding to the edges of the 

wide mesh wires. To display this difference between the imposed potential profile by the narrow 

and wide meshes, the plasma potentials in X-Z plane for meshes with w = 1.4 mm and w = 5.2 mm 

are shown in figure 4.9. It can be seen in this figure that for the wide mesh (w = 5.2 mm), the 

regions at higher plasma potential form beneath the edges of the wires while for the narrow mesh 

(w = 1.4 mm), there is only one region at higher potential right below its wires. These results are 

consistent with the observations presented in figure 1.5 that in magnetized dusty plasma 

experiment with the “waffle” electrode the dust particles were trapped beneath the edges of the 

mesh wires. 

 

4.3 Discussion on the Simulations of Gridding Phenomenon 
 

One of the most important results from the simulation of filamentation phenomenon was 

the fact that electron and ion densities differ in the filamentary and depletion regions. As it is 

displayed in figure 4.10.a, this observation is also confirmed in the simulation of gridding 

phenomenon. The simulation parameters in Figure 4.10 are the same as figure 4.3 that is, the width 

of the mesh wires is w = 1.4 mm at a distance of d = 8 mm from each other, background plasma 

density is 5×1014 m-3, electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively, 

neutral pressure is P = 12 Pa and the applied magnetic field is B = 1.0 T.  
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Figure 4.7: X-Y cross sections of the electron density profile (a) and plasma potential (b) of an 

argon plasma at pressure of 12 Pa exposed to 1.0 T magnetic field.  A metal mesh with wires of 

width w = 2.8 mm is placed Δz = 1 cm below the top electrode. The profiles are taken at Z = 1.5 

cm. The white spots in the potential graph refer to points which are out of bound (V > 12 volts). 

The position of the metal mesh is indicated using dashed lines.  
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Figure 4.8: X-Y cross sections of the electron density profile (a) and 

plasma potential (b) of an argon plasma at pressure of 12 Pa exposed 

to 1.0 T magnetic field.  A metal mesh with wires of width w = 5.2 mm 

is placed Δz = 1 cm below the top electrode. The profiles are taken at 

Z = 1.5 cm. The white spots in the potential graph refer to points 

which are out of bound (V > 12 volts). The position of the metal mesh 

is indicated using white masks on the graph.  
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Figure 4.9: X-Z cross section of the plasma potential profile of an argon plasma with initial density of 

5×1014 m-3 at pressure of 12 Pa exposed to 1.0 T magnetic field. (a) A metal mesh with wires of width 1.4 

mm is placed 1 cm below the top electrode. (b) A metal mesh with wires of width 5.2 mm is placed 1 cm 

below the top electrode. The X-Z profile is taken at Y = 3 cm and is only displayed from the bottom 

electrode to the mesh in Z direction and away from the sheath region in X direction. It is obvious from 

these figures that the locations of the higher plasma potential to trap the dust particles are shifted to the 

edge of the wires for the wide mesh (w = 5.2 mm). The locations of the mesh wires are indicated using 

small black rectangles. 
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Similar to the filamentation phenomenon, in the imposed patterns by the metal mesh in 

magnetized plasmas, the density of ions is more than the density of the electrons in depletion 

regions (see figure 4.10.a). To explain this density imbalance, one has to notice that, in high 

magnetic field regime (B ≥ 1.0 T), both electrons and to some extent ions are magnetized and their 

diffusions across the magnetic field are reduced. Also, due to the much larger mass of the ions, 

their diffusion rate parallel to magnetic field is much smaller than that of the electrons. Therefore, 

electrons leave the regions beneath the mesh wires parallel to the magnetic field more than the 

heavy ions.  

It has been already mentioned that, the larger mass of the ions enables them to have a 

limited diffusion across the magnetic field [7]. The same as what was observed for the 

filamentation phenomenon, the ions beneath the mesh wires that are left behind by the electrons, 

partially diffuse across the magnetic field to the gaps between the mesh wires. The repelled ions 

to the gap regions, decrease the diffusion of the electrons (parallel to the magnetic field) at the gap, 

resulting in an enhanced plasma density in the gap regions (see figure 4.10.a).  

The outcome of this process is an imposed filamentary pattern similar to the spatial 

structure of the wire mesh. Due to the difference between electron and ion densities in the 

filamentary and depletion region of this imposed patterns, the plasma potential profile is also 

following the spatial structure of the metal mesh as depicted in figure 4.10.b. Despite the fact that 

we are not exactly simulating the experimental set up, the results and the magnitude of the plasma 

potential are comparable to the observations in previous experiments performed using a narrow 

mesh with w ≤ 1mm [27] [28]. 
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Figure 4.10: a) Electron and ion densities along X axis at Y = 3 cm and Z = 1.5 cm which 

shows a difference in electron and ion densities especially in the depletion regions (due to 

the presence of the metal mesh). The locations of the mesh wires with width w = 1.4 mm are 

indicated using white dashed lines and small black boxes. b) The plasma potential profile in 

X-Y plane as a result of this density difference. Initial plasma density is uniform of the order 

5×1014 m-3, electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively, P = 

12 Pa and B = 1.0 T. This potential profile is extended along the magnetic field in Z direction.  
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The mechanism that maintains the imposed filamentary structure in gridding phenomenon 

is shown to arise from the same physical processes as the filamentation as described in chapter 3.  

Similar to the observations in the filamentation phenomenon, the balance between the force from 

the electric field due to the excess of the ions in the depletion regions (see figure 4.11.a) and the 

gradient of density from the filamentary to depletion regions maintains the imposed filamentary 

pattern. Also, the electrons are strongly magnetized and the density imbalance between electrons 

and ions beneath the wires cannot be compensated for by electrons diffusion from the neighboring 

points as it would be expected in an un-magnetized plasma.  

Figure 4.11 displays the X-Y cross section profile of the X element of the electric field (Ex) 

halfway between the metal mesh and the bottom electrode and the X-Z cross section profile of Z 

element of the electric field (Ez) beneath the metal mesh. Due to symmetry of the model, the plot 

of Ey in X-Y plane would be the same as the Ex profile only at the location of horizontal mesh wire 

along X axis.  It is clear that the relatively higher plasma potential beneath the mesh wires creates 

electric fields pointing away from the depletion regions. The horizontal elements of the electric 

field not only are important in maintaining the imposed filamentary pattern but also, in a 

magnetized dusty plasma, these horizontal electric fields would push negatively charge dust 

particles to regions beneath mesh wires. Figure 4.11.b shows the variation of Ez along Z axis and 

the white solid line schematically displays where a layer of silica dust particles (𝜌 = 2.65	𝑔𝑟/𝑐𝑚`) 

would be levitated above the bottom electrode due to the balance between the upward electric force 

and the downward gravity on these particles. These two effects together are responsible for 

trapping the dust particles in the imposed patterns above the bottom electrode. 
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Figure 4.11: X-Y cross section profile of the X element of the electric field (Ex) halfway between the 

metal mesh and the bottom electrode and the X-Z cross section profile of Z element of the electric field 

(Ez) beneath the metal mesh wires. The locations of the mesh wires with width w = 1.4 mm are indicated 

using white dashed lines and small black boxes. Initial plasma density is uniform of the order 5×1014 

m-3, electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively, P = 12 Pa and B = 1.0 

T. In (a), the relatively higher plasma potential beneath the mesh wires creates horizontal electric fields 

pointing away from the depletion regions.  The white solid line in (b) schematically displays where a 

layer of silica dust particles (𝝆 = 𝟐. 𝟔𝟓 𝒈𝒓
𝒄𝒎𝟑 	 , 𝐫𝐚𝐝𝐢𝐮𝐬	𝐨𝐟	𝟏	𝝁𝒎	𝐚𝐧𝐝	"𝟏𝟎𝟎𝟎	𝐞"	𝐜𝐡𝐚𝐫𝐠𝐞) would be levitated 

above the bottom electrode due to the balance between the upward electric force and the downward 

gravity on these particles. 
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If the ions could not diffuse at all across the magnetic field from beneath the wires to the 

gap regions, the excess of the ions beneath the mesh wires would decrease the diffusion of the 

electrons parallel to the magnetic field and interrupt the formation of the imposed patterns. 

Therefore, the cross magnetic field diffusion of the ions, plays an important role in the formation 

of imposed filamentary patterns. Also, it is already noticed that if enough space is considered 

between the mesh wires (few times the ions mean-free-path and electron Debye length), this 

process that leads to the formation of imposed patterns beneath the wires can propagate in the gap 

between the wires to create secondary depletion regions.  

To further study the formation of secondary filaments in the magnetized plasma due to the 

presence of a metal mesh, a mesh with only 4 wires (2 in X and 2 in Y direction) with wires of 

width w = 1.4 mm are considered. The gap between the wires is d = 2.24 cm, to provide enough 

space for the formation of possible secondary depletion regions. Figure 4.12 displays the X-Y 

cross section of the electron density profile for this simulation in the middle of the plasma chamber. 

The background plasma density is 5.0 ×1014 m-3, and applied magnetic field is 1.0 T. The results 

are shown for pressures of 6.5 and 12 Pa. Since a big gap between the mesh wires is considered, 

additional filamentary pattern form in the gap. At lower pressure (P = 6.5 Pa), the secondary 

patterns are narrower and closer to one another so, more secondary patterns have appeared in the 

gap. This is in agreement with the filamentation simulations at low pressure presented in figures 

3.7 and 3.8.  
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Figure 4.12: X-Y cross section of electron density profile in a magnetized argon plasma in presence of a metal 

mesh with only two wires, placed below the top electrode. The width of the mesh wires is w = 1.4 mm and the 

gap between these wires is d = 2.24 cm. The background plasma density is 5.0 ×1014 m-3, applied magnetic field 

is 1.0 T, and electron and ion temperature are Te = 2.5 eV and Ti = 0.025 eV respectively. a) P = 6.5 Pa, b) P = 

12 Pa. Since a big gap between the mesh wires is considered, additional filamentary pattern form in the gap. 

At lower pressure in (a), the secondary patterns are narrower and closer to one another so, more secondary 

patterns have appeared in the gap. The white dashed lines indicate the location of the mesh wires. 
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Finally, based on the results from the simulations and the discussions on these results, the 

following explanation can be given for the appearance of double depletion regions beneath the 

edges of the “waffle” electrode placed in the magnetized plasma (see figure s1.5, 4.8, and 4.9). As 

discussed in the previous sections, at high magnetic fields, electrons and ions diffuse mostly 

parallel to the magnetic field, making the plasma in the regions beneath the mesh wires quasi-

independent from the plasma in the regions beneath the gaps between the wires. Each of these 

regions will be slightly positively charged as the electrons diffuse faster than the ions to the mesh 

and the top/bottom walls. The boundary conditions being different beneath the wires and in the 

gap between the wires, the plasma losses and consequently, the density imbalance between ions 

and electrons (ni − ne), are different in these two regions. When the mesh wires are wide, in the 

areas beneath the central parts of the wide wires, the electric field is quasi-null. Indeed, the region 

directly beneath the edge of the wires is a transition region that connects the quasi-independent 

plasmas beneath the mesh and in the gap between the mesh wires. Since the plasma potential on 

the sides of these transition regions are different, there must be a strong electric field with an 

important X component. This electric field structure extends along the magnetic field and can be 

sufficient to trap the dust particles and lead to the trapping of dust particles beneath the edges of 

the wide mesh (“waffle” electrode). 

 

 

 

 

 

 



110 
 

5 Conclusion and Future Works  

 
At the beginning of this work, the goal of studying filamentation and the formation of imposed 

patterns by placing a wire mesh in low-pressure low-temperature magnetized plasmas was 

introduced. This goal was achieved by looking into variation of these phenomena with different 

plasma parameters along with the geometry of the plasma chamber and the metal mesh. Through 

this work we now have a better understanding of the physical mechanism of these phenomena and 

in this chapter a summary of the work and possible future works on these topics will be presented. 

In chapter 1 of this dissertation, an introduction to filamentation and gridding phenomena 

was given. These two phenomena were introduced, the early experimental and numerical works 

on them were discussed, and the similarities between these phenomena were pointed out. Both 

phenomena highly depend on the magnetic field and neutral gas pressure, mostly appear in 

plasmas/dusty plasmas that are exposed to strong magnetic fields (B ≥ 1.0 T), and they both are 

controlled by the ions dynamics.  Also, these two phenomena can occur simultaneously in the 

plasma and if the dust particles number density is not too high, the presence of the dust particles 

does not significantly affect the filamentation. Finally, the motivation of the work was explained 

at the end of this chapter. This work was intended to investigate if filamentation and gridding 

phenomena arise from the same physical mechanism and suggest an explanation for appearance 

of these phenomena in low-pressure electric discharges that are exposed to strong magnetic field. 

In chapter 2, the previous 2D simulations of filamentation are presented and their limitations 

which urge for a 3D model was discussed. These simulations were not able to capture the full 

physics of the phenomenon and could not distinguish between different filamentary structures by 

only providing the side view of these structures. The base set of equations that are considered in 

building the 3D fluid model were introduced in this chapter. These equations included plasma fluid 
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equations (excluding energy balance equation) solved along with the Poisson’s equation.  

Moreover, different numerical methods that are used in discretizing and solving these equations 

were explained in detail. The last section of chapter 2 introduced the computational space of the 

model and the algorithm for solving the base equations in the model. In order to simplify the model 

a rectangular plasma chamber with metal walls was considered which is discretized using a multi-

mesh configuration.  

In the next chapter, filamentation and pattern formation in magnetized plasmas was 

investigated. A set of benchmarking simulations was presented to check the performance of the 

model in unperturbed, unmagnetized plasma and observe its capability in displaying different 

characteristics of the plasma such as electropositivity, and formation of sheath layers at the 

boundaries. It was then showed that by adding a perturbation to the magnetized plasma, the model 

could successfully produce filamentary patterns. A “filamentation parameter” was introduced to 

quantitively compare filamentation of the magnetized plasma under different conditions. 

Filamentation under variation of neutral gas pressure, plasma density, gas type, and the gap 

between the electrodes was studied. It was shown that by decreasing the neutral gas pressure and 

the gap between the electrodes and by increasing the background plasma density, the filamentation 

parameter of the plasma increases. It was also observed that when the electron Debye length and 

ion-neutral mean free path falls below the ions gyro-radius, filamentary patterns don’t form in the 

plasma.  

In the last section of chapter 3, the results from the simulations of filamentation 

phenomenon were discussed. The key finding of this work was to show that the densities of 

electrons and ions in the depletion regions of the filamentary patterns are different. It was shown 

that due to the effects of the strong magnetic field on the cross-field transport of the electrons and 
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ions, the density of ions is slightly higher than the electrons in the depletion regions. This excess 

of the ions creates an electric field that helps to maintain the filamentary structures. Based on the 

findings through the simulations, a theoretical model was suggested for filamentation that could 

successfully related the phenomenon to neutral gas pressure and plasma density.  

Finally, in chapter 4, the formation of imposed filamentary patterns by placing a metal wire 

mesh in the bulk of magnetized plasmas was studied. After presenting benchmarking simulations, 

the gridding phenomenon was investigated under variation of different plasma parameters and the 

geometry of the wire mesh. It was observed that the physics behind the gridding phenomenon 

indeed is the same as for the filamentation. The presence of the metal mesh causes the formation 

of imposed filaments that reproduce the spatial structure of the mesh. In the filamentation 

phenomenon, the density of the ions is higher than electrons in the depletion regions. The result of 

this density discrepancy is a plasma potential profile that also copies the spatial structure of the 

wire mesh. This potential structure that is extended from the mesh to the sheath region above the 

bottom electrode can trap the dust particles in a magnetized dusty plasma experiment and generated 

gridding phenomenon.  

It was also observed that the variation of imposed filamentary patterns with neutral gas 

pressure and background plasma density can be explained through the same mechanism used to 

study filamentation. Through the dependence of the imposed patterns on the width of the mesh 

wires, the simulations were able to reproduce the experimental observations made in the presence 

of the so called “waffle” electrode. If the width of the mesh wires is more than few Debye lengths 

and/or ion-neutral mean-free-path, the depletion region (and consequently the regions at higher 

plasma potential) from beneath the edges of the wide mesh wires. This would cause trapping of 
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the dust particles beneath the edges of the mesh as it was observed in the experiments with “waffle” 

electrode.  

 Another interesting observation in chapter 4 was the formation of secondary depletion 

regions. It was noticed that when the gap between the mesh wires was more than few Debye lengths 

secondary depletion regions could form in the gap. This observation and the formation of depletion 

region beneath the edges of a wide mesh were explained through the same process. Due to larger 

mass of the ions, they will be left behind beneath the mesh wires by the electrons. These ions can 

have a limited cross-field diffusion due to their large mass and partially diffuse to the gap between 

the wires which create a region of enhanced plasma density. If enough space is provided in the gap 

between the wires, these diffused ions can repel the neighboring ions in the gap and create a 

secondary depletion region. In the case of the wide wire mesh, only the regions beneath the edges 

of the wires can interact with the plasma in the gap and therefore the depletion regions can only 

form there.  

In general, this work could reveal some crucial aspects of the physics of filamentation and 

gridding phenomena. This work was able to exhibit the similar underlying physics of these 

phenomena and proposed an explanation for them. Despite all the positive sides of this work, there 

is still room for developing the model and discover the last pieces of the physics of these 

phenomena. A very important step towards this goal would be including the energy equation in 

the model to see how filamentary patterns affect electron/ion temperatures. This would also allow 

for the calculation of the local collision frequencies in the simulations which seem to be playing 

an important role in the phenomena and thus give a more realistic picture of the organized patterns.  

Besides, secondary electron emission from the surface can be included to see their effects on the 

onset of filamentation and gridding phenomena.  
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In all the simulations presented here, the neutral atoms were assumed to be stationary, 

contributing to the model only through collisions with electrons and ions. As stated in chapter 3, 

the drift of the ions can be of the order of sound speed. Therefore, the neutral atoms could also 

gain a drift velocity due to momentum transfer with the ions. The motion of the neutral atoms can 

affect the collision frequencies and considering the neutral atoms as the third flowing species in 

the model could give a better insight into filamentation and gridding phenomena. 

As mentioned before, all the walls of the plasma chamber in the 3D model were assumed to 

be metallic. To further investigate the effect of the electrodes on pattern formation in the plasma, 

the electrons and ions are allowed to accumulate in a few layers on and near the bottom electrode, 

instead of considering full absorption of the incoming electrons/ions at the electrode, as it was 

necessary for the metallic electrode. This is equivalent to having a layer of high-density dust 

particle near the bottom electrode or placing a dielectric plate on the bottom electrode. As it can 

be noted in figure 5.1, letting the charged particles accumulate at the bottom of the chamber and 

considering zero conductivity for those layers, results in preventing the filamentary patterns to 

form in the plasma. This simulation implies that the surface interaction of the electrons and ions 

with the electrodes play and important role in filamentation phenomenon in magnetized 

plasmas  [55] [2]. 

 The presented 3D fluid model could only consider two extreme cases of having electrode 

that are fully metallic or fully dielectric. With some more work the model can be enabled to allow 

for considering different material for the electrodes to investigate this aspect of filamentation more 

precisely. In this case, secondary electron emission from the surfaces can be also included. This 

effect must be also experimentally studied to see how the structure of the electrodes can affect the 

formation of filaments in the magnetized plasma.  
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 The simulations of gridding phenomena can also inspire further numerical and 

experimental work. From the numerical point of view, adding dust particles to the model would 

be an ultimate goal. Through the presented work the predicted position of the dust particles was 

assumed to be at the location of highest plasma potential while the exact location of the dust 

particles would be also affected by neutral and ion drag forces. Although due to the small charge 

to mass ration of the dust particles their dynamics times scale would be very different from 

electrons and ions, this goal may be achieved through efficient parallel programing and application 

of supercomputers. Such a model would be useful not only in the simulation of gridding 

phenomenon but also in the investigation of many other aspects of magnetized and unmagnetized 

dusty plasmas. 

Furthermore, the formation of secondary depletion regions was suggested in the simulation 

and it would be very interesting to study them in the experiments. This would require experiments 

at higher pressures and higher magnetic field as in the low-pressure regime, the random 

instabilities in the bulk of the plasma may result in the ordinary depletion region and interfere with 

the formation of imposed patterns by metal wires.  

In another interesting simulation, a metal sheet with four small square holes was placed 

below the top electrode of a magnetized plasma. The width of the square holes is 1.4 mm and the 

background plasma density is 5.0 ×1014 m-3, applied magnetic field is 1.0 T, and pressure is P = 

12 Pa. Figure 5.2 shows the X-Y cross section of the electron density profile in the middle of the 

plasma chamber for this simulation. The small holes in the metal sheet break the symmetry of the 

configuration and act as the seeds for the formation of target like filamentary structures in the 

magnetized plasma. For the simulation of filamentation phenomenon, an initial perturbation in 

form of a high-density column was added to the background plasma to initiate the formation of 
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filamentary structures. This observation can be further investigated in experiments. It can be 

considered as a method for generating controlled filamentary patterns.   
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Figure 5.1: X-Y cross-section of electron density profile in magnetized argon 

plasma at pressure of P = 19 Pa, Te = 2.5 ev, Ti = 0.025 ev, and ne = ni = 5 ×1014 

m-3, exposed to B = 2.0 T magnetic field. a) All walls of the chamber are metallic 

with full absorption of incoming electrons/ions. b) Allowing electrons/ions to 

accumulate in a few layers at the bottom of the chamber. The accumulation of 

the charged particles prevents the formation of filamentary patterns in the 

magnetized plasma. 
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Figure 5.2: X-Y cross section of electron density profile in a magnetized argon plasma in presence of a metal 

sheet with four small square holes, placed below the top electrode. The width of the square holes 1.4 mm. The 

background plasma density is 5.0 ×1014 m-3, applied magnetic field is 1.0 T, and pressure is P = 12 Pa. The 

small holes in the metal sheet break the symmetry of the configuration and cause the formation of filamentary 

structures in the magnetized plasma without adding an initial perturbation to it. The dark mask on the graph 

indicates the location of the metal sheet. 
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