
Data Science with A Focus on Spatial Domain

by

Wenlu Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 12, 2020

Keywords: Natural Language Processing, Data Science, Spatial Data Science

Copyright 2020 by Wenlu Wang

Approved by

Wei-Shinn Ku, Professor of Computer Science and Software Engineering
Xiao Qin, Professor of Computer Science and Software Engineering

Anh Nguyen, Assistant Professor of Computer Science and Software Engineering
Yang Zhou, Assistant Professor of Computer Science and Software Engineering

Abstract

Data science focuses on solving data-driven tasks using a variety of techniques, including

but not limited to machine learning, neural networks, mathematics, and statistics. In this

article, I work on two tasks in the scope of data science: contextual query understanding

in natural language and data-intensive query processing. I especially cover those tasks in

spatial domain. For query understanding, I focus on natural language interface to databases

since data management systems are very powerful and widely used in industry. However, a

natural language interface (to databases) is often customized to a particular domain and can

hardly apply to other domains directly. I propose a transfer-learnable strategy to address

the domain transfer challenge and devise a complete system to translate natural language

questions to SQLs. I also design a natural language interface for spatial domain (SpatialNLI)

as the idiosyncrasies of spatial semantics pose greater challenges. For data-intensive query

processing, I focus on Spatial Skyline Query since the skyline problem suffers from quadratic

running time, and many researchers put a lot of effort into accelerating its running time. I

propose to address this challenge by parallelization and devise a scalable system that works

for both small-scale and large-scale input. I work on both query understanding and query

processing in an effort to assist users in making informed, data-driven decisions and take full

advantage of data.

ii

Acknowledgments

I’d like to thank my advisor, Dr. Wei-Shinn Ku, for his patient guidance and continuous

encouragement. I could not finish this dissertation work without the innumerable opportu-

nities he provided me in reaching my goal of pursuing research. I have learned a lot from

him and wish to be a scientist like him in the near future. I would also like to thank all my

committee members, Dr. Xiao Qin, Dr. Anh Nguyen, Dr. Yang Zhou, and my university

reader, Dr. Shiwen Mao. They gave me invaluable advice and assistance throughout the

entirety of my dissertation work.

Thanks to my parents for their endless love and support. Thanks to Dr. Zhitao Gong

and Dr. Honggang Zhao for all the valuable discussions, which gave me a lot of inspirations.

Thanks to Dr. Hua Lu and Dr. Haixun Wang for their advisement.

Thanks to Hai Pham, Yuanqi Chen, Ting Shen, Jingjing Li, and Chen Jiang, you are

excellent teammates!

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Overview . 2

2 Background . 5

2.1 Adversarial Mechanism . 5

2.1.1 Image Domain . 5

2.1.2 Text Domain . 7

2.2 Deep Linguistic Model . 8

2.2.1 Sequence-to-sequence Model . 8

2.2.2 Transfer Learning . 9

2.2.3 Natural Language Interface to Databases (NLIDB) 9

2.3 Data-Intensive Spatial Skyline Query Evaluation 10

2.3.1 Spatial Skyline Query . 10

2.3.2 GPU Multi-threading Scheme . 10

2.3.3 MapReduce Scheme . 11

3 Query Understanding: Natural Language Interfaces 12

3.1 Introduction . 12

3.2 Metadata . 15

3.3 Challenges of Question Understanding . 17

iv

3.4 Mention Detection and Resolution . 18

3.4.1 Mention Detection for Columns . 19

3.4.2 Column Mention Binary Classifier . 20

3.4.3 Adversarial Text Method . 24

3.4.4 Mention Detection for Values . 29

3.4.5 Mention Resolution . 31

3.5 Sequence to Sequence Translation . 31

3.5.1 Representation of Annotated Sequence 32

3.5.2 Sequence Translation Model . 33

3.6 Experimental Validation . 35

3.6.1 Dataset . 35

3.6.2 Mention Detection Performance . 36

3.6.3 Evaluation . 38

3.6.4 Ablation . 39

3.7 Generalization Problem Discussion . 40

3.7.1 Spatial Domain Generalization . 40

3.7.2 Cross-Domain NLI . 45

4 Data-Intensive Query Processing . 46

4.1 Spatial Skyline Query (SSQ) . 46

4.1.1 Preliminary . 46

4.1.2 Core Concepts . 47

4.2 GPU Multi-threading Scheme . 50

4.2.1 Multi-level Independent Region Group (MIRG) 50

4.2.2 Framework of the GPU-based Solution 53

4.2.3 Multi-level IRG-Based Parallel Filter 55

4.2.4 Independent Region Pivot Selection 58

4.3 MapReduce Framework . 58

v

4.3.1 Framework Overview . 59

4.3.2 Spatial Skyline Calculation . 61

4.3.3 Spatial Skyline Algorithm . 62

4.3.4 Independent Region Pivot Selection 63

4.4 Experiments . 64

4.4.1 Scalability with Cardinality . 65

4.4.2 Effect of Query Points . 67

5 Conclusion and Future Work . 69

vi

List of Figures

1.1 Outline . 3

1.2 Spatial data categorization . 4

2.1 The adversarial images (second row) are generated from the first row clean images

with the predicted label and confidence below the image [1]. 5

2.2 The lower image in each column is the difference between the adversarial and

clean image, illustrated in heatmap. Below each column is the predicted label

(probability in parenthesis) [1]. 7

2.3 Adversarial texts generated from word-level model [1]. 8

3.1 A natural language question and its corresponding SQL against the film table

(Table I). 13

3.2 A natural language question and its corresponding SQL against the census do-

main (Table II). 13

3.3 Framework overview with mention detection of column “launch date” as an example. 19

3.4 A binary classifier to detect whether a table column is mentioned in the question. 21

3.5 Convolution Neural Network in Word Embedder 22

3.6 The target phrase should be the most influential towards the prediction. 25

vii

3.7 Use gradient of loss with respect to each word for inferring column’s mention-

ing term. X-axis represents the words in a natural language question, Y-axis

represents influential level I of each word using `2-norm, and X-label is its cor-

responding SQL. Furthermore, since we use both word level and character level

inputs, we plot the gradients with respect to word embedding and character em-

bedding separately, both contributing to the model’s output in a coordinated

way. 29

3.8 Representation of Annotated Sequence . 33

3.9 Examples in WikiSQL defined in Figure 3.7 . 37

3.10 Three examples show the expressiveness of spatial semantics [2]. 41

3.11 Spatial Comprehension Model . 43

3.12 Spatial Comprehension Model Training Samples 44

3.13 Two types of queries (SQL and Lambda expression) with corresponding Natural

language questions. 45

4.1 An example of DR(p, {q1, q2, q3}) in a 2 -dimensional space. 48

4.2 An example of Independent Regions in a 2 -dimensional space. 48

4.3 L1 independent region filter. 50

4.4 Using p8 as pivot while expanding L1IRG . 51

4.5 Using p10 as pivot while expanding L1IRG . 51

4.6 Using p9 as pivot while expanding L1IRG . 51

4.7 L2IRG filters with varied pivots. 51

viii

4.8 An overview of parallel spatial skyline processing using GPU. 52

4.9 An example of the space partition tree. 55

4.10 A simplified example of pivot selection. 58

4.11 An overview of the parallel spatial skyline processing using MapReduce. 59

4.12 An example of Independent Regions in a 2 -dimensional space. 62

4.13 Run-time performance varying dataset cardinality. 66

4.14 Spatial Skyline execution time varying dataset cardinality. 66

4.15 Run-time varying number of query points. 67

4.16 Spatial Skyline execution time varying number of query points. 67

ix

List of Tables

I An example of relational table in film domain. 13

II An example of relational table in census domain. 13

III Mention detection using adversarial text method. 37

IV Comparison of models. lf, qm, ex represent logical forms, exact query match,
and query execution accuracy, respectively. Performances on the first block are
copied from the corresponding papers. “–” and “+” mean removing or adding
one component from our best approach respectively for ablation. *We report the
results of content sensitive TypeSQL for fair comparisons. 39

V "Recovery" performances on WikiSQL dataset. Accbefore (Accafter) denotes query
match accuracy before (after) annotation recovery. 40

x

Chapter 1

Introduction

1.1 Motivation

Virtual assistants have played an essential role in people’s daily life, such as Siri, Alexa,

Google Assistant, and Cortana. Users usually rely on virtual assistants to answer daily basis

questions, such as “What is the weather today?” or “How many calories are in a doughnut?”.

The success of such natural language interfaces inspired us to improve our productivity at

home and even at work just with using electronic devices. A significant gap in existing virtual

assistants is limited assistance in professional working environments. A virtual assistant can

not answer complex queries that rely on searching from databases or a knowledge base. For

instance, Business/Data analysts could not largely benefit from virtual assistants due to the

high complexity in data analysis. On the other hand, data analysts are usually overwhelmed

with more data they could possibly analyze manually. Large-sale data is often stored in

databases, and it requires certain knowledge to query databases. However, it is impossible

for data analysts to possess all the different types of query languages (e.g., SQL for DBMS

and JS for MongoDB), which motivated the development and research on natural language

interfaces for more complex tasks.

When it comes to natural language interface, the model is often customized for a par-

ticular domain. How to overcome the complexity and expressiveness of natural languages so

that a single model can support a variety of domains is an unaddressed challenge. Recent

advances in deep learning-based methods provide unprecedented ability to understand an

online query semantically, but they still suffer from limited transfer learning ability. In this

article, I will focus on ransfer-learnable natural language interface for professional environ-

ments, using techniques inspired from adversarial mechanism.

1

Another major challenge in data science is efficient query processing. Most of user-

friendly applications expect the query results to return in real-time. On the contrary, as

data accumulates on a daily basis, it is inevitable to delay the query time with a large-scale

candidate set or large search region (in Spatial domain). Therefore, I not only work on query

understanding, but also devote my efforts to query efficiency acceleration. Taking Spatial

Skyline Query as an example, this type of query requires comparing each element with ev-

ery other element in the search region, which takes O(n2) to compute. A lot of researchers

work on the skyline problem since reducing processing time for quadratic problems is quite

challenging. When it comes to large-scale input, traditional query evaluation strategy fails

to address the query efficiently. I propose a novel concept called “Independent Region” to

partition the search region and successfully run the query evaluation in parallel. I pro-

pose to improve query efficiency by utilizing GPU multi-threading scheme and distributed

MapReduce framework.

1.2 Thesis Overview

Motivated by the challenges mentioned in Section 1.1, I tackle two sub-tasks in data

science 1) query understanding: natural language interface to databases and 2) data-intensive

query processing.

Data Science is an inter-disciplinary field of study that employs theories and tech-

niques from various domains, including but not limited to mathematics, machine learning,

databases, and neural networks [3]. Adversarial mechanism is employed in query understand-

ing, and the whole query understanding system is build upon neural network techniques.

Data-intensive query processing can be treated as the back-end of query understanding in-

terface, and falls into the scope of data science.

In summary, my work on data science covers techniques drawn from three domains: 1)

adversarial mechanism; 2) neural networks; and 3) parallel computing, and focuses on the

tasks of query understanding and query processing in the scope of data science. The specific

2

task for query understanding is formalized as a natural language interface. Moreover, a large

portion of my research overlap with spatial challenges, and I will cover the aforementioned

research topics in spatial domain.

Adversarial
Mechanism

Query Understanding
Interface

Data-Intensive
Query Processing

Interesting Features
of

GeoSpatial Domain

Spatial Data Science System

Query Understanding
Interface

Transfer Learning NLI

Figure 1.1: Outline

GeoSpatial/Spatial Domain In this article, “spatial data” refers to data that are geo-

graphically referenced or equipped with location/place markers. Spatial data is able to be

acquired at a daily basis and of high value, such as online spatial queries, location traces of

smartphones, and demographic data from the census bureau. For example, Spatial Skyline

Query (SSQ) is a spatial data query since the inputs are geographic coordinates.

In particular, spatial data can be categorized as the following

3

Figure 1.2: Spatial data categorization

4

Chapter 2

Background

2.1 Adversarial Mechanism

Adversarial examples have been extensively studied since the first discovery [4]. Adding

a small intentionally crafted perturbation to a clean example might fool a deep model to

make a false prediction, while the small perturbation causes subtle visual differences to

human. Taking Figure 2.1 as an example, the adversarial perturbations can be treated

as background noises for human, but they are able to trick the deep model into changing

predictions with very high confidence. The idea behind this phenomenon is that the carefully

chosen perturbations are very influential to the prediction.

Figure 2.1: The adversarial images (second row) are generated from the first row clean images
with the predicted label and confidence below the image [1].

2.1.1 Image Domain

In this dissertation, I focus on white box test time attack, which means I have access

to the trained model and rely on altering the input to attack the model. The definition of

adversarial attack at test time is shown below

5

Definition (Adversarial attack at test time)

Given

a classifier f : Rn → y,

a carefully chosen small perturbation δx,

An adversarial sample for x ∈ Rn is

xadv = x+ δx

where f(x) 6= f(xadv)

There are three possible directions to generate adversarial examples (the loss function

is denoted as ∇L)

1. Fast Gradient Method. This line of works try to modify the input towards the direction

where loss increases. For example, Fast Gradient Sign Method (FGSM) [5, 6] add a

perturbation

δx = εsign∇L

and Fast Gradient Value Method (FGVM) [7] add a perturbation

δx = ε∇L

where ε is a scalar to control the scale of the perturbation.

2. DeepFool. DeepFool [8] for binary classifier searches the optimal direction in an itera-

tive manner until the prediction of f is changed. Theoretically, the optimal purterba-

tion for each iteration is

δx = − f(x)

||∇f(x)||22
∇f(x)

3. JSMA. Jacobian Saliency Map Attack (JSMA) [9] calculates the Jacobian-based saliency

map, and perturb one element at a time. The chosen element has the highest saliency

value, which is defined by

6

s(xi) =

0 if st < 0 or st̄ > 0

st|st̄| otherwise

st =
∂ft(x)
∂xi

, st̄ =
∑

t̄6=t
∂ft̄(x)
∂xi

where xi is one element of the input, st is Jacobian value of the target label, and st̄ is

the sum for non-target labels.

Figure 2.2 shows an example using different adversarial algorithms mentioned above.

Figure 2.2: The lower image in each column is the difference between the adversarial and
clean image, illustrated in heatmap. Below each column is the predicted label (probability
in parenthesis) [1].

2.1.2 Text Domain

Adversarial attacks are extensively studied on the image domain since the image space

is smooth. Even the text domain is a discrete space, altering a few words or characters of an

input sentence might also fool the deep model with high confidence. Several adversarial text

attacks [10, 11, 12] follow a similar strategy: select characters, words or phrases that are the

most influential towards the predictions, then perturb them while monitoring the success of

adversarial example generations.

7

The gradient of loss function has been treated as a promising direction for searching

adversarial examples. For example, [10] uses Fast Gradient Method [13] to identify textual

items that are important for prediction on a character-level DNN, and [1] uses Fast Gradient

Method combined with kNN search in the latent word embedding space to select replacement

candidates. For example, in Figure 2.3, a few most influential words (colored words) are

replaced by their nearest neighbours in the latent word embedding space, and the predicted

sentiment of new sentence is changed from negative to positive. The generated adversarial

text is still a negative review but is able to trick the model to make a false prediction.

Text Prediction

Clean text
One of the most boring movies I’ve ever seen ... Most of the

Negativeexterior scenes take place at night, so one can’t even enjoy
well-lit sights of Paris! I gave up after an hour and ten minutes.

Adv text
One of the most bored movies I’ve ever seen ... Most of the

Positiveexterior scenes take place at night, so one can’t even enjoy
well-lit sights of Paris! I gave up after an hour and ten minute.

Figure 2.3: Adversarial texts generated from word-level model [1].

The unique feature of text domain is discreteness, which means the adversarial attacks

for image domain can not apply directly. An intuitive approach is to convert vocabulary to

the latent word embedding space; However, the perturbation is usually hard to map back to

the discrete text space.

2.2 Deep Linguistic Model

2.2.1 Sequence-to-sequence Model

Sequence-to-Sequence (seq2seq) learning [14] has achieved excellent performances in

semantic parsing and sequential learning. Attention mechanism [15], copying mechanism [16],

and pointer networks [17, 18] are able to further improve the performance of sequential

learning using seq2seq model.

8

2.2.2 Transfer Learning

Inspired by recent discoveries in multilingual tasks, a new theory is proposed that differ-

ent languages or even different domains can share the same latent space after training. [19]

shows the effectiveness of cross-lingual pre-training on cross-lingual classification and ma-

chine translation. [20] achieves zero-shot cross-lingual transfer using pre-trained model under

both monolingual and cross-lingual settings. [21] claims a single Neural Machine Translation

(NMT) model is able to to translate between multiple languages as long as an artificial token

is prefixed to the input. Such idea inspired us to device a cross-domain natural language

interface using a single model.

2.2.3 Natural Language Interface to Databases (NLIDB)

The objective of natural language interface to databases is to translate natural language

questions to executable query languages so that users can access databases without specific

knowledge. [22] first introduces the task of natural language interfaces to databases using

specific examples. Existing development of natural language interface to databases falls into

the following categories:

1. The first line of work relies on semantic parsing techniques [23, 24, 25] to process

natural languages. It is worth noticing that several previous works [26, 27] try to

address the cross-domain challenge; However, such a challenge remains unsolved due

to the idiosyncrasies of different domains.

2. The second line of work uses sequence-to-sequence translation to translate a natural

language question to query languages [28, 29, 30].

3. Another line of work adopts the encoder-decoder architecture but converts the input to

a sequence of graph construction actions [31] or abstract syntax tree generations [32].

Closest to our proposed work is [33], which employs a sketch-based approach that rep-

resents an SQL as a template with slots, and the model predicts values from a limited

9

candidate set to be filled in each slot. This is different from our work that focuses on an-

notation and does not restrict SQL to a particular template-based form. Another close

work is TypeSQL [34] that enriches the inference of columns and values using a domain-

specific knowledge-based model that searches five types of entities on Freebase, an extra

large database, which is in contrast to our work, which does not rely on extra database

knowledge.

2.3 Data-Intensive Spatial Skyline Query Evaluation

2.3.1 Spatial Skyline Query

Spatial Skyline Query (SSQ) [35] is a special type of skyline query where dynamic

spatial attributes are taken into consideration. A Branch-and-Bound Spatial Skyline (B2S2)

algorithm and a Voronoi-based Spatial Skyline (V S2) algorithm were proposed for spatial

skyline evaluation [35]. B2S2 requires a pre-structured R-tree and V S2 requires a Voronoi

diagram over the input. None of the aforementioned algorithms can address the spatial

skyline query in parallel or in a distributed manner to accelerate the evaluation.

2.3.2 GPU Multi-threading Scheme

GNL [36] and GGS [37] algorithms were first proposed to address spatial skyline queries

in parallel using GPU. To further improve the performance, a recursive point-based parti-

tioning strategy was proposed in [38, 39]. Since the dynamic tree that organizes the pivot

points is shared among all the processes, a new algorithm SkyAlign [40] was proposed using a

global and static partitioning scheme, which uses controlled branching to reduce the number

of object comparisons.

To reduce the number of object comparisons introduced by inefficient partitioning, I

propose to apply an independent-group-oriented partitioning scheme. Since the spatial dom-

inance of objects in an independent group does not rely on any objects outside the independent

group, all the object comparisons in an independent group can be processed in parallel.

10

2.3.3 MapReduce Scheme

A number of advances have been proposed to evaluate the general skyline queries in a

distributed and/or parallel manner. Most of them are based on data partitioning [41, 42],

such as random data partitioning [43], grid-based data partitioning [44, 45, 46], angle-based

data partitioning [47], and hyperplane-based data partitioning [48]. Moreover, a variety of

MapReduce-based parallel solutions have been proposed for skyline queries [49, 50, 51, 52,

53, 46]. However, none of the aforementioned partitioning strategies or MapReduce schemes

could address the spatial skyline problem directly. Therefore, I propose an independent-

region-based partitioning strategy and a parallel scheme for spatial skyline evaluation.

11

Chapter 3

Query Understanding: Natural Language Interfaces

Database management systems are powerful because they are able to optimize and

execute queries against databases. However, when it comes to NLIDB (natural language

interface to databases), the entire system is often customized for a particular database.

Overcoming the complexity and expressiveness of natural languages so that a single NLI can

support a variety of databases is an unsolved problem. In this chapter, we show that it is

possible to separate data specific components from latent semantic structures in expressing

relational queries in a natural language. With the separation, transferring an NLI from one

database to another becomes possible. We develop a neural network classifier to detect data

specific components and an adversarial mechanism to locate them in a natural language ques-

tion. We then introduce a general purpose transfer-learnable NLI that focuses on the latent

semantic structure. In this chapter, we focus on relational database management systems

(RDBMSs) and devise a deep sequence model that translates the latent semantic structure

to an SQL query. Then we discuss the generalization problem and propose strategies to

cover Spatial domain and cross-domain settings.

3.1 Introduction

Since most of the data is stored and managed in databases, a special type of NLI is

devised specifically for databases, which is natural language interface to databases (NLIDB).

By definition, an NLIDB translates a natural language question to an database executable

query (e.g., SQL). Since most of the commercial data is relational, we focus on relational

databases first.

12

Nomination Actor Film_Name Director
Best Actor in a Leading Role Piotr Adamczyk Chopin: Desire for Love Jerzy Antczak

Best Actor in a Supporting Role Levan Uchaneishvili 27 Stolen Kisses Nana Djordjadze
.

Table I: An example of relational table in film domain.

Question q Which film directed by Jerzy Antczak did Piotr Adamczyk star in ?

SQL s SELECT Film_Name WHERE Director = “Jerzy Antcza” AND Actor = “Piotr Adamczy”

Annotated Which c1 [film] c2 [directed by] v2 [Jerzy Antczak] did v3 [Piotr Adamczyk] c3 star in ?Question qa

Annotated SELECT c1 WHERE c2 = v2 AND c3 = v3SQL sa

Figure 3.1: A natural language question and its corresponding SQL against the film table
(Table I).

County English_Name Irish_Name Population Irish_Speakers
Mayo Carrowteige Ceathru Thaidhg 356 64%
Galway Aran Islands Oileain Arann 1225 79%
.

Table II: An example of relational table in census domain.

Question q How many people live in Mayo who have the English name Carrowteige ?

SQL s SELECT population WHERE County = “Mayo” AND English_Name = “Carrowteig”

Annotated
c1 [How many people live in] v2 [Mayo] who have the c3 [English Name] v3 [Carrowteige] ?Question qa

Annotated SELECT c1 WHERE c2 = v2 AND c3 = v3Question sa

Figure 3.2: A natural language question and its corresponding SQL against the census
domain (Table II).

Figure 3.1- 3.2 show two natural language questions against two relational tables from

different domains. A notable challenge in translating natural language questions to query

language is to extract related database columns and values from natural language.

In Figure 3.1, the term “star in” is actually a mention of the Actor column in Table I;

In Figure 3.2, “how many people live in” mentions column Population in Table II. As we can

observe, the variations in natural language make it a significant challenge to map the natural

language to a table column directly. The expressiveness of natural language is very powerful

13

and sometimes a column entity is only mentioned implicitly. For instance, Figure 3.2 is

querying the population of a county, but the column “population” does not appear in the

question explicitly. In summary, due to the idiosyncrasies and variations of natural language,

it is non-trivial to translate natural language questions to query language.

The most significant challenge is the generalization ability. It is possible to build an NLI

for a particular domain but a general purpose NLI is hard to device. Our strategy to solve

the generalization problem is inspired by the following observations: The two questions in

Figure 3.1 and 3.2 are asking about two different domains, and it seems they do not share

too much similarities in terms of syntax and lexicons. However, it is quite counter-intuitive

that the final SQLs are exactly the same (if we replace the column names and values by

placeholders such as c1 and v1). We argue that the underlying logic or the semantic structures

of the two questions are the same, and the different appearances are due to natural language

idiosyncrasies for a specific domain of data.

Motivated by the aforementioned observations, we propose to improve transfer ability by

separating domain-specific elements and focus on the latent semantic structure in a natural

language question. The domain-specific elements include the schema of the data and the

usage of natural language specific to the schema of the data. Given the schema of a domain

(e.g., Table II census domain) and potentially a knowledge base about the schema (e.g., “how

many people live in” means “population”), we may strip domain-specific components from a

natural language question, and what remains is the latent semantic skeleton that is common

to relational queries or relational algebra. We then use a sequence-to-sequence translation

model to convert it into an SQL query.

We propose a framework consisting the following three parts:

1. Converting a natural language question q to its annotated form qa;

2. Using a sequence-to-sequence model to translate qa to an annotated SQL sa;

3. Converting the annotated SQL sa to a regular SQL s.

14

Figure 3.1-3.2 illustrate the above steps, with two examples represented in the form of

(q, qa, sa, s). We use placeholder ci to denote the i-th column of a database table and vi to

denote a value that is likely to belong to the i-th column. For example, the term “directed

by” in Figure I is annotated as c2 since it is a mention of the 2nd column of the database

table, and “Jerzy Antczak” is annotated as v2 since it is a value of the 2nd column. This

simple idea is powerful because it reveals that the two different questions in Figure 3.1 and

3.2 have exactly the same structure SELECT c1 WHERE c2 = v2 AND c3 = v3.

The first step (annotating a question q to reveal mentions of database columns and

values) is the most challenging step. The second step involves a customized neural network

sequence-to-sequence model, which translates a question stripped of domain-specific compo-

nents to an SQL. The third step (converting an annotated SQL sa back to a regular SQL s)

is deterministic. Thus, in the rest of the paper, we only focus on the first and the second

step.

3.2 Metadata

Metadata plays an essential role in RDBMSs. Given the metadata about a database,

RDBMSs can optimize and execute queries against the database. Besides the metadata

used in RDBMSs, NLIDBs need extra metadata to understand natural language expressions

specific to a database. In this section, we describe the metadata we use in our work.

Database schema: Schema is part of the metadata for RDBMSs. The database schema

includes, among other things, the definition of the columns of a database table. For example,

the schema of the database in Table I is defined as C = {Nomination, Actor, Film Name,

Director}, where each column is further described by its data type and other information.

Database statistics : In RDBMSs, database statistics are important for query optimiza-

tion. For example, understanding the distribution of data in each column will enable the

RDBMSs to optimize the order of a join. For NLIDBs, we need statistics of the database to

15

understand natural language queries against the database better. For example, in Figure 3.1,

for “Piotr Adamczyk”, we need to determine that it is likely a mention of a value in the Actor

column. Specifically, we construct and leverage database statistics that enable us to measure

how likely a phrase is related to database column c for all c ∈ C. In our case, we create

a language model for each column. More specifically, we use pre-trained word-embeddings

to decide if a particular term belongs to a particular column (the idea is that if a term is

related to a column, its embedding should be close to the word-embedding space of values

in the column).

Natural language expressions specific to a database: It is not trivial to know how people

refer to things embodied by a database. Terms such as “actor’ and “actress” may refer

to the same column through using some simple techniques, such as synonym detection.

However, understanding that “how many people live in” is a mention of “Population” may

need paraphrasing, which is a problem that has not been solved. Ideally, if we have a general

purpose ontology that tells us everything about how language is used to describe any entity

and its features, we might simply incorporate the ontology. However, such an ontology does

not exist. In this work, we introduce a new mechanism that allows us to manually introduce

the knowledge of the natural language for a specific database. First, we collect database-

specific natural language metadata. Specifically, for a column c, we collect phrases Pc that

mentions c and expressions Dc that describe a column. Later, these phrases and expressions

are used to match part of the question to provide extra candidates of mention (defined in

Section 3.3) of column in addition to the main algorithm (Section 3.4.1). For example, for

c = “Population” we may collect Pc = {how many people live in New York City, density

of New York City, ...}, and for c = “Price” we may collect Dc = {soar, level off, dive, ...}.

Later, our method knows in a question “density of” and “level off” could mention the column

“Population” and “Price” respectively. In this way, our approach provides a direct way to

inject this minimal knowledge to our model, which, by the nature of merely providing extra

candidates, is optional and orthogonal to the rest of the model.

16

3.3 Challenges of Question Understanding

Our goal is to understand the underlying semantic structure of a natural language

question against a database. The first step towards revealing the semantic structure is to

detect the mentions of database columns and values in the question.

Before diving into the details, we define a term as a continuous span of words in the

question. If a term refers to a database column, we say the column is mentioned by the

term. For example, in question q = [Which, film, directed, by, Jerzy, Antczak, did, Piotr,

Adamczyk, star, in], the continuous span q[3, 4]=[directed, by] is the mention of column

Director. A term may also mention a column value. For example, [Piotr, Adamczyk] could

be a mention of a value in either the Director or the Actor column, as both columns contain

people names. Without context, a term could be a mention of multiple columns or values in

the database.

Detecting and resolving mentions are non-trivial tasks. Some mentions of database

columns and values can be detected exactly as they appear in the questions. However,

in many cases, mention detection relies heavily on the context. Below, we enumerate five

challenges that we need to address in detecting and resolving mentions.

1. Non-exact matching. In the question Who is the best actress of year 2011? “best

actress of year 2011” mentions the database column “best actor 2011”. Clearly, we

cannot rely on exact string matching to detect mentions.

2. Paraphrases. For example, the paraphrase “how many people live in ...” could be a

mention of the “Population” column. We need to understand whether an expression is

a paraphrase of another expression,

3. Implicit mentions. Consider the question in Figure 3.2: How many people live in

Mayo who have the English Name Carrowteige? Here, “Mayo” is a county, but the

question does not mention the database column County explicitly. We need to infer

the column from the question, the database schema, and the database statistics.

17

4. Mentions of counterfactual values. For example, one may ask “When was Joe

Biden elected U.S. president?” against a database table of U.S. presidents. But “Joe

Biden” is not in the database (at least not yet). Despite that, the question is not less

valid than “When was Barack Obama elected U.S. president?”, and we need to handle

both situations.

5. Resolutions. In the question “Which film directed by Jerzy Antczak did Piotr Adam-

czyk star in?” “Jerzy Antczak” and “Piotr Adamczyk” could refer to either Director or

Actor. We therefore need to infer the correct resolution depending on the syntax, or

the context of the question.

We address the above challenges in Section 3.4. Then, after we obtain an annotated

query qa, we describe a sequence translation-based approach to convert qa into an SQL

statement in Section 3.5.

3.4 Mention Detection and Resolution

In this section, we focus on the first step, namely converting a natural language question

q to its annotated form qa through mention detection and mention resolution. We propose

a novel adversarial machine comprehension model for this purpose. It consists of three

components that address five challenges we discussed in Section 3.3.

• To detect mentions for columns (Section 3.4.1), we propose a machine comprehension

binary classifier (Section 3.4.2) and an adversarial text method (Section 3.4.3) to ad-

dress column-related mention detection challenges (challenges 1, 2, and 3) that cannot

be solved by edit distances and semantic distances.

• We propose a binary classifier (Section 3.4.4) to address value-related mention detection

(challenge 4).

• We introduce a method (Section 3.4.5) for mention resolution (challenge 5).

18

3.4.1 Mention Detection for Columns

Which c1 [movies] were scheduled c2 [to release on] v2 [January 10 2019]

Attention

Part 3

Part 2

Part 1

Which movies were scheduled to release on January 10 2019

I
Binary

Classifier

SELECT c1 WHERE c2 EQUAL v2 <eos>

SELECT movie WHERE Release Date EQUAL January 10 2019

Positive
Prediction

RNN

RNN

c

q

S

Sa

qa

Figure 3.3: Framework overview with mention detection of column “launch date” as an
example.

We describe a system that addresses three challenges described in Section 3.3, namely,

challenge 1 (non-exact matching), challenge 2 (paraphrases), and challenge 3 (implicit men-

tions). The 1st and the 2nd challenges ask whether a particular column is mentioned in the

question, and the 2nd and the 3rd challenges ask where in the question the mention occurs.

We propose to handle the task by first detecting whether a column is mentioned and then

finding the term in the question that mentions the column. More specifically, we do the

following:

1) In Section 3.4.2, we develop a Column Mention Binary Classifier. For a question q and

each column c in the database table, the classifier predicts whether c is mentioned or not

in q. We devise the classifier as a machine comprehension model based on deep neural

network on top of both word- and character-level representations in order to address non-

exact matching, i.e., matching with semantic (different words of similar meanings) and/or

19

lexical (character-level syntax) differences (1st challenge). The deep neural network is a bi-

directional attention flow [54]. With the metadata (Section 3.2), our approach also supports

complicated natural language paraphrases (3rd challenge).

2) In Section 3.4.3, if the classifier determines that a column is mentioned by the question, we

will identify the term that constitutes the mention. Our approach is motivated by the idea

behind Adversarial Examples [4, 13]: We look for part of the input that is most influential

in the classifier’s decision. In practice, we calculate each word’s influential level towards

the final prediction using fast gradient method (FGM) [13], which identifies the gradient

direction that is proportional to dL/dq (loss gradient with q as the input). In doing so,

our approach leverages the classifier’s ability to handle complex phrases (the 2nd challenge),

and measuring the scale of dL/dq also handles cases where the term in question is missing

(the 3rd challenge). As an extra benefit, using the adversarial method solely relies on the

information learned in the aforementioned classifier and does not need extra supervision for

training.

Figure 3.3 gives an example. We have a question q = Which movies were scheduled

to release on January 10, 2019? Now, the classifier predicts that column “Release Date” is

mentioned in the question. We then want to identify the term in the question that actually

mentions “Release Date”. We do this by searching for a continuous span that, if slightly

changed, changes the prediction the most. Finally, to train this part, we need data in the

form of (question, SQL query) pairs plus metadata including database schema and natural

language expressions specific to a database as described in Section 3.2.

3.4.2 Column Mention Binary Classifier

We train a binary classifier taking a question q, a column c ∈ C, and predict whether

c is mentioned in q. We treat q and c as sequences of words, i.e., q = [wq
1, w

q
2, · · · , wq

n] and

c = [wc
1, w

c
2, · · · , wc

m]. Also, we use q[i, j] = [wq
i , ..., w

q
j] to denote a continuous span of words

in q.

20

Which movies were scheduled to release on January 10 2019 Release Date

+

Natural language question column

t-1 t1 2 3 … … n

Attention for column step t Binary

Word Embedder RNN for question RNN for column Bi-directional RNN
with attention

Attentive Workflow
(show for one step)

Multi-layer
Perceptron

“which”

Word Embedder for “which”

w h i c h

Part 1 Part 2 Part 3

conv

Figure 3.4: A binary classifier to detect whether a table column is mentioned in the question.

We go through words in c one by one. For each word w, the attention mechanism gets

a weighted combination of words in q, which is then combined with w and fed to an RNN.

The model structure is shown in Figure 3.4, the classifier is an end-to-end sequence model

that can be logically decomposed into three parts:

1. A word embedder that converts a word into a vector that encodes both its semantics

and syntax;

2. An RNN(LSTM) sequence model for modeling questions and a bi-directional RNN(LSTM)

sequence model for columns. They consume the sequence generated by the word em-

bedder, and produce a latent representation at each time step.

3. An extra RNN(LSTM) sequence model with attention mechanism for the col-

umn. The attention mechanism is used to combine words in question q for column c’s

word at each step. Its output is aggregated using a multi-layer perceptron that makes

predictions.

The network models the information from q and c jointly. The classifier is trained end-to-end

using back-propagation.

21

w h i c h

Average

Convolution with Width 3

Character
Representation
Matrix

Word as sequence of characters

(a) Feature from Convolution with width 3

i c h

(b) Zoom in for last three characters

Figure 3.5: Convolution Neural Network in Word Embedder

(i) Word Embedder The word embedder emb(w) takes a word w and outputs an em-

bedding (representation) of this word. As illustrated in the zoomed-in view on the left in

Figure 3.4, the embedder contains two parts that encode semantic and lexical information,

respectively: Eword(w), which is regular word embedding, and Echar(w), which is a character

level model that takes the sequence of characters in w as input and produces representation

through a one-dimensional convolution. The outputs of the two parts are concatenated to

produce the final output emb(w) = [Eword(w),Echar(w)].

While the first part Eword(w) is straightforward, the character level model Echar(w) is

worthy of more elaboration. As in Figure 3.5, we denote w as a sequence of characters w =

[a1, a2, · · · , a|w|]. We introduce character embedding, denoted as EmbChar(ch), which maps

a character ch to a vector. Applying character embedding on each of the characters yields a

character representation matrix A where the i-th row Ai is EmbChar (aj). Next, we use a one-

dimensional convolution of width k to project each slice (A1:k, A2:k+1, . . . , A|w|−k+1:|w|) of A to

a vector, and we compose these vectors using element-wise average to get the output, denoted

as Echar
k (w). For the convolution, we pad with zeros so that at least one slice is available.

Figure 3.5 (a) shows the whole process with a one-dimensional convolution of width k = 3.

Figure 3.5 (b) highlights the application of convolution on the last slice (last k words). Note

that the projection is a linear one and is shared across different slices. To capture character

22

level syntax with different granularity, we apply the aforementioned process with different

convolution width (in practice we get Echar
k (w) for k ∈ {3, 4, 5, 6, 7}) and concatenate these

results to form Echar(w). Although different convolutions have their own projection, the

character embedding EmbChar (by definition the character representation matrix) is shared

among convolutions.

(ii) Sequence Models For question q, we stack a multi-layer recurrent neural network

(RNN) on top of the word embedder, with LSTM cells (any type of RNN cell would work

and we are using LSTM as an example) to produce results at each time step (for each word

in the question). Specifically, let x(l)
i be the input to the l-th layer in the i-th position. The

hidden state and memory of the forward LSTM are computed as

[
hi

(l), Ci
(l)
]
= LSTM

(
xi

(l), hi−1
(l), Ci−1

(l)
)

The input of each layer is computed as

xi
(1) = L1(emb(wq

i))

xi
(l+1) = L(l+1)

(
hi

(l)
)

where Ll(x) = W0
(l)x+ b0

(l) is an affine transformation before each layer of RNN to keep the

dimension consistent.

For column c, we apply a separate sequence model of the same architecture but different

parameters. It stacks on top of the word embedder, which applies to each word wc
i (i = [1..m])

in column c.

(iii) Sequence Model with Attention Mechanism We denote the top-layer hidden

states produced by the sequence models described in Part 2 for question q and column c as

Sq = [sq1, s
q
2, · · · , sqn]

23

Sc = [sc1, s
c
2, · · · , scm]

We use a bi-directional one-layer LSTM sequence model on top of Sc with attention

mechanism over questions Sq. At each step t (1 ≤ t ≤ m) for column c, the forward LSTM

is computed as

−→
d 0 =

−→
C 0 = 0

−→z t =

 sct

Sq−→α T
t

[−→
d t,
−→
C t

]
=
−−−−→
LSTM

(−→z t,
−→
d t−1,

−→
C t−1

)
−→e t = vTTanh(W1S

q + (W2s
c
t +W3

−→
d t−1 + b)⊗ en)

−→α t = softmax(−→e t)

where W0, W1, W2, W3, v, and b are model parameters,
−→
dt ,
−→
Ct are the hidden states and

memory of forward LSTM respectively. The outer product (· ⊗ en) means repeating the

vector on the left for n times.

With a backward LSTM being computed similarly, we can concatenate the forward and

backward hidden state vector as

dt =
[−→
dt←−
dt

]
After zero-padding dt to the length of the maximum number of words in a column, all dts

are concatenated and fed into a multi-layer perceptron that makes the prediction.

3.4.3 Adversarial Text Method

Assume the classifier we described above decides that column c is mentioned in question

q. Then our next task is to look for the term in question q that actually mentions column c.

24

Which movies were scheduled to release on January 10 2019 Release Date

+

Natural language question column

t-1 t1 2 3 … … n

Attention for column step t Binary

What
missions

February

Figure 3.6: The target phrase should be the most influential towards the prediction.

We hypothesize that the phrase that mentioning the column name (2nd input) is the

most influential towards the prediction. We explain our intuition using Figure 3.6 as an

example, supposing that we try to change the prediction (from True to False) by replacing

part of the sentence

1. Replace “which” by “what”. The new question is “What movies were scheduled to release

on January 10, 2019?”.

2. Replace “movie” by “mission”. The new question is “Which missions were scheduled to

release on January 10, 2019?”.

3. Replace “January” by “February”. The new questions is “Which movies were scheduled to

release on February 10, 2019?”.

4. Replace “to release on” by “to launch on”. The new question is “Which movies were

scheduled to launch on January 10, 2019?”.

It is likely that Replacement 1-3 will not influence the prediction since it does not

alter the fact that “Release Date” is still mentioned in the question. On the other hand,

Replacement 4 has a high possibility to change the prediction since it changes the phrase that

25

is actually mentioning “Release Date”. Generally speaking, a slight change in the phrase “to

release on” will create a significant impact and have a high possibility to flip the prediction.

Inspired by such observation, we hypothesize that the phrase mentioning “Release Date”

is the phrase that is most influential towards the prediction. Such a hypothesis highly

corresponds to the idea of adversarial attacks, i.e., searching for the direction that is the

most influential towards the prediction and perturb along such direction.

We propose an adversarial text method to solve this problem. The method is based on

the following two reasonable assumptions:

1. We assume the mention of c in q consists of a sequence of words.

2. Drawing our inspiration from the adversarial example technique, we assume the men-

tion of c is the part of q that is most influential in the classifier’s decision that c is

mentioned in q.

The first assumption is naturally from our domain knowledge. Arguably a model without

this assumption is much more complex, so we leave the investigation of whether the extra

complexity is justified to future study.

The second assumption requires some elaboration. For the background, we start with

the adversarial example technique from which we draw our inspiration. An adversarial ex-

ample is a carefully designed perturbation of input q that forces the aforementioned classifier

in Section 3.4.2 to make a wrong prediction. Denoting such an example as q̃ = q + η, the

perturbation η is small enough compared to q. In doing so, the perturbation is more signifi-

cant in parts of the questions that are efficient in influencing the classifier’s prediction. The

effect of applying such technique can be demonstrated with the following example in which

the classifier is tasked with prediction c = “golfer” is mentioned in the question:

q = “Which player won the competition?”

26

We denote the representation of a word as emb. Now changing the word “player” to “ath-

lete” leads to small perturbation η = emb(“athlete”) - emb(“player”) since both words are

semantically close. However for the resulted adversarial example

q̃ = q + η = “Which athlete won the competition?”

the perturbation η changes important features of the model (e.g., “player”) to make the

prediction regarding column c, and is highly likely to lead to a large change to the output.

The combination of small perturbation and large change to the output is a good example of

efficiently influencing the classifier.

We further observe that the term mentioning the column is overlapping with words

whose perturbation makes an adversarial example. We hypothesize that the term which

mentions column c makes the most contribution to the classifier’s prediction (whether c is

mentioned in the question). This concludes our second assumption to use the adversarial

method for finding the term in the question.

We now formally describe our adversarial text method. Our method uses a faster ad-

versarial method [54] to find the parts of question q that are important to the classifier’s

prediction by taking the gradient of loss L with respect to each word in the question. Since

in natural language processing words are represented by one-hot inputs, as proposed [55],

we take the gradient with respect to the representation of the words rather than the words

themselves. In detail, we construct symbolic derivatives of L w.r.t. each wq
i in q to measure

the influential level of each token to the model prediction. L = L(q, c) is the loss of the

machine comprehension binary classifier given the column c and question q. Assuming a

word embedder E (e.g., Eword or Echar) transforms a word to a high-dimensional embedding

space Rd:

E(w) = [x1, x2, ..., xd]

dL/dE(w) = [dL/dx1, dL/dx2, ..., dL/dxd]

27

Then, we calculate the norm of each gradient, where p(·) is a norm function.

Iword(w) = p(dL/dEword(w))

Ichar(w) = p(dL/dEchar(w))

We define I(·) = α ∗ Iword(·) + β ∗ Ichar(·) as the influential level of each token taking

both word-level and character-level representation into consideration. Here, α and β are

hyperparameters for balancing both the word-level and character-level information.

I(q) = [I(wq
1), I(w

q
2), ..., I(w

q
n)]

Taking `2-norm as an example:

I`2(w
q
i) = α ∗ ‖dL/dEword(wq

i)‖2 + β ∗ ‖dL/dEchar(wq
i)‖2

Then we search for a continuous span [a, a+1, ..., b] that contains the highest influential level

and b− a + 1 < maximum length of mentions in the question we consider. The continuous

span is considered to be the term of c mentioned in q.

In Figure 3.7 we show an example of detecting column “winning driver” in two different

questions. The column name c = “ [winning driver] ” in SQL is the column for which we

are searching the term in the question. The term highlighted in question is the term of

the column mention, which corresponds to high gradient values. We can observe that word

span with large gradient norms corresponds to the terms of the column in the question

that a human perceives. Column “winning driver” is detected by “ driver won ” in the first

question, and “ win ” in the second question. With adversarial text method, we can also

address the issue of mentioning the same column in various ways.

28

Figure 3.7: Use gradient of loss with respect to each word for inferring column’s mentioning
term. X-axis represents the words in a natural language question, Y-axis represents influen-
tial level I of each word using `2-norm, and X-label is its corresponding SQL. Furthermore,
since we use both word level and character level inputs, we plot the gradients with respect
to word embedding and character embedding separately, both contributing to the model’s
output in a coordinated way.

3.4.4 Mention Detection for Values

Since the question may mention values that are counterfactual (not occurring in the

table) while still being a valid question (the 2nd challenge), as a realistic setting, finding

a mention of a counterfactual value should not depend on the actual content of columns,

nor extra knowledge such as Freebase which is essentially another database. We leverage

some aggregation that characterizes the property of columns to help value detection, which

is what we described as database statistics in Section 3.2. This approach avoids relying on

specific values that appear in the column, thus is able to handle cases where the question

mentions values that are counterfactual while still being valid.

Specifically, we propose a Value Detection Classifier that takes a continuous span q[i, j]

in the question and a column c’s data statistics sc as input, and predicts whether this q[i, j] is

likely to be a mention of values in column c. If the prediction is true for at least one column

in the table, the span is detected as a mention of value in the table. Since the classifier

requires only a column’s data statistics characterizing the property of this column rather

than a set of actual, concrete values in that column, it could deal with counterfactual ones.

29

In detail, the data statistics of column c, referred to as sc, is a feature vector representing

the property of this column. It is the dimension-wise average of the feature vectors of all

cells in that column, where a cell’s feature vectors are the dimension-wise average of all its

words’ embedding emb(wi) = α ∗ Eword(wi) + β ∗ Echar(wi). Formally, this means

sc =
1

|Pc|
∑
p∈Pc

(
1

|p|
∑
w∈p

emb(w)

)

with the slight abuse of symbols denoting all cells in column as Pc, (of multiple cells) a

single cell in Pc as p, and (of multiple words) a word in p as w. Note that the design of sc

ensures that the data statistics contains only O(1) amount of information regardless of the

number of cells in a column. Similarly, the statistics of q[i, j], referred to as sq[i,j], is also the

dimension-wise average of all its words’ embedding:

sq[i,j] =
1

|j − i+ 1|
∑
i≤k≤j

emb (q[k]) .

On top of that, the classifier is implemented as a two-layer MLP (multi-layer perceptron)

defined as:

y = Sigmoid
(
W2 · ReLU

(
W1 ·

[
sc − sq[i,j], sc · sq[i,j]

]
+ b1

)
+ b2

)
where the input is from concatenating sc − sq[i,j] and sc · sq[i,j], Sigmoid(x) = 1

1+e−x and

ReLU(x) = max(x, 0). The output y, by the definition of Sigmoid, is continuous and is in

the range [0, 1], thus serving as a likelihood function. The classifier predicts true if y > 0.5.

Furthermore, it is natural to assume that a value should be a short multi-word entity,

so in training and inference, we only consider a limited set of candidates of spans that do

not contain stop words. Formally this means we consider q[i, j] only if @k : i ≤ k ≤ j, q[k] ∈

StopWords.

30

3.4.5 Mention Resolution

It is possible to have many candidate mentions of columns and values (5th challenge).

For example, in question “Which film directed by Jerzy Antczak did Piotr Adamczyk star

in?” the values “Jerzy Antczak ” and “Piotr Adamczyk ” could be mentions of either “director ”

or “actor ”. Both are valid unless the syntax and context of the natural language question

are taken into consideration . The goal of mention resolution is to figure out globally, what

is the most likely subset of mentions that are consistent.

Inspired by [56], we leverage the question’s dependency tree to help reduce the number

of candidate mentions. In general, the proposed mention resolution strategy favors value

and column pairs that are structurally close to each other in the said tree. We observe

that in the question’s dependency tree, a value is often the closest child node of the paired

column. Therefore, we use the distance of two nodes (denoted as dist(·, ·)) in the question’s

dependency tree as a measure of structural closeness. Specifically, for value v and column

c, and their mentions mv and mc (in the question), the optimal pair identified by structural

closeness is minmv∈q,mc∈q dist(mv,mc). We only consider matched pairs (v, c) that have the

optimal structural closeness.

3.5 Sequence to Sequence Translation

In this section we describe the second step of our framework that translates qa to an

annotated SQL sa. As shown in examples Figure 3.1 and 3.2, after the first step that provides

the mentioned paired columns and values to a question in the form of an annotated question

qa, this second step does the actual work of translating qq into an annotated SQL sa.

The sequence-to-sequence [14] model (or seq2seq as it is commonly referred to) takes

input in the form of a sequence of tokens and produces output also as a sequence. Such a

model has been enjoying massive success in many natural language processing applications

(see Related Work section for more). Motivated by such success, we represent both the input

(annotated question qa) and the output (annotated SQL sa) as lists of sequences, and devise

31

a seq2seq model that converts the former to the later. We describe how we represent our

annotated question and SQL query as sequences in Section 3.5.1, followed by presenting the

very seq2seq model that does the actual translation in Section 3.5.2.

3.5.1 Representation of Annotated Sequence

There are many options in representing annotations in a form that can be leveraged by

a seq2seq model. For example, in Figure 3.1, “directed by” is annotated as the mention of c2.

We can either replace “directed by” by c2 or insert c2 following “directed by” in the question.

We exploit different annotation encoding methods and propose our optimal annotation to

separate information related to a schema from questions without loss of information.

Insert symbols

Intuitively, the annotation should enable schema separation that strips off schema-

specific information from natural language questions by substituting schema-specific infor-

mation with symbols. However, replacing the mentions of columns with unified symbols

(e.g., ci and vi) hurts the semantic expressiveness of the question. Therefore, we propose

to insert the symbols around the mentions rather than substituting them to leverage the

semantics of column texts. We name such approach as “column name appending”. Fig-

ure 3.8a shows the differences between the two approaches, and highlights that our proposed

approach provides more semantic information to the downstream sequence model.

Table Header Encoding

When a column in SQL is not mentioned in the question explicitly, we can only rely on

the deep model and the context to infer the column. For example, in Figure 3.8b, column

name “Nomination Date” is not explicitly mentioned. Most of the columns (e.g., “Nomination

Date”) consist of multiple tokens, which are hard to generate correctly by a sequence model

token by token. To encourage the correct inference of multi-token columns, we append all

32

Question What position did the player LeBron James play?
Symbol Appending What c1 [position] did the c2 [player] v2 [LeBron James] play?
Symbol Substitution What c1 did the c2 v2?

(a) Annotation Format.
qa When v1 [Piotr Adamczy] was nominated as c1 [Best Actor in a Leading Role]?
sa SELECT Nomination Date WHERE c1 = v1

qa
When v1 [Piotr Adamczy] was nominated as c1 [Best Actor in a Leading Role]
g1 [Nomination] g2 [Actor] g3 [Film Name] g4 [Director] g5 [Nomination Date]

sa SELECT g5 WHERE c1 = v1

(b) Table Header Encoding.

Figure 3.8: Representation of Annotated Sequence

the headers g ∈ C to the end of the annotated question, so that even if a multi-token column

is not mentioned in the question, it could be inferred as gi by the sequence model.

Figure 3.8b shows an example where “g1 [Nomination] g2 [Actor] g3 [Film Name] g4

[Director] g5 [Nomination Date]” is appended to the annotated question. and thus simplifies

the annotated SQL as “SELECT g5 WHERE c1 = v1”, where multi-token column name “Nom-

ination Date” is simplified as “g5”. Our strategy also contributes to a much smaller output

vocabulary size and makes it easier to achieve a better performance for a deep sequential

model.

3.5.2 Sequence Translation Model

For formality, we denote a natural language question in annotated form as qa = (qa1 , q
a
2 , ..., q

a
N),

and the corresponding annotated SQL query as sa = (sa1, s
a
2, ..., s

a
M). We train a seq2seq model

to estimate p(sa|qa), which captures the conditional probability of

p(sa|qa) =
M∏
j=1

p(saj |qa, sa1:j−1)

Encoder is implemented as a stacked bi-directional Gated Recurrent Unit (GRU) [57]. To

keep the dimensions consistent, we add an affine transformation before each layer of GRU,

defined as the follows yi(l) = W0
(l)x

(l)
i + b0

(l), where xi(l) is the input of the l-th layer at the

33

i-th position. W0
(l) and b0

(l) are model parameters. The hidden state of the forward GRU

and backward GRU are computed as:

−→
hi

(l) =
−−−→
GRU(yi

(l),
−−→
h

(l)
i−1)

←−
hi

(l) =
−−−→
GRU(yi

(l),
←−−
h

(l)
i−1)

We concatenate forward state vector and backward state vector as hi(l) = [
−→
hi

(l)
,
←−
hi

(l)
], i =

[1..N]. The input of each layer is computed as: (φ is the word embedding lookup function)

xi
(1) = φ(qai)

xi
(l+1) = hi

(l)

Decoder is an attentive GRU with copy mechanism. We use Bahdanau’s attention [15] as

follows: At each time step i in the decoder, the decoding step is defined as:

d0 = Tanh(W1[
−→
h

(l)
N ,
←−
h

(l)
1])

di = GRU([φ(sai−1), βi−1], di−1)

eij = vTTanh(W2h
(l)
j +W3di)

αij = eij/
∑
j′

eij′

βi =
M∑
j=1

αijhj
(l)

where W0, W1, W2, W3, and v are model parameters, (d1, ..., dN) is the hidden states of the

decoder, and j the index enumerating all the positions in encoder. In the NLI task, tokens in

the output often correspond directly from the input natural language question. To encourage

34

the model to favor tokens that appear in the input, we make our own implementation of

copy mechanism that samples output token sta as

p(sai |qa, sa1:i−1) ∝ exp(U [di, βi]) +Mi

Mi[s
a
j] = exp(eij)

Note that this is different from the vanilla copy mechanism where the output is sampled

through softmax over entire word vocabulary as

p(sai |qa, sa1:i−1) ∝ exp(U [di, βi])

3.6 Experimental Validation

We conduct experiments on WikiSQL dataset [29]. We use three metrics for evaluating

the query synthesis accuracy: (1) Logical-form accuracy. We compare the synthesized

SQL query against the ground truth for whether they agree token-by-token in their logical

form, as proposed in [29]. (2) Query-match accuracy. Like logical-form accuracy, except

that we convert both synthesized SQL query and the ground truth into canonical representa-

tions before comparison. (3) Execution accuracy. We execute both the synthesized query

and the ground truth query and compare whether the results agree, as proposed in [29].

3.6.1 Dataset

WikiSQL contains 87673 records of natural language questions, SQL queries, and 26521

database tables. Since tables are not shared among the train/validation/test splits, models

evaluated on WikiSQL are supposed to generalize to new questions and database schemas.

35

3.6.2 Mention Detection Performance

We use string match with edit distances and semantic distances to detect mentions that

are context-free, and adversarial binary classifier using `2-norm, α = 1, β = 0 (Section 3.4.1)

to detect mentions that heavily rely on the context. Note that database-specific knowledge

is not used in WikiSQL for fair comparisons. First of all, we compare our mention detection

performance with TypeSQL, which employs a template-based approach to formalize the task

into a slot filling problem. The sketch is:

SELECT $AGG $SELECT_COL

WHERE $COND_COL $OP $COND_VAL

(AND $COND_COL $OP $COND_VAL)∗

where each component, such as $AGG, $SELECT_COL, and WHERE clause (including oper-

ator $OP), is identified separately.

Our model has a pre-processing step where schema-related information is detected

through mention detection, $COND_COL and $COND_VAL involve schema-related informa-

tion. We evaluate the accuracy of canonical representation matches on $COND_COL and

$COND_VAL between the synthesized SQL and the ground truth, and our accuracy is 91.8%,

which outperforms the state-of-the-art TypeSQL 87.9%.

Our NLIDB model is a seq2seq model, and mention detection is serving as a pre-

processing component, which is only part of our contribution. Since our method learns

the structure of the output by a seq2seq model itself, the $AGG and $OP are inferred by the

seq2seq model (we believe they are part of the structure).

Case Studies There are many questions in WikiSQL that do not have straightforward in-

dicators of column names. To prove that our method can detect mentions by semantic

meaning, we present four real examples of mention detection by our adversarial method in

36

Column Question

date When did the Baltimore Ravens play at home?

venue Where was the game played on 20 May?

player Who is the golfer that golfs for Northern Ireland?

competition What was her final score on the ribbon apparatus?description

Table III: Mention detection using adversarial text method.

Table III. Our method is able to identify “date” by its question word “when did”, and “venue”

by its question word “where”. Column “player” can be detected by its synonyms “golfer”,

and implicitly mentioned column “competition description” can also be detected.

Figure 3.9: Examples in WikiSQL defined in Figure 3.7

We further justify that our adversarial method is able to pinpoint the term of a mention

accurately by its adversarial gradient. Even a column name is mentioned as a combination

of several discontinuous words, and our method is able to detect the mention terms by

their semantic meaning. In Figure 3.9, we show three examples of adversarial gradients

with respect to both word-level input and character-level input. Both word-level input

and character-level input share the same trend. In the first example, our model is able

to identify column “ [year] ” is in fact mentioned in the question and the mention term is

37

around the term of “ 2008 ”. In the second example, column “ [candidates] ” is mentioned

by its singular form “ candidate ”. The gradient norm of all the words are small except

“ candidate ”, which means our method is able to pinpoint the column mention precisely.

In the third example, column “ [years in toronto] ” is mentioned by highest gradient words

“ toronto ” and “ 2006-07 ” (“toronto team in 2006-07” as a continuous span). Even though

“ year ” is not explicitly mentioned in the question, our model is able to infer the meaning

of “ year ” by “ 2006-07 ”.

3.6.3 Evaluation

Training Details For the encoder and decoder of our sequence-to-sequence model, each

has one layer of GRU with a hidden state size of 400 and 2 ∗ 400, respectively. The tied

embedding weights are shared in the input and output layers of both encoder and decoder.

We initialize the embedding layer with pre-trained GloVe embedding (dimension D = 300).

Symbols introduced by annotation (e.g., c1 and v1) are also treated as tokens, each of them

being represented by the concatenation of the embeddings of an annotation type (e.g, c and

v) and an index. Also, the embeddings of an annotation type and an index are randomly

initialized with D′ = 150, so the concatenation has a dimension of D = 300. The other

out-of-vocabulary token is initialized with a random vector of D = 300. We use gradient

clipping with a threshold 5.0 for training and beam search with width 5 for inference.

We compare our method with previous methods through three aforementioned metrics:

accuracies in terms of logical form exact match, exact query match, and the results of query

execution. As shown in Table IV, our result outperforms these previous methods, including

the state-of-the-art TypeSQL. This demonstrates that our method is able to generalize to

unseen tables, since in WikiSQL database, tables are not shared among train and test splits.

We note that TypeSQL achieves high accuracy in the “content-sensitive" setting where

it queries Freebase when handling natural language questions in training as well as in infer-

encing, while our method achieves higher accuracy without querying Freebase.

38

Dev Test
Acclf Accqm Accex Acclf Accqm Accex

Seq2SQL [29] 52.5% 53.5% 62.1% 50.8% 51.6% 60.4%
Previous SQLNet [33] - 63.2% 69.8% - 61.3% 68.0%
Method PT-MAML [58] 63.1% - 68.3% 62.8% - 68.0%

Coarse2Fin [59] - - - 71.7% - 78.5%
TypeSQL* [34] - 79.2% 85.5% - 75.4% 82.6%

Annotation Annotated Seq2seq (Ours) 75.5% 75.4% 83.1% 75.6% 75.6% 83.6%
– Half Hidden Size 74.8% 74.8% 82.5% 75.0% 75.0% 82.9%
– Column Name Appending 74.6% 74.5% 81.9% 74.5% 74.5% 82.1%
– Copy Mechanism 74.2% 74.2% 81.4% 74.4% 74.4% 81.9%
– Table Header Encoding 74.9% 74.8% 81.8% 74.6% 74.6% 81.8%
– seq2seq + Transformer 68.8% 68.9% 77.4% 69.1% 69.2% 78.4%

Table IV: Comparison of models. lf, qm, ex represent logical forms, exact query match, and
query execution accuracy, respectively. Performances on the first block are copied from the
corresponding papers. “–” and “+” mean removing or adding one component from our best
approach respectively for ablation. *We report the results of content sensitive TypeSQL for
fair comparisons.

3.6.4 Ablation

In Table IV, we demonstrate our contribution by performing ablation with different

components of our model. Removing each component of our method leads to a decrease in

performance: The removal of (1) half of GRU hidden size (hidden size 200 for encoder and

400 for decoder), (2) copy mechanism, (3) column name appending (e.g., using column sub-

stitution instead), and (4) encoding of table header, each respectively decreases performance

on the test set.

Since the annotation and sequence modeling are separated in our framework, we test

our annotation method combined with the transformer model 1, an alternative and state-

of-the-art architecture for sequence modeling such as machine translation. With the same

annotation, the transformer model shows worse performance. We hypothesize that the reason

behind this is the difference between NLIDB task and translation tasks: NLIDB has a

considerable difference between vocabulary sizes in source space and target space.
1We use transformer from https://github.com/tensorflow/tensor2tensor

39

We also report the transformation error incurred by the annotation process. As shown

in Table V, we report the exact query match accuracy Accqm before and after the annota-

tion recovery step (transferring sa to s). Our experiments have shown that our automatic

annotation will not hurt the performance; on the contrary, it increases the accuracy.

Dev Test
Accbefore Accafter Accbefore Accafter

Annotated Seq2seq (Ours) 74.8% 75.4% 75.0% 75.6%
– Half Hidden Size 74.5% 74.8% 74.6% 75.0%
– Table Header Encoding 74.5% 74.8% 74.2% 74.6%
– Column Name Appending 74.1% 74.5% 74.0% 74.5%
– Copy Mechanism 73.7% 74.2% 73.8% 74.4%

Table V: "Recovery" performances on WikiSQL dataset. Accbefore (Accafter) denotes query
match accuracy before (after) annotation recovery.

3.7 Generalization Problem Discussion

We make a lot of efforts on devising transfer-learnable NLIs, not only transfer-learnable

to different schemas (e.g., relational tables), but also transfer-learnable for different domains.

Ideally, our transfer strategy eases the difficulties of general purpose NLIs. However, some

domains have preeminent expressive power and should be taken with special care. In sec-

tion 3.7.1, we address special challenges posed by the idiosyncrasies of spacial semantics. In

Section 3.7.2, we propose a strategy for flexible back-end cross-domain NLIs.

3.7.1 Spatial Domain Generalization

Motivation

The high popularity of spatial applications [60, 61, 62, 63] and the idiosyncrasies of

spatial semantics motivate the research and development of natural language interfaces to

spatial domain.

40

The powerful expressiveness of spatial semantics can be justified by the following exam-

ples:

The meaning of spatial phrase “Mississippi”
How many rivers does Mississippi have? State
How many cities does Mississippi run through? River

The meaning of spatial phrase “over”
How many people walked over the bridge? On
How many eagles flew over the bridge? Above

The meaning of spatial phrase “at the back of”
How many trees are at the back of the building? Exterior
How many rooms are at the back of the building? Interior

Figure 3.10: Three examples show the expressiveness of spatial semantics [2].

As we can observe, the query intentions are dramatically different, even using the same

phrase. For example, “at the back of” can refer to either inside a building or outside the

building, and we can only rely on the context to differentiate each other. Supposing the

natural language interface is intended to query relational databases, and there are two tables

in the database: one table stores information regarding interior designs, and another table

stores information regarding areas surrounding the building. A falsely captured intention

could result in querying the wrong table. Inspired by such observations, we propose a

natural language interface for spatial domain, especially designed for addressing the spatial

ambiguity.

We adopt the same aforementioned transfer strategy; in addition, we clarify ambiguous

spatial phrases (e.g., phrases that cannot be uniquely identified by the schema) by feeding

extra information learned by an external deep model. The external deep model is trained

to identify the actual meaning of ambiguous spatial phrase using contextual understanding,

which has a similar structure as Figure 3.4, named as the spatial comprehension model.

41

Method

In addition to a seq2seq translation as the previous design for general domain, we take an

extra step to inject necessary information using the form of symbols to facilitate ambiguous

spatial phrase clarification.

Our design is composed of the following steps, using

“How many rivers does Mississippi have?”

answer: SELECT COUNT(river) WHERE state = Mississippi

as a running example:

I. Spatial semantics detection. Assuming we have access to the Spatial databases,

we detect keywords and spatial name entities by comparing against the database (e.g.,

string match). In the running example, “Mississippi”, “river” can be detected.

II. Spatial Comprehension Model. For ambiguous spatial phrases “Mississippi ”, it will

be identified as a “state” using spatial comprehension model.

III. Spatial Semantics Injection. With detected keyword “river” and spatial name en-

tity “Mississippi” (state name), we inject such information by inserting pre-defined

symbols (k represents keywords and v represents name entities). The running example

is transformed to

“How many 〈k0〉 [rivers] does 〈k1〉 [state] 〈v1〉 [Mississippi] have?”

In summary, 〈k0〉 represents “river”, 〈k1〉 represents “state”, and 〈v1〉 represents “Mis-

sissippi”.

IV. Seq2seq Translation. We feed the transformed question to a seq2seq translation

model. For the running example, the corresponding logical inference is

answer: SELECT COUNT(〈k0〉) WHERE 〈k1〉 = 〈v1〉

42

V. Query Recovery. The output of the seq2seq model is then recovered to its original

textual format since what the symbols represent are known in Step III:

answer: SELECT COUNT(river) WHERE state = Mississippi

Ambiguous spatial phrase detection We propose a very straight-forward strategy to

detect ambiguous phrases, which is simply searching the phrase in the Spatial database.

Generally, the tables storing name entities for each category are available. For example, in

GeoQuery 2 database, there are two tables storing name entity “Mississippi”: River table and

State table. If a name entity appears in different tables, we will assume it is ambiguous since

it belongs to multiple categories. Ambiguous spatial phrases are very common in practice.

For instance, “New York” belongs to both City and State categories; “Coloradoo” belongs

to both River and State categories.

How many rivers does <a> Mississippi <a> have River name

+

Natural language question Type

t-1 t1 2 3 … … n

Attention Binary

RNN

RNN

Attentive Workflow
Multi-layer
PerceptronEmbedding

Figure 3.11: Spatial Comprehension Model

Spatial comprehension model The purpose of the model is to understand the actual

meaning of an ambiguous phrase by its context. In the example shown in Figure 3.11,
2http://www.cs.utexas.edu/users/ml/nldata/geoquery.html

43

the symbol “〈a〉” means attending on the token “Mississippi”. In this way, even the exact

word “rivers” is mentioned in the question; the classifier knows it should be focusing on

“Mississippi” without interference from other tokens. In this specific example, the classifier

will return false since “Mississippi” refers to a state name.

Here we disclose the full details for identifying the type of “Mississippi”. If a name entity

belongs to n categories, we will feed n records. Corresponding to the question in Figure 3.11,

we feed two records (candidate set of “Mississippi” is {State, River}) shown in Figure 3.12.

Question Name Entity Type Prediction
How many rives does 〈a〉 Mississippi 〈a〉 have? State True
How many rivers does 〈a〉 Mississippi 〈a〉 have? River False

Figure 3.12: Spatial Comprehension Model Training Samples

Spatial Semantics Injection Inspired by the transfer strategy, we insert pre-defined

symbols to inject spatial information.

We inject two types of information (using “How many rivers does Mississippi have?” as

a running example):

1. Keywords and spatial name entities detected in the spatial database (e.g., “river” and

“Mississippi”).

2. The type of ambiguous spatial phrase identified by the spatial comprehension model

(e.g., State for “Mississippi”).

Each pair of keyword and spatial name entity share the same ordinal number. For

example, in “How many 〈k0〉 [rivers] does 〈k1〉 [state] 〈v1〉 [Mississippi] have?” , “state”

(represented as 〈k1〉) and “Mississippi” (represented as 〈v1〉) is a pair sharing the same

ordinal number 1st.

In summary, we propose to dissolve the spatial ambiguities using an external model and

inject learned information using symbol insertions.

44

3.7.2 Cross-Domain NLI

Question Which cities are located in Virginia?
Query city(A), location(A, B), const(B, state(Virginia))

Question 〈Lambda〉 Which 〈c1〉 [cities] are 〈c2〉 [located in] 〈v2〉 [Virginia]?
Query c1(A), c2(A, B), const(B, state(v2))

(1)

Question Which movies were scheduled to release on May 10 2019?
Query SELECT movie WHERE release date = May 10 2019

Question 〈SQL〉 Which 〈c1〉 [movies] were scheduled 〈c2〉 [to release on] 〈v2〉
[May 10 2019]?

Query SELECT c1 WHERE c2 = v2
(2)

Figure 3.13: Two types of queries (SQL and Lambda expression) with corresponding Natural
language questions.

The aforementioned domain-specific knowledge separation strategy is able to handle

questions with similar semantic skeleton, but fails to cover different query types, i.e., flexible

back-end. Inspired by Google’s multilingual translation model [21] where an artificial token

is introduced at the beginning of the input sentence to indicate the target query language.

We prefix a query type symbol to indicate the target query type the NLI model should covert

to (e.g., 〈SQL〉, 〈Lambda〉), as shown in Figure 3.13. In this way, we are able to jointly train

multiple datasets with different query languages, and the trained model is able to answer a

natural language question with desired query language as long as the indicator is prefixed

to the question.

45

Chapter 4

Data-Intensive Query Processing

4.1 Spatial Skyline Query (SSQ)

Spatial Skyline Query (SSQ) [35] is a special type of skyline query taking dynamic

spatial attributes into consideration. Given a set of data points P and a set of query points

Q in a d-dimensional space, a spatial skyline query returns a subset of P , in which all the

data points are not spatially dominated by any other data point in P . The spatial dominance

is defined by calculating dynamic distances from a data point to all the query points.

Spatial Skyline Query could be widely adopted in many real-world scenarios. For exam-

ple, in crisis management applications, if several infectious diseases are confirmed at different

locations, residents who live in spatial skyline locations should be alerted and examined first

since they have more chance to be exposed in pathogenic microorganisms. In travel ap-

plications, tourists may prefer spatial skyline hotels with respect to beaches, restaurants,

theaters, and other points of interest (POI) as query points. In restaurants recommendation

applications, when several friends decide to have dinner together, they may narrow down

their selections to spatial skyline restaurants since most of cases, they will not choose a

restaurant that is far away from all of their homes.

Due to the dynamic nature of the spatial attributes, we propose a scalable spatial skyline

query system.

4.1.1 Preliminary

Given a set of data points P in a d -dimensional space Rd, a data point p ∈ P is

represented as p = {x1, x2, ..., xd} where p.xi is the value of the ith dimension. D(·, ·) denotes

a distance metric that obeys the triangle inequality in Rd.

46

Definition (Spatial Dominance) Given a set of query points Q, and data points p and p′ in

Rd, p spatially dominates p′ w.r.t. Q if ∀ q ∈ Q, D(p, q) ≤ D(p′, q) and ∃ q′ ∈ Q, D(p, q′) <

D(p′, q′), denoted by p ≺Q p′.

Definition (Spatial Skyline) Spatial skylines of a set of data points P w.r.t. a set of query

points Q in Rd, denoted by SSKY (P , Q), are a subset of P , any of which is not spatially

dominated by any other data point in P w.r.t. Q.

SSKY (P,Q) = {p ∈ P | @ p′ ∈ P, p 6= p′, p′ ≺Q p} (4.1)

Property 1. If any data point p ∈ P is a spatial skyline point w.r.t. a subset of query points

Q′ ⊂ Q, then p is also a spatial skyline point w.r.t. Q [35].

Property 2. Spatial skyline points of P w.r.t. Q does not depend on any non-convex query

points q′ ∈ {q | q ∈ Q, q /∈ CH(Q)}, where CH(Q) indicates the convex hull points of Q [35].

In other words,

SSKY (P,Q) = SSKY (P,CH(Q)) (4.2)

Definition (Dominator Region) Given a data point p ∈ P , a set of query points Q, and a set

of corresponding hyper-spheres that center at qi with radius D(p, qi) (qi ∈ Q), any data point

inside the intersection of the hyper-spheres spatially dominates p w.r.t. Q. The intersection

area that potentially contains data points spatially dominating p w.r.t. Q is referred as the

dominator region of p, denoted by DR(p,Q). An example is shown in Figure 4.1.

Property 3. Given a set of data points P and a set of query points Q, if any data point

p ∈ P is inside the convex hull of Q, then p is a spatial skyline of P w.r.t. Q.

4.1.2 Core Concepts

The challenges of spatial skyline evaluation is the sequential nature of dominance test,

which takes O(n2). However, since each dominance test does not depend on the others, we

believe it is feasible to parallel the query evaluation process and improve the overall efficiency.

47

p

q2

q1

q3

DR(p, {q1, q2, q3})

p[

Figure 4.1: An example of
DR(p, {q1, q2, q3}) in a 2 -dimensional
space.

p1

q2

q1

q3

p2

p3

p4

p5

p6

p7IR(p1, q2)
IR(p1, q1)

IR(p1, q3)

p8

Independent Region

 Pivot

q4

Figure 4.2: An example of Independent
Regions in a 2 -dimensional space.

Inspired by the spatial property of spatial skyline queries, we propose our main concept

Independent Region.

Definition (Independent Region) Given a data point p and a set of query points Q in Rd,

we define an Independent Region (IR) of p and qi (qi ∈ Q) as a hyper-sphere centered

at qi with radius D(p, qi). An Independent Region Group (IRG) of p w.r.t. Q is the

union of the independent regions, as shown in Fig. 4.2.

IR(p, qi) = {l | D(l, qi) ≤ D(p, qi)}

IRG(p,Q) =
⋃
qi∈Q

IR(p, qi)
(4.3)

Since the non-convex hull query points do not affect the spatial dominance, we use

IRG(p,Q) to present IRG(p, CH(Q)). We define data point p as the Independent Region

Pivot of IRG(p,Q) as shown in Figure 4.2. We provide the proof of the independence and

correctness of our IRG-based partition strategy,

Theorem 4.1. Given a data point p and its independent regions IRG(p,Q). ∀ qj ∈ CH(Q),

any data point p′ ∈ IR(p, qj) is not dominated by any data point p′′ /∈ IR(p, qj).

Proof. The proof is by contradiction. Assuming ∃ p′ ∈ IR(p, qj), p′′ /∈ IR(p, qj), p′′ ≺Q p′.

By the definition of spatial dominance, p′′ is spatially closer to all the query point qi (qi ∈

48

Q) than p. According to the definition of independent regions, D(p′′, qj) ≥ D(p′, qj) since p′′

is outside of IR(p, qj), which leads to a contradiction. Thus, this concludes the proof.

Independent Region Group The concept of independent region group is designed to

parallel the spatial dominance test. The spatial dominance tests in an independent region

do not rely on any data point outside that independent region. An independent region group

is defined by the independent region pivot.

An independent region group specifies a smaller search space, which is guaranteed to

contain all the spatial skyline points (correctness). The data points outside the independent

region group are eliminated instantly because all these data points are spatially dominated

by the the pivot point.

Property 4. Given a set of data points P and a set of query points Q in Rd, @ p ∈ P , where

p ∈ SSKY (P,Q) and p /∈ IRG(p,Q). In other words, the data points in IRG(p,Q) are a

superset of SSKY (P,Q).

Based on Therorem 4.1, our independent region group concept is fundamentally a paral-

lel partition strategy, it partitions the smaller search space into independent regions, and the

dominance tests in each independent region can be processed in parallel. More important,

our independent region is “purely” independent, since we do not require data exchange among

independent regions or merge operation for local spatial skyline points in each independent

region.

Property 5. Given a set of data points P and a set of query points Q in Rd, let p be a pivot

point, then

SSKY (P,Q) =
⋃

IR∈IRG(p,Q)

SSKY (PIR, Q) (4.4)

where PIR is a set of data points in the independent region IR.

49

4.2 GPU Multi-threading Scheme

In this section, we propose our spatial skyline evaluation using independent region con-

cept on GPU multi-threading scheme. Due to the limitation of GPU memory, such strategy

is designed for small scale input.

p1

q2 q1

q3

p2

p3

p4

p5

p6

p7

IR(p1, q2) IR(p1, q1)

IR(p1, q3)

p8

p9

p10

p11

Figure 4.3: L1 independent region filter.

4.2.1 Multi-level Independent Region Group (MIRG)

Derived from independent region groups, Multi-level independent region groups are

defined recursively as the followings

Definition (L1 Independent Region Group) As shown in Figure 4.3, given a data point p

and a set of query points Q, the independent region group of p w.r.t. Q is defined as an

L1 Independent Region Group, which is defined in Equation 4.3. L1IRG(p,Q) is a basic

building block of MIRGs.

Definition (Ln Independent Region Group) Given an Ln−1 Independent Region Group,

denoted by Ln−1IRG, for any independent region (Ln−1IR) in Ln−1IRG, if there exists a

data point p′ in Ln−1IRG, an Ln Independent Region Group can be generated by further

overlapping every Ln−1IR with IRG(p′, Q).

50

Figure 4.4: Using p8 as pivot
while expanding L1IRG

Figure 4.5: Using p10 as pivot
while expanding L1IRG

Figure 4.6: Using p9 as pivot
while expanding L1IRG

Figure 4.7: L2IRG filters with varied pivots.

There is a special case, supposing Ln−1IRj ∈ Ln−1IRG, and p′ 6∈ Ln−1IRj, it is possible

that ∃IR(p′, q′), Ln−1IRj ∈ IR(p′, q′) (IR(p′, q′) ∈ IRG(p′, Q)). In that case, Ln−1IRj

cannot be further partitioned. For Ln−1IRs cannot be further partitioned, they will be

included into LnIRG directly.

LnIRG =

{Ln−1IRj ∩ IR(p′, q′) |Ln−1IRj ∈ Ln−1IRG, IR(p′, q′) ∈ IRG(p′, Q),

@IR(p′, q′), Ln−1IRj ∈ IR(p′, q′)}
⋃
{Ln−1IRj |Ln−1IRj ∈ Ln−1IRG,

∃IR(p′, q′) ∈ IRG(p′, Q), Ln−1IRj ∈ IR(p′, q′)}

(4.5)

Figure 4.7 shows an example of L2 IRG generated from L1 IRG in Figure 4.3.

We have the following remarks for the definition of Multi-level IRG

1. Given an Ln−1IRG, LnIRG varies if a different pivot data point p′ is selected.

2. Once a new pivot is selected, the overlapping independent regions generated by the

pivot point is not empty since the pivot itself is inside an independent region.

3. If an Ln−1 independent region does not contain any data points, it will not be further

partitioned.

51

parallel parallelDataset P SSKY(P,Q)

Datasets Q

Pivot Selection

...

Pivot Selection

IRG-based Filter

...

IRG-based Filter

Multi-level IRGs

Dataset P

Spatial Dominance Test

...

Spatial Dominance Test

Spatial Skyline

Candidates

Figure 4.8: An overview of parallel spatial skyline processing using GPU.

We introduce the following properties of Multi-level IRG:

Property 6. (Search space) Given a set of data points P and a set of query points Q, any

Multi-level IRG generated from P and Q specifies a smaller search space of spatial skyline

query of P w.r.t. Q. Any data point outside the Multi-level IRG is discarded without the

spatial dominance test.

Property 7. Given an LnIRG generated from an Ln−1IRG, the search space of LnIRG is

equal to or smaller than that of Ln−1IRG.

Property 8. (Independence) Given a Multi-level IRG that consists of a set of independent

regions. Any spatial dominance tests in an independent region does not rely on any data

points outside that independent region.

Property 9. Given an Ln IRG generated from a set of data points P and a set of query

points Q, the Multi-level IRGs contain at most (|Q| − 1) ∗ n+ 1 independent regions.

52

4.2.2 Framework of the GPU-based Solution

Algorithm 1 Spatial-GPU Algorithm
Input: P , Q

Output: ssky

1: IRGs = CalculatingPivots&IR (P , Q);

2: P ′ = ParallelFilter(P , IRGs);

3: ssky = SpatialDominanceTest(P ′, Q);

4: return ssky;

Algorithm 2 Calculating Pivots and Independent Regions
Input: P , Q

Output: irs

1: Function: CalculatingPivots&IR

2: τ = MAX_VALUE ;

3: PI = ∅; . pivot set

4: for ∀ idx ∈ {1, ..., |Q|} (in parallel) do

5: for ∀p ∈ P (in parallel reduction) do

6: if idx == |Q| then

7: if maxq∈QD(p, q) < τ then

8: pi = p ; . L1 pivot

9: τ = maxq∈QD(p, q) ;

10: else

11: q = Q[idx];

12: if D(p, q)<D(PI[idx], q) then

13: PI[idx] = p ;

14: Calculate all LiIRG based on PI;

15: return L1IRG, ..., LnIRG;

53

Algorithm 3 Parallel Filter
Input: P , IRGs

Output: P ′

1: Function: ParallelFilter (P , IRGs)

2: P.dagger = 0;

3: for ∀p ∈ P (in parallel) do

4: for ∀ ir ∈ LmIRG (in parallel) do

5: if p ∈ ir and p ∈ LnIRG then

6: p.dagger=1;

7: Use P.dagger to do Parallel Prefix Inclusive Scan & Repack;

8: return P ′;

Algorithm 4 Parallel Spatial Dominance Test
Input: P ′, Q

Output: ssky

1: Function: SpatialDominanceTest (P ′, Q)

2: ssky = ∅;

3: P ′.dagger = ∅;

4: for ∀p′ ∈ P ′ (in parallel) do

5: for ∀p′′ ∈ P ′ (in parallel) do

6: if p′ is dominated by p′′ then

7: p′.dagger = 0;

8: Final repack;

9: return ssky

As described in Algorithm 1, our GPU-based solution Spatial-GPU is composed of

three steps. During the first step, we take advantages of Multi-level IRG concept and form

54

a space partition tree (shown in Figure 4.9). Each level of the tree represents a group of

independent regions, the union of which covers the whole search space.

Level 0 Level 1 Level 3 Level 4Level 2

IR(p9,q2) IR(p1,q3)

IR(p10,q3) IR(p1,q2)

IR(p10,q2) IR(p1,q2)

IR(p10,q1) IR(p1,q2)

IR(p9,q1) IR(p1,q3)

IR(p9,q3) IR(p1,q3)

IR(p8,q3) IR(p1,q1)

IR(p8,q1) IR(p1,q1)

IR(p8,q3) IR(p1,q1)

IR(p8,q1) IR(p1,q1)

IR(p8,q2) IR(p1,q1)

IR(p10,q3) IR(p1,q2)

IR(p10,q2) IR(p1,q2)

IR(p10,q1) IR(p1,q2)

IR(p1,q2)IR(p1,q2)

IR(p1,q3)IR(p1,q3) IR(p1,q3)

IR(p8,q3) IR(p1,q1)

IR(p8,q1) IR(p1,q1)

IR(p1,q1) IR(p8,q2) IR(p1,q1) IR(p8,q2) IR(p1,q1)

Rd

Figure 4.9: An example of the space partition tree.

A Multi-level IRG is built upon an L1IRG recursively by selecting a new independent

region pivot and re-distribute the IRG at each recursion. For example, LmIRG needs m

independent region pivots.

We first selects all the independent region pivots and Multi-level IRG in parallel. Then,

at the ParallelF ilter step, all the data points are filtered in parallel by the search space of

Multi-level IRG. If a data point p ∈ P belongs to a node at the bottom level of the space

partition tree, p will be passed to the next tsep for Spatial Dominance Test. Otherwise, p

will be discarded.

In Algorithm 4, we introduce our parallel spatial dominance test.

4.2.3 Multi-level IRG-Based Parallel Filter

The proposed Multi-level IRG not only downsized the overall search space, but also

partitions it into independent sub-regions.

55

Our Multi-level IRG (MIRG)-based partitioning has been proposed to address spatial

skyline queries in parallel. Due to the property of convex hull (Property 2), only convex hull

query points are indispensable in query evaluation. Such property reduces the cost of spatial

dominance test, but limits the parallel capability since parallelization can be performed up

to |CH(Q)| processes/threads (|CH(Q)| is the number convex hull query points Q).

The correctness of MIRG-based partitioning can be proven from the following two per-

spectives.

• Sufficiency. Property 6 specifies the search space of spatial skyline queries. If a data

point is outside of the search space, the data point is not a spatial skyline point because

it is spatially dominated by one of the pivot data points of LnIRG.

• Necessity. Property 8 describes the necessary data set for validating every candidate,

which contains all the data points with which the candidate must be compared.

Figure 4.9 displays an example of the space partition tree using MIRG, which corre-

sponds to the example of Figure 4.7. The root node at Level 0 indicates the entire search

space Rd. The three nodes at Level 1 partitions the search space into three sub-regions

(IRG(p1, Q)). The union of the three sub-spaces is the search space of L1IRG; the data

points in one sub-region are independent from the ones in other two sub-regions. For every

sub-region (independent region), any data point in that sub-region can be used to generate

an IRG and further partition the sub-region into smaller independent regions. Considering

IR(p1, q1) in Figure 4.4 and Figure 4.9 for an example, p8 is selected as an L2 pivot in

IR(p1, q1). IRG(p8, Q) = {IR(p8, q1), IR(p8, q2), IR (p8, q3)} is generated and overlapped

with IR(p1, q1). Since IR(p1, q2) ∈ IR(p8, q2), IR (p1, q3) ∈ IR (p8, q3), so those two IRs

will not be further partitioned. Thus, the node of IR(p1, q1) has three child nodes — i.e.,

IR (p1, q1) ∩ IR (p8, q1), IR (p1, q1) ∩ IR (p8, q2), and IR (p1, q1) ∩ IR (p8, q3).

Filter Example Algorithm 3 describes the filter process in pseudo code. Figure 4.7

displays an example of L2 IRG-based parallel filtering. Figure 4.4 corresponds to Level 2 of

56

Figure 4.9 space partition tree, three sub-regions of IR(p1, q1) are shadowed in gray. We can

also observe that the leaf nodes of the space partition tree (in Figure 4.9) L4IRG (|Q|+1 = 4)

introduces 9 (|Q|2) IRs. Since the number of nodes is increasing exponentially as the tree

expands, we propose two strategies to implement the parallel filter:

1. Parallel bottom level nodes. We have nine threads for each point in this example.

2. Pick a middle Level m. Assign one thread for each node at Level m, then traverse the

child nodes at a higher level sequentially. If m = 1, we have three threads for each

point in our example.

Theoretically, paralleling at a higher level means more parallelism and higher efficiency.

However, in practice, assigning n threads for each point requires at least n bytes to store the

intermediate results for reduction. Assigning too many threads for each point would increase

the reduction cost as well as GPU memory usage. We adopt the second strategy, and in

Algorithm 3, we choose Level m to parallel, and sequentially traverse bottom level n. After

all threads reach the end, we perform a reduction and discard all the filtered data points.

We now explain the details of Algorithm 3. P.dagger denotes the filter status of data

points P . We adopt parallel prefix inclusive scan to calculate the repacked index (P.index)

derived from P.dagger, then shift spatial skyline candidates based on P.index. Parallel prefix

inclusive scan is a standard GPU scanning algorithm that performs a common sequential

prefix scan in a parallel manner. For example, assume P.dagger=[1, 0, 1, 1, 0] (1 indicates

skyline candidate), a prefix inclusive scan will generate P.index=[0, 1, 1, 2, 3], which is a

linear scan that sums up all the previous data. Each position i in the P.index array keeps the

count of items that were not deleted before position i. We reassign elements in P.index to

−1 if the corresponding elements in P.dagger is 0. The resultant P.index is [0,−1, 1, 2,−1],

which are the indices of skyline candidates (positive number).

57

4.2.4 Independent Region Pivot Selection

Spatial-GPU utilizes LnIRG-based pre-filter method. The first step is to choose optimal

pivots that maximize the number of filtered data points (shown in Algorithm 2).

• L1 pivot is a global pivot that balances all L1 independent regions. We use a parallel

reduction to identify L1 pivot as the point that minimize the maximum distance of

each data point to query points (L1 pivot={p |minp∈P maxq∈Q D(p, q)}).

• Ln pivots are local pivots that further partition and downsize lower level independent

regions. The purpose of higher level IRG is to minimize the search region and increase

the parallelism.

Figure 4.10: A simplified example of pivot selection.

Taking Figure 4.10 as an example, the search region of IR(p1, q1) decreases to IR(p1, q1)

∩ IRG(p8, Q) (the shadow area). The pivot point for the next level should be the point that

minimizes the overlap region with IR(p1, q1).

4.3 MapReduce Framework

Since data has to be copied into GPU memory to be managed in GPU and GPU memory

size is relatively small compared to CPU, we present our parallel spatial skyline solution using

MapReduce for scenarios of large scale input.

58

4.3.1 Framework Overview

First Map-Reduce Phase Third Map-Reduce Phase

Dataset Q

Map

Global

Convex Hull

ReduceMapReduce

CH(Q)

Dataset P

SSKY(P, Q)

IR(CH(Q))

...

Local

Convex Hull

Local

Convex Hull

Partitioning by

Independent Regions

...

Partitioning by

 Independent Regions

...

Spatial

Skyline

Spatial

Skyline

Dataset P

Locally Optimized

Independent Region

Locally Optimized

Independent Region

...
Globally Optimized

Independent Regions

Second Map-Reduce Phase

Map Reduce

Figure 4.11: An overview of the parallel spatial skyline processing using MapReduce.

As illustrated in Fig. 4.11, we calculate the convex hull of Q in the first MapReduce

phase. Then, we calculate the independent regions based on the convex hull of Q and the

input data points P in the second phase. Each map function takes a subset of P and the

convex hull of Q as inputs, and outputs a locally optimal independent region pivot (See

Fig. 4.2). Then a reduce function produces a globally optimal independent region pivot by

merging the intermediate results. More details of independent region pivot selection will be

discussed in Section 4.3.4.

In the third phase, P is initialized to be partitioned randomly, and each map function

finds the independent regions of data points in a partition. The output of the map functions

is formalized as 〈IR.id, p〉, where IR.id is the unique identifier of the independent region

associated with a data point p. There are three scenarios:

(1) data points are eliminated if they are outside all the independent regions.

(2) data points are marked and outputted as spatial skylines by mappers and reducers if

they are inside the convex hull of Q. These data points are essential in reduce functions,

since they may spatially dominate data points in category (3).

(3) data points are preserved and associated with the independent regions they belong if

they fall in at least one independent region. These data points will be evaluated by

reducers for spatial skylines in each independent region.

59

If a data point belongs to two or more independent regions, the map function will produce a

pair of < IR.id, p > for every associated independent region. After the shuffle phase, data

points in P are grouped by independent regions, and sent to reduce functions for spatial

skyline calculation in parallel. Finally, the global spatial skyline points are the union of the

output of reduce functions.

Running Example Fig. 4.2 shows an example of spatial skyline query over three query

points and eight data points (Q={q1, q2, q3, q4}, P={p1, ..., p8}). First of all, the convex

hull of query points (CH(Q)) is generated in the first MapReduce phase. Then, the globally

optimal independent region pivot is found by using P and CH(Q) in the second MapReduce

phase. In the third MapReduce phase, each mapper receives the independent region pivot,

CH(Q) (as two constant global variables), and a partition of P , then output data points

with their associated independent regions.

In our example, there are three independent regions ({IR(p1, q1), IR(p1, q2), IR(p1, q3)}).

All the independent regions can be calculated from the independent region pivot and CH(Q)

in mappers, and data points are associated with the independent regions where they locate

in. We denote IR(p1, q1), IR(p1, q2), and IR(p1, q3) by ir1, ir2, and ir3, then p1 is associated

with ir1, p5 is associated with ir2, etc.

After the shuffle phase, 〈ir1, p1〉, 〈ir1, p2〉, 〈ir1, p3〉, and 〈ir1, p8〉 are grouped and sent

to the first reducer, 〈ir2, p1〉, 〈ir2, p5〉, and 〈ir2, p6〉 are passed to the second reducer, and

〈ir3, p1〉 〈ir3, p4〉 〈ir3, p5〉 are processed in the third reducer. In this case, p1 is a special

object point, which is in all of the three independent regions. After duplicates elimination,

p1 will be outputted by the first reducer only. Thus, the first reducer outputs p1, p2 and p8

as spatial skylines and discards p3 (dominated by p8). The second reducer outputs p5 and

p6. The third reducer does not output any object because p4 is eliminated in the spatial

dominance test and p5 has been produced in the second reducer. The final result of the

spatial skyline query is the union of all the reducers, which is {p1, p2, p5, p6, p8}.

60

4.3.2 Spatial Skyline Calculation

In the second and third MapReduce phases, we generate independent regions based on

the convex hull of Q (CH(Q)) and a set of data points P . Due to the inefficiency of spatial

dominance test, we introduce pruning regions in independent regions. A pruning region

is defined by a data point inside CH(Q), a convex point, and its adjacent convex points.

If a data point falls into any of the pruning regions, the point can be discarded without

dominance test. (Due the space limit, the details of pruning region is omitted. For details,

please refer [60, 61]).

The independent regions are determined by an independent region pivot and CH(Q).

The convex hull CH(Q) is uniquely determined by query points Q; however, theoretically,

the pivot can be arbitrarily selected. Since the union of independent regions should cover

the search region of spatial skyline candidates, an intuitive strategy of pivot selection is to

select a pivot that minimizes the total volume of the independent regions.

Fig. 4.12 displays an example that utilizes independent regions in spatial skyline eval-

uation in R2 (Same as Fig. 4.2). The datasets P and Q consist of 8 data points and 4

query points, respectively. q1, q2, and q3 are the convex points of Q (CH(Q)). The three

dashed circles indicate three independent regions generated by independent region pivot

p1 and the convex points. In this example, P is partitioned into three subsets, which are

P1 = {p1, p2, p3, p8}, P2 = {p1, p4, p5}, and P3 = {p1, p5, p6}. p1 and p8 are spatial skylines

since they are inside the convex hull [35]. p7 is outside all the independent regions and

can be discarded by mappers in the third phase. p5 is in IR(p1, q2) and IR(p1, q3), thus

p5 is associated with two independent regions. Then, the spatial skyline candidates in each

independent region are evaluated independently.

In the third MapReduce phase, a reduce function evaluates spatial skyline candidates

of an independent region. In particular, each data point compares its distances to all the

convex points (CH(Q)) with all the other data points in the same independent region (spatial

skylines do not depend on non-convex points [35]).

61

p1

q2

q1

q3

p2

p3

p4

p5

p6

p7IR(p1, q2)
IR(p1, q1)

IR(p1, q3)

p8

Independent Region

 Pivot

q4

Figure 4.12: An example of Independent Regions in a 2 -dimensional space.

4.3.3 Spatial Skyline Algorithm

We present our spatial skyline algorithm used in reduce functions of the third phase. The

input data points are grouped by their independent regions through the shuffle phase, and

unqualified data points outside independent regions have been discarded in map functions.

The details of our method are described in Algorithm 5. The algorithm receives all

data points in an independent region IR(p, qi), denoted by Pi, and the convex hull of query

points Q (CH(Q)). We use chsky and lssky to keep local spatial skylines inside and outside

CH(Q), respectively. The union of chsky and lssky are output as spatial skylines in the

independent region, which is a subset of the global spatial skylines of the query.

In particular, the algorithm first finds all the data points in CH(Q), and these data

points are kept in chsky. lssky temporarily maintains all data points outside CH(Q).

Then, each data point in lssky is visited for the dominance test, it needs to compare with

all other data points in chsky and lssky, and will be eliminated if it is dominated.

62

Algorithm 5 Spatial Skyline Algorithm
Input: Pi, CH(Q)

Output: lssky ∪ chsky

1: lssky = ∅;

2: chsky = ∅;

3: for ∀p ∈ Pi do

4: if p is inside CH(Q) then

5: chsky = chsky ∪ {p};

6: else

7: lssky = lssky ∪ {p};

8: for ∀p ∈ lssky do

9: if ∃ p′ ∈ (chsky ∪ lssky), p′ 6= p, p′ ≺Q p then

10: lssky = lssky - {p};

11: return lssky ∪ chsky;

4.3.4 Independent Region Pivot Selection

In the second MapReduce phase, the search space is partitioned into a set of independent

regions. The spatial skylines are calculated in parallel by reducers in the third MapReduce

phase. The execution time of a parallel program is determined by the slowest process. Thus,

distributing the data points to reducers in a balanced manner is critical to our approach.

Assuming the data points are uniformly distributed in the search space, the number of

data points in an independent region is proportional to the volume of the independent region,

which depends on the distance between the independent region pivot and the convex point.

Theoretically, the data point with equal distances to all the convex points is the optimal

independent region pivot, which could partition the data points in equal size. However, the

optimal pivot may not exist in irregular convex hull. We turn to an approximation approach

63

that chooses the data point that is the closest to the center of the Minimum Bounding

Rectangle (MBR) of the convex hull CH(Q) as the independent region pivot.

4.4 Experiments

Datasets To test on small scale input, we use real-world datasets downloaded from Geon-

ames1, and set 10 million data size by default. To test on large scale input, we use large

scale synthetic datasets that are randomly generated under uniform distribution in a 2-

dimensional space, and set 100 million data size by default. Similar to [35], the query points

are randomly generated in random regions where maximum MBR(Q) is 1% of the entire

dataset. We use 10 query points by default.

Algorithms GPU setting. We downloaded the simulation code of BSkyTree [38] and multi-

core Hybrid [64], which are state-of-the-art parallel skyline algorithms. We convert spatial

skyline queries into general skyline queries by adding an additional phase at the beginning

of the two methods to calculate distance between every pair of data point and query point

by using the GPU in parallel. After the distance calculation, the two methods can work as

baseline algorithms in our experiments.

We also reproduced SkyAlign [40] as a GPU-based baseline algorithm in Java and JCuda

7.0. Since our Spatial-GPU is implemented in Java, we use the same setting to guarantee

fair comparison. In terms of run-time evaluating for SkyAlign, we omit repacking and

sorting consumption, and only take GPU-related computation into consideration. In this

way, we make sure our reproduction of repacking or sorting will not affect the execution

time evaluation.

MapReduce setting. Our proposed algorithm is denoted by PSSKY -G-IR-PR, which

combines the concepts of independent region, pruning region, and multi-level grid data struc-

ture for efficient query evaluation (multi-level grid data structure is omitted due to limited
1http://www.geonames.org/

64

space, please refer [61] for details). We focus on exploring how to accelerate spatial skyline

parallel solutions using spatial properties. We developed two single-phase MapReduce-based

solutions as baselines: PSSKY and PSSKY -G. PSSKY applies a random data partition-

ing method. Each mapper uses BNL to produce local spatial skylines by comparing every

pair of data points, and a reducer merges the local results and outputs the global spatial

skylines. PSSKY -G works similarly to PSSKY except that PSSKY -G utilizes multi-level

grid data structure for efficient spatial dominance tests.

Since all three solutions use the same algorithm in convex hull computation, we focus on

the investigation of spatial skyline computation in the second and third MapReduce phases.

Configuration GPU setting. The GPU algorithms use an Nvidia Tesla K80 graphics card,

which has 12GB GDDR5 memory per GPU. The graphics card is equipped with Intel(R)

Xeon(R) E5-2670 v3 2.30GHz CPU processor and 256 GB CPU memory. We assume all

data has been loaded into CPU memory; the time of loading the data to CPU memory

is excluded from our evaluation. The GPU implementations are compiled using nvcc 7.5

compiler. Hybrid runs with 8 threads following [40].

MapReduce setting. The experiments were conducted on a 12-node cluster. Each node

is equipped with 19 Intel Xeon 2.2 GHz processors and 128 GB memory. All nodes were

connected by GigaBit Ethernet network.

4.4.1 Scalability with Cardinality

We apply small scale real world dataset on GPU algorithms, and large scale synthetic

dataset on MapReduce setting. Query points are set to 10 by default.

As shown in Fig. 4.13, we vary the cardinality from 2 to 10 million, and 100 to 500

million, respectively. All algorithms consume more time as cardinality grows, and our algo-

rithms perform well constantly. In Fig. 4.14, we measure the pure spatial skyline time, which

65

10
0

10
1

 2 4 6 8 10

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

Number of Data Points (10
6
)

Spatial-GPU
SkyAlign

Hybrid
BSkyTree

(a) Small scale data.

10
0

10
1

10
2

10
3

10
4

 100 200 300 400 500

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
in

)

Number of Data Points (10
6
)

PSSKY-G-IR-PR
PSSKY-G

PSSKY

(b) Large scale data.

Figure 4.13: Run-time performance varying dataset cardinality.

10
0

10
1

 2 4 6 8 10

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

Number of Data Points (10
6
)

Spatial-GPU
SkyAlign

(a) Small scale data.

10
0

10
1

10
2

10
3

10
4

 100 200 300 400 500

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
in

)

Number of Data Points (10
6
)

PSSKY-G-IR-PR
PSSKY-G

PSSKY

(b) Large scale data.

Figure 4.14: Spatial Skyline execution time varying dataset cardinality.

refers to GPU kernel time in GPU setting, and Reducer phase at the final computation phase

in MapReduce setting.

GPU Algorithms Scalability with Cardinality As Fig. 4.13a shows, the execution

time of all solutions increases when dataset grows. However, the growth rate of Spatial-

GPU is significantly lower than BSkyTree, Hybrid, and SkyAlign. For GPU algorithms, We

hypothesize that SkyAlign consists of d sequential iterations (d is the number of dimensions),

which cannot fully take advantage of GPU parallel features.

66

MapReduce Algorithms Scalability with Cardinality As Fig. 4.13b displays, the

execution time of all solutions increases as data size grows. The growth rate of PSSKY -

G-IR-PR is lower than that of PSSKY and PSSKY -G. The reason is that PSSKY -

G-IR-PR is able to parallelize the spatial skyline evaluation by applying the concept of

independent regions.

4.4.2 Effect of Query Points

10
0

10
1

10
2

 10 12 14 16

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of Query Points

Spatial-GPU
SkyAlign

Hybrid
BSkyTree

(a) Small scale dataset.

10
1

10
2

10
3

 10 12 14 16

E
x

ec
u

ti
o

n
 T

im
e

(m
in

)

Number of query points

PSSKY-G-IR-PR
PSSKY-G

PSSKY

(b) Large scale dataset.

Figure 4.15: Run-time varying number of query points.

10
0

10
1

10
2

 10 12 14 16

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of Query Points/Levels

Spatial-GPU
SkyAlign

(a) Small scale dataset.

10
0

10
1

10
2

10
3

 10 12 14 16

E
x

ec
u

ti
o

n
 T

im
e

(m
in

)

Number of query points

PSSKY-G-IR-PR
PSSKY

PSSKY-G

(b) Large scale dataset.

Figure 4.16: Spatial Skyline execution time varying number of query points.

We investigate the effect of query points on different data scales. We fix the size of data

points at 10 and 100 million, respectively. The number of convex hull query points are 10,

67

12, 14, and 16. In this section, query point means convex hull query point. Fig. 4.15 displays

the overall execution time for small scale and large scale datasets, which justifies our theory

that our system maintains high efficiency in different settings. Fig. 4.16 displays the pure

spatial skyline execution time which is the kernel time in GPU setting and reduce phase

in MapReduce setting. Fig. 4.15 and 4.16 show that pure spatial skyline time and overall

execution time share the same trend, which means spatial skyline operations are the major

workload.

Effect of Query Points for GPU Algorithms We fix the size of data points at 10

million. GPU algorithms do not exhibit much benefit for fewer query points, the reason is

that we adopt the IRG based parallel filter, more query points will not increase the filter

time dramatically. For CPU algorithms, no matter how the number of query points changes,

Spatial-GPU always exhibits less execution time.

Fig. 4.16a and 4.15a both share the same trend, but the GPU algorithm suffers from

higher overhead due to data transfer and takes more execution time proportionally.

Effect of Query points for MapReduce Algorithms We fix the size of data points

at 100 million. Fig. 4.15b displays the overall execution time. The experimental results

show that the entire process of query evaluation takes longer with increasing number of

query points. We hypothesize that this is due to more data points in the search region, and

more comparisons required.

68

Chapter 5

Conclusion and Future Work

In this dissertation, I focus on two tasks in the scope of data science: natural language

interface and data-intensive query processing. For the first work, I propose an NLIDB con-

verting natural language questions to structured queries (e.g., SQL). The main contribution

of this work is to separate data-specific information from the natural language and learn

the semantics of natural language and data-specific knowledge separately. Moreover, a new

strategy is proposed to pinpoint data-specific information inspired by adversarial mechanism.

Our experimental analysis ascertains the effectiveness of our approach over the state-of-the-

art approaches. For the second task, we devise a scalable parallel spatial skyline system

utilizing GPU and MapReduce framework. We demonstrate the efficiency and effectiveness

of the proposed solutions through extensive experiments on different cardinality of real-world

and synthetic datasets.

In summary, I hope to contribute my efforts to bridge the gap between human and

machine intelligence and help users to make informed decisions assisted with data-driven

applications.

I envision my future research from the following perspectives:

• Understand Query

I will work on understanding the intention of natural language queries incorporating

common-sense reasoning, especially for spatial domain.

• Understand Model

Deep models are vulnerable to adversarial attacks. I will work on understanding the

decision-making process of deep models to build robust deep models.

69

Bibliography

[1] Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and Wei-Shinn Ku. Adversarial texts

with gradient methods. arXiv preprint arXiv:1801.07175, 2018.

[2] Jordan Zlatev. Spatial semantics. The Oxford handbook of cognitive linguistics, pages

318–350, 2007.

[3] Vasant Dhar. Data science and prediction. Communications of the ACM, 56(12):64–73,

2013.

[4] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

[5] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR, Conference Track Proceedings, 2015.

[6] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning

at scale. In 5th International Conference on Learning Representations, ICLR 2017,

Conference Track Proceedings. OpenReview.net, 2017.

[7] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not

twins. arXiv preprint arXiv:1704.04960, 2017.

[8] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A

simple and accurate method to fool deep neural networks. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2016. IEEE Computer Society, 2016.

70

[9] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

IEEE European Symposium on Security and Privacy, EuroS&P, pages 372–387. IEEE,

2016.

[10] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi. Deep

text classification can be fooled. In Proceedings of International Joint Conference on

Artificial Intelligence, IJCAI, pages 4208–4215, 2018.

[11] Suranjana Samanta and Sameep Mehta. Towards crafting text adversarial samples.

arXiv preprint arXiv:1707.02812, 2017.

[12] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension

systems. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel, editors, Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP

2017, Copenhagen, Denmark, September 9-11, 2017, pages 2021–2031. Association for

Computational Linguistics, 2017.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and

Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 27:

Annual Conference on Neural Information Processing Systems, pages 3104–3112, 2014.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,

3rd International Conference on Learning Representations, ICLR, Conference Track

Proceedings, 2015.

71

[16] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mech-

anism in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics, ACL Volume 1: Long Papers. The

Association for Computer Linguistics, 2016.

[17] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Corinna

Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,

editors, Advances in Neural Information Processing Systems 28: Annual Conference on

Neural Information Processing Systems, pages 2692–2700, 2015.

[18] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel

mixture models. In 5th International Conference on Learning Representations, ICLR

Conference Track Proceedings. OpenReview.net, 2017.

[19] Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining.

In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS,

2019.

[20] Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-Ling Mao, and Heyan

Huang. Cross-lingual natural language generation via pre-training. arXiv preprint

arXiv:1909.10481, 2019.

[21] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,

Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s

multilingual neural machine translation system: Enabling zero-shot translation. Trans-

actions of the Association for Computational Linguistics, 5:339–351, 2017.

[22] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural language inter-

faces to databases - an introduction. Nat. Lang. Eng., 1(1):29–81, 1995.

72

[23] Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing of

the Asian Federation of Natural Language Processing, ACL, Volume 1: Long Papers,

pages 1332–1342. The Association for Computer Linguistics, 2015.

[24] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured

tables. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing

of the Asian Federation of Natural Language Processing, ACL Volume 1: Long Papers,

pages 1470–1480. The Association for Computer Linguistics, 2015.

[25] Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Pro-

ceedings of the 54th Annual Meeting of the Association for Computational Linguistics,

ACL, Volume 1: Long Papers. The Association for Computer Linguistics, 2016.

[26] Jonathan Herzig and Jonathan Berant. Neural semantic parsing over multiple

knowledge-bases. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, July

30 - August 4, Volume 2: Short Papers, pages 623–628. Association for Computational

Linguistics, 2017.

[27] Yu Su and Xifeng Yan. Cross-domain semantic parsing via paraphrasing. In Martha

Palmer, Rebecca Hwa, and Sebastian Riedel, editors, Proceedings of the 2017 Confer-

ence on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen,

Denmark, September 9-11, 2017, pages 1235–1246. Association for Computational Lin-

guistics, 2017.

[28] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke

Zettlemoyer. Learning a neural semantic parser from user feedback. In Proceedings

73

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), volume 1, pages 963–973, 2017.

[29] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating struc-

tured queries from natural language using reinforcement learning. arXiv preprint

arXiv:1709.00103, 2017.

[30] Jingjing Li, Wenlu Wang, Wei-Shinn Ku, Yingtao Tian, and Haixun Wang. Spatialnli:

A spatial domain natural language interface to databases using spatial comprehension.

In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pages 339–348. ACM, 2019.

[31] Bo Chen, Le Sun, and Xianpei Han. Sequence-to-action: End-to-end semantic graph

generation for semantic parsing. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, ACL, 2018.

[32] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code

generation and semantic parsing. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics, ACL, 2017.

[33] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from

natural language without reinforcement learning. arXiv preprint arXiv:1711.04436,

2017.

[34] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir R. Radev. Typesql:

Knowledge-based type-aware neural text-to-sql generation. In Marilyn A. Walker, Heng

Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short

Papers), pages 588–594. Association for Computational Linguistics, 2018.

74

[35] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries. In Umeshwar

Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Mar-

tin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, Proceedings of the 32nd

International Conference on Very Large Data Bases, Seoul, Korea, September 12-15,

2006, pages 751–762. ACM, 2006.

[36] Wonik Choi, Ling Liu, and Boseon Yu. Multi-criteria decision making with skyline com-

putation. In Information Reuse and Integration (IRI), 2012 IEEE 13th International

Conference on, pages 316–323. IEEE, 2012.

[37] Kenneth S Bøgh, Ira Assent, and Matteo Magnani. Efficient gpu-based skyline compu-

tation. In Proceedings of the Ninth International Workshop on Data Management on

New Hardware, page 5. ACM, 2013.

[38] Jongwuk Lee and Seung-Won Hwang. Scalable skyline computation using a balanced

pivot selection technique. Information Systems, 39:1–21, 2014.

[39] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. Scalable skyline computation

using object-based space partitioning. In Ugur Çetintemel, Stanley B. Zdonik, Donald

Kossmann, and Nesime Tatbul, editors, Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,

June 29 - July 2, 2009, pages 483–494. ACM, 2009.

[40] Kenneth S Bøgh, Sean Chester, and Ira Assent. Work-efficient parallel skyline compu-

tation for the gpu. Proceedings of the VLDB Endowment, 8(9):962–973, 2015.

[41] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient distributed skylining

for web information systems. In Elisa Bertino, Stavros Christodoulakis, Dimitris Plex-

ousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Ferrari,

editors, Advances in Database Technology - EDBT 2004, 9th International Conference

75

on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Pro-

ceedings, volume 2992 of Lecture Notes in Computer Science, pages 256–273. Springer,

2004.

[42] Ping Wu, Caijie Zhang, Ying Feng, Ben Y. Zhao, Divyakant Agrawal, and Amr El

Abbadi. Parallelizing skyline queries for scalable distribution. In Yannis E. Ioannidis,

Marc H. Scholl, Joachim W. Schmidt, Florian Matthes, Michael Hatzopoulos, Kle-

mens Böhm, Alfons Kemper, Torsten Grust, and Christian Böhm, editors, Advances

in Database Technology - EDBT 2006, 10th International Conference on Extending

Database Technology, Munich, Germany, March 26-31, 2006, Proceedings, volume 3896

of Lecture Notes in Computer Science, pages 112–130. Springer, 2006.

[43] Adan Cosgaya-Lozano, Andrew Rau-Chaplin, and Norbert Zeh. Parallel computation of

skyline queries. In 21st Annual International Symposium on High Performance Comput-

ing Systems and Applications (HPCS 2007), 13-16 May 2007, Saskatoon, Saskatchewan,

Canada, page 12. IEEE Computer Society, 2007.

[44] Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. Parallel skyline

queries. In Alin Deutsch, editor, 15th International Conference on Database Theory,

ICDT ’12, Berlin, Germany, March 26-29, 2012, pages 274–284. ACM, 2012.

[45] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg.

Agids: A grid-based strategy for distributed skyline query processing. In Abdelka-

der Hameurlain and A Min Tjoa, editors, Data Management in Grid and Peer-to-Peer

Systems, Second International Conference, Globe 2009, Linz, Austria, September 1-2,

2009, Proceedings, volume 5697 of Lecture Notes in Computer Science, pages 12–23.

Springer, 2009.

[46] Ji Zhang, Xunfei Jiang, Wei-Shinn Ku, and Xiao Qin. Efficient parallel skyline evalua-

tion using mapreduce. IEEE Trans. Parallel Distrib. Syst., 27(7):1996–2009, 2016.

76

[47] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space partition-

ing for efficient parallel skyline computation. In Jason Tsong-Li Wang, editor, Proceed-

ings of the ACM SIGMOD International Conference on Management of Data, SIGMOD

2008, Vancouver, BC, Canada, June 10-12, 2008, pages 227–238. ACM, 2008.

[48] Henning Köhler, Jing Yang, and Xiaofang Zhou. Efficient parallel skyline processing

using hyperplane projections. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsi-

etsidis, and Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011,

pages 85–96. ACM, 2011.

[49] Xixian Han, Jianzhong Li, Donghua Yang, and Jinbao Wang. Efficient skyline compu-

tation on big data. IEEE Trans. Knowl. Data Eng., 25(11):2521–2535, 2013.

[50] Boliang Zhang, Shuigeng Zhou, and Jihong Guan. Adapting skyline computation to

the mapreduce framework: Algorithms and experiments. In Jianliang Xu, Ge Yu,

Shuigeng Zhou, and Rainer Unland, editors, Database Systems for Adanced Applications

- 16th International Conference, DASFAA 2011, International Workshops: GDB, SIM3,

FlashDB, SNSMW, DaMEN, DQIS, Hong Kong, China, April 22-25, 2011. Proceedings,

volume 6637 of Lecture Notes in Computer Science, pages 403–414. Springer, 2011.

[51] Liang Chen, Kai Hwang, and Jian Wu. Mapreduce skyline query processing with a new

angular partitioning approach. In 26th IEEE International Parallel and Distributed

Processing Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, May

21-25, 2012, pages 2262–2270. IEEE Computer Society, 2012.

[52] Ahmed Eldawy, Yuan Li, Mohamed F Mokbel, and Ravi Janardan. Cg_hadoop: com-

putational geometry in mapreduce. In Proceedings of the 21st ACM SIGSPATIAL In-

ternational Conference on Advances in Geographic Information Systems, pages 294–303,

2013.

77

[53] Kasper Mullesgaard, Jens Laurits Pederseny, Hua Lu, and Yongluan Zhou. Efficient sky-

line computation in mapreduce. In Sihem Amer-Yahia, Vassilis Christophides, Anasta-

sios Kementsietsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy, editors,

Proceedings of the 17th International Conference on Extending Database Technology,

EDBT 2014, Athens, Greece, March 24-28, 2014, pages 37–48. OpenProceedings.org,

2014.

[54] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirec-

tional attention flow for machine comprehension. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings. OpenReview.net, 2017.

[55] Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training meth-

ods for semi-supervised text classification. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-

ceedings. OpenReview.net, 2017.

[56] Fei Li and Hosagrahar Visvesvaraya Jagadish. Nalir: an interactive natural language

interface for querying relational databases. In Curtis E. Dyreson, Feifei Li, and M. Tamer

Özsu, editors, International Conference on Management of Data, SIGMOD, pages 709–

712. ACM, 2014.

[57] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-

ing RNN encoder-decoder for statistical machine translation. In Alessandro Moschitti,

Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Em-

pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,

Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–

1734. ACL, 2014.

78

[58] Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, and Xiaodong He. Nat-

ural language to structured query generation via meta-learning. In Marilyn A. Walker,

Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT, Volume 2 (Short Papers), pages 732–738. Association for

Computational Linguistics, 2018.

[59] Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In

Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics, ACL, Volume 1: Long Papers, pages

731–742. Association for Computational Linguistics, 2018.

[60] Wenlu Wang, Ji Zhang, Min-Te Sun, and Wei-Shinn Ku. Efficient parallel spatial skyline

evaluation using mapreduce. In Volker Markl, Salvatore Orlando, Bernhard Mitschang,

Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breß, editors, Proceedings of the

20th International Conference on Extending Database Technology, EDBT, pages 426–

437. OpenProceedings.org, 2017.

[61] Wenlu Wang, Ji Zhang, Min-Te Sun, and Wei-Shinn Ku. A scalable spatial skyline

evaluation system utilizing parallel independent region groups. The VLDB Journal The

International Journal on Very Large Data Bases, 28(1):73–98, 2019.

[62] Wenlu Wang and Wei-Shinn Ku. Dynamic indoor navigation with bayesian filters.

SIGSPATIAL Special, 8(3):9–10, 2016.

[63] Wenlu Wang and Wei-Shinn Ku. Recommendation-based smart indoor navigation. In

Proceedings of the Second International Conference on Internet-of-Things Design and

Implementation, pages 311–312. ACM, 2017.

79

[64] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth S Bøgh. Scalable paralleliza-

tion of skyline computation for multi-core processors. In 2015 IEEE 31st International

Conference on Data Engineering, pages 1083–1094. IEEE, 2015.

80

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Overview

	Background
	Adversarial Mechanism
	Image Domain
	Text Domain

	Deep Linguistic Model
	Sequence-to-sequence Model
	Transfer Learning
	Natural Language Interface to Databases (NLIDB)

	Data-Intensive Spatial Skyline Query Evaluation
	Spatial Skyline Query
	GPU Multi-threading Scheme
	MapReduce Scheme

	Query Understanding: Natural Language Interfaces
	Introduction
	Metadata
	Challenges of Question Understanding
	Mention Detection and Resolution
	Mention Detection for Columns
	Column Mention Binary Classifier
	Adversarial Text Method
	Mention Detection for Values
	Mention Resolution

	Sequence to Sequence Translation
	Representation of Annotated Sequence
	Sequence Translation Model

	Experimental Validation
	Dataset
	Mention Detection Performance
	Evaluation
	Ablation

	Generalization Problem Discussion
	Spatial Domain Generalization
	Cross-Domain NLI

	Data-Intensive Query Processing
	Spatial Skyline Query (SSQ)
	Preliminary
	Core Concepts

	GPU Multi-threading Scheme
	Multi-level Independent Region Group (MIRG)
	Framework of the GPU-based Solution
	Multi-level IRG-Based Parallel Filter
	Independent Region Pivot Selection

	MapReduce Framework
	Framework Overview
	Spatial Skyline Calculation
	Spatial Skyline Algorithm
	Independent Region Pivot Selection

	Experiments
	Scalability with Cardinality
	Effect of Query Points

	Conclusion and Future Work

