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Abstract

Riemannian geometry methods are widely used to classify SPD (Symmetric Positives-

Definite) matrices, such as covariances matrices of brain-computer interfaces. Common Rie-

mannian geometry classification methods are based on Riemannian distance to compute the

mean of matrices. The purpose of this paper is to propose different algorithms based on Bures-

Wasserstein distance for computing the mean of SPD matrices. Combining two purposed BW

algorithms, Inductive mean and Cheap mean, with the most common simple projection algo-

rithm based on Riemannian distance, there are 6 kinds of mean algorithms tested. The results

obtained in this paper include that Bures-Wasserstein simple projection mean algorithm has a

better efficient and robust performance than the others.

ii



Acknowledgments

I would like to thank my supervisor Dr. Jingyi Zheng, who guided me to throughout the

whole project and greatly improved my understanding of academic writing and taught me a lot

of specific research skills.

I also would like to thank Dr. Huajun Huang, who provided me with a lot of theoretical

supports and ideas for experiments.

In addition, I would like to thank my parents for their mental and financial support.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The metric based on Riemannian distance . . . . . . . . . . . . . . . . . . . . 3

2.2 The metric based on Bures-Wasserstein distance . . . . . . . . . . . . . . . . . 5

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Inductive mean algorithm with BW distance . . . . . . . . . . . . . . . . . . . 6

3.2 Simple projection mean algorithm with BW distance . . . . . . . . . . . . . . 7

3.3 Cheap mean algorithm with BW distance . . . . . . . . . . . . . . . . . . . . . 8

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Compare results of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Efficiency test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Robustness test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



List of Figures

2.1 Manifold Pn and its tangent space at point A . . . . . . . . . . . . . . . . . . . 4

3.1 Illustration of the inductive mean algorithm. . . . . . . . . . . . . . . . . . . . 6

4.1 An example of results of all 6 algorithms. 10 random SPD matrices with num-
ber dimensions 5 are computed. . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Generated different number of 10 × 10 random SPD matrices and applied BW
and Rie cheap mean algorithms to compute means.(a) shows the running time
of the two methods. (b) shows the distance, measured by BW distance and
Rie distance separately, between the two mean matrices obtained using the two
methods. Time unit: Second . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Generated different number of 10 × 10 random SPD matrices and applied BW
and Rie simple projection mean algorithms to compute means.(a) shows the
running time of the two methods. (b) shows the distance, measured by BW
distance and Rie distance separately, between the two mean matrices obtained
using the two methods. Time unit: Second . . . . . . . . . . . . . . . . . . . . 13

4.4 Running time of inductive mean algorithms with different number of matrices.
Time unit: Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Process of generating a matrix that has an eigen value close to zero . . . . . . . 14

4.6 The design of robustness test . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7 Distance Plots of robustness test for Rie and BW algorithms . . . . . . . . . . 16

4.8 Diagram of instability of Riemannian simple mean algorithm . . . . . . . . . . 16

v



List of Tables

4.1 Table of 6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



List of Abbreviations

BW Bures-Wasserstein

SPD Symmetric Positive Definite

vii



Chapter 1

Introduction

Btrain-computer interface (BCI) is a computer-based system that can obtain and analyzes brain

signals by connecting brain and external devices. There are kinds of devices used to collect

brain signals, Invasive and Non-invasive devices. The Invasive devices will implant electrodes

under scalp, which can obtain brain signals clearly. For the non-invasive devices, signals have

more noise, but people don’t need to do surgery on their head. This advantage makes more

people can take part in experiment. With the cost of having more noise, collecting data be-

comes easier. Among different noninvasive devices, EEG-based BCIs, which is our focus in

this proposal, have been widely adopted in various applications, especially in helping users

with severe motor impairments (e.g. brainstem stroke, spinal cord injury) to communicate and

control external devices [1, 2, 3, 4, 5, 6, 7]. For example, Niels et al [8] used EEG-based BCI

to help severely paralyzed people to control a computer cursor. Based on motor imagination,

Bin et al [9] controlled a virtual helicopter flying in 3-dimensional space by EEG-based BCI.

All researchers are trying to interpret brain signals to commands or situations accurately.

But applications of EEG-based BCIs still cannot be applied in practice widely. Because there

are too much noise and information in signals. The main purposes of researching in this area

is to find the specific signals among brain signals and interpret them. Also, since the brain

signals are non-stationary and non-linear signals with neural oscillations. For getting enough

EEG data, users have to repeat the specific actions such as moving, thinking. In the process

of collecting, it is impossible to control users mind. If they are distracted by other minds,

data would be contaminated seriously and discarded. Therefore, improving the accuracy of

interpretation will be a long-term research topic in this area.
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In the past, the research work of process can be summarized into two pipelines. The most

common pipeline of dealing with EEG-based BCI data has steps as follows.

1. source extraction via spatial filtering (e.g. using common spatial pattern method [10, 11,

12, 13, 14]),

2. feature extraction from the source signals (e.g. extracting power spectral density [15, 16,

17, 18, 19, 20]),

3. classification via vector-based models (e.g. using linear discriminant analysis, SVM, etc

[21, 22, 23, 24, 25, 26, 27]).

In this pipeline, researchers could use different methods in every step. The results of

different methods also are various for different problems. Besides, the other pipeline shown

[28, 29, 30, 31, 32] merges source extraction and feature extraction into one step, which clas-

sifies the covariance matrices directly. The upside of this pipeline save more the spatial and

temporal structure of the BCI system than the others by direct classification on covariance

matrices. In the Euclidean space, analyzing matrices will lead to biases, but these biases do

not exist in matrix space. For building classification model on the manifold, it is necessary

to build a metric system based on Riemannian Geometry. In a metric system, the distances

and angles can be measured. With a metric system, the classification model on manifold can

be calculate. Now, the most common distance function are used to measure distance between

matrices is Riemannian Distance. There are also many classifiers that developed based on met-

ric of Riemannian distance.[33, 28, 34, 35, 36, 37]. Metric based on Riemannian distance has

good performance on accuracy of classification and more simple steps. But, the process of

computing riemannian distance also has some potential issues, such as time consuming and

unstable, which means the classification processes based on riemannian distance have these

disadvantages too.
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Chapter 2

Background Knowledge

Pn can be viewed as a Riemannian manifold. For simplicity of computation, Euclidean metrics

was found that it can be used on the classification of Riemannian Geometry. When matrices

on Pn are projected to tangent space of the manifold Pn, euclidean metrics can be used to find

mean of matrices on the tangent space. Then, This mean can be projected back to manifold,

which can be the estimation of mean of matrices on the manifold. The projection, also named

retractions, between a manifold and its tangent space contains two parts, Logarithmic map and

Exponential map. Logarithmic map function used to project the points on the manifold to the

related tangent, Exponential map function used to project points from the tangent space to the

manifold, while Exponential map function used to project points from the tangent space back

to the manifold as illustrated in Figure 2.1. Therefore, the definition of the exponential and

logarithmic maps are important and they depend on our geometric view of the manifold Pn. In

this thesis, we can consider two metrics based on different distance methods respectively:

• The metric based on Riemannian distance

• The metric based on Bures-Wasserstein distance

2.1 The metric based on Riemannian distance

Based on the metric of Riemanian distance, The key function for measuring distance between

A and B on the mannifold is Riemannian distance. The function of Riemannian distance is as

follows,

δR(A,B) =
( n∑
i=1

log2 λi(A
−1B)

)1/2
, (2.1)

3



Figure 2.1: Manifold Pn and its tangent space at point A

where λi(A−1B), i = 1, . . . , n is the eigenvalues of A−1B. There is a unique geodesic con-

necting A and B on the manifold Pn (i.e. A and B) shown as follows.

γ(t) = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1]. (2.2)

When t = 1/2, The γ(t) is the midpoint of two matrices A and B, and denoted as A#B.

γ(1/2) = A1/2(A−1/2BA−1/2)1/2A1/2. (2.3)

The logarithmic and exponential functions based on Riemannian distance in projection process

based are [36]:

X = logA(B) = A1/2log(A−1/2BA−1/2)A1/2 (2.4)

B = expA(B) = A1/2exp(A−1/2XA−1/2)A1/2 (2.5)

Riemannian distance retains many good properties, which makes it widely used in BCIs

and other applications. However, computing Riemannian distance involves matrix inverse and

eigenvalue decomposition as shown in (2.1), which are time consuming and computationally

unstable especially for large matrices. Therefore, we consider the manifold in a different geo-

metric view.
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2.2 The metric based on Bures-Wasserstein distance

There was a different metric system based on Bures-Wasserstein distance proposed by Dr.Huajun

Huang. The Bures-Wasserstein distance function is

dBW (A,B) =
[
tr (A+B)− 2tr (AB)1/2

]1/2
where A,B ∈ Pn. The geodesic of A to B on the manifold Pn is

γ(t) = (1− t)2A+ t2B + t(1− t)[(AB)1/2 + (BA)1/2], t ∈ [0, 1] (2.6)

The logarithmic and exponential functions based on Bures-Wasserstein distance are:

X = logA(B) = (AB)1/2 + (BA)1/2 − 2A. (2.7)

B = expA(X) = U [W ◦ (U∗XU + 2Λ)]Λ[W ◦ (U∗XU + 2Λ)]U∗.

Where ◦ denote the Hadamard product, A = UΛU∗,Λ = diag (λ1, · · · , λn) and

W =

(
1

λi+λj

)
n×n

. (2.8)

From the equations above, Bures-Wasserstein distance seems has some potential advan-

tages compared with Riemannian distance. It could be more robust and easy to calculate.

Because there is no logarithm in Bures-Wasserstein computing process.
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Chapter 3

Methodology

3.1 Inductive mean algorithm with BW distance

From the idea of Fréchet mean, we estimate the ‘center’ of the matrices by the Fréchet edition’s

mean of SPD matrices with BW distance. The function can be defined as .

Fréchet Mean: Ā(A1, . . . , Am) = argmin
X∈Pn

m∑
i=1

d2(Ai, X) (3.1)

where d is a distance function on the manifold. The Fréchet mean is also called the

barycenter or Karcher mean in literatures (e.g. [38, 30]). The barycenter of matrices pro-

vides an estimation for mean of matrices on manifold, and plays an important role in building

the Gaussian distribution for matrices.

To calculate the Fréchet mean for matrices on Pn, there are two types of methods was pro-

posed, an inductive type and a cheap mean type. They use different iteration steps to converge

matrices to the Fréchet mean.

Figure 3.1: Illustration of the inductive mean algorithm.
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The inductive mean method described in [39] is proved to be valid to find the Fréchet mean

of points on Hadamard spaces like (Pn, δR). Even though (Pn, dBW ) is not a Hadamard space,

the inductive mean method still works in almost all situations. We propose the Inductive Mean

Algorithm, illustrated in Figure 3.1, to find the Fréchet mean of m matrices A1, . . . , Am ∈ Pn:

1. Define the sequence {Ak}k∈N such that Ak = Ak+m = Ak+2m = · · · for all k ∈ N.

2. Let S(1) := A1. For k = 2, 3, . . . , let

S(k) := S(k−1) � 1
k
Ak

=
(k − 1)2

k2
S(k−1) +

1

k2
Ak +

k − 1

k2
[
(S(k−1)Ak)

1/2 + (AkS
(k−1))1/2

]
.

3. The limit of {S(k)}k∈N will be the Fréchet mean of {A1, . . . , Am} with dBW :

lim
k→∞

S(k) = A(A1, . . . , Am). (3.2)

The Inductive Mean Algorithm has simple computation process, since it doesn’t has pro-

jection steps containing logarithms and exponents .

3.2 Simple projection mean algorithm with BW distance

The main idea of simple projection algorithm with BW distance is from simple projection algo-

rithm with Riemannian distance [36]. In riemannian metric, this algorithm is the most common

algorithm to find mean of SPD matrices on manifold. So, we developed simple projection al-

gorithm with BW distance. To the Fréchet mean of m matrices A1, . . . , Am ∈ Pn, the main

steps of simple projection mean algorithm with BW distance are

1. Initialise P (1) = 1
m

∑m
i=1(Ai)

2. Project all Ai onto the tangent space at P (k). For k = 1,2,3,...

Xi = (P (k)Ai)
1/2 + (AiP

(k))1/2 − 2P (k)
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3. Compute the arithmetic mean of the projection vectors,

S(k) =
1

m

m∑
i=1

Xi

4. Project S back to manifold, the exponential of S at P is

P (k+1) = Ui[Wi ◦ (Ui
∗S(k)Ui + 2Λi)]Λi[Wi ◦ (Ui

∗S(k)Ui + 2Λi)]Ui
∗.

5. The limit of P (k)
k∈N will be the simple projection mean of A1, ...Am with BW distance.

lim
k→∞

P (k) = A(A1, . . . , Am). (3.3)

3.3 Cheap mean algorithm with BW distance

The third algorithm we will consider and compare with is the Cheap Mean Algorithm originally

developed on (Pn, δR) in [40]. Since simple projection mean algorithms have the same key

projection step, it can be considered as a complex edition of simple projection algorithm. The

iteration process of our Cheap Mean Algorithm on (Pn, dBW ) is as follow:

1. Let A(0)
k = Ak for k = 1, . . . ,m.

2. Suppose A(`)
1 , . . . , A

(`)
m are known for some ` ∈ N. For each k ∈ {1, . . . ,m}, we project

the geodesic curves connecting A(`)
k to A(`)

1 , . . . , A
(`)
m onto the tangent space at A(`)

k . Then

find the arithmetic mean of the projection vectors. The exponential of this arithmetic

mean at A(`)
k is denoted by A(`+1)

k :

(a) By (2.7), the projection of geodesic from A
(`)
k to A(`)

j onto the tangent space at A(`)
k

is

X
(`)
kj := (A

(`)
k A

(`)
j )1/2 + (A

(`)
j A

(`)
k )1/2 − 2A

(`)
k . (3.4)
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(b) The arithmetic mean of the projection vectors is

X
(`)
k :=

1

m

m∑
j=1

X
(`)
kj =

1

m

m∑
j=1

[
(A

(`)
k A

(`)
j )1/2 + (A

(`)
j A

(`)
k )1/2

]
− 2A

(`)
k . (3.5)

(c) Find the spectral decomposition

A
(`)
k = U

(`)
k Λ

(`)
k U

(`)
k

∗
, U

(`)
k ∈ U(n), Λ

(`)
k = diag (λ

(`)
k1 , λ

(`)
k2 , · · · , λ

(`)
km). (3.6)

Denote the matrix

W
(`)
k :=

(
1

λ
(`)
ki +λ

(`)
kj

)
n×n

. (3.7)

By (2.8), the exponential of X(`)
k at A(`)

k is

A
(`+1)
k := U

(`)
k [W

(`)
k ◦ (U

(`)
k

∗
XU

(`)
k + 2Λ

(`)
k )]Λ

(`)
k [W

(`)
k ◦ (U

(`)
k

∗
XU

(`)
k + 2Λ

(`)
k )]U

(`)
k

∗
.

(3.8)

3. All sequences {A(`)
k }`∈N for k = 1, . . . ,mwill converge to the same limit, which is called

the Cheap Mean A
′
(A1, . . . , Am):

A
′
(A1, . . . , Am) := lim

`→∞
A

(`)
1 = lim

`→∞
A

(`)
2 = · · · = lim

`→∞
A(`)
m . (3.9)

From functions of Cheap man algorithm with BW distance, we assume that the computa-

tion complexity of cheap algorithm is low and the convergence speed of cheap algorithm is fast.

Since the ideas of Inductive mean and Cheap mean are from the Fréchet mean, it is necessary

to compare the results and properties between inductive and cheap algorithms.
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Chapter 4

Experiments

We proposed three mean algorithms with BW distance, Bures-Wasserstein simple projection

mean, Bures-Wasserstein inductive mean, Bures-Wasserstein cheap mean. At this part, we

extend the range of experiments to compare more algorithms. Thus, we find the Riemannian

distance editions of these algorithms. The experiments part will test 6 different algorithms in

terms of efficiency and robustness in Table 4.1.

Type of Distance Inductive mean Cheap mean Simple projection mean
BW distance BW Inductive mean BW cheap mean BW Simple projection mean
Rie distance Rie Inductive mean Rie cheap mean Rie Simple projection mean

Table 4.1: Table of 6 Algorithms

4.1 Compare results of algorithms

At first, some SPD matrices were generated randomly. Then, 6 different algorithms were used

to calculate the mean of these SPD matrices. In the table 1, there are results of these algorithms

with 10 random 5X5 SPD matrices. These values above the mean matrices are the difference

between inductive and the others, which can be computed by:

value =
||Mij −Mi1||2
||Mi1||2

(4.1)

Where i = 1,2 and j =2,3, Mij means the ith row and jth column mean matrix in the table.

The means of inductive algorithm with precision parameter of algorithm eps = 1e-6 of Rie-

mannian and Bures-Wasserstein are nearly the same as results of simple projection algorithm.
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But they are slightly different from results of cheap mean algorithms. In aspect of difference of

Riemannian and Bures-Wasserstein, the difference between of three means of BW algorithms

and three means of Riemannian algorithms are obviously larger than the difference within every

group. It also implies the results of BW algorithms are different from Riemannian algorithms.

With comparing table a and table b, it shows that the results of inductive algorithms with high

precision parameter eps = 1e-6 are closer to the results of simple projection algorithms than eps

= 1e-2. But since the result differences between eps =1e-6 and eps = 1e-2 are subtle, the results

of inductive algorithms with eps = 1e-2 are still reliable.

4.2 Efficiency test

In order to evaluate the efficiency of Riemannian and Bures-Wasserstein algorithms, we com-

pare two of them every time. All data are some SPD matrices generated randomly. We com-

puted mean of these matrices by 6 algorithms. Under the condition of the constant number of

dimensions, we measured the change of running time of algorithms with the increase of number

of SPD matrices. After testing different constant number of dimensions, Bures-Wasserstein al-

gorithms show better performance on efficiency in the condition that the number of dimensions

are low(The number of dimensions of matrices was set to 10). In the Figure 4.2, the green line

shows that the ratio of running time of BW and Riemannian cheap mean algorithm are con-

stant(0.3) as the increase of number of matrices. But in Figure 4.3,as the number of matrices

rise, the ratio of running time of BW and Riemannian cheap mean algorithm increased.

The simple projection and cheap mean algorithms based on Bures-Wasserstein distance

used less time to obtain results than their counterparts based on Riemannian distance. In Figure

4.3 , their distances between BW and Riemannian means are close. Thus, simple and cheap

algorithms based on Bures-Wasserstein distance have significant advantage of efficiency on

dealing with low number of dimensions and high number of matrices. In contrast to Simple

projection and cheap mean algorithms, Inductive algorithms of mean consume a large amount

of time at the high precision in Figure 4.4 Therefore, inductive mean algorithms with high

precision are not suitable to be applied in practice.

11



(a) Inductive mean with the precision eps = 1e-2

(b) Inductive mean with the precision eps = 1e-6

Figure 4.1: An example of results of all 6 algorithms. 10 random SPD matrices with number
dimensions 5 are computed.
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(a) Comparison for Running Time of Cheap
Algorithms

(b) Comparison for two Mean Matrices of Cheap
Algorithm

Figure 4.2: Generated different number of 10 × 10 random SPD matrices and applied BW and
Rie cheap mean algorithms to compute means.(a) shows the running time of the two methods.
(b) shows the distance, measured by BW distance and Rie distance separately, between the two
mean matrices obtained using the two methods. Time unit: Second

(a) Comparison for Running Time of Simple
Algorithms

(b) Comparison for two Mean Matrices of
Simple Algorithm

Figure 4.3: Generated different number of 10 × 10 random SPD matrices and applied BW and
Rie simple projection mean algorithms to compute means.(a) shows the running time of the
two methods. (b) shows the distance, measured by BW distance and Rie distance separately,
between the two mean matrices obtained using the two methods. Time unit: Second

13



Figure 4.4: Running time of inductive mean algorithms with different number of matrices.
Time unit: Second

Figure 4.5: Process of generating a matrix that has an eigen value close to zero

4.3 Robustness test

With the comparing the computing formulas of 6 algorithms, logarithm in Riemannian algo-

rithms could be factor that leads to instability of results. Then, we designed a robustness test

for two kinds of algorithms. In this case, we selected simple projection algorithms of Bures-

Wasserstein and Riemannian as an example to test. Data are 3 SPD matrices. 2 of them are

randomly matrices. The third one has 1 eigen value(λ3) that is close to zero. The third matrix

was generated randomly as follow process Figure 4.5. After eigen value decomposition of an

SPD matrix, the third eigen value multiply by a parameter that is close to zero to make itself

close to zero. Then, the inverse eigenvalue decomposition was conducted with new eigen val-

ues and original eigen vectors. Therefore, the new matrix has an eigen value close to zero. In

the next step, the mean of these three matrices was compute by a computing mean algorithm

14



Figure 4.6: The design of robustness test

and denoted by mean1. Then the third matrix will be moved a little by changing the first row

and first column element value a little bit. In order to do that, we add a matrix T(4.2) to the

third matrix.

T =


1e− 5 0 0

0 0 0

0 0 0

 (4.2)

After that, the mean of two SPD matrices with the modified matrix was calculated and

denoted by mean2. Repeating this process, we will have means from mean1 to mean n. Next,

the distances between every two means that are close will be calculated in Figure 4.6. In the

theory, these distances should be stable and become less and less. When we applied simple

Bures-Wasserstein and Riemannian mean algorithm on this test and plot distances between

every two nearest means in order. Figure 4.7 implies that the Bures-Wasserstein mean algorithm

is stable when the SPD matrices contain matrices that have eigen values close to zero(1e− 10).

The distances of BW are low (lower than 4e-4) and decreasing continuously. But The algorithm

based on Riemannian distance is unstable to cope with this situation. The distances are complex

and show a drastic fluctuation from 0 to 17.

In order to find out the reason of instability of Riemannian mean algorithm, we used two

kinds of matrices samples. One sample has three random SPD matrices. The other one has

two random SPD matrices and one matrix that has an eigen value close to zero to calculate

Riemannian mean. For the first sample, the Riemannian mean algorithm stopped in the 23rd

15



(a) Plot for Riemannian simple projection
algorithm

(b) Plot for Bures-Wasserstein simple projection
algorithm

Figure 4.7: Distance Plots of robustness test for Rie and BW algorithms

Figure 4.8: Diagram of instability of Riemannian simple mean algorithm

iteration with meeting the condition of eps < 1e − 6. In this iteration, the mean result was

computed.

For the other sample, in every iteration step, the errors produced by logarithm are accumu-

lating in Figure 4.8. When it comes to the 712nd iteration, the mean matrix is too asymmetric

to obtain the real result. In the 713rd, eigenvalues of M712 and M(712)1/2 will be computed,

the results are complex. Then, M713 becomes complex. Meanwhile, the precision of result will

never less than 1e − 6, which means the condition of stopping the iteration will never be met.

Thus, with computing with matrix has eigen values close to zero, the instability of Riemannian

algorithm is the result of the instability of logarithm in terms of dealing with matrices that have

eigen values close to zero. In other words, accumulation of errors from logarithm lead to the

16



fail of algorithm. Similarly,Riemannian cheap mean also has the same disadvantage as simple

projection. Because they have the same projection process.

In contrast to Riemannian simple projection and cheap mean algorithm, their counterparts

of Bures-Wasserstein always have stable results.
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Chapter 5

Conclusion

The purpose of the current thesis was to develop new methods of computing the mean of SPD

matrices based on Bures-Wasserstein distance. In this case, Bures-Wasserstein inductive mean

and cheap mean algorithms were developed theoretically. Then, combining with Riemannian

simple projection algorithm, 6 kinds of mean algorithms were tested.

Inductive algorithms of BW and Riemannian have very similar mean results as the results

of Simple project algorithms respectively, while cheap mean algorithms have different mean

results from the others. In terms of Efficiency, at the same precision level, the simple projection

mean has the best performance. Inductive algorithms are extremely time-consuming at high

precision. When it comes to robustness, riemannian mean algorithms are failed to deal with the

matrices containing extreme low eigen values. But BW mean algorithms run well. Overall, the

best SPD matrices mean algorithms among the 6 different algorithms mentioned in the thesis

is Simple Projection BW mean algorithm. It has the best performance in aspects of efficiency

and robustness.

One of the limitations in the thesis is the lack of examples that these mean algorithms

are applied in practice. The recommendations for future work is to confirm the accuracy of

classification problem by applying these algorithms in EEG data sets. Maybe, cheap mean

algorithms can bring better results on some certain problems. Besides, there is an interesting

was found in the experiment, which is that inductive means are very close to simple projection

mean. In the future, it is possible to prove the theory behind this situation.
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