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ABSTRACT 

Forests can cover a significant portion of watersheds and affect rainfall interception, water losses 

through evapotranspiration (ET), surface runoff, and aquifer recharge. Despite their critical role in 

the hydrologic cycle, tree growth and dynamics are typically ignored or superficially considered 

in watershed modeling studies. This study aims to improve the plant database of the Soil and Water 

Assessment Tool (SWAT) model for the two dominant pine species in the Southeastern U.S., 

loblolly pine (Pinus Taeda L.) and slash pine (Pinus Elliotti). Tree growth-related parameters in 

SWAT were calibrated at field level for four pine plantations across Alabama, Georgia, and 

Florida. Improved parameter estimates were transferred from the field plots to two nearby forested 

watersheds with observed streamflow data. Comparison between improved and default 

parameterizations showed that the improved SWAT outperformed the default model in simulating 

leaf area index (LAI), biomass accumulation, and ET at all study sites. At the watershed-scale, 

models considering the improved representation of forest dynamics showed superior performance 

and reduced uncertainties in predicting daily streamflow, with NSE values ranging from 0.52 to 

0.8. Our findings reveal the importance of accurately representing forest dynamics in hydrological 

models. 
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CHAPTER 1: GENERAL INTRODUCTION 

Forest and Water Relationships and its Importance for Hydrologic Modeling Studies 

Forests provide important ecosystem services such as improved soil water infiltration, soil 

loss mitigation, water quality purification, and provision of biomass (Mwangi et al., 2016). Forests 

also interact with incoming water from the atmosphere and feed back to affect watershed water 

balance (Ma et al., 2019). For example, a portion of rainfall is immediately intercepted by the plant 

canopy and becomes readily available for evaporation. The remaining water volume is 

redistributed into surface runoff, infiltration, soil percolation, subsurface flow, and eventually 

groundwater recharge. Evapotranspiration (ET) usually represents the largest component of the 

water balance (Marek et al., 2016). In the southeastern U.S., roughly 70% of the precipitation is 

lost to ET (McLaughlin et al., 2013). The plant root system can alter the soil configuration and 

enhance soil infiltration capacity (J. K. Kim et al., 2014). Some deep-rooted trees can extract water 

from the groundwater to meet their water demands (J. K. Kim et al., 2014; Li et al., 2018; Zhang 

et al., 2017). As a consequence, water extraction by deep-rooted trees can lower the groundwater 

table and reduce the amount of groundwater released to streams as baseflow (Mwangi et al., 2016). 

In the long-term, precipitation, ET and streamflow are the main drivers of the water budget in a 

watershed (Liu et al., 2018). Thus, the long-term watershed streamflow depends on the relationship 

between precipitation and ET. Since ET typically dominates watershed water losses, deforestation 

and/or conversion of vegetation to other land-uses can have significant impacts on the watershed 

water yield. In fact, several studies have demonstrated that afforestation, deforestation, and basal 

area and leaf area control can severely change the watershed’s water regime (e.g., Caro Camargo 

and Velandia Tarazona, 2019; Dalzell and Mulla, 2018; Khanal and Parajuli, 2013; Shope et al., 

2014). However, there is no clear consensus on the magnitude and direction of these changes. 
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Some studies suggest that enhanced water yield as a result of deforestation (Ellison et al., 2012; 

Filoso et al., 2017; Sun et al., 2005), other studies demonstrate the contrary (Jackson et al., 2005; 

Liang et al., 2015). Evaristo and McDonnell (2019) addressed this issue in their study on 440,000 

catchments worldwide. Their results showed that vegetation removal schemes (such as 

deforestation or thinning) are more likely to increase water yield in areas where potential water 

storage (the amount of water that can be held between the soil surface and the unweathered 

bedrock) is high. Conversely, little or no increases in annual water yield are likely to occur when 

vegetation removal takes place in areas of low potential water storage. They further demonstrated 

that ET is the most important factor in predicting the response of runoff to forestation.   

It is obvious that understanding the interplays between vegetation and hydrology is critical 

for better watershed management and planning. Hydrological response to forest management has 

traditionally been assessed by paired watershed studies (Evaristo and McDonnell, 2019). However, 

such landscape experiments usually provide only local and short-term insights and can be 

expensive, laborious, and time-consuming. As an alternative, hydrological models are commonly 

used to describe and understand the interactions between vegetation and hydrology. Due to their 

efficiency and cost-effectiveness, models have been increasingly applied to watersheds for 

decision making (Taylor et al., 2016). In simple terms, a model is a simplified representation of 

reality through a set of mathematical relationships. Models can aid managers and decision-makers 

to estimate risks, understand uncertainties, assess multiple management scenarios, and predict 

future environmental conditions at local, regional, national, or continental scales. Over the last 

decades, modelers benefited from advances in numerical approaches, computing capacities, 

development of calibration software, and availability of observed data for model calibration and 

validation (Shifley et al., 2017). Consequently, the number of modelling studies linking hydrology 
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and vegetation became more abundant. For example, Kelly et al. (2016) used a nonlinear time 

series regression model to investigate potential interactions between climate and forest 

management in altering streamflow. Their results suggested that vegetation might be managed to 

compensate for streamflow response due to climate change effects such as extreme changes in 

precipitation. Liu et al. (2018) analyzed 30 catchments using the Budyko’s theoretical framework 

to study the effects of climate and land cover change on streamflow. Their results showed a coequal 

role of climate and vegetation on streamflow response, highlighting the importance of forest 

management on future water production.  

Although useful, empirical models highly depend on the statistical relationships obtained 

through regression analysis of observed data and are usually only suitable for the conditions under 

which the relationships have been developed. On the other hand, physically-based models (also 

referred to as process-based models) represent a category of models based on physical principles 

such as conservation of mass and momentum. These types of models usually require a large 

number of input parameters, which can often be obtained through field measurements. Some 

models are classified as hybrids, because they are developed to bridge the gap between 

conventional empirical models based on statistical relationships and process-based models. One 

example of such a model is the Physiological Processes Predicting Growth (3-PG) (Landsberg and 

Waring, 1997). The 3-PG model is a stand-level simulator to predict the growth of mono-specific 

trees. Although robust at the stand-level scale, these types of models are not applicable at larger 

scales where several stand species spread across the landscape. Linking stand-level models to 

hydrological models provides a more solid mechanism to evaluate how different forest 

management operations affect water yield at regional scales. In such cases, a watershed-scale 

approach is necessary.  
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Many watershed models have been developed and selecting the most suitable model to be 

employed in a research project can be a challenging task. Among the most widely used watershed-

scale models are the Agricultural Non-Point Source (AGNPS) (Young et al., 1989), Hydrologic 

Modeling System (HEC-HMS) (Feldman, 2000), Hydrological Simulation Program Fortran 

(HSPF) (Bicknell et al., 1997), Kinematic Runoff and Erosion Model (KINEROS) (Woolhiser et 

al., 1990), and the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) model. These 

physically-based watershed models are usually calibrated by comparing in-stream simulated fluxes 

with observed data at the watershed outlet, without paying much attention to the ability of the 

model in simulating processes that occur within the watershed, between streams and upland areas 

(Yen et al., 2014). Intra-watershed processes such as leaf area index (LAI) development, biomass 

production, ET, and soil moisture dynamics are often neglected or overlooked in watershed 

modelling studies. Given the intrinsic relationship between vegetation and hydrology, neglecting 

such interior watershed behaviors during model calibration may reduce model reliability and 

potentially lead to flawed conclusions.  

As a popular physically-based watershed model, the Soil and Water Assessment Tool 

(SWAT) has found wide applications for various purposes worldwide. For instance, it has been 

used in estimating water yield (Abou Rafee et al., 2019; Adla et al., 2019; Kaur et al., 2019; Qi et 

al., 2019; Visakh et al., 2019; Zang and Mao, 2019), sediment loss (Brighenti et al., 2019; 

Himanshu et al., 2019; Mishra et al., 2007; Mukundan et al., 2010; Singh et al., 2014; Vigiak et 

al., 2015; Wellen et al., 2014), nutrient loading (Akhavan et al., 2010; Chu et al., 2004; Haas et 

al., 2016; Ikenberry et al., 2017; Kemanian et al., 2011; Kiani et al., 2018; Pohlert et al., 2007; 

Risal and Parajuli, 2019), and assessing impacts of climate change (Ahn et al., 2016; Anjum et al., 

2019; Awan and Ismaeel, 2014; Bhatta et al., 2019; Jianzhong Lu et al., 2017; Zhu et al., 2016), 
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and land use/cover change (Anand et al., 2018; Jodar-Abellan et al., 2018; Li et al., 2014; 

Romanowicz et al., 2005; Teklay et al., 2019; Wang et al., 2018). SWAT has also been applied to 

predict crop yield at the field scale (Cibin et al., 2016; Mittelstet, 2015; Nair et al., 2011; R. 

Srinivasan et al., 2010; Trybula et al., 2015; Wang et al., 2015) and to assess the benefits of 

perennial vegetation on water quality (Dalzell and Mulla, 2018). Despite being used for a wide 

range of applications, SWAT has not been sufficiently tested in forested ecosystems (Amatya and 

Jha, 2011; Yang et al., 2019). More than a decade ago, an invited SWAT review paper (Gassman 

et al., 2007) highlighted that expansion of SWAT’s plant database was needed to support a larger 

variety of plant species that could be simulated in the model.  

SWAT incorporates a simplified version of the Environmental Policy Integrated Climate 

(EPIC) model (Williams, 1990) to simulate plant growth. The initialization of the growth cycle in 

SWAT is based on the Heat Unit Theory: plants require a certain amount of heat to reach maturity, 

which is only reached when a plant-specific total heat unit is attained. Once the plant reaches 

maturity, it stops transpiring and uptake of water and nutrients. The growth cycle is restarted every 

year based on a latitude-dependent dormancy routine. At the beginning of each growth cycle, the 

accumulated heat units drop to zero, and the LAI is set to a plant-specific minimum value (Neitsch 

et al., 2011). The actual plant growth is based on solar radiation and light conversion efficiency. 

This type of model is sometimes referred to as a “radiation-crop model” since it depends on the 

efficiency of converting photosynthetically active radiation into biomass (Jiang et al., 2017). 

Although simple, robust, and straightforward for simulating crop biomass, SWAT’s plant growth 

model presents some shortcomings, especially when it comes to tree growth modeling. For 

example, SWAT assumes that radiation use efficiency of a plant (efficiency in converting radiation 

into biomass) is constant when it is well known that it can vary during the year (Clifton‐brown et 
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al., 2004). More importantly, SWAT uses the same set of variables to simulate all types of plants, 

meaning that in SWAT, crop and tree growth are only distinguished by the use of different 

parameter values. The default parameter values representing tree growth in SWAT were defined, 

in most of the cases, based on personal communication (Arnold et al., 2012). This clearly warrants 

the necessity of improving the model’s plant database to simulate tree growth based on specific 

species and environmental conditions. 

Only a handful of studies have reported the parameterization of SWAT’s plant database 

for trees. Amatya and Jha (2011) applied a SWAT model to simulate streamflow in a forested 

watershed (Pine and mixed hardwood forest) in South Carolina. To that end, they changed the 

model’s default LAI value from 3 m2/m2 to 5 m2/m2, and the canopy storage capacity to 0.5 mm. 

However, the authors expressed the need for further investigation of forested systems to reduce 

uncertainties in flow predictions. Similarly, Mwangi et al. (2016) increased SWAT’s minimum 

LAI from 0.75 m2/m2 to 3 m2/m2, which is a typical value for the studied region (Mau Forest in 

Kenya). This region is mainly dominated by a variety of broad leaved species (Kinyanjui et al., 

2014). Their results showed an improved model’s performance in predicting ET and tree water use 

after LAI parameterization. Shope et al. (2014) conducted a comprehensive calibration of 15 

vegetation related parameters to improve SWAT’s skills in simulating LAI of deciduous forests in 

South Korea. Khanal and Parajuli (2014) assessed the sensitivity of seven SWAT plant database 

parameters to simulate forest (Longleaf pine and mixed hardwood) biomass in east-central 

Mississippi. Their results showed that only three parameters are sensitive to forest biomass 

production: (i) the fraction of growing season at which senescence becomes the dominant growth 

process, (ii) radiation use efficiency, and (iii) potential maximum LAI. Other studies have applied 

SWAT to investigate the effects of forest management on streamflow response without reporting 
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any tree growth calibration (e.g. Khanal and Parajuli, 2013; Y. Kim et al., 2014; Kushwaha and 

Jain, 2013; Zhang et al., 2019). 

Another tier of studies has changed the SWAT’s internal structure through code 

modification to improve SWAT’s capabilities in simulating tree growth. Yang and Zhang (2016) 

identified unrealistic parameters and processes for modelling evergreen, deciduous, and mixed 

forests in SWAT. Based on carbon biomass, net primary productivity (NPP), net ecosystem 

exchange (NEE) and evapotranspiration data collected across ten Ameriflux sites covering 

different regions of the U.S., the authors demonstrated that default SWAT model (i) overestimates 

tree maximum leaf area index, overestimates optimum and base temperature, and overestimates 

the amount of leaf biomass converted to soil residue; and (ii) underestimates tree radiation use 

efficiency. As a result of this unrealistic default model parameterization, model estimates of forest 

biomass, ET, and NPP were significantly underestimated in comparison to benchmark data. They 

also modified SWAT to include a new phosphorus supply routine from parental material 

weathering. After model modification and parameterization, tree biomass production and NPP 

were significantly improved in SWAT. However, the authors did not calibrate the model’s LAI 

dynamics. Since SWAT uses the daily LAI to compute daily biomass accumulation, and ET, 

ignoring leaf phenology certainly affects the model’s performance. Yang et al. (2018) built upon 

this site level improved SWAT parameterization to test the model in a forested watershed located 

across the border between Wisconsin and Minnesota. Their results showed the important role of 

forest ecosystems in the watershed scale water budget and the connections between terrestrial and 

riverine processes. Once again, the authors did not incorporate LAI into the model calibration 

processes. Moreover, they lumped deciduous and evergreen forests together to analyze model 

outputs and did not report which model parameters were sensitive to tree biomass, ET, and NPP. 
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As an addition to that study, Yang et al. (2019) further examined how those improved five forest 

parameters affected simulated streamflow, sediment, and nitrogen export under future climate 

conditions at the same watershed. Their results showed that the improved SWAT model reduced 

estimates of water, sediment, and nitrogen fluxes when compared to the default model 

configuration. Although they transferred the improved model parameters from previous studies, 

simulated processes related to tree growth (such as LAI and biomass) were not compared to any 

benchmark data. Guo et al. (2018) included a new LAI parameter, a new LAI algorithm, and a new 

leaf biomass algorithm in SWAT to predict Populus tree growth. The new LAI parameter was 

added to the plant database to describe how LAI increases to the maximum potential value, 

considering varying tree densities. Their results showed that 10 out of 35 SWAT plant database 

parameters were sensitive to Populus biomass yield and that modeled aboveground biomass and 

LAI from the modified SWAT model were satisfactory based on observed annual data. That is the 

only study found in the literature that performed both LAI and biomass calibration of trees based 

on measured data with SWAT. However, the proposed model parameterization and modification 

were meant to improve biomass estimates of Populus only, not evergreen or deciduous trees.  

Modeling tree growth with SWAT in tropical and subtropical regions is especially 

challenging because, unlike temperate regions, plants in the tropics do not undergo dormancy over 

the year. Some research has been done to overcome this shortcoming. For example, Wagner et al. 

(2011), when applying SWAT in India, modified the dormancy subroutine by shifting it to the dry 

season (from April to May). The authors also increased the maximum leaf area index to 6 m2/m2, 

based on remote sensing derived data, to better describe the phenology of the local semi-evergreen 

species. Strauch and Volk (2013) presented an alternative modeling approach to initiate the annual 

growing cycle based on changes in soil moisture, instead of dormancy. The authors tested the 
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methodology in Brazil by calibrating LAI and ET of evergreen trees and perennials against remote 

sensing data. Their results showed that the modified model can reasonably represent the seasonal 

dynamics of the tropical species. Similarly, Alemayehu et al. (2017) presented a modified SWAT 

model, referred to as SWAT-T, that uses a quotient of rainfall and reference evapotranspiration to 

dynamically initiate a new growth cycle. The alternative model was tested in Kenya and Tanzania 

and results showed that simulated LAI and ET exhibit a good agreement with remote sensing data. 

Ma et al. (2019) integrated spatially and temporally continuous LAI products from Moderate 

Resolution Imaging Spectroradiometer (MODIS) into SWAT to replace the original model’s LAI 

routine. The model was tested in China and results showed a more accurate relation between 

simulated LAI and precipitation data. Watson et al. (2008) developed an alternative SWAT model 

(SWATBF), which is based on several modifications made to the original model to better represent 

processes occurring within forested watersheds on the Boreal Plain in Canada. One of the added 

features is a litter layer on the forest floor, which was meant to work as an additional interception 

storage compartment. Their results showed overall good model performance in simulating daily 

and monthly runoff. Watson et al. (2005) integrated the forest growth model 3-PG with SWAT to 

improve simulation of LAI for evergreen trees in Australia. The coupled model was called 

SWAT/3-PG and results showed more realistic and accurate simulations of LAI of eucalypts and 

pines compared to the original version of SWAT. SWAT/3-PG’s plausibility in simulating LAI 

was assessed based on data derived from Landsat satellite imagery. 

Given the importance that vegetation plays on simulated in-stream processes in SWAT and 

the limitations of the default model’s plant database in regards to trees, it is fair to say that it needs 

to be revised and improved before conducting hydrological and water quality assessments. To that 

end, it is important to develop a reliable SWAT plant database, with parameter values derived from 
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field measurements and literature review. Moreover, the true nexus between vegetation and 

hydrology can only be evaluated in SWAT if the full tree growth cycle is captured. Consequently, 

LAI dynamics, tree biomass production, and evapotranspiration are processes that must be 

considered simultaneously in SWAT applications, even if the focus is forecasting streamflow. This 

issue becomes even more crucial for regions where forests cover a large portion of the landscape, 

such as the southeastern U.S. Almost one-third of the forested lands in the contiguous U.S. are in 

the southeastern U.S., comprising of approximately 99 million hectares (Bracho et al., 2018). This 

region is the number one producer of timber in the U.S., with planted pine covering over 15 million 

hectares of land (Gavazzi et al., 2016). Loblolly pine (Pinus taeda L.) is the most widely planted 

species, representing approximately 69% of the total planted pine (Bracho et al., 2018). Slash pine 

(Pinus elliottii) is the second most cultivated pine specifies in the southeastern U.S., covering an 

area of approximately 4.2 million hectares (Gonzalez-Benecke et al., 2014) Consequently, any 

hydrological study conducted with the SWAT model in this region should give special attention 

to model parameters related to tree growth prediction. 

OBJECTIVES AND HYPOTHESIS 

The three overreaching goals of this research are: 

1. Construct a SWAT plant database parameterization for loblolly and slash pine based on 

data derived from literature, field observations and remote sensing products; 

2. Calibrate and validate the model at the field scale basis for multiple sites across the 

southeastern U.S. for biomass production, LAI dynamics, and ET; 

3. Transfer the calibrated model parameters to watersheds located near each of the sites to 

investigate the impact of vegetation growth calibration on watershed-scale water balance. 
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It is hypothesized that improved prediction of LAI, biomass, and evapotranspiration will 

alter the watershed water balance because of the implications of improved canopy water storage 

on water evaporation and redistribution over the land and through the soil profile. It is also 

hypothesized that model parameters calibrated at the field scale level can be transferred to 

watershed-scale models for improved tree growth and streamflow prediction. 

THESIS OUTLINE 

The thesis is divided into two major topics: (I) model parameterization and calibration of 

key forest processes at the field-scale level in the Southeastern U.S., and (II) validation of the 

proposed forest parameterization at the watershed-scale and assessment of its implications on 

watershed hydrological predictions. Each of these topics is developed as a single chapter and 

formatted as a standalone journal paper. 

Chapter two presents an improved parameterization of SWAT’s plant database for loblolly 

pine and slash pine, the two dominant pine species in the Southeastern U.S. The proposed 

parameterization aimed at enhancing SWAT’s skills in forested ecosystems. Parameter values 

representing key forest processes in the model were derived via species-specific field-measured 

data, remotely-sensed derived LAI and ET, published literature, and expert knowledge. To assess 

the quality of this parameterization, simulated LAI, total biomass, and ET were compared against 

field observations and MODIS derived data. Four pine plantation fields spread across Alabama, 

Georgia, and Florida were selected as test beds. The study sites differ in terms of planted species 

(i.e., loblolly pine or slash pine), area, management (e.g., fertilizer application, site preparation, 

planting age), soil, and climate conditions. 

Chapter three explores the impacts of the forest parameterization developed in chapter two 

on watershed hydrology. To that end, the previously calibrated parameter values regulating LAI, 
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total biomass, and ET were transferred to two nearby forested watersheds. The selected watersheds 

are predominately covered by either loblolly pine or slash pine trees and located in Georgia and 

Florida. A series of modeling experiments were designed to progressively constrain more model 

variables with additional observed data. These experiments helped to isolate the impacts of LAI, 

biomass, and ET on streamflow prediction and water budget computation at each watershed. The 

implications of improved forest processes on automated streamflow calibration were analyzed by 

comparing two different model calibration strategies: first, streamflow was calibrated without 

adjusting simulated LAI, biomass, and ET in the models. Next, previously calibrated parameter 

values describing LAI, biomass, and ET were incorporated into the model, and then streamflow-

related parameters were optimized. The interplays between terrestrial processes and in-stream 

processes were further scrutinized in the models by comparing fifty eco-hydrological parameters 

against observations derived from gauged streamflow. 

The fourth chapter closes the thesis by summarizing the main findings obtained throughout 

this study, highlighting some shortcomings, and pointing out future research directions.    
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CHAPTER 2: The Role of Forests in Improving Biophysical Parameter Estimation and 

Plant Growth Representation in Hydrological Models: A field-scale approach in the 

Southeastern United States 

ABSTRACT 

This study aims to improve the plant database of the Soil and Water Assessment Tool (SWAT) model for two dominant 

pine species in the Southeastern U.S. (SE-US). To accomplish this goal, we parameterized SWAT with species-

specific parameter values describing the growth and dynamics of loblolly pine (Pinus Taeda L.) and slash pine (Pinus 

Elliotti), the two dominant tree species in the SE-US. We derived physically-meaningful parameter values from 

publicly available remote-sensing products, field measurements, published literature, and expert knowledge. We 

identified unrealistic parameter values related to tree growth prediction in SWAT and model limitations to simulate 

juvenile trees. In this paper, we articulate on these shortcomings and propose an improved model parameterization 

that allows reasonable simulation of young trees. We applied SWAT under its default settings and parameterized 

version to four pine plantation fields to simulate leaf area index (LAI), biomass accumulation, and evapotranspiration 

(ET) under varying management, soil, and climate conditions. Tree growth-related parameters were calibrated within 

a physically-meaningful range at the field-scale in Alabama, Georgia, and Florida. Model skills in predicting these 

processes were tested using MODIS LAI and ET derived data, as well as field observations of total biomass. The 

results show that the improved SWAT outperformed the default model in simulating LAI, biomass accumulation, and 

ET at all sites. Under the improved parameterization, SWAT was able to explain up to 52% of the variation in seasonal 

LAI, 47% of the variation in monthly ET, and 99% of the variation in annual biomass. Furthermore, the updated forest 

parameterization significantly affected the mean annual water budget across all sites. The proposed changes did not 

alter the model’s structure and are flexible and ready to go, which should benefit future modeling studies conducted 

in the SE-US  

Keywords: 

Leaf area index, Biomass, Evapotranspiration, SWAT, MODIS, Forest modeling 
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INTRODUCTION 

Southern pines are one of the important tree species in the Southeastern United States (SE-

US) covering about 28 million hectares (ha) of the 83 million ha of timberland in the region. The 

region, as a result, is responsible for producing approximately 60% of the total U.S. timber and 

about 18% of the global supply of industrial wood (Gonzalez-Benecke et al., 2014a). In this 

context, loblolly pine (Pinus taeda) is the nation’s leading timber species, covering about 13 

million ha and is considered to be the most important commercial tree species in the world (Will 

et al., 2015). As the most commonly planted tree species in the U.S., loblolly pine accounts for 

84% of all seedlings planted in the SE-US (Wightman et al., 2016). The second most cultivated 

tree species in this region is the slash pine (Pinus elliottii), which has been planted on more than 

4.2 million ha (Gonzalez-Benecke et al., 2014a). 

Forests play a critical role in the land phase of hydrological water balance and greatly 

impact blue water (streamflow, subsurface flow, baseflow) and green water (evapotranspiration 

and soil water storage). Green water is defined as the water stored in unsaturated soil layers and 

plant canopy (Falkenmark M. and Rockström J., 2006; Veettil and Mishra, 2016). Blue water is 

the water flowing through the surface (e.g., lakes) and subsurface (e.g., aquifers) media that can 

be directly used for human needs (Falkenmark M. and Rockström J., 2006; Naderi, 2020; Veettil 

and Mishra, 2016). In the SE-US, evapotranspiration (ET) accounts for 70% of rainfall losses 

(McLaughlin et al., 2013). Ford et al. (2004) reported the average water use of slash pine and 

loblolly pine as being 99.3 L/day and 138 L/day, respectively. Gonzalez-Benecke et al. (2011) 

found daily transpiration in slash pine to be 39 L/tree, while a value of 20.35 L/day was reported 

for loblolly pine by another study (Martin, 1999). Wightman et al. (2016) found annual 

transpiration in a loblolly pine plantation in northern Florida corresponding to 35.2% (535 mm) of 
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annual rainfall. Recent research also showed that loblolly pine forests intercept between 14% and 

28% of total rainfall through canopy storage (Gavazzi et al., 2016). Clearly, forests play a central 

role in the region’s hydrological cycle and are likely to continue influencing the hydrology of the 

SE-US. 

Investigating the interplays between forest and hydrology is a complex task and usually 

requires a combination of field studies and modeling approaches (Golden et al., 2016). A 

hydrological model capable of representing forest dynamics accurately can be a useful tool to 

supplement field measurements (e.g., predict long-term rainfall loss to ET). Likewise, field 

measurements can provide valuable information to enhance a hydrological model’s representation 

of fundamental forest dynamics (e.g., leaf area index (LAI) dynamics). Process-based hydrological 

models have been applied in many studies to represent forest hydrological processes in the SE-

US. Saleh et al. (2004) modified the process-based Agricultural Policy/Environmental eXtender 

(APEX) model (Williams et al., 2008) to improve estimations of flow, sediment, and nutrient 

losses from silvicultural lands in Texas. Iiames et al. (2018) applied the United States Department 

of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model (Williams, 1990) 

to estimate LAI at four mixed-forest stands in Virginia and North Carolina. Amatya and Skaggs 

(2001) applied the field scale DRAINMOD (Skaggs, 1978) model to predict daily water table 

height in experimental watersheds located on a loblolly pine plantation in North Carolina. 

Although based on physical principles and equations, models such as APEX, EPIC, and 

DRAINMOD are appropriate only at plot or stand scale. Watershed-scale models are necessary 

for regional-scale evaluations to account for the spatial variability in stand species, soil, and 

climate. 
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As a popular process-based watershed model, the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998) has been used for a wide range of applications worldwide (Gassman 

et al., 2004). SWAT is capable of simulating varying land-management practices such as fertilizer 

application, irrigation, biomass harvest, and plant rotation. This makes SWAT suitable for forestry 

applications on managed plantations. However, SWAT has not been sufficiently tested in forested 

ecosystems (Amatya and Jha, 2011; Yang et al., 2019). SWAT incorporates a simplified version 

of EPIC to simulate plant growth based on the amount of heat required by a plant to reach its 

maturity. In SWAT, tree growth and dynamics are modeled based on the same set of parameters 

used to model crops. In other words, the main difference between a crop and a tree in SWAT is 

the value assigned to each parameter. Default parameter values representing tree growth in SWAT 

were defined, in most of the cases, based on personal communication (Arnold et al., 2012). Yang 

and Zhang (2016) identified unrealistic parameter values for modeling evergreen, deciduous, and 

mixed forests in SWAT’s default plant parameterization. Guo et al. (2018) highlighted that LAI 

estimates in SWAT are not applicable for tree growth prior to maturity since LAI of young trees 

is not allowed to reach stand maximum LAI before canopy closure. The latter becomes an issue in 

regions such as the SE-US, where seedlings are planted all over the landscape.  

Although SWAT has been extensively applied for improving and evaluating crop yield  

simulation (Cibin et al., 2016a; Karki et al., 2019; Mittelstet, 2015; Nair et al., 2011; Srinivasan et 

al., 2010; Trybula et al., 2015; Wang et al., 2015), there is no study, to the best of the author’s 

knowledge, that evaluated SWAT’s capabilities in predicting loblolly and slash pine dynamics. 

Since field studies in forestry are usually expensive and time-consuming, there is a scarcity of field 

observations and measurements spatially distributed across large areas (watersheds). The 

availability of published data and long-term field-measured data from forestry studies managed by 
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the Plantation Management Research Cooperative (PMRC) in Alabama, the Forest Biology 

Research Cooperative (FBRC) in Florida, and the Forest Modelling Research Cooperative 

(FMRC) in Georgia presented a great opportunity for us to derive realistic parameter values for 

pine trees simulation in SWAT as well as assess the model’s capabilities in simulating key forest 

processes in operational pine plantations covering a wide range of age, management conditions, 

physical characteristics, and geographical distribution across the SE-US. In this paper, we take 

advantage of these shared datasets, combined with high temporal and spatial resolution remote-

sensed data, expert knowledge, and published information to conduct a detailed parameterization 

of SWAT’s plant database and calibrate modeled LAI dynamics, biomass accumulation, and ET 

rates for the two dominant tree species in the SE-US. The true nexus between vegetation and 

hydrology can only be evaluated in SWAT if the full tree growth cycle is captured. Consequently, 

LAI dynamics, tree biomass production, and evapotranspiration are processes that must be 

considered simultaneously in SWAT applications.  

The overreaching goal of this study is to parameterize the SWAT model for loblolly pine 

and slash pine trees in the SE-US. The specific objectives are (1) assess SWAT’s capabilities in 

simulating LAI, biomass accumulation, and ET at individual pine plantation fields under different 

soil, climate, and management conditions; (2) demonstrate a simple approach allowing simulation 

of young trees in SWAT; (3) show the impacts of phenological calibration on water resources. To 

the best of our knowledge, this is the first study to calibrate and evaluate the coupled interactions 

between tree LAI, biomass, and ET in SWAT, and thus, should have significant contribution to 

future hydrological modeling efforts in the SE-US. 
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MATERIALS AND METHODS 

Study sites 

Field measured data from four pine plantations across the SE-US were used for this study. 

Three of the sites had loblolly pine plantations and were located in Georgia, Alabama, and Florida 

(Fig. 1). The fourth and the only field with slash pine plantation was located in Florida and was 

about 4 km away from the loblolly pine site (Fig. 1). Characteristics of each site are summarized 

and presented in Table 1. 

The IMP–GA site consists of a 6 hectare intensively managed loblolly pine plantation 

(IMP) located in Stewart County, in west Georgia. The plot is representative of contemporary 

silviculture of loblolly pine plantations and includes management strategies such as site 

preparation and controlled competition (Russell et al., 2010). The site was established in 1999 in 

6-year-old stands and continued to be monitored every 2 years until 2005. From 2008 to 2010, 

measurements of total tree biomass were annual. The plot is part of a long-term productivity study 

administered by the Forest Modeling Research Cooperative at Virginia Tech University. 

 The SAGCD–AL site consists of a 10-hectare installation designed to represent two levels 

of management intensity: operational and intensive culture (Zhao et al., 2012). The site is located 

in St. Clair County, north-central Alabama and was established by the Plantation Management 

Research Cooperatives as part of 23 site installations of the loblolly pine culture/density study in 

1997-1998 across the SE-US. 

 There are two sites in Florida, one loblolly pine plantation (IMPAC – FL) and one slash 

pine plantation (MIZE–FL). The IMPAC–FL site consists of a 9-hectare loblolly pine plantation 

located approximately 10 km north of Gainesville in Alachua County. The site was established in 

1981 by the Forest Biology Research Cooperative when 1-year old loblolly pine seedlings were 
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planted at a 1.8 X 3.6 m spacing (Jokela and Martin, 2000). Fertilization occurred annually from 

1983 to 1993 at the following Nitrogen (N) and Phosphorus (P) rates: 360 Kg of N/ha, and 143 kg 

of P/ha. The MIZE–FL site consists of a 28-hectare slash pine plantation, located approximately 

15 km northeast of Gainesville in Alachua County. This site was established in December 1998 – 

January 1999. The plantation was fertilized with 40 Kg of N/ha and 45 Kg of P/ha in 2002 (Bracho 

et al., 2012).  

SWAT model 

Model description 

SWAT (Arnold et al., 1998) is a process-based, semi-distributed watershed-scale eco-

hydrological model developed by the USDA Agricultural Research Service (ARS). Major model 

components include weather, hydrology, plant growth, water quality, and land management. 

SWAT was originally developed for the prediction of the long-term impact of rural and agricultural 

management practices on water, sediment, and nutrients in large, complex watersheds with varying 

soils, land use, and management conditions. SWAT is commonly integrated into GIS interfaces 

(e.g. ArcSWAT; QSWAT) that allow for the use of spatial information such as land use/land cover, 

topography, and soils. What makes SWAT especially different from lumped watershed models is 

how spatial heterogeneity is represented in the model. SWAT delineates a watershed into multiple 

subbasins based on drainage areas of tributaries. Within each subbasin, unique combinations of 

land use, soil, and topography called Hydrologic Response Units (HRUs) are created and summed 

for each subbasin (Neitsch et al., 2011). HRU’s are the smallest computational unit in SWAT and 

provide an efficient way to discretize large watersheds. Most of the land phase processes in SWAT, 

including water flow, nutrient transformation and transport, and vegetation growth are simulated 

at the HRU level. At the sub-basin level, SWAT integrates land phase and channel processes. 
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SWAT provides three methods for estimating evapotranspiration: Penman-Monteith 

(Monteith, 1965), Priestley-Taylor (Priestley and Taylor, 1972), and Hargraves (Hargreaves and 

Samani, 1985). In this study, we use Penman-Monteith, since MODIS ET estimates are also based 

on the physical principles underlying by the Penman-Monteith method. Equation (1) describes the 

Penman-Monteith method: 

𝜆𝐸 =  
∆.(𝐻𝑛𝑒𝑡−𝐺)+𝜌𝑎𝑖𝑟.𝑐𝑝.[𝑒𝑧

𝑜−𝑒𝑧]/𝑟𝑎

∆+𝛶.(1+
𝑟𝑐
𝑟𝑎

)
 (1) 

where, 𝜆𝐸 is the evaporative latent heat flux density (MJ/m2.d), ∆ is the slope of saturation vapor 

pressure-temperature curve (KPa/ °C), 𝐻𝑛𝑒𝑡 is the net radiation (MJ/m2.d), G is the heat flux 

density to the ground (MJ/m2.d), 𝜌𝑎𝑖𝑟 is the air density (kg/m3), 𝑐𝑝 is the specific heat at constant 

pressure (MJ/kg. °C), 𝑒𝑧
𝑜 is the saturation vapor pressure of air at height z (kPa), 𝑒𝑧 is the water 

vapor pressure of air at height z (kPa), 𝛶 is the psychrometric constant (kPa/°C), 𝑟𝑐 is the plant 

canopy resistance (s/m), and 𝑟𝑎 is the diffusion resistance of the air layer (aerodynamic resistance) 

(s/m). SWAT calculates 𝑟𝑐 using the following relationship:  

𝑟𝑐 =  
𝑟𝑙

0.5 .𝐿𝐴𝐼
 (2) 

where, 𝑟𝑙 is the minimum effective stomatal resistance for a single leaf (s/m), and LAI is the one 

sided green leaf per unit of ground area (m2/m2). LAI is an important variable linking water and 

energy fluxes. In SWAT, LAI is a key parameter associated with plant growth and development, 

as described next. 

Forest dynamics modeling in SWAT 

In SWAT, the potential plant phenological development is simulated based on daily 

accumulated heat units under optimal conditions (Neitsch et al., 2011). SWAT assumes, based on 
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the Heat Unit Theory, that each plant has its base, optimum, and maximum temperature for growth. 

Plant growth in SWAT is only triggered when the mean daily temperature is equal or higher than 

a plant specified base temperature (T_BASE). The total number of heat units required to bring a 

plant to maturity is a user-defined parameter (PHU). SWAT then calculates the total potential heat 

units for the plant as a summation of the number of heat units accumulated on a given day. The 

fraction of potential heat units accumulated on a given day is calculated as: 

𝑓𝑟𝑃𝐻𝑈 =  
∑ 𝐻𝑈𝑖

𝑑
𝑖=1

𝑃𝐻𝑈
 (3) 

where, 𝑓𝑟𝑃𝐻𝑈 is the fraction of potential heat unit accumulated for the plant on a given day, 𝐻𝑈𝑖 

is the heat unit accumulated by plant on day i, and PHU is the total heat unit necessary to bring 

the plant to maturity. Initially, LAI development in SWAT is defined by the optimal leaf area 

development curve: 

𝑓𝑟𝐿𝐴𝐼𝑚𝑥 =  
𝑓𝑟𝑃𝐻𝑈

𝑓𝑟𝑃𝐻𝑈+𝑒(𝑙1−𝑙2.𝑓𝑟𝑃𝐻𝑈) (4) 

where, 𝑓𝑟𝐿𝐴𝐼𝑚𝑥 is the fraction of the plant’s maximum LAI corresponding to a given fraction of 

potential heat units, 𝑙1 and 𝑙2 are shape coefficients calculated based on user-defined input 

parameters. 

Once triggered by accumulated heat units, potential plant growth is modeled by simulating leaf 

area development, light interception, and conversion of intercepted light into biomass. The LAI on 

day i is calculated as 

𝐿𝐴𝐼𝑖 =  𝐿𝐴𝐼𝑖−1 + (𝑓𝑟𝐿𝐴𝐼𝑚𝑥,𝑖 − 𝑓𝑟𝐿𝐴𝐼𝑚𝑥,𝑖−1). (
𝑦𝑟𝑐𝑢𝑟

𝑦𝑟𝑓𝑢𝑙𝑙𝑑𝑒𝑣
) . 𝐿𝐴𝐼𝑚𝑥  . (1 − 𝑒𝑥𝑝 (5. (𝐿𝐴𝐼𝑖−1 −

(
𝑦𝑟𝑐𝑢𝑟

𝑦𝑟𝑓𝑢𝑙𝑙𝑑𝑒𝑣
) . 𝐿𝐴𝐼𝑚𝑥))) (5) 
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where, 𝐿𝐴𝐼𝑖−1 is the leaf area index of the previous day, 𝑓𝑟𝐿𝐴𝐼𝑚𝑥,𝑖 and 𝑓𝑟𝐿𝐴𝐼𝑚𝑥,𝑖−1 are the fraction 

of plant’s maximum LAI for day i and i-1, 𝐿𝐴𝐼𝑚𝑥   is the maximum LAI, 𝑦𝑟𝑐𝑢𝑟 is the age of the tree 

(years), and 𝑦𝑟𝑓𝑢𝑙𝑙𝑑𝑒𝑣 is the number of years for tree species to reach full development. 

Potential biomass accumulation is estimated based on the plant’s efficiency in converting 

radiation into biomass. The amount of daily solar radiation intercepted by the leaf area of the plant 

is calculated using Beer’s law (Monsi and Saeki, 1953). 

𝐻𝑝ℎ𝑜𝑠𝑦𝑛 = 0.5. 𝐻𝑑𝑎𝑦 . (1 − exp(−𝑘𝑙. 𝐿𝐴𝐼)) (6) 

where. 𝐻𝑝ℎ𝑜𝑠𝑦𝑛 is the amount of intercepted photosynthetically active radiation on a given day 

(MJ/m2), 𝐻𝑑𝑎𝑦 is the incident total solar radiation (MJ/m2), 0.5. 𝐻𝑑𝑎𝑦 is the incident 

photosynthetically active radiation (MJ/m2), and 𝑘𝑙 is the light extinction coefficient. 

The maximum biomass at the end of day i resulting from the intercepted photosynthetically 

active radiation is estimated as: 

𝑏𝑖𝑜𝑖 = 𝑏𝑖𝑜𝑖−1 + 𝑅𝑈𝐸 . 𝐻𝑝ℎ𝑜𝑠𝑦𝑛 (7) 

where, 𝑏𝑖𝑜𝑖−1 is the biomass on day i-1 (kg/ha), and RUE is the radiation use efficiency of the 

plant (g/MJ).  

Tree biomass accumulation within a single year is limited to a fixed amount determined by 

the age of the tree relative to the number of years for the tree to reach full development. Until the 

trees in an HRU reach full development, the amount of biomass they can accumulate in a single 

year is limited to: 

𝑏𝑖𝑜𝑎𝑛𝑛𝑢𝑎𝑙 = 1000. (
𝑦𝑟𝑐𝑢𝑟

𝑦𝑟𝑓𝑢𝑙𝑙𝑑𝑒𝑣
) . 𝑏𝑖𝑜𝑓𝑢𝑙𝑙𝑑𝑒𝑣 (8) 
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where, 𝑏𝑖𝑜𝑎𝑛𝑛𝑢𝑎𝑙 is the amount of biomass a tree can accumulate in a single year (kg/ha), 𝑦𝑟𝑐𝑢𝑟 is 

the current age of the tree (years), 𝑦𝑟𝑓𝑢𝑙𝑙𝑑𝑒𝑣 is the number of years for the tree to reach full 

development, 𝑏𝑖𝑜𝑓𝑢𝑙𝑙𝑑𝑒𝑣 is the biomass of a fully developed tree stand for the specific tree species 

(tons/ha). Once the total growth in biomass in a year is reached, no more growth occurs until the 

following year when a new annual limit is calculated. Moreover, once a tree stand has reached its 

biomass limit for a year, the increase in plant biomass for a day is set to zero. 

SWAT limitations for simulating tree growth before maturity 

The equations and parameters described in the previous section represent the annual growth 

of a fully-developed tree in SWAT. SWAT allows the simulation of young trees through a planting 

operation in the model’s management file (.mgt). When a seedling is planted, the user has to define 

the age of the seedling, which is represented in the model by the parameter CURYR_MAT. The 

number of years required for the planted tree to transition from seedling to a fully-developed tree 

is defined in the model’s plant database by the parameter MAT_YRS. SWAT then limits the annual 

amount of biomass that the planted tree can accumulate until it reaches maturity (Eq.8). MAT_YRS 

is set to 30 years in the model’s plant database for evergreen forests (FRSE). This value is 

reasonable for pine trees, as the literature suggests (United States Department of Agriculture Forest 

Service, 1990). However, a limitation arises from the fact that the maximum LAI is adjusted in 

SWAT by considering the ratio between the current age of the tree (CURYR_MAT) and the number 

of years needed for the tree to reach full development (MAT_YRS) (Eq. 5). For instance, let us 

consider a pine seedling planted in the first year of simulation (CURYR_MAT=1) and requiring 30 

years to become a fully-developed tree (MAT_YRS=30), with maximum stand biomass of 200 

tons/ha (BMX_TREES=200). Under optimum conditions, there will be approximately 7 tons/ha of 

biomass accumulation each year at stand level, according to Eq. 8. This rate of growth can be 
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considered realistic for a pine tree, for example, as indicated by studies such as Samuelson et al. 

(2014). However, since the maximum LAI is reduced to 𝐿𝐴𝐼𝑚𝑥/30 (Eq. 5), the accumulated LAI 

on a given day (Eq. 5) becomes excessively small, which consequently delays the LAI 

development in SWAT. Fig 2 illustrates this for two cases. Case I shows annual biomass and LAI 

simulated in SWAT without a planting operation. In this case, LAI development and biomass 

accumulation are representative of a fully-developed tree. Consequently, model calibration against 

field observations of LAI and biomass of juvenile trees becomes a challenge under this scenario. 

Alternatively, case II exemplifies the situation described earlier, where trees are planted as 

seedlings in SWAT. It can be seen that stand-level biomass accumulation rate is reasonable with 

recently planted trees. However, LAI development is affected such that there is no LAI 

accumulation for the first 8 years, which can be mathematically understood through Eq. 5. In case 

II, LAI stays constant at the minimum LAI value, which is defined in SWAT’s plant database 

(ALAI_MIN) for mature trees. SWAT never allows LAI to drop below ALAI_MIN. Hence, SWAT’s 

ability to simultaneously simulate tree biomass accumulation and LAI development before 

maturity is limited. Calibrating LAI and biomass of young trees together in SWAT is, therefore, 

problematic. Annual maximum LAI could be calibrated individually by assigning MAT_YRS a 

value lower than 30 so that LAI development begins from the first year of simulation. However, if 

biomass was to be calibrated next, the simulated values would be excessively high for juvenile 

trees, since the ratio between CURYR_MAT and MAT_YRS would become larger in Eq. 8. This 

shortcoming in SWAT’s plant growth module challenges the model application in areas where 

trees are widely planted, such as the SE-US. 
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 Model setup and data collection 

SWAT requires spatially distributed data of topography, soil types, and land use/cover. 

Additionally, daily climate data is required to run the model. The complete set of climate variables 

required to drive the hydrological processes in SWAT is comprised of precipitation, maximum 

and minimum temperature, solar radiation, wind speed, and relative humidity. Table 2 shows the 

data used as input in the model as well as the data used to perform model calibration.  

As we had access to observed data from measurement plots, we were able to perform model 

calibration for annual maximum LAI and total annual biomass at each site. The datasets from long-

term productivity studies of loblolly pine (Gonzalez-Benecke et al., 2016) and slash pine 

(Gonzalez-Benecke et al., 2014b) were shared with us via personal communication and are listed 

in Table 2. At some sites, field observations represented experiments such as thinning and varied 

planting density. For such cases, we used data measurements referring to the control scenario only. 

The period covered by available measured-data slightly varied from site to site (Table 1). 

This study uses remotely sensed LAI estimates to derive model parameters controlling the 

optimal LAI development curve in SWAT and evaluate SWAT’s plausibility in simulating 

seasonal LAI. NASA’s MOD15A2H Version 6 Moderate Resolution Imaging Spectroradiometer 

(MODIS) combined Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation 

(FPAR) product (Myneni, 2015) is used as reference data. This product is a 4-day composite 

dataset with 500 meters pixel resolution. The algorithm automatically chooses the best pixel 

available from all the acquisitions of the Terra and Aqua sensors in a 4-days period. 

Similarly, remote-sensing estimates of ET were used to calibrate modeled ET on a monthly 

basis in SWAT. We use MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux product 

(Running, 2017), which is based on the Penman-Monteith framework. This dataset is an 8-day 
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composite produced at 500 meters of cell resolution. The 8-days ET estimates were aggregated 

into monthly time-step to be used as a benchmark during the model calibration process.  

We used MODIS estimates of LAI and ET from 2002 to 2018 at the sites SAGCD – AL 

and IMP – GA. At the sites IMPAC – FL and MIZE – FL, silvicultural rotations were implemented 

in 2009 and 2013, respectively. Because of the land cover change stemming from these rotations, 

we did not derive remote-sensed data after 2008 and 2012 at IMPAC – FL, and MIZE – FL, 

respectively. At all sites, remote-sensing time-series were derived from the Google Earth Engine 

platform (Gorelick et al., 2017) through a series of automated routines.  

The dataset listed in Table 2 was used to develop and setup four field-scale SWAT models 

using SWAT2012 (revision 664). Since the standard SWAT HRU definition provides no means 

for representing realistic field-scale management strategies (e.g., forest plots might spread across 

several HRUs), we employed the approach described by Marek et al. (2016) to delineate 

meaningful field-boundaries based on an area of interest (AOI). First, the AOI representing each 

loblolly pine plantation was delineated and later used as mask during the watershed delineation 

process within ArcSWAT. After artificial subbasins and tributaries were created based on the 

landscape topography, the longest reach was identified by using the field “shape_length” in the 

attribute table of the feature. The subbasin having the longest reach was then selected to be 

representative of the field area and the HRU’s were eventually created by assigning a single HRU 

to the subbasin. It is worth mentioning that ArcSWAT offers the user two options to determine the 

HRU distribution across the watershed area: assign a single HRU to each subbasin, or assign 

multiple HRU’s to each subbasin. When a single HRU per subbasin is assigned, the HRU is created 

based on the dominant land use class, soil type, and slope within each subbasin. When multiple 

HRU’s are assigned, they are created based on user-defined thresholds for land use, soil, and slope 



43 
 

classes. To delineate field-scale models, this research selected the dominant HRU option. The final 

product was a “watershed” having one subbasin and one HRU. To make sure that the area of the 

single subbasin and HRU matched exactly the area of the pine plantation fields, the following files 

had to be adjusted in the ArcSWAT project database (“ProjectName”.mdb file): “Basins”, “hrus” 

and “Watershed”. Last, a test run of each model was performed to verify if the area in the model 

output files .sub and .hru were representative of the real field areas. 

 Model parameterization 

Here we propose to implement an improved forest parameterization for loblolly and slash 

pine trees in SWAT. To that end, we included two new plant types in SWAT’s plant database: 

loblolly pine (LBPN) and slash pine (SLPN). Initially, we parameterized the new plant types with 

the default values representing the annual growth of evergreen forests in SWAT (FRSE). Next, we 

revised default parameter values in SWAT’s plant database and when necessary, modified them 

based on published literature, field observations, remote-sensing information, and expert 

judgment. The parameters included in the parameterization presented in this study were selected 

based on expert knowledge and the model’s functionalities (Neitsch et al., 2011). We selected key 

parameters representing tree growth and development in the model’s .hru, .dat, and .mgt files. A 

brief description of each plant-parameter included in the current study is given in Table S1 in the 

supplementary materials.    

The importance of the selected plant-related parameters in simulating LAI, biomass, and 

ET in SWAT was assessed through global sensitivity analysis and quantified based on p-values 

(p-value < 0.05 was assumed to indicate a parameter having a significant effect on a modeled 

process). We use the automated calibration software SWAT Calibration and Uncertainty Program 

(SWAT-CUP) (Abbaspour, 2015) to carry out the global sensitivity analysis and model calibration.  
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Model calibration 

The Sequential Uncertainty Fitting – SUFI-2 (Abbaspour et al., 2004) algorithm in SWAT-

CUP was used to perform automated model calibration within the range of values derived for each 

parameter during the parameterization phase. First, annual maximum LAI and total annual biomass 

were calibrated simultaneously against field measured data at each site. LAI and biomass were 

calibrated at the same time to avoid the model’s drawbacks described in section 2.2.3. We used 

King-Gupta Efficiency (KGE) (Gupta et al., 2009) as the objective function and assigned equal 

weights to each variable, which allowed us to equally emphasize LAI and biomass so that the 

model performance with respect to LAI did not degrade its performance relative to biomass. The 

period used to perform LAI and biomass calibration varied across the study sites. At SAGCD – 

AL, model calibration was performed from 2002-2010. At IMP – GA from 1999-2010, at IMPAC 

– FL from 1987-2008, and at MIZE – FL from 2001-2012. For each model, a 3 years warm-up 

period was used to accurately initialize conditions such as antecedent soil moisture in the model 

and the trees were planted as seedlings during this period to avoid bare soil conditions. 

Next, ET calibration was carried out separately at each site by running iterations of 500 

simulations. As described earlier, we used MODIS 8-days ET estimates to calibrate ET in SWAT. 

For ET calibration, we used the percentage bias (PBIAS) as the objective function in SUFI-2 to 

avoid excessive over or underestimation of simulated ET. We did not opt for objective functions 

such as NSE and KGE since they are sensitive to peaks and MODIS ET estimates are very noisy, 

often showing multiple peaks during the year. As a result, a good match between simulated and 

observed ET based on NSE and/or KGE would be unlikely and could yield unrealistic parameter 

values. The calibration periods were 2002-2018 at SAGCD – AL and IMP –GA, 2002-2008 at 

IMPAC – FL, and 2002-2012 at MIZE – FL.  



45 
 

Model performances were assessed by graphical analyses of simulated versus observed 

plots, and the statistical metrics coefficient of determination (R2), PBIAS, and the Root Mean 

Square Error (RMSE). These statistical metrics are commonly used to evaluate model performance 

in simulating variables such as LAI, biomass, and ET (Alemayehu et al., 2017; Strauch and Volk, 

2013; Yang et al., 2018; Yang and Zhang, 2016). 

Impacts of improved forest dynamics on water fluxes 

The changes promoted by the improved forest parameterization on SWAT’s water balance 

computations were assessed by comparing the mean annual water budget simulated with the 

default and improved models. Model outputs from the HRU (.hru) and the standard output 

summary (output.std) files were used to analyze the differences in simulated green and blue water 

fluxes under the default and improved parameterization scenarios. We follow the approach 

described by Naderi (2020) to quantify blue waters in SWAT. Total blue water is the sum of 

surface runoff (SURQ), lateral flow (LATQ), and baseflow (GW_Q). Subsurface blue water (or 

aquifer storage) is defined as total aquifer recharge minus baseflow (GW_RCHG) - (GW_Q).  

RESULTS 

Model parameterization 

The first step in improving SWAT’s skills in simulating plant growth and dynamics 

involved deriving physically-meaningful parameter values. Parameters representing processes in 

process-based models can often be measured through field experiments or derived via physically-

based equations. Table 3 shows the parameters modified by our parameterization and the 

approaches used. 

Some parameters do not explicitly describe a physically-based process in SWAT, but rather 

a mathematical process-level understanding. For such cases, we found relationships between 
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observed data and SWAT’s equations to derive realistic values for these parameters. Fig. 3 

illustrates such a case for the parameterization of the LAI curve in SWAT. Based on MODIS 4-

days LAI estimates, we parameterized the seasonal LAI dynamics in SWAT by tweaking 

parameters controlling the length of the growing season (HEAT_UNITS), the first and second 

points in the optimum LAI development curve (FRGRW1- LAIMX1, FRGRW2- LAIMX2), and the 

fraction of the growing season when LAI starts to decline (DLAI). Another similar example is 

EPCO, which regulates the soil depth used to meet the plant’s water uptake demand in SWAT. 

The default value for EPCO is 0.95 in SWAT, which means 50% of the water uptake occurs in the 

upper 6% of the root zone (Neitsch et al., 2011), based on the relationship that assumes that root 

density is greatest near the soil surface and decreases with depth. We used field-measured values 

of rooting depth and root mass for loblolly and slash pine to develop a relationship and fit it to 

SWAT’s water uptake equation. This allowed us to derive more realistic and species-specific 

values for EPCO (Table 3). EPCO’s absolute range goes from 0.01 to 1, and as it approaches to 

one the model allows more of the water uptake demand to be met by deep soil layers (Arnold et 

al., 2011). Since the climate within the natural range of slash pine is wet with an average rainfall 

of 1270 mm/year (Lohrey and Kossuth, 1990), the rooting depth of slash pine is usually shallower 

compared to loblolly pine. The latter can help to interpret the smaller value of EPCO derived for 

slash pine in comparison to loblolly pine. 

The parameters listed under expert knowledge in Table 3 had their values derived through 

personal communication or based on the authors’ judgment. For the parameters revised based on 

published literature, we derived a range of values, since we usually found multiple sources for 

each parameter. One special case is BIO_LEAF (the amount of plant biomass converted to residue 

during dormancy), for which we calculated the fraction of leaf biomass corresponding to 
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aboveground biomass using field measurements. This fraction varied across the analyzed sites and 

ranged from 8 to 12%. Although this did not tell us the value of BIO_LEAF, it indicated that its 

value should not be higher than 12%, since loblolly and slash pine are evergreen trees and 

consequently do not lose all of their leaves during the year. We then further refined this range 

through literature review (Table 3). The only parameter that had its value directly derived from 

field measurements was BMX_TREES (the maximum biomass of a mature forest stand). Based on 

the available field-measured data, we verified that trees stopped accumulating significant amounts 

of biomass once a total biomass value of approximately 180 tons/ha was reached. Finally, we 

derived values for the maximum potential leaf area index (BLAI) and minimum leaf area index 

(ALAI_MIN) using remote-sensed LAI data across all sites. For each year of retrieved data, we 

were able to record the maximum and minimum LAI for loblolly and slash pine at each study site. 

This allowed us to define a range of maximum and minimum LAI for loblolly and slash pine in 

SWAT (Table 3).  

The importance of each parameter listed in Table 3 in modeling forest growth in SWAT 

was assessed through global sensitivity analysis using the calibration software SWAT-CUP. The 

p-values are shown in Tables S1-S4 in the supplementary materials. It can be noticed in Table 3 

that several parameters in SWAT’s plant database did not accurately represent loblolly pine and 

slash pine processes with the default model settings. We can highlight parameters such as BLAI, 

ALAI_MIN, BIO_E, BIO_LEAF, and GSI, all of which showed significant impacts on processes 

such as LAI development, biomass accumulation, and evapotranspiration (Tables S1-S4 in the 

supplementary materials). 
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Modeling young trees in SWAT 

The current study simulates the growth of young trees, with ages ranging from 3 to 6 years 

old at the beginning of the simulation period. To realistically model juvenile trees in SWAT, we 

planted trees as a seedling in SWAT’s management file. Whenever a planting operation is 

initialized in the model, the user is forced to insert a value for the parameter CURYR_MAT, which 

is defined as the age of seedling in SWAT’s input/output documentation (Arnold et al., 2010). As 

described in section 2.2.3., the parameters in SWAT’s plant database represent the annual growth 

of a fully-developed tree. The model’s limitation in simulating the growth of young trees 

challenges multivariable calibration of LAI and biomass. Since biomass accumulation in SWAT 

is a function of the radiant energy absorbed by the plant canopy and its efficiency in converting 

radiation into biomass (Equations (7)), tree biomass depends on LAI simulation (Arnold et al., 

2011). Here, we used an alternative approach to find a balance between calibrated LAI and biomass 

for planted trees. The parameter CURYR_MAT was assigned a fixed value of 1 year for all study 

sites, while the number of years required for the tree to reach full development (MAT_YRS) was 

calibrated within a defined range of 3-5 years old (Table 3). Based upon personal communication 

with professionals of the tree nursery industry, 3 to 5 years was defined as a reasonable time needed 

for loblolly and slash pine trees to transition from seedling to a sapling. In other words, instead of 

assigning to MAT_YRS a value portraying the annual growth of a fully-develop tree, we forced 

SWAT to transition the planted trees from seedling to a sapling.  

SWAT calibration of annual maximum LAI and annual total biomass  

After SWAT parameterization, iterations of 1,000 model runs were performed in the 

software SWAT-CUP to match simulated annual maximum LAI (LAImax,yr) and annual total 

biomass (BIOtot,yr) with the respective field observations at each site.  
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The temporal variability of observed and simulated LAImax,yr as well as the models’ 

performances are shown in Fig.4. The improved parameterization yielded better model 

performance for all rating metrics at the IMPAC–FL site only. For all other sites, the improved 

model parameterization performed poorer than the default parameterization for at least one of the 

selected statistical metrics. Overall, it is possible to notice that the improved parameterization 

reduced the model overestimation of LAImax,yr for loblolly pine trees and the underestimation for 

slash pine (see PBIAS values in Table at the bottom of Fig. 4). The only exception was the SAGCD–

AL site, where the improved parameterization further increased the overestimation of LAImax,yr for 

loblolly pine. However, the temporal pattern of observed LAImax,yr was better explained with the 

improved parameterization at SAGCD-AL, as evidenced by the increase in R2 from 0.03 to 0.51.  

Clearly, with the improved parameterization, the modeled BIOtot,yr better matched the 

observations across all sites (Fig. 5). With the default models, BIOtot,yr was underestimated more 

than 70% at all sites, with the highest underestimation found at IMPAC–FL, where SWAT 

underestimated the observed total biomass by 85%. In the simulations with the improved models, 

BIOtot,yr underestimation decreased to values as low as 3.7% at MIZE – FL and turned to 22% of 

overestimation at SAGCD–AL. At SAGCD–AL, the improved model failed to capture the 

observed total biomass at the beginning of the simulation period. During the first year of 

simulation, SWAT predicted 34 tons/ha of biomass accumulation, which is 90% higher than the 

observed value for this year. This can be attributed to the tree’s fast transition from seedling to a 

sapling in the model since the parameter MAT_YRS received a calibrated value of 3.3 years at 

SAGCD–AL (Table 4). This issue could be fixed by increasing the value of MAT_YRS to slow 

down biomass accumulation during the initial growth stages. However, this solution would delay 

LAI development, which would lead to a significant underestimation of LAI at this site.  
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The new parameterization also led to significant improvements in temporal estimates at all 

sites (Fig. 5). In the simulations with the improved parameterization, the simulated BIOtot,yr better 

fitted the observations, as demonstrated by R2 values higher than 0.95 at all sites. With the default 

parameterization, SWAT was not able to achieve R2 values higher than 0.51. The smaller RMSE 

values achieved under the improved parameterization further denote SWAT’s enhancement in 

replicating observed total annual biomass across all study sites. Considering the fact that the 

average observed BIOtot,yr ranged from 56 to 133 tons/ha across the study sites, the RMSE values 

ranging from 62 to 127 tons/ha obtained with the default models indicate serious shortcomings. 

On the contrary, the improved models lowered RMSE to the 8.6-23 tons/ha range. 

It can be noticed in Fig. 5 that the simulated biomass with the improved model 

parameterization stayed constant once it reached 200 tons/ha at the IMPAC–FL site. This 

happened because SWAT reached the maximum allowed biomass for a mature tree at this site. 

This behavior was managed in the model by calibrating the parameter BMX_TREES (Table 4). In 

reality, the biomass accumulation does not stay perfectly constant once a tree reaches its maturity. 

Rather, the growing process slows down and biomass accumulation diminishes. However, there is 

no mechanism capable of altering the growth rate over the simulation period in SWAT. 

Alternatively, we constrained BMX_TREES to match the biomass observations as close as 

possible.  

Model performance in simulating monthly LAI 

Fig. 6 shows simulated monthly LAI at each site compared to MODIS LAI. Since the 

MODIS product used by the current study does not have data availability before July of 2002, the 

period displayed in Fig. 6 does not exactly reflect the period shown in Fig. 4. Particularly, the 
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initial growth stages after planting could not be captured by remotely sensed LAI across the study 

sites. 

Overall, it can be seen that monthly LAI estimates with the new model parameterization 

matched MODIS LAI better than the default parameterization (Fig. 6). The improved model 

parameterization increased R2 values from near zero to values as high as 0.52, with the highest 

improvement found at IMP–GA. With the default plant database, SWAT systematically 

overestimated LAI for loblolly pine. In the simulation with the new model parameterization, the 

overestimation of LAI decreased from 73% to 4% at the IMPAC–FL site. At the SAGCD – AL, 

and IMP – GA sites, LAI overestimations of 7.5% and 48% turned to 27% and 19% of 

underestimation, respectively, under the improved model parameterization. The underestimation 

at IMP–GA with the improved model parameterization comes from SWAT’s inability to capture 

MODIS peaks in 2004, 2008, and 2017. At SAGCD–AL, SWAT failed to capture the LAI 

dynamics in the beginning of the growing season several times over the simulation period, leading 

to a substantial underestimation of monthly LAI under the improved parameterization. MODIS 

estimated LAI began to increase around February, whilst SWAT simulated LAI under the 

improved parameterization stayed constant until April at SAGCD-AL. The former may be related 

to the understory greening captured by MODIS derived data. It might also indicate that the 

parameterization presented here can be further improved. At the slash pine site MIZE–FL, SWAT 

underestimated LAI by 17% with default parameterization. With the improved parameterization, 

SWAT overestimated LAI by only 8%. This is mainly due to the adjustment of the parameter 

controlling the maximum LAI in SWAT, which was increased from 5 m2/m2 to 7 m2/m2. Oddly, 

the LAI curves simulated under the default parameterization showed an unrealistic shape at all 

sites (Fig. 6). In some cases, LAI appeared to decline to a random value at which it stayed constant 
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before declining to its minimum. In other cases, LAI declined to a certain value and suddenly went 

back to the growing cycle without dropping to the minimum value. This can be considered a 

structural limitation of the default models and may also be related to the poorly defined LAI shape 

parameters after a planting operation in SWAT. 

In order to enhance SWAT’s performance in simulating LAI, several parameters were 

modified in the model’s plant database (crop.dat) and management file (.mgt). Initially, parameters 

responsible for the shape of the LAI curve had their values derived from MODIS, as discussed in 

section 2.4 and illustrated by Fig. 3. The calibrated values of parameters describing LAI 

development are shown in Table 4 and can help to understand the different LAI dynamics across 

the study sites. It can be noticed from Figures 6 and S1 that the maximum LAI value reached at 

SAGCD–AL is higher compared to the other loblolly pine sites. The latter is due to a larger 

calibrated value for the parameter BLAI (Table 4). SWAT predicted LAI starts declining around 

early September at IMP–GA and SAGCD–AL sites, and early October at the IMPAC–FL site (Fig. 

S1). As shown in Table 4, the calibrated value of DLAI is higher at IMPAC–FL compared to IMP–

GA and SAGCD–AL, which explains the late LAI decline in Florida. For the slash pine site MIZE–

FL, predicted LAI development was significantly different compared to the loblolly pine sites (Fig. 

S1). The simulated growth of slash pine trees was faster, with LAI beginning to increase in 

February and reaching its maximum value in April. The late LAI decline (November) predicted 

for slash pine at the MIZE–FL site is due to a high value of DLAI (Table 4).  

ET calibration 

SWAT was able to capture the interannual and seasonal variability of ET reasonably well 

at all sites with the default and improved parameterizations (Fig. 7). However, in the simulations 

with the default parameterization, SWAT significantly underestimated ET compared to MODIS 
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estimates. At the SAGCD–AL site, we compared SWAT daily ET estimates against 8-days 

MODIS ET from 2001 to 2018. The seasonal trend could not be accurately analyzed at this site 

because approximately 20% of the retrieved MODIS data was missing (162 data points). As a 

consequence, a continuous monthly time series for the period 2001-2018 could not be obtained at 

SAGCD – AL. Based on the assumption that the 8-days MODIS ET estimates are evenly 

distributed over the 8-days period, we derived daily ET estimates from the 8-days MODIS ET 

algorithm and compared these data against the respective daily values predicted by SWAT. The 

average daily ET simulated by the default model was 1.52 ± 1 mm in the period 2001-2018. 

Compared to MODIS estimates, it represented 13% underestimation. The average daily ET 

estimated by MODIS in this period was 1.76 ± 1.17 mm. With the improved model 

parameterization, simulated daily ET increased to 1.80 ± 1.35 mm. Compared to MODIS, the 

improved parameterization overestimated ET by only 3% in the period 2001-2018 at SAGCD – 

AL. 

At the IMP–GA site, the default model parameterization underestimated monthly ET by 

15.5% compared to MODIS in the period 2001-2018. The average monthly ET estimated by the 

default model was 50 ± 27 mm, while the average monthly ET estimated by MODIS was 60 ± 30 

mm. The improved model parameterization increased monthly ET estimates of 60 ± 44 mm, or 

0.48% higher than MODIS estimates. It is possible to notice from Fig. 7 that SWAT simulated 

some ET peaks that were not observed by MODIS estimates at this site, especially in 2008 and 

2011. Rainfall in 2008 was 15% higher (1,476 mm) than the average for the period 2001-2018, 

which combined to 17% of missing data from MODIS during 2008 could explain the absence of a 

higher MODIS peak for this year. As for 2011, rainfall was below average and MODIS missing 

data accounted for only 10%. However, most of the MODIS missing data in 2011 occurred in July, 
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which may explain the surprisingly low ET estimated by MODIS during the summer. It is worth 

mentioning that there are uncertainties related to the MODIS ET algorithm. Mu et al. (2013) 

reported 24% mean absolute error between MODIS ET values and observations across 46 eddy 

flux towers. 

At the IMPAC – FL site, the default parameterization led to substantial underestimation of 

ET from 2001-2008, especially in 2005, when the default model dramatically underestimated ET 

during summer months. The average monthly ET estimated under the default parameterization was 

53.6 ± 25.5 mm during 2001-2008, or 18.5% lower than MODIS estimates of 65.86 ± 27.66 mm. 

Under the improved parameterization, ET predicted by SWAT increased to 60 ± 31.8 mm, which 

lowered ET underestimation to 8.7% (Table 7). Likewise, at the MIZE – FL site, monthly ET 

simulated by the default model was significantly underestimated compared to MODIS. With the 

default parameterization, SWAT underestimated ET by 43%. The average monthly ET estimated 

with the default plant database was 53 ± 25.2 mm from 2001 to 2012, which largely differed from 

the MODIS estimates of 93 ± 38.3 mm. With the improved parameterization, average monthly ET 

estimates raised to 75.3 ± 31.8 mm, which decreased SWAT’s underestimation of ET to 19.2% in 

comparison to MODIS estimates (Table 7). Although 19.2% of underestimation might seem high, 

the average annual ET simulated by the improved model (893 ± 56 mm) was in good accordance 

with the values reported by McLaughlin et al. (2013). The authors compiled a wide range of studies 

investigating ET in the Southeastern Coastal Plain and revealed an ET range of 754-1168 mm/year 

at slash pine plantations in Florida.   

Impacts of improved forest dynamics on water fluxes 

Fig. 8 summarizes the mean annual water balance at each study site, under default and 

improved model parameterizations. Overall, it can be seen that ET not only dominated the water 
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budget at all sites but also was the component that changed the most under the new model 

parameterization. Unfortunately, we did not have observations of surface runoff, lateral flow, or 

baseflow at any site to assess if the improved forest parameterization changed SWAT’s 

hydrological predictions in the right or wrong direction. However, the enhanced model’s 

performance in simulating ET under the improved parameterization might indicate that other water 

balance components improved as well. Foremost, largely different water budgets predicted with 

the two parameterization schemes (Fig. 8 and Tables 5) depicted a major role played by forests in 

SWAT’s hydrological computations. 

At SAGCD–AL, ET corresponded to 43% of the water balance in the default model (616 

mm), followed by 31% of baseflow (446 mm) and 26% of surface runoff (385 mm). ET increased 

18% in the improved model scenario, which altered the water balance configuration to 51% of ET 

(748 mm), 26% of baseflow (375 mm), and 23% of surface runoff (329 mm) (Fig. 8 and Table 5). 

The high surface runoff rates simulated at SAGCD–AL can be explained by the hydrological soil 

group (HSG) at this site, which is D. At IMP–GA, as a result of 15% increase in ET with the 

improved parameterization, baseflow was reduced from 368 mm (or 30% of the water balance) to 

295 mm (or 24% of the water balance), while surface runoff rates decreased from 200 mm/year 

(16% of the water balance) to 170 mm/year (14% of the water balance) (Fig 8 and Table 5). Similar 

trends were found at IMPAC–FL, but with the main difference observed in subsurface fluxes. With 

default SWAT forest parameterization, ET represented 55.5% of the water budget (670 mm), while 

baseflow and lateral flow represented 43% (516 mm) and 0.2% (12 mm), respectively. Under the 

improved forest parameterization, ET/P increased to 61% (ET=744 mm), while the  ratio of 

baseflow to precipitation dropped to 37% (448 mm) and lateral flow remained unchanged. Surface 

runoff was insignificant at this site. The negligible surface runoff at IMPAC–FL is likely due the 



56 
 

site’s HSG being A. At IMPAC–FL, the soil texture consists of 95% of sand. The most dramatic 

effect of improved forest parameterization on water resources was found at the slash pine site 

MIZE–FL. In the simulation with the default SWAT forest parameterization, 54% of the annual 

precipitation was lost as ET (637 mm), 39% contributed to baseflow (456 mm), 7% contributed to 

surface flow (74 mm), and 1% contributed to subsurface flow (13 mm). The improved model 

parameterization altered this budget such that 75% of the annual rainfall was lost to ET (894 mm), 

19% contributed to baseflow (231 mm), 5% contributed to surface flow (56.61 mm), and 1% 

contributed to subsurface flow (11 mm) (Fig. 8 and Table 5). Baseflow was impacted more than 

any other water balance component with a reduction of 50%. 

Table 5 shows in more detail the effect of improved forest parameterization on water 

fluxes. Overall, increases in ET from 10 to 30% across all sites reduced surface water (SURQ) in 

6-33% and groundwater storage (GW_RCHG minus GW_Q) in 7-26%.  

Fig. 9 illustrates the difference in groundwater recharge simulated with the default and 

improved models. The sites SAGCD–AL, IMP–GA, and IMPAC–FL showed similar trends, with 

recharge reductions of 75 mm (15%), 76 mm (18%), and 71 mm (13%), respectively, in the 

simulations with the improved model (Table 5). IMPAC – FL exhibited the highest groundwater 

recharge rate across all sites (496 mm/year). Considering the site’s HSG A, this result is not 

surprising. The lowest groundwater recharge rate occurred at MIZE – FL, as expected since slash 

pine trees showed the highest water loss via ET amongst all sites.  

DISCUSSION 

 Modeling forest dynamics in SWAT 

Many of the parameters in SWAT’s plant database were originally parameterized based on 

observations from annual crops. However, the differences in growth rate, size, water and nutrient 
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demands, biomass accumulation, and energy exchange, for example, highly differ from crops to 

trees. Thus, our improved parameterization aimed to enable SWAT to reasonably simulate the 

growth and dynamics of two widely cultivated tree species in the SE-US and serve as a starting 

point for future modeling studies in this region. We acknowledge that some of the parameters 

calibrated here are highly site-specific (e.g., BMX_TREES) and may not be directly incorporated 

into other modeling studies. However, given the wide geographical and climatological range of 

sites considered in this study, the parameterization presented here should be useful for large parts 

of the modeling community. 

Although SWAT presented a poor performance in simulating LAImax,yr even with an 

improved parameterization, it can be seen as a necessary tradeoff to ensure accurate simulation of 

biomass (section 2.2.3). In the simulations with the improved model parameterization, the 

parameter values assigned to MAT_YRS and CURYR_MAT described tree growth from seedling to 

a sapling. As shown in Table 4, the calibrated values of MAT_YRS ranged from 2 to 4. 

Consequently, the transition from seedling to a fully-developed tree (in this case a sapling) was 

quite fast, which explains the model overestimation of LAImax,yr for all loblolly pine sites (Table 

4). The default models overestimated LAImax,yr because of an excessively high value assigned to 

the parameter controlling the maximum potential leaf area index (BLAI). By default, BLAI has a 

value of 5 m2/m2 in SWAT, which is too high for loblolly pine trees, as supported by the field 

observations (Fig. 4). Iiames et al. (2018) also reported 5 m2/m2 as an unrealistically large value 

to represent maximum LAI for loblolly pine trees. In contrast, observed LAImax,yr for slash pine 

reached values up to 8 m2/m2, which lead to bigger underestimation in the default forest 

parameterization compared to the improved parameterization. With the new parameterization, the 
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calibrated BLAI value for MIZE–FL increased from 5 m2/m2 to 7 m2/m2, which approximated the 

simulated LAImax,yr to the observations and consequently reduced model underestimation. 

The main reason behind SWAT’s poor performance in simulating tree biomass with the 

default model parameterization is an unrealistically high value for the parameter BIO_LEAF. This 

parameter controls the fraction of the tree’s total biomass converted to residue during dormancy. 

By default, SWAT assigns 30% of the plant’s biomass as residue to the ground every year. Yang 

and Zhang (2016) also noticed this issue in their study. Fig. 5 illustrates this shortcoming. It is 

possible to see that the default models could not develop a growing trend over the simulation 

period at all sites. This is because 30% of the total tree biomass was assigned as residue to the 

forest floor every year, impeding reasonable biomass accumulation. 

Based on field measurements of aboveground biomass and foliage biomass, we could 

determine a more realistic fraction of biomass annually converted to residue across all sites (Tables 

3 and 4). An unrealistically high fraction of biomass converted to residue every year can also 

threaten SWAT’s water quality applications in highly forested ecosystems. For instance, SWAT 

considers three organic nitrogen pools to model the nitrogen cycle in the soil (Neitsch et al., 2011). 

The fresh nitrogen pool is associated with plant residue and is a direct source of nitrate (NO3) 

through mineralization. As a consequence, the higher the amount of residue on the ground the 

higher the NO3 available to be transported to water bodies. In our study, the amount of residue on 

the forest floor was higher under the default model parameterization compared to the improved 

parameterization at all sites (Tables S6-S9 under supplementary materials). More importantly, the 

simulated annual mineralization of fresh organic nitrogen was indeed higher in the simulations 

with the default models. At SAGCD–AL, the mineralization of fresh organic residue was 4.58 

kg/ha.yr under the default forest parameterization and 2.28 kg/ha.yr with the improved 
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parameterization. At IMPAC–FL, IMP–GA, and MIZE–FL the reductions from default to 

improved models were 9.37 to 3.96 kg/ha.yr, 7.84 to 2.5 kg/ha.yr, and 9.61 to 1.77 kg/ha.yr, 

respectively. Unfortunately, we did not have observations to calibrate parameters related to 

mineralization and nitrification rates in SWAT. Although this is beyond the scope of this study 

and must be addressed in a future effort, it is interesting to notice how the characterization of forest 

dynamics can affect the soil nutrient cycling in hydrological models. Similarly, the amount of 

residue on soil surface also affects the sediment yield in SWAT under the Universal Soil Loss 

Equation (USLE) (Williams, 1995) since the USLE’s cover and management factor is computed 

as a function of plant residue (Neitsch et al., 2011).  

Besides interfering with the nutrient cycling in SWAT, biomass also affects the soil 

evaporation in the model. The soil evaporation is calculated in SWAT as 

𝐸𝑠 = 𝐸0
′ . 𝑒−5𝑋10−5.𝐶𝑉 (10) 

where E0 is the potential ET adjusted for canopy interception, and CV is the aboveground biomass 

and residue (Neitsch et al., 2011). Hence, biomass is not only an important variable describing tree 

growth in SWAT but also a player in the model’s nitrogen cycling and soil water evaporation. 

With potential impacts on hydrology and water quality, biomass should not be overlooked in 

hydrological modeling applications, especially in forested ecosystems. Our findings point to the 

necessity of revising model parameters related to forest growth and dynamics when applying 

SWAT in forestlands and highlight the benefits of our improved model parameterization. 

Monthly LAI 

In SWAT, LAI affects the simulation of processes such as canopy storage, canopy 

resistance in the Penman-Monteith equation, biomass accumulation, and management operations 
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(Neitsch et al., 2011). Therefore, accurate simulation of LAI dynamics is key to realistically 

simulate other hydrological processes in SWAT and increase the model’s reliability. Despite the 

uncertainties inherent to the MODIS LAI algorithm, remotely sensed LAI proved to be a useful 

source of data to derive species-specific phenological information and stand characteristics. A 

combined set of field measurements and remote sensing data helped us to improve SWAT’s 

capabilities in simulating LAI across the SE-US. The results achieved in this study consistently 

demonstrate SWAT’s skills in predicting LAI dynamics under the improved model 

parameterization. 

The LAI seasonality predicted by all models showed good agreement with MODIS 

estimates and findings from forestry studies. For instance, Wightman et al. (2016) found peaks of 

LAI occurring at the end of July in Northern Florida. The authors also reported peak values of LAI 

ranging from 2-3.6 m2/m2 in the period 2012-2013. The magnitude of maximum LAI reported by 

the authors is similar to the values predicted in the current study (Fig. 6), although the simulated 

maximum LAI is usually attained at the end of August. The divergent timing of maximum LAI 

may be due to natural variability, site’s management conditions, or annual variation associated 

with climatic variability between our study site and that of Wightman et al. (2016). Another reason 

could be the uncertainties associated with MODIS LAI estimates, which might have delayed the 

LAI peak during the parameterization stage. Samuelson et al. (2017) reported peak LAI in late 

August or early September for loblolly pine fields in GA. The authors also found peaks of LAI 

ranging from 2 to 3.2 m2/m2. Both the timing of LAI peaks  and the magnitude are in good 

agreement with the results found by the present study in Georgia (Figure 6). 

The maximum predicted LAI for slash pine ranged from 4.2 to 5.5 m2/m2. Bracho et al. 

(2012) reported LAI peak of 7 m2/m2 for slash pine in Florida, seven years after planting. Although 
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the calibrated BLAI value for slash pine was 7 m2/m2 (Table 4), this value was never reached over 

the simulation period. This is because LAI growth stops once the number of needed heat units is 

achieved in SWAT. Since slash pine trees accumulated the required number of heat units before 

reaching the maximum LAI, the value assigned to BLAI was not reached. In case a larger PHU 

value was inserted, the beginning of the growing season would be delayed and consequently, the 

agreement between simulated monthly LAI and MODIS estimates would deteriorate. It is possible 

to see in Fig 6. that the seasonal variability in MODIS LAI is especially high for slash pine (MIZE 

– FL). This raises uncertainties concerning our model calibration for slash pine, particularly 

regarding to the length of the growing season.  

Modeling ET 

The model parameterization presented in this study remarkably increased the precipitation 

lost as ET at all study sites. As a result, the consistent model underestimation of ET produced by 

the default parameterization was mitigated and better matched MODIS ET estimates under the 

improved model parameterization. Studies such as Yang et al. (2018) also found the default SWAT 

model to significantly underestimate ET in forested ecosystems. Although LAI and biomass affect 

ET estimates in SWAT (Eq. 2 and 10), we had to further calibrate some ET related parameters to 

account for variation among tree species and climate conditions (Table 4). 

Overall, the maximum stomatal conductance (GSI) revealed to be the most sensitive 

parameter for ET across all sites (Tables S1-S4 in the supplementary materials). The calibrated 

values of GSI ranged from 0.006 to 0.011 m/s, significantly higher than the default value of 0.002 

m/s. The extremely low default value for GSI could be one major reason behind SWAT’s poor 

performance in capturing the magnitude of ET estimates with the default plant database. 
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Not surprisingly, the average annual ET at MIZE–FL (893 ± 56 mm) exceeded all other 

sites. This was expected given that the simulated LAI at MIZE–FL was substantially larger 

compared to the other sites. IMP–GA and IMPAC–FL exhibited similar average annual ET values, 

734 ± 77 mm and 744 ± 68 mm, respectively, likely because of the similarities in annual rainfalls 

(Table 1). Despite receiving the highest amount of annual precipitation across all sites, SAGCD–

AL did not show the highest ET losses. At this site, the simulated average annual ET from 2001-

2018 was 737 ± 67 mm. This could be related to the soil type at SAGCD – AL, which is prone to 

generate high surface runoff rates and produce a quick response to rainfall. Another reason could 

be the low soil evaporation at this site. As discussed earlier, biomass was overestimated by 22% 

at SAGCD – AL. Because more aboveground biomass means less soil evaporation (Eq. 10), the 

evaporation demand at SAGCD – AL was essentially met by canopy storage. It could explain the 

high calibrated value for maximum canopy storage (CANMX) at this site (Table 4), as well as the 

high sensitivity of ET to this parameter (Table S3).  

Impacts of improved forest dynamics on hydrology  

Water fluxes such as surface runoff (SURQ), percolation (PERC), groundwater recharge 

(GW_RCHG), and baseflow (GW_Q) significantly decreased under the improved model 

parameterization (Table 5). In general, the most significant changes occurred at the MIZE–FL site. 

This is not surprising, considering that simulated LAI and ET losses for slash pine were higher 

compared to the other study sites. The reductions in water yield achieved with the improved forest 

parameterization across all sites should not come as surprise given that ET/P significantly 

increased. The higher amounts of water lost to the atmosphere as vapor under the improved 

parameterization scenario decreased the outflow from the study sites compared to the default forest 

parameterization. 
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Our results consistently showed the effects of forests on SWAT’s water budget and 

hydrological fluxes. ET is usually the main component of the water budget, with fractions as high 

as 90% of the rainfall in forested ecosystems (McLaughlin et al., 2013). Consequently, small 

changes in ET can lead to major impacts on other water balance components. If forest dynamics 

are not considered in hydrological modeling studies conducted in highly forested areas, the results 

could be flawed. Land use/land cover change studies considering the impacts of afforestation 

and/or deforestation on water resources, for example, should accurately simulate forest dynamics 

before drawing scenarios. In this context, our study holds the promise to contribute to future 

hydrological modeling studies in forestlands. 

  CONCLUSIONS 

Given the extent of planted loblolly pine and slash pine in the SE-US, it is fundamental to 

consider the forest growth and dynamics in hydrological modeling studies in this region. Here we 

examined SWAT’s capabilities in simulating key forest processes at four pine plantations in the 

SE-US. Our results showed that under the default forest parameterization, SWAT cannot 

accurately represent forest dynamics due to unrealistic parameter values in the model’s plant 

database. Furthermore, SWAT showed limitations to simulate juvenile trees. Under the default 

scenario, annual and seasonal LAI of loblolly pine trees were highly overestimated by SWAT. In 

contrast, SWAT underestimated LAI for slash pine trees. Additionally, the default model 

parameterization of forests largely underestimated annual biomass and seasonal ET across all 

study sites regardless of the tree species. 

Our improved parameterization of SWAT’s plant database proved to significantly enhance 

forest modeling processes such as LAI, biomass, and ET. By revising SWAT’s default plant 

database parameters and altering them to accurately represent loblolly and slash pine, we were 
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able to initialize the model under the right conditions. This led to a satisfactory calibration of LAI 

and biomass for planted trees, although tradeoffs were unavoidable given the model’s current 

structure. By using remote-sensing MODIS LAI estimates we were able to verify that our 

parameterization reasonably described LAI seasonality in the SE-US. Likewise, by further refining 

ET related parameters, we achieved good agreements between SWAT simulated ET and MODIS 

ET estimates. Simulated biomass improved tremendously with the improved model 

parameterization and closely matched field observations at all sites.  

Our parameterization translated into changes in the simulated water budget, with high 

impacts on soil water content, surface, and subsurface fluxes. Overall, the new parameterization 

decreased simulated surface runoff and baseflow at all sites. The extent to which the improved 

forest parameterization affected hydrological processes in SWAT suggested that forest dynamics 

should be considered before conducting any model application in forested ecosystems. 

Remote-sensed data, such as MODIS, revealed to be a useful reference to derive species-

specific parameter values and test the model’s plausibility in simulating LAI and ET processes. 

Besides being freely and readily available, MODIS data has global spatial coverage and high 

temporal resolutions. Since phenological observations and stand’s characteristics are rarely 

available at high spatial resolutions, remote-sensing data can be a good alternative to test our 

proposed parameterization in larger areas, such as watersheds. 

Our study can help to improve hydrological modeling efforts in forested watersheds. In a 

subsequent study, we intend to extend our field-scale effort to the watershed-scale and test our 

parameterization with long-term streamflow records. We expect that by demonstrating SWAT’s 

capabilities in simulating slash and loblolly pine and its impacts on hydrology, this study opens 

precedents to other researchers to account for forest dynamics in hydrological modeling studies. 
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We acknowledge that the results reached here might have been different if we were using another 

process-based watershed model. However, most of the process-based watershed models require 

similar input data and are based on almost the same physical principles. With this in mind, the 

results should be similar to what was found in this study and our findings should be applicable to 

a wide range of models. 

FIGURES 

 

Figure 1. Spatial distribution and location of the study-sites comprised of four pine plantation fields located in 

Alabama, Georgia, and Florida. Red circles represent loblolly pine sites while the blue square represents the slash 

pine site. 
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Figure 2. SWAT limitations in simulating tree growth before maturity. Case I: Monthly LAI and monthly total 

biomass simulated as fully developed trees. Case II: Monthly LAI and monthly total biomass simulated through a 

planting operation. Note that in case II LAI takes several years to start growing beyond the pre-defined minimum 

leaf area index value.  

 

 

Figure 3. Parameterization of LAI development shape in SWAT. Model parameters regulating the shape of the optimal 

leaf area index development curve were derived based on remotely sensed LAI derived from MODIS. 

 



67 
 

 

Figure 4. Simulated versus field-measured annual maximum LAI under default and improved model 

parameterizations. The bottom table shows the model performance for predicting annual maximum LAI under 

default and improved parameterizations. Values in parenthesis refer to the default model performance. 
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Figure 5. Simulated versus field measured total annual biomass under default and improved model 

parameterizations. The bottom table shows the model performance for predicting annual biomass under default and 

improved parameterizations. Values in parenthesis refer to the default model performance. 
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Figure 6. Simulated versus MODIS LAI under default and improved model parameterizations. The bottom table 

shows the model performance for predicting monthly LAI under default and improved parameterizations. Values in 

parenthesis refer to the default model performance. 
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Figure 7. Simulated versus MODIS ET under default and improved model parameterizations. The bottom table shows 

the SWAT model performance for predicting monthly ET under default and improved parameterizations. Values in 

parenthesis refer to the default model performance. 
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Figure 8. Mean annual water budget under default and improved model parameterization across all sites. 
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Figure 9. Effects of improved forest parameterization on groundwater recharge. Mean annual groundwater recharge 

is compared for the default and improved model parameterizations across all study sites over the entire simulation 

period.  
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TABLES 

Table 1. Site and stand characteristics. 

Site characteristic SAGCD - AL IMP - GA IMPAC - FL MIZE - FL 

Latitude 33.8434ₒ N 32.1241ₒ N 29.7603ₒ N 29.7548ₒ N 

Longitude -86.2993ₒ W -84.6552ₒ W -82.2906ₒ W -82.1633ₒ W 

Annual average precipitation (mm) 1,500 1,282 1,300 1,256 

Annual average temperature (ₒC) 16 18 20.5 20.5 

Annual average solar radiation (MJ/m2) 16.87 17.67 17.7 17.9 

Dominant Hyrdologic Soil Group D C A B 

Elevation range (m) 177-192 176-189 50-57 38-50 

Average stand biomass (tons/ha) 56 82 133 73 

Average LAI (m2/m2) 1.76 1.6 2.2 5.5 

Stand age in the first year of measured data (years) 4 6 4 3 

Observation period 2002-2010 1999-2010 1987-2008 2001-2012 
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Table 2. Description of input data and sources. 

 Data Description Source 

Model input 

data 

Topography 

National Elevation 

Dataset at 10 meters 

resolution 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Land use 
2008 Cropland Data 

Layer 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Soil 
Gridded Soil Survey 

Geographic (gSSURGO) 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Climate 

Daily precipitation, 

maximum/minimum 

temperature, solar 

radiation, wind speed 

PRISM climate group (http://www.prism.oregonstate.edu/),National Land Data 

Assimilation Systems (NLDAS) phase 2 

(https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php), National 

Solar Radiation Database (https://nsrdb.nrel.gov/) 

 

Atmospheric 

deposition 

Wet and dry deposition of 

nitrate and ammonia 

National Atmospheric Deposition Program (NADP) 

(http://nadp.slh.wisc.edu/) 

Model 

calibration 

Seasonal LAI 

4 days composite dataset 

at 500 meters pixel 

resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

(https://lpdaac.usgs.gov/products/mcd15a3hv006/) 

 

ET 

8 days composite dataset 

at 500 meters pixel 

resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

(https://lpdaac.usgs.gov/products/mod16a2v006/) 

 

Biomass 
Field-measured annual 

total trees biomass 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 

Florida and Alabama, respectively 

 

 Annual LAI 
Field-measured annual 

LAI 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 

Florida and Alabama, respectively 

 

 

 

 

 

 

https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php
https://nsrdb.nrel.gov/
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Table 3. Summary and sources of data used for model parameterization. 

Parameterization 

approach 
Parameter (units) 

Default 

value* 

Parameterized 

value/range – 

loblolly pine 

Parameterized value/range – slash pine Reference 

Data fitting 

FRGRW1 0.15 _ _ _ 

LAIMX1 0.7 _ _ _ 

FRGRW2 0.25 _ _ _ 

LAIMX2 0.99 _ _ _ 

DLAI 0.99 _ _ _ 

HEAT_UNITS 1,800 _ _ _ 

EPCO 0.95 0.48 0.38 _ 

Expert 

knowledge 

MAT_YRS (years) 30 3-5  3-5  _ 

CURYR_MAT 

(years) 
_ 1  1  

_ 

ESCO 1 0.8-1 0.8-1 _ 

Literature 

review 

BIO_E 

((kg/ha)/(MJ/m2)) 
15 2.5-11.6  2.7-12.6  1,2,3,4 

RDMX (m) 3.5 1.5-3 1.6-3.3  5,6,7,8,9,20 

T_OPT (Celsius) 30 25 25  10,11 

T_BASE (Celsius) 0 4 5  10,11 

GSI (m/s) 0.002 0 - 0.0118 0 - 0.036  12,11,2,13,14,15,21 

VPDFR (kPa) 4 0.7 - 3.7 1 - 3.5  13,15,16,22 

EXT_COEF 0.65 0.41-0.69 0.46-0.715 1,11,17,18 

CANMX (mm, % 

of total rainfall)  
0 

0.5-1.8 mm, 

14-28%  
0.5-1.8 mm , 14-28% 19 

CHTMX (m) 10 7 - 18  8.5 – 19.8  5 

BIO_LEAF 0.3 0.02 0.02 23 

Field 

observations 

BMX_TREES 

(tons/ha) 
1,000 185-200  113-200  _ 

Remote-sensing 

BLAI (m2/m2) 5 2.4-4  4.7-7  

_ 

ALAI_MIN 

(m2/m2) 
0.75 0.7-1.6  2.4-3.4  

_ 

References: 1: (Schultz, 1997); 2: (Roth, 2010); 3: (Pell, 2015); 4: (Allen et al., 2005); 5: (Martin and Jokela, 2004); 

6: (Schenk and Jackson, 2002); 7: (Torreano and Morris, 1998); 8: (Qi et al., 2018); 9: (Albaugh et al., 2006); 10: 

(Gonzalez-Benecke et al., 2014); 11: (Gonzalez-Benecke et al., 2016); 12: (Samuelson et al., 2012); 13: (Wightman 

et al., 2016); 14: (Aspinwall et al., 2011); 15: (Bartkowiak et al., 2015); 16: (Bracho et al., 2018); 17: (Sampson and 

Allen, 1998); 18: (White et al., 2000); 19: (Gavazzi et al., 2016); 20: (Rees and Comerford, 1986); 21: (Johnson et al., 

1995); 22: (Teskey et al., 1994); 23: (Poorter et al., 2012). 

*: The default parameter values refer to the forest type Evergreen Forests (FRSE) in SWAT’s plant database 
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Table 4. Calibrated values of parameters used for LAI, biomass, and ET calibration. 

 
 

BEST VALUE 

LAI + Biomass 

PARAMETER MIZE - FL IMP - GA IMPAC - FL SAGCD - AL 

v__EXT_COEF{128}.plant.dat 0.65 0.54 0.57 0.66 

v__BMX_TREES{128}.plant.dat 126.82 164.56 198.64 134.83 

v__BIO_LEAF{128}.plant.dat 0.023 0.02 0.02 0.02 

v__BIO_E{128}.plant.dat 11.37 6.02 9.76 8.57 

v__T_BASE{128}.plant.dat 5 4 4 0 

v__T_OPT{128}.plant.dat 25 25 25 24 

v__BLAI{128}.plant.dat 7.06 3.04 3 3.73 

v__ALAI_MIN{128}.plant.dat 2.10 0.81 1 1.12 

v__MAT_YRS{128}.plant.dat 3 4 2 3.30 

v__CURYR_MAT{[1],1}.mgt 1 1 1 1 

v__RDMX{128}.plant.dat 1.68 2.0 1.58 1.96 

v__VPDFR{128}.plant.dat 2.52 2.76 1.73 1.51 

LAI shape 

v__HEAT_UNITS{[1],1}.mgt 1771.25 4485 5518.84 5912.39 

v__DLAI{128}.plant.dat 0.99 0.91 0.95 0.89 

v__FRGRW1{128}.plant.dat 0.18 0.15 0.21 0.31 

v__FRGRW2{128}.plant.dat 0.81 0.36 0.49 0.45 

v__LAIMX1{128}.plant.dat 0.49 0.34 0.35 0.52 

v__LAIMX2{128}.plant.dat 0.61 0.71 0.69 0.69 

ET 

v__CANMX.hru 0.94 0.59 0.52 1.59 

v__ESCO.hru 0.82 0.81 0.86 0.84 

v__GSI{128}.plant.dat 0.009 0.011 0.006 0.01 

v__CHTMX{128}.plant.dat 18.32 16.84 7.25 7.14 

v__EPCO.hru 0.38 0.48 0.48 0.48 
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Table 5. Effects of improved forest parameterization on water fluxes across all sites. The percentage change refers to 

the difference between the default and improved model parameterizations. Positive values denote increase in the 

water balance component with the improved model, while negative values denote decrease with the improved 

model. 

 % change - SAGCD - 

AL 

% change - IMP - 

GA 

% change - IMPAC - 

FL 

% change - MIZE - 

FL 

Precipitation (PRECIP) 0% 0% 0% 0% 

Green water flow (ET) 18% 15% 10% -14% 

Percolation (PERC) -15% -18% -13% -48% 

Surface discharge (SURQ) -13% -15% -6% -23% 

Lateral discharge (LATQ) 0% 0% -5% -16% 

Total groundwater recharge (GW_RCHG) -15% -18% -13% -47% 

Deep aquifer recharge (DA_RCHG) -15% -16% -13% -47% 

Shallow aquifer recharge (SA_RCHG) -15% -19% -13% -47% 

Baseflow (GW_Q) -16% -20% -13% -49% 

Surface blue water (LATQ + SURQ + 

GW_Q) 
-15% -17% -13% -45% 

Subsurface blue water (GW_RCHG) - 

(GW_Q) 
-9% -7% -8% -26% 
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CHAPTER 3: Effects of Improved Forest Dynamics for Watershed Hydrological 

Processes: A modeling approach in the Southeastern United States 

ABSTRACT 

This study aimed to explore how the characterization of forest processes affects watershed hydrological responses in 

hydrologic models. To that end, we applied the widely used Soil and Water Assessment Tool (SWAT) model to two 

forested watersheds in the Southeastern United States. Although forests can cover a large portion of watersheds, tree 

attributes such as leaf area index (LAI), biomass accumulation, and processes such as evapotranspiration (ET) are 

rarely calibrated in hydrological modeling studies. The advent of freely and readily available remote-sensing data 

combined with field observations from forestry studies and published literature, allowed us to develop an improved 

forest parameterization for SWAT. In this paper, we tested our proposed parameterization at watershed-scale in Florida 

and Georgia and compared simulated LAI, biomass, and ET with the default model settings. Our results showed major 

improvements in predicted monthly LAI and ET based on MODIS reference data (NSE > 0.6). Simulated forest 

biomass showed better agreement with USDA forest biomass gridded data. Through a series of modeling experiments, 

we isolated the benefits of LAI, biomass, and ET in predicting streamflow and baseflow at watershed level. The 

combined benefits of improved LAI, biomass, and ET predictions yielded the most optimal model configuration where 

terrestrial and in-stream processes were simulated reasonably well. In the next step, we performed automated model 

calibration using two calibration strategies. In the first calibration scheme (M0), SWAT was calibrated for daily 

streamflow without adjusting LAI, biomass, and ET. In the next calibration scheme (MLAI+BM+ET), previously 

calibrated parameters constraining LAI, biomass, and ET were incorporated into the model and daily streamflow was 

recalibrated. The MLAI+BM+ET model showed superior performance and reduced uncertainties in predicting daily 

streamflow, with NSE values ranging from 0.52 to 0.8. Our findings reveal the importance of accurately representing 

forest dynamics in hydrological models.  

KEYWORDS: SWAT, Forest modeling, Watershed hydrology, LAI, ET, Biomass, MODIS 
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INTRODUCTION 

Any ecosystem in a watershed affects the quantity and quality of the water passing through 

it by either improving or degrading the supply of hydrologic services (Brauman et al., 2007). For 

example, forested ecosystems might increase rainfall infiltration rates while decreasing the water 

yield. This is mainly due to the higher water infiltration capacity of forest soils compared to other 

land uses (Bruijnzeel, 2004). Water yield is a valuable ecosystem service (Ajaz Ahmed et al., 

2017) defined as the total outflow from a drainage area during a given period (NSCS, 1985). The 

long-term water yield of a system can be understood as the difference between the input 

precipitation and the water lost through evapotranspiration (ET) (Anderson et al., 1976), and is 

many times the only source of supply for both surface and groundwater resources (McLaughlin et 

al., 2013). Globally, approximately 60% of the rainfall is lost to the atmosphere as vapor through 

ET (Oki and Kanae, 2006). In highly intensive pine plantations in Florida and North Carolina, for 

instance, ET losses as high as 90% have been reported (Gholz and Clark, 2002; Sun et al., 2010). 

Through the use, transport, and partitioning of water, forest ecosystems can significantly alter the 

volume of water reaching downstream locations and users (Brauman et al., 2007). As a 

consequence, alterations in terrestrial ecosystems may be reflected in aquatic ecosystems (Yang et 

al., 2018). Given the important economic (e.g., provision of raw materials such as timber and fiber) 

and ecological (e.g., provision of wildlife habitat and water supply) value provided by forests 

(Martin et al., 2017), it is vital to understand the forest-water relationships at the watershed-scale. 

This is especially true for highly forested regions such as the Southeastern U.S., where forests 

cover 99 million hectares and correspond to approximately one-third of the forested land in the 

contiguous U.S. (Bracho et al., 2018). 
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Field experiments like paired catchments have been used worldwide as a method for 

studying the relationships between forests and hydrology (Bosch and Hewlett, 1982). Likewise, 

field-scale experiments like litter traps, destructive sampling, and lysimeters, for example, are 

traditionally employed to measure key forest attributes such as leaf area index (LAI), total and 

aboveground biomass, and ET losses (Jonckheere et al., 2004; Teuling, 2018). These methods are 

usually time-consuming and do not provide large-scale insights. Alternatively, watershed-scale 

hydrological models have been successfully employed to investigate the interactions among forests 

and components of the hydrological cycle (Brown et al., 2015; Golden et al., 2016). A hydrological 

model capable of accounting for the spatial and temporal variability of factors affecting 

hydrological processes (e.g., intra-annual plant growth cycle, landscape heterogeneity) is a useful 

tool for understanding, predicting, and managing water resources (Khaki et al., 2019; Loizu et al., 

2018; Zhang et al., 2019).  

The performance of hydrological models in predicting a given target variable is critically 

important for an accurate representation of the simulated system (Jiang and Wang, 2019). 

Physically- and process-based models, which usually have numerous parameters, need to be 

calibrated to ensure that key hydrological processes are being reasonably replicated by the model. 

At larger scales, where different land uses and forest types spread across the landscape, for 

example, watershed-scale models are especially suitable tools. Even though forests can regulate 

water cycling and significantly affect water fluxes within the watershed, watershed modelers rarely 

pay attention to the accuracy of their models in capturing forest attributes and processes such as 

LAI, biomass, and ET. As a consequence, most watershed scale modeling applications primarily 

focus on in-stream processes and overlook terrestrial processes such as vegetation growth and 

forest dynamics (Yang et al., 2018). Streamflow is usually selected as the only variable to constrain 
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the performance of watershed models since streamflow data is relatively easy to obtain (Li Zejun 

et al., 2020). The information contained in gauged streamflow data may not sufficiently capture 

vertical fluxes and how they vary in space and time within the watershed (Rajib et al., 2018). For 

instance, other hydrological fluxes such as infiltration, soil evaporation, plant transpiration, and 

evapotranspiration evolve at different spatial and temporal scales within the watershed and affect 

the water balance. As a result, relying only on streamflow data lump horizontal water movement 

(i.e., runoff) and vertical water fluxes (e.g., evapotranspiration) together (Li Zejun et al., 2020). 

This may lead to erroneous conclusions if the model is used to assess the impacts of forest 

management practices (e.g., thinning, fertilization) or deforestation/afforestation on water 

resources, for example. 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) has been extensively 

applied worldwide to estimate water yield (Abou Rafee et al., 2019; Adla et al., 2019; Kaur et al., 

2019), sediment loss (Wang and Kalin, 2018; Brighenti et al., 2019; Himanshu et al., 2019; Mishra 

et al., 2007),  nutrient loading ( Ramesh et al., 2020; Akhavan et al., 2010; Chu et al., 2004; Haas 

et al., 2016), assess the impacts of climate change ( Dosdogru et al., 2020; Ahn et al., 2016; Anjum 

et al., 2019; Awan and Ismaeel, 2014), and land use/cover change ( Wang and Kalin, 2011; Anand 

et al., 2018; Jodar-Abellan et al., 2018; Li et al., 2014). As of December 31, 2019, over 3,460 peer-

reviewed journal papers have been published testing SWAT around the world. 

SWAT has not been sufficiently tested in forested ecosystems yet (Yang et al., 2018) and 

had shown some limitations to accurately simulate plant growth (Zhang et al., 2020), especially 

when it comes to LAI development. To address these issues, some studies have been carried out 

to revise SWAT’s plant database. For example, Strauch and Volk (2013) proposed a new plant 

growth approach based on changes in soil moisture for tropical regions and presented a logistic 
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LAI decline function. Similarly, Alemayehu et al. (2017) presented a quotient of rainfall and 

reference evapotranspiration to initialize the plant growth cycle in SWAT. The authors tested the 

methodology for a variety of land uses in Kenya and Tanzania and showed improvements in 

simulated LAI based on remote-sensing derived data. Yang and Zhang (2016) identified unrealistic 

parameter values representing evergreen forest, deciduous forests, and mixed forests in SWAT and 

proposed an improved model parameterization tested at ten Ameriflux sites. Yang et al. (2018) 

extended the previous study to the watershed-scale and showed positive effects for streamflow 

prediction. Watson et al. (2005) replaced the original SWAT plant growth model with the 3-PG 

forest growth model to better reproduce the growth of Eucalyptus trees in Australia. More recently, 

Lai et al. (2020) presented a forest growth model featuring variable density and mixed vegetation 

types in SWAT. Their results showed that the modified model outperformed the original model in 

simulating flow and nutrient load.  

Although all of these studies offer valuable insights and potential contributions to the 

modeling community, they fall into oversimplifications (e.g., lumped forest types), insufficient 

representation of plant growth components (e.g., LAI + biomass + ET), an excessive amount of 

input data (e.g., forest growth data required by 3-PG), and lack of demonstration of the extents to 

which forest processes affect the watershed hydrology. To the best of the author’s knowledge, no 

study in the literature conducted a thorough parameterization of individual forest attributes for 

species-specific trees in SWAT. Most of the modeling studies found in the literature lumped 

parameters for groups of forests and thus did not consider underlying characteristics of specific 

forest types, such as pines. In forested regions such as the southeastern U.S., for example, where 

specific pine species like loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii) dominate 
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the landscape, it is necessary to better test SWAT’s skills and tune the model to better represent 

these tree species.  

Considering that forests can cover large portions of watersheds and largely interfere with 

the hydrological cycle and that SWAT has been widely applied as a hydrological prediction and 

assessment tool, it is fundamental to understand and evaluate the model’s skills in forested 

ecosystems. LAI and biomass, besides being key forest attributes representing forest growth and 

dynamics, play important roles in SWAT’s hydrological computations. For instance, LAI affects 

plant transpiration, canopy rainfall storage, and evapotranspiration (if the Penman-Monteith 

method is used to simulate ET) in SWAT (Neitsch et al., 2011). Likewise, aboveground biomass 

and soil residue affect the soil evaporation rates in the model. SWAT’s semi-distributed 

characteristic capable of discretizing the landscape into smaller units combined with the vast 

amount of freely-available remote-sensing data presents a great opportunity for modelers to move 

from the traditional modeling calibration approach (i.e., streamflow only) and incorporate 

additional constraints into the models. A large number of studies have reported the benefits of 

using remote-sensing derived data to increase the accuracy of watershed models (Gui Ziling et al., 

2019; Ha et al., 2018; Herman et al., 2018; Jiang and Wang, 2019; Ma et al., 2019; Odusanya et 

al., 2019; Parajuli et al., 2018; Rajib et al., 2016; Tobin and Bennett, 2017; Y. Zhang et al., 2020). 

In a previous effort, we developed an improved SWAT parameterization for loblolly pine and slash 

pine, the two major pine species in the southeastern United States. Our methodology was based on 

remote-sensing data combined with field observations and was successfully tested at different 

field-scale sites across the Southeastern United States. Although our proposed parameterization 

outperformed the default model setting in predicting tree LAI, biomass, and ET, the hydrological 

implication at the watershed-scale remains unknown. 
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Therefore, the overreaching goal of this study is to investigate the importance of accurately 

capturing forest processes in watershed-scale hydrological models and assess their implications 

for simulated discharge and water balance computation. Our specific objectives are: (1) to assess 

the feasibility of transferring previously calibrated biophysical parameters to two forested 

watersheds; (2) to assess the effects of multi-facet model calibration (LAI + biomass + ET + 

streamflow) on streamflow prediction compared to traditional model calibration (streamflow 

only); and (3) to determine which forest attributes and processes (LAI development, biomass 

accumulation, or ET rates) affect streamflow and water budget the most. It is hypothesized that an 

enhanced representation of forest dynamics in SWAT will positively affect its performance in 

simulating streamflow due to a more realistic prediction of leaf area development, canopy storage, 

and precipitation loss as ET. The novelty of this study is demonstrating the effect of forest 

dynamics on hydrological processes using a ready to go improved model parameterization based 

on open-source remote sensing products, published literature, and shared field observations. Such 

level of detail and reflection of real-world interplays of natural processes (i.e., water, energy, 

vegetation) could never be achieved through traditional model calibration against streamflow only. 

MATERIAL AND METHODS 

Study sites 

The Upatoi Creek and Upper Santa Fe River watersheds located in Florida and Georgia, 

respectively, are selected as study sites (Fig. 1). These watersheds are suitable to test our 

hypothesis that a better simulation of key forest processes can resonate in better streamflow 

prediction because both are highly forested with either loblolly or slash pine tree species and also 

have long-term daily streamflow records. The Upatoi Creek watershed (UCW) is in Chattahoochee 

County, near Columbus, Georgia, and has a drainage area of approximately 900 km2. Upatoi Creek 
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is a 57 km long river running from South Columbus to the Chattahoochee River. The elevation 

ranges from 73 to 255 meters in the watershed and according to the Soil Survey Geographic 

Database (SSURGO), there are 172 different soil classes at UCW, out of which 75 are hydrological 

soil group (HSG) A, 47 are HSG B, and 50 are HSG C. The land use and cover at UCW is mainly 

dominated by loblolly pine trees (57%) and shrubs (9%), according to the National Land Cover 

Database (NLCD) 2016 and National Forest Type Dataset (NFTD) (Ruefenacht et al., 2008).  

The Upper Santa Fe River watershed (SFRW) is part of the Santa Fe River Basin system 

and has a drainage area of approximately 500 km2 and elevation ranging from 25 to 83 meters. 

Located predominantly in Union County, Florida, the SFRW is situated approximately 40 km north 

from the city of Gainesville. In terms of land use and cover, the SFRW is dominated by slash pine 

trees (56%) and hay-pasture (12%). Soils in the SFRW are mostly HSG’s A and B with a few 

HSG’s C. 

Additional Hydrometeorological characteristics portraying both watersheds are 

summarized in Table 1.  

The SWAT Model 

The SWAT hydrological model is used in the current study to investigate the effects of 

forest dynamics on key hydrological processes within the study watersheds. SWAT is one of the 

most widely used hydrological models and a well-established tool capable of simulating various 

water fluxes (e.g., surface runoff, lateral flow, groundwater contribution) and plant growth. 

Additional model components include weather, transport of sediment, nutrients, bacteria and 

pesticides, and land management. SWAT is a watershed-scale, semi-distributed, continuous-time, 

open-source model developed by the United States Department of Agriculture (USDA) 

Agricultural Research Service (ARS). The model discretizes a watershed into subwatersheds, 
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which are further discretized into unique combinations of land use, soils, and slope called 

hydrological response units (HRU’s) (Neitsch et al., 2011). This particular way of SWAT handling 

the landscape heterogeneity aids to the model’s computational efficiency, since HRU’s are in 

synthesis fractions of subwatersheds not spatially identified in model’s simulations. 

In SWAT, the water balance calculation for each HRU considers five storages: snow, 

canopy storage, the soil profile with up to ten layers, a shallow aquifer, and a deep aquifer. The 

water balance is calculated using the following:  

∆𝑆 =  ∑ (𝑃 − 𝑄𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑇 − 𝑤𝑠𝑒𝑒𝑝)𝑡
𝑡=1  (1) 

where, ∆𝑆 is the change in water storage, P, Qtotal, ET, and 𝑤𝑠𝑒𝑒𝑝 are the daily amount of 

precipitation, total water yield, evapotranspiration and the total amount of water exiting the bottom 

of the soil profile on a given day, respectively. The value of 𝑤𝑠𝑒𝑒𝑝 is a sum of the amount of water 

percolating out of the lowest soil layer and the amount of water flowing past the lowest boundary 

of the soil profile due to bypass flow. The total water yield (Qtotal) represents an aggregated sum 

of surface runoff, lateral flow, and the base flow contribution to streamflow. In this study, surface 

runoff was computed using the Soil Conservation Service (SCS) Curve Number (CN) method 

(USDA, 1972) based on daily rainfall observations and the Penman-Monteith (Monteith, 1965) 

method was selected for estimating evapotranspiration.  

SWAT incorporates a simplified version of the Environmental Policy Integrated Climate 

(EPIC) model (Williams, 1990) to simulate the growth of different types of crops and trees. The 

initialization of the growth cycle in SWAT is based on the Heat Unit Theory: plants require a 

certain amount of heat to reach maturity, which is only reached when a plant-specific total heat 

unit is attained. Once the plant reaches maturity, it stops transpiring and uptake of water and 
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nutrients. The growth cycle restarts every year based on a latitude-dependent dormancy routine or 

via harvest and kill operation in the model’s management module. At the beginning of each growth 

cycle, the accumulated heat units drop to zero and the LAI is set to a plant-specific minimum value 

defined by the user (Neitsch et al., 2011). During the early stage of plant growth, SWAT simulates 

phenological development using an optimal leaf area index development curve. The plant’s 

biomass accumulation is based on canopy light interception and the plant’s efficiency in converting 

intercepted radiation into biomass. 

Given SWAT’s limitations in simulating tree growth, an improved model parameterization 

describing loblolly and slash pine growth and dynamics was used in this study. This improved 

forest parameterization was developed based on field measured forestry data, remote-sensing 

estimates of LAI, expert knowledge, and review of published literature. Further details about 

SWAT’s computation of physical processes can be found in Neitsch et al. (2011).  

Model setup and data acquisition 

As a semi-distributed watershed-scale hydrological model, SWAT requires several 

geospatial inputs and weather forcing to simulate physical processes within a watershed. The 

ArcSWAT 2012 (version 10.4.19) interface was used in this study to delineate the watersheds and 

define their respective number of HRU’s. First, the watershed’s boundaries were delineated based 

on 10 meters resolution digital elevation model (DEM) from the National Elevation Dataset (NED) 

and hydrography network from the National Hydrography Dataset (NHD). Soil maps and soil 

characteristics (e.g., soil depth, soil hydraulic conductivity, available water capacity) needed to 

parameterize SWAT’s soil database were obtained from SSURGO as gridded data (10 meters 

resolution) covering the watershed’s drainage area. A reclassified land use map based on the 

publicly available 30 meters resolution NLCD 2016 was ingested in ArcSWAT. 
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The land use reclassification was deemed necessary to capture the spatial distribution of 

loblolly and slash pine across the watersheds as accurately as possible. Thus, a pre-processing step 

involving reclassification of NLCD 2016 was conducted using the NFTD as a background map to 

discretize NLCD’s forest classification into species-specific and geographically-meaningful types 

of trees. NFTD is a publicly available geospatial dataset at 250 meters resolution developed by 

United States Forest Service (UFS) Forest Inventory and Analysis (FIA) program and the 

Geospatial Technology and Applications Center (GTAC). This dataset was created to show the 

extent, spatial distribution, and forest type composition of forests within the United States territory. 

We pre-processed this gridded dataset in ArcMap 10.4.1 to make it readable in ArcSWAT during 

the HRU definition phase. Initially, we isolated loblolly pine and slash pine species from the NFTD 

and saved them as a separate raster layers. Next, the original NLCD 2016 raster layer was overlaid 

with NFTD rasters. Using the erase function from the Analysis Tool toolbox and ingesting the 

NFTD loblolly and slash pine rasters as input (one after the other), the NLCD land use classes 

overlapping with loblolly and slash pine rasters were erased. The geospatial information of the 

previously isolated loblolly and slash pine rasters were then copied (copy function on ArcMap’s 

main toolbar enabled through an edit session) and pasted (paste function on ArcMap’s main 

toolbar) into the NLCD rasters that had their original classes erased in the previous step. It is worth 

mentioning that this sequential pre-processing was applied to the NLCD’s land use classes 

representing forests only (e.g., forests deciduous, forests evergreen, forests mixed, and forested 

wetlands), exempting other land use classes such as agricultural lands and urban spaces. This 

decision was made to avoid misclassification, given the coarser resolution of NFTD compared to 

NLCD. Table 2 shows the percentage cover of each land use class with respect to the watershed’s 
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area, before and after reclassification. Figure 2 displays the same information as spatially 

distributed land use maps.  

As weather forcing, this study uses daily precipitation and minimum/maximum 

temperature from the PRISM Climate Group (http://www.prism.oregonstate.edu), hourly solar 

radiation and wind speed data from the North American Land Data Assimilation System (NLDAS) 

(https://ldas.gsfc.nasa.gov/nldas) aggregated to a daily basis, and hourly relative humidity data 

from the National Solar Radiation Database (NSRD) (Sengupta et al., 2018) also aggregated to 

daily time-step. Precipitation, temperature, and relative humidity data at 4 km resolution were 

extracted using the centroid of each subwatershed as a spatial reference, resulting in twenty-three 

virtual stations at UCW and twenty-one at SFRW. Solar radiation and wind speed estimates at 12.5 

km resolution were extracted to all NLDAS grids overlapping the watershed’s boundary, which 

resonated in eight virtual stations at both UCW and SFRW. 

To assess the effects of improved SWAT forest parameterization at the watershed-scale, 

we compared SWAT predicted ET and LAI against MODIS derived estimates. MOD15A2H 

(Myneni et al., 2015) and MOD16A2 (Running et al., 2017) datasets were used to derive LAI and 

ET data at 4-days and 8-days intervals, respectively, at 500 meters resolution. We located areas in 

each watershed homogeneously covered by loblolly and slash pine and compared SWAT’s outputs 

of LAI and ET from the largest HRU covered by loblolly and slash pine and located in the 

respective subwatershed against MODIS estimates. MODIS extracted data were geo-referenced 

and spatially aggregated to the shape of previously delineated polygons representing the located 

loblolly and slash pine areas using automated routines on the Google Earth Engine platform 

(Gorelick et al., 2017). Further details about testing SWAT’s forest dynamics plausibility against 

remote-sensing data are described in the model calibration section. The simulated forest biomass 

https://ldas.gsfc.nasa.gov/nldas
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was compared to gridded forest biomass data from the U.S. Department of Agriculture (USDA) 

Forest Service Forest Biomass product, which was developed based on field measurements and 

statistical models (Blackard et al., 2008). We setup the initial growing conditions of slash and 

loblolly pine in the models by deleting all management operations assigned to the management 

file in ArcSWAT. Next, we assumed that trees were fully developed at the beginning of the 

simulation period by setting the HRU’s land cover status as land cover growing from the beginning 

of the simulation period. Moreover, some initial physical conditions like the number of heat units 

(PHU_PLT), initial leaf area index (LAI_INIT), and initial biomass (BIO_INIT) had to be defined 

to configure the annual growth cycle of trees. For loblolly and slash pine, PHU_PLT and LAI_INIT 

were defined based on the field-scale model parameterization while BIO_INIT was initialized 

according to USDA’s Forest Service forest biomass data for each watershed. For the former, the 

minimum biomass value reported by the USDA’s Forest Service forest biomass data was assumed 

to be a reasonable estimate of the initial biomass.  

For streamflow calibration and validation, we used daily streamflow data from the U.S. 

Geological Survey (USGS) gaging stations 02341800 and 02321000 at UCW and SFRW, 

respectively. The complete dataset used for constructing and calibrating/validating the SWAT 

models, as well as their sources, are summarized in Table 3. Based on the described data, 

SWAT2012 (revision 664) through the ArcSWAT interface with a 10%-10%-0% (land-use, soils, 

slope) of threshold generated 23 subbasins and 172 HRU’s for UCW, whereas 21 subbasins and 

138 HRU’s were generated for the SFRW. The models were run from 1995 to 2018, using 3 years 

(1995-1997) of initialization as modeling warm up period.  
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Experimental design 

Parameter-rich models such as SWAT can be easily calibrated for streamflow even though 

key intra-watershed processes such as forest dynamics are simulated poorly. This is because an 

observed signal (e.g., point-scale streamflow) may be reproduced in such models using thousands 

of different parameter sets or ranges of parameter combinations. This problem is known as 

equifinality (Beven and Freer, 2001), where models can give right answers for wrong reasons. One 

possible way of minimizing the equifinality problem is by constraining more model variables (e.g., 

LAI, biomass, ET) through additional observed data. Here we perform four modeling experiments 

prior to streamflow calibration in which we progressively constrain more variables with additional 

data. These experiments can help us to isolate the impacts of LAI, biomass, and ET on streamflow 

prediction and water budget computation without the confounding effect of streamflow-related 

parameters. To measure the benefits and drawbacks of each experiment we compare simulated 

baseflow, streamflow, watershed-average ET, and runoff coefficient against observations and 

remote-sensing derived estimates. Observed baseflow was estimated from observed streamflow 

using the Web Based Hydrograph Analysis Tool (WHAT) (Lim et al., 2005) using its standard 

settings for perennial streams with a porous aquifer. The experiments are as follows: 

1. Default model (M0): SWAT model is setup and run without altering plant growth related 

parameters. 

2. ET (MET): this experiment adds ET related parameters (previously calibrated) to the default 

model (M0).  

3. LAI + biomass (MLAI+BM): this experiment incorporates parameters controlling LAI and 

biomass, which are previously calibrated. 
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4. LAI + biomass + ET (MLAI+BM+ET): this experiment includes calibrated parameter values 

representing the full coupling of vegetation, water, and energy relations in SWAT. 

Comparison of MET, MLAI+BM, and MLAI+BM+ET against M0 tells us how much model 

performance has improved or deteriorated due to addition/removal of new variables. The fourth 

experiment (MLAI+BM+ET) is the one we are most interested in because it fully considers the tree 

growth cycle in SWAT and includes the largest number of variable constraints. MLAI+BM  compared 

to M0 tells us how much model performance has improved  or deteriorated by including improved 

phenological development and biomass accumulation without adjusting for canopy evaporation, 

plant water uptake, and soil evaporation. MET shows how remote-sensed ET data can help 

predictions in ungauged basins or watersheds with limited streamflow records. M0 is a baseline 

scenario serving as a reference to measure the advantages and disadvantages of MET, MLAI+BM, and 

MLAI+BM+ET. 

Streamflow calibration and validation strategies 

Hydrological models often cannot accurately simulate streamflow under default 

parameterization. Each watershed is unique, and dominant hydrological processes can vary, which 

default parameterization may not capture. Thus, model calibration is frequently performed to 

adjust selected model parameters representing the processes of interest. In this study, we employ 

an automated model calibration approach to enhance SWAT’s accuracy in simulating streamflow 

at the watershed’s outlet. We split the time series data into calibration (1998-2014) and validation 

(2015-2018) periods at both watersheds. SWAT Calibration and Uncertainty Program (SWAT-

CUP) (Abbaspour, 2015), a standalone calibration software developed specifically to be used with 

SWAT, was used to optimize model parameters. Model calibration was carried out at daily time 

step using the Sequential Uncertainty Fitting algorithm (SUFI-2) option in SWAT-CUP. 
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In SUFI-2, global sensitivity analysis is performed by calculating the regression 

coefficients of the parameters generated by the Latin hypercube sampling method against the 

values of the defined objective function. The relative significance of each sampled parameter is 

measured using a t-test. Parameter sensitivities are computed by quantifying the average changes 

in the objective function resulting from changes in each parameter (Abbaspour, 2015). The p-value 

tests the null hypothesis that the coefficient of a parameter is equal to zero (i.e., the parameter is 

not sensitive). Low p-values (typically <0.05) indicate sensitive parameters. 

In SUFI-2, uncertainty in parameters are expressed as ranges representing uncertainties 

associated with forcing input data (e.g., precipitation), the conceptual model, parameters, and 

observations (Abbaspour, 2015). Uncertainties in parameters are reflected as uncertainties in the 

model output variable, which are represented as the 95% probability distributions (95PPU). The 

95PPU is hence the model solution in a stochastic calibration approach, considering all sources of 

uncertainties. SWAT-CUP provides two statistics to quantify the fit between the 95PPU and 

observed data: P-factor and R-factor. The P-factor expresses the percentage of observed data 

enveloped by the 95PPU, while the R-factor is the relative thickness of the 95PPU band and is 

calculated as the average of the 95PPU thickness divided by the standard deviation of the 

corresponding observed variable (Abbaspour et al., 2018). Ideally, most of the observations should 

be captured by the 95PPU (i.e., P-factor close to 1) in a small envelop (i.e., small R-factor value). 

As model performance measures, this study uses the coefficient of determination (R2), the 

Nash-Sutcliff-Efficiency (NSE), and the percentage bias (PBIAS). Further, NSE was selected as 

the objective function in SUFI-2 and 500 simulations were performed per iteration. The number 

of iterations was based on how fast the model was converging to a higher NSE value in the 

subsequent iteration. The parameters used to calibrate SWAT for streamflow in this study were 
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selected based on the model’s structure and equations regulating discharge computation described 

in Neitsch et al. (2011). 

We calibrated daily streamflow for the two extreme modeling experiments, M0 (default) 

and MLAI+BM+ET (LAI + biomass + ET). Comparing these two calibration schemes can show the 

benefits of including all variables describing forest dynamics simulation in model calibration and 

how it changes the solution space (i.e., the most optimal value within the range of parameters) 

relative to a model constraint with gauged streamflow data only. Since MLAI+BM+ET considers 

improved LAI, biomass, and ET estimates and theoretically represents the most optimal model 

condition among the four experiments (i.e., a model able to predict forest attributes and streamflow 

reasonably well), this experiment was selected to quantify the effects of improved forest processes 

on automated streamflow calibration. Both calibration approaches are explained below. 

Traditional model calibration (M0) 

Calibration of M0 involved adjusting the parameters listed in Table S1 for the default model 

setup. This is a traditional calibration approach employed in most hydrologic modeling studies, 

where model parameters related to vertical fluxes (e.g., ET) and horizontal fluxes (e.g., surface 

runoff) are lumped together and calibrated with streamflow data only. This calibration scheme was 

performed to generate a base condition to which the next calibration configuration could be 

compared. 

Multi-facet model calibration (MLAI+BM+ET) 

In this calibration scheme, we decouple horizontal (streamflow) and vertical (ET) water 

fluxes by constraining parameter values representing biophysical processes within a physically 

meaningful range. This approach does not optimize parameters controlling vertical fluxes (e.g., 

CANMX, EPCO, ESCO) when performing automated streamflow calibration, which is typically 
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the case in traditional calibration. Such parameters had their values derived for loblolly and slash 

pine trees at the field-scale level in previous chapter. At the UCW, parameters controlling the LAI 

development curve, water loss through ET, and tree total biomass for loblolly pine were calibrated 

at field-scale level using data from a loblolly pine plantation in Georgia (approximately 35 km 

southwest of the watershed outlet). Likewise, slash pine related parameters were calibrated using 

data from a slash pine plantation field in Florida located approximately 400 km southwest of the 

UCW outlet. For the SFRW model, loblolly and slash pine parameters were calibrated on adjacent 

pine plantation fields located approximately 25 km south of the watershed outlet. The multi-facet 

(MLAI+BM+ET) calibration scheme transfers the most optimal parameter values representing LAI, 

biomass, and ET for loblolly and slash pine trees from the field-scale models to the watershed-

scale models. The transferred parameter values were extended to HRU’s covered by loblolly and 

slash pine at both watersheds. One could argue that transferring parameter values from field-scale 

to watershed-scale without further calibration is not adequate because of varying physical 

conditions (e.g., soil types, weather). Unlike reach/subbasin level parameters in SWAT, plant-

specific parameters cannot vary spatially in the plant database. In other words, these parameters 

are species-specific and even though a given type of plant can be present in several HRU’s, its 

parameter values cannot change from HRU to HRU. This model limitation challenges a spatially 

distributed calibration of biophysical parameters in SWAT-CUP. Such an effort would essentially 

result in a lumped calibration inconsistent with the spatially distributed characteristic of remote-

sensing data. Thus, our approach is more appropriate to capture the importance of forest dynamics 

in hydrological models since the biophysical parameter values included in MLAI+BM+ET were 

developed based on species-specific high-quality datasets. Fig. S1 in the supplementary materials 

shows via boxplots the distribution of simulated LAI and ET across all HRU’s covered by loblolly 
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and slash pine at UCW and SFRW. It is clear that minimum, median, and maximum values are 

similar across these HRUs, and that the variability across the watersheds is minimum. 

 Ecohydrological flow parameters 

Biotic processes such as vegetation growth can affect the hydrologic regime within a 

watershed. Effects of forest hydrological processes in watershed models may not be too evident 

based only on simplistic analysis such as daily and seasonal streamflow, baseflow hydrographs, 

and mean annual water balance. In order to better understand the degree of hydrologic alteration 

attributable to improved forest parameterization in hydrologic models, we utilized the Indicators 

of Hydrologic Alterations (IHA) tool (TNC 2009). IHA was developed by the Nature Conservancy 

(TNC) based on Richter et al. (1996) for calculating the characteristics of natural and altered 

hydrologic regimes. IHA is an easy-to-use tool that summarizes long periods of daily flow data 

into 67 statistical parameters representing ecologically relevant conditions. These 67 statistical 

parameters are subdivided into two groups: the IHA parameters (33 parameters) and the 

Environmental Flow Component (EFC) parameters (34 parameters). In the current study, we 

selected 32 IHA parameters and 18 EFC parameters to compare the flow regime changes in the 

UCW and SFRW under M0 and MLAI+BM+ET calibration schemes in relation to observed streamflow 

over twenty-one years (1998-2018). The description and importance of the IHA and EFC 

parameters used in this study are shown in Table S2 in the supplementary materials. 
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RESULTS 

Improvements in forest dynamics 

Upatoi Creek watershed (UCW) 

Although SWAT was run for the 1998-2018 period, the analysis of simulated forest 

processes discussed here is limited to the period 2001-2018 for ET and 2003-2018 for LAI, because 

of MODIS data availability.  

As shown in Fig. 3, both LAI and ET predictions for loblolly pine improved significantly 

under MLAI+BM+ET. The default SWAT parameterization largely overestimated the annual 

maximum LAI in comparison to MODIS. According to MODIS estimates, the average monthly 

LAI from 2003 to 2018 at UCW was 1.78 m2/m2. In the simulation with M0, the predicted average 

monthly LAI was 2.45 m2/m2, while MLAI+BM+ET simulated an average monthly LAI of 1.71 m2/m2. 

The superior model performance under MLAI+BM+ET is supported by the statistical measures shown 

in Table 4. As can be seen in Fig. 3, M0 missed most of MODIS ET peaks, which were captured 

in the MLAI+BM+ET model configuration. The better goodness of fit between MLAI+BM+ET and 

MODIS ET is demonstrated in Table 4 by higher NSE and R2 values. The model’s inability to 

capture ET peaks with the M0 model configuration translated into 30% underestimation of ET. On 

the other hand, MLAI+BM+ET overestimated ET by 18% during 2001-2018. Although significant, 

this overestimation is within the uncertainty margin of 20% associated with the MODIS ET 

product, as reported by Mu et al. (2013).  

Simulated LAI and ET for slash pine failed to accurately match MODIS estimates (Fig. 3 

and Table 4). These results are not alarming since slash pine cover less than 0.1% of the UCW, 

representing an area of only 70 hectares. Furthermore, this may indicate that the slash pine 

parameterization developed in FL is not suited for slash pine trees growing in GA. This finding 
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should not come as a surprise given the substantial geographic distance between the plantation 

field where slash pine was calibrated and the UCW. The significant model overestimation of ET 

with the MLAI+BM+ET model configuration is most probably a consequence of the LAI 

overestimation, given the role played by LAI in ET estimation. Another likely cause of the poor 

model performance of ET in MLAI+BM+ET is the value of maximum stomatal conductance (GSI) 

calibrated at the field-scale site in FL, which may be too high for slash pine trees occurring in GA.  

We compared simulated forest biomass with USDA’s Forest Service forest biomass 

product. To that end, we averaged simulated forest biomass in M0 and MLAI+BM+ET for each 

subbasin. The subbasin level averaged biomass values were interpolated to the watershed area 

using Inverse Distance Weighting (IDW) interpolation method in ArcMap to allow for a more 

spatially discretized comparison against the gridded 250 meters resolution biomass product. The 

results are shown in Fig. 4. Under M0, the average annual simulated biomass during 1998-2018 

was 64 ± 4 (average ± one standard deviation) tons/ha, while MLAI+BM+ET predicted an average of 

104 ± 13 tons/ha during the same period. USDA reported average biomass of 64 ± 15 tons/ha. 

Although the average biomass predicted by M0 matched USDA’s values, M0 failed to reach 

biomass values larger than 70 tons/ha. In contrast, the maximum biomass predicted by MLAI+BM+ET 

reached values up to 121 tons/ha, closer to 146 tons/ha of maximum biomass from USDA forest 

biomass data. The spatial distribution pattern of simulated biomass is similar in M0 and 

MLAI+BM+ET, although MLAI+BM+ET showed better agreement with USDA biomass data in the 

northwestern portion of the watershed. In this area, which is heavily covered by loblolly pine (Fig. 

2A), M0 tended to underestimate biomass. 
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Upper Santa Fe River watershed 

It is visually clear that MLAI+BM+ET outperformed M0 in capturing LAI seasonality for 

loblolly pine (Fig. 3). The goodness of fit measured by R2 and NSE and shown in Table 4 

demonstrates the benefits of MLAI+BM+ET in comparison to M0. The evident model overestimation 

in M0 is evidenced by PBIAS values of 38%, which has improved to 7% in MLAI+BM+ET. Monthly 

ET for loblolly pine was significantly underestimated in M0 compared with MODIS reference 

time-series (Fig. 3). With the default parameterization, the average annual ET was 448 ± 58 mm 

during 2001-2018, which was significantly lower than MODIS estimates of 897 ± 88 mm. In the 

simulation with the improved model parameterization, the average annual ET increased to 740 ± 

mm, representing a 40% increase compared with the default model. Monthly ET simulated by 

MLAI+BM+ET was underestimated by 17.5%, which is lower than the 50% of underestimation with 

M0. The good agreement between simulated monthly ET in MLAI+BM+ET and MODIS ET is 

statistically supported by the higher NSE and R2 and lower RMSE values, as shown in Table 4. 

 Slash pine also had the LAI dynamics largely improved in MLAI+BM+ET. This can be 

visually seen in Fig. 3, where MLAI+BM+ET reproduces the annual growth cycle captured by MODIS 

reasonably well. Moreover, the annual LAI peaks estimated by MODIS are better represented in 

MLAI+BM+ET than in M0, although even with the MLAI+BM+ET model configuration SWAT could not 

accurately capture the bimodal LAI seasonality shown in MODIS data. This issue was also 

reported by Zhang et al. (2020) and is most probably attributable to SWAT’s impossibility of 

simulating more than one growth cycle per year under the Heat Unit Theory. The average annual 

ET estimated by M0 in the period 2001-2018 was 453 ± 57 mm, much lower than the average 

MODIS ET for the same period (999 ± 86 mm). The improved parameterization increased ET 

estimates by 58% compared with M0, resulting in an annual average ET of 1,060 ± 65 mm (7% 
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higher than MODIS). The average annual ET simulated by the improved model was in good 

accordance with the ET range of 754-1168 mm/year at slash pine plantations in Florida reported 

by McLaughlin et al. (2013). Although the R2 value deteriorated in MLAI+BM+ET compared to M0 

for slash pine, other statistical measures improved for MLAI+BM+ET in comparison to M0 (Table 4). 

Finally, the simulated biomass also improved in MLAI+BM+ET compared to M0, based on 

USDA reported biomass reference data (Fig. 4). The average annual forest biomass simulated in 

M0 was 92 ± 45 tons/ha, which is significantly lower than the USDA reported average of 120 ± 37 

tons/ha. The MLAI+BM+ET model configuration increased annual average biomass estimates by 40% 

compared with M0, resulting in 153 ± 50 tons/ha of biomass during 1998-2018. The improved 

model parameterization also ameliorated the spatial pattern of forest biomass, especially in the 

central portion of the watershed, where M0 substantially underestimated biomass accumulation. 

Previous studies reported similar findings (Yang et al., 2018; Yang and Zhang, 2016), revealing 

that the default SWAT model presents some shortcomings in simulating tree biomass. 

 Hydrological responses to improved forest dynamics  

Inclusion of forest dynamic processes in the model remarkably influenced the watershed 

hydrological responses. Prior to streamflow calibration, the baseline model configuration M0 

showed poor performance in simulating daily and monthly streamflow, as well as monthly 

baseflow, at both watersheds (Fig. 5-7). Flow duration curves of daily streamflows are shown for 

both watersheds in Fig. 5. As can be seen, high flows were captured reasonably well in M0, 

however low flows were poorly simulated, especially at SFRW. Overall, daily streamflow was 

overestimated by 67% and 267% at UCW and SFRW, respectively, and NSE values were lower 

than 0.2 (Fig. 5). Similarly, monthly streamflow showed low NSE values and poor agreement with 

observed data at both watersheds (Fig. 6). M0 overestimated most of the peaks at both study sites. 
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The monthly baseflow simulated by the SWAT models in M0 show big differences compared to 

observations (Fig. 7). M0 overestimated baseflow by 55% at UCW and 460% at SFRW in the 

period 1998-2018. Simulated mean annual baseflow was also highly overestimated at both study 

sites compared to observed data (Fig. S2 in the supplementary materials). The watershed-average 

ET simulated from 1998 to 2018 at the UCW was 614 mm/year in M0 (Fig. S2), 25% lower than 

MODIS estimates (815 mm/year). Similarly, at the SFRW the simulated watershed-average ET 

was 546 mm/year, 57% lower than the MODIS estimated value of 1013 mm/year. Considering 

MODIS ET data, 24% of rainfall became runoff at SFRW, and 37% at UCW. The predicted 

fractions in M0 were 59% at SFRW, and 52% at UCW, which is the direct consequence of ET 

underestimation. 

The inclusion of calibrated ET parameters in MET dramatically improved the model’s 

performance for streamflow and baseflow, as evidenced by increased NSE values (Fig. 5-7). The 

consistent model overestimation of streamflow and baseflow produced under M0 was remarkably 

decreased at both study watershed in MET. The enhanced model performance was particularly 

alluring at UCW, where simulated daily streamflow was overestimated by 12% and baseflow by 

less than 1% in MET. By analyzing the exceedance probability curves (Fig. 5) it is possible to notice 

that MET increased the agreement between simulated and observed streamflow, especially for low 

flows ( ≥ 70%) at SFRW. Similarly, monthly streamflow and baseflow peak estimates improved 

in MET in comparison to M0 (Fig. 6 and Fig. 7). The main effect of MET configuration on the 

watershed water budget was with respect to baseflow (Fig. 8). Increases in annual average ET of 

25% at UCW (2% overestimation) and 33% at SFRW (20% underestimation) in MET compared to 

M0 led to reductions in mean annual baseflow of 41% and 40%, respectively. Higher ET simulated 

in MET reduced water yields in the watersheds. Under the MET model configuration, 37% of 
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precipitation became discharge at UCW, which perfectly matched the 37% calculated using 

MODIS derived data. Also, 38% of the incoming precipitation resulted in modeled discharge at 

the SFRW, relatively close to the 24% estimated using observed data. Other studies have also 

shown the benefits of constraining ET in hydrological models based on remote-sensing data 

(Herman et al., 2018; Odusanya et al., 2019; Rajib et al., 2018, 2018; Strauch and Volk, 2013). 

The results of MET suggest that readily available remote-sensing ET data can help to improve the 

performance of hydrological models in predicting streamflow and baseflow in ungauged 

watersheds. It is worth highlighting that ET-related parameters were not re-calibrated for the study 

watersheds but rather transferred from the field-scale level. The former may indicate that the model 

performance could be further improved by carrying out a site-specific calibration at each 

watershed. 

In the next model configuration (MLAI+BM), we added calibrated parameter values 

regulating LAI and biomass prediction to the baseline model (but removed ET). As shown by the 

rating metrics and the flow temporal variability displayed in Figures 5-7, the model performance 

for streamflow and baseflow in MLAI+BM deteriorated compared to MET. SWAT performed 

particularly poorly in MLAI+BM at the UCW, where the performance metrics worsened even in 

comparison to the baseline model M0. In contrast, MLAI+BM showed superior performance 

compared to M0 for all statistical measures at SFRW. This difference can be understood by 

considering the different tree growth and dynamics of loblolly pine and slash pine. As described 

in section 2.1, UCW is dominated by loblolly pine while the SFRW is mainly covered by slash 

pine trees. As shown in Fig. 3, the M0 configuration considerably overestimated LAI for loblolly 

pine at UCW whereas underestimated it for slash pine at the SFRW. As a result of lower simulated 

LAI at UCW, after incorporating previously calibrated LAI parameters, compared to M0, simulated 
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ET in MLAI+BM has decreased 22% (Fig. S2). Consequently, the simulated baseflow increased 16% 

in relation to M0 and was further overestimated (Fig. S2), which lead to the deterioration of model 

performance by MLAI+BM. As expected, due to lower ET losses in MLAI+BM the runoff coefficient 

increased to 0.63, deviating significantly from 0.37 calculated with observed data. The extent to 

which the watershed water balance was impacted by LAI and biomass (Fig. 8) highlights the 

importance of considering forest dynamics in hydrologic modeling studies, and the necessity of 

including ET in the modeling spectrum. At the SFRW, because of larger LAI values obtained after 

the incorporation of pre-calibrated LAI parameters (Fig. 3), the MLAI+BM configuration predicted 

higher ET rates compared to M0, increasing the watershed-average ET by 12%. Accordingly, the 

simulated streamflow and baseflow were reduced in MLAI+BM (Fig. S2), which ameliorated the 

model’s performance compared to M0. 

Results from MLAI+BM+ET were the most telling in terms of the impacts of forest processes 

on the model performance in simulating hydrological processes. Under MLAI+BM+ET, the models 

were constraint with the largest number of variables among all experiments, and, besides showing 

the best performance in predicting streamflow and baseflow, the models also predicted forest 

growth and dynamics reasonably well under this parameterization. At UCW, the model 

performance for streamflow and baseflow simulations slightly deteriorated compared to MET but 

largely improved in relation to M0 and MLAI+BM (Fig. 5-7). Compared to MODIS derived data, the 

watershed-average ET predicted in MLAI+BM+ET was less than 1% higher and showed the closest 

agreement with MODIS estimates among all modeling experiments at the UCW (Fig. S2). The 

mean annual baseflow simulated in MLAI+BM+ET also showed good agreement with the observed 

data (2% overestimation) (Fig. S2). Although the inclusion of improved LAI and biomass into the 

model configuration led to deterioration in model performance compared to MET, it is more 



110 
 

coherent to include biophysical parameters values representing LAI development and biomass 

accumulation along with ET calibration, given the interplays between tree attributes (e.g., 

aboveground biomass and canopy) and the volume of water lost to the atmosphere as vapor. 

Additionally, enhanced model representation of tree attributes such as LAI and biomass may 

positively influence water quality applications. For instance, the adjusted total biomass to residue 

ratio (BIO_LEAF) from 30% to 2% reduces the amount of plant residue on the soil that is available 

for mineralization and nitrification. Likewise, the sediment yield simulated in SWAT through the 

Universal Soil Loss Equation (USLE) (Williams, 1975) is affected by the amount of residue on 

the soil surface. The combined positive effects of MET and MLAI+BM at SFRW yielded MLAI+BM+ET 

as the best model configuration at this study site. The agreement between simulated and observed 

streamflow and baseflow at the watershed outlet increased under MLAI+BM+ET (Fig.5-7) compared 

to the other experimental conditions, as indicated by the highest goodness of fit measured by NSE 

and R2. The model overestimation of horizontal fluxes were also the smallest under MLAI+BM+ET at 

SFRW. This was mainly because of the better agreement between watershed-average simulated 

ET and MODIS derived data (Fig. S2), which decreased the simulated water yield compared to 

the other modeling experiments. The runoff coefficient estimated based on simulated ET (0.34) 

was the closest to the observed runoff coefficient (0.24) among all scenarios. The changes 

produced in the water balance components, as we progressively moved from one experiment to 

the next, are shown in Fig. 8. There was a significant difference between M0 and MLAI+BM+ET, with 

a drastic increase in predicted ET and consequent decrease in predicted baseflow under the 

MLAI+BM+ET configuration at both watersheds. The results of MLAI+BM+ET indicate that the main 

improvement in streamflow and baseflow prediction came from the ET component. Studies such 

as Strauch and Volk (2013) and Alemayehu et al. (2017) also reported improvements in modeled 
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streamflow under enhanced LAI and ET predictions. Similarly, Yang et al. (2018) showed how 

enhanced biomass and ET estimates can improve the model’s performance in simulating 

streamflow and sediment losses in a forested watershed. However, our study is the first to fully 

consider the effects of forest dynamics (i.e., LAI, biomass, and ET) on hydrological processes by 

constraining parameter values representing nationally relevant tree species. 

Streamflow calibration and validation  

As mentioned earlier, SWAT was calibrated for streamflow only under M0 and MLAI+BM+ET. 

Note again that M0 represents the current practice in watershed modeling. Based on the visual 

comparison and statistical measures, MLAI+BM+ET proved to be the better model in predicting daily 

streamflow at both watersheds during the calibration and validation periods (Fig. 9). According to 

the model performance evaluation criteria proposed by Moriasi et al. (2015), the results achieved 

with the multi-facet calibration scheme ranged from “good” to “very good” at UCW, and 

“satisfactory” to “very good” at SFRW. Under the traditional calibration scheme, the model 

performance fell within the same range of categories at UCW, but deteriorated to unsatisfactory-

satisfactory at SFRW. The enhanced model performance achieved with the multi-facet calibration 

scheme shows that better representation of forest dynamic processes enables SWAT to yield more 

accurate streamflow estimates. It also highlights the advantages of decoupling horizontal 

hydrological fluxes (i.e., streamflow) from vertical hydrological fluxes (i.e., ET) when calibrating 

watershed models. In the traditional calibration approach, ET related parameters such as CANMX, 

EPCO, and ESCO were calibrated simultaneously with parameters regulating the horizontal water 

flux. Although this led to an increased mean annual ET in M0, the watershed-average annual ET 

was still lower compared to MODIS estimates. This underestimation of rainfall lost through ET 

resulted in a higher overestimation of simulated streamflow in M0 compared to MLAI+BM+ET (Fig. 
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9). Moreover, in the calibration period, the obtained values of P-factor and R-factor were 0.07/0.73 

at SFRW/UCW, and 0.19/0.58 at SFRW/UCW, respectively, with the traditional calibration 

approach. Under the multi-facet calibration scheme, P-factor and R-factor ranged from 0.09-0.72 

and 0.11-0.50, respectively. While the values of P-factor did not change significantly in regard to 

the calibration approach, the R-factor showed considerable decrease with the multi-facet 

calibration scheme, suggesting reduced uncertainties due to consideration of improved forest 

dynamic processes in the modeling framework. 

 Results from the global sensitivity analysis revealed that CN2 is the most sensitive 

streamflow parameter at both watersheds under M0 and MLAI+BM+ET (Fig. S3 in the Supplementary 

materials). However, the order of sensitive parameters changed in response to the calibration 

approach. Parameters such as saturated soil hydraulic conductivity (SOL_K), groundwater revap 

coefficient (GW_REVAP), groundwater delay time (GW_DELAY), and deep aquifer percolation 

factor (RCHRG_DP) became less sensitive in the multi-facet calibration scheme at the UCW. An 

opposite trend was observed at the SFRW, where most of the groundwater-related parameters had 

their sensitivity increased under the multi-facet model calibration scheme, as indicated by lower 

p-values in Fig. S3.  

A similar effect can be noticed by paying closer attention to the best parameter values 

found with the traditional and multi-facet calibration schemes (Table S1). Parameters such as 

RCHRG_DP and GW_DELAY, for instance, have seen their best fitted values significantly change 

with the calibration approach. At both study sites, RCHRG_DP decreased in the multi-facet 

calibration scheme, which is most probably because of higher ET losses in MLAI+BM+ET compared 

to M0. In the traditional calibration approach, because of the underestimated ET rates in M0, the 

models tended to lose more water through deep aquifer percolation in order to compensate for 
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streamflow overestimation. Similarly, the improved forest dynamics considered in the multi-facet 

calibration scheme decreased the lag between the time that water exits the soil profile and 

recharges the shallow aquifer (GW_DELAY). Because of excessive water yield and percolation 

produced in M0, the traditional calibration scheme slowed down the recharge to the shallow aquifer 

by assigning larger values to GW_DELAY. 

Although the traditional calibration approach was able to yield a “very good” model 

performance in predicting streamflow, it massively failed to accurately replicate key forest 

dynamic processes such as LAI and biomass within the watersheds (Table 4 and Fig. 3). This “very 

good” model performance for streamflow was accomplished at the cost of an excessively high 

deep aquifer percolation and lumped values of parameters regulating plant transpiration (EPCO), 

soil evaporation (ESCO), and canopy storage (CANMX) (Table S1). Alternatively, the multi-facet 

calibration scheme demonstrated the feasibility of constructing realistic models that can reasonably 

represent forest processes without losing accuracy in predicting streamflow. 

Impacts of forests on ecohydrological parameters 

Fig. 10 shows the fifty ecohydrological parameters and how much their values calculated 

based on the M0 and MLAI+BM+ET calibration deviated from their values calculated using observed 

streamflow data. At UCW, 36 out of 50 parameters showed increased agreement with observations 

under MLAI+BM+ET configuration. The inclusion of enhanced forest dynamic processes mitigated 

the model overestimation of mean monthly flows, monthly low flows, the magnitude of annual 

minimum flows of 30 and 90 days of duration, and the magnitude and duration of annual peak 

flows. Additionally, outputs from the multi-facet calibration scheme reduced the model 

underestimation of annual maximum flows of durations ranging from 1 day to 90 days, the duration 

of annual low pulses, and the frequency and duration of high pulses. These parameters may have 
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implications on soil moisture availability for plants, habitat availability for aquatic organisms, 

adequate water temperatures and dissolved oxygen rates, water table levels, water quality 

conditions, riparian vegetation, nutrient exchanges between rivers and floodplains, and others (Fig. 

S2). This indicates that the benefits of accurately representing forest processes in watershed 

models go beyond improving the accuracy of streamflow simulations. The multi-facet approach 

significantly underestimated minimum annual flows of 1 to 7-days of duration, the 7-day minimum 

flow, and the fall rate of high flow pulses in relation to M0.  

Improving the representation of forest growth and dynamics also optimized 

ecohydrological parameters at the SFRW. Overall, 42 out of the 50 included statistical parameters 

showed better agreement with observed data under the multi-facet calibration approach. Mean 

monthly flows and low flows had their overestimation reduced in MLAI+BM+ET compared to M0. 

However, the model overestimation was still high, ranging from 8% to 81% for mean monthly 

flows. The same applied to monthly low flow parameters, for which the model overestimation 

ranged from 61% to 81% compared to the observed values. The cases in which the MLAI+BM+ET 

configuration caused deterioration of ecohydrological parameters compared to M0 were mostly 

related to the underestimation of high flows. For example, the maximum flows of 1-day and 90-

days of duration, as well as the Julian date of maximum flow, and duration of high flow pulses 

were excessively underestimated with the multi-facet scheme. 

CONCLUSIONS 

The improved representation of forest processes in SWAT returned better streamflow and 

baseflow predictions. This was demonstrated by performing four modeling experiments aiming to 

show the individual impacts of LAI, biomass, and ET on water fluxes. Results showed that 

improved ET prediction is the main reason leading to more accurate streamflow and baseflow 
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simulations in watershed models. The improvements in forest processes substantially altered the 

watershed water budget towards increased ET and decreased baseflow rates.  

By calibrating streamflow-related parameters with and without the inclusion of improved 

LAI, biomass, and ET, we demonstrated that a physically meaningful representation of forest 

hydrological processes led to superior model performance in predicting streamflow. Moreover, the 

improved forest parameterization decreased the uncertainties associated with daily streamflow 

prediction. The importance of forest dynamics was further scrutinized by analyzing 50 

ecohydrological parameters. Our results point to the importance of accurately accounting for forest 

processes in watershed models, especially in highly forested watersheds. The latter not only yields 

a more realistic model, but also enhances the model’s performance in predicting streamflow, 

reduces the model uncertainties, and improves the terrestrial and aquatic connections, as 

demonstrated by the 50 ecohydrological parameters considered here.  

Given the considerable disparity between the two extreme model configurations (i.e., M0 

and MLAI+BM+ET) in replicating the watershed water budget, the conclusions drawn by each model 

would largely differ. This could generate impacts on management decisions in case the models 

were employed to support decision-making. Therefore, we suggest that key forest processes such 

as LAI, biomass, and ET should be ameliorated in hydrological models before simulating 

streamflow. 

Although our improved forest parameterization relied on field observations from nearby 

pine plantation fields, we did not have field-measured data within the study watersheds. Thus, our 

methodological insights were validated against remotely sensed LAI and ET and gridded biomass 

data. As with any remote-sensing estimate, there are uncertainties associated with MODIS LAI 

and ET data, as well as with the USDA Forest Service forest biomass data. While it may raise 
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uncertainties concerning the validity of our findings, the global coverage of MODIS data facilitates 

the replication of our methodology worldwide. Moreover, SWAT’s flexible plant database allows 

other researches to further refine our forest parameterization for other evergreen species. 

In this study, the focus of our modeling effort was on streamflow and baseflow predictions. 

The impacts of improved forest growth and dynamics on modeled water quality (e.g., sediment 

yield, nutrient load) must be addressed in a future endeavor. As demonstrated here, increased ET 

losses resulting from our improved forest parameterization led to decreased surface runoff and 

baseflow. It can be inferred that lower surface runoff and baseflow rates will likely decrease 

sediment and nutrient loads transported to the main channel. Additionally, the adjusted amount of 

biomass converted to residue every year reduces the source of fresh residue on soil surface 

available for mineralization and nitrification. Consequently, the forest parameterization tested in 

this study may resonate in less nitrate being transported to water bodies. The sediment loss may 

also be impacted by the improved forest parameterization, especially because the USLE’s cover 

and management factor is computed as a function of plant residue.  

Finally, by constraining the models with readily-available remote-sensing data we were 

able to decouple vertical water fluxes and processes (e.g., evapotranspiration, plant water uptake, 

soil evaporation, and canopy storage) from horizontal water fluxes (i.e., streamflow) in model 

calibration. This allowed us to simultaneously capture forest dynamics and in-stream processes 

reasonably well. Such a level of detail and representation of plant-water-energy relations would 

hardly be obtained through model calibration against gauged streamflow data only. Considering 

that the ultimate goal of watershed modeling studies typically is to draw scenarios analysis 

representing different real-world conditions, a model able to accurately represent terrestrial and 

in-stream processes can produce positive implications for watershed modeling applications. 
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FIGURES 

 

Figure 1. Location map of the selected forested watersheds. (A) Upatoi Creek watershed, dominated by loblolly 

pine, (B) Upper Santa Fe River watershed, dominated by slash pine.  
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Figure 2. Spatial distribution of land cover classes before and after land use reclassification. (A) Upatoi Creek 

watershed before land use and cover reclassification using NLCD 2016 as land use map, (B) Upatoi Creek 

watershed after land use and cover reclassification using NFTD to map loblolly and slash pine areas across the 

watershed, (C) Upper Santa Fe River watershed before land use and cover reclassification using NLCD 2016 as land 

use map, (D) Upper Santa Fe River watershed after land use and cover reclassification using NFTD to map loblolly 

and slash pine areas across the watershed. 
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Figure 3. Simulated ET and LAI for loblolly and slash pine versus MODIS estimates at Upatoi Creek watershed 

(Figures A to D) and Upper Santa Fe River watershed (Figures E to H) under M0 and MLAI+BM+ET model configurations. 
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Figure 4. Simulated total forest biomass versus USDA Forest Service forest biomass product estimates at Upatoi 

Creek (Figures A to C) and Upper Santa Fe River watershed (Figures D to F) under M0 and MLAI+BM+ET model 

configurations. (A-D) Biomass simulated by SWAT using default parameters in the plant database, (B-E) observed 

biomass for the UCW and USFRW derived from USDA Forest Service forest biomass, (C-F) biomass simulated by 

SWAT using previously calibrated plant-related parameters at both watersheds. 
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Figure 5. Model verification under different configuration setups against USGS observed daily streamflow data for 

different exceedance probability of simulated streamflow at the watershed outlet from 1999 to 2019 at Upatoi Creek 

at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted in log scale and therefore the 

discrepancy between simulated and observed streamflow is visually exaggerated. The statistical rating metrics 

displayed in the table refer to daily streamflow variability (not shown), and not to the exceedance probability curves. 

 

 

 

Figure 6. Hydrograph showing monthly simulated streamflow against USGS observed data for different model 

configurations setups from 1999-2019. 
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Figure 7. Hydrograph showing monthly simulated baseflow against estimated baseflow for different model 

configurations setups from 1999-2019. Observed baseflow is estimated via baseflow separation program. 
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Figure 8. Change in simulated water budget under different model setup configurations from 1999 to 2019 at Upatoi 

Creek and Upper Santa Fe watersheds. The pie charts illustrate the mean annual water balance at each watershed 

during the whole simulation period. 
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Figure 9. Observed vs. simulated daily streamflow in calibration and validation periods under traditional and multi-

facet calibration approaches. The upper hydrographs show the monthly discharge evolution in the period 1999-2019, 

while the bottom flow duration curves show exceedance probability of simulated streamflow at the watershed outlet 

from 1999 to 2019 at Upatoi Creek at Upper Santa Fe watersheds. The flow duration curve displayed here is plotted 

in log scale and therefore the discrepancy between simulated and observed streamflow is visually exaggerated. The 

statistical rating metrics displayed in the table refer to daily streamflow variability. 
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Figure 10. Percentage change of simulated statistical flow relevant parameters with traditional and multi-facet model 

calibration in relation to observed USGS daily streamflow data from 1999 to 2019 at Upatoi Creek and Upper Santa 

Fe River watersheds. Simulated streamflow time-series were fed into the IHA tool and compared against outputs of 

ecologically relevant parameters obtained through gauged streamflow data. 
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TABLES 

Table 1. Watershed characteristics. 

Hydrometeorological variable Upatoi Creek Upper Santa Fe 

Latitude 32.544, 32.61 N  29.964, 30.165 N 

Longitude -84.811, -84.442 W -82.247, -82.045 W 

Area (km2) 881.75 487.84 

Average mean daily temperature (ₒC) (1995-2018) 18.2 20.5 

Average annual precipitation (mm) (1995-2018) 1296 1326 

Mean annual potential evapotranspiration (mm) (1995-2018) 1268 1215.2 

Mean annual discharge (mm)* (2002-2018) 481 314 

Mean daily streamflow (m3/s) (1998-2018) 10.7 3.1 

 

 

Table 2. Land use and cover change after reclassification to consider loblolly and slash pine spatial distribution 

across the watersheds. 

 Upatoi Creek Upper Santa Fe 

Land use class 
% coverage - NLCD 

2016 

% coverage - Modified 

NLCD 

% coverage - NLCD 

2016 

% coverage - Modified 

NLCD 

Open Water 3% 3% 0% 0% 

Developed, Open Space 4% 4% 6% 6% 

Developed, Low Intensity 2% 2% 1% 1% 

Developed, Medium Intensity 1% 1% 0% 0% 

Developed, High Intensity 0% 0% 0% 0% 

Barren Land 0% 0% 1% 1% 

Deciduous Forest 14% 3% 2% 0% 

Evergreen Forest 30% 4% 40% 5% 

Mixed Forest 15% 3% 0% 0% 

Shrub/Scrub 9% 9% 6% 6% 

Herbaceuous 5% 5% 5% 5% 

Hay/Pasture 4% 4% 13% 12% 

Cultivated Crops 4% 4% 0% 1% 

Woody Wetlands 8% 2% 25% 6% 

Emergent Herbaceuous 

Wetlands 
0% 0% 0% 0% 

Slash Pine _ 0%  56% 

Loblolly Pine _ 57%  1% 
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Table 3. Description of input data and sources. 

 Data Description Source 

Model input 

data 

Topography 

National Elevation 

Dataset at 10 meters 

resolution 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Land use 2016 NLCD 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Soil 
Gridded Soil Survey 

Geographic (gSSURGO) 

United States Department of Agriculture (USDA) Geospatial Data Gateway 

(https://datagateway.nrcs.usda.gov/) 

 

Climate 

Daily precipitation, 

maximum/minimum 

temperature, solar 

radiation, wind speed 

PRISM climate group (http://www.prism.oregonstate.edu/),National Land Data 

Assimilation Systems (NLDAS) phase 2 

(https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php), National 

Solar Radiation Database (https://nsrdb.nrel.gov/) 

 

Atmospheric 

deposition 

Wet and dry deposition of 

nitrate and ammonia 

National Atmospheric Deposition Program (NADP) 

(http://nadp.slh.wisc.edu/) 

Model 

calibration 

Seasonal LAI 

4 days composite dataset 

at 500 meters pixel 

resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

(https://lpdaac.usgs.gov/products/mcd15a3hv006/) 

 

ET 

8 days composite dataset 

at 500 meters pixel 

resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

(https://lpdaac.usgs.gov/products/mod16a2v006/) 

 

Biomass 
Field-measured annual 

total trees biomass 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 

Florida and Alabama, respectively 

 

 Annual LAI 
Field-measured annual 

LAI 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 

Florida and Alabama, respectively 

 

 Streamflow 

Daily discharge from 

stations USGS 02321000 

(FL) and USGS 

02341800 (GA) 

USGS Water data  

(https://waterdata.usgs.gov/nwis) 

 

https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php
https://nsrdb.nrel.gov/
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Table 4. Model performance before and after the incorporation of previously calibrated parameter values regulating 

LAI and ET in SWAT. Values between parenthesis () represent model’s performance under its default settings. 

 Upper Santa Fe Upatoi Creek 

 Loblolly pine Slash pine Loblolly pine Slash pine 

Monthly LAI     

R2 0.48 (0.29) 0.21 (0.25) 0.66 (0.42) 0.2 (0.27) 

NSE 0.32 (-5) -0.37 (-3) 0.65 (-0.74) -3.1 (-0.56) 

PBIAS % 7 (-38) -16 (33) 3.9 (-38) -82.4 (-8.2) 

RMSE 0.52 (1.55) 1.15 (2) 0.58 (1.3) 2.3 (1.4) 
     

Monthly ET     

R2 0.65 (0.57) 0.45 (0.6) 0.75 (0.68) 0.34 (0.33) 

NSE 0.46 (-0.66) 0.38 (-0.60) 0.65 (0.43) -1.5 (0) 

PBIAS 17.5 (50) -6.5 (55) -17.8 (29.3) -66 (3.9) 

RMSE 24.9 (43.55) 31.90 (52.2) 23.36 (29.9) 42 (26.4) 
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CHAPTER 4: General conclusions and future directions 

Although forests can cover a significant portion of a watershed and largely interfere with 

the water cycling, forest growth and dynamics are usually not calibrated in watershed modeling 

studies. One of the most widely-applied watershed models, the SWAT model, has not been 

sufficiently tested in forested ecosystems and the importance of forests on modeled watershed 

hydrological responses remains unclear. SWAT incorporates a plant growth module in which most 

of the plant parameters describing growth and development are based on the physiology of annual 

crops. Studies such as (Yang and Zhang, 2016) have reported unrealistic parameter values 

pertaining to evergreen forests, deciduous forests, and mixed forests in SWAT’s plant database. 

Considering SWAT’s popularity as a hydrological assessment tool and the highly forested 

rate of the contiguous U.S., especially in the Southeastern regions, it is of utmost importance to 

understand the influence of forests in hydrological modeling studies. As part of the Floridan 

Aquifer Collaborative Engagement for Sustainability (FACETS) project (http://floridanwater.org), 

this study had access to a large dataset of field-measured data in forestry studies across the 

Southeastern United States. This allowed me to develop an enhanced parameterization of SWAT’s 

plant database for evergreen forests, more specifically for loblolly pine and slash pine trees. The 

improved model parameterization was tested in a wide-range of field-scale sites with varying soil 

types, climate conditions, and management practices in Alabama, Florida, and Georgia. The 

widely available remote-sensing derived data allowed me to expand the field-scale model 

parameterization to forested watersheds located in Florida and Georgia. The latter aimed to test 

the plausibility and validity of the proposed new model parameterization at the watershed-scale 

and its respective effects on water fluxes and water balance.   

http://floridanwater.org/
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In Chapter 1, the overall premise of the study and its motivation are presented. Here, I 

outlined three overreaching goals. These goals and their findings are summarized in the following 

paragraphs. 

Objective 1: Construct a SWAT plant database parameterization for loblolly and slash 

pine based on data derived from literature, field observations and remote sensing products  

This objective was addressed in Chapter 2 and consisted of the first step in improving 

SWAT’s skills in predicting plant growth and dynamics. Plant types representing loblolly pine and 

slash pine were added to the model’s plant database and physically-realistic parameter values were 

derived for each species based on field observations, published literature, and remote-sensing 

information. Regarding this objective, I found that: 

 Most of the parameters in SWAT’s plant database represent physical processes and can be 

obtained through field measurements (e.g., BMX_TREES, BLAI, ALAI_MIN, RDMX, 

BIO_LEAF); 

 Several parameters in SWAT’s plant database were out of a physically-realistic range for 

evergreen forests in the model’s default settings (e.g., excessively high BLAI for loblolly 

pine, unrealistically high BIO_LEAF for trees, low GSI value for both loblolly and slash 

pine trees); 

 Unrealistic values of parameters such as BIO_E and BIO_LEAF in SWAT’s default 

parameterization were determinant for the inaccurate simulation of tree biomass 

accumulation; 

 Unrealistic values for parameters such as BLAI and ALAI_MIN in the SWAT’s default 

parameterization were determinant for the inaccurate simulation of LAI development; 
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 An excessively low value of GSI in the plant database was determinant for the 

underestimation of evapotranspiration in the model’s default settings;  

 Remotely-sensed LAI reference data revealed to be a useful source of information to 

capture the seasonality of tree growth and allowed direct derivation of values for the 

parameters FRGRW1, LAIMX1, FRGRW2, LAIMX2, and DLAI. 

Objective 2: Calibrate and validate the SWAT model at the field scale basis for multiple 

sites across the southeastern U.S. for biomass production, LAI dynamics, and ET 

This objective was addressed in Chapter 2. Given the lack of spatially-distributed field-

measured data in forestry studies across large areas (e.g., watersheds), this study constructed field-

scale models to represent the sites from which forest observations (e.g., LAI, total biomass, canopy 

height) were taken. In the current study, a simple and yet robust approach was employed to 

delineate physically meaningful boundaries for each pine plantation field based on Marek et al. 

(2016). I found that: 

 SWAT has some structural limitations to simulate tree growth before maturity. This 

challenges the simultaneous calibration of LAI and biomass in SWAT for planted trees; 

 Through model parameterization, it is possible to overcome the limitation stated above; 

 Whenever possible, annual LAI and annual total biomass should be calibrated 

simultaneously in SWAT, instead of sequentially;  

 With the default parameters, SWAT largely underestimated ET and biomass. In regards to 

LAI, the default parameter values led to considerable overestimation of loblolly pine LAI 

and underestimation of slash pine LAI; 

 The improved model parameterization presented in this study can represent the growth and 

dynamics of loblolly pine and slash pine reasonably well in the Southeastern U.S.; 
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 The prediction of seasonal LAI, monthly ET, and annual total biomass improved 

remarkably under the new model parameterization;  

 A realistic representation of forest process in hydrological models significantly affected 

water balance components such as surface runoff, lateral flow, baseflow, aquifer recharge; 

 The improved model parameterization led to reductions in the soil water content, surface 

runoff rates, lateral flow, baseflow, and aquifer recharge. 

Objective 3: Transfer the site-level calibrated model parameters to nearby watersheds to 

investigate the impact of vegetation growth calibration on watershed-scale water balance 

This objective was addressed in Chapter 3 and served as a validation of the proposed 

improved forest parameterization presented in Chapter 2. Because of the increasing number of 

studies applying SWAT worldwide and the role played by key forest attributes such as LAI, and 

biomass in the model’s hydrological computations, it is fundamental to evaluate the effects of 

improved LAI and biomass at the watershed-scale and the model skills in forested watersheds. 

Additionally, watersheds are the basic land unit used for water management and thus needed to be 

included as test beds to show the relevance of the improved forest parameterization on water 

resources. In regards to this overreaching goal, the main findings were: 

 The model parameterization developed at the field-scale level is can be successfully 

transferred to nearby watersheds for improved simulations; 

 SWAT’s skills in predicting LAI, biomass, and ET at watershed-scale improved largely 

with the inclusion of previously calibrated biophysical parameter values; 

 The improved representation of forest dynamics led to improved model performance in 

simulating daily and monthly streamflow and monthly baseflow; 
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 The main improvement in simulated streamflow and baseflow comes from enhanced ET 

representation in the model; 

 Even without calibration of streamflow-related parameters, SWAT showed satisfactory 

performance in simulating daily streamflow when previously calibrated ET parameters at 

field-level were transferred to the watershed models; 

 Multi-facet model calibration of LAI, biomass, ET, and streamflow showed superior 

statistical performance and reduced uncertainties compared to a traditional model 

calibration of streamflow only; 

 The results achieved through the software IHA indicated that the enhancement of forest 

processes in the models yielded better agreement of ecohydrological parameters 

influencing soil moisture availability for plants, soil mineral availability, plant stress, 

nutrient exchanges between rivers and floodplains, and others, with observations.  

Future directions 

While this study contributes to knowledge relevant to a greater understanding of the 

importance of forest processes in hydrological modeling studies, there are some shortcomings, 

especially related to SWAT’s limitations in simulating tree growth before maturity, and lack of a 

longer record of field-measured LAI and biomass data. Some suggestions for future studies to 

further learn and improve the forest-water interplays in hydrological models are outlined below: 

 Gather field-measured data representing other forest types and tree species; 

 Expand the forest categorization and associated parameter values in SWAT’s plant 

database to include a broader range of forested ecosystems; 

 Explore other remote-sensing products such as GLEAMS (Miralles et al., 2011), and 

downscaled MODIS LAI presented by Ma et al. (2019); 



141 
 

 Replace the fixed minimum annual LAI (ALAI_MIN) value by a fraction of the daily LAI, 

so that a more realistic growing pattern can be represented in the model and better capture 

observations; 

 Include a leaf biomass algorithm in SWAT to differentiate LAI development from biomass 

accumulation and then allow for the simulation of tree growth prior to maturity; 

 Replace the total biomass to litter ratio by a fraction of the leaf biomass over a period of 

time to avoid litter fall on a single day (first day of dormancy); 

 Expand the applications described in Chapter 3 to water quality. Forests may affect 

sediment loss and nutrient cycling (especially the soil nutrient cycling) and this has to be 

explored in a future study. 
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