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 Abstract 
 

 
 This work explores a two-part question: (1) what are the most recent engineering standards 

that govern AI development and implementation in the field of biometrics and (2) what ethical 

implications do they have for society? For the sake of brevity, the application area is focused on 

biometrics, but the research methods and conclusions may have broader applicability and 

implications.  
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I. BACKGROUND 

Considered by some to be the fourth industrial revolution, artificial intelligence (AI) is now 

poised to upend nearly every aspect of modern life. Increases in autonomous/intelligent systems 

(A/IS) are giving rise to technologies in which humans are—more and more—relinquishing any 

meaningful authority over the systems that affect them. This is, in fact, the stated engineering goal 

of some A/IS systems: to eliminate the potentially erroneous human element. One developing area 

of AI research that may steadily eliminate the possibility of human error is the field of biometrics—

the study of unique quantifiable human characteristics and features for the purposes of 

classification, identification, and authentication. 

1.1 An Emerging Engineering Field 

As the world approaches an increasingly algorithmic future, various players are expressing 

their concern about both the potential benefits and dangers of artificially intelligent agents. Of 

particular interest is the field of biometrics. Many companies and government bodies have already 

proposed their own standards and benchmarks regarding biometric privacy and safety protocols. 

These regulatory standards, however, are largely nascent and lag fast-paced technological 

development. Large-scale consensus as well as significant legal and legislative issues also exist. 

In addition, the impact on human well-being and the accompanying ethical effects of those 

technologies have been poorly examined in the literature. According to the most recent IEEE 

Recommended Practice for Assessing the Impact of Autonomous and Intelligent Systems on 

Human Well-Being, ‘there is no widely accepted set of recommendations, standards, best practices, 

guidelines, or regulations for contributing to or helping safeguard or improve human well-

being…A/IS technologies are relatively novel and their use and the understanding of intended and 
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unintended impacts are hard to predict. A/IS impact human well-being in many complex ways, 

some known and some unknown’ [1].   

A/IS biometric technology appears to be achieving steady progress, but with some 

setbacks. Similarly, technological revolutions of the past have tended to undergo an initial period 

of upheaval as they struggle to find a firm footing. The early electrification of the United States, 

for instance, was largely an experimental endeavor with competing business and governmental 

interests seeking to gain a foothold. It was not until shared engineering standards and electrical 

codes were adopted that the instability largely subsided, and progress accelerated rapidly. The 

same was true of wireless communication technology. A/IS biometric research is now 

experiencing many of the same founding struggles as those groundbreaking technologies of the 

past. The rules are currently being written and rewritten over again on a constant basis.  

1.2 Standardization and Regulatory Environment 

At present, many normative documents are helping to protect and stabilize the industry as 

well as foster its rapid innovation. Standards such as the IEEE Std 2410-2019 Biometric Open 

Protocol Standard (BOPS) establishes as its purpose to ‘provide a biometric-agnostic security 

protocol for authentication, identification, and liveness’ [2]. Other governing documents addressed 

in the standard regarding Personally Identifying Information (PII) will be discussed in later 

sections. As the need for safeguarding PII remains important, governing standards for 

authentication and identification continue to develop and guide the process.  

AI/S biometrics are a recent development. Many security loopholes and vulnerabilities that 

were previously exploited have been shored up as our understanding of the problem has increased. 

However, the situation continues to evolve quickly, and as mentioned at the beginning, a keen 

awareness and planning for many legitimate ethical and security concerns is lagging.  
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The United States, it seems, has no comprehensive federal law in place pertaining to 

biometric data privacy. The European Union (EU), however, issued its standard for biometric data 

protection in the form of the General Data Protection Regulation (GDPR), effective May 2018 [3]. 

The GDPR governs the handling of member states consumer data and seeks to harmonize its own 

disparate assortment of privacy laws. GDPR has had an effect in the United States as many 

international organizations have had to modify their business practices to become compliant.  The 

most recent proposed U.S. federal legislation, the Commercial Facial Recognition Privacy Act 

(CFRPA), would become the first federal biometrics legislation if it were to pass into law [4].  

At the state level, biometric privacy laws are a patchwork of individual standards and 

regulations. Notably, Illinois is the strongest in this regard. The Biometric Information Privacy 

Act (BIPA) was passed by the Illinois General Assembly in 2008 [5]. Since its inception, several 

class-action lawsuits have been brought against employers and other institutions for alleged BIPA 

violations. Many states, however, have no such laws or even basic standards in place regarding 

biometric privacy, data maintenance and security, the legal/ethical impact of biometric intrusion, 

etc. Of the standards that do exist regarding biometrics, many of them are based around the notion 

of voluntary compliance. Unlike other government regulatory agencies such as the Federal 

Aviation Administration (FAA) or the Environmental Protection Agency (EPA), AI and advanced 

biometric technology has no authoritative agency to regulate and monitor its growth in the United 

States.  

Unchecked AI technology has drawn criticism and attention from various advocacy groups. 

The Center for Democracy and Technology (CDT), a non-profit advocacy group, offered a clear 

rebuke in 2019 in response to a call for public comment by the Department of Homeland Security 

(DHS). The draft report titled Privacy Recommendations in Connection with the Use of Facial 
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Recognition Technology was formulated by the Data Privacy and Integrity Advisory Council 

(DPIAC) [6]. In its response to DPIAC, CDT notes that Customs and Border Patrol (CBP) is 

currently using facial recognition technology against U.S. citizens despite not having 

Congressional approval [7]. Moreover, CDT’s document highlights other large-scale problems that 

have failed to be addressed including the tendency toward mission creep and the issues 

surrounding algorithmic discrimination and inaccuracy. It is clear that whatever may be understood 

technically about automated biometrics, the justification, codification, and legislation of its 

applicable use in society is still very much an open question.  

1.3 Industry Outlook and Public Acceptance 

The National Artificial Intelligence Research and Development Strategic Plan: 2019 

Update outlines ten overarching strategies for maintaining America’s leadership in AI [8]. Among 

these are the importance of continued innovation, research and development, sustained funding 

and partnership between public and private institutions, a focus on human-AI collaboration, the 

availability of public training datasets, as well as the growing public concern about the potential 

for abuse, etc. Many guidelines and recommendations are proposed in the document. But the 

developing standards are difficult to enforce.  

Unlike more established industry sectors, biometrics has yet to garner a widely accepted 

trustworthiness among members of the public. There is still significant social distrust of the 

technology among various populations. This attitude is likely changing, however, as more and 

more individuals enjoy the power and convenience of biometric technology in countless ways: cell 

phones, computers, cars, access control systems, banks, health service kiosks, airports, border 

crossings, government centers, libraries, community centers, etc. The force of law and the threat 

of enforceable punishment for biometric violations in the United States has yet to become 
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standardized or codified, likely because the technology is still emergent, but also because the 

technology itself and the prevailing issues are poorly understood.  

1.4 Overview 

The review in the previous sections demonstrate that the engineering field of biometrics is 

in the early stages of its evolution. Although highly developed in many respects, automated 

biometrics still suffers from significant technological and social dilemmas that are likely to remain 

entrenched if the field is not further standardized and cooperatively legislated at a global level. As 

public resistance to biometrics begins to wane and the field begins to embed into societal 

infrastructure, fresh new problems will arise in both technological and ethical contexts. The 

remainder of this work is organized as follows. Chapter II examines the standards and metrics that 

have evolved for biometric technology. Chapter III highlights the leading-edge field of distanced 

biometrics and how those fields differ in outlook and approach. Chapter IV examines current 

technical and social problems for the field of biometrics. Chapter V discusses some of the ethical 

issues surrounding biometrics such as privacy and irrevocability in society. Chapter VI provides 

some concluding remarks about the current and future state of biometric standards and ethics as 

well as important future work for the field. 
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II. BIOMETRIC STANDARDIZATION 

2.1 Biometric Standards  

  Biometric testing standards and verification benchmarks have been established 

internationally across most continents for both industry and government. In 2002, a Joint Technical 

Committee (JTC) was formed between the International Organization of Standardization (ISO) 

and the International Electrotechnical Commission (IEC) to establish generic human biometric 

standards [9]. JTC SC37 Biometrics, focused broadly on grappling with pressing biometric issues 

such as interoperability, data interchange formats, biometric profiles, evaluation criteria, 

methodologies for performance testing, and societal aspects. Formal liaisons such as the 

International Civil Aviation Organization (ICAO) were consulted for their work in Machine 

Readable Travel Documents (MRTD’s) as well as other financial services and IT related 

committees. The global standard ISO/IEC 19795-1: 2006 Information Technology—Biometric 

performance testing and reporting remains one of the broadest governing documents in the field. 

It establishes standardized and unambiguous protocols for evaluating various biometric screening 

techniques including fingerprint, iris, and facial recognition systems. These standardized metrics 

are based on empirical estimates of probability.  

2.2 Relevant Terms 

  To understand the underlying broader issues facing this engineering field, it is important 

to have a thorough knowledge of the terms and evaluation criteria for biometric systems. For 

verification, the metrics from [10] are: 
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False Match Rate (FMR):  

  An empirical estimate of the probability (the percentage of attempts) at which the system 

incorrectly declares that a biometric sample belongs to the claimed identity when the sample 

actually belongs to a different subject (impostor). 

False Non-Match Rate (FNMR): 

  An empirical estimate of the probability (the percentage of attempts) at which the system 

incorrectly rejects a claimed identity when the sample actually belongs to the subject (genuine 

user). 

Failure to Acquire Rate (FTA): 

  The proportion of attempts for which the system fails to produce a sample of sufficient 

quality. 

False Acceptance Rate (FAR) and False Rejection Rate (FRR):  

  FAR/FRR are often used interchangeably in the literature in place of FMR/FNMR but are 

subtly different, which can be confusing. FMR and FNMR are measurement errors that occur at 

the level of the algorithm. The biometric sample either matched or did not match a stored template 

in the database falsely. FAR and FRR are system-level errors that may include multiple failed 

verification attempts (i.e. Failure to Acquire) that affect the final accept or reject decision.  

FAR = FMR * (1 – FTA) 

FRR = FNMR * (1-FTA) 

True Acceptance Rate (TAR):  

  It is defined as:        TAR = 1-FRR 
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Equal Error Rate (EER):  

  The EER is the operating threshold at which FAR is equal to FRR. The EER is used in 

biometrics to measure system performance. In general, the lower the EER, the higher the accuracy 

of the biometric system.  

 

Figure 2.1: Equal Error Rate [11] 
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Receiver Operating Characteristic (ROC):  

  A ROC curve plots the TAR (1-FRR) in the Y-axis versus FAR in the X-axis. It is one way 

to visualize the accuracy of a biometric algorithm. The point at the top left-hand corner of the 

graph represents perfect accuracy. Thus, the biometric algorithm whose ROC curve is closest to 

this point is the most accurate.  

 

 

Figure 2.2: Receiver Operating Characteristic Curve [12] 
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Detection Error Tradeoff (DET):  

  A DET curve is similar to the ROC curve except that the axes are often scaled non-linearly 

to highlight the critical operating region. A unity slope line extending from the origin will intersect 

the DET curve at the EER.  

 

 

 Figure 2.3: Detection Error Tradeoff Curve [13] 
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  All automated biometric systems function in a similar fashion as illustrated in Figure 2.4. 

The process begins with the enrollment phase. During this phase, a biometric sample—fingerprint, 

facial scan, iris, etc.—is presented to the sensor for capture. If the sample is of sufficient quality, 

then a template is generated and stored in the enrollment database. If the sample is not of sufficient 

quality, then a recapture attempt is initiated, and the process repeats until sufficient quality is 

reached. A recapture is also known as a Failure to Acquire (FTA) when calculating biometric 

system metrics. Sufficient quality is defined based on certain signal processing characteristics: 

proper segmentation, proper feature extraction, etc. (See [19] in Additional References for more 

detailed information).  

 

Figure 2.4: Automated Biometric System Process [14] 

  Once a template is generated and stored, it can be compared and matched with any future 

samples collected. This is referred to as the matching phase of the process. A similarity score 

between the template and the captured sample is checked against an operating threshold and a 
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decision outcome is reached. Different biometric operating systems may have different outcomes 

such as verification or identification or others, depending on the application. More detailed 

information about the operating thresholds is discussed in the next section. 

2.3 Matching Scores and Thresholds  

  Traditional biometric systems assign a matching or similarity score for every attempted 

authentication. The degree to which a unique biometric template from the enrollment database 

matches the captured biometric sensor reading produces a matching score. Matching scores lie 

somewhere between the closed interval [0,1], where zero is a nonmatch and one is a full match. 

An established threshold level between zero and one determines if an authentication attempt is 

either accepted or rejected. This operating threshold is very important because it ultimately 

determines the effective FAR and the FRR. If the threshold were permissive of maximum error, 

then every authentication attempt would be accepted, including both genuine and impostor 

attempts—clearly an undesirable result. If the threshold were set to permit zero errors, nearly every 

authentication attempt would be rejected, resulting in severe system slow down—equally 

unacceptable. Therefore, the operating threshold for automated biometric systems must be 

maintained between these two extremes to ensure the lowest possible FAR and FRR.     

  The DET and ROC curves illustrate this inherent tension in automated biometric systems. 

Both the United States and Europe have established standard FAR’s for automated biometric 

access systems. For example, the FRR when the FAR is fixed at .1%, expressed as FAR.001, is a 

standard requirement for automated biometric systems at European border control checkpoints 

[14]. This is because many of the automated biometric systems in operation are typically designed 

to meet a security objective such as preventing impostors or watch-listed individuals. The United 

States, too, maintains specific Personal Identity Verification (PIV) standards for government 
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entities and industry through the Federal Information Processing Standards (FIPS) [15, 16]. 

Approved vendor manufacturers are required to pass standardized tests of biometric performance 

for operating biometric systems. FIPS establishes benchmarks for all federal employees and 

contractors attempting to gain access to government sites in the United States.  

 2.4 Operating Limits and Problems  

  These standardized operating thresholds have proven to be robust in automated biometric 

security performance. However, automated biometric checkpoints are subject to imperfect real-

world operating conditions such as lack of adequate illumination, subject movement, poor sensor 

reads, operator or staff error, etc. As with other engineering fields, the error minimization is key. 

Another way to consider this problem is to recognize that to properly identify or verify individuals 

and—at the same time—prevent impostors from gaining access, the system is subject to a certain 

amount of “friction”. 

  In the United States, the FRR has been trending downwards since 1993, while still 

maintaining the prescribed FAR [17]. (See Figure 2.5 below). This is due in large part to the 

increased use of multimodal authentication systems. Multimodal biometric authentication—

traditional biometric modalities coupled with newer biometric technologies including behavioral 

biometrics and distanced biometric measurements—virtually guarantee a low FAR and a 

decreasing FRR. Importantly, this guarantee is predicated on increased data extraction from both 

voluntary and involuntary sources. Multimodal biometrics are examined further in section 4.2.  
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Figure 2.5: Automated face matching using full-frontal images [17] 

2.5 Continued Biometric Data Extraction 

  It is well documented in the academic literature and industry that unimodal biometric 

systems (those utilizing a single biometric trait: iris, fingerprint, facial scan) are insecure compared 

to multimodal authentication systems [18]. To maintain broad biometric robustness, it is likely that 

more and more forms of human biometric data will be required for this purpose. Increased variety 

of identifying biometric data may help to maintain a low FAR and decreasing FRR. However, this 
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necessarily increases the amount of processed information, which may reduce operating speed of 

the authenticating device, which is examined later.  

  Moreover, the numerous ethical issues surrounding the extraction of PII at a distance—

through various surreptitious or overt means—remain unresolved. The critical point to recognize, 

however, is that—irrespective of any ethical quandaries—automated biometric systems must 

continue to capture increasing volumes and varied types of PII to remain relevant or secure. The 

mandated FRR and FAR standards virtually ensure this fact. Comprehensive participation in civil 

society and international travel will almost certainly require increased collection of human 

behavioral biometric data at scale. Already, numerous countries have issued biometric passports 

for their citizens for travel abroad. Worldwide as of 2017, one-hundred twenty countries have 

issued biometric passports [19].  

 In the next chapter, various distanced biometric technologies are presented. These 

systems are noteworthy because they have become a significant contributor to different 

industries and represent a large body of research. These industries include healthcare, 

government and law enforcement, commercial travel, immigration control, consumer electronics, 

and many others. Moreover, the overall pervasiveness and shifting cultural attitudes toward the 

technology make the examination of its engineering aspects relevant. 
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III. DISTANCED BIOMETRICS 

3.1 Identification from afar  

  Much research has been conducted into distanced biometric measurement. The 

development of gait biometrics, for instance, has advanced rapidly. Research utilizing Wi-Fi 

signals to recognize and successfully classify the unique frequency signatures of human beings 

has been demonstrated in both Line of Sight (LoS) and Non-Line of Sight (NLoS) scenarios. 

Utilizing the Doppler shift effect, researchers were able to determine not only the identity of the 

participants behind walls but were also able to successfully draw inferences about the participants’ 

state during the experiments [20]. The experiments produced unique signatures for the states of 

walking, sitting, falling, and dragging one leg; all accurately classifiable by machine learning 

algorithms. This technology has been spearheaded for the medical industry and elderly care 

research. Its parallel application in the biometric security sphere has also been thoroughly studied.  

  Additionally, researchers have been able to identify human beings through unique 

dielectric signatures. Through a clever capacitive sensing technique, researchers were able to 

assign biologically unique frequency signatures to each individual and compare them [21]. The 

subjects were measured stationary in front of a capacitive metal plate at a specified distance. Since 

each human body’s composition is specific to that individual, the relative differences in these 

capacitive measurements were enough to distinguish between them [21]. Other research has shown 

the unique patterns associated with human function such as brain wave patterns and breathing. 

[22]. Indeed, it appears that though much of human physiological function is largely similar, it is 

continually proving itself unique enough for differentiation. Human beings can be easily identified, 

classified, assessed, and authenticated at a distance by a host of biological measures.  
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3.2 Behavioral Biometrics 

Another emerging sub-field in the area of biometrics is known as behavioral biometrics. 

This research springs out of other research areas such as kinesiology, behavioral science, and the 

like. The research is centered around identifying the unique biometric features of a persons’ 

movement or liveness.  The possession of a tracking device such as a cell phone, smart watch, or 

other biometric wearables can assist with this process. Accelerometer and gyroscopic data can be 

captured from the devices to form a behavioral profile with a distinct human signature [23]. Even 

the way in which one holds a phone to one’s ear is unique to that individual. This technology is 

viewed as a security improvement for biometric research. Passwords, pin codes, and other forms 

of forgettable authentication have been found to be more easily compromised than behavioral 

biometrics. Multimodal biometric systems that utilize gait biometrics in this way are far more 

secure because a possible adversary would have significant difficulty mimicking the movements 

of an authentic user; especially if the authentication is employed on a continuous basis as is 

proposed for many of these schemes [24]. There are many possible implementations of this 

technology and consequences of its use. Many other forms of multimodal authentication already 

exist in spaces such as information and cyber security.  

Behavioral biometrics can take on a myriad of forms and the list of behaviors is growing. 

Figure 3.1 displays various modalities from which a behavioral biometric profile can be generated. 

Voice, gesture, and gait are just some of the unique traits that can be accurately classified and 

linked to a single individual in real-time. Likely, more modalities will emerge as researchers and 

engineers devise clever ways to distinguish one person from another.  
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Figure 3.1: Behavioral Biometric Modality Chart [25] 

3.2 Intent Biometrics 

Research pertaining to intent biometrics is also tied to the behavioral sciences and utilizes 

some of the same algorithms employed for other biometric regimes. Specific human indicators 

such as perfusion of facial blood, body and localized facial temperature, gait changes, and other 

movements, can be measured and tracked in airports, border crossings, and other potential high 

value target areas [26]. Unlike classic biometric screening, which seeks merely to assess one’s 

identity or authenticate an individual, the biometrics of intent seeks to infer what a person is about, 

that person’s itinerant plans, that person’s emotional state, etc [27]. It works within the continuous 

multifactor authentication framework in which a traditional physiological parameter—facial 

image, fingerprint, iris scan, etc.—is processed alongside a real-time additional behavioral 

parameter—heart rate, sweating, galvanic skin response, breathing rate, gait movements, gestures, 

etc. These measurements—taken at a distance—can be fused with more authenticating factor 
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streams such as cell phone activity metadata or location services tracking [28]. All this information 

can be synthesized and assessed to create a predictive behavioral profile based on probabilistic 

outcomes. Credit rating systems, predictive policing, and healthcare administration are other areas 

in which this technology has been implemented. 

3.4 Efficiency and Security 

  It is apparent that the high throughput volumes observed at airports, borders, and other 

areas of immense security concern necessitate the development of multimodal biometric 

authentication technology [29, 30]. Globally, many airports have already deployed automated 

biometric authentication technologies to aid in efficient transportation service for frequent 

travelers. Iris and fingerprint scans are quickly becoming the norm. Manual passport identification 

procedure and other forms of ‘hands on’ authentication are steadily being eliminated. These 

evolving technologies and processes may—under the aegis of efficiency and secure 

authentication—appear as an absolute necessity in the future. Increasing security concerns, 

coupled with the need to efficiently process many individuals may broadly frame the discussion 

surrounding the social, ethical, and legal standards of behavioral biometrics in a direction that 

cannot be reversed. The possibility of an individual opting out of a biometric screening in the 

future may no longer be permitted under this evolving scenario. Or, as with other ubiquitous 

technologies such as cell phones, biometric bypassing may be technically possible but rendered 

wholly impracticable for successful daily living. 

3.5 Expectation of Profiling Increases 

  As the security concerns surrounding traditional knowledge-based authentication 

technologies (passwords, PIN codes, tokens, etc.) continue to mount, the move towards a largely 

biometrically-based multimodal authentication scheme grows. If the capability of AI machines to 
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differentiate between biological signatures persists, then it is not unreasonable to expect that these 

various measurements will be incorporated into a larger personal biometric profile. In some 

regions of the world, this is already the case. A unique dossier of biometric traits may quickly 

extend far beyond a mere fingerprint or facial scan. Soon, it may include breathing rate, unique 

personal habits, brain wave function, and genetic information. Coupled with internet browsing 

history, payment history, location services data, social networking activity, and other metadata 

insights, a fine-grained resolution of human biometric identification and behavior is emerging. 

 In the following chapter, some of the techno-social problems that have arisen from the 

development of biometric technology are examined. These are complex and interesting problems 

that, in some cases, are unique to the field of biometrics. In other cases, though, these problems 

overlap with other engineering fields such as computer security. Teasing out the technical 

features of the various problems is both challenging and not altogether straightforward. Like 

many engineering problems, the achieved solution arrives in the form of a trade-off. In the case 

of automated biometrics, understanding exactly how and why the trade-offs occur is vital to 

understanding their wider social import.  
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IV. PROBLEMS IN BIOMETRICS 

4.1 Cancelable Biometrics 

A particular problem that has led to some novel work in the field is the problem of safe-

guarding PII from so-called inversion attack. Some convolutional neural networks (CNNs) could 

be invertible via their outputs. In this case, the raw biometric data that form the input templates of 

the system have been shown in certain cases to be an exploitable vulnerability. Unlike passwords 

or token identification systems that can be reset, raw PII utilized in machine learning-based 

biometric regimes may not be recoverable if compromised. This is a significant biometric 

weakness that requires reform.  

One solution to the problem of inversion attack is what is known as cancelable biometrics. 

Under this scheme, raw biometric inputs are intentionally distorted in such a way that renders 

recovery of the original templates impossible. Cancelable finger vein recognition systems are 

proving promising in this regard [31]. Deep learning finger vein template generation algorithms 

have been shown to be an effective means of securing PII.  However, one trade-off is a decrease 

in the accuracy of the finger vein reads for an increased protection in the form of cancelable 

biometrics. As with many technologies, engineers must achieve a balance of interests to produce 

a well-rounded and effective result. 

4.2 Multimodal Continuous Authentication 

  A significant technological hurdle that is an open area of research is the problem of 

achieving continuous biometric authentication. Past unimodal schemes have achieved remarkable 

accuracy but have suffered from numerous security flaws since they are reliant upon a single 

authenticating event: an iris scan, a fingerprint, a facial scan, etc. They are insufficient for 

safeguarding PII as well as preventing impostor intrusion. Numerous system flaws have been 
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exposed through various spoofing attacks, smudge attacks, heat attacks, and other sophisticated 

hacking techniques. Consequently, multimodal systems have come to the forefront of research and 

development. Broadly speaking, the vision of a robust biometrically-based security protocol has 

transitioned from a one-time user authentication event (iris scan, facial scan, keystroke, gesture, 

etc.), to a system of continuous authenticating events in which the user’ behavioral biometrics are 

constantly assessed and validated. Indeed, it has been shown that mobile device intruders could 

perform more than 1000 tasks under knowledge-based authentication schemes but only achieve 

one task on a mobile device under a multimodal biometric method [25]. Much research has focused 

on harnessing the streams of cell phone data captured via the phone’s embedded sensors [25]. 

Accelerometers, gyroscopes, and magnetometers are standard features of most cell phones in 

active use today. Programs have been written to document the unique patterns of movement, voice, 

gestures, and the like, of individual users using these embedded sensors. If this behavioral 

biometric information, combined with other certifying data can be used to passively authenticate 

subjects continually, then the authenticating system will have hardened its security profile and 

increased efficiency. Instead of a one-time authenticating event, the unique habits of the user are 

enrolled into the system and form the authentication templates in the database. 

  Part of the evolving challenge with this model is that continually monitoring biometric 

information requires overcoming numerous technological hurdles. One problem is that continuous 

monitoring consumes significant power from any mobile device. Some studies have shown the 

consumption can be as much as five percent of total power usage [25]. Even when the device is 

asleep, the monitoring programs consume more power than if they were not present at all. Another 

issue is the consumption of memory and computational resources [25]. Harvesting and 

coordinating this information requires large amounts of computing power that could be usefully 
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diverted elsewhere in the device. Despite these technical obstacles, it is likely that the multimodal 

system will dominate the biometric landscape of the future. The accuracy and effectiveness of a 

single biometric measurement is nearly always improved in combination with additional metrics.  

  The image below graphically represents the various modalities associated with the 

continuous authentication system. Each modality offers a unique way to verify and authenticate 

an individual. In fact, there are more biometrics than those listed in this chart. Coupled with 

different forms of behavioral biometrics, the multimodal system is capable of continuously 

authenticating individuals in real-time. 

 

Figure 4.1: Continuous Authentication Modality Chart [25] 

It is interesting to note here that many researchers have taken it as a stated engineering goal 

to create built-in technology for mobile devices that monitors behavioral biometrics in a covert 

way. It is important that the user remain unaware. This is sometimes referred to in the literature as 
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Zero-Effort Multi-Factor Authentication (ZEMFA) or also passive authentication. This is viewed 

as a security strength as well as a design improvement [24]. The continuous authentication model 

necessitates this action. Though it may seem strange or obvious to point out, it is important to 

understand that it would be an unreasonable request for users to constantly verify and authenticate 

themselves. Indeed, repeated authentication attempts from knowledge-based systems such as 

passwords already cause user frustration and are weak. The goal is to require “zero effort” on the 

part of the user. Therefore, the continuous authentication model appears to become an implicit 

element by default.   

4.3 Algorithmic Bias 

Another pressing techno-social problem on a broader level is the issue of algorithmic bias. 

Despite improvements in accuracy of facial recognition systems, it has been shown that biometric 

performance bias exists for certain demographic groups [32]. Female subjects specifically, as well 

as younger subjects (infants) have shown significant differences in bias when compared to other 

groups. Dark-skinned females, for instance, experience a lower classification accuracy for 

demographic attributes from facial images in some biometric systems. Other examples of 

biometric bias trends are appearing in the literature and the research is ongoing. The field is very 

new and requires more comprehensive study.  

The initial survey of the problem of algorithmic bias appears to point toward the training 

data itself. Numerous studies suggest that algorithmic bias may be linked to the datasets and their 

country of origin. Algorithms developed primarily in Asia have been shown to recognize Asian 

individuals more easily, whereas algorithms developed in Europe have been shown to recognize 

Caucasian individuals more easily. In other academic disciplines, this is known as the ‘other-race 

effect or own-race effect’, which states that individuals are more easily able to recognize and 
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distinguish between members of their own race [32]. Similar effects have been observed regarding 

age identification. Some experiments that demonstrated these biased effects were based on small 

datasets, though not all. Larger datasets will likely lead to a more robust result with respect to 

accuracy and classification. However, the potential for these imbalanced effects to cause harm, 

even if unintentional, is significant. It should also be noted too that there is no evidence to suggest 

that algorithmic bias has been intentionally designed into the algorithms themselves. That is, there 

is no indication that the studied algorithms were maliciously contaminated to produce these biased 

effects. Rather, the algorithms reflect biased aspects of the data they were initially trained on. 

Like the larger debate surrounding A/IS, the standards and benchmarks that govern the 

development of bias-free algorithms in biometrics remain in flux. No overarching consensus has 

been reached as to the definition of algorithmic fairness. Indeed, Drozdowski et al offer a succinct 

synopsis of the problem: 

The issues of fairness (including algorithmic fairness) are complicated from the point of 

view of the legislation—a somewhat deep understanding of statistics, formal fairness 

definitions, and other concepts is essential for an informed discourse. Furthermore, the 

ethical and moral perceptions and decisions are not uniform across different population 

demographics and by geographical location (see [191]). This reinforces an important 

dilemma regarding the regulation of automated decision systems—since many situations 

are morally and ethically ambiguous to humans, how should they be able to encode ethical 

decision making into laws? Once that issue is somehow surmounted, there also remains the 

issue of feasibility of technical solutions [32]. 

Some proposed solutions for mitigating problems associated with algorithmic bias include 

larger training datasets, multimodal biometrics, soft biometrics, and the biometrics of intent [33, 
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34]. These proposed solutions—as mentioned above—typically involve the fusion of multiple data 

streams to authenticate an identity. Unlike more rudimentary database classification and matching 

algorithms, multimodal approaches utilize other sources of identifying information to confirm an 

individual. Two-factor authentication is a parallel example of multimodal authentication in the 

field of information and cyber security.  Paradoxically, since identification of traditional biometric 

characteristics such as a person’s distinct facial features may be insufficient to ensure algorithmic 

fairness, the impetus for increased access to PII may be warranted. The pursuit of an equitable, 

fair, and comprehensive framework for biometrics may require the compromising forfeiture of 

some degree of personal privacy. Increasingly, as mentioned previously, there is significant 

research interest in biometric systems that identify and authenticate an individual by certain 

behaviors. Furthermore, the basic aim of identification and authentication of individuals has 

shifted over time to documenting—and in some cases predicting—more complex human behavior. 

The laudable and reasonable goal of continuing to ensure system-wide fairness may in fact lead to 

extraction of PII well beyond mere physical appearance. It may involve further documenting 

unique behavioral characteristics and traits over long periods of time. Authenticating who a person 

is may be less relevant or valuable than predicting their probable habits and tendencies. 

 In the next chapter, some of the ethical consequences of biometric technology are 

examined. As chapter V makes clear, the problems and risks that biometric technology presents 

are challenging and complex. The inherent tension between algorithmic fairness and personal 

privacy is an example of this type of difficult problem. These problems are not merely 

engineering hurdles to be overcome either. They have far more nuance. And many more 

biometric problems exist that are not listed in this research. As with all technological 

implementation, there is bleed over into other parts of society and culture.  
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V. ETHICAL CONCERNS 

5.1 Irrevocability and Totalization  

  Like many formulations on the ethics of biometric security and other adjacent technologies, 

there exists a tendency to catastrophize about a future that has not yet arrived. Much has been 

written on the subject and the research needs to continue. It is always best to privilege present facts 

over distant speculation. But what seems to be consistently overlooked is the irrevocability and 

totalizing effect of automated biometrics. As with the electric grid, wireless communications, and 

nearly every other form of necessary civil infrastructure, a return to some prior primitive 

technological state is an out-and-out impossibility. Disconnection from large-scale power sources 

or the internet would wreak havoc for society, triggering vast amounts of human suffering and 

disruption. Many human beings are slavishly dependent on the reliability and efficacy of modern 

machines, including automated biometrics. If it is true that once a specific engineering technology 

is widely adopted and thereby made effectively irrevocable until something more sophisticated 

manifests, then the consequences of mistaking momentum for progress is vital. Engineers, 

researchers, scientists, policy makers, and others are ethically responsible for the biometric future 

that is being erected. Formal standardization of automated biometric technology will continue to 

guide industry and research but may ultimately prove insufficient at safeguarding PII or preventing 

other harms. The need for informed and potent independent oversight cannot be overstated. The 

United States to date has no regulating body to oversee the development of this important 

technology. 

  As discussed, due to the predominance of multimodal authentication, there already exists 

a tendency toward increased extraction of human biometric data, which is controversial. 

Presumably, this will make the biometric future more secure but with some caveats. Indeed, it has 
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been argued that much of the deployed biometric screening technology is operating in good faith, 

not in service to some misguided form of surveillance or repressive control. India’s government, 

for instance, has issued over 1.2 billion biometric identification cards through its Aadhaar program, 

the world’s largest biometric identification program [35]. It was developed as an essential 

governmental service distribution program. Aadhaar has been the subject of many legal and 

political arguments as well as the source of land disputes, fraud, and abuse. It has also, inarguably, 

provided millions of residents with essential benefits that they might not otherwise have received. 

As with many powerful technologies, the results are mixed.    

5.2 History  

  Looking back, engineering standardization and codification has done much to legitimize 

and justify existing technological infrastructure. New ethical norms, too, came about alongside 

these innovative technologies. Others were torn down or withered away as older technology was 

steadily replaced. Biometric technology is currently undergoing this same process. As it proceeds, 

the request to forego identification, assessment, and authentication at a distance via intelligent 

algorithms and behavioral biometrics is growing increasingly unlikely. In the United States and 

elsewhere, the right to privacy has collided with deeper more entrenched security concerns of the 

state. Typically, these state concerns are only further bolstered by the process of standardization 

despite any wayward ethical objections. This slow eradication of ethical privacy contributes to the 

societal sense that biometric intrusion is—in day-to-day practice—insurmountable; that it is an 

integral, necessary, and natural part of a common shared reality; when in fact it is highly contrived, 

supported by standards and norms, funded, researched, and sanctioned by formal organizations 

and governments. Despite all of this, biometric technology is not yet irrevocable to the degree that 

entrenched technologies like electrical power are.  
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  If tomorrow for example, in the United States, automated biometrics were severely 

hampered for whatever reason, society would probably hemorrhage greatly but would eventually 

recover. Citizens are not as reliant upon biometric systems as the electric grid. They might one day 

be, however. One of the most corrosive effects of increasing biometric intrusion is the sense that 

it is unavoidable, that resisting it will make little difference in the end. The appeal of granting 

unfettered access to the streams of biological data that are flowing from everyone is compelling. 

Opening-up biometrically is rewarded in society through increased convenience and a certain 

sense of technical sophistication. But as the privacy window shrinks, simply moving about the 

world becomes a scrutinized and documented event by default. Automated biometrics contribute 

significantly to this growing phenomenon.  

  Perhaps future historical texts will document a bygone era in which human identity and 

behavior was truly ephemeral, where events and temporary missteps might be forgotten in the 

ether instead of classified, assessed, and archived. Interestingly as an aside, the right to be forgotten 

has been vigorously debated in many arenas globally and has only recently come under consumer 

protection in the European Union via the General Data Protection Regulation (GDPR) in 2018 [3]. 

Private information that is released to the public is difficult to control or eliminate. An interesting, 

related question for debate is whether one’s unique biometric signature ought to be formulated as 

a protected privacy right. Is the peculiar way in which one shuffles along in a busy train station an 

inviolable portion of one’s identity and therefore safeguarded in the same way as other personally 

sensitive information? Should these bio signatures be treated in the same way as passwords and 

pin codes, secreted and protected from external intrusion? Or are these minute electrical 

measurements about a person merely a small slice of the enormous biometric pie available to all? 
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  Despite the ethical qualms, there is little doubt that automated biometrics will greatly alter 

the future technological landscape, however it is deployed. The development of the technology 

and its application will be reflective of the local, state, and regional ethics of the future era. For 

this reason, it is imperative that automated biometric standards as well as the enforcement of those 

standards be held to a high ethical bar. It remains to be seen whether western states will be able to 

adequately balance the commercial drive towards automated biometric ascendancy with the 

reservations of concerned citizens. The technology could, in certain circumstances, function as a 

check against governmental abuse instead of serving as a surveillance tool to repress dissent or 

predict behavior. The camera might be turned in the opposite direction so to speak. It could directly 

serve the interests of citizens if implemented correctly. More likely, however, powerful state actors 

and industry leaders will pave the way. In any event, the ethical implications and technical 

frameworks of automated biometrics are still pliable enough that the outcomes are not completely 

fixed. In the next chapter, we provide some concluding remarks about biometric technology and 

its attendant consequences for the future.  
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VI. CONCLUSIONS 

This work explored a two-part question. The first question considered the recent 

automated biometric engineering standards that have shaped and molded the field into its current 

condition. A comprehensive approach was utilized to examine various technical aspects of 

automated biometric research, the existing standards governing the technology, and some of the 

unresolved engineering problems. See Section 6.1 Technical Characteristics for a succinct 

summary of these issues. The second question contemplated some of the ethical and social 

dilemmas brought about by both the standards themselves and the nature of automated 

biometrics. See Chapter 5 Ethics for a detailed discussion of privacy, totalization, irrevocability, 

as well as other ethical issues. Some closing ethical observations can also be found in Section 6.2 

Future Considerations. 

6.1 Technical Considerations 

 The field of biometrics is in its developmental infancy. Like emerging technologies of the 

past era, automated biometrics is experiencing a turbulent period of rapid growth and research. In 

conjunction with this growth, inevitable disruptions with existing norms and other technologies 

have elucidated societal and ethical concerns that are not easily resolved. The right to privacy, 

algorithmic bias, biometric security and vulnerability, the potential for abuse, and the like, are 

recurring issues that can be found alongside any burgeoning technology. In spite of this, good 

faith efforts have been put forth to erect standards and norms for biometrics that harmonize and 

successfully integrate it with existing legal and technical standards. The GDPR in the Europe 

Union is a good example of this attempt.  

 Public tolerance of automated biometrics in the United States and elsewhere appears to 

be becoming widespread, though some communities are reticent to whole heartedly integrate the 
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technology into their daily lives. Others are leaping at the opportunity to open-up biometrically. 

Watches, cell phones, and other portable devices provide troves of biometric data that can be 

sifted by deep learning algorithms and programs, much to the benefit (or detriment) of the user. 

The sophistication and convenience of biometric technology is extremely enticing at the 

individual level. Moreover, the totalizing effect of continuous authentication technology sets up a 

situation in which distanced biometric measurement is accepted uncritically as the default mode.   

Biometric evaluation and assessment metrics have improved dramatically since the 

technology’s inception. Much of that improvement has largely been driven by a multimodal 

biometric approach. These systems have demonstrated superior robustness when compared 

against antiquated unimodal systems [18]. As a consequence of the multimodal approach, the 

FRR has decreased from seventy-nine percent in 1993 to .3 percent in 2010 when the FAR = 

.001, an almost 80 percent reduction over a period of 17 years [17]. (More recent data for the 

post 2010 period was not available regarding these rates). Currently, it is unknown whether the 

FRR will continue its greater than exponential rate of fall toward zero. (See Figure 6.1 next 

page). 
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Figure 6.1: NIST data with logarithmic scale (See Figure 2.5) 

Some related questions for future research might be:  What are the associated costs 

(financial and otherwise) of achieving such a low FRR by these methods? Are there ways in 

which FRR’s of .3 percent or lower could be attained while also keeping the FAR at its present 

level without resorting to an increase in volume and variety of biometric data? At what point 

does the amount of data acquired for this purpose produce a diminishing return? 

As it stands, the research indicates that increasing the volume and variety of available 

data can lead to a more accurate and secure biometric system. This has led researchers and 

engineers to formulate a continuous multimodal authentication model. It pairs traditional 

identifying biometric traits (facial, iris, and fingerprint scans) with verifying behavioral 

biometric traits (gait, gesture, motion, and voice patterns). Among the many continuous 

authentication models proposed, a popular and feasible one utilizes embedded cell phone 
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sensors: accelerometers, gyroscopes, magnetometers, and the like. These sensors work in tandem 

to create a passive biometric authentication system via machine learning [23]. By capturing the 

data passively, the user is automatically verified and authenticated with minimal disruption. If 

the continuous authentication model becomes as ubiquitous and commonplace as current cell 

phone usage (which seems likely), then capturing increasing forms of private biometric data may 

be required to maintain robust security and efficiency performance.  

In this way, voluntary participation in civil society may also be predicated on the 

involuntary or unwitting surrender of private biometric data. Indeed, biometric profiling, in its 

current form—if taken to its logical conclusion—may result in extensive, integrated personal 

dossiers. China, for instance, has already deployed its own sophisticated profiling system and 

have provided a workable model for others to follow suit [36]. At present, China ranks as the 

most biometrically invasive country on earth [36]. 

 

Figure 6.2: Worldwide Biometric Invasiveness Map [36] 
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The United States too is not far behind in its biometric invasive ranking at number four, at least 

according to one researcher [36].  

It is conceivable that future dossiers may include identifying biometric features and 

behavioral records well beyond our current conception. At present, the four most well-researched 

and developed biometric technologies are fingerprint, facial recognition, iris recognition, and 

genetic testing. However, as has been demonstrated, there is increasing research and commercial 

interest in other innovative distanced biometric measurement techniques. These technologies are 

advantageous from an efficiency and effectiveness standpoint because they can be deployed 

covertly. In fact, as has been shown, this is an important engineering goal for researchers that 

work with ZEMFA technology.  

At the institutional level, biometrics is gaining increased momentum because of its 

marked efficiency, efficacy, and manner of control. The ability of large governmental institutions 

to provide benefits and services to large populations using automated biometrics is 

unprecedented. As mentioned earlier, India’s Aadhaar program to date serves over one billion 

users. Some biometric proponents point to the growing potential of the technology to aid 

underserved communities that are struggling. Wireless fall detection technology in elder care 

scenarios is a pertinent example in this context [20].  Biometric technology has the powerful 

capability to serve clients in a positive manner at scale.  

At the same time, however, the rapid capability of governments and private corporations 

to monitor the habits and behaviors of private citizens without their consent is also 

unprecedented. The technological barriers that once served as a bulwark against privacy 

violations have been summarily removed. Though many technical challenges remain for 

biometric engineers, there is little left that cannot be accurately measured and understood from a 
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distance. The adoption of standards and regulations have helped somewhat to check against 

ethical violations but are largely toothless in the absence of independent regulating bodies. As 

was noted, the United States has no regulating agency to guide the development and 

implementation of automated biometric technology. 

6.2 Future Considerations 

 What is clear is that the biometric groundwork that is being laid today is unlikely to be to 

unmade tomorrow. For this reason, the tendency of biometric technology to flow in one direction 

will make today’s engineering and standardization decisions that much more critical when 

considering the future impacts. The FAR’s and FRR’s of the future are likely to improve but 

with some caveats. It is an open question as to whether it is even necessary to continue to 

improve these rates if that improvement is purchased at tremendous social and ethical cost. 

Biometric algorithms will almost certainly improve with time, and the FAR will fall below 

current operating levels. This will likely be hailed as a security improvement by industry. 

Biometric algorithms may even improve to such a degree that the institutionalized fixed FAR 

requirement will be justifiably lowered from FAR.001 to FAR.0001 or even lower. If this happens, 

the operating threshold will shift as a result, simultaneously altering the FRR in the process. (See 

figure 2.1, 2.3). This change would further serve to justify increased biometric data extraction for 

the multimodal system to ensure that the FRR not disrupt operational flow.  

Since both metrics can never reach zero, the question then becomes how low is low 

enough for both rates? Is there a point at which enough requisite and varied biometric data has 

been collected and fused to meet existing security requirements for most major systems: airports, 

border control checkpoints, banks, etc? Has that level already been attained? Is it worth pursuing 

further? Of course, much of this discussion may be moot. CBP—as mentioned earlier in section 



 

37 
 

1.2—has not felt the need to justify the use of biometric facial recognition technology against its 

own citizens at the border [7]. The data is collected and stored for potential future use. Certainly, 

multimodal biometric data is useful for purposes other than simple identification and 

verification, which is why it is vitally important that strict limits are adopted and enforced. In the 

absence of sufficient regulation or some other countervailing force, it is predictable that 

automated biometric technology will continue its powerful ascent and ethical concerns will—by 

and large—be ignored. As was mentioned in the introduction, the United States remains in a 

significant legislative lag in relation to biometric technology. No overarching government body 

is overseeing the development of automated biometrics or even artificial intelligence generally. 

As a result, industry as well as other biased interests produce their own sets of norms and 

practices which privilege an unbridled dissemination of the technology coupled with a tepid 

consideration of the ethical aftereffects.  

  Importantly, like other technological achievements, the slow but steady pace of 

biometric development has allowed for ample positive conditioning among large groups of users, 

particularly among teenage users in the United States and elsewhere. Repeated and sustained 

contact with biometrics fosters an indifferent and unremarkable attitude toward the technology. It 

also promotes a sense of dependency. Thus, sustained technological exposure rates contribute 

meaningfully to a societal and ethical sense of biometric normalization. This process is spurred 

along through ubiquitous and frequent biometric encounters that form a pathway toward ethical 

default for the individual. What legitimate choices are truly available to the individual who seeks 

to avoid biometric scrutiny and finds the technology invasive? More and more, the only 

realistically available option is to begrudgingly accept the situation as it stands and move on with 

one’s life. In other words, the best option is really no option at all. 
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As the varied streams of biometric data are brought online and integrated, the sturdier the 

system becomes. Technology of this scope and strength will not easily be undone. And perhaps 

there is little reason to undo it. In fact, undoing it at this point would probably be more 

detrimental than anything else. But nevertheless, diving headlong into an automated biometric 

future with minimal ethical consideration is unwise. Any culture that values privacy at all should 

proceed cautiously. The technology ought to be properly governed and reigned in accordingly. 

What constitutes appropriate governance of such a powerful technology like automated 

biometrics is, of course, a question for vigorous and open debate. But that question is, 

oftentimes, not being asked. It is being avoided because it is a thorny question fraught with 

contradiction. Proper guidance of the technology requires nuance and understanding, not just 

rigorous wholesale improvement of automated biometric techniques. Renewed research into 

biometric engineering paradoxes (accuracy versus fairness, privacy versus public security, etc.) 

should be conducted. The standards and legislation are due for an update. If a reasonable 

biometric balance is not struck in this regard, then a power asymmetry will persist that may 

remain permanently. The engineers, scientists, policy makers, and researchers—those who 

understand at the deepest level the capability and innerworkings of automated biometrics—are 

the chief architects of the biometric future. They are tasked with the immense responsibility of 

duly considering the diverse perspectives of those that do not share their level of technological 

comprehension. If those concerns can be met, then perhaps a more successful and stable 

biometric future can be constructed. 
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