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Abstract 

 

 Geologic CO2 storage systems rely on impermeable caprock layers to prevent fluid leakage 

and maintain system integrity. In these systems, mineral dissolution and precipitation reactions 

controlled by the reactivity of the accessible mineralogy can alter formation porosity and 

permeability over time. In the case of fractures, mineralogy that may otherwise be inaccessible can 

be exposed at the fracture surface. CO2-brine-mineral interactions at the fracture surface control 

the potential for CO2 leakage where reactions may increase or decrease fracture permeability, 

promoting or inhibiting leakage.  Therefore, predicting the mineralogy that is likely to be present 

at the fracture surface will aid in understanding how the fracture will evolve. Here, shale samples 

taken from the Mancos formation (western United States) and the Marcellus formation 

(northeastern United States) are mechanically fractured via unconfined compression. The fractured 

surfaces are examined using scanning electron microscopy (SEM) energy dispersive spectroscopy 

(EDS) to create quantifiable mineral maps representative of fracture surfaces. This process is 

repeated on thin sections of the same cores to analyze near fracture rock matrices both parallel and 

perpendicular to the fracture. The remaining sample is used for x-ray powder diffraction (XRD) to 

determine the mineralogy of the bulk sample. After fracturing, the Mancos sample had two visually 

distinct lithofacies present at the fracture surface that were quantified using optical microscopy. 

Two mineral maps of each Mancos lithofacies showed the light layer is made up of quartz (25-

40%), calcite (22%), and clay (27-48%), and the dark layer is rich in clay (71-79%). The matrices 

parallel and perpendicular to the fracture are comprised of 6 and 10% calcite, 39 and 44% quartz, 

and 45 and 27% clay, respectively. Compared to the XRD and matrix data, the dark lithofacies 

that makes up 71% of the fracture surface is high in clay content and low in quartz content. The 

light lithofacies that makes up 29% of the surface is slightly low in quartz and high in calcite 
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content. As a result, for the Mancos sample, the fracture surface has relatively high clay content 

suggesting the fracture formed predominately through weak mineral phases. In contrast to this, the 

Marcellus results show the mineralogy of the fracture surface, matrix, and bulk sample as over 

94% calcite. Because the Mancos sample showed interesting results, the mineral maps were further 

analyzed using autocorrelation to quantify the mineral distributions at the fracture surface and 

matrices. From this we have found that the induced fracture formed within a clay rich region about 

400 microns thick. In this region, clay is more likely than quartz or carbonate to occur near the 

fracture, with the probability of occurrence decreasing as distance from the fracture increases. 

When comparing the fracture surface and matrix mineralogies, we see that the fracture surface 

mineralogy has a more uniform distribution at all distances.  
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Chapter 1 

Introduction 

1.1 Motivation 

  Since the 1970s scientists have known that the release of certain gases like carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N2O) can trap heat in the atmosphere creating a 

greenhouse effect (Hansen, et al. 1998). Though a certain concentration of greenhouse gas (GHG) 

is necessary for a habitable environment, the surge of emissions brought on by the industrial 

revolution of the mid-18th century has propelled CO2, CH4, and N2O concentrations to 35%, 142%, 

and 18% increases in 2005 from preindustrial levels (IPCC, 2007). To mitigate the most damaging 

effects of climate change, the Intergovernmental Panel on Climate Change (IPCC) has determined 

that the average global temperature rise must be kept within 2°C compared with that of pre-

industrial times (IPCC, 2014). Already, however, sea levels are anticipated to rise 32-90 mm by 

2100, with some studies estimating a minimum rise of 75mm, through melting of the Greenland 

ice sheet alone (Goelzer, et al. 2020; Gillet-Chaulet, et al. 2012). This rise, along with increasingly 

intense drought and severe weather, will contribute to the creation of 200 million environmental 

refugees by 2050 (Biermann & Boas, 2008; Myers, 2002). 

 Minimizing climate change impacts from this point forward will require unprecedented 

technological and institutional changes as emissions are primarily a result of fossil fuel use, land 

use change, and agriculture (IPCC, 2007). Unfortunately, despite an increasing number of 

mitigation policies GHG concentrations are still rising (IPCC, 2014). As a result, unconventional 

engineering solutions are expected to play a role in minimizing atmospheric GHG concentrations. 

One of these solutions is carbon capture and storage (CCS) (IPCC, 2005; Yu, et al. 2008). Here, 

CO2 is collected from industrial sources, compressed, and transported to a selected geological 
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storage site where it is injected into a deep formation reservoir for long-term storage. This long-

term storage is the result of CO2 mixing with existing brine formation, creating low-pH conditions 

favorable for calcium carbonate precipitation (CaCO3), effectively sequestering CO2 that would 

otherwise be released in the atmosphere (Oelkers et al., 2008). As a result, the formation selected 

for injection plays a critical role in trapping results, where some criteria for selection includes 

reservoir permeability and mineral composition, the presence of a vertically sealing caprock, and 

the absence of faults and fracture networks (Miocic, et al. 2016; Watson, et al. 2005) 

 

1.2 Role of mineralogy in controlling fracture formation 

In subsurface systems like CCS, fluid-rock interactions have the potential to alter formation 

porosity and permeability through the dissolution and precipitation of minerals (Tian, et al. 2019; 

Fitts and Peters, 2013; Bensinger and Beckingham 2020; Sabo and Beckingham 2021). These 

reactions are controlled by the accessibility of mineral surfaces to the formation fluid, however, 

estimated mineralogy of the bulk formation does not necessarily represent the accessible 

mineralogy due to disconnected pores or clay coatings (Peters 2009, Landrot et al. 2012, 

Beckingham et al. 2016). This misrepresentation of controlling mineralogy is also likely to be true 

in the case of fractures, the presence of which can impact system integrity by creating high flow 

conduits for injected fluid (Ellis, et al. 2011; Major, et al. 2018; Fitts, et al. 2012). Because 

supercritical CO2 is less dense than existing formation fluid, it can migrate upward into caprock 

fractures interacting with exposed mineralogy (Singh et al., 2019). The evolution of fracture 

aperture and permeability over time is greatly dependent upon the mineral distribution at the 

fracture surfaces, where unreactive lamination can inhibit fluid flow (Spokas, et al. 2018), and 
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highly reactive surfaces with little to no lamination can create many flow channels unlikely to seal 

(Deng, et al. 2015; Jones and Detwiler, 2016; Spokas, et al. 2018).  

Though evidence of mineralogy impacting fracture evolution is strong, links to mineralogy 

and fracture formation are not. It is widely accepted that rock composition plays a role in fracture 

development (Guo, et al. 2015; Tian and Daigle, 2019; Ding, et al. 2012; Yoon, et al. 2019; Gale, 

et al. 2014; Na, et al. 2017), however, little data exists on what minerals can be expected along the 

fracture walls, ultimately influencing conductivity over time. Tian and Daigle (2019) found that 

microfractures are more likely to form within organic matter. For larger fractures, Yoon et al. 

(2019) examined thin sections of fractures formed by confined compression testing and found that 

the fracture propagated between quartz grains, within clay layers. From this we can hypothesize 

that fractures will follow a path of least resistance, passing through weak mineral phases (clay, 

organic matter) instead of hard ones (quartz, feldspar). Though fracture formation has been 

examined in the context of rock mechanical properties (i.e. brittleness/ductility, Young’s Modulus) 

(i.e. Holt, et al. 2015; Gale, et al. 2014, Brunhoeber, et al. 2020), it is a challenge to interpret how 

they relate to specific minerals whose properties are examined differently (i.e. Moh’s scale of 

mineral hardness). Therefore, in this work, we seek to understand what role mineralogy plays in 

controlling fracture formation by examining the mineral abundance present at a fractures surface 

compared to that of the bulk sample. With this information we hope to enhance the understanding 

of how fracture surface composition may vary with respect to the surrounding rock matrix and 

make implications on how this might impact evolution in reactive systems.  
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1.3 Analysis of mineralogical spatial variation through autocorrelation 

 In addition to abundance, mineral distribution greatly impacts reactive fracture evolution 

and sealing capacity in caprocks (Deng, et al. 2015; Spokas, et al. 2018; Jones and Detwiler, 2016). 

As such, there is a need to quantitatively describe mineral spatial distributions. A variety of ways 

exist in the literature for this, including variograms, entrograms, and autocorrelation. All three 

methods create graphs in a similar way by measuring some degree of variability, randomness, or 

correlation in a dataset over distance (i.e., Gringarten & Deutsch, 2001; Bianchi & Pedretti, 2018; 

Berryman & Blair, 1986). For all methods it is assumed that at some distance the distribution of 

the dataset will become random where within this distance heterogeneities will hold some 

relationship to each other. By applying any of these methods, we assume that the dataset being 

analyzed has some degree of spatial dependence, such that points in close proximity are more alike 

than points farther away (i.e., topography, hydraulic conductivity). In mineral distributions, we 

can expect that randomness will occur just beyond the grain size of the mineral being evaluated. 

For our purposes, a two-point autocorrelation analysis was chosen to be performed on different 

areas of the same shale sample. The autocorrelation method was chosen for its ability to perform 

cross-correlation, or to evaluate two parameters (mineral phases) with respect to each other 

(Anovitz, et al. 2021). This work will build off the imaging results in Chapter 2 by analyzing 

mineral distributions of the fracture surfaces compared with that of the matrix, and the relationship 

between the fracture surface and different mineral phases just beyond it. 

 

1.4 Objectives 

 The objective of this study is to determine if a relationship exists between fracture 

formation and rock mineralogy to ultimately improve predictions of reactive fracture evolution in 
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subsurface CO2 utilization and storage systems. The approach will be to quantify mineral 

abundance and distribution on fracture surfaces and in the unfractured matrix of shale samples. By 

comparing mineralogies at the fracture surface with that of the surrounding matrix and bulk sample 

we may observe disparities and establish a basis for what may define such a relationship. If no 

discrepancies in abundance are observed, it will be reasonable to assume that bulk mineralogy 

accurately reflects that of the fracture surface, where subsequent geochemical reactions will be 

strictly a matter of mineral distribution (i.e., Spokas, et al. 2018). Should discrepancies in mineral 

abundance at the surface be observed, this may indicate that fracture mineralogy and subsequent 

geochemical reactivity is unique as compared to the rest of the formation. This is the first study to 

consider the role of mineralogy in controlling fracture formation and the subsequent composition 

and distribution of minerals on fracture surfaces. As such, results from this study will indicate if a 

fracture-mineral relationship may exist and lay groundwork for future studies. 
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Chapter 2 

Role of mineralogy in controlling fracture formation 

Olivia M. Brunhoeber1, Lawrence M. Anovitz2, Lauren E. Beckingham1*  

1Department of Civil & Environmental Engineering, Auburn University, Auburn 36849 

2 Chemical Sciences Division, MS 6110, Oak Ridge National Laboratory, Oak Ridge, TN 37831 

* Corresponding author: leb@auburn.edu 

Manuscript in preparation. 

2.1 Abstract 

Subsurface systems like CO2 sequestration rely on impermeable caprocks for safe storage 

to maintain pressure and prevent leakage of the injected CO2. The presence of fractures in caprocks 

can threaten system integrity by introducing high permeability flow paths. In reactive systems like 

this, rock mineralogy controls precipitation and dissolution reactions, altering the porosity and 

permeability of the formation. With the existence of fractures, minerals that are otherwise 

inaccessible can become exposed to the injected fluid, resulting in reactions differing from those 

predicted leveraging bulk formation mineralogy data. This work seeks to understand the 

relationship between mineralogy and fracture formation by evaluating the minerals present at the 

fracture, within the near fracture matrix, and within the bulk sample. Here, core samples from the 

Mancos and Marcellus formations are mechanically fractured via unconfined compression. The 

fracture surfaces and near fracture matrices of each sample are analyzed using scanning electron 

microscopy (SEM) energy dispersive spectroscopy (EDS) to quantify the surface mineralogies. X-

ray powder diffraction (XRD) data of the same core samples show the Mancos formation contains 

52% quartz, 19% clay, and 8% calcite and the Marcellus formation contains over 96% calcite. For 

the Mancos sample, 79% of the fracture surface is comprised of a dark, clay-rich lithofacies (71 to 
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80% clay) with the remaining 21% comprised of a light, quartz-calcite-clay lithofacies (27 to 49% 

clay, 25 to 40% quartz, 22% calcite). Though the Mancos matrix also shows slightly high clay 

content compared to XRD (up to 35%), the combined results suggest that the fracture formed 

predominately in clay-rich lithofacies and along clay-clay mineral interfaces. Due to the high 

calcite content in the Marcellus sample, little discrepancies are found between the bulk, matrix, 

and surface mineralogies, likely due to the homogeneity of this sample.  

2.2 Introduction 

In subsurface CO2 systems, impermeable caprocks are necessary to prevent fluid migration 

and leakage. However, the presence of fractures and the evolution of reactive fractures over time 

can pose increased risk to system integrity (Ellis, et al. 2011; Major, et al. 2018; Fitts, et al. 2012). 

It is well understood that mineral dissolution and precipitation reactions can alter formation 

porosity and permeability (Tian, et al. 2019; Fitts and Peters, 2013; Bensinger and Beckingham 

2020; Sabo and Beckingham 2021). When considering these reactions in fractures, it is not well 

understood if fracture permeabilities will be enhanced by dissolution of minerals on the fracture 

surfaces (Ellis, et al. 2011) or reduced due to cementation from mineral precipitation (Gutierrez, 

et al. 2000). The formation of preferential flow channels is a common occurrence in fractures 

(Deng, et al. 2015; Spokas, et al. 2018), where the spatial distribution of mineral heterogeneities 

can both prevent (Spokas, et al. 2018) and promote (Jones and Detwiler, 2016) channelization. 

However, the distribution of minerals at the fracture surface, and the impact on sealing capacity, 

is not well understood.  

When considering fracture development, it is clear that rock composition plays a critical 

role (Guo, et al. 2015; Tian and Daigle, 2019; Ding, et al. 2012; Yoon, et al. 2019; Gale, et al. 

2014). This role is most often discussed in terms of rock mechanics including Young’s Modulus, 
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Poisson’s ratio, and brittleness/ductility indices. Rocks containing high proportions of brittle 

minerals (silica, feldspar, carbonate), though harder to deform, tend to produce many highly 

conductive fractures (i.e., Ding et al. 2012). In contrast, weaker rocks with higher ductile mineral 

content (organic matter, clay) are more prone to the formation of microfractures within the weak 

mineral phases (i.e., Laubach, et al. 2009). It should be noted here, however, that the quantification 

of brittleness is not always consistent (Holt, et al. 2015), and porosity, grain size, and confining 

stress can also influence deformation (Holt, et al. 2015; Gale, et al. 2014; Zhang, et al. 2016).  

Where fractures form in regard to different mineral phases and individual mineral grains is 

important for assessing reactivity but has largely not been considered. From the observations of 

bulk rocks (particularly Yoon, et al. 2019), one could hypothesize that fractures will form within 

soft, ductile minerals (clay, organic matter) as opposed to hard, brittle minerals (quartz, carbonate). 

However, a gap exists between the mechanical properties of rock samples and individual mineral 

phases. When considering the strengths of individual mineral phases, Moh’s scale of mineral 

hardness is the most common method. This, however, may not accurately assess the behavior of 

phases in the bulk sample and cannot account for mineral boundaries. In this work, we consider 

the distribution of minerals on fracture surfaces in hopes to enhance understanding of the role of 

mineralogy in controlling fracture formation to improve predictive capabilities of reactive fracture 

evolution and implications for subsurface CO2 systems.  
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2.3 Materials and Methodology 

2.3.1 Samples and Sample Preparation 

1” by 2” shale cores from the Mancos formation, found in the Western United States, and 

the Marcellus formation, found in the Mid-western and North-eastern United States, are used in 

this work. Four samples from each formation were fractured by applying unconfined uniaxial 

compressive stress to create initial fracture surfaces for analyzing. Prior to loading, the edges of 

each core were sanded level to prevent any influence of point loading. Each shale core was loaded 

at a rate of 0.5 mm/minute until an initial fracture was formed. Similar fracture results were found 

for multiple samples, where two Marcellus cores fractured smoothly down the middle, and three 

Mancos cores fractured relatively straight along the edge. One sample per formation was then 

selected for imaging analysis based on the suitability of the fracture surface for imaging (Fig. 2.1).   

 
Figure 2.1. Photo marking locations of SEM-EDS images on the induced fracture surfaces for 

Marcellus (left) and Mancos (right). 

 

2.3.3 Surface Imaging 

The fracture surfaces were imaged using SEM EDS imaging. Images were captured at 

aligning points on the fracture surfaces. The Mancos shale had two distinct strata of noticeably 

different compositions based on color (light/dark) and a set of correlating images were taken in 
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each region. Optical microscopy was used to take magnified images of the entire Mancos fracture 

surface to quantify the amount of the two strata (Fig. 2.2). The fracture surfaces and corresponding 

image locations for each sample are shown in Fig. 2.1.  

Quantitative image processing using MATLAB and ImageJ was carried out on SEM and 

optical images to determine mineral and strata volume fractions. Minerals were identified through 

analysis of EDS elemental maps informed with mineralogy from XRD analysis. Binary images 

representing individual elements were created by manually applying mean filters and thresholding 

EDS images in ImageJ to establish solid grains, followed by processing in MATLAB to remove 

residual noise pixels. Mineral phases were identified based on their ideal chemical composition by 

evaluating the elements present at each pixel. Using this logic, mineral maps were created in 

MATLAB by assigning a unique color to each phase and assigning a mineral phase to each pixel. 

Volume fractions of each mineral were then quantified by pixel counting. A representative 

elemental volume analysis (Appendix A) was carried out on the processed images to ensure that 

the areas analyzed were representative of the sample. The mineralogy of the fracture interface was 

then considered by comparison of mineralogy at adjoining points on the fracture surfaces. Both 

the optical surface images and SEM mineral map pairs were compared in MATLAB, pixel by 

pixel, to determine the composition of the mineral interface on each side of the fracture.  

 

2.3.4 Matrix Imaging 

Once surface imaging was complete, thin sections of the sample adjacent and perpendicular 

to the fracture were created for additional SEM imaging (example given in Appendix A, Figure 

A.3). The fractured core samples were first adjoined using epoxy before sending cured samples to 

Applied Petrographic Services Inc. for thin section preparation. The resulting thin sections were 
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imaged and processed using the same techniques as above to determine the mineral distribution of 

the near fracture rock matrix both perpendicular and parallel to the induced fracture.  

 

 

2.4 Results and Discussion  

2.4.1 XRD  

Collected XRD spectra and results of the peak matching in DIFFRAC.EVA are shown in 

Figure 2.2 for the Mancos sample and Figure 2.3 for the Marcellus sample. Using the specific 

gravity of each mineral, the percent of each mineral by weight from the software was translated 

into mineral percent by volume for easy comparison with the imaging analysis data. These values 

are given in Table 2.1 for both the Mancos and Marcellus samples. The Mancos sample is 

comprised of 52.1% quartz, ~8% illite, albite, and calcite, followed by 7.2% muscovite, 6.7% K-

feldspar, 6.6% dolomite, 3.2% kaolinite, and 0.1% pyrite. The Marcellus sample is 96.7% calcite, 

with 3% quartz and 0.3% pyrite.  
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Table 2.1. XRD results of the Mancos and Marcellus samples given as percent volume. 

  Muscovite Kaolinite Illite K-feldspar Albite Quartz Pyrite Calcite Dolomite 

Mancos 7.2 3.2 8.1 6.7 8.0 52.1 0.1 8.0 6.6 

Marcellus  - -  -  -  -  3.0 0.3 96.7 -  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Data peaks with assigned minerals shown as colored lines for the Mancos sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Data peaks with assigned minerals shown as colored lines for the Marcellus sample. 
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2.4.2 Imaging Analysis of Mancos Shale 

Optical images of the induced fracture surfaces and the 

respective processed SEM-EDS mineral maps for the Mancos 

sample are shown in Figures 2.4 and 2.5. From the optical 

images we can determine that 71% of the fracture surface is 

made up of the darker facies, and 29% is made of the lighter 

facies. To better understand and categorize these layers, the 

mineralogy of each facies is quantified from the respective SEM 

mineral maps where the resulting data is given in Table 2.2. 

From this data, we see that the dark Mancos facies is rich in clay 

as compared to the lighter facies that has more equal amounts 

of quartz, clay, and calcite, and will therefore be referred to as 

the QCC layer. It should be noted for this sample that the term 

“clay” may include kaolinite, illite/smectite, and/or muscovite. Though identified when possible, 

similarities in chemical formulas and challenges in image and XRD processing contribute to 

uncertainties in discerning discrete clay phases.  

 

Figure 2.4. Optical microscopy 

images of the induced fracture 

surface showing locations of 

SEM-EDS images, where areas A 

and B correspond the lighter facies 

and C and D to the darker facies. 
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Figure 2.5. Processed SEM-EDS mineral maps of the fracture surface. A and B correspond to 

the QCC (light) facies (Fig. 2.4) which and is predominately comprised of quartz (dark gray), 

calcite (yellow), and clay (kaolinite as dark pink and illite/smectite as light pink), with minor 

phases including dolomite (purple), pyrite (cyan), albite (dark blue), K-feldspar or muscovite 

(light blue), carbon (green), and other (light gray). C and D correspond to the clay (dark) facies, 

predominately comprised of kaolinite (pink). 

 

Table 2.2. Fracture surface (Fig. 2.5) and matrix (Fig. 2.6) mineralogy as volume percentages 

determined from pixel counting for Mancos shale. 

Mineral 
A  

(v%) 

B 

(v%) 

C 

(v%) 

D 

(v%) 

Perpendicular to 

fracture (v%) 

Parallel to 

fracture (v%) 

Pyrite 0.68 - 1.29 2.09 2.20 0.11 

Calcite 22.25 21.87 3.64 6.79 9.79 5.67 

Dolomite 2.49 2.06 1.53 2.16 5.67 6.08 

K-Feldspar 1.81 0.72 1.51 2.33 1.65 2.05 

Quartz 40.03 25.12 8.49 9.59 44.18 38.66 

Albite 1.45 - - 0.24 1.28 1.10 

Kaolinite 26.67 48.47 79.71 71.03 8.45 10.27 

Illite/Smectite - - - - 18.59 34.68 

Organic Carbon - - 1.92 4.05 2.08 1.05 

Other 4.62 1.76 1.92 1.72 1.13 0.33 

Pore Space - - - - 4.98 - 

 

600 µm 

A 

C 

B 

D 
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The composition of the fracture interface is given in Tables 2.3 and 2.4 where columns 

represent the mineralogy of one image (fracture surface), and rows represent the mineralogy of its 

adjacent image (opposite fracture surface). The intersection of column mineral i and row mineral 

j represents the percentage of the fracture surface that occurred at an i-j interface. From analysis 

of the optical images (Fig. 2.4), we find that the fracture surface predominantly occurs at interfaces 

comprised of clay-clay facies (72% clay-clay facies, 9% QCC-QCC facies, and 19% clay-QCC 

facies). In terms of individual mineral phases in the QCC (light) facies (Table 2.3), 26% of the 

fracture interface is at a quartz-kaolinite interface, followed by 17% calcite-kaolinite, 15% quartz-

calcite, 13% kaolinite-kaolinite, and 10% quartz-quartz. For the clay (dark) facies (Table 2.4), the 

fracture interface is predominately kaolinite-kaolinite (56%), followed by quartz-kaolinite (14%). 

For both lithofacies, quartz-kaolinite and kaolinite-kaolinite are prominent mineral interfaces for 

fracture, though mineral contents at each surface play a significant role in determining the 

percentage of each interface. 

 

Table 2.3. Fracture interface data for QCC (light) Mancos areas where columns represent the 

mineralogy of image A as percent volume and rows represent the mineralogy of the adjacent 

image B as percent volume. 

  Quartz Calcite Dolomite K-spar Kaolinite Other B (total) 

Quartz 9.515 8.956 0.944 0.301 19.628 0.688 40.032 

Calcite 5.697 4.751 0.374 0.128 10.897 0.406 22.253 

Dolomite 0.573 0.508 0.042 0.025 1.291 0.048 2.487 

Pyrite 0.174 0.163 0.014 0.003 0.313 0.014 0.682 

K-spar 0.675 0.354 0.030 0.000 0.718 0.035 1.811 

Kaolinite 6.859 5.877 0.564 0.227 12.681 0.458 26.666 

Albite 0.461 0.304 0.029 0.003 0.631 0.026 1.453 

Other 1.164 0.960 0.068 0.029 2.311 0.085 4.616 

A (total) 25.119 21.873 2.064 0.715 48.469 1.760   
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Table 2.4. Fracture interface data for clay (dark) Mancos areas where columns represent the 

mineralogy of image C as percent volume and rows represent the mineralogy of the adjacent 

image D as percent volume. 

  Quartz Calcite Dolomite Pyrite K-spar Kaolinite Albite Carbon Other D (total) 

Quartz 0.817 0.568 0.168 0.173 0.174 6.153 0.016 0.290 0.130 8.489 

Calcite 0.401 0.223 0.065 0.105 0.074 2.556 0.016 0.130 0.072 3.642 

Dolomite 0.157 0.106 0.022 0.028 0.058 1.092 0.001 0.041 0.020 1.526 

Pyrite 0.107 0.097 0.016 0.022 0.029 0.928 0.004 0.063 0.027 1.294 

K-spar 0.162 0.098 0.052 0.028 0.018 1.038 0.003 0.071 0.035 1.506 

Kaolinite 7.625 5.427 1.779 1.662 1.881 56.504 0.193 3.269 1.371 79.710 

Carbon 0.163 0.138 0.027 0.048 0.040 1.331 0.001 0.141 0.029 1.919 

Other 0.155 0.134 0.027 0.026 0.054 1.428 0.006 0.050 0.035 1.915 

C (total) 9.586 6.792 2.157 2.091 2.328 71.031 0.242 4.054 1.720   

 

Mineral maps of the near fracture matrix are shown in Figure 2.6. The matrix is dominated 

by quartz (39-44%) and clay (27-45%) mineral phases (Table 2.2). It should be noted that this is a 

relatively higher clay content than determined via XRD for the bulk sample (11.4% clay). This is 

likely due to natural variations in the sample composition where samples from the same core 

sample were used for XRD and imaging analyses. When compared to the average mineralogy of 

the fracture surface (Tables 2.1 and 2.2) it is evident that the matrix has a significantly higher 

quartz content, suggesting the fracture preferentially formed at clay-clay interfaces. Tian and 

Daigle (2019) found that 90% of microfractures formed within clay or organic matter, often along 

quartz or carbonate grain boundaries. Yoon et al. (2019), examined the cross-section of a Mancos 

shale fracture formed by compression with confining stress loaded parallel and perpendicular to 

bedding and found that fractures formed within more clay-rich micro-lithofacies, propagating 

between quartz grains. These observations agree with those of this work where clay is more 

prevalent on the fracture surface than is expected from the bulk mineralogy. This may suggest that 

fracture formation is governed by the relative strength of the mineral phases where clay minerals 

are weaker in comparison to quartz. 
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Figure 2.6. Processed SEM-EDS mineral maps of the near fracture matrix via thin sections. A 

shows the matrix perpendicular to the imaged fracture surface where the fracture shown is the 

fracture imaged in Fig. 2.5, and B shows the matrix parallel to that fracture. 

 

2.4.3 Imaging Analysis of Marcellus Shale 

Processed mineral maps for the Marcellus fracture surface and matrix are shown in Fig. 

2.7 and 2.8 respectively. The mineral contents at all four of the locations shown are consistent with 

that of the bulk XRD (Table 2.5). This sample is relatively homogeneous such that the bulk sample, 

fracture surface, and nearby matrix mineralogies are all comprised of more than 95% calcite. As a 

result, the fracture interface is dominated (94%) by calcite-calcite pixels (Table 2.6). The presence 

of clay in the mineral maps, and its absence in the XRD data, suggests clay content in the bulk 

sample is less than the 5% threshold needed to be distinguishable in XRD. Processed mineral maps 

reveal clay minerals present as filling in preexisting fractures, as evident in the longitudinal matrix 

in Fig. 2.8B.  
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Figure 2.7. Processed SEM-EDS mineral maps of the Marcellus shale fracture surface, where A 

and B correlate to which side of the fracture the image is from (Figure 2.1). 

 

 
Figure 2.8. Processed SEM-EDS mineral maps of the near fracture matrix. A shows the matrix 

perpendicular to the imaged fracture surface. B shows the matrix parallel to the imaged fracture, 

giving an example of a pre-existing clay filled fracture. 
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800 µm 

A 
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Table 2.5. Fracture surface (A and B) and matrix mineralogy as volume percentages determined 

by pixel counting compared for Marcellus shale. 

Mineral A (v%) B (v%) 
Perpendicular to 

fracture (v%) 

Parallel to 

fracture (v%) 

Pyrite 0.098 - 0.532 0.427 

Calcite 96.969 97.135 98.090 93.928 

Dolomite 0.007 - - - 

Quartz 0.733 0.680 0.559 3.355 

Kaolinite 0.219 0.213 0.069 1.389 

Organic Carbon 0.561 0.557 0.750 0.855 

Other (Al only) 1.414 1.414 - 0.046 

 

Table 2.6. Fracture interface data for the Marcellus sample where columns represent the 

mineralogy of fracture surface image A, and rows represent the mineralogy of the adjacent image 

B. Non-zero values are shaded for convenience. 

 Quartz Calcite Dolomite Pyrite Kaolinite Carbon Other B (total) 

Quartz 0.010 0.653 0 0 0.001 0 0.017 0.680 

Calcite 0.707 94.169 0.007 0.098 0.211 0.561 1.384 97.136 

Kaolinite 0.003 0.210 0 0 0 0 0 0.213 

Carbon 0.009 0.537 0 0 0.005 0 0.007 0.557 

Other 0.006 1.401 0 0 0.003 0 0.006 1.415 

A (total) 0.733 96.969 0.007 0.098 0.219 0.561 1.414  
 

2.4.4 Implications 

By quantifying and comparing the mineralogy of the fracture surface, surrounding matrix, 

and bulk sample for Mancos shale, we observe that the fracture surface has a significantly higher 

clay content than the bulk sample, suggesting that fractures may form preferentially in clay rich 

lithofacies. For the Marcellus shale, the mineralogical composition of the surface, matrix, and bulk 

sample are consistent with each other. We believe that this discrepancy between samples is a result 

of mineralogy and heterogeneity. The homogeneity of the Marcellus sample (97% calcite with no 

distinct lithofacies) provided no preferential path for the fracture to form and as such the fracture 

surface reflects the matrix and bulk mineralogy and is controlled only by principal stresses. In 
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contrast, the Mancos sample has a variety of mineral phases with at least two distinct lithofacies, 

one clay-rich and one comprised of a mixture of quartz, calcite, and clay. This variation in 

mineralogy provides options for fracture formation where, in this study, deformation occurs 

primarily along the weaker, clay-rich layer. This observation suggests fracture formation depends 

upon mineral composition where the unit highest in clay or organic matter content may be most 

favorable for fracturing and thus the corresponding mineral phases more prevalent on the surface.  

The reactivity of phases on the fracture surface is also a critical consideration for the 

possible reactive evolution of the fracture. In the Mancos sample, the fracture predominantly 

formed in clay rich regions. However, low fracture reactivity as a result of high kaolinite content 

(71-80% covering 71% of the surface) cannot be assumed due to high calcite content in the QCC 

regions at the surface. Calcite, the most reactive phase in this system, is more abundant on the 

fracture surface in comparison with the bulk mineralogy of this sample where calcite comprises 

8% of the bulk mineralogy and about 14% on average of the surface. This means that the fracture 

surface is more reactive than would be otherwise estimated using models based on the bulk 

mineralogy or artificially formed fractures that fail to reflect the enhancement of reactive phases 

on the surface.  
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Chapter 3 

Analysis of mineralogical spatial variation through autocorrelation 

 

3.1 Introduction 

 In reactive geological systems, the accessibility of minerals plays a controlling role in the 

evolution of porosity and permeability (i.e. Beckingham et al. 2017, Qin and Beckingham 2020, 

Beckingham 2017). This may also be true in fractures, where mineral disparities can significantly 

impact fracture sealing capabilities (Deng, et al. 2015; Spokas, et al. 2018; Jones and Detwiler, 

2016). In porous media experiments it has been found that the mineralogy of the bulk sample does 

not accurately represent the mineralogy accessible to the formation fluid (Landrot et al. 2012; 

Peters 2009; Beckingham et al. 2017; Qin and Beckingham 2019). This can be due to disconnected 

pores or clay coatings on grains, or in the case of fractures, the influence of weak minerals on 

deformation.  

Researchers have explored a variety of ways to quantify mineral distribution by evaluating 

some degree of variation over distance. A common example of this used across both geographic 

and geologic applications is variograms, which work by determining the variance (γ) of a single 

parameter in an isotropic or anisotropic field (Gringarten & Deutsch, 2001). Based on the Kriging 

model in spatial statistics, variograms assume that the values of neighboring points influence each 

other up to some distance, or range, at which the points become independent of each other. Thus, 

the variogram can help us predict the mineralogy of an unknown area based on its surroundings 

such that within some distance x we can predict that the distribution of a mineral is similar to that 

of our known data, where beyond that distance minerals are no longer spatially correlated (i.e., the 

distribution is random).  
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Similar to the variogram, a more novel approach is the entrogram (Bianchi and Pedretti, 

2017; Bianchi and Pedretti, 2018; Naimi, 2015). Based on the concept of entropy, an entrogram 

quantifies the degree of spatial disorder for a single parameter field measured by a relative entropy 

index (HR). For entrograms, low index values (0) suggest a highly ordered system, and high values 

(1) suggest a more disorderly system. This information is used to estimate the amount of 

information needed to predict the outcome of a random process (Bianchi and Pedretti, 2018). 

Though Bianchi and Pedretti (2018) used entrograms to evaluate hydraulic conductivity, they 

provided an example of entrogram use on binary image data as well to express the broad 

applications of such analyses.  

The final example of quantitative spatial analysis discussed here is autocorrelation. Unlike 

variograms and entrograms, this analysis can be performed on a multiphase sample, allowing us 

to compare the spatial distribution of one mineral phase with respect to another (Berryman & Blair, 

1986; Blair, et al. 1996; Anovitz, et al. 2021). This can be particularly useful to yield information 

for reactive transport calculations by analyzing the distribution of carbonate minerals, typically 

very reactive phases in natural porous media samples, with respect to pores. In this analysis, a two-

point autocorrelation function is used to determine the probability that both points of a random 

line, of random length and direction, will fall on the same mineral phase, where the results show 

the probability of occurrence of the phase(s) of interest. For all of these methods, it is assumed that 

at some point, typically large distances, the distribution becomes random. 

 In this study, two-point autocorrelation was used to quantitatively characterize mineral 

distributions at six different locations on a Mancos shale sample. The Mancos formation, located 

in the western United States, was used for this analysis due its heterogeneous mineral composition. 

The locations analyzed include four areas on a mechanically induced fracture surface, and two 
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areas within the nearby matrix: one parallel, and one perpendicular to the fracture surface. By 

performing autocorrelation analyses on a variety of areas within a single sample, we can observe 

not only the extent of spatial variation in a rock matrix over centimeter-scale distances, but also 

how mineral distributions may vary between the matrix and fracture surface with minimal impact 

from outside forces like formation discrepancies.   

 

3.2 Methodology 

A two-point autocorrelation analysis was used to evaluate and compare the spatial 

heterogeneities of the six images using approach from Anovitz et al. (2021). The six mineral maps 

created from SEM images of a Mancos shale sample produced and analyzed in Chapter 2 are the 

focus of this analysis (Fig. 2.5 and 2.6). This approach evaluates the probability of mineral phase 

distribution at different correlation lengths for a given image over an increasing distance. First, a 

characteristic function f(x) with values of only 1 and 0 must be defined. For this, ten binary images 

were created representing quartz, carbonate, clay, and other (encompassing all phases not 

previously categorized), and every pair combination of the four categories, for five of the six 

mineral maps. The sixth mineral map (matrix parallel to fracture) was segmented as well, with the 

inclusion of a pore category representing the fracture, resulting in the creation of 15 binary images. 

In these binaries, black represents the mineral(s) of interest, and white represents everything else 

(binary examples of Fig. 2.6A are given in Appendix B). Each image was also cropped to ensure 

an even number of pixels in both directions, and the corresponding volume fractions of each 

category and category pair were calculated for analysis. The correlation function for the five 

images without pore/fracture space is found by calculating the Fourier transform of the binary 

image, multiplying the result by its complex conjugate, back transforming the result, and 
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normalizing the final result so 0 means no correlation and 1 means perfect correlation (Anovitz, et 

al. 2021). For the cross-sectional matrix image, we want to analyze the distribution in two 

directions: along the fracture and across the fracture, into the matrix. The correlation functions 

used are provided below as an excerpt from Anovitz, et al. (2021): 

“Torquanto (2002) defined the characteristic function in terms of an indicator 

function I(i)(x): 

𝐼(𝑖)(𝑥) = 𝑓(𝑥) =  {
1, 𝑥 ∈  𝑉𝑖

0, 𝑥 ∈  𝑉̅𝑖
             (2) 

where Vi is the volume occupied by the ith phase, and 𝑉̅i is the volume of the rest 

of the sample. As summarized by Anovitz et al. (2013, who used f(x) instead of 

I(i)x), for a monomineralic sample, if we let f(x) = 1 for the pores, and 0 for the 

solid, then the first two void-void correlation functions (1- and 2-point) for an 

isotropic material are given by 

               (3) 

              (4) 

where the    brackets indicate a volume average over x, r is a lag distance, r = |r| 

for an isotropic material, and  is the pore fraction. 

[…] 

correlation probabilities can also be represented using the autocovariance and/or 

autocorrelation coefficient functions: 

,        (10) 

and 

            (11) 

where g is the volume fraction of a grain phase, p is the volume fraction of pores, and p + g = 

1. is a normalized version of .” 
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3.3 Results 

The rock matrix perpendicular to the fracture 

(Fig. 2.6A) was analyzed vertically along the fracture 

and horizontally into the matrix (these angles will be 

differentiated as θ1 and θ2, respectively). The resulting 

data is shown in Figure 3.1 where the data is 

normalized with respect to pores to evaluate the spatial 

relationship between mineral phases without the 

influence of their abundance. Here, the area 

normalized probabilities of clay, quartz, carbonate, 

and other as a function of distance from any point in 

the fracture are shown, where the initial point (S1) is 

always a fracture pixel. Figure 3.1 shows that in both 

directions, clay is most likely to be present at any 

distance from a given fracture pixel. When looking 

into the matrix (θ2) approximately 7 microns from the 

fracture, clay and quartz are 16.7 and 6.6 times more 

likely to be present than carbonate. When compared to 

the volume fractions for Fig. 2.6A in Table 2.2, clay is 

1.7 times more abundant than carbonate, and quartz is 

4.5 times more abundant than carbonate. As we look 

closer to the fracture at about 2.3 microns, clay is approximately 2.8 times more likely to be present 

 

 

Figure 3.1 Cross-correlation curves for the cross-

sectional fracture matrix normalized to the volume 

fraction of each phase analyzed along (top) and 

across (bottom) the fracture.  
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than quartz, and the discrepancies between these phases and carbonate increase further. Therefore, 

clay and quartz are significantly more likely to be present near the fracture surface than carbonate 

minerals. Additional information that can be read from Figure 3.1 is that for θ2, the clay 

distribution becomes random at around 200 microns from any point in the fracture. This 

observation further describes the presence of a clay rich layer surrounding the fracture, estimating 

it to be roughly 400 microns thick. 

 The cross-sectional fracture matrix is also analyzed with respect to carbonate, quartz, and 

clay in both directions. Because each of these graphs are extremely similar in both directions, we 

will only discuss the data for θ2 here. However, graphs for θ1 can be found in Appendix B. Figure 

3.2, 3.3, and 3.4 show the θ2 graphs for each mineral phase as a function of distance from any 

carbonate, quartz, or clay pixel, respectively. In the autocorrelation curves for distance from 

carbonate minerals (Fig. 3.2), the values at short distances (less than 10 microns) are relatively 

proportional for quartz and clay, with other phases only slightly more present. The changes 

increase at distances greater than 10 microns. The probability of quartz pixels to be present at 

distances 10 microns and larger from calcite is highest, followed by clay, then other.  The 

significant bend in the carbonate-carbonate curve (blue) denotes the average grain size of the 

carbonate minerals (approximately 57 microns). It should be noted that this size is based on both 

calcite and dolomite grains. Similarly, the autocorrelation curves for clay minerals encompasses 

both kaolinite and illite. In this graph (Fig. 3.4), quartz is about 1.9 times more likely than 

carbonate to occur next to clay minerals.  This is also reflected in the curves for quartz (Fig. 3.3) 

in the quartz-clay curve that shows clay is more likely than other phases to be found close to quartz 
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pixels, reflecting that clay coatings are more likely to occur on quartz grains than carbonate 

minerals.  

 

 

 

 
Figure 3.2. Autocorrelation/cross-correlation for the cross-sectional fracture matrix (Fig. 2.6B) 

at θ2 normalized to the volume fraction of each phase with respect to carbonate. 
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Figure 3.3. Autocorrelation/cross-correlation for the cross-sectional fracture matrix (Fig. 2.6B) 

at θ2 normalized to the volume fraction of each phase with respect to quartz. 

 

 

 

 
Figure 3.4. Autocorrelation/cross-correlation for the cross-sectional fracture matrix (Fig. 2.6B) 

at θ2 normalized to the volume fraction of each phase with respect to clay. 
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In Figures 3.1 through 3.4 we analyze the matrix mineral distribution just beyond the 

fracture surface in two directions. However, to compare a more general matrix distribution with 

that at the fracture surface, the autocorrelation/cross-correlation analysis is carried out on Figures 

2.5 and 2.6B radially. Figures 3.5, 3.6 and 3.7 show the resulting autocorrelation of the matrix 

parallel to the fracture evaluated that reflects distance from carbonate, quartz, and clay pixels.  

 

 

 

  
Figure 3.5. Autocorrelation/cross-correlation for the parallel to fracture matrix (Fig. 2.6B) 

normalized to the volume fraction of each phase with respect to carbonate 
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Figure 3.6. Autocorrelation/cross-correlation for the parallel to fracture matrix (Fig. 2.6B) 

normalized to the volume fraction of each phase with respect to quartz. 

 

 

 
Figure 3.7. Autocorrelation/cross-correlation for the parallel to fracture matrix (Fig. 2.6B) 

normalized to the volume fraction of each phase with respect to clay. 
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Figures 3.8 through 3.19 show these results for fracture surface areas A, B, C, and D as 

shown and described in Figure 2.5. From the carbonate graphs (Figures 3.5, 3.8, 3.11, 3.14, and 

3.17) we observe that the average grain size in the matrix is larger and more uniform than that on 

the fracture surface, suggesting the surface has a wider distribution of carbonate grain sizes. A 

steeper slope for all phases is observed in all graphs in the matrix compared with the fracture 

surface (Figures 3.5 through 3.19). This distinct difference in slope suggests that minerals at the 

fracture surface are more uniformly distributed than those in the matrix.  

When comparing the QCC and clay-rich lithofacies at the fracture surface we notice that 

quartz and carbonate are more uniformly distributed in the clay-rich facies described by a flatter 

curve in these regions (Figures 3.8, 3.9, 3.11, 3.12, 3.14, 3.15, 3.17, and 3.18). A final observation 

can be made for the carbonate and quartz graphs comparing the matrix and surface where, for both 

graphs in the matrix, all cross-correlation curves converge and become random. In contrast to this, 

one QCC area (Fig. 2.5A, Fig. 3.8-3.10) and both clay-rich areas (Fig. 2.5C and 2.5D, Fig. 3.14, 

3.15, 3.17, and 3.18) do not completely converge at large distances. These observations of the 

fracture surface and matrix suggest a more uniform distribution of carbonate and quartz minerals 

at the fracture surface, with a wider variety of grain sizes than what is found in the matrix.  

It is also found that at some distance in the matrix the distribution will always become 

random, where distribution is a function of mineral abundance. However, at the fracture surface 

this is not necessarily the case. For the QCC area (Fig. 2.5A, Fig. 3.8-3.10), the nonconverging 

curve is related to the other group where we can assume this is due to the variety of minerals 

involved. An outlier, however, is clay-rich area Fig. 2.5D (Fig. 3.17). where carbonate is most 

correlated to quartz, but quartz is more correlated to clay and other. It is unlikely such large 

disparities are an artifact of the autocorrelation function as they do not exist in the other figures. 
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As such we may consider that either the spatial distribution of Fig. 2.5D is an outlier, or that the 

distribution here is not inherently random and is in fact controlled by fracture formation.   

 

 

 

 

 

  
Figure 3.8. Autocorrelation/cross-correlation for the QCC fracture surface A (Fig. 2.5A) 

normalized to the volume fraction of each phase with respect to carbonate. 
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Figure 3.9. Autocorrelation/cross-correlation for the QCC fracture surface A (Fig. 2.5A) 

normalized to the volume fraction of each phase with respect to quartz. 
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Figure 3.10. Autocorrelation/cross-correlation for the QCC fracture surface A (Fig. 2.5A) 

normalized to the volume fraction of each phase with respect to clay. 
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Figure 3.11. Autocorrelation/cross-correlation for the QCC fracture surface B (Fig. 2.5B) 

normalized to the volume fraction of each phase with respect to carbonate. 
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Figure 3.12. Autocorrelation/cross-correlation for the QCC fracture surface B (Fig. 2.5B) 

normalized to the volume fraction of each phase with respect to quartz. 
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Figure 3.13. Autocorrelation/cross-correlation for the QCC fracture surface B (Fig. 2.5B) 

normalized to the volume fraction of each phase with respect to clay. 
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Figure 3.14. Autocorrelation/cross-correlation for the clay-rich fracture surface C (Fig. 2.5C) 

normalized to the volume fraction of each phase with respect to carbonate. 
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Figure 3.15. Autocorrelation/cross-correlation for the clay-rich fracture surface C (Fig. 2.5C) 

normalized to the volume fraction of each phase with respect to quartz. 
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Figure 3.16. Autocorrelation/cross-correlation for the clay-rich fracture surface C (Fig. 2.5C) 

normalized to the volume fraction of each phase with respect to clay. 
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Figure 3.17. Autocorrelation/cross-correlation for the clay-rich fracture surface D (Fig. 2.5D) 

normalized to the volume fraction of each phase with respect to carbonate. 
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Figure 3.18. Autocorrelation/cross-correlation for the clay-rich fracture surface D (Fig. 2.5D) 

normalized to the volume fraction of each phase with respect to quartz. 
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Figure 3.19. Autocorrelation/cross-correlation for the clay-rich fracture surface D (Fig. 2.5D) 

normalized to the volume fraction of each phase with respect to clay. 
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3.4 Conclusions 

From Chapter 2 we established that fracture surface mineralogy is significantly higher in 

clay than would be expected from XRD data suggesting fracture formation is partial to clay-rich 

lithofacies. However, this conclusion was drawn strictly through the quantification of mineral 

abundance. Here, we expand on this abundance data by quantifying mineral distributions at the 

fracture surface and beyond. We observe that the clay-rich lithofacies through which the fracture 

form, extend up to roughly 200 microns into the matrix beyond the fracture walls. Within this 

facies, clay minerals are 16.7 times more likely than carbonate minerals to appear 7 microns from 

the fracture, despite clay being only 1.7 times more abundant than carbonate in the XRD data. This 

probability further increases as distance from the fracture decreases. When we compare the 

fracture surface distribution to that of the matrix it is clear that the surface has a more uniform 

mineral distribution at any distance, with a wider variety of carbonate grain sizes. When evaluated 

with respect to any phase, the matrix distribution will always become random at large distances. 

However, this is not necessarily true for the fracture surface, where some phases have higher 

degrees of correlation than others even at large distances, particularly surface area D (Fig. 2.5D). 

To determine if this is true for all fractures, more samples would need to be examined. 
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Chapter 4 

Conclusions and contributions to new knowledge 

 

In this study, Mancos and Marcellus shale samples were subject to unconfined compression 

until an initial fracture formed. The samples with fracture surfaces most suitable for imaging were 

chosen as subjects for SEM-EDS analysis where representative mineral maps were created for 

both the surface and near fracture matrix. This work then takes an in depth look at fracture surface 

mineralogy in homogenous and heterogenous shale samples to infer the influence of mineralogy 

on fracture formation. This type of analysis has not been previously done in the literature and this 

work is the first to quantify and compare the mineralogy of an unaltered fracture surface with that 

of the matrix and bulk sample.  

For the heterogeneous Mancos shale sample, the fracture surface mineralogy proved to be 

significantly different from that of the bulk, containing 3.5 times more clay on average. The surface 

also contained 1.4 times more clay on average when compared to the longitudinal matrix, and 2.4 

times more when compared to the cross-sectional matrix. For the Mancos shale, classified as brittle 

by Holt et al. (2015), it is clear that weak clay minerals are more abundant on the fracture surface 

than anywhere else in sample. Furthermore, cross-correlation results of the cross-sectional matrix 

show that clay minerals have the highest probability of occurring near the fracture when compared 

with quartz and carbonate minerals. Accompanied with the findings of Yoon, et al. 2019, we 

believe it is very likely that weak minerals, such as clay, will be more prevalent on the fracture 

surface than would be expected from bulk data.  

In regard to the Marcellus shale sample, mineralogy at the fracture surface was consistent 

with that of the bulk and surrounding matrices. Though clay exists in this sample, it was observed 
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in SEM only within pre-existing deformations, suggesting it precipitated after the fact. Due to the 

homogeneity of this sample, we cannot determine any relationship between mineralogy and 

fracture formation.  

The autocorrelation data for the Mancos shale allowed us to quantify the mineral 

distributions and expand on our results beyond simply mineral abundance. In the matrix just behind 

the fracture walls it was found that clay is 16.7 times more likely than carbonate to be present 

within 7 microns of the fracture. The results from this image further defined the clay-rich 

lithofacies chosen by the fracture, estimating that it extends up to roughly 200 microns into the 

matrix beyond the fracture. When comparing the matrix and fracture surfaces it was found that the 

surface has a more uniform distribution of minerals and a wider range of grain sizes. Perhaps the 

most noticeable difference between the surface and matrix is that the spatial distribution in the 

matrix always became random and the surface did not (Fig. 2.5D, Fig. 3.7 most notably). Due to 

the small sample size of two images for this particular area, we cannot determine if this data is an 

outlier or a true result of fracture surface mineralogy. Though spatial analyses are common in 

porous media applications, the quantification of mineral distribution changes with respect to 

fractures is done for the first time in this work. 

The implications on what these results mean for fracture evolution in a CCS system will 

be dependent upon the heterogeneity of the formation. In a highly heterogeneous formation like 

Mancos shale, fracture evolution will depend heavily upon the reactivity of the expected clay 

phase. In Figure 2.5, clay was defined at the fracture surface exclusively as kaolinite. However, in 

the matrix and XRD, illite is the most abundant clay phase. Because of their distinct chemical 

differences, it is unlikely that the fracture surface has high illite content, though it is also unlikely 

that there will be none. Though this will of course impact fracture reactivity, the most reactive 
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phase in this sample is calcite. Overall, the fracture surface contains 13.8% calcite, 15.9% quartz, 

and 64.4% clay based on the average mineralogies of each lithofacies and their abundance on the 

surface. When presented this way, calcite content at the surface is relatively consistent with that 

of the matrix and XRD, though clay is still significantly higher. However, carbonate minerals are 

not evenly distributed across the fracture surface and are instead concentrated in high calcite zones 

(QCC layer). As a result, it is likely that surface dissolution will occur primarily at QCC regions 

(29% of the surface) causing aperture increases at small, focused areas and flow paths 

perpendicular to the fracture. From autocorrelation, we see that approximately 7 microns of 

mineral dissolution is required for additional carbonate minerals to be exposed in abundance. With 

dissolution focused at QCC regions, potential for fluid to access this additional calcite increases. 

As a result, we can hypothesize that fracture evolution can increase caprock permeability in more 

directions than simply through the fracture.  
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Appendix A 

Chapter 2: Role of mineralogy in controlling fracture formation 

 

 
Figure A.1. REV check for Mancos SEM images where each step on the x-axis denotes a 10% 

decrease in image size, and the y-axis is the percentage of kaolinite left in the image. 

 

 
Figure A.2. REV check for Marcellus SEM images where each step on the x-axis denotes a 10% 

decrease in image size, and the y-axis is the percentage of quartz left in the image. 
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Figure A.3. Thin sections for imagining analysis of matrix. Mancos perpendicular (A) and 

parallel (B) to fracture. Marcellus perpendicular (C) and parallel (D) to fracture.  

A B 

C D 
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Appendix B 

Chapter 3: Analysis of mineralogical spatial variation through autocorrelation 

 
Figure B.1 Carbonate binary for cross-sectional Mancos matrix (Fig. 2.6A) where black is 

carbonate and white is everything else. 

 

 
Figure B.2 Carbonate-clay binary for cross-sectional Mancos matrix (Fig. 2.6A) where black is 

carbonate and clay, and white is everything else. 

600 µm 
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Figure B.3 Carbonate-quartz binary for cross-sectional Mancos matrix (Fig. 2.6A) where black 

is carbonate and quartz, and white is everything else. 

 

 
Figure B.4 Carbonate-pore binary for cross-sectional Mancos matrix (Fig. 2.6A) where black is 

carbonate and pore, and white is everything else. 
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Figure B.5 Carbonate-other binary for cross-sectional Mancos matrix (Fig. 2.6A) where black is 

carbonate and other group, and white is everything else. 

 

 

Figure B.6. Area normalized autocorrelation with respect to carbonate along the fracture (θ1) in 

Figure 2.6A. 
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Figure B.7. Area normalized autocorrelation with respect to quartz along the fracture (θ1) in 

Figure 2.6A. 

 

 

Figure B.8. Area normalized autocorrelation with respect to clay along the fracture (θ1) in 

Figure 2.6A. 
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