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Abstract

The majority of the research in quantum computation theory is based on quantum mechanical

systems consisting of quantum subsystems that are all of the same dimension. Following and

expanding on the research conducted by Randall R. Holmes and Frédéric Texier in their paper

“A Generalization of the Deutsch-Jozsa Quantum Algorithm”, we generalize several results in

quantum computation theory to quantum systems consisting of quantum subsystems of varying

dimensions, which amounts to a generalization to arbitrary finite abelian groups. These results

include the Bernstein-Vazirani algorithm, Simon’s algorithm, the Pauli group and algebra, the

Clifford group, and stabilizer codes. We also further generalize the Deutsch-Jozsa algorithm

to arbitrary finite groups. Additionally, we expand on the topic of orthogonal complements

of subgroups of finite abelian groups as introduced by Holmes and Texier, and we define the

symplectic complement of a subgroup of a group G ⊕ G, where G is a finite abelian group.

Lastly, we define pseudo-unitarity and find results relating this definition to quantum computa-

tion theory, where the prefix ‘pseudo’ comes from the Moore-Penrose pseudo-inverse.
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Chapter 1

Introduction

The idea for quantum computing began to materialize in the last few decades of the 20th

century when scientists sought to combine information theory and quantum mechanics. In

the 1990s, researchers devised the first algorithms that were entirely based on quantum me-

chanics, and they proved that these so-called quantum algorithms could, in theory, outperform

any classical algorithm that used deterministic methods and give the correct answer with cer-

tainty [RP11, p. 1-3]. For example, the Deutsch-Jozsa algorithm (1992), the Bernstein-Vazirani

algorithm (1992), and Simon’s algorithm (1994) offer exponential speedup over their classical

analogues [RP11, p. 141-144]. In 1994, inspired by Simon’s algorithm, Peter Shor developed

a polynomial-time quantum algorithm for factoring integers called Shor’s algorithm [RP11,

p. 163], and this discovery prompted widespread interest in quantum computing [RP11, p. 163].

However, due to the sheer number of unavoidable environmental interactions a quantum com-

puter would suffer, Shor’s algorithm was thought, at the time of its discovery, to not be of any

practical use. Also, at the time no one had any ideas as to how one could perform error cor-

rection on a quantum computer since a straightforward application of classical methods to the

quantum case was impossible. However, thanks to a surprising and clever use of classical tech-

niques to quantum errors, researchers have been able to develop sophisticated quantum error

correction techniques. One such technique for quantum error correction is the class of so-called

stabilizer codes [RP11, p. 245].

Currently, most of the research in quantum computation is based on quantum systems that are

entanglements of smaller quantum systems all of the same dimension. There is also the case

where the smaller quantum systems are of differing, or mixed, dimensions. For example, there
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is currently a considerable amount of research being conducted in the dynamics of a qubit-

qutrit system, which is a quantum system in which a two-dimensional quantum system (qubit)

is combined or entangled with a three-dimensional quantum system (qutrit).

The advantages of a quantum computer over a classical computer depend on the existence of a

sufficiently large-scale quantum computer, which is only theoretical at this point. Companies

like IBM, Honeywell, and others are making tremendous headway into the construction of

the first quantum computer large enough to be of practical use. As of the year 2020, IBM’s

largest quantum computer contains 65 qubits, and the company promises to build a 1000-qubit

quantum computer by 2023 [Cho20].

This paper has been inspired mainly by the work done by Randall R. Holmes and Frédéric

Texier in their paper “A Generalization of the Deutsch-Jozsa Quantum Algorithm”, as well as

the work done by Daniel Gottesman in his paper “Fault-Tolerant Quantum Computation with

Higher-Dimensional Systems”. In this paper, we generalize the Deutsch-Jozsa problem and

algorithm even further to arbitrary finite groups in Subsection 2.3, we apply the generalization

of the Deutsch-Jozsa problem and algorithm to finite abelian groups by Holmes and Texier

to generalize the Bernstein-Vazirani problem and algorithm in Subsection 2.4 and Simon’s

problem and algorithm in Subsection 2.5. We also generalize the so-called Pauli group in

Subsection 4.2 and stabilizer codes in Subsection 4.6 to arbitrary finite abelian groups. We

attempt to generalize the so-called Clifford group in Subsection 4.8, but we only get close and

leave the reader with two open problems in this topic, namely Open Problems 4.8.1 and 4.8.2.
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Chapter 2

Generalizations of Some Quantum Algorithms

2.1 Dirac Notation and Qudits

Since our goal is to make a generalization about quantum error correction, we will henceforth

use notation from quantum mechanics, the so-called Dirac notation, also known as bra-ket

notation, where the words “bra” and “ket” come from splitting the word “braket”, or “bracket”,

in two. A bra is a row vector represented by 〈ψ| and a ket is a column vector represented by

|ϕ〉, with 〈ψ| = |ψ〉T , and |ψ〉 and |ϕ〉 belong to a vector space over C with their inner product

being 〈ψ|ϕ〉. Using this notation, it follows that the outer product of |ψ〉 and |ϕ〉 is given by

|ϕ〉〈ψ|.

2.1.1 Definition. Let n ∈ N. Set Hn = Cn. We call the space Hn an n-dimensional qudit (or

just qudit if there is no need to refer to the dimension). A 2-dimensional qudit is referred to as a

qubit (a portmanteau of the words “quantum” and “bit”), and a 3-dimensional qudit is referred

to as a qutrit.

2.1.2 Definition. Let (G, ·) be a finite group andK be a field. We define the group algebraKG

as theK-vector space with basisG together with the product defined for vectors |v〉 =
∑
g∈G

ag|g〉

and |w〉 =
∑
g′∈G

bg′|g′〉 in KG by the formula
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|v〉 ? |w〉 =

(∑
g∈G

ag|g〉

)
?

(∑
g′∈G

bg′|g′〉

)
=
∑
g∈G

∑
g′∈G

agbg′|g · g′〉.

In addition, it is important to note that G can be taken to be abelian or non-abelian, where in

the latter case, one has to be careful with the products |g〉 ? |g′〉 and |g′〉 ? |g〉 since they need

not be equal in general.

2.1.3 Example. Let G = Z4 and K = C. Let |v〉 = i|0〉+ (3− 2 i)|2〉 and |w〉 = 3|0〉 − 2 i|3〉.

Then |v〉, |w〉 ∈ KG and

|v〉 ? |w〉 = (i|0〉+ (3− 2 i)|2〉) ? (3|0〉 − 2 i|3〉)

= 3 i|0 + 0〉 − 2i2|0 + 3〉+ (9− 6i)|2 + 0〉 − (6 i− 4 i2)|2 + 3〉

= 3 i|0〉+ 2|3〉+ (9− 6 i)|2〉 − (4 + 6 i)|1〉

= 3 i|0〉 − (4 + 6 i)|1〉+ (9− 6 i)|2〉+ 2|3〉.
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2.2 The Holmes-Texier Generalization of the Deutsch-Jozsa Algorithm

Let G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn for some positive integers mi (1 ≤ i ≤ n), and let m be the

least common multiple of m1,m2, . . . ,mn. For each integer i with 1 ≤ i ≤ n, let Hmi be an

mi-dimensional qudit. If mi is even, then as an example, Hmi could be taken to be the z-spin

state space of a fermion, and if mi is odd, then Hmi could be taken to be the z-spin state space

of a boson [HT03, p. 2].

Put H ′ = Hm1 ⊗ Hm2 ⊗ · · · ⊗ Hmn , where the product ⊗ is the tensor product. We require

an additional m-dimensional qudit Hm for the storage of images f(a), where f : G → Zm

is a function. The vector space H := H ′ ⊗ Hm has basis {|a〉|z〉 | a ∈ G, z ∈ Zm}, where

|a〉|z〉 : |a1〉 ⊗ · · · ⊗ |an〉 ⊗ |z〉 [HT03, p. 2].

2.2.1 Note. For the rest of the paper, we view Hmi as the vector space of mi-dimensional col-

umn vectors over C by identifying |j〉 for each j ∈ Zmi with the column vector having a one

in the (j + 1)st position and zeros elsewhere. Thus we view the set {|j〉 | j ∈ Zmi} as the

standard basis for Hmi .

2.2.2 Definition. For a function f : G→ Zm, define Uf : H → H by

Uf (|a〉|z〉) = |a〉|z + f(a)〉,

for a ∈ G and z ∈ Zm.

Under the assumption that G = Zn2 , the classical Deutsch-Jozsa Problem is stated as fol-

lows [RP11, p. 140]:
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A function f : G→ Z2 is balanced if an equal number of input values to the function return 0

and 1. Given a function f : G→ Z2 that is known to be either constant or balanced, determine

whether the function f is constant or balanced.

A traditional, deterministic algorithm must evaluate the function f at least 2n−1 + 1 times to

solve the problem with certainty. On the other hand, Deutsch and Jozsa discovered a quantum

algorithm that uses the properties of quantum mechanics to solve the problem with a single

evaluation of Uf [RP11, p. 141].

Instead of presenting the Deutsch-Jozsa Algorithm, we present the generalization of Holmes

and Texier. Before we state the generalization of the problem, we must first state definitions

integral to the problem statement.

Let F denote the additive group of functions G→ Zm, where m is the least common multiple

of the mi. For f, g ∈ F , the sum f + g is defined by (f + g)(a) = f(a) + g(a), where the

addition is modulo m. For a ∈ G, define ιa ∈ F by

ιa(b) = a ◦ b =
n∑
i=1

aibi

(
m

mi

)
· 1,

where
n∑
i=1

aibi

(
m

mi

)
∈ Z and 1 ∈ Zm. Since Zm is a Z-module, we have ιa(b) ∈ Zm and thus

ιa is well-defined in that it maps to the indicated codomain.

Note that when m1 = m2 = · · · = mn = m, a ◦ b is the usual inner (dot) product of a and b.

Also, observe that for fixed a and b, ιa(b) = a ◦ b = b ◦ a = ιb(a).

Let ε ∈ C be a primitive mth root of unity, that is, εm = 1 and εj 6= 1 for all 0 < j < m. A

common example is ε = e2πi/m, where i =
√
−1, for instance.
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2.2.3 Definition. For f ∈ F , define

ϕ(f) =
∑
a∈G

εf(a) ∈ C.

2.2.4 Definition. Given a subset P of G, we shall say that f ∈ F is P-based if ϕ(ιa − f) = 0

for all a ∈ G\P .

The Holmes-Texier generalization of the Deutsch-Jozsa Problem is stated as follows:

Let {P1, . . . , Pt} be a partition of G so that G = P1 ∪ · · · ∪ Pt and Pi ∩ Pj = ∅ for i 6= j.

Let f be an element of F and suppose that f is Pk-based for some k. Then this k is uniquely

determined (see Remark 1 below); we present a quantum algorithm for its determination. The

Deutsch-Jozsa algorithm is recovered as a special case (see Remark 2).

The Algorithm. Recall that Hmi is an mi-dimensional qudit (1 ≤ i ≤ n), H ′ = Hm1⊗Hm2⊗

· · ·⊗Hmn , and H = H ′⊗Hm, where Hm is an m-dimensional qudit. Recall that Uf : H → H

is defined by

Uf (|a〉|z〉) = |a〉|z + f(a)〉

for a ∈ G and z ∈ Zm.

Now, define W : H ′ → H ′ and σ : Hm → Hm by

W (|b〉) = |A|−1/2
∑
a∈A

εb◦a|a〉,

for b ∈ G, and

σ(|z〉) = εz|z〉,
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for z ∈ Zm, respectively.

It is straightforward to prove that Uf ,W, and σ are unitary. We initialize our system to the state

|0〉|0〉 and then apply unitary operators as follows :

|0〉|0〉 W⊗17−→ |G|−1/2
∑
a∈G

|a〉|0〉

U−f7−→ |G|−1/2
∑
a∈G

|a〉| − f(a)〉

1⊗σ7−→ |G|−1/2
∑
a∈G

|a〉ε−f(a)| − f(a)〉

Uf7−→ |G|−1/2
∑
a∈G

|a〉ε−f(a)|0〉

W⊗17−→ |G|−1
∑
b∈G

|b〉|0〉
∑
a∈G

εa◦bε−f(a).

Since
∑

a∈G ε
a◦bε−f(a) =

∑
a∈G ε

ιb(a)ε−f(a) = ϕ(ιb − f), and since ϕ(ιb − f) = 0 for each

b ∈ A\Pk, due to f being Pk-based, this last expression equals

|G|−1
∑
b∈Pk

|b〉|0〉ϕ(ιb − f).

It follows that a measurement at this point will produce a state |b〉 for some b ∈ Pk, and as a

result, k will be determined with certainty.

Remark 1. If f ∈ F is Pk-based, then it follows from the algorithm that f is not Pj-based for

any j 6= k.
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2.2.5 Theorem. For a subset P of G and an element a of G, the function ιa ∈ F is P − based

if and only if a ∈ P .

Let f ∈ F and let B ⊆ G. We say that f is balanced on B if f(B) is a coset C of a nontrivial

subgroup of Zm and the cardinality
∣∣f |−1

B (c)
∣∣, where c ∈ C, does not depend on the choice of

c. In other words, f |B takes on each element of C the same number of times. Note that if f is

balanced on B, then, due to the nontriviality of the subgroup in the definition, f is not constant

on B.

2.2.6 Theorem. Let H be a subgroup of G. A homomorphism f : G → Zm is either constant

on each coset of H or balanced on each coset of H .

2.2.7 Lemma. If B is a subset of G and f is a function in F that is balanced on B, then∑
b∈B

εf(b) = 0.

LetH be a subgroup ofG. LetFH denote the set of all functions inF that are either constant on

every coset of H or balanced on every coset of H . Denote by H⊥ the orthogonal complement

relative to ◦ of H in G:

H⊥ = {g ∈ G | g ◦ h = 0 for all h ∈ H}.

2.2.8 Theorem. Let H be a subgroup of G and let f be a function in FH .

(1) f is constant on each coset of H if and only if f is H⊥-based.

(2) f is balanced on each coset of H if and only if f is G\H⊥-based.

9



Remark 2. In the notation of the theorem, {H⊥, G\H⊥} is a partition of G, so the algorithm

can be applied to distinguish between a function that is constant on each coset of H and one

that is balanced on each coset of H . In particular, this applies to the choice H = G. Con-

sidering the special case m1 = m2 = · · · = mn, we see that the algorithm can be used to

distinguish between a function that is constant on G and a function that takes on each of the

values 0, 1, 2, . . . ,m− 1 an equal number of times. When m = 2, this is precisely the situation

for the Deutsch-Jozsa algorithm.
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2.3 A Generalization of the Deutsch-Jozsa Algorithm to Arbitrary Finite Groups

The Deutsch-Jozsa Algorithm takes a function f : Zn2 → Z2 that is known to be either constant

or balanced on the domain, that is, f either maps all of the domain to one value (constant)

or it maps half to 0 and half to 1 (balanced), and it determines whether f is constant or bal-

anced. This algorithm was generalized by Holmes and Texier to a function f : G→ Zm, where

G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn and where m is the least common multiple of m1,m2, . . . ,mn.

Now, we wish to generalize the problem further by replacing G with an arbitrary finite group

(not necessarily abelian). Before we state the problem, we define the notion of a function being

balanced on a subset of its domain.

2.3.1 Definition. Let G and G∗ be groups. A function f : G→ G∗ is said to be balanced on a

subset B of G if f(B) is a coset C of a nontrivial subgroup of G∗ and the cardinality |f |−1
B (c)|,

where c ∈ C, does not depend on the choice of c.

Note that if f is balanced on B, then, due to the nontriviality of the subgroup in the definition,

f is not constant on B.

Problem: Let G be a finite group, let H be a subgroup of G, and let f : G→ Zm be a function

that is constant on the cosets of the commutator subgroup G′ of G in G. Assuming it is known

that f is either constant on every coset of H or is balanced on every coset of H , determine

which is the case.

2.3.2 Note. When referring to the cosets of a subgroup of a (general) finite group G, we will

not be specific as to whether we are referring to left or right cosets, since the results will be true

regardless.
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2.3.3 Theorem. Let G and G∗ be groups, let ϕ : G → G∗ be a homomorphism, and let H

be a subgroup of G. The function ϕ is either constant or balanced on each coset of H . More

specifically, ϕ is constant on each coset of H if H is contained in the kernel of ϕ, and it is

balanced on each coset of H otherwise.

Proof. Suppose H ⊆ kerϕ. Thus ϕ(h) = e∗ for all h ∈ H , where e∗ is the identity in G∗. Let

a ∈ G. Consider the coset aH of H in G. We have ϕ(ah) = ϕ(a) · ϕ(h) = ϕ(a) · e∗ = ϕ(a)

for all h ∈ H , and ϕ is therefore constant on aH . Since a ∈ G was arbitrary, it follows that ϕ

is constant on each coset of H .

Now, supposeH 6⊆ kerϕ. SetH := H∩kerϕ. ThenH ⊆ kerϕ, so ϕ is constant on each coset

of H . We see that H = kerϕ|H , so by the First Isomorphism Theorem, H/H = H/ kerϕ|H ∼=

imϕ|H = ϕ(H), which shows there is a one-to-one correspondence between the cosets of H in

H and the elements of ϕ(H). Moreover, since the cosets of H in H have the same cardinality,

it follows that ϕ|H takes on each element of ϕ(H) the same number of times; in fact, ϕ|H is

a |H|-to-one map onto ϕ(H). Also, since ϕ is a homomorphism, ϕ(H) is a subgroup of G∗,

which is the same as the coset e∗ ·ϕ(H) = ϕ(H), which is nontrivial since H 6⊆ kerϕ. Thus ϕ

is balanced on H . Now, observe that since H ⊆ H , aH is the union of a collection of cosets of

H (in G) in one-to-one correspondence with the collection of cosets of H in H . In fact, if bH

is a coset of H in H , then the corresponding coset of H lying in aH is a(bH) = (ab)H . Now ϕ

is constant on a(bH) for all b ∈ H , and since the cosets of H in H have the same cardinality, it

follows that ϕ takes on each element of ϕ(aH) the same number of times. Additionally, since

ϕ(aH) = ϕ(a)ϕ(H) and ϕ(H) is nontrivial, ϕ(aH) is a coset of the nontrivial subgroup ϕ(H)

in G∗. Thus ϕ is balanced on aH . Hence ϕ is balanced on each coset of H .

2.3.4 Corollary. Let G be a group and H be a subgroup of G. A homomorphism f : G→ Zm

is either constant on each coset of H or balanced on each coset of H .

Proof. (1) Corollary of Theorem 2.3.3.
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2.3.5 Theorem (Fundamental Homomorphism Theorem [Hun80, p. 43]). Let G and G∗ be

groups, and let f : G → G∗ be a homomorphism. If H is a normal subgroup of G such that

H ⊆ ker f , then there exists a unique homomorphism f̄ : G/H → G∗ such that f̄π = f , where

π : G→ G/H is the canonical epimorphism. The function f̄ is given by f̄(gH) = f(g).

2.3.6 Definition. For a group G, put Gab = G/G′, where G′ = [G,G] is the commutator sub-

group of G, which is the subgroup of G generated by the set {[a, b] = a−1b−1ab : a, b ∈ G}.

The group Gab is the abelianization of the group G.

Fix a finite group G. We have Gab ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn for some n,mi ∈ Z+. Put

m = lcm(m1,m2, . . . ,mn). Let f : G → Zm be a function that is constant on the cosets of

G′, and let f̄ : Gab → Zm be the function defined by f̄(gG′) = f(g) for each g ∈ G. Given

π : G→ Gab is the canonical epimorphism, we have

f̄π(g) = f̄(gG′) = f(g).

Therefore, f̄π = f and we get the following commutative diagram:

G Zm

Gab

f

π
f̄

2.3.7 Lemma (R. Holmes). For each a ∈ G and x ∈ f(aH), we have
∣∣f |−1

aH(x)
∣∣ =

|H ∩G′|
∣∣f̄ |−1

π(aH)(x)
∣∣.

Proof. Let a ∈ G and let x ∈ f(aH). Put

B = f |−1
aH(x) = {b ∈ aH | f(b) = x}

13



and

C = f̄ |−1
π(aH)(x) = {c ∈ π(aH) | f̄(c) = x}.

Let R be a set of representatives of the (left) cosets of H ∩G′ in H . For b ∈ aH , let r(b) ∈ R

denote the coset representative for which a−1b ∈ r(b)(H ∩ G′). Define ι : aH → H ∩ G′

by ι(b) = r(b)−1a−1b. It is straightforward to check that ι is a function that maps to the indi-

cated codomain. Thus for b ∈ aH , we have a−1b = r(b)ι(b), and it follows that the elements

r(b) ∈ R and ι(b) ∈ H ∩ G′ are uniquely determined. Define F : B → (H ∩ G′) × C by

F (b) = (ι(b), π(b)). It suffices to show that F is a well-defined bijection.

Claim: F is well-defined. To prove the claim, it suffices to check that F is a function that maps

to the indicated codomain. Since both ι and π are functions, it follows that F is a function.

Since ι maps B to H ∩ G′, it suffices to prove that π maps B to C. Let z ∈ π(B), and let

b ∈ B satisfy z = π(b). Since b ∈ aH and f(b) = x, we have z = π(b) ∈ π(aH) and

f̄(z) = f̄(π(b)) = f̄π(b) = f(b) = x. Thus z ∈ C, and we have π(B) ⊆ C. Now, let

c ∈ C. Then we have c ∈ π(aH) and f̄(c) = x. Let h ∈ H satisfy c = π(ah). Then we have

f(ah) = f̄π(ah) = f̄(π(ah)) = f̄(c) = x. Since ah ∈ aH , it follows that ah ∈ B, and thus

c = π(ah) ∈ π(B). Therefore, π(B) ⊇ C, so π(B) = C. Thus F maps B to (H ∩ G′) × C,

and we have that F is well-defined, as claimed.

Claim: F is injective. Let b1, b2 ∈ B. Suppose F (b1) = F (b2). Then we have (ι(b1), π(b1)) =

(ι(b2), π(b2)) so that ι(b1) = ι(b2) and π(b1) = π(b2). Thus b1G
′ = π(b1) = π(b2) = b2G

′,

so b−1
1 b2 ∈ G′. Since b1, b2 ∈ aH , b1 = ah1 and b2 = ah2 for some h1, h2 ∈ H . Thus

h−1
1 h2 = h−1

1 a−1ah2 = (ah1)−1(ah2) = b−1
1 b2 ∈ G′. Therefore, h−1

1 h2 ∈ H ∩ G′, which

implies h1(H ∩G′) = h2(H ∩G′). Thus

r(b1)(H ∩G′) = r(b1)ι(b1)(H ∩G′)

= a−1b1(H ∩G′)
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= h1(H ∩G′)

= h2(H ∩G′)

= a−1b2(H ∩G′)

= r(b2)ι(b2)(H ∩G′)

= r(b2)(H ∩G′).

Since r(b1) and r(b2) are coset representatives of the (left) cosets ofH∩G′ inH , it follows that

r(b1) = r(b2). Therefore, b1 = a(a−1b1) = a(r(b1)ι(b1)) = a(r(b2)ι(b2)) = a(a−1b2) = b2.

This proves the claim.

Claim: F is surjective. Let (g, c) ∈ (H ∩G′)×C. Thus c ∈ π(B). Let b ∈ B satisfy c = π(b).

Then we have

π(a)−1c = π(a−1)π(b) = π(a−1b) = π(r(b)ι(b)) = π(r(b))π(ι(b)) = π(r(b)) · ι(b)G′,

for uniquely determined r(b) ∈ R and ι(b) ∈ H ∩G′. Thus

π(a)−1c = π(r(b)) · ι(b)G′ = π(r(b)) ·G′ = π(r(b)) · gG′ = π(r(b))π(g) = π(r(b)g),

and hence c = π(ar(b)g). Put y = ar(b)g. Observe that since g ∈ H ∩ G′ and r(b) ∈ R, y ∈

aH . Since c ∈ C, we have f(y) = f̄π(y) = f̄(π(y)) = f̄(c) = x, and thus y ∈ B. Then we

also have r(b)g = a−1(ar(b)g) = a−1y = r(y)ι(y), which shows r(b)g ∈ r(y)(H ∩G′). Since

r(b)g ∈ r(b)(H ∩ G′) as well, we must have that r(b) = r(y). Therefore, g = r(b)−1r(b)g =

r(y)−1(r(b)g) = r(y)−1(r(y)ι(y)) = ι(y). It follows that F (y) = (ι(y), π(y)) = (g, c), and

thus F is surjective.

Therefore, F is bijective, which implies

∣∣f |−1
aH(x)

∣∣ = |B| = |(H ∩G′)× C| = |H ∩G′||C| = |H ∩G′|
∣∣∣f̄ |−1

π(aH)(x)
∣∣∣ .
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The claim follows.

2.3.8 Corollary. Let the notation be as above and letH be a subgroup ofG. Then f is constant

(resp. balanced) on each coset of H if and only if f̄ is constant (resp. balanced) on each coset

of π(H).

Proof. First, we claim that an arbitrary coset of π(H) in Gab can be written as π(aH) for some

a ∈ G. To that end, let C be a coset of π(H). Then we have C = x · π(H) for some x ∈ Gab.

Since π is a surjection, x = π(a) for some a ∈ G. Therefore, C = x · π(H) = π(a) · π(H) =

π(aH) for some a ∈ G, and the claim is proved. For the rest of the proof, we fix an a ∈ G that

satisfies C = π(aH).

(⇒) Assume f is constant on each coset of H (*). Let x, y ∈ C. Thus x, y ∈ π(aH), so

x = π(ah) and y = π(ah′) for some h, h′ ∈ H . Thus

f̄(x) = f̄π(ah) = f(ah)
∗
= f(ah′) = f̄π(ah′) = f̄(y),

for some h, h′ ∈ H , proving f̄ is constant on C. Thus f̄ is constant on each coset of π(H).

Now, assume f is balanced on each coset of H (**). Since f̄(C) = f̄π(aH) = f(aH) and

f(aH) is a coset of a nontrivial subgroup of Zm by assumption, we see that f̄(C) is a coset of

a nontrivial subgroup of Zm.

Let x, y ∈ f̄(C). Thus x, y ∈ f(aH), so we have
∣∣f |−1

aH(x)
∣∣ ∗∗= ∣∣f |−1

aH(y)
∣∣, and by Lemma 2.3.7,

∣∣∣f̄ |−1
π(aH)(x)

∣∣∣ =

∣∣f |−1
aH(x)

∣∣
|H ∩G′|

=

∣∣f |−1
aH(y)

∣∣
|H ∩G′|

=
∣∣∣f̄ |−1

π(aH)(y)
∣∣∣ .

It follows that f̄ is balanced on each coset of π(H).
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(⇐) Assume f̄ is constant on each coset of π(H) (*). Let a ∈ G, and let x, y ∈ aH . Then

x = ah and y = ah′ for some h, h′ ∈ H . Thus

f(x) = f(ah) = f̄π(ah) = f̄(π(a)π(h))
∗
= f̄(π(a)π(h′)) = f̄π(ah′) = f(ah′) = f(y),

for some h, h′ ∈ H , which proves f is constant on aH . Thus f is constant on each coset of H .

Now, suppose f̄ is balanced on each coset of π(H) (**). Let a ∈ G, and let x, y ∈ aH . Since

f(aH) = f̄π(aH) = f̄(π(aH)) = f̄(π(a)π(H)) and f̄(π(a)π(H)) is a coset of a nontrivial

subgroup of Zm by assumption, f(aH) is a coset of a nontrivial subgroup of Zm.

Additionally, by Lemma 2.3.7

∣∣f |−1
aH(x)

∣∣ = |H ∩G′|
∣∣∣f̄ |−1

π(aH)(x)
∣∣∣ ∗∗= |H ∩G′| ∣∣∣f̄ |−1

π(aH)(y)
∣∣∣ =

∣∣f |−1
aH(y)

∣∣ .
It follows that f is balanced on each coset of H .

We can see that the previous corollary, together with the results in the paper by Holmes and

Texier, solves the problem described at the beginning of the section, which we recall was stated

as:

Problem: Let G be a finite group, let H be a subgroup of G, and let f : G→ Zm be a function

that is constant on the cosets of the commutator subgroup G′ of G in G. Assuming it is known

that f is either constant on every coset of H or is balanced on every coset of H , determine

which is the case.

The generalized Deutsch-Jozsa algorithm of Holmes and Texier solves the previous problem

under the additional assumption that G is abelian. In this case, we observe that G′ = {e} and

thus Gab = G/G′ ∼= G, so the condition on f stating it needs to be constant on the cosets of G′

can be dropped.
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As a special case by setting H = G, if we are given a function f : G → Zm that is known to

be constant on the cosets of G′ in G and is known to be either constant or balanced on G, then

f̄ defined above must be either constant or balanced on π(G) = Gab. Since Gab is abelian, the

results in the Holmes-Texier paper give a determination on whether f̄ is constant or balanced

onGab, at which point we apply Corollary 2.3.8 to determine whether f is constant or balanced

on G.
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2.4 A Generalization of the Bernstein-Vazirani Algorithm

Let G = Zm1 ⊕Zm2 ⊕ · · · ⊕Zmn with n,mi ∈ Z+, and let m be the least common multiple of

m1,m2, . . . ,mn. The Bernstein-Vazirani problem is stated as follows:

For some unknown u ∈ G, determine u where one is only allowed queries of the form q ◦ u for

some known q ∈ G.

Assume mi = 2 for all i. Thus m = 2, and we obtain the classical Bernstein-Vazirani prob-

lem. The best non-quantum algorithm uses O(n) calls to the function fu : G → Zm given

by fu(q) = q · u. On the other hand, the problem is solved by applying the Deutsch-Jozsa

quantum algorithm to some initial state in one call to Ufu , where Ufu was defined in Defini-

tion 2.2.2 [RP11, p. 141]. We make extensive use of the paper written by Holmes and Texier

which generalizes the Deutsch-Jozsa algorithm, including notation used in that paper, for ease

of transferability of the ideas presented there.

The Algorithm. Define fu : G→ Zm by

fu(a) = a ◦ u.

From the Deutsch-Jozsa quantum algorithm, beginning with the initial state |0〉|0〉, we obtain

the following (recall the Deutsch-Jozsa quantum algorithm from Section 2.2):

|0〉|0〉 7→ |G|−1
∑
b∈G

|b〉|0〉
∑
a∈G

εa◦bm ε−fu(a)
m

= |G|−1
∑
b∈G

|b〉|0〉
∑
a∈G

εa◦b−fu(a)
m

= |G|−1
∑
b∈G

|b〉|0〉
∑
a∈G

εa◦b−a◦um

= |G|−1
∑
b∈G

|b〉|0〉
∑
a∈G

ε(ιb−ιu)(a)
m
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= |G|−1
∑
b∈G

|b〉|0〉ϕ(ιb − ιu)

Set P = {u} and a = u. Applying Theorem 2.2.5, we find that ιu is {u} − based, that is,

ϕ(ιb − ιu) = 0 for all b ∈ G\{u} by Definition 2.2.4. Thus

|G|−1
∑
b∈G

|b〉|0〉ϕ(ιb − ιu) = |G|−1|u〉|0〉ϕ(0)

= |G|−1|u〉|0〉
∑
a∈G

ε0(a)
m

= |G|−1|u〉|0〉|G|

= |u〉|0〉.

Thus u is determined with certainty.
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2.5 A Generalization of Simon’s Algorithm

Recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+ and that m is the least common

multiple of m1,m2, . . . ,mn. Let p be a prime number, and assume that mi = p for all i. Thus

m = p and Zm is a field.

Let d ∈ Z+. Let f : G→ G be a d-to-1 function such that for all x ∈ G, we have

f(x) = f(x+ s1) = · · · = f(x+ sd−1),

where s1, . . . , sd−1 ∈ G are distinct nonzero unknowns. Our goal is to find s1, . . . , sd−1.

2.5.1 Note. In the case where mi = 2 for all i and d = 2, we have m = 2, and we obtain the

classical version of Simon’s problem. In the aforementioned case, Simon’s algorithm can find

s1 in only O(n) calls to Uf , followed by O(n2) additional steps, whereas the best non-quantum

algorithm requires O(2n/2) calls to f [RP11, p. 144].

Set S = {0, s1, . . . , sd−1}.

2.5.2 Theorem. S is a subgroup of G.

Proof. First, observe that 0 ∈ S so that S contains the identity. Put s0 = 0. Let 0 ≤ j, k ≤ d−1.

The assumption on f with x = sj yields f(sj) = f(sj + s1) = · · · = f(sj + sk) = · · · =

f(sj + sd−1). Since f is d-to-1, f(S) = f(sj), and |S| = d, we conclude that f−1(f(sj)) = S.

Thus f(sj) = f(sj + sk) implies sj + sk ∈ f−1(f(sj)) = S. Therefore, S is closed under

addition.
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Now, observe that f(−sj) = f(−sj + s1) = · · · = f(−sj + sj) = · · · = f(−sj + sd−1),

which becomes f(−sj) = f(−sj + s1) = · · · = f(0) = · · · = f(−sj + sd−1). From

the reasoning above, we have f−1(f(0)) = f−1(f(s0)) = S. Thus f(−sj) = f(0) implies

−sj ∈ f−1(f(0)) = S, so S is closed under inversion.

Therefore, S is a subgroup of G.

Letting S be the subgroupH in the language of Theorem 2.2.8, and observing that f is constant

on each coset of S, we see that f is S⊥-based. Thus ϕ(ιb − f) = 0 for all b ∈ G\S⊥, and

ϕ(ιb − f) 6= 0 for all b ∈ S⊥ by Definition 2.2.4.

The Algorithm.

Beginning in the same manner as the Bernstein-Vazirani Algorithm but with f replacing ιu, we

initialize our system to |0〉|0〉 and apply unitary operators to get the following:

|0〉|0〉 7→ |G|−1
∑
b∈G

|b〉|0〉ϕ(ιb − f)

= |G|−1
∑
b∈S⊥
|b〉|0〉ϕ(ιb − f).

Measuring the left register gives a random element |b〉 such that b ∈ S⊥, that is, such that

b ◦ sj = 0 for all sj ∈ S. Thus, for each sj ∈ S, we get a linear equation

n∑
i=1

bisji

(
m

mi

)
= b ◦ sj = 0.

We need to repeat the algorithm until we have n linearly independent equations in the un-

knowns sj1, sj2, . . . , sjn for each j. From this, we may compute the unknowns sj1, sj2, . . . , sjn
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and thus sj for each j, and thus we may compute each element of S.

We have the following special case (pointed out by R. Holmes) of our generalization of Si-

mon’s algorithm that solves for only one unknown, like in the original formulation of Simon’s

problem:

Let p be a prime number, and assume that mi = p for every i so that m = p. Let a be a nonzero

element of G, and let f : G → G be a p-to-1 function such that f(x) = f(x + ka) for every

x ∈ G and every 0 < k < p. The task then is to find a.

solution. Since f(x) = f(x + ka) for every x ∈ G and every 0 < k < p, we have that

f(x) = f(x+a) = · · · = f(x+(p−1)a). Claim: a, 2a, . . . , (p−1)a are distinct and nonzero.

Let 0 < j, k < p. Assume ja = ka. Thus (j − k)a = 0, and since G is a Zm-vector space, we

must have that j−k = 0, so j = k. Thus a, 2a, . . . , (p−1)a are distinct. Since 1, 2, . . . , (p−1)

are nonzero elements of Zm and G is a Zm-vector space, it follows that each of the elements

a, 2a, . . . , (p−1)a are nonzero. This proves the claim. We may then apply the generalization of

the algorithm in this section to compute the elements of the subgroup S = {0, a, . . . , (p− 1)a}

of G. In particular, we can find a.
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Chapter 3

Bilinear Forms and Complements

3.1 General definitions and results

LetR be a ring with 1R 6= 0 and let I be a two-sided ideal ofR. The setR/I of cosets of I inR

is a ring (called the quotient ringR mod I). LetM be anR-module that is annihilated by I . For

r ∈ R andm ∈M define (r+I) ·m = r ·m. This action givesM the structure ofR/I-module.

Now, let R also be commutative, and let M and N be R-modules. Define HomR(M,N) :=

{ϕ : M → N | ϕ is an R-module homomorphism}. Put M∗ = HomR(M,R). We have that

M∗ is an R-module with action on M given by (rϕ)(m) = ϕ(rm) (ϕ ∈M∗, r ∈ R,m ∈M).

For the rest of the section, we let R be a commutative ring with unity and M be an R-module.

3.1.1 Definition. An R-bilinear form (or simply bilinear form if the ring R is understood)

on M is a function f : M ⊕ M → R such that, for each m ∈ M , f1(m) : M → R and

f2(m) : M → R given by f1(m)(n) = f(m,n) and f2(m)(n) = f(n,m) areR-module homo-

morphisms. The bilinear form f on M is said to be symmetric, alternating, or skew-symmetric

if, for all m,n ∈ M , f(m,n) = f(n,m), f(m,m) = 0, or f(m,n) = −f(n,m), respectively.

Additionally, the bilinear form f is said to be left non-degenerate if f(m,n) = 0 for all n ∈M

if and only if m = 0 and right non-degenerate if f(m,n) = 0 for all m ∈ M if and only if
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n = 0. A bilinear form that is both left and right non-degenerate is called non-degenerate.

3.1.2 Definition. A symplectic bilinear form on M is a bilinear form that is alternating and

non-degenerate.

For the following, let N be a submodule of M , and let f be a bilinear form on M . Put N f
L :=

{m ∈M | f(m,n) = 0 for all n ∈ N} and N f
R := {m ∈M | f(n,m) = 0 for all n ∈ N}.

3.1.3 Theorem. We have that N f
L and N f

R are submodules of M .

Proof. Claim: N f
L is a submodule of M . Let x, y ∈ N f

L and r, s ∈ R. Then for all n ∈ N we

have

f(rx+sy, n) = f2(n)(rx+sy) = rf2(n)(x)+sf2(n)(y) = rf(x, n)+sf(y, n) = r·0+s·0 = 0,

and thus rx + sy ∈ N f
L . This proves the claim. By a similar argument, N f

R is a submodule of

M .

3.1.4 Theorem. If f is symmetric or skew-symmetric, then N f
L = N f

R.

Proof. Assume f is symmetric. Thus f(m,n) = f(n,m) for all m,n ∈M , and we have

N f
L = {m ∈M | f(m,n) = 0 for all n ∈ N} = {m ∈M | f(n,m) = 0 for all n ∈ N} = N f

R.

Now, assume f is skew-symmetric. Thus f(m,n) = −f(n,m) for all m,n ∈ N , and we have

N f
L = {m ∈M | f(m,n) = 0 for all n ∈ N}

= {m ∈M | −f(n,m) = 0 for all n ∈ N}

= {m ∈M | f(n,m) = 0 for all n ∈ N}
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= N f
R.

The claim follows.

3.1.5 Note. When N f
L = N f

R, we will simply write N f = {m ∈ M | f(m,n) = 0 for all n ∈

N}.

For the following, define fi : M → M∗ (i = 1, 2) such that f1(m)(n) = f(m,n) and

f2(m)(n) = f(n,m).

3.1.6 Theorem. The maps fi : M →M∗ (i = 1, 2) are R-module homomorphisms.

Proof. It is straightforward to prove that each fi maps to the indicated codomain, so each fi is

well-defined. Now, let m,n ∈M and r, s ∈ R. Then we have

f1(rm+ sn)(x) = f(rm+ sn, x)

= f2(x)(rm+ sn)

= rf2(x)(m) + sf2(x)(n)

= rf(m,x) + sf(n, x)

= rf1(m)(x) + sf1(n)(x)

= (rf1(m) + sf1(n))(x)

for each x ∈M . Thus f1(rm+sn) = rf1(m)+sf1(n), so f1 is an R-module homomorphism.

By a similar argument, f2 is a R-module homomorphism.

3.1.7 Theorem. The bilinear form f is non-degenerate if and only if f1 and f2 are injections.
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Proof. Assume f is non-degenerate. Let m,n ∈ M . Suppose f1(m) = f1(n). Thus for all

p ∈M we have

f2(p)(m) = f1(m)(p) = f1(n)(p) = f2(p)(n).

Therefore, f(m − n, p) = f2(p)(m − n) = 0 for all p ∈ M . Since f is non-degenerate, we

have m − n = 0, and thus m = n. Hence f1 is an injection. By a similar argument, f2 is an

injection.

For the other direction, assume f1 and f2 are injections. Let m ∈M . Suppose f(m,n) = 0 for

all n ∈M . Thus

f1(m)(n) = f(m,n) = 0 = f2(n)(0) = f1(0)(n)

for all n ∈ M , so f1(m) = f1(0). Since f1 is an injection, we have m = 0. Suppose

f(n,m) = 0 for all n ∈M . Thus

f2(m)(n) = f(n,m) = 0 = f1(n)(0) = f2(0)(n)

for all n ∈ M , so f2(m) = f2(0). Since f2 is an injection, we have m = 0. Thus f is non-

degenerate.

3.1.8 Theorem. If f is skew-symmetric, then f1 = −f2.

Proof. Assume f is skew-symmetric. Let m ∈M . For all p ∈M , we have

f1(m)(p) = f(m, p) = −f(p,m) = −f2(m)(p).

Thus f1(m) = −f2(m). Since m was arbitrary, it follows that f1 = −f2.

3.1.9 Theorem. If f is alternating, then f is skew-symmetric.
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Proof. Suppose f is alternating. Since f1 and f2 are R-module homomorphisms, we have

0 = f(m+ n,m+ n)

= f1(m+ n)(m+ n)

= f1(m+ n)(m) + f1(m+ n)(n)

= f(m+ n,m) + f(m+ n, n)

= f2(m)(m+ n) + f2(n)(m+ n)

= f2(m)(m) + f2(m)(n) + f2(n)(m) + f2(n)(n)

= f(m,m) + f(n,m) + f(m,n) + f(n, n)

= f(n,m) + f(m,n).

Therefore, f(m,n) = −f(n,m), so f is skew-symmetric.

For the following results, set M∗
N := {ϕ ∈M∗ | N ⊆ kerϕ}.

3.1.10 Theorem. M∗
N is a submodule of M∗.

Proof. First, it is immediate that M∗
N ⊂ M∗. Let ϕ, ρ ∈ M∗

N and r, s ∈ R. Let n ∈ N . Then

we have

(rϕ+ sρ)(n) = rϕ(n) + sρ(n)

= r · 0 + s · 0

= 0.

Thus N ⊆ ker(rϕ+ sρ), so rϕ+ sρ ∈M∗
N . Therefore, M∗

N is a submodule of M∗.
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3.2 The Finite Abelian Group G and its Dual

Recall (Section 2.2) that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with mi, n ∈ Z+. In the paper by

Holmes and Texier, m was defined to be the least common multiple of m1,m2, . . . ,mn. For

our purposes in the rest of this paper, we relax this condition on m and let it be a common

multiple of m1,m2, . . . ,mn.

Now, the set I = mZ is a two-sided ideal of Z and mZ annihilates G, since, for any a ∈ G, we

have

m · a = m · (a1, a2, . . . , an) = (m · a1,m · a2, . . . ,m · an) = (0, 0, . . . , 0).

Hence Z/mZ ∼= Zm induces a Zm-module structure on G by Section 3.1.

Recall (Section 2.2) that ιa ∈ F , for a ∈ G, is defined by

ιa(b) = a ◦ b =
n∑
i=1

aibi

(
m

mi

)
· 1 ∈ Zm,

where
n∑
i=1

aibi

(
m

mi

)
∈ Z and 1 ∈ Zm.

We identify Zmi and Zm with the quotient groups Z/miZ and Z/mZ, respectively, and for an

integer x we denote by x the coset x + miZ or x + mZ, respectively, with context making the

meaning clear.

While the ◦ product was defined in the paper by Holmes and Texier and was therein assumed

to be well-defined, we provide a proof that it is indeed well-defined.

3.2.1 Proposition. The product ◦ is well-defined.
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Proof. Let a, b ∈ G. Then we have a = (ai)
n
i=1 and b = (bi)

n
i=1, where ai, bi ∈ Zmi . For each i

let a′i and b′i be integers such that ai = a′i and bi = b′i, and denote a′ = (a′i)
n
i=1 and b′ = (b′i)

n
i=1.

Thus ai = a′i +mj and bi = b′i +mk, for some j, k ∈ Z, and we have

a ◦ b =
n∑
i=1

(
m

mi

)
(aibi)

=
n∑
i=1

(
m

mi

)
(a′i +mj)(b′i +mk)

=
n∑
i=1

(
m

mi

)
(a′ib

′
i +m(a′ik + b′ij +mjk))

=
n∑
i=1

(
m

mi

)
(a′ib

′
i) +

n∑
i=1

(
m

mi

)
(m(a′ik + b′ij +mjk))

=
n∑
i=1

(
m

mi

)
(a′ib

′
i) +m

n∑
i=1

(
m

mi

)
(a′ik + b′ij +mjk)

=
n∑
i=1

(
m

mi

)
(a′ib

′
i)

= a′ ◦ b′.

The claim follows.

Define ι : G ⊕ G → Zm by ι(a, b) := a ◦ b. Then we have ιa(b) = a ◦ b = ι(a, b) and

ιb(a) = b ◦ a = a ◦ b = ι(a, b). It is straightforward to check that ι is a symmetric Zm-

bilinear form, and thus for each a ∈ G the map ιa : G → Zm given by ιa(b) = a ◦ b is a

Zm-homomorphism so that for each a ∈ G, ιa ∈ G∗. It is also true that ι is non-degenerate, but

we postpone the proof of this to the next section (see Lemma 3.3.3).

Define ϕ : G → G∗ by ϕ(a) = ιa. Since ιa ∈ G∗ for every a ∈ G, the function ϕ is well-

defined in the sense that it maps into the indicated codomain. Moreover, since ι is Zm-bilinear,

it follows that ιa+b = ιa + ιb and ιra = rιa for every a, b ∈ Zm and r ∈ Zm, which implies in

turn that ϕ is a Zm-homomorphism.
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In fact, every element of G∗ can be written in the form ιa, for some a ∈ G, as we now show.

For a finite group G, let o(x) denote the order of the element x ∈ G.

3.2.2 Lemma. Let j, k ∈ Z+, and set d = gcd(j, k). For each 0 ≤ a ≤ d − 1 there exists a

homomorphism γa : Zj → Zk such that γa(1) = (k/d)a · 1. Moreover, the homomorphisms γa

(0 ≤ a ≤ d − 1) are distinct and for every homomorphism f : Zj → Zk we have f = γa for

some a.

Proof. Set D = {0, . . . , d − 1}. Let a ∈ D. Define the function fa : {1} → Zk by fa(1) =

(k/d)a · 1. Here, we view (k/d)a as an integer and Zk as a Z-module so that (k/d)a · 1 is an

element of Zk, where we take 1 ∈ Zk. Now, since Z is free on the set {1}, the universal property

of free groups guarantees a unique homomorphism f̂a : Z → Zk such that the following

diagram commutes (i : {1} → Z is the inclusion map):

Z

{1} Zk

∃!f̂a
fa

i

Thus f̂a(1) = f̂ai(1) = fa(1) = (k/d)a · 1, so f̂a(j) = j · f̂a(1) = j · ((k/d)a · 1) =

k · ((j/d)a · 1) = 0. Thus jZ ⊂ ker f̂a. By the fundamental homomorphism theorem, there is

a homomorphism f ∗a : Zj → Zk such that the following diagram commutes (here, we identify

Z/jZ with Zj in the statement of the FHT and replace Z/jZ with Zj in the codomain of the

canonical epimorphism π):

Z Z/jZ ∼= Zj

{1} Zk

f̂a

π

∃!f∗a
fa

ι
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Observe that f ∗a (1) = f ∗aπ(1) = f̂a(1) = (k/d)a · 1. Setting γa := f ∗a for each a ∈ G, we have

γa(1) = f ∗a (1) = (k/d)a · 1. This completes the first statement of the lemma.

Claim: each a ∈ D yields a distinct γa. To that end, let a, b ∈ D, and suppose γa = γb. Thus, in

particular, we have (k/d)a ·1 = γa(1) = γb(1) = (k/d)b ·1, which implies (k/d)(a−b) ·1 = 0.

Hence k = o(1) | (k/d)(a − b), so (k/d)(a − b) = pk, for some p ∈ Z. Therefore, for some

p ∈ Z, we have a − b = pd, or a = b + pd, so a ≡ b (mod d). Hence a = b in D. The claim

follows.

Let f : Zj → Zk be an arbitrary homomorphism. We claim that f = γa for some a ∈ D.

Since j · f(1) = f(j) = f(0) = 0, it follows that o(f(1)) is a divisor of j. In addition,

o(f(1)) = |im f | | |Zk| = k, so o(f(1)) is a divisor of k as well. Therefore, o(f(1)) must be a

common divisor of j and k. Thus o(f(1)) | d. Since f(1) ∈ Zk we have f(1) = x · 1 for some

integer x with 0 ≤ x < k. Now dx · 1 = d · (x · 1) = d · f(1) = 0, so k | dx and hence we have

dx = ka for some integer a. Thus ka = xd < kd, which implies a < d. Hence a ∈ D, and we

have f(`) = `f(1) = `(x · 1) = `((k/d)a · 1) = `γa(1) = γa(`) for all ` ∈ Zj . This proves the

claim and completes the proof.

3.2.3 Corollary. Let j, k ∈ Z+ such that j | k. For each 0 ≤ a ≤ j − 1 there exists a

homomorphism γa : Zj → Zk such that γa(1) = (k/j)a · 1. Moreover, the homomorphisms γa

(0 ≤ a ≤ j − 1) are distinct and for every homomorphism f : Zj → Zk we have f = γa for

some a.

Proof. Observe that j = gcd(j, k), so by invoking the previous lemma with d = j, we obtain

the result.
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For the following result, recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn for n,mi ∈ Z+ and m is a

multiple of m1,m2, . . . ,mn.

3.2.4 Lemma. The function Zmi → HomZm(Zmi ,Zm) given by ai 7→ γai is an isomorphism.

Proof. Fix 1 ≤ i ≤ n. Since mi | m, we can apply Corollary 3.2.3, which implies there

are exactly mi = gcd(mi,m) homomorphisms from Zmi to Zm, all given by γai : Zmi →

Zm, where 0 ≤ ai ≤ mi − 1, such that γai(1) = (m/mi)ai · 1. Thus the function Zmi →

HomZm(Zmi ,Zm) given by ai 7→ γai is a bijection. Observe that, for xi ∈ Zmi , we have

γai(xi) = xiγai(1) = xi((m/mi)ai · 1) = (m/mi)ai · xi.

Let ai, bi ∈ Zmi . Then we have

γai+bi(xi) =

(
m

mi

)
(ai+bi)·xi =

(
m

mi

)
ai·xi+

(
m

mi

)
bi·xi = γai(xi)+γbi(xi) = (γai+γbi)(xi).

Thus the function Zmi → HomZm(Zmi ,Zm) given by ai 7→ γai is a homomorphism and is

therefore an isomorphism. The claim follows.

3.2.5 Lemma. Let fi : Zmi → Zm (i = 1, . . . , n) be homomorphisms. The function f : G →

Zm given by f(a) =
∑n

i=1 fi(ai) is a homomorphism.

Proof. First, observe that {Zmi}ni=1 is a family of Zm-modules. It is straightforward to check

that G = Zm1 ⊕ · · · ⊕ Zmn with the natural injections ϕi : Zmi → G given by ϕi(x)j = δij(x)

is a coproduct of the family {Zmi}ni=1 in the category ZmMod, where δij : Zmi → Zmj is the

identity map if i = j and the zero map otherwise.
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In the usual proof that (G,ϕi) is a coproduct, the function f : G → Zm given by f(a) =∑n
i=1 fi(ai) is a homomorphism with the property that fi = fϕi for each i.

For the following result, recall the definition of ιa : G→ Zm, for a ∈ G:

ιa(b) :=
n∑
i=1

(
m

mi

)
(aibi) · 1,

where
(
m

mi

)
(aibi) ∈ Z for all i and 1 ∈ Zm.

3.2.6 Lemma. Every element of G∗ is of the form ιa for some a ∈ G.

Proof. Applying Corollary 3.2.3 and Lemma 3.2.5 and observing that mi = gcd(mi,m) for all

i, the claim follows.

3.2.7 Theorem. The map ϕ : G→ G∗ given by ϕ(a) = ιa is an isomorphism.

Proof. Recall from the remarks preceding Lemma 3.2.2 that ϕ is a homomorphism, and the

previous result gives us the needed bijectivity to make ϕ an isomorphism.

3.2.8 Note. While the previous theorem implies that G is isomorphic to G∗, we now state a

more general result that proves G ∼= G∗ irrespective of a particular isomorphism from G to G∗.

We keep the previous result since it will prove useful in the next section.

3.2.9 Lemma. We have G ∼= G∗.

Proof. By Lemma 3.2.4, we have Zmi ∼= HomZm(Zmi ,Zm) for each i, and thusG =
⊕n

i=1 Zmi ∼=⊕n
i=1 HomZm(Zmi ,Zm). Now, we have

⊕n
i=1 HomZm(Zmi ,Zm) ∼= HomZm(

⊕n
i=1 Zmi ,Zm),

which is a special case of [Hun80, Theorem 4.7, p. 202]. Therefore, we obtain
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G =
n⊕
i=1

Zmi ∼=
n⊕
i=1

HomZm(Zmi ,Zm) ∼= HomZm

(
n⊕
i=1

Zmi ,Zm

)
= HomZm(G,Zm) = G∗.

3.2.10 Theorem. Let β : G ⊕ G → Zm be a non-degenerate bilinear form on G. Then

βi : G→ G∗ (i = 1, 2) given by β1(g)(h) = β(g, h) and β2(g)(h) = β(h, g) are isomorphisms.

Proof. By Theorems 3.1.6 and 3.1.7, the maps βi : G → G∗ (i = 1, 2) defined such that

β1(g)(h) = β(g, h) and β2(g)(h) = β(h, g) are monomorphisms. The previous lemma then

implies |G| = |G∗|, so surjectivity of β1 and β2 follows. Thus βi (i = 1, 2) are isomorphisms.
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3.3 Orthogonal Complements of Subgroups of G

Let H be a subgroup of the fixed group G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn . It follows that H is a

Zm-submodule of G. Let β : G ⊕ G → Zm be a Zm-bilinear form on G. Recall from Section

3.1 the sets Hβ
L = {g ∈ G | β(g, h) = 0 for all h ∈ H} and Hβ

R = {g ∈ G | β(h, g) =

0 for all h ∈ H}. By Theorem 3.1.3, Hβ
L and Hβ

R are submodules, and thus subgroups, of G.

For the following results, set G∗H := {f ∈ G∗ | H ⊆ ker f}. By Theorem 3.1.10, we have that

G∗H is a subgroup of G∗.

3.3.1 Lemma. If β is non-degenerate, then Hβ
L
∼= G∗H and Hβ

R
∼= G∗H .

Proof. Assume β is non-degenerate. Then Theorem 3.2.10 implies β1 : G → G∗ is an iso-

morphism. Observe that Hβ
L = {g ∈ G | β1(g)(h) = 0 for all h ∈ H}. Thus the restriction

β1|Hβ
L

: Hβ
L → G∗H of β1 to Hβ

L is well-defined since H ⊆ ker β1(g) for all g ∈ Hβ
L. Since β1

is an isomorphism, β1 is a surjection, so for every f ∈ G∗H ⊆ G∗ there exists a g ∈ G such that

f = β1(g), and thus H ⊆ ker f = ker β1(g), whence g ∈ Hβ
L. Thus β1|Hβ

L
is a surjection. It

follows that G∗H is the isomorphic image of Hβ
L. In other words, Hβ

L
∼= G∗H .

Replacing β1 with β2 and Hβ
L with Hβ

R in the preceding argument, we see that Hβ
R
∼= G∗H .

3.3.2 Theorem. Let β : G⊕G→ Zm be a non-degenerate bilinear form on G. Then we have

that Hβ
L
∼= G/H and Hβ

R
∼= G/H .

Proof. Let f ∈ G∗H . Then we have that H ⊆ ker f , so by the Fundamental Homomorphism

Theorem, there is a unique homomorphism f̄ : G/H → Zm such that f̄π = f , where π : G→

G/H is the canonical epimorphism. We have the following diagram:
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G Zm

G/H

π

f

∃!f

Since G is a Zm-module and H is a Zm-submodule of G, it follows that G/H has a natu-

ral structure of Zm-module, so we may write (G/H)∗ = HomZm(G/H,Zm). It follows that

f̄ ∈ (G/H)∗.

Now, define ρ : G∗H → (G/H)∗ by ρ(f) = f , where f is as in the Fundamental Homomor-

phism Theorem above. The argument above shows that ρ is well-defined in that it maps to the

indicated codomain. Let α, ϕ ∈ G∗H . Then we have that

(α + ϕ)(gH) = (α + ϕ)π(g)

= (α + ϕ)(g)

= α(g) + ϕ(g)

= απ(g) + ϕπ(g)

= α(gH) + ϕ(gH)

= (α + ϕ)(gH),

i.e., α + ϕ = α + ϕ, so we have

ρ(α + ϕ) = α + ϕ = α + ϕ = ρ(α) + ρ(ϕ),

showing ρ is a homomorphism.

Claim: ρ is surjective. Let γ ∈ (G/H)∗. Then γ : G/H → Zm is a homomorphism. Given the

canonical projection map π : G → G/H , we see that θ := γπ : G → Zm is a composition of

homomorphisms and is thus a homomorphism. Additionally, for all h ∈ H , we have θ(h) =
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γπ(h) = γ(hH) = γ(H) = 0, so H ⊆ ker θ, and thus θ ∈ G∗H . Moreover, by the FHT, γ is the

unique homomorphism from G/H to Zm for which θ = γπ. Therefore, ρ(θ) = θ = γ.

G Zm

G/H

π

θ

γ

This proves the claim.

Claim: ρ is injective. Let α, ϕ ∈ G∗H . Suppose α = ρ(α) = ρ(ϕ) = ϕ. For g ∈ G, we have

α(g) = απ(g) = α(gH) = ϕ(gH) = ϕπ(g) = ϕ(g).

Hence α = ϕ, and this proves the claim.

Therefore ρ is an isomorphism, so G∗H ∼= (G/H)∗. By the previous lemma, Hβ
L
∼= G∗H and

Hβ
R
∼= G∗H . Since (G/H)∗ ∼= G/H by Theorem 3.2.9, it follows that Hβ

L
∼= G∗H

∼= (G/H)∗ ∼=

G/H and Hβ
R
∼= G∗H

∼= (G/H)∗ ∼= G/H , as claimed.

Recall that the map ι : G⊕G→ Zm defined by ι(a, b) = a ◦ b is a bilinear form, and recall the

map ϕ : G→ G∗ defined by ϕ(a) = ιa.

3.3.3 Lemma. The bilinear form ι is non-degenerate.

Proof. By Theorem 3.1.7, it suffices to prove that ι1 and ι2 are injections. Since ι is symmetric,

it follows that we need to prove that ι1 is an injection. Let g, h ∈ G. Suppose ι1(g) = ι1(h).

Thus ϕ(g) = ιg = ι1(g) = ι1(h) = ιh = ϕ(h). By Theorem 3.2.7, ϕ is an isomorphism. Thus

ϕ is an injection, so g = h. Therefore, ι1 is an injection. The claim follows.
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3.3.4 Note. Since ι is symmetric, Theorem 3.1.4 gives H ι
L = H ι

R. By Note 3.1.5 we may write

H ι = {g ∈ G | ι(g, h) = 0 for all h ∈ H}. From Section 2.2, we observe that H ι is in fact the

orthogonal complement of H in G, which we will henceforth denote by H⊥.

3.3.5 Theorem. We have H⊥ ∼= G/H .

Proof. Since ι is non-degenerate by Lemma 3.3.3, Theorem 3.3.2 and the previous note give

the result.

3.3.6 Theorem. We have (H⊥)⊥ = H .

Proof. Since (H⊥)⊥ = {g ∈ G | ιg(a) = 0 ∀a ∈ H⊥}, and ιg(a) = g ◦ a = a ◦ g = ιa(g) for

all a, g ∈ G, it follows that H ⊆ (H⊥)⊥. By Lagrange’s Theorem and Theorem 3.3.5, we have

|(H⊥)⊥| = |G|
|H⊥|

=
|G|
|G|/|H|

= |H|.

Thus (H⊥)⊥ = H .

3.3.7 Corollary. We have G/H⊥ ∼= H .

Proof. By the previous theorem, (H⊥)⊥ = H , and Theorem 3.3.5 gives G/H⊥ ∼= (H⊥)⊥ =

H .

3.3.8 Definition. A self-orthogonal subgroup of G is a subgroup O of G such that O = O⊥.

3.3.9 Theorem. Let O be a subgroup of G. If O is self-orthogonal, then |O| =
√
|G|.

Proof. By Theorem 3.3.5 and Lagrange’s Theorem, we have

O is self-orthogonal⇒ O = O⊥
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⇒ O = O⊥ ∼= G/O

⇒ |O|2 = |G|

⇒ |O| =
√
|G|.

3.3.10 Note. Observe that the contrapositive of the previous theorem states that if |O| 6=
√
|G|,

thenO is not self-orthogonal. Thus it follows that, if |G| is not a perfect square, thenG contains

no self-orthogonal subgroups.

3.3.11 Theorem. Let H and K be subgroups of G. We have K ⊆ H if and only if H⊥ ⊆ K⊥.

Proof. For the forward direction, suppose K ⊆ H . Let a ∈ H⊥. Then a ◦h = 0 for all h ∈ H ,

and thus a ◦ k = 0 for all k ∈ K. Hence a ∈ K⊥, and therefore, H⊥ ⊆ K⊥. For the other

direction, assume that H⊥ ⊆ K⊥. By Theorem 3.3.6 and what we have just shown, we have

K = (K⊥)⊥ ⊆ (H⊥)⊥ = H . The claim follows.

3.3.12 Definition. By an orthomorphism ofGwe mean a permutation f ofGwith f(a)◦f(b) =

a ◦ b for all a, b ∈ G.

3.3.13 Theorem. If f is an orthomorphism of G, then f is an automorphism of G.

Proof. Let f be an orthomorphism on G. Let x, y ∈ G. Since f is by definition a permutation

of G, it suffices to show only that f is a homomorphism. Thus for any a ∈ G, we have

ιf(x+y)(a) = f(x+ y) ◦ a

= f(x+ y) ◦ f(f−1(a))

= (x+ y) ◦ f−1(a)
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= x ◦ f−1(a) + y ◦ f−1(a)

= f(x) ◦ f(f−1(a)) + f(y) ◦ f(f−1(a))

= f(x) ◦ a+ f(y) ◦ a

= (f(x) + f(y)) ◦ a

= ιf(x)+f(y)(a),

which implies ιf(x+y) = ιf(x)+f(y). Since ϕ : G → G∗ given by ϕ(g) = ιg is an isomorphism

and

ϕ(f(x+ y)) = ιf(x+y) = ιf(x)+f(y) = ϕ(f(x) + f(y)),

we obtain f(x+ y) = f(x) + f(y). Hence f is an automorphism of G.

3.3.14 Theorem. For every orthomorphism f of G and subgroup H of G, we have f(H⊥) =

f(H)⊥.

Proof. Let f be a orthomorphism of G, and let H ≤ G. Let g ∈ G. Then

g ∈ f(H⊥)⇐⇒ f−1(g) ∈ H⊥

⇐⇒ f−1(g) ◦ h = 0, ∀h ∈ H

⇐⇒ f(f−1(g)) ◦ f(h) = 0, ∀h ∈ H

⇐⇒ g ◦ f(h) = 0, ∀h ∈ H

⇐⇒ g ∈ f(H)⊥.

The claim follows.

3.3.15 Corollary. Orthomorphic images of self-orthogonal subgroups ofG are self-orthogonal

subgroups of G.
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Proof. Let f be an orthomorphism ofG, and letO be a self-orthogonal subgroup ofG. Observe

that f(H⊥) = f(H)⊥ for all H ≤ G from the previous theorem and O = O⊥, respectively.

Therefore, we get f(O) = f(O⊥) = f(O)⊥. The claim follows.
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3.4 Symplectic Complements of Subgroups of G

Set G = G⊕G. We have

G = G⊕G = (Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn)⊕ (Zmn+1 ⊕ Zmn+2 ⊕ · · · ⊕ Zm2n),

wheremn+j = mj , sinceG = Zm1⊕Zm2⊕· · ·⊕Zmn . Thus observe that an element x ∈ G can

be expressed as x = (a, b), for some a, b ∈ G; hence, x = (x1, x2, . . . , xn, xn+1, . . . , x2n) =

(a1, a2, . . . , an, b1, b2, . . . , bn), where xi = ai, xn+i = bi ∈ Zmi (1 ≤ i ≤ n).

For the following, let K be a subgroup of G.

3.4.1 Definition. The symplectic product of two elements (a, b), (c, d) ∈ G is defined by

(a, b) ∗ (c, d) := b ◦ c− a ◦ d, where the product ◦ is defined as it is in Section 3.2.

3.4.2 Definition. Define ψ : G⊕G→ Zm by

ψ((a, b), (c, d)) = (a, b) ∗ (c, d).

For x ∈ G, define ψx : G→ Zm by ψx(y) = ψ(x, y).

3.4.3 Note. It is straightforward to check that ψ is a bilinear form. Moreover, ψ is alternating

since ψ((a, b), (a, b)) = 0 for all (a, b) ∈ G. Thus by Theorem 3.1.9, ψ is skew-symmetric, so

by Theorem 3.1.4 and the note following it, Kψ = {x ∈ G | ψ(x, y) = 0 for all y ∈ K} .

3.4.4 Definition. Define the symplectic complement K∆ of K by K∆ = {x ∈ G | x ∗ y =

0 for all y ∈ K}.
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3.4.5 Note. Observe from the previous definition that indeed, K∆ = Kψ. By Theorem 3.1.3 it

follows from the fact that ψ is bilinear that K∆ is a subgroup of G.

3.4.6 Note. Substituting G for G in the definition of ◦, we obtain a bilinear form (x, y) 7→ x◦y

on G having the property that for every (a, b), (c, d) ∈ G we have (a, b) ◦ (c, d) = a ◦ c+ b ◦ d,

with each ◦ on the right being the operator defined on G.

3.4.7 Corollary. Let (a, b), (c, d) ∈ G. Then we have (a, b) ∗ (c, d) = (a, b) ◦ (−d, c) and also

(a, b) ∗ (c, d) = (b,−a) ◦ (c, d).

Proof. This fact follows immediately from the definition of (a, b)∗ (c, d) and the previous note.

3.4.8 Note. Recall that since ψ is a bilinear form, we have that ψx is a Zm-module homomor-

phism, and thus ψx ∈ G ∗ for each x ∈ G. Define ρ : G → G ∗ by ρ(x) = ψx. Recall

from Theorem 3.2.7 the isomorphism ϕ : G → G ∗ defined by ϕ(x) = ιx. Then the previous

corollary implies

ψ(a,b)

(
(c, d)

)
= (a, b) ∗ (c, d) = (b,−a) ◦ (c, d) = ι(b,−a)

(
(c, d)

)
for all (c, d) ∈ G. Thus ρ(a, b) = ψ(a,b) = ι(b,−a) = ϕ(b,−a) for (a, b) ∈ G. Since

ϕ : G → G ∗ is an isomorphism by Theorem 3.2.7, it follows that ρ : G → G ∗ is an iso-

morphism.

3.4.9 Lemma. The bilinear form ψ is non-degenerate.

Proof. By Theorem 3.1.7, it suffices to prove that ψ1 and ψ2 are injections. Since ψ is skew-

symmetric, Theorem 3.1.8 implies ψ1 = −ψ2, and it follows that we only need to prove that ψ1

is an injection. Let x, y ∈ G. Suppose ψ1(x) = ψ1(y). Thus ρ(x) = ψx = ψ1(x) = ψ1(y) =

ψy = ρ(y). By Note 3.4.8, ρ is an isomorphism. Thus ρ is an injection, so x = y. Therefore,
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ψ1 is an injection. The claim follows.

3.4.10 Note. Since ψ is alternating and non-degenerate, we have that ψ is a symplectic bilinear

form by Definition 3.1.2.

3.4.11 Theorem. We have K⊥ ∼= G/K and K∆ ∼= G/K.

Proof. Since both ι : G ⊕ G → Zm and ψ : G ⊕ G → Zm are non-degenerate by Lemmas

3.3.3 and 3.4.9, respectively, Theorem 3.3.2 implies K⊥ ∼= G/K and K∆ ∼= G/K.

3.4.12 Corollary. We have (K∆)∆ = K.

Proof. Since (K∆)∆ = {x ∈ G | ψx(y) = 0 ∀y ∈ K∆} and ψx(y) = x∗y = −y∗x = −ψy(x)

for all x, y ∈ G, it follows that K ⊆ (K∆)∆. The previous corollary implies (K∆)∆ ∼= G/K∆.

By Lagrange’s Theorem, we have

|(K∆)∆| = |G|
|K∆|

=
|G|
|G|/|K|

= |K|.

Thus (K∆)∆ = K.

3.4.13 Corollary. Let H and K be subgroups of G. Then K ⊆ H if and only if H∆ ⊆ K∆.

Proof. The proof of Theorem 3.3.11 applies with ⊥ replaced by ∆ and ◦ replaced by ∗.

3.4.14 Definition. A Lagrangian subgroup of G is a subgroup L of G such that L = L∆.

3.4.15 Theorem. Let L be a subgroup of G. If L is Lagrangian, then |L| = |G|.

45



Proof. By Theorem 3.4.11 and Lagrange’s Theorem, we have

L is Lagragian⇒ L = L∆

⇒ G/L ∼= L∆ = L

⇒ |G|2 = |G⊕G| = |G| = |L|2

⇒ |G| = |L|.

3.4.16 Definition. By a symplectomorphism of G we mean a permutation f of G with f(x) ∗

f(y) = x ∗ y for all x, y ∈ G.

3.4.17 Theorem. If f is a symplectomorphism of G, then f is an automorphism of G.

Proof. Let f be a symplectomorphism on G. Let (a, b), (c, d) ∈ G. Since f is by definition a

permutation of G, it suffices to show simply that f is a homomorphism. Let (g, h) ∈ G. Thus

(g, h) = f(g′, h′) for some (g′, h′) ∈ G. Then

ψf((a,b)+(c,d))(g, h) = f(a+ c, b+ d) ∗ (g, h)

= f(a+ c, b+ d) ∗ f(g′, h′)

= (a+ c, b+ d) ∗ (g′, h′)

= (b+ d) ◦ g′ − (a+ c) ◦ h′

= b ◦ g′ − a ◦ h′ + d ◦ g′ − c ◦ h′

= (a, b) ∗ (g′, h′) + (c, d) ∗ (g′, h′)

= f(a, b) ∗ f(g′, h′) + f(c, d) ∗ f(g′, h′)

= (f(a, b) + f(c, d)) ∗ (g, h)

= ψf(a,b)+f(c,d)(g, h),
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which implies ψf((a,b)+(c,d)) = ψf(a,b)+f(c,d). Since ρ : G → G ∗ given by ρ(a, b) = ψ(a,b) is an

isomorphism, we obtain f((a, b) + (c, d)) = f(a, b) + f(c, d). Hence f is an automorphism of

G.

Let Sp(G) denote the collection of symplectomorphisms of G. It is straightforward to prove

that Sp(G) is a subgroup of the group Aut(G) of automorphisms of G.

The next theorem says that symplectomorphisms preserve symplectic complements.

3.4.18 Theorem. For every symplectomorphism f ofG and subgroupH ofG, we have f(H∆) =

f(H)∆.

Proof. Let f be a symplectomorphism of G, and let H ≤ G. Let (a, b) ∈ G. Then

(a, b) ∈ f(H∆)⇐⇒ f−1(a, b) ∈ H∆

⇐⇒ f−1(a, b) ∗ (h, k) = 0, ∀(h, k) ∈ H

⇐⇒ f(f−1(a, b)) ∗ f(h, k) = 0, ∀(h, k) ∈ H

⇐⇒ (a, b) ∗ f(h, k) = 0, ∀(h, k) ∈ H

⇐⇒ (a, b) ∈ f(H)∆.

The claim follows.

3.4.19 Corollary. Symplectomorphic images of Lagrangian subgroups of G are Lagrangian

subgroups of G.

Proof. Let f be a symplectomorphism of G, and let L be a Lagrangian subgroup of G. Ob-

serve that f(H∆) = f(H)∆ for all H ≤ G from Theorem 3.4.18 and L = L∆, respectively.
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Therefore, we get f(L) = f(L∆) = f(L)∆. The claim follows.
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Chapter 4

Generalizations of the Pauli Group, the Pauli Algebra, and the Clifford Group

4.1 Pauli Maps

Recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+. Henceforth, we let m be a fixed

common multiple of the set {2mi | 1 ≤ i ≤ n}. Put m′ = m/2. It is straightforward to prove

that m′ is a common multiple of the set {mi | 1 ≤ i ≤ n}. Thus we may apply the results from

Section 3.2 to G with m′ = m/2. Recall again the definition of a ◦ b for a, b ∈ G:

a ◦ b =
n∑
i=1

aibi

(
m

mi

)
· 1.

where we take aibi

(
m

mi

)
∈ Z and 1 ∈ Zm. Thus

a ◦ b = 2
n∑
i=1

aibi

(
m′

mi

)
· 1,

where 1 ∈ Zm. Since m′/mi ∈ Z for all i, we have that
n∑
i=1

aibi

(
m′

mi

)
∈ Z, and thus

n∑
i=1

aibi

(
m′

mi

)
· 1 ∈ Zm. Therefore, for a, b ∈ G, we have a ◦ b = 2

n∑
i=1

aibi

(
m′

mi

)
· 1 ∈ 2Zm.
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Recall that the group algebra CG of G over C is the algebra over C having as its underlying

vector space the vector space with basis G and having as its product the product in the group

G extended linearly. Let 〈· | ·〉 be the inner product on CG uniquely determined by the assign-

ment 〈g | h〉 = δgh, where δgh is the Kronecker delta function.

For each g ∈ G, let Xg denote the linear operator on CG uniquely determined by Xg|h〉 :=

Xg(|h〉) = |h+ g〉, for h ∈ G. Written explicitly, we see that Xg =
∑
h∈G

|h+ g〉〈h| and hence

Xg

(∑
h∈G

αh|h〉

)
=
∑
h∈G

αh|h+ g〉.

Similarly, for each g ∈ G, let Zg denote the linear operator on CG uniquely determined by

Zg|h〉 := Zg(|h〉) = εg◦hm |h〉, for h ∈ G, where εm = e2πi/m, where i =
√
−1. Written

explicitly, we see that Zg =
∑
h∈G

εg◦hm |h〉〈h| and hence

Zg

(∑
h∈G

αh|h〉

)
=
∑
h∈G

αhε
g◦h
m |h〉.

For general k ∈ Z+, define εk ∈ C by εk := e2πi/k, where i =
√
−1.

Define X,Z : G→ GL(CG) by X(g) = Xg and Z(g) = Zg.

4.1.1 Theorem. The maps X and Z are monomorphisms. In particular, Xg+h = XgXh and

Zg+h = ZgZh for any g, h ∈ G.

Proof. Let g, h ∈ G. For any a ∈ G, we have

X(g + h)|a〉 = Xg+h|a〉 = |a+ g + h〉 = Xg|a+ h〉 = XgXh|a〉 = X(g)X(h)|a〉.

50



Thus X(g + h) = X(g)X(h), so X is a homomorphism. It is straightforward to prove that

X is injective. Thus X is a monomorphism. In particular, we have Xg+h = X(g + h) =

X(g)X(h) = XgXh.

Similarly, for any a ∈ G, we have

Z(g+h)|a〉 = ε(h+g)◦a
m |a〉 = εh◦am εg◦am |a〉 = εh◦am Zg|a〉 = Zg(εh◦am |a〉) = ZgZh|a〉 = Z(g)Z(h)|a〉.

Thus Z(g + h) = Z(g)Z(h), so Z is a homomorphism. It is also straightforward to prove

that Z is injective. Thus Z is a monomorphism. In particular, we have Zg+h = Z(g + h) =

Z(g)Z(h) = ZgZh.

4.1.2 Definition. The generalized Walsh-Hadamard transform of CG is the linear operator W

on CG given by

W = |G|−1/2
∑
b∈G

∑
a∈G

εa◦bm |a〉〈b|.

4.1.3 Theorem. For all g ∈ G, WXg = ZgW .

Proof. Let g, h ∈ G. Then

WXg|h〉 = W |h+ g〉

=

(
|G|−1/2

∑
b∈G

∑
a∈G

εa◦bm |a〉〈b|

)
|h+ g〉

= |G|−1/2
∑
a∈G

εa◦(h+g)
m |a〉

= |G|−1/2
∑
a∈G

εa◦hm εa◦gm |a〉

= |G|−1/2
∑
a∈G

εa◦hm Zg|a〉
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= Zg

(
|G|−1/2

∑
a∈G

εa◦hm |a〉

)
= ZgW |h〉.

Since h ∈ G was arbitrary, the claim follows.

4.1.4 Note. It is routine to check that W is invertible. Therefore, since W−1 exists, we have

WXgW−1 = Zg.

4.1.5 Note. The above linear operators on CG generalize the notion of the bit flip and phase

flip operations in the case G = Z2 ⊕ · · · ⊕ Z2.

The following theorem describes the commutation relationship between Xg and Zh under mul-

tiplication for g, h ∈ G.

4.1.6 Theorem. Let g, h ∈ G. Then ZhXg = εh◦gm ·XgZh.

Proof. Let b ∈ G. Then

ZhXg|b〉 = Zh|b+ g〉 = εh◦(g+b)m |b+ g〉 = εh◦gm εh◦bm Xg|b〉 = εh◦gm Xg(εh◦bm |b〉) = εh◦gm ·XgZh|b〉.

The claim follows.
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4.2 Pauli Group

Again recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+, and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

4.2.1 Definition. Define the (General) Pauli group PG of G to be the subgroup of GL(CG)

generated by the set {εkmI,Xg, Zh | k ∈ Zm, g, h ∈ G}.

4.2.2 Theorem. The (General) Pauli group is equal to the set {εkmXgZh | k ∈ Zm, g, h ∈ G}.

Proof. Since PG is defined as the subgroup of GL(CG) generated by the set {εkmI,Xg, Zh |

k ∈ Zm, g, h ∈ G}, we have that PG is the collection of all products of elements from

the set {εkmI,Xg, Zh | k ∈ Zm, g, h ∈ G}. By Theorems 4.1 and 4.1.6, it follows that

PG ⊆ {εkmXgZh | k ∈ Zm, g, h ∈ G}. Since the other inclusion is immediate as each

element of {εkmXgZh | k ∈ Zm, g, h ∈ G} is a product of elements from {εkmI,Xg, Zh | k ∈

Zm, g, h ∈ G}, we obtain PG = {εkmXgZh | k ∈ Zm, g, h ∈ G}. The claim follows.

A basis for CG is {|g1g2 · · · gn〉 | gi ∈ Zmi}. For gi ∈ Zmi , an equivalent way to express

|g1g2 · · · gn〉 is by |g1〉|g2〉 · · · |gn〉, which is itself shorthand for |g1〉⊗ |g2〉⊗ · · ·⊗ |gn〉, and this

is due to the identification of the spaces CG and CZm1 ⊗ CZm2 ⊗ · · · ⊗ CZmn .

4.2.3 Theorem. Let g ∈ G. We have Xg = Xg1 ⊗ Xg2 ⊗ · · · ⊗ Xgn and Zg = Zg1 ⊗ Zg2 ⊗

· · · ⊗ Zgn .

Proof. Let h ∈ G. Then h = (h1, h2, . . . , hn) for some hi ∈ Zmi . Thus

Xg|h〉 = |g + h〉

= |g1 + h1〉|g2 + h2〉 · · · |gn + hn〉
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= Xg1|h1〉Xg2|h2〉 · · ·Xgn|hn〉

= (Xg1 ⊗Xg2 ⊗ · · · ⊗Xgn)(|h1〉|h2〉 · · · |hn〉)

= (Xg1 ⊗Xg2 ⊗ · · · ⊗Xgn)|h〉.

Also, we have

Zg|h〉 = εg◦hm |h〉

= ε
∑n
i=1(m/mi)gihi

m (|h1〉|h2〉 · · · |hn〉)

=
n∏
i=1

ε(m/mi)gihim (|h1〉|h2〉 · · · |hn〉)

= (ε(m/m1)g1h1
m |h1〉)(ε(m/m2)g2h2

m |h2〉) · · · (ε(m/mn)gnhn
m |hn〉)

= ((e2π
√
−1/m)(m/m1)g1h1|h1〉)((e2π

√
−1/m)(m/m2)g2h2|h2〉) · · · ((e2π

√
−1/m)(m/mn)gnhn|hn〉)

= ((e2π
√
−1/m1)g1h1|h1〉)((e2π

√
−1/m2)g2h2|h2〉) · · · ((e2π

√
−1/mn)gnhn|hn〉)

= (εg1h1m1
|h1〉)(εg2h2m2

|h2〉) · · · (εgnhnmn |hn〉)

= Zg1 |h1〉Zg2|h2〉 · · ·Zgn|hn〉.

= (Zg1 ⊗ Zg2 ⊗ · · · ⊗ Zgn)|h1〉|h2〉 · · · |hn〉

= (Zg1 ⊗ Zg2 ⊗ · · · ⊗ Zgn)|h〉.

The claims follow.

4.2.4 Lemma. Let g, g′ ∈ G. The following statements are equivalent:

(a) g ◦ g′ = 0

(b) g ∈ 〈g′〉⊥

(c) g′ ∈ 〈g〉⊥
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Proof. (a)⇒ (b): Suppose g ◦ g′ = 0. Let x ∈ 〈g′〉. We have x = kg′ for some k ∈ Z. Then

g ◦ x = g ◦ kg′ = g ◦ (g′ + g′ + · · ·+ g′︸ ︷︷ ︸
k times

) = g ◦ g′ + g ◦ g′ + · · ·+ g ◦ g′︸ ︷︷ ︸
k times

= 0,

implying g ∈ 〈g′〉⊥.

(b)⇒ (a): Trivial.

(a)⇔ (c): This follows from (a)⇔ (b) and the fact that the form ◦ is symmetric.

The claim follows.

4.2.5 Definition. Let g, h ∈ G. We say Xg and Zh are compatible if XgZh = ZhXg.

4.2.6 Theorem. Let g, h ∈ G. Then Xg and Zh are compatible if and only if g ∈ 〈h〉⊥

(equivalently h ∈ 〈g〉⊥).

Proof. By Theorem 4.1.6, ZhXg = εh◦gm XgZh. We have

Xg and Zh are compatible ⇐⇒ XgZh = ZhXg

⇐⇒ XgZh = εh◦gm XgZh

⇐⇒ 1 = εh◦gm

⇐⇒ h ◦ g = 0

⇐⇒ g ∈ 〈h〉⊥.

The implications (b)⇔ (c) in the preceding lemma complete the proof.

4.2.7 Theorem. Let a, b, c, d ∈ G. Then (XaZb)(XcZd) = εb◦c−a◦dm (XcZd)(XaZb).
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Proof. We have

Xa(ZbXc)Zd = Xa(εb◦cm XcZb)Zd

= εb◦cm Xa+cZb+d

= εb◦cm Xc(XaZd)Zb

= εb◦cm Xc(ε−a◦dm ZdXa)Zb

= εb◦c−a◦dm (XcZd)(XaZb).

4.2.8 Note. Utilizing the notation for the symplectic product on G, the previous result could be

expressed as

(XaZb)(XcZd) = ε(a,b)∗(c,d)
m (XcZd)(XaZb) for all a, b, c, d ∈ G.

4.2.9 Theorem. Let g, h ∈ G. For any k ∈ Z, (XgZh)k = ε
k(k−1)

2
·(g◦h)

m XkgZkh.

Proof. We first prove by induction that the equality holds for all k ≥ 0. The case for k = 0 is

trivial. Now let k > 0. By induction, (XgZh)k−1 = ε
(k−1)(k−2)

2
·(g◦h)

m X(k−1)gZ(k−1)h. Then we

have

(XgZh)k = (XgZh)k−1(XgZh)

= ε
(k−1)(k−2)

2
·(g◦h)

m X(k−1)g(Z(k−1)hXg)Zh

= ε
(k−1)(k−2)

2
·(g◦h)

m X(k−1)g(ε(k−1)g◦h
m XgZ(k−1)h)Zh

= ε
(k−1)(k−2)+2(k−1)

2
·(g◦h)

m XkgZkh

= ε
k2−k

2
·(g◦h)

m XkgZkh

= ε
k(k−1)

2
·(g◦h)

m XkgZkh.
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Now, observe that inverting both sides of the equation (XgZh)k = ε
k(k−1)

2
·(g◦h)

m XkgZkh gives

(XgZh)−k = ε
− k(k−1)

2
·(g◦h)

m Z−khX−kg

= ε
− k(k−1)

2
·(g◦h)

m

(
ε(−kh)◦(−kg)
m X−kgZ−kh

)
= ε

−k2+k
2
·(g◦h)

m

(
εk

2(g◦h)
m X−kgZ−kh

)
= ε

−k2+k+2k2

2
·(g◦h)

m X−kgZ−kh

= ε
k2+k

2
·(g◦h)

m X−kgZ−kh

= ε
−k(−k−1)

2
·(g◦h)

m X−kgZ−kh.

Thus, for k > 0 and j = −k, we obtain (XgZh)j = ε
j(j−1)

2
g◦h

m XjgZjh. Thus the formula holds

for j = −k < 0.

Recall that o(x) denotes the order of the element x ∈ G. By Theorem 4.1, X : G→ GL(CG)

and Z : G → GL(CG) given by X(g) = Xg and Z(h) = Zh, respectively, are monomor-

phisms. Thus for all g, h ∈ G, we have o(g) = o(Xg) and o(h) = o(Zh).

4.2.10 Theorem. Let g, h ∈ G, and set ` := lcm(o(g), o(h)) = lcm(o(Xg), o(Zh)). If ` is odd,

then o(XgZh) has order `, and if ` is even, then XgZh has order ` when o(g ◦ h) divides `/2,

and XgZh has order 2` otherwise.

Proof. Let k ∈ Z+, and assume that (XgZh)k = I . Thus ε
k(k−1)

2
·(g◦h)

m XkgZkh = I by the

previous theorem. In particular, this implies Xkg = I and Zkh = I so that k is a common

multiple of o(Xg) and o(Zh). Therefore, ` | k.

Now, suppose ` is odd, i.e. ` = 2j + 1 for some j ∈ N. Thus

(XgZh)` = ε
`(`−1)

2
·(g◦h)

m X`gZ`h

= ε
`(2j)

2
·(g◦h)

m (Xg)`(Zh)`

= ε`j(g◦h)
m I
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= εj((`g)◦h)
m I

= ε0mI

= I.

If ` is even, i.e. ` = 2j for some j ∈ N, then

(XgZh)` = ε
`(`−1)

2
·(g◦h)

m X`gZ`h

= ε
2j(`−1)

2
·(g◦h)

m I

= εj(`−1)(g◦h)
m I

= ε`j(g◦h)−j(g◦h)
m I

= εj((`g)◦h)−j(g◦h)
m I

= ε−j(g◦h)
m I.

Therefore, if ` = 2j for some j ∈ N, then

(XgZh)` = I

⇐⇒ ε−j(g◦h)
m I = I

⇐⇒ ε−j(g◦h)
m = 1

⇐⇒ −j(g ◦ h) = 0

⇐⇒ o(g ◦ h) | j = `/2.

In particular, if o(g ◦ h) | `/2, then XgZh has order `. On the other hand, if o(g ◦ h) - `/2, and

thus (XgZh)` = ε
−j(g◦h)
m I 6= I , then the equations (XgZh)2` = ε

−2j(g◦h)
m I = ε

−((`g)◦h)
m I = I

and (XgZh)` 6= I , together with the fact established earlier that the order ofXgZh is a multiple

of `, yield the conclusion that XgZh has order 2`. The claim follows.
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For the following, recall from the opening statements in Section 4.1 that for a, b ∈ G, a ◦ b ∈

2Zm. It follows that, for a, b ∈ G, we have a ◦ b = 2k for some k ∈ Zm, and thus (a ◦ b)/2 can

be taken to mean k.

4.2.11 Corollary. Let g, h ∈ G. If ` = lcm(o(Xg), o(Zh)) is even, then ε(g◦h)/2
m XgZh has order

`.

Proof. From the previous proof, we observe that for ` = 2j, with j ∈ N, the equation

(XgZh)` = ε
−j(g◦h)
m I implies εj(g◦h)

m (XgZh)` = I , which implies

(ε(g◦h)/2
m XgZh)` = ε

`
2

(g◦h)
m (XgZh)` = εj(g◦h)

m (XgZh)` = I.

The claim follows.

4.2.12 Theorem. Let N and M be groups, and let ρ, ϕ : N → M be homomorphisms. The

product ρ · ϕ : N → M given by (ρ · ϕ)(n) = ρ(n)ϕ(n) is a homomorphism if and only if

ρ(b)ϕ(a) = ϕ(a)ρ(b) for all a, b ∈ N .

Proof. Let a, b ∈ N . By direct computation, we have

ρ · ϕ is a homomorphism ⇐⇒ (ρ · ϕ)(ab) = (ρ · ϕ)(a)(ρ · ϕ)(b)

⇐⇒ ρ(ab)ϕ(ab) = ρ(a)ϕ(a)ρ(b)ϕ(b)

⇐⇒ ρ(a)ρ(b)ϕ(a)ϕ(b) = ρ(a)ϕ(a)ρ(b)ϕ(b)

⇐⇒ ρ(b)ϕ(a) = ϕ(a)ρ(b).
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4.2.13 Definition. Let N and M be groups, and let K be a subgroup of N . Let ρ, ϕ : N →M

be homomorphisms. We say ρ and ϕ are compatible on K if (ρ · ϕ)|K : K → M is a homo-

morphism. Otherwise, we say they are incompatible on K.

4.2.14 Note. We make a few quick observations. First, if M is abelian, then ρ and ϕ are com-

patible on N . Second, ρ and ϕ are always compatible on the trivial subgroup of N . Lastly, if

either ρ or ϕ is the trivial homomorphism that maps all of N to the identity of M , then ρ and ϕ

are compatible on N .

Observe that we could apply the previous theorem to the maps X : G → GL(CG) and

Z : G→ GL(CG) given by X(g) = Xg and Z(g) = Zg, since these are homomorphisms.

4.2.15 Corollary. Let α and β be endomorphisms of G, and let Xα, Zβ : G → PG be maps

defined by Xα(g) = Xα(g) and Zβ(g) = Zβ(g). The following are equivalent:

(i) The product XαZβ : G→ PG defined by XαZβ(g) = Xα(g)Zβ(g) is a homomorphism.

(ii) α(g) ◦ β(h) = 0 for all pairs g, h ∈ G.

(iii) α(G) ⊆ β(G)⊥ (equivalently, β(G) ⊆ α(G)⊥ by Theorem 3.3.11.).

Proof. First, it is straightforward to show that Xα and Zβ are homomorphisms.

(i ⇔ ii): From the previous theorem, XαZβ : G → PG is a homomorphism if and only if

Xα(g)Zβ(h) = Zβ(h)Xα(g) for all g, h ∈ G. Due to the commutation relations in PG, this is true

if and only if εα(g)◦β(h)
m = 1 for all g, h ∈ G, which is equivalent to α(g) ◦ β(h) = 0 for all

g, h ∈ G.
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(ii⇔ iii): Since the statement α(g) ◦ β(h) = 0 for all g, h ∈ G is equivalent to α(G) ⊆ β(G)⊥

by definition of the orthogonal complement of a subgroup, the claim follows.
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4.3 A Presentation of the Pauli Group

Let S be a set, let FS be the free group on S, and let R ⊆ FS be a set of words on S. Let

NR be the normal closure of R in FS (so NR is the intersection of all normal subgroups of FS

containing R). Put

〈S | R〉 = FS/NR.

4.3.1 Theorem (Universal Property of Free Groups). [Hun80, p. 65] Let ι : S → FS be the

inclusion map. If H is a group and ϕ : S → H is a map of sets, then there exists a unique

homomorphism ϕ̃ : FS → H such that ϕ̃ι = ϕ.

4.3.2 Corollary. Set P = 〈S | R〉, and suppose that ϕ : S → H is a function from a set S

to a group H . Let ϕ̃ : FS → H be the homomorphism granted by the previous theorem that

satisfies ϕ̃ι = ϕ, where ι : S → FS is the inclusion map. Then ϕ extends to a homomorphism

ϕ∗ : P → H that satisfies ϕ∗π = ϕ̃ if and only if ϕ̃(r) = eH for all r ∈ R, where eH is the

identity in H .

FS FS/NR = P

S H

ϕ̃

π

∃!ϕ∗
ϕ

ι

Proof. For the forward direction, assume there is a homomorphism ϕ∗ : P → H that satisfies

ϕ∗π = ϕ̃. Let r ∈ R. We have that r ∈ NR, and thus ϕ̃(r) = ϕ∗π(r) = ϕ∗(rNR) = ϕ∗(NR) =

eH . Since r was arbitrary, the claim follows.
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For the reverse direction, assume ϕ̃(r) = eH for all r ∈ R. Thus R ⊆ ker ϕ̃, and since ker ϕ̃ is

a normal subgroup of FS and NR is the intersection of all normal subgroups of FS containing

R, it follows thatNR ⊆ ker ϕ̃. By the FHT (Theorem 2.3.5), there is a (unique) homomorphism

f : FS/NR → H such that fπ = ϕ̃, where π : FS → FS/NR is the canonical epimorphism.

Setting f = ϕ∗ and observing that P = FS/NR, we obtain the desired result.

4.3.3 Definition. We say a group H has presentation 〈S | R〉 if H ∼= 〈S | R〉.

4.3.4 Theorem. PG has presentation 〈S | R〉, where

S = {εkmI,Xg, Zh | k ∈ Zm, g, h ∈ G},

R = {X0, Z0, ε0mI,X
g+hX−hX−g, Zg+hZ−hZ−g, (εj+km I)(ε−km I)(ε−jm I),

(εkmI)Xg(ε−km I)X−g, (εkmI)Zg(ε−km I)Z−g, (εg◦hm I)XgZhX−gZ−h | g, h ∈ G, j, k ∈ Zm}.

Proof. Let S and R be defined as they are in the statement of the theorem. Since S ⊂ PG and

S ⊂ FS , we have the inclusion maps ϕ : S → PG and ι : S → FS , respectively. By Theorem

4.3.1, there is a homomorphism ϕ̃ : FS → PG such that ϕ̃ι = ϕ. We then have the following

diagram:

FS

S PG

ϕ̃

ϕ

ι

Claim: ϕ̃(r) = I for all r ∈ R.
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First, we have that ϕ̃(X0) = ϕ̃ι(X0) = ϕ(X0) = X0 = I . Similarly, ϕ̃(Z0) = I and

ϕ̃(ε0mI) = I . Let g, h ∈ G and j, k ∈ Zm. Since ϕ̃ is a homomorphism and Xg+h, X−h, and

X−g are all elements of S, we have

ϕ̃(Xg+hX−hX−g) = ϕ̃(Xg+h)ϕ̃(X−h)ϕ̃(X−g)

= ϕ̃ι(Xg+h)ϕ̃ι(X−h)ϕ̃ι(X−g)

= ϕ(Xg+h)ϕ(X−h)ϕ(X−g)

= Xg+hX−hX−g

= Xg+h−h−g

= X0

= I.

Showing that ϕ̃mapsZg+hZ−hZ−g, (εj+km I)(ε−km I)(ε−jm I), (εkmI)Xg(ε−km I)X−g, and (εkmI)Zg(ε−km I)Z−g

to I are similar. Lastly, we have

ϕ̃((εg◦hm I)XgZhX−gZ−h) = ϕ̃(εg◦hm I)ϕ̃(Xg)ϕ̃(Zh)ϕ̃(X−g)ϕ̃(Z−h)

= ϕ̃ι(εg◦hm I)ϕ̃ι(Xg)ϕ̃ι(Zh)ϕ̃ι(X−g)ϕ̃ι(Z−h)

= ϕ(εg◦hm I)ϕ(Xg)ϕ(Zh)ϕ(X−g)ϕ(Z−h)

= (εg◦hm I)XgZhX−gZ−h

= (εg◦hm I)Xg(ε(−g)◦hm X−gZh)Z−h

= I.

The claim follows. Thus by Theorem 4.3.2, ϕ extends to a homomorphism ϕ∗ : 〈S | R〉 → PG.
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We have the following diagram:

FS FS/NR = 〈S | R〉

S PG

ϕ̃

π

∃!ϕ∗
ϕ

ι

By Definition 4.2.1, S generates PG , and thus it follows that ϕ̃ is a surjection. Also, it is

straightforward to see that the elements of R are the reduced words in FS that are mapped to

I under ϕ̃. Therefore, we have by Theorems 4.1 and 4.1.6, and also by the commutativity of

scalar multiples of I , that NR contains all words in FS that are mapped to I under ϕ̃. Thus

ker ϕ̃ = NR. Therefore, 〈S | R〉 = FS/NR = FS/ ker ϕ̃ ∼= im ϕ̃ = PG. The claim follows.

4.3.5 Note. Let the language be as in the previous theorem. Since S ⊂ FS , we have sNR ∈

FS/NR for all s ∈ S. It follows that for all s ∈ S, ϕ∗(sNR) = ϕ∗π(s) = ϕ̃(s) = ϕ̃ι(s) =

ϕ(s) = s.
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4.4 Abelian Subgroups of the Pauli Group

Again recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+, and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

For a group H , recall that the commutator subgroup [H,H] of H is the subgroup of H gener-

ated by the set {[a, b] = a−1b−1ab : a, b ∈ H}.

4.4.1 Lemma. We have [PG,PG] ⊆ {εkmI | k ∈ Zm}.

Proof. Let a, b, c, d ∈ G. Recall from Theorem 4.2.7 that XaZbXcZd = εb◦c−a◦dm XcZdXaZb.

We have

[XaZb, XcZd] = (XaZb)−1(XcZd)−1XaZbXcZd

= Z−bX−aZ−dX−cXaZbXcZd

= Z−bX−aZ−dX−c(εb◦c−a◦dm XcZdXaZb)

= εb◦c−a◦dm Z−bX−aZ−dX−cXcZdXaZb

= εb◦c−a◦dm I.

It follows that [PG,PG] ⊆ {εkmI | k ∈ Zm}.

For the following, put N = {εkmI | k ∈ Zm}. Observe that N is a normal subgroup of PG.

4.4.2 Theorem. We have that PG/N is isomorphic to G.
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Proof. Let f : PG/N → G be defined by f
(
XgZh

)
= (g, h), where XgZh = XgZhN . It is

straightforward to prove that f is well-defined. Let a, b, c, d ∈ G. Then we have

f
(
XaZb XcZd

)
= f

(
XaZbN XcZdN

)
= f

(
XaZbXcZdN

)
= f

(
Xa+cZb+d(εb◦cm I)N )

)
= f

(
Xa+cZb+dN

)
= f

(
Xa+cZb+d

)
= (a+ c, b+ d)

= (a, b) + (c, d)

= f
(
XaZb

)
+ f

(
XcZd

)
.

Thus f is a homomorphism.

Now, suppose f
(
XaZb

)
= f

(
XcZd

)
. Thus (a, b) = (c, d), so a = c and b = d. Therefore,

XaZb = XcZd, so f is injective. It is straightforward to see that f is surjective. Thus f is an

isomorphism. The claim follows.

Let f : PG/N → G be the isomorphism defined in the previous theorem and let π : PG →

PG/N be the canonical epimorphism. Set ϕ := fπ. Thus ϕ : PG → G is an epimorphism.

Indeed, ϕ is an m-to-1 epimorphism, which is due to kerϕ = N = {εkmI | k ∈ Zm}.

For the following, let A and B be subgroups of PG.

4.4.3 Lemma. A and B commute element-wise if and only if ϕ(A) ⊆ ϕ(B)∆.
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Proof. AssumeA and B commute element-wise. Let x ∈ ϕ(A) and y ∈ ϕ(B) so that x = ϕ(a)

and y = ϕ(b) for some a ∈ A, b ∈ B. By Theorem 4.2.2 we have a = εkmX
gZh and

b = εlmX
rZs for some k, l ∈ Zm and g, h, r, s ∈ G. We then have x = ϕ(εkmX

gZh) = (g, h)

and y = ϕ(εlmX
rZs) = (r, s). By assumption, ab = ba, so we have, by Note 4.2.8,

εk+l
m (ε(g,h)∗(r,s)

m XrZsXgZh) = εk+l
m XgZhXrZs = ab = ba = εk+l

m XrZsXgZh,

whence it follows that εx∗ym = ε
(g,h)∗(r,s)
m = 1. Therefore, x ∗ y = 0, so x ∈ ϕ(B)∆, since

y ∈ ϕ(B) was arbitrary. Thus ϕ(A) ⊆ ϕ(B)∆.

Now assume that ϕ(A) ⊆ ϕ(B)∆. Let a ∈ A and b ∈ B. By Theorem 4.2.2 we have

a = εkmX
gZh and b = εlmX

rZs for some k, l ∈ Zm and g, h, r, s ∈ G. Thus ϕ(a) = (g, h) and

ϕ(b) = (r, s). By assumption, (g, h) ∗ (r, s) = ϕ(a) ∗ ϕ(b) = 0. Therefore,

ab = εk+l
m XgZhXrZs = εk+l

m (ε(g,h)∗(r,s)
m XrZsXgZh) = εl+km XrZsXgZh = ba,

and we have that A and B commute element-wise.

4.4.4 Lemma. We have ϕ(CPG(A)) = ϕ(A)∆.

Proof. SinceA and CPG(A) commute element-wise, the previous lemma yields ϕ(CPG(A)) ⊆

ϕ(A)∆.

Claim: ϕ(CPG(A)) ⊇ ϕ(A)∆. Set B = ϕ−1(ϕ(A)∆). Since ϕ : PG → G is a homomorphism,

we have B ≤ PG. Moreover, since ϕ(B) = ϕ(ϕ−1(ϕ(A)∆)) = ϕ(A)∆, the previous theorem

implies B and A commute element-wise. Since CPG(A) is the largest subgroup of PG that

commutes with A element-wise, it follows that B ⊆ CPG(A). Thus

ϕ(A)∆ = ϕ(B) ⊆ ϕ(CPG(A)).
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This proves the claim. Therefore, ϕ(CPG(A)) = ϕ(A)∆, and the claim follows.

4.4.5 Theorem. If A is abelian, then ϕ(A) ⊆ ϕ(A)∆. Furthermore, if A is maximal among

abelian subgroups, then ϕ(A) = ϕ(A)∆, i.e. ϕ(A) is Lagrangian.

Proof. If A is abelian, then ϕ(A) ⊆ ϕ(A)∆ follows immediately from Lemma 4.4.3. Now,

suppose A is a maximal abelian subgroup of PG. Since A is abelian, A ⊆ CPG(A). Claim:

A = CPG(A). Suppose the claim is false; i.e., suppose there exists an M ∈ CPG(A)\A. The

subset 〈A∪{M}〉 is an abelian subgroup of PG, and it strictly containsA. This contradicts the

assumption that A is maximal among abelian subgroups. Hence, the claim is true. Therefore,

ϕ(A) = ϕ(CPG(A)) = ϕ(A)∆, where the last equality is from the previous lemma. Thus ϕ(A)

is Lagrangian.

4.4.6 Corollary. If A is a maximal abelian subgroup of PG, then |ϕ(A)| = |G|.

Proof. Suppose A is a maximal abelian subgroup of PG. By Theorem 4.4.5, ϕ(A) is a La-

grangian subgroup of G. By Theorem 3.4.15, we obtain |ϕ(A)| = |G|.

4.4.7 Lemma. [Hun80, p. 45] Let ρ : A→ A′ be an epimorphism of groups. Put

S = {B | ker ρ ⊆ B ≤ A}.

For B,C ∈ S, ρ(B) / ρ(C) if and only if B / C, and ρ(C)/ρ(B) ∼= C/B.

4.4.8 Theorem. Let L be a Lagrangian subgroup of G and put H = ϕ−1(L). The set H is an

abelian subgroup of PG containing N = {εkm | k ∈ Zm}, andH/N ∼= L.

Proof. Since ϕ is a homomorphism, ϕ−1(L) is a subgroup of PG. Since L is Lagrangian,

L = L∆. Observe that ϕ(H) = L, so it follows that ϕ(H) = ϕ(H)∆. Thus by Lemma 4.4.3,
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H commutes element-wise with itself. In other words,H is abelian.

Now, set S = {B | kerϕ ⊆ B ≤ PG}. Observe that kerϕ = ϕ−1({0}) ⊆ ϕ−1(L) = H, where

0 is the identity in G, so H ∈ S. Also, since kerϕ = N , we have that N ∈ S. Moreover, it

follows that N /H. Since ϕ : PG → G is an epimorphism, we can apply Lemma 4.4.7 to see

that ϕ(N ) / ϕ(H) andH/N ∼= ϕ(H)/ϕ(N ) = L/{0} ∼= L.

4.4.9 Corollary. If A is a maximal abelian subgroup of PG, then |A| = m|G|.

Proof. Suppose A is a maximal abelian subgroup of PG. By Theorem 4.4.5, ϕ(A) is a La-

grangian subgroup of G. Thus by Theorem 4.4.8, ϕ−1(ϕ(A)) is an abelian subgroup of PG

containingN = {εkmI | k ∈ Zm}, and ϕ−1(ϕ(A))/N ∼= ϕ(A). Observe thatA ⊆ ϕ−1(ϕ(A)),

and due to maximality of A, we have A = ϕ−1(ϕ(A)). Therefore, A/N ∼= ϕ(A). By Corol-

lary 4.4.6 and Lagrange’s Theorem, we have |A| = |N ||ϕ(A)| = m|G|.
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4.5 Pauli Algebra

Again recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+, and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

Identify the vector |a〉 (a ∈ G) with the |G|-dimensional column vector having 1 in the a-

position (using a fixed ordering of the set G) and 0’s elsewhere. For each a, b ∈ G the linear

map |a〉〈b| : CG→ CG identifies (using the basis G with the same ordering) with the element

of Mat|G|(C) having 1 in the (a, b)-position and 0’s elsewhere. Since {|a〉 | a ∈ G} is the

standard basis for CG, it is straightforward to prove that {|a〉〈b| | a, b ∈ G} is the standard

basis for the space Mat|G|(C) of |G| × |G| matrices over C.

4.5.1 Definition. Let A be a square complex matrix. We say A is unitary if AA∗ = I = A∗A,

where A∗ is the conjugate transpose of A.

4.5.2 Note. Let g ∈ G. Since Xg =
∑
h∈G

|h + g〉〈h| and Zg =
∑
h∈G

εg◦hm |h〉〈h|, we can view the

Pauli group operators as elements of Mat|G|(C) and thus identify PG as a subset of Mat|G|(C).

Furthermore, by taking the conjugate transposes ofXg and Zg, we have (Xg)∗ =
∑
h∈G

|h〉〈h+g|

and (Zg)∗ =
∑
h∈G

ε−g◦hm |h〉〈h|, and noting that the identity matrix can be expressed as I =∑
h∈G

|h〉〈h|, it follows that Xg(Xg)∗ = (Xg)∗Xg = I and Zg(Zg)∗ = (Zg)∗Zg = I so that Xg

and Zg are unitary.

4.5.3 Definition. Define the Pauli algebra PG to be the subalgebra of Mat|G|(C) generated by

PG (identified as a subset of Mat|G|(C)). By definition, PG is the intersection of all subalgebras

of Mat|G|(C) containing PG.
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4.5.4 Theorem. The collection

{
Xa

(
1

|G|
∑
g∈G

Zg

)
X−b | a, b ∈ G

}
is the standard basis for

the space Mat|G|(C), and hence PG = Mat|G|(C).

Proof. It suffices to prove that for any a, b ∈ G, we have Xa

(
1

|G|
∑
g∈G

Zg

)
X−b = |a〉〈b|,

since the collection {|a〉〈b| | a, b ∈ G} is the standard basis for Mat|G|(C). To that end, for any

a, b ∈ G, we have

Xa

(
1

|G|
∑
g∈G

Zg

)
X−b|b〉 = Xa

(
1

|G|
∑
g∈G

Zg

)
|0〉

= Xa

(
1

|G|
∑
g∈G

εg◦0m |0〉

)

= Xa

(
1

|G|
∑
g∈G

1

)
|0〉

= Xa

(
1

|G|
|G|
)
|0〉

= Xa|0〉

= |a〉

= |a〉 · 1

= |a〉〈b|b〉

= (|a〉〈b|) · |b〉,

and, for any h ∈ G\{b}, we have

Xa

(
1

|G|
∑
g∈G

Zg

)
X−b|h〉 = Xa

(
1

|G|
∑
g∈G

Zg

)
| − b+ h〉 (4.1)

= Xa

(
1

|G|
∑
g∈G

εg◦(−b+h)
m | − b+ h〉

)
(4.2)

= Xa

(
1

|G|
∑
g∈G

ε ι−b+h(g)
m | − b+ h〉

)
(4.3)

= Xa

(
1

|G|
∑
g∈G

ε ι−b+h(g)
m

)
| − b+ h〉 (4.4)
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= Xa · 0 · | − b+ h〉 (4.5)

= 0 (4.6)

= |a〉 · 0 (4.7)

= |a〉〈b|h〉 (4.8)

= (|a〉〈b|) · |h〉, (4.9)

where 0̄ is the zero vector in CG. The connection from (4) to (5) above is due to−b+h 6∈ {0} =

G⊥, which implies the homomorphism ι−b+h is not constant on G, which implies ι−b+h is

balanced on G by Theorem 2.2.6, and lastly, Lemma 2.2.7 gives
∑
g∈G

ε ι−b+h(g)
m = 0 . Therefore,

Xa

(
1

|G|
∑
g∈G

Zg

)
X−b = |a〉〈b|. The claim follows.

Let d ∈ Z+ and K be an arbitrary field.

4.5.5 Theorem. [GS17, p. 29] Every automorphism of the matrix ring Matd(K) is inner.

The following corollary follows immediately from the previous two theorems.

4.5.6 Corollary. Every automorphism of the Pauli algebra PG of G is inner.
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4.6 Stabilizer Codes

Again recall that G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn with n,mi ∈ Z+, and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

For a subgroup S of PG, let VS denote the subspace of CG that is stabilized pointwise by the

members of S so that, for all |ψ〉 ∈ VS , s|ψ〉 = |ψ〉 for all s ∈ S. Conversely, if W is a

subspace of CG, then we denote the (pointwise) stabilizer of W (in PG) by SW .

4.6.1 Definition. [RP11, (11.2.2), p. 257] Let V1 and V2 be complex vector spaces. A linear

transformation U : V1 → V2 is called an encoding (of V1) if U is an injection. The code associ-

ated with an encoding U : V1 → V2 is defined as the subspace of V2 spanned by the image of U .

4.6.2 Theorem. Let S be a subgroup of PG. For any g ∈ G, |S|−1/2
∑
s∈S

s|g〉 belongs to VS .

Proof. Let g ∈ G. Put ˜|g〉 = |S|−1/2
∑
s∈S

s|g〉. Since S is a subgroup of PG, we have, for any

t ∈ S, t ˜|g〉 = |S|−1/2
∑
s∈S

ts|g〉 = |S|−1/2
∑
s′∈S

s′|g〉 = ˜|g〉. Therefore, ˜|g〉 ∈ VS .

4.6.3 Note. Using the language and notation of the previous theorem, once we have found the

distinct elements of the set

{
|S|−1/2

∑
s∈S

s|g〉 | g ∈ G

}
, we can choose the largest subset H of

G for which the map that sends |h〉 to |S|−1/2
∑
s∈S

s|h〉, for h ∈ H , is an injection. Such a map

will be an injective linear transformation from CH to CG and thus an encoding of CH . The

subspace C of CG spanned by the set

{
|S|−1/2

∑
s∈S

s|h〉 | h ∈ H

}
is stabilized by the mem-

bers of S, and thus C is contained in VS [RP11, (11.4), p. 283]. We call the code C spanned by{
|S|−1/2

∑
s∈S

s|h〉 | h ∈ H

}
the stabilizer code afforded by S .
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4.6.4 Definition. A principal ideal domain (PID) is an integral domain in which every ideal

can be generated by a single element.

4.6.5 Definition. [Wei94, p. 39] Let R be a PID. An R-module M is divisible if for each

a ∈M and r 6= 0 ∈ R, there exists an b ∈M such that a = br.

4.6.6 Definition. [Hun80, p. 193-194] Let R be a ring. An R-module I is injective if given

any diagram

0 M N

I

α

f

of R-modules and R-module homomorphisms with f an injective R-module homomorphism,

there exists an R-module homomorphism β : N → I making the diagram commutative.

4.6.7 Lemma. [Wei94, p. 39] Let R be a PID. An R-module M is injective if and only if it is

divisible.

For the following, put N = {εkm | k ∈ Zm}, and observe that N ⊂ PG.

4.6.8 Theorem. Let S be a subgroup of PG. The space VS is nontrivial if and only if the

intersection S ∩ N is trivial.

Proof. (⇒) Suppose S ∩ N is nontrivial. Fix a nonzero k ∈ Zm such that εkmI ∈ S . Let

|v〉 ∈ VS . It follows that εkm|v〉 = εkmI|v〉 = |v〉. Thus (εkm − 1)|v〉 = 0. Since k 6= 0, it follows

that εkm − 1 6= 0, so we must have |v〉 = 0. Hence VS = {0}, so VS is trivial.
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(⇐ Proof due to R.R. Holmes) Assume that the intersection S ∩ N is trivial. For each s ∈ S

we have s = εksmX
asZbs for some unique ks ∈ Zm, as, bs ∈ G. Put S0 = {s ∈ S | s =

εksmZ
bs for some ks ∈ Zm, bs ∈ G} ⊆ S and B = {bs ∈ G | εksmZbs ∈ S for some ks ∈ Zm} ⊆

G. Claim: S0 ≤ S. We have:

(i) Since the identity I belongs to S and I = ε0mZ
0, we have I ∈ S0.

(ii) Let s, t ∈ S0. Then we have s = εksmZ
bs and t = εktmZ

bt for some ks, kt ∈ Zm and

bs, bt ∈ G. Since S is a subgroup of PG, it follows that εks+ktm Zbs+bt = st ∈ S for some

ks, kt ∈ Zm and bs, bt ∈ G. Thus st ∈ S0.

(iii) Let s ∈ S0. Then we have s = εksmZ
bs for some ks ∈ Zm and bs ∈ G. Since s ∈ S and S

is a subgroup of PG, we have ε−ksm Z−bs = s−1 ∈ S. Thus s−1 ∈ S0.

The claim follows. Claim: B ≤ G. We have:

(i) Since the identity I belongs to S and I = ε0mZ
0, it follows that the identity 0 ofG belongs

to B.

(ii) Let bs, bt ∈ B. Then we have that s := εksmZ
bs and t := εktmZ

bt belong to S for some

ks, kt ∈ Zm. Since S is a subgroup of PG, it follows that εks+ktm Zbs+bt = st ∈ S for some

ks, kt ∈ Zm. Thus bs + bt ∈ B.

(iii) Let bs ∈ B. Then we have that s := εksmZ
bs ∈ S for some ks ∈ Zm. Since S is a subgroup

of PG, we have ε−ksm Z−bs = s−1 ∈ S. Thus −bs ∈ B.

The claim follows.

Now, define α : B → S0 by α(b) = εksmZ
bs , where s ∈ S0 is such that bs = b, and define

β : S0 → Zm by β(s) = ks. Since S ∩ N is trivial, α is a well-defined function. Since β maps

s = εksZbs to ks, it is immediate that β is a well-defined function. It is a straightforward proof

that α and β are homomorphisms. Put ψ = βα. It follows that ψ : B → Zm is a well-defined
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Zm-homomorphism defined by ψ(b) = ks, where s ∈ S0 is such that bs = b. Let i : B → G be

the inclusion map. We have the following diagram of Zm-modules:

0 B G

Zm

ψ

i

The Z-module Zm is divisible and the ring Z is a PID, so the Z-module Zm is injective by

Lemma 4.6.7, implying that ψ extends to a Zm-homomorphism G → Zm, which equals ιγ

for some γ ∈ G (by the remarks preceding Lemma 3.2.2), making the following diagram

commutative:

0 B G

Zm

ψ

i

ιγ

Put |v〉 =
∑

s∈S s|µ〉, where µ = −γ. First, it follows that |v〉 ∈ VS , so it remains to be shown

that |v〉 6= 0. We have, for some ks ∈ Zm and as, bs ∈ G,

|v〉 =

(∑
s∈S

εksmX
asZbs

)
|µ〉 =

∑
a∈G

∑
s∈S
as=a

εksmε
bs◦µ
m |µ+ a〉.

It is enough to show that the projection |v〉µ of |v〉 onto the subspace C|µ〉 of CG is nonzero.

We have

|v〉µ =

(∑
s∈S0

εksmε
bs◦µ
m

)
|µ〉

for some ks ∈ Zm and as, bs ∈ G. For each s ∈ S0, we have

εksmε
bs◦µ
m = εksmε

bs◦(−γ)
m = εksmε

−γ◦bs
m = εks−ιγ(bs)

m = εks−ιγ i(bs)m = εks−ψ(bs)
m = εks−ksm = 1,
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so |v〉µ = |S0| |µ〉 6= 0, as desired.

4.6.9 Corollary. Let W be a subspace of CG. If W is nontrivial, then the stabilizer subgroup

SW of W is an abelian subgroup of PG.

Proof. Suppose W is nontrivial. By the previous theorem, SW ∩ N is trivial, and thus SW is

isomorphic to its image under the canonical epimorphism PG → PG/N . SinceN contains the

commutator subgroup of PG by Lemma 4.4.1, it follows that PG/N is abelian. Therefore, SW

is abelian.

4.6.10 Example. Assume G = Z2 ⊕ Z3. Put m = 12 so that m is a multiple of the set {4, 6}.

Set S0 = X(1,1) and S1 = Z(1,0). Let S be the subgroup of PG generated by the set {S0, S1}.

Recall the definition of ◦ from Section 2.2, and observe that

(1, 1) ◦ (1, 0) =
12

2
(1 · 1) +

12

3
(1 · 0) = 6,

and thus

S0S1 = X(1,1)Z(1,0) = ε
−(1,1)◦(1,0)
12 Z(1,0)X(1,1) = ε−6

12 S1S0 6= S1S0.

It follows that S is nonabelian. Applying the contrapositive of the previous corollary, it follows

that VS is trivial.

Let W be a nontrivial subspace of CG so that SW is abelian (by the previous corollary).

4.6.11 Definition. An error E (on W ) is any unitary operator on CG restricted to W .

4.6.12 Definition. [RP11, (11.2), p. 259] Let BW = {|w1〉, |w2〉, . . . , |w`〉} be an (orthonor-

mal) basis forW . A finite set E = {E1, E2, . . . , Ek} of unitary transformationsEi : CG→ CG
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is said to be a correctable set of errors for W if there exists a matrix M with entries mij such

that

〈wa|E∗iEj|wb〉 = mijδab

for all |wa〉, |wb〉 ∈ W and Ei, Ej ∈ E , where δab is the Kronecker delta function.

4.6.13 Note. The condition in the previous definition guarantees that two errors never take two

codewords to the same state, and the errors in E avoid giving information about the state and

hence do not affect the quantum computation.

4.6.14 Note. Even though errors can be any unitary operators on CG by definition, we hence-

forth restrict the errors to be elements of PG.

4.6.15 Note. [RP11, (11.4), p. 282] Let E = {E1, E2, . . . , Ek} be a set of errors on CG.

Observe that if E∗iEj ∈ SW for some 1 ≤ i, j ≤ k, then 〈wa|E∗iEj|wb〉 = 〈wa|wb〉 = δab. In

particular, if i = j, then since Ei is unitary, we have E∗iEj = I ∈ SW . If E∗iEj /∈ C(SW ) for

some 1 ≤ i, j ≤ k, then E∗iEj does not commute with some S ∈ SW , and thus

〈wa|E∗iEj|wb〉 = 〈wa|E∗iEjS|wb〉 = ε`m〈wa|SE∗iEj|wb〉 = ε`m〈wa|E∗iEj|wb〉

for some ` ∈ Zm\{0}, whence it follows that 〈wa|E∗iEj|wb〉 = 0 since 〈wa|E∗iEj|wb〉 ∈ C.

It follows that any set E = {E1, E2, . . . , Ek} of errors that satisfies the property that, for each

1 ≤ i, j ≤ k, either E∗iEj ∈ SW or E∗iEj /∈ C(SW ) is a correctable set of errors by the previ-

ous definition.

4.6.16 Definition. Let A be a linear operator over C and λ ∈ C be an eigenvalue of A. We

denote the λ-eigenspace of A by V(λ,A).
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For the remainder of the section, let E ∈ PG, and let {S1, S2, . . . , St} be an independent gen-

erating set for SW .

4.6.17 Theorem. For each 1 ≤ r ≤ t there exists a unique kr ∈ Zm such that EW ⊆ V(εkrm ,Sr)
.

Proof. Since E, Sr ∈ PG for all 1 ≤ r ≤ t, it follows from Theorem 4.2.7 that SrE|w〉 =

εkrmESr|w〉 = εkrmE|w〉, and thus E|w〉 ∈ V(εkrm ,Sr)
for all 1 ≤ r ≤ t and any |w〉 ∈ W . Hence

EW ⊆ V(εkrm ,Sr)
. Suppose there is some 1 ≤ r ≤ t such that there are jr, kr ∈ Zm with

EW ⊆ V(εjrm ,Sr)
∩ V(εkrm ,Sr)

. Let |w〉 be a nonzero vector in W . We have

εjrmE|w〉 = SrE|w〉 = εkrmE|w〉,

which implies (εjrm − εkrm )E|w〉 = 0. Since E is invertible being an element of PG and |w〉 6= 0,

we have E|w〉 6= 0. It follows that εjrm − εkrm = 0, which implies jr = kr. The claim follows.

4.6.18 Definition. Let the notation be as in the previous theorem. The syndrome of E (relative

to the subspace W and the set {S1, S2, . . . , St}) is the t-tuple (k1, k2, . . . , kt).

4.6.19 Definition. Let the notation be as in the previous theorem. We say an error E is de-

tectable (relative to the subspace W and the set {S1, S2, . . . , St}) if, given (k1, k2, . . . , kt) is

the syndrome of E, ki 6= 0 for some 1 ≤ i ≤ t.

4.6.20 Note. Let the notation be as in the previous theorem. Since any abelian subgroup of a

group is necessarily contained in its centralizer (in the group), we have SW ⊆ CPG(SW ) =:

C(SW ). Let |w〉 ∈ W . We have either E ∈ C(SW ) or E /∈ C(SW ). In the latter case,

E /∈ C(SW ) implies E does not commute with some S` ∈ S , and thus the syndrome of E

equals (k1, k2, . . . , kt) with k` 6= 0. Thus E is detectable. In the former case, either E ∈ SW or

E ∈ C(SW )\SW . If E ∈ SW , then E|w〉 = |w〉, so E does not affect |w〉, and even though E
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is undetectable, E does not need to be corrected. If E ∈ C(SW )\SW , then for all S ∈ SW , we

have

SE|w〉 = ES|w〉 = E|w〉.

Thus EW ⊆ V(+1,S) for all S ∈ S . Hence the syndrome of E equals (0, . . . , 0) and is there-

fore undetectable by syndrome measurements. When such a situation occurs, we may wish to

define an encoding based on the action of E so that, while E cannot be detected, we can define

our encoding such that we still take E into account. An example at the end of the section will

illustrate this idea.

For the following, let E := {E1, E2, . . . , Ek} ⊆ PG be a collection of errors, and for 1 ≤ ` ≤ k,

let s` := (k`1, k`2, . . . , k`t) denote the syndrome of E` relative to the subspace W and the set

{S1, S2, . . . , St}.

4.6.21 Theorem. Let 1 ≤ i, j ≤ k. We have that si 6= sj if and only if E∗iEj /∈ C(SW ).

Proof. For the forward direction, suppose (ki1, ki2, . . . , kit) = si 6= sj = (kj1, kj2, . . . , kjt).

Thus there is some 1 ≤ r ≤ t such that kir 6= kjr, so εkjr−kirm 6= 1. Fix 1 ≤ r ≤ t such that

kir 6= kjr. Recall from the previous theorem that EiW ⊆ V
(ε
kir
m ,Sr)

and EjW ⊆ V
(ε
kjr
m ,Sr)

so

that SrEi|w〉 = εkirm Ei|w〉 = εkirm EiSr|w〉 and SrEj|w〉 = ε
kjr
m Ej|w〉 = ε

kjr
m EjSr|w〉 for any

|w〉 ∈ W . By the commutation relations in PG, S∗rE
∗
i SrEi, S

∗
rE
∗
jSrEj ∈ {εkmI | k ∈ Zm},

and thus SrEi = εkirm EiSr and SrEj = ε
kjr
m EjSr. Rearranging the first equation in the previous

sentence, we obtain

SrEi = εkirm EiSr =⇒ Sr = εkirm EiSrE
∗
i

=⇒ ε−kirm E∗i Sr = SrE
∗
i .
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Thus

SrE
∗
iEj = (ε−kirm E∗i Sr)Ej = ε−kirm E∗i (ε

kjr
m EjSr) = εkjr−kirm E∗iEjSr 6= E∗iEjSr.

Therefore, E∗iEj /∈ C(SW ).

For the other direction, we argue by contraposition. Suppose (ki1, ki2, . . . , kit) = si = sj =

(kj1, kj2, . . . , kjt). Thus kir = kjr for all 1 ≤ r ≤ t, and we have εkjr−kirm = 1 for all 1 ≤ r ≤ t.

Fix 1 ≤ r ≤ t. Recall from the previous theorem that EiW ⊆ V
(ε
kir
m ,Sr)

and EjW ⊆ V
(ε
kjr
m ,Sr)

so that SrEi|w〉 = εkirm Ei|w〉 = εkirm EiSr|w〉 and SrEj|w〉 = ε
kjr
m Ej|w〉 = ε

kjr
m EjSr|w〉 for any

|w〉 ∈ W . By the commutation relations in PG, S∗rE
∗
i SrEi, S

∗
rE
∗
jSrEj ∈ {εkmI | k ∈ Zm},

and thus SrEi = εkirm EiSr and SrEj = ε
kjr
m EjSr. Rearranging the first equation in the previous

sentence, we obtain

SrEi = εkirm EiSr =⇒ Sr = εkirm EiSrE
∗
i

=⇒ ε−kirm E∗i Sr = SrE
∗
i .

Thus

SrE
∗
iEj = (ε−kirm E∗i Sr)Ej = ε−kirm E∗i (ε

kjr
m EjSr) = εkjr−kirm E∗iEjSr = E∗iEjSr.

Since r was arbitrary, it follows that SrE∗iEj = E∗iEjSr for all 1 ≤ r ≤ t. The claim

follows.

4.6.22 Corollary. If si 6= sj for all 1 ≤ i, j ≤ k with i 6= j, then E is correctable.

Proof. Immediate by the previous theorem and Note 4.6.15.
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4.6.23 Corollary. Let |w〉 ∈ W . If E∗iEj ∈ SW for some 1 ≤ i, j ≤ k, then the state Ej|w〉

can be returned to the state |w〉 by applying either E∗i or E∗j to Ej|w〉.

Proof. Assume E∗iEj ∈ SW for some 1 ≤ i, j ≤ k. Applying E∗i or E∗j to Ej|w〉, we obtain

E∗iEj|w〉 = |w〉 or E∗jEj|w〉 = I|w〉 = |w〉, respectively. The claim follows.

4.6.24 Example. Assume G = Z2 ⊕ Z3 ⊕ Z3. We wish to encode CZ3 into CG. Put m = 12

so that m is a multiple of the set {4, 6, 6}. Set S0 = X(1,0,0) and S1 = X(0,0,2)Z(0,1,0). Let S be

the subgroup of PG generated by the set {S0, S1}. First, we observe that

(1, 0, 0) ◦ (0, 1, 0) =
12

2
(1 · 0) +

12

3
(0 · 1) +

12

3
(0 · 0) = 0,

and thus X(1,0,0)Z(0,1,0) = ε
−(1,0,0)◦(0,1,0)
12 Z(0,1,0)X(1,0,0) = Z(0,1,0)X(1,0,0) by Theorem 4.1.6.

Therefore,

S0S1 = X(1,0,0)X(0,0,2)Z(0,1,0)

= X(0,0,2)Z(0,1,0)X(1,0,0)

= S1S0.

Now, observe that o(S0) = o(X(1,0,0)) = o(1, 0, 0) = 2. Also, o(X(0,0,2)) = 3 and o(Z(0,1,0)) =

3, so ` := lcm(3, 3) = 3. Since ` is odd, o(S1) = 3 by Theorem 4.2.10. The elements of S are

thus

I ,

S0 = X(1,0,0),

S1 = X(0,0,2)Z(0,1,0),

S2
1 = (X(0,0,2)Z(0,1,0))(X(0,0,2)Z(0,1,0)) = X(0,0,1)Z(0,2,0),

S0S1 = (X(1,0,0))(X(0,0,2)Z(0,1,0)) = X(1,0,2)Z(0,1,0),

83



S0S
2
1 = (X(1,0,0))(X(0,0,1)Z(0,2,0)) = X(1,0,1)Z(0,2,0).

Put T := X(1,1,0)Z(0,0,2). Observe by Theorem 4.2.9 that T k = ε
k(k−1)

2
(1,1,0)◦(0,0,2)

12 Xk(1,1,0)Zk(0,0,2) =

Xk(1,1,0)Zk(0,0,2) since (1, 1, 0) ◦ (0, 0, 2) = 0. Thus T 2 = X(0,2,0)Z(0,0,1), T 3 = X(1,0,0),

T 4 = X(0,1,0)Z(0,0,2), and T 5 = X(1,2,0)Z(0,0,1). Therefore, T, T 2 /∈ S, but T 3 = S0 ∈ S, and

thus T 4|w〉 = T (T 3|w〉) = T |w〉 and T 5|w〉 = T 2(T 3|w〉) = T 2|w〉 for all |w〉 ∈ W , so T 4

and T 5 are equal to T and T 2 on the vectors in W , respectively.

Recall from Definition 3.4.1 that (a, b) ∗ (c, d) = b ◦ c− a ◦ d for all a, b, c, d ∈ G. Since

(
(1, 1, 0), (0, 0, 2)

)
∗
(
(1, 0, 0), (0, 0, 0)

)
= (0, 0, 2) ◦ (1, 0, 0)− (1, 1, 0) ◦ (0, 0, 0) = 0

and

(
(1, 1, 0), (0, 0, 2)

)
∗
(
(0, 0, 2), (0, 1, 0)

)
= (0, 0, 2)◦(0, 0, 2)−(1, 1, 0)◦(0, 1, 0) =

12

3
(2·2)−12

3
(1·1) = 0,

we have, by Note 4.2.8,

TS0 = X(1,1,0)Z(0,0,2)X(1,0,0)

= ε
((1,1,0),(0,0,2))∗((1,0,0),(0,0,0))
12 X(1,0,0)X(1,1,0)Z(0,0,2)

= S0T

and

TS1 = X(1,1,0)Z(0,0,2)X(0,0,2)Z(0,1,0)

= ε
((1,1,0),(0,0,2))∗((0,0,2),(0,1,0))
12 X(0,0,2)Z(0,1,0)X(1,1,0)Z(0,0,2)

= X(0,0,2)Z(0,1,0)X(1,1,0)Z(0,0,2)

= S1T.
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Thus T ∈ C(S)\S. By Note 4.6.20, T is not detectable as an error. We let T define an encoding

of CZ6 into CG by the following assignment:

|0〉 7→ T 0|000〉 = |000〉,

|1〉 7→ T 1|000〉 = |110〉,

|2〉 7→ T 2|000〉 = |020〉,

|3〉 7→ T 3|000〉 = |100〉,

|4〉 7→ T 4|000〉 = |010〉,

|5〉 7→ T 5|000〉 = |120〉.

Now that we have S written explicitly, we can invoke Theorem 4.6.2 and construct our stabilizer

code by mapping |g〉, for each g ∈ G, to ˜|g〉 = |S|−1/2
∑
s∈S

s|g〉. Let g ∈ G. We have that

g = (g1, g2, g3) for some g1 ∈ Z2, g2 ∈ Z3, and g3 ∈ Z3, and thus:

I|g1g2g3〉 = |g1g2g3〉 = |g1〉|g2〉|g3〉,

S0|g1g2g3〉 = X(1,0,0)|g1g2g3〉 = |(1 + g1)〉|g2〉|g3〉,

S1|g1g2g3〉 = X(0,0,2)Z(0,1,0)|g1g2g3〉 = ε4g212 |g1〉|g2〉|2 + g3〉,

S2
1 |g1g2g3〉 = X(0,0,1)Z(0,2,0)|g1g2g3〉 = ε8g212 |g1〉|g2〉|1 + g3〉,

S0S1|g1g2g3〉 = X(1,0,2)Z(0,1,0)|g1g2g3〉 = ε4g212 |1 + g1〉|g2〉|2 + g3〉,

S0S
2
1 |g1g2g3〉 = X(1,0,1)Z(0,2,0)|g1g2g3〉 = ε8g212 |1 + g1〉|g2〉|1 + g3〉.

Thus

˜|g1g2g3〉 =
1√
6

(I + S0 + S1 + S2
1 + S0S1 + S0S

2
1)|g1g2g3〉

=
1√
6

(|g1〉|g2〉|g3〉+ |(1 + g1)〉|g2〉|g3〉+ ε4g212 |g1〉|g2〉|2 + g3〉+ ε8g212 |g1〉|g2〉|1 + g3〉

85



+ ε4g212 |1 + g1〉|g2〉|2 + g3〉+ ε8g212 |1 + g1〉|g2〉|1 + g3〉).

We have

˜|000〉 =
1√
6

(|000〉+ |100〉+ |002〉+ |001〉+ |102〉+ |101〉).

˜|110〉 =
1√
6

(|110〉+ |010〉+ ε412|112〉+ ε812|111〉+ ε412|012〉+ ε812|011〉).

˜|020〉 =
1√
6

(|020〉+ |120〉+ ε812|022〉+ ε412|021〉+ ε812|122〉+ ε412|121〉).

˜|100〉 =
1√
6

(|100〉+ |000〉+ |102〉+ |101〉+ |002〉+ |001〉).

˜|010〉 =
1√
6

(|010〉+ |110〉+ ε412|012〉+ ε812|011〉+ ε412|112〉+ ε812|111〉).

˜|120〉 =
1√
6

(|120〉+ |020〉+ ε812|122〉+ ε412|121〉+ ε812|022〉+ ε412|021〉).

Observe that ˜|000〉 = ˜|100〉, ˜|110〉 = ˜|010〉, and ˜|020〉 = ˜|120〉, which is due to the fact that

T 3 ∈ S . Put |0〉 = ˜|000〉, |1〉 = ˜|020〉, and |2〉 = ˜|010〉. By Note 4.6.3, it follows that

our stabilizer code is the subspace of CG spanned by the set
{
|0〉, |1〉, |2〉

}
and the linear

transformation U : CZ3 → CG that maps |0〉 7→ |0〉, |1〉 7→ |1〉, and |2〉 7→ |2〉 is an encoding

of CZ3. Also, observe that I ˜|000〉 = ˜|000〉, T 2 ˜|000〉 = ˜|020〉, and T 4 ˜|000〉 = ˜|010〉, and thus

T 2 acts in an equivalent manner on the stabilizer code asX ∈ PZ3 does on the set {|0〉, |1〉, |2〉}.

Therefore, T 2 is an error belonging to C(S)\S that we have used to define an encoding, which

was discussed at the end of Note 4.6.20.
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4.7 Automorphisms of the Pauli Algebra of G

Recall again that G = Zm1 ⊕Zm2 ⊕ · · · ⊕Zmn for some n,mi ∈ Z+ and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

For the following theorem, set XZ(a, b) := XaZb, for a, b ∈ G. Also, recall from Theorem

4.3.4 that PG has presentation 〈S | R〉, where

S = {εkmI,Xg, Zh | k ∈ Zm, g, h ∈ G},

R = {X0, Z0, ε0mI,X
g+hX−hX−g, Zg+hZ−hZ−g, (εj+km I)(ε−km I)(ε−jm I),

(εkmI)Xg(ε−km I)X−g, (εkmI)Zg(ε−km I)Z−g, (εg◦hm I)XgZhX−gZ−h | g, h ∈ G, j, k ∈ Zm}.

For the following, let S and R be defined as they are above.

4.7.1 Theorem. Let f be a symplectomorphism of G, and define the function ϕf : S → PG by

ϕf (X
g) = ϕf (XZ(g, 0)) = ε[π1(f(g,0))◦π2(f(g,0))]/2

m XZ(f(g, 0)),

ϕf (Z
h) = ϕf (XZ(0, h)) = ε[π1(f(0,h))◦π2(f(0,h))]/2

m XZ(f(0, h)),

ϕf (ε
k
mI) = εkmI,

where πi : G → G is the projection onto the ith coordinate. Then ϕf extends to an endomor-

phism of PG.

Proof. By Corollary 4.3.2, it suffices to check that ϕ̃f (r) = I for all r ∈ R, where ϕ̃f : FS →

PG is the unique homomorphism afforded by the universal property of free groups (Theorem
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4.3.1). In the statement of the universal property of free groups, we have that ι : S → FS is the

inclusion map and ϕ̃f ι = ϕf , so for all s ∈ S, ϕ̃f (s) = ϕ̃f ι(s) = ϕf (s). We have the following

diagram:

FS

S PG

ϕ̃f

ϕf

ι

First, observe that

ϕf (X
0) = ϕf (XZ(0, 0)) = ε[π1(f(0,0))◦π2(f(0,0))]/2

m XZ(f(0, 0)) = ε[π1(0,0)◦π2(0,0)]/2
m XZ(0, 0) = I,

ϕf (Z
0) = ϕf (XZ(0, 0)) = I,

ϕf (ε
0
mI) = ε0mI = I.

Thus ϕ̃f (X0) = ϕf (X
0) = I , ϕ̃f (Z0) = ϕf (Z

0) = I , and ϕ̃f (ε0mI) = ϕf (ε
0
mI) = I . Now, let

g, h ∈ G. Claim: ϕ̃f (Xg+h) = ϕ̃f (X
g)ϕ̃f (X

h). We have

ϕ̃f (X
g+h) = ϕf (X

g+h)

= ϕf (XZ(g + h, 0))

= ε[π1(f(g+h,0))◦π2(f(g+h,0))]/2
m XZ(f(g + h, 0))

= ε[(π1(f(g,0))+π1(f(h,0)))◦(π2(f(g,0))+π2(f(h,0)))]/2
m

·Xπ1(f(g+h,0))Zπ2(f(g+h,0))

= ε[π1(f(g,0))◦π2(f(g,0))+π1(f(g,0))◦π2(f(h,0))+π1(f(h,0))◦π2(f(g,0))+π1(f(h,0))◦π2(f(h,0))]/2
m

·Xπ1(f(g,0))Xπ1(f(h,0))Zπ2(f(g,0))Zπ2(f(h,0))

= ε[π1(f(g,0))◦π2(f(g,0))+π1(f(g,0))◦π2(f(h,0))+π1(f(h,0))◦π2(f(g,0))+π1(f(h,0))◦π2(f(h,0))]/2
m

· ε−π1(f(h,0))◦π2(f(g,0))
m Xπ1(f(g,0))Zπ2(f(g,0))Xπ1(f(h,0))Zπ2(f(h,0))
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= ε[π1(f(g,0))◦π2(f(h,0))+π1(f(h,0))◦π2(f(g,0))]/2
m ε−π1(f(h,0))◦π2(f(g,0))

m

· (επ1(f(g,0))◦π2(f(g,0))/2
m Xπ1(f(g,0))Zπ2(f(g,0)))

· (επ1(f(h,0))◦π2(f(h,0))/2
m Xπ1(f(h,0))Zπ2(f(h,0)))

= ε[π1(f(g,0))◦π2(f(h,0))+π1(f(h,0))◦π2(f(g,0))]/2
m ε−π1(f(h,0))◦π2(f(g,0))

m

· (επ1(f(g,0))◦π2(f(g,0))/2
m XZ(f(g, 0)))

· (επ1(f(h,0))◦π2(f(h,0))/2
m XZ(f(h, 0)))

= ε[π1(f(g,0))◦π2(f(h,0))−π1(f(h,0))◦π2(f(g,0))]/2
m · ϕf (XZ(g, 0))ϕf (XZ(h, 0))

= ε[(π1(f(h,0)),π2(f(h,0)))∗(π1(f(g,0)),π2(f(g,0)))]/2
m ϕf (XZ(g, 0))ϕf (XZ(h, 0))

= εf(h,0)∗f(g,0)/2
m ϕf (XZ(g, 0))ϕf (XZ(h, 0))

= ε(h,0)∗(g,0)/2
m ϕf (XZ(g, 0))ϕf (XZ(h, 0))

= ε0mϕf (XZ(g, 0))ϕf (XZ(h, 0))

= ϕf (XZ(g, 0))ϕf (XZ(h, 0))

= ϕf (X
g)ϕf (X

h)

= ϕ̃f (X
g)ϕ̃f (X

h).

The claim follows. Thus for all a ∈ G, we have ϕ̃f (Xa)ϕ̃f (X
−a) = ϕ̃f (X

a−a) = ϕ̃f (X
0) = I

so that ϕ̃f (X−a) = ϕ̃f (X
a)−1. We have

ϕ̃f (X
g+hX−hX−g) = ϕ̃f (X

g+h)ϕ̃f (X
−h)ϕ̃f (X

−g)

= ϕ̃f (X
g)ϕ̃f (X

h)ϕ̃f (X
−h)ϕ̃f (X

−g)

= ϕ̃f (X
g)ϕ̃f (X

−g)

= I.
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Similarly, ϕ̃f (Zg+hZ−hZ−g) = I . We also have

ϕ̃f ((ε
j+k
m I)(ε−km I)(ε−jm I)) = ϕ̃f (ε

j+k
m I)ϕ̃f (ε

−k
m I)ϕ̃f (ε

−j
m I)

= ϕf (ε
j+k
m I)ϕf (ε

−k
m I)ϕf (ε

−j
m I)

= (εj+km I)(ε−km I)(ε−jm I)

= I.

Additionally, we have

ϕ̃f ((ε
k
mI)Xg(ε−km I)X−g) = ϕ̃f (ε

k
mI)ϕ̃f (X

g)ϕ̃f (ε
−k
m I)ϕ̃f (X

−g)

= ϕ̃f (ε
k
mI)ϕ̃f (X

g)ϕ̃f (ε
−k
m I)ϕ̃f (X

g)−1

= ϕf (ε
k
mI)ϕ̃f (X

g)ϕf (ε
−k
m I)ϕ̃f (X

g)−1

= (εkmI)ϕ̃f (X
g)(ε−km I)ϕ̃f (X

g)−1

= (εkmI)(ε−km I)ϕ̃f (X
g)ϕ̃f (X

g)−1

= I.

The proof for ϕ̃f ((εkmI)Zg(ε−km I)Z−g) = I is similar.

Lastly, we prove that ϕ̃f ((εg◦hm I) · (XgZhX−gZ−h)) = I . We have

ϕ̃f ((ε
g◦h
m I) · (XgZhX−gZ−h)) = ϕ̃f (ε

g◦h
m I)ϕ̃f (X

g)ϕ̃f (Z
h)ϕ̃f (X

−g)ϕ̃f (Z
−h)

= ϕf (ε
g◦h
m I)ϕf (X

g)ϕf (Z
h)ϕf (X

−g)ϕf (Z
−h)

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))/2
m XZ(f(g, 0)))

· (επ1(f(0,h))◦π2(f(0,h))/2
m XZ(f(0, h)))

· (επ1(f(−g,0))◦π2(f(−g,0))/2
m XZ(f(−g, 0)))

· (επ1(f(0,−h))◦π2(f(0,−h))/2
m XZ(f(0,−h)))
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= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))/2
m XZ(f(g, 0)))

· (επ1(f(0,h))◦π2(f(0,h))/2
m XZ(f(0, h)))

· (ε(−π1(f(g,0)))◦(−π2(f(g,0)))/2
m XZ(f(−g, 0)))

· (ε(−π1(f(0,h)))◦(−π2(f(0,h)))/2
m XZ(f(0,−h)))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))/2
m XZ(f(g, 0)))

· (επ1(f(0,h))◦π2(f(0,h))/2
m XZ(f(0, h)))

· (επ1(f(g,0))◦π2(f(g,0))/2
m XZ(f(−g, 0)))

· (επ1(f(0,h))◦π2(f(0,h))/2
m XZ(f(0,−h)))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

·XZ(f(g, 0))XZ(f(0, h))XZ(f(−g, 0))XZ(f(0,−h))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (Xπ1(f(g,0))Zπ2(f(g,0)))(Xπ1(f(0,h))Zπ2(f(0,h)))

· (X−π1(f(g,0))Z−π2(f(g,0)))(X−π1(f(0,h))Z−π2(f(0,h)))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (ε(π1(f(0,h)),π2(f(0,h)))∗(−π1(f(g,0)),−π2(f(g,0)))
m I)

· (Xπ1(f(g,0))Zπ2(f(g,0)))(X−π1(f(g,0))Z−π2(f(g,0)))

· (Xπ1(f(0,h))Zπ2(f(0,h)))(X−π1(f(0,h))Z−π2(f(0,h)))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (εf(0,h)∗f(−g,0)
m I)

·Xπ1(f(g,0))(Zπ2(f(g,0))X−π1(f(g,0)))Z−π2(f(g,0))

·Xπ1(f(0,h))(Zπ2(f(0,h))X−π1(f(0,h)))Z−π2(f(0,h))

= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (ε(0,h)∗(−g,0)
m I)

·Xπ1(f(g,0))(ε−π1(f(g,0))◦π2(f(g,0))
m X−π1(f(g,0))Zπ2(f(g,0)))Z−π2(f(g,0))

·Xπ1(f(0,h))(ε−π1(f(0,h))◦π2(f(0,h))
m X−π1(f(0,h))Zπ2(f(0,h)))Z−π2(f(0,h))
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= (εg◦hm I) · (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (ε−g◦hm I)

·Xπ1(f(g,0))(ε−π1(f(g,0))◦π2(f(g,0))
m X−π1(f(g,0))Zπ2(f(g,0)))Z−π2(f(g,0))

·Xπ1(f(0,h))(ε−π1(f(0,h))◦π2(f(0,h))
m X−π1(f(0,h))Zπ2(f(0,h)))Z−π2(f(0,h))

= (επ1(f(g,0))◦π2(f(g,0))
m I) · (επ1(f(0,h))◦π2(f(0,h))

m I)

· (ε−π1(f(g,0))◦π2(f(g,0))
m I)(ε−π1(f(0,h))◦π2(f(0,h))

m I)

· (Xπ1(f(g,0))X−π1(f(g,0)))(Zπ2(f(g,0))Z−π2(f(g,0)))

· (Xπ1(f(0,h))X−π1(f(0,h)))(Zπ2(f(0,h))Z−π2(f(0,h)))

= I.

Thus ϕ̃f (r) = I for all r ∈ R, so we can apply Corollary 4.3.2, which implies ϕf extends to a

homomorphism ϕ∗f : 〈S | R〉 → PG. We have the following diagram:

FS FS/NR = 〈S | R〉

S PG

ϕ̃f

π

∃!ϕ∗fϕf

ι

Now, recall the following diagram from Theorem 4.3.4, with ϕ replaced by ψ in the proof of

that theorem:
FS FS/NR = 〈S | R〉

S PG

ψ̃

π

∃!ψ∗
ψ

ι

In the proof of Theorem 4.3.4, ψ : S → PG was the inclusion map and ψ∗ : FS/NR → PG was

the homomorphism extension granted by Corollary 4.3.2 that was found to be an isomorphism.

In Note 4.3.5, we observed that for all s ∈ S, ψ∗(sNR) = ψ∗π(s) = ψ̃(s) = ψ̃ι(s) = ψ(s) = s.
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Put ρ = (ψ∗)−1. Then ρ : PG → FS/NR is a well-defined isomorphism with ρ(s) = sNR for

all s ∈ S. Therefore, we may update the diagram of this theorem with

FS FS/NR = 〈S | R〉 PG

S PG

ϕ̃f

π

∃!ϕ∗f

ρ

ϕf

ι

Put ϕf = ϕ∗fρ. It follows that ϕf : PG → PG is a homomorphism. The claim follows.

4.7.2 Note. Let the language be as in the proof of the previous theorem. Observe that, for all

s ∈ S, we have

ϕf (s) = ϕ∗fρ(s) = ϕ∗f (sNR) = ϕ∗fπ(s) = ϕ̃f (s) = ϕ̃f ι(s) = ϕf (s).

We apply this observation to the following theorem.

4.7.3 Theorem. Let f and g be symplectomorphisms of G, and let ϕf and ϕg denote the endo-

morphisms of PG that f and g afford by Theorem 4.7.1, respectively. We have ϕf ϕg = ϕfg.

Proof. It is straightforward to prove that fg is a symplectomorphism of G. Thus fg affords the

endomorphism ϕfg of PG by the previous theorem.

Let a ∈ G. To improve readability, set g(a, 0) = x. By the previous note, we have that

ϕα(s) = ϕα(s) for all s ∈ S, where α is a symplectomorphism of G. Then we have

ϕf ϕg(X
a) = ϕf (ϕg(X

a))

= ϕf
(
επ1(x)◦π2(x)/2
m Xπ1(x)Zπ2(x)

)
= επ1(x)◦π2(x)/2

m ϕf
(
Xπ1(x)

)
ϕf
(
Zπ2(x)

)
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= επ1(x)◦π2(x)/2
m ϕf

(
Xπ1(x)

)
ϕf
(
Zπ2(x)

)
= επ1(x)◦π2(x)/2

m I

·
(
επ1(f(π1(x),0))◦π2(f(π1(x),0))/2
m Xπ1(f(π1(x),0))Zπ2(f(π1(x),0))

)
·
(
επ1(f(0,π2(x)))◦π2(f(0,π2(x)))/2
m Xπ1(f(0,π2(x)))Zπ2(f(0,π2(x)))

)
= επ1(x)◦π2(x)/2

m επ1(f(π1(x),0))◦π2(f(π1(x),0))/2
m επ1(f(0,π2(x)))◦π2(f(0,π2(x)))/2

m

·Xπ1(f(π1(x),0))Zπ2(f(π1(x),0))Xπ1(f(0,π2(x)))Zπ2(f(0,π2(x)))

= επ1(x)◦π2(x)/2
m επ1(f(π1(x),0))◦π2(f(π1(x),0))/2

m επ1(f(0,π2(x)))◦π2(f(0,π2(x)))/2
m

·Xπ1(f(π1(x),0))

·
(
επ2(f(π1(x),0))◦π1(f(0,π2(x)))
m Xπ1(f(0,π2(x)))Zπ2(f(π1(x),0))

)
Zπ2(f(0,π2(x)))

= επ1(x)◦π2(x)/2
m επ1(f(π1(x),0))◦π2(f(π1(x),0))/2

m επ1(f(0,π2(x)))◦π2(f(0,π2(x)))/2
m

· επ2(f(π1(x),0))◦π1(f(0,π2(x)))
m Xπ1(f(π1(x),π2(x)))Zπ2(f(π1(x),π2(x)))

For increased readability, we set γ = [π1(x) ◦ π2(x) + π1(f(π1(x), 0)) ◦ π2(f(π1(x), 0)) +

π1(f(0, π2(x))) ◦ π2(f(0, π2(x)))]/2 + π2(f(π1(x), 0)) ◦ π1(f(0, π2(x))). Simplifying γ, we

obtain

γ = [π1(x) ◦ π2(x)

+ π1(f(π1(x), 0)) ◦ π2(f(π1(x), 0)) + π1(f(0, π2(x))) ◦ π2(f(0, π2(x)))

+ 2(π2(f(π1(x), 0)) ◦ π1(f(0, π2(x))))]/2

= [π1(x) ◦ π2(x)

+ π1(f(π1(x), 0)) ◦ π2(f(π1(x), 0)) + π1(f(0, π2(x))) ◦ π2(f(0, π2(x)))

+ π2(f(π1(x), 0)) ◦ π1(f(0, π2(x))) + π2(f(π1(x), 0)) ◦ π1(f(0, π2(x)))]/2

= [π1(x) ◦ π2(x)

+ π1(f(π1(x), 0)) ◦ π2(f(π1(x), 0)) + π2(f(π1(x), 0)) ◦ π1(f(0, π2(x)))

+ π1(f(0, π2(x))) ◦ π2(f(0, π2(x))) + π2(f(π1(x), 0)) ◦ π1(f(0, π2(x)))]/2
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= [π1(x) ◦ π2(x)

+ π2(f(π1(x), 0)) ◦ [π1(f(π1(x), 0)) + π1(f(0, π2(x)))]

+ π1(f(0, π2(x))) ◦ [π2(f(0, π2(x))) + π2(f(π1(x), 0))]]/2

= [π1(x) ◦ π2(x)

+ π2(f(π1(x), 0)) ◦ π1(f(π1(x), π2(x)))

+ π1(f(0, π2(x))) ◦ π2(f(π1(x), π2(x)))]/2

= [π1(x) ◦ π2(x)

+ π2(f(π1(x), 0)) ◦ π1(f(x))

+ π1(f(0, π2(x))) ◦ π2(f(x))]/2

= [π1(x) ◦ π2(x)+

+ π2(f(π1(x), 0)) ◦ π1(f(x)) +

(
π2(f(0, π2(x))) ◦ π1(f(x))− π2(f(0, π2(x))) ◦ π1(f(x))

)
+ π1(f(0, π2(x))) ◦ π2(f(x))]/2

= [π1(x) ◦ π2(x)

+ π2(f(π1(x), π2(x))) ◦ π1(f(x))

− π2(f(0, π2(x))) ◦ π1(f(x)) + π1(f(0, π2(x))) ◦ π2(f(x))]/2

= [π1(x) ◦ π2(x)

+ π2(f(x)) ◦ π1(f(x))

− π2(f(0, π2(x))) ◦ π1(f(x)) + π1(f(0, π2(x))) ◦ π2(f(x))]/2

= [π1(x) ◦ π2(x)

+ π2(f(x)) ◦ π1(f(x))

+ [(π1(f(x)), π2(f(x))) ∗ (π1(f(0, π2(x))), π2(f(0, π2(x))))]]/2

= [π1(x) ◦ π2(x)

+ π2(f(x)) ◦ π1(f(x))

+ [f(x) ∗ f(0, π2(x))]]/2

= [π1(x) ◦ π2(x)
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+ π2(f(x)) ◦ π1(f(x))

+ [x ∗ (0, π2(x))]]/2

= [π1(x) ◦ π2(x)

+ π2(f(x)) ◦ π1(f(x))

[(π1(x), π2(x)) ∗ (0, π2(x))]]/2

= [π1(x) ◦ π2(x)

+ π2(f(x)) ◦ π1(f(x))

[π2(x) ◦ 0− π1(x) ◦ π2(x)]]/2

= [π1(x) ◦ π2(x)

+ π1(f(x)) ◦ π2(f(x))

− π1(x) ◦ π2(x)]/2

= π1(f(x)) ◦ π2(f(x))/2

= π1(fg(a, 0)) ◦ π2(fg(a, 0))/2.

Thus

ϕf ϕg(X
a) = εγmX

π1(f(x))Zπ2(f(x))

= επ1(fg(a,0))◦π2(fg(a,0))/2
m Xπ1(fg(a,0))Zπ2(fg(a,0))

= ϕfg(X
a).

By a similar argument, for any b ∈ G, we have ϕf ϕg(Zb) = ϕfg(Z
b). We also have that

ϕf ϕg(ε
k
mI) = ϕf (ε

k
mI) = εkmI = ϕfg(ε

k
mI) for all k ∈ Zm. Since ϕf and ϕg are endomor-

phisms of PG, we have for any a, b ∈ G and k ∈ Zm that

ϕf ϕg(ε
k
mX

aZb) =
[
ϕf ϕg(ε

k
mI)
]

[ϕf ϕg(X
a)]
[
ϕf ϕg(Z

b)
]

=
[
ϕfg(ε

k
m)
]

[ϕfg(X
a)]
[
ϕfg(Z

b)
]

= ϕfg(ε
k
mX

aZb).
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Therefore, we have ϕf ϕg = ϕfg, as claimed.

4.7.4 Corollary. If f is a symplectomorphism of G, then the endomorphism ϕf of PG that f

affords by Theorem 4.7.1 is an automorphism of PG.

Proof. Let f be a symplectomorphism of G. Thus f is an automorphism of G and hence a

permutation of G. Therefore, f−1 exists, and it is also a symplectomorphism of G. Therefore,

the endomorphism ϕf−1 of PG that f−1 affords by Theorem 4.7.1 exists. By the previous

corollary, we have ϕf ϕf−1 = ϕff−1 = ϕ1G
, where 1G is the identity symplectomorphism on

G. By Theorem 4.7.1, the function ϕ1G
: S → PG is defined by

ϕ1G
(Xg) = ϕ1G

(XZ(g, 0)) = ε[π1(g,0)◦π2(g,0)]/2
m XZ(g, 0) = ε(g◦0)/2

m XZ(g, 0) = XZ(g, 0) = Xg,

ϕ1G
(Zh) = ϕ1G

(XZ(0, h)) = ε[π1(0,h)◦π2(0,h)]/2
m XZ(0, h) = ε(0◦h)/2

m XZ(0, h) = XZ(0, h) = Zh,

ϕ1G
(εkmI) = εkmI,

so it follows that ϕ1G
is the identity map on PG. Hence (ϕf )

−1 exists and is equal to ϕf−1 .

Thus ϕf is a bijection, which shows ϕf is an automorphism of PG. The claim follows.

Before we go further, we present a result from elementary linear algebra as a lemma.

4.7.5 Lemma. Let V be a vector space over a field K and let B be a basis of V . If W is a

vector space and α : B → W is a function, then there exists a unique linear map β : V → W

that extends α. The map β is defined by β
(∑

b∈B kbb
)

=
∑

b∈B kbα(b), for any kb ∈ K with

kb = 0 for all but finitely many b.

4.7.6 Lemma. The set {XgZh | g, h ∈ G} is a basis of PG.
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Proof. Claim: {XgZh | g, h ∈ G} is linearly independent over C. Let T ⊆ G. Suppose∑
g,h∈T

c(g,h)X
gZh = 0 for some c(g,h) ∈ C, where 0 denotes the zero matrix in PG. Let a ∈ G.

Then we have

∑
g,h∈T

c(g,h)ε
h◦a
m |a+ g〉 =

∑
g,h∈T

c(g,h)ε
h◦a
m Xg|a〉 =

∑
g,h∈T

c(g,h)X
gZh|a〉 = 0|a〉 = 0,

where 0 denotes the zero vector belonging to CG. Since {|b〉 | b ∈ G} is a basis for CG, it

follows that c(g,h)ε
h◦a
m = 0 for all g, h ∈ T , which due to the fact that εh◦am 6= 0 for any h ∈ T ,

we must have that c(g,h) = 0 for all g, h ∈ T . The claim follows.

Claim: {XgZh | g, h ∈ G} spans PG. Since εkm ∈ C for all k ∈ Zm, it follows that for all

k ∈ Zm, we may take any occurrence of εkm in a linear combination of elements from PG as

simply a scalar belonging to C. Thus every element of PG can be expressed as a linear combi-

nation of elements from {XgZh | g, h ∈ G} over C. The claim follows.

Therefore, {XgZh | g, h ∈ G} is a basis of PG.

4.7.7 Corollary. Let f be a symplectomorphism of G, and let ϕf denote the automorphism of

PG afforded by f as in the statement of the previous corollary. Then ϕf can be extended to an

inner automorphism of PG.

Proof. Put B = {XgZh | g, h ∈ G}, and observe that B ⊂ PG ⊂ PG. Let αf : B → PG

be defined as ϕf with domain restricted to B and codomain extended to PG. By Lemma 4.7.6,

B is a basis of PG, and thus by Lemma 4.7.5, the function αf : B → PG can be extended to

a linear map βf : PG → PG defined by βf
(∑

g,h∈G c(g,h)X
gZh

)
=
∑

g,h∈G c(g,h)αf (X
gZh),

for c(g,h) ∈ C. Since f−1 exists and is also a symplectomorphism of G, we can define αf−1

and βf−1 similarly. By Theorem 4.7.3, ϕf ϕf−1 = ϕff−1 = ϕ1G
, where 1G is the identity

symplectomorphism on G. Recall from Note 4.7.2 that ϕf (s) = ϕf (s), ϕf−1(s) = ϕf−1(s),

and ϕ1G
(s) = ϕ1G

(s) for all s ∈ S. We have
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βf

(∑
g,h∈G

c(g,h)X
gZh

)
=
∑
g,h∈G

c(g,h)αf (X
gZh)

=
∑
g,h∈G

c(g,h)ϕf (X
gZh)

=
∑
g,h∈G

c(g,h)ϕf (X
g)ϕf (Z

h)

=
∑
g,h∈G

c(g,h)ϕf (X
g)ϕf (Z

h)

=
∑
g,h∈G

c(g,h)

(
ε[π1(f(g,0))◦π2(f(g,0))]/2
m Xπ1(f(g,0))Zπ2(f(g,0))

)
(
ε[π1(f(0,h))◦π2(f(0,h))]/2
m Xπ1(f(0,h))Zπ2(f(0,h))

)
,

=
∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2
m ε[π1(f(0,h))◦π2(f(0,h))]/2

m

Xπ1(f(g,0))Zπ2(f(g,0))Xπ1(f(0,h))Zπ2(f(0,h)),

⇐⇒
∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2
m ε[π1(f(0,h))◦π2(f(0,h))]/2

m

Xπ1(f(g,0))
(
επ1(f(0,h))◦π2(f(g,0))
m Xπ1(f(0,h))Zπ2(f(g,0))

)
Zπ2(f(0,h))

⇐⇒
∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2
m ε[π1(f(0,h))◦π2(f(0,h))]/2

m επ1(f(0,h))◦π2(f(g,0))
m

Xπ1(f(g,h))Zπ2(f(g,h)).

Thus

βf−1βf

(∑
g,h∈G

c(g,h)X
gZh

)
= βf−1

( ∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2
m ε[π1(f(0,h))◦π2(f(0,h))]/2

m επ1(f(0,h))◦π2(f(g,0))
m

Xπ1(f(g,h))Zπ2(f(g,h))

)

=
∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2
m ε[π1(f(0,h))◦π2(f(0,h))]/2

m επ1(f(0,h))◦π2(f(g,0))
m

αf−1

(
Xπ1(f(g,h))Zπ2(f(g,h))

)
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=
∑
g,h∈G

c(g,h)ε
[π1(f(g,0))◦π2(f(g,0))]/2+[π1(f(0,h))◦π2(f(0,h))]/2+π1(f(0,h))◦π2(f(g,0))
m

ϕf−1

(
Xπ1(f(g,h))Zπ2(f(g,h))

)
=
∑
g,h∈G

c(g,h)ϕf−1

(
ε[π1(f(g,0))◦π2(f(g,0))]/2+[π1(f(0,h))◦π2(f(0,h))]/2+π1(f(0,h))◦π2(f(g,0))
m

)
ϕf−1

(
Xπ1(f(g,h))Zπ2(f(g,h))

)
=
∑
g,h∈G

c(g,h)ϕf−1

(
ε[π1(f(g,0))◦π2(f(g,0))]/2+[π1(f(0,h))◦π2(f(0,h))]/2+π1(f(0,h))◦π2(f(g,0))
m

)
ϕf−1

(
Xπ1(f(g,h))Zπ2(f(g,h))

)
=
∑
g,h∈G

c(g,h)ϕf−1

(
ε[π1(f(g,0))◦π2(f(g,0))]/2+[π1(f(0,h))◦π2(f(0,h))]/2+π1(f(0,h))◦π2(f(g,0))
m

Xπ1(f(g,h))Zπ2(f(g,h))
)

=
∑
g,h∈G

c(g,h)ϕf−1

(
ϕf
(
XgZh

))
=
∑
g,h∈G

c(g,h)ϕf−1f

(
XgZh

)
=
∑
g,h∈G

c(g,h)ϕ1G

(
XgZh

)
=
∑
g,h∈G

c(g,h)ϕ1G
(Xg)ϕ1G

(
Zh
)

=
∑
g,h∈G

c(g,h)ϕ1G
(Xg)ϕ1G

(
Zh
)

=
∑
g,h∈G

c(g,h)X
gZh.

It follows that βf−1βf (and similarly, βfβf−1) is the identity map on PG. Thus β−1
f = βf−1

and βf is a bijection. Hence βf is an automorphism of PG. By Theorem 4.5.6, βf is an inner

automorphism of PG.
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4.8 Clifford Group

Recall again that G = Zm1 ⊕Zm2 ⊕ · · · ⊕Zmn for some n,mi ∈ Z+ and m is a fixed common

multiple of the set {2mi | 1 ≤ i ≤ n}.

We define the Clifford group CG of G to be the unitary normalizer of PG. Let f be a symplec-

tomorphism of G. By Corollaries 4.7.4 and 4.7.7, we proved that f affords an automorphism

ϕf of PG which can then be extended to an inner automorphism βf of PG. Thus there is an

element Cf ∈ PG such that βf acts as conjugation by Cf on PG. Since PG ⊂ PG, it follows

that βf maps PG to itself since, for any k ∈ Zm and g, h ∈ G, we have

βf (ε
k
mX

gZh) = εkmαf (X
gZh) = εkmϕf (X

gZh) = ϕf (ε
k
m)ϕf (X

gZh) = ϕf (ε
k
mX

gZh),

and thus it follows that Cf maps PG to itself via conjugation. Therefore, it follows that Cf

belongs to the normalizer NGL(CG)(PG) of PG in GL(CG). We will not prove whether or

not Cf is unitary in this paper (and hence an element of CG). This yields the following open

problem:

4.8.1 Open Problem. Let f be a symplectomorphism of G, let βf denote the inner automor-

phism of PG afforded by f that is granted by Corollaries 4.7.4 and 4.7.7, and let Cf denote

the element of PG with the property that C−1
f PCf = βf (P ) for all elements P in PG. Is Cf

unitary?

D. Gottesman states in “Fault Tolerant Quantum Computation with Higher-Dimensional Sys-

tems” [Got99, p. 1753] that the Clifford group of G = Zk, where k ∈ Z+, is generated by the

Walsh-Hadamard operator W , the so-called phase operator P , and Su operator, where u is a

unit in Zm (P and Su will be generalized below). We will not prove and thus do not know if the

generalized forms of the aforementioned operators generate the Clifford group CG of G. This
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yields the following open problem:

4.8.2 Open Problem. Do the generalized forms of the Walsh-Hadamard operator W , phase

operator P , and Su operator (u is a unit in Zm) generate the Clifford group CG of G?

We will prove that each of the operators defined below are in fact unitary and thus belong to CG.

A quick check shows that each of the following maps is a symplectomorphism of G:

(1) (a, b) 7→ (−b, a),

(2) (a, b) 7→ (a, a+ b),

(3) (a, b) 7→ (ua, u−1b), where u is a unit in Zm.

Treating (a, 0) and (0, b) separately, we observe that

(1) (a, 0) 7→ (0, a) and (0, b) 7→ (−b, 0),

(2) (a, 0) 7→ (a, a) and (0, b) 7→ (0, b),

(3) (a, 0) 7→ (ua, 0) and (0, b) 7→ (0, u−1b), where u is a unit in Zm.

Recall from Theorem 4.7.1 and Corollary 4.7.4 that if f is a symplectomorphism of G, then

f affords the automorphism ϕf of PG, so the elements of Aut(PG) corresponding to the sym-

plectomorphisms above have the following actions, respectively (continuing to treat (a, 0) and

(0, b) separately):

(1) XZ(a, 0) 7→ ε
[π1(0,a)◦π2(0,a)]/2
m XZ(0, a) = ε

[0◦a]/2
m XZ(0, a) = XZ(0, a) and

XZ(0, b) 7→ ε
[π1(−b,0)◦π2(−b,0)]/2
m XZ(−b, 0) = ε

[−b◦0]/2
m XZ(−b, 0) = XZ(−b, 0),
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(2) XZ(a, 0) 7→ ε
[π1(a,a)◦π2(a,a)]/2
m XZ(a, a) = ε

[a◦a]/2
m XZ(a, a) and

XZ(0, b) 7→ ε
[π1(0,b)◦π2(0,b)]/2
m XZ(0, b) = ε

[0◦b]/2
m XZ(0, b) = XZ(0, b),

(3) XZ(a, 0) 7→ ε
[π1(ua,0)◦π2(ua,0)]/2
m XZ(ua, 0) = ε

[ua◦0]/2
m XZ(ua, 0) = XZ(ua, 0) and

XZ(0, b) 7→ ε
[π1(0,u−1b)◦π2(0,u−1b)]/2
m XZ(0, u−1b) = ε

[0◦u−1b]/2
m XZ(0, u−1b) = XZ(0, u−1b),

where u is a unit in Zm.

Simplifying the notation, we obtain

(1) Xa 7→ Za and Zb 7→ X−b,

(2) Xa 7→ ε
(a◦a)/2
m XaZa and Zb 7→ Zb,

(3) Xa 7→ Xua and Zb 7→ Zu−1b, where u is a unit in Zm.

We point out that the operator described in (1) is the Walsh-Hadamard operator W defined in

Definition 4.1.2. The operator described in (2) generalizes the phase operator P , and the one in

(3) generalizes the Su operator, where u is a unit in Zm [Got99, p. 1753].

We have that the Walsh-Hadamard operator defined by W = |G|−1/2
∑
b∈G

∑
a∈G

εa◦bm |a〉〈b| is uni-

tary [HT03, p. 320], and thus W ∈ CG. Let u be a unit in Zm. Define the operators A and Bu

on CG by

A =
∑
g∈G

εg◦g/2|g〉〈g|

and

Bu =
∑
g∈G

|ug〉〈g|.

It follows that A∗ =
∑

g∈G ε
−g◦g/2|g〉〈g| and B∗u =

∑
g∈G |g〉〈ug| =

∑
h∈G |u−1h〉〈h|. A quick

check shows that AA∗ = A∗A = I and BuB
∗
u = B∗uBu = I , and thus A and Bu are unitary.
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4.8.3 Theorem. We have AXaA∗ = ε
(a◦a)/2
m XaZa and AZbA∗ = Zb for all a, b ∈ G.

Proof. Let g ∈ G. By direct computation, we have

AXaA∗|g〉 = AXa(ε−g◦g/2m |g〉)

= ε−g◦g/2m A|a+ g〉

= ε−g◦g/2m (ε(a+g)◦(a+g)/2
m |a+ g〉)

= ε−g◦g/2m (ε(a◦a+2a◦g+g◦g)/2
m |a+ g〉)

= εa◦a/2m εa◦gm |a+ g〉

= εa◦a/2m εa◦gm Xa|g〉

= εa◦a/2m Xa(εa◦gm |g〉)

= εa◦a/2m XaZa|g〉,

for all a ∈ G. Thus AXaA∗ = ε
(a◦a)/2
m XaZa for all a ∈ G. Also,

AZbA∗|g〉 = AZb(ε−g◦g/2m |g〉)

= ε−g◦g/2m AZb|g〉

= ε−g◦g/2m A(εb◦gm |g〉)

= ε−g◦g/2m εb◦gm A|g〉

= ε−g◦g/2m εb◦gm (εg◦g/2m |g〉)

= εb◦gm |g〉

= Zb|g〉,

for all b ∈ G. Thus AZbA∗ = Zb for all b ∈ G.

4.8.4 Theorem. We have BuX
aB∗u = Xua and BuZ

bB∗u = Zu−1b.
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Proof. Let g ∈ G. By direct computation, we have

BuX
aB∗u|g〉 = BuX

a|u−1g〉

= Bu|a+ u−1g〉

= |ua+ g〉

= Xua|g〉,

for all a ∈ G. Thus BuX
aB∗u = Xua for all a ∈ G. Also,

BuZ
bB∗u|g〉 = BuZ

b|u−1g〉

= Bu(ε
b◦(u−1g)
m |u−1g〉)

= Bu(ε
(u−1b)◦g
m |u−1g〉)

= ε(u
−1b)◦g

m Bu|u−1g〉

= ε(u
−1b)◦g

m |g〉

= Zu−1b|g〉,

for all b ∈ G. Thus BuZ
bB∗u = Zu−1b for all b ∈ G.

4.8.5 Note. It follows that A and Bu are the generalized phase operator P and Su operator,

respectively. In other words, A = P and Bu = Su. Therefore, we conclude that P and Su are

unitary, so P, Su ∈ CG.

Assume G = Zk (k ∈ Z+). The SUM operator, which acts on a pair of k-dimensional qudits

called a 2-qudit, is defined by SUM(|i〉|j〉) = |i〉|j + i〉 for i, j ∈ G. We have that SUM is the

generalization of the CNOT operator in greater than two dimensions [Got99, p. 1753]. We can

also see how SUM acts on the generators of the 2-qudit Pauli group [Far14, p. 8], as follows:

X ⊗ I 7→ X ⊗X
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I ⊗X 7→ I ⊗X

Z ⊗ I 7→ Z ⊗ I

I ⊗ Z 7→ Z−1 ⊗ Z.

For the remainder of the section, assume G = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn for some n,mi ∈ Z+.

4.8.6 Definition. We define the generalized SUM operator on CG ⊗ CG by SUM(|x〉|y〉) =

|x〉|y + x〉.

4.8.7 Note. Observe that SUM−1(|x〉|y〉) = |x〉|y − x〉.

4.8.8 Theorem. Let a, b, c, d ∈ G. Then XaZb ⊗XcZd is mapped to XaZb−d ⊗Xc+aZd via

conjugation by the SUM operator.

Proof. Let x, y ∈ G. Then

SUM(XaZb ⊗XcZd) SUM−1(|x〉|y〉) = SUM(XaZb ⊗XcZd)(|x〉|y − x〉)

= SUM(XaZb|x〉 ⊗XcZd|y − x〉)

= SUM(εb◦xm |a+ x〉 ⊗ εd◦(y−x)
m |c+ y − x〉)

= εb◦xm εd◦(y−x)
m SUM(|a+ x〉 ⊗ |c+ y − x〉)

= εb◦xm εd◦y−d◦xm (|a+ x〉 ⊗ |(a+ x) + c+ y − x〉)

= εb◦xm εd◦ym ε−d◦xm (|a+ x〉 ⊗ |a+ c+ y〉)

= εb◦x−d◦xm εd◦ym (Xa ⊗Xa+c)(|x〉 ⊗ |y〉)

= (Xa ⊗Xa+c)(ε(b−d)◦x
m |x〉 ⊗ εd◦ym |y〉)

= (Xa ⊗Xa+c)(Zb−d ⊗ Zd)(|x〉 ⊗ |y〉)

= (XaZb−d ⊗Xc+aZd)(|x〉|y〉).
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The claim follows.
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Chapter 5

Further Results

5.1 Pseudo-unitarity and a Generalization of the Walsh-Hadamard Operator

5.1.1 Theorem. [Ser02, p. 145] Let A be a complex j × k matrix (j, k ∈ Z+). There exists a

unique complex k × j matrix A+ that satisfies the following properties:

(i) AA+A = A

(ii) A+AA+ = A+

(iii) (AA+)∗ = AA+

(iv) (A+A)∗ = A+A.

5.1.2 Definition. Let A be a complex j × k matrix (j, k ∈ Z+). We define the Moore-Penrose

pseudo-inverse of A to be the unique matrix A+ of the previous theorem.

Let U be a complex matrix.

5.1.3 Definition. We say that U is pseudo-unitary by a factor of z ∈ C if

U+ = zU∗.
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5.1.4 Note. Observe that if U is pseudo-unitary by a factor of 1 and is invertible, then it is

unitary.

5.1.5 Definition. Assume U is a square complex matrix. We say that U is pseudo-idempotent

by a factor of z ∈ C if

U2 = zU.

5.1.6 Definition. A unitary representation of a group H is a group homomorphism ρ : H →

U(n), where U(n) is the group of n× n unitary matrices under matrix multiplication.

5.1.7 Definition. For a finite abelian group H and a unitary representation ρ of H , define

UH,ρ = |H|−1/2
∑
h∈H

ρ(h).

5.1.8 Definition. The matrix U is Hermitian if U = U∗.

Fix a finite abelian group H and a unitary representation ρ of H , and put U = UH,ρ.

5.1.9 Lemma. U is Hermitian.

Proof. By direct computation, we see that

U∗ =

(
|H|−1/2

∑
h∈H

ρ(h)

)∗
= |H|−1/2

∑
h∈H

ρ(h)∗

= |H|−1/2
∑
h∈H

ρ(h)−1
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= |H|−1/2
∑
h∈H

ρ(h−1)

= U.

5.1.10 Lemma. U is pseudo-idempotent by a factor of |H|1/2.

Proof. By direct computation, we see that

U2 = UU

=

(
|H|−1/2

∑
h∈H

ρ(h)

)(
|H|−1/2

∑
k∈H

ρ(k)

)

= |H|−1
∑
k∈H

(∑
h∈H

ρ(h)

)
ρ(k)

= |H|−1
∑
k∈H

∑
h∈H

ρ(h)ρ(k)

= |H|−1
∑
k∈H

∑
h∈H

ρ(h+ k)

= |H|−1/2
∑
k∈H

(
|H|−1/2

∑
h∈H

ρ(h+ k)

)
= |H|−1/2

∑
k∈H

U

= |H|−1/2|H|U

= |H|1/2U.

5.1.11 Theorem. U is pseudo-unitary by a factor of |H|−1.

Proof. The claim is that U+ = |H|−1U∗. It is enough to show that the four properties of

Theorem 5.1.1 are satisfied with U+ replaced by |H|−1U∗.
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(i) U (|H|−1U∗)U = U (|H|−1U)U = |H|−1U(UU) = |H|−1U(|H|1/2U) = |H|−1/2(UU) =

|H|−1/2(|H|1/2U) = U .

(ii) Similar to (1).

(iii) (U (|H|−1U∗))
∗

= (|H|−1U∗)
∗
U∗ = |H|−1UU∗ = |H|−1UU∗ = U(|H|−1U∗).

(iv) Similar to (3).

This proves the claim.

5.1.12 Definition. Let f be an endomorphism of G. Denote by Wf the linear operator on CG

defined byWf |g〉 = |G|−1/2
∑
h∈G

εf(g)◦h
m |h〉. We callWf the Walsh-Hadamard operator afforded

by f .

Written explicitly,

Wf = |G|−1/2
∑
b∈G

∑
a∈G

εf(b)◦a
m |a〉〈b|.

5.1.13 Note. Observe that

W ∗
f =

(
|G|−1/2

∑
b∈G

∑
a∈G

εf(b)◦a
m |a〉〈b|

)∗
= |G|−1/2

∑
b∈G

∑
a∈G

(
εf(b)◦a
m |a〉〈b|

)∗
= |G|−1/2

∑
a∈G

∑
b∈G

ε−f(b)◦a
m |b〉〈a|.
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5.1.14 Note. If f is the identity map on G, then Wf is the generalized Walsh-Hadamard oper-

ator as presented in [Holmes-Texier] as well as Definition 4.1.2. In this case, Wf is unitary.

It turns out that Wf is not always unitary, as the next example shows.

5.1.15 Example.

Assume that G = Z4, put m = 8, and let f : Z4 → Z4 be the Z8-homomorphism given by

f(g) = 2g. By definition of Wf , we have, for g ∈ Z4

Wf |g〉 = |Z4|−1/2
∑
h∈Z4

ε
f(g)◦h
8 |h〉

=
1

2

∑
h∈Z4

ε2g◦h8 |h〉

=
1

2

∑
h∈Z4

ε2gh8 |h〉

=
1

2

(
ε2g·08 |0〉+ ε2g·18 |1〉+ ε2g·28 |2〉+ ε2g·38 |3〉

)
=

1

2

(
|0〉+ ε2g8 |1〉+ |2〉+ ε2g8 |3〉

)
.

For g = 0, 2, the formula above yields

Wf |0〉 =
1

2
(|0〉+ |1〉+ |2〉+ |3〉) = Wf |2〉.

Thus Wf is not injective, so Wf is not invertible. Therefore, Wf is not unitary.

5.1.16 Theorem. Let f be an endomorphism of G. The Walsh-Hadamard transform Wf af-

forded by f is pseudo-unitary by a factor of | ker f |−1.

Proof. The claim is that W+
f = | ker f |−1W ∗

f . It is enough to show that the four properties of

Theorem 5.1.1 are satisfied with U+ replaced by | ker f |−1W ∗
f . Let g ∈ G.
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(i)

Wf

(
| ker f |−1W ∗

f

)
Wf |g〉 = | ker f |−1WfW

∗
f

(
|G|−1/2

∑
h∈G

εf(g)◦h
m |h〉

)

= |G|−1/2| ker f |−1Wf

(∑
h∈G

εf(g)◦h
m W ∗

f |h〉

)

= |G|−1/2| ker f |−1Wf

(∑
h∈G

εf(g)◦h
m |G|−1/2

∑
a∈G

ε−f(a)◦h
m |a〉

)

= |G|−1| ker f |−1

(∑
h∈G

εf(g)◦h
m

∑
a∈G

ε−f(a)◦h
m Wf |a〉

)

= |G|−1| ker f |−1

(∑
h∈G

εf(g)◦h
m

∑
a∈G

ε−f(a)◦h
m |G|−1/2

∑
b∈G

εf(a)◦b
m |b〉

)

= |G|−3/2| ker f |−1

(∑
h∈G

∑
a∈G

∑
b∈G

εf(g)◦h
m ε−f(a)◦h

m εf(a)◦b
m |b〉

)

= |G|−3/2| ker f |−1
∑
b∈G

∑
a∈G

(∑
h∈G

εf(g)◦h
m ε−f(a)◦h

m

)
εf(a)◦b
m |b〉

= |G|−3/2| ker f |−1
∑
b∈G

∑
a∈G

(∑
h∈G

εf(g−a)◦h
m

)
εf(a)◦b
m |b〉

= |G|−3/2| ker f |−1
∑
b∈G

∑
a∈G

(∑
h∈G

ε
ιf(g−a)(h)
m

)
εf(a)◦b
m |b〉

Since ιf(g−a) : G → Zm is a homomorphism for each a ∈ G, ιf(g−a) is either constant

or balanced on G for each a ∈ G by Theorem 2.2.6 . Let a ∈ G. Observe that ιf(g−a) is

constant on G if and only if f(g − a) ◦ h = ιf(g−a)(h) = 0 for all h ∈ G, that is, if and

only if f(g − a) ∈ G⊥ = {0}, which is true if and only if g − a ∈ ker f , or a ∈ g +

ker f . Otherwise, if ιf(g−a) is balanced on G, then by Theorem 2.2.7,
∑
h∈G

ε
ιf(g−a)(h)
m = 0.

Therefore, the equation above becomes

Wf

(
| ker f |−1W ∗

f

)
Wf |g〉 = |G|−3/2| ker f |−1

∑
b∈G

∑
a∈g+ker f

(∑
h∈G

ε
ιf(g−a)(h)
m

)
εf(a)◦b
m |b〉

= |G|−3/2| ker f |−1
∑
b∈G

∑
a∈g+ker f

(∑
h∈G

ει0(h)
m

)
εf(a)◦b
m |b〉

= |G|−3/2| ker f |−1
∑
b∈G

∑
a∈g+ker f

(|G|) εf(a)◦b
m |b〉
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= |G|−1/2| ker f |−1
∑
b∈G

∑
a∈g+ker f

εf(a)◦b
m |b〉

= |G|−1/2| ker f |−1
∑
b∈G

∑
a∈g+ker f

εf(g)◦b
m |b〉

= |G|−1/2| ker f |−1
∑
b∈G

εf(g)◦b
m |b〉

( ∑
a∈g+ker f

1

)

= |G|−1/2| ker f |−1
∑
b∈G

εf(g)◦b
m |b〉 (| ker f |)

= |G|−1/2
∑
b∈G

εf(g)◦b
m |b〉

= Wf |g〉.

Therefore, Wf

(
| ker f |−1W ∗

f

)
Wf = Wf .

(ii) The proof showing
(
| ker f |−1W ∗

f

)
Wf

(
| ker f |−1W ∗

f

)
= | ker f |−1W ∗

f is similar to (i).

(iii) We have

(
Wf

(
| ker f |−1W ∗

f

))∗
=
(
| ker f |−1W ∗

f

)∗
W ∗
f = | ker f |−1WfW

∗
f = Wf

(
| ker f |−1W ∗

f

)
.

(iv) The proof showing
((
| ker f |−1W ∗

f

)
Wf

)∗
=
(
| ker f |−1W ∗

f

)
Wf is similar to (iii).

Therefore, W+
f = | ker f |−1W ∗

f , so Wf is pseudo-unitary by a factor of | ker f |−1.

5.1.17 Definition. An endomorphism f of G is self-adjoint (relative to ◦) if f(a)◦ b = a◦f(b)

for all a, b ∈ G.

For example, for k ∈ Zm the endomorphism f of G given by f(g) = kg is self-adjoint, since,

for every a, b ∈ G we have f(a) ◦ b = (ka) ◦ b = k(a ◦ b) = a ◦ (kb) = a ◦ f(b).
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5.1.18 Theorem. Let f and g be endomorphisms ofG and assume that f is self-adjoint relative

to ◦. Then for every x ∈ G,

WfWg|x〉 =
∑

b∈−f−1(g(x))

|b〉.

Proof. Let x ∈ G. Then

WfWg|x〉 = Wf

(
|G|−1/2

∑
a∈G

εg(x)◦a
m |a〉

)

= |G|−1/2
∑
a∈G

εg(x)◦a
m Wf |a〉

= |G|−1
∑
a∈G

εg(x)◦a
m

∑
b∈G

εf(a)◦b
m |b〉

= |G|−1
∑
a∈G

∑
b∈G

εg(x)◦a+f(a)◦b
m |b〉

= |G|−1
∑
a∈G

∑
b∈G

εg(x)◦a+f(b)◦a
m |b〉

= |G|−1
∑
b∈G

∑
a∈G

εf(b)◦a−(−g(x)◦a)
m |b〉

= |G|−1
∑
b∈G

∑
a∈G

ε
ιf(b)(a)−ι−g(x)(a)
m |b〉

= |G|−1
∑
b∈G

∑
a∈G

ε
(ιf(b)−ι−g(x))(a)
m |b〉

= |G|−1
∑
b∈G

ϕ(ιf(b) − ι−g(x))|b〉,

where we recall the definition of ϕ was given by Definition 2.2.3. Observe that ι−g(x) is

{−g(x)}-based by Theorem 2.2.5. By Definition 2.2.4, ϕ(ιf(b) − ι−g(x)) = 0 for all b ∈ G

such that f(b) ∈ G\{−g(x)}. Equivalently, ϕ(ιf(b) − ι−g(x)) = 0 for all b ∈ G such that

b /∈ −f−1(g(x)). Observe that ιf(b) − ι−g(x) = 0 when b ∈ −f−1(g(x)). Therefore,

WfWg|x〉 = |G|−1
∑

b∈−f−1(g(x))

ϕ(ιf(b) − ι−g(x))|b〉

= |G|−1
∑

b∈−f−1(g(x))

ϕ(0)|b〉
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= |G|−1
∑

b∈−f−1(g(x))

(∑
a∈G

ε0(a)
m

)
|b〉

= |G|−1
∑

b∈−f−1(g(x))

(∑
a∈G

1

)
|b〉

= |G|−1|G|
∑

b∈−f−1(g(x))

|b〉

=
∑

b∈−f−1(g(x))

|b〉,

as claimed.

5.1.19 Corollary. W 2
f acts as the negation involution on the group G for any self-adjoint au-

tomorphism f of G, in other words W 2
f |g〉 = | − g〉 for all g ∈ G.

5.1.20 Corollary. Let f be a self-adjoint automorphism of G. If |G| = 2, then Wf has order 2,

and if |G| > 2, then Wf has order 4.

Proof. The proof follows from Corollary 5.1.19.
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