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Abstract 

 

Land use and climate are the two key factors affecting the hydrological processes of a watershed. 

This research aimed to evaluate the impact of changing land use and land cover (LULC) and 

climate change on hydrological responses and water quality by applying the Soil and Water 

Assessment Tool (SWAT) to Big Creek Lake watershed located in Mobile County, South 

Alabama. Digital elevation model (DEM), LULC data, weather data, soil data, observed 

streamflow, nitrogen, and phosphors data were input files used to calibrate and validate the 

SWAT model. Downscaled and bias-corrected daily projected climate data were used under 

moderate (Representative Concentrative Pathways4.5) and extreme (Representative 

Concentrative Pathways8.5) scenarios. These data were used as inputs of a calibrated SWAT 

model of the watershed in order to determine the effects of climate change and LULC on 

streamflow and total nitrogen and phosphorus in the watershed from 2020 to 2050. The SWAT 

model was calibrated and validated using the SUFI-2 algorithm in the SWAT Calibration 

Uncertainties Program (SWAT-CUP) software. LULC changes and climate changes were 

investigated to quantify the effects of the major hydrological components such as actual 

evapotranspiration, percolation, lateral flow, surface runoff, groundwater and water yield. About 

11,045 acres of agricultural land and 3,350 acres of urban area has been increased and 11,482 

acres of forest area has been decreased between 1991 and 2020. This changing scenario of LULC 

has increased not only the stream flow but also the total nitrogen and phosphorus. The average 

annual total precipitation would increase about 4874 mm (RCP4.5) and 5357 (RCP8.5) mm in 

future thirty years compare to the last three decades (1991-2020). Moreover, the temperature will 

also increase at about 1.80C and 1.70C for RCP4.5 and RCP8.5 scenario respectively. This 

increasing precipitation and temperature lead to the increasing stream flow and total nitrogen and 

phosphorus of the watershed. But, the impact of climate variability on the streamflow and 

nitrogen and phosphorus would be more profound in RCP8.5 than RCP4.5. The results obtained 

in this study are able to provide guidance to water resource management and plan to policy 

makers and water managers in the Mobile County.  

Keywords: LULC, DEM, SWAT, SUFI-2, RCP  
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CHAPTER 01 

INTRODUCTION 

1.1 Background 

The population of the Mobile County has increased by about 30,228 from the last 30 years (US 

Census Bureau) (http://eire.census.gov/popest/data/cities/tables/). Census results for Mobile 

County in 2020 count population numbers at 412,512 people, an increase of 7.3% from the 1991 

population rate. A temporal analysis study from 1974 to 2008 was conducted by Ellis et al in 

2008 on the changing LULC of the Big Creek Lake watershed. They concluded that forest area 

decreased significantly, and the urban area increased in a great percentage. Besides that, Mobile 

Area Water and Sewer Systems (MAWSS) in 2004 also stated the residential area is increasing 

day by day. In 2017, it was claimed by MAWSS and the Alabama Department of Transportation 

(ALDOT) that the construction of a new eight-mile stretches of Highway 98 to reduce traffic 

congestion is supposed to increase erosion and transport of sediment runoff and thus degrade the 

water quality of the watershed. 

According to the U.S. Environmental Protection Agency (USEPA), nonpoint source (NPS) 

pollution continues to be the largest source of pollution within the USA (USEPA 2012a) causing 

harmful effects to fisheries, wildlife, drinking water, and other natural resources. USEPA 

reported that 44% of water quality was deteriorated in the United States in the 21st century 

(Miller, 1992). In Alabama, agriculture and forestry are known to cause NPS pollution problems 

(USEPA, 2006).  Particularly in agricultural watersheds, NPS pollution has become a major 

environmental concern (USEPA,2007).  

Watershed models are effective tools and techniques to simulate the streamflow and transport of 

pollutants under different management practices. These models are capable of simulating and 
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evaluating processes potential evapotranspiration, percolation, infiltration, surface runoff, 

baseflow, sediment transportation, and nutrient transport on a location-specific basis (Novotny, 

2003). The output from these models includes water inflow and outflow, pollutant loading, and 

other information that can be used to manage watersheds and reduce NPS pollution. Both 

structural and nonstructural Best Management Practices (BMPs) are used to reduce NPS 

pollution (Novotony, 2003). According to Neitsch et al. (2011), the SWAT model is one of the 

most widely used models to assess streamflow and NPS pollution problems.  

1.2 Goal and Objectives 

This research focused on two main components of the watershed including the changes in 

hydrological response and the water quality parameters due to the changes in climatological 

conditions and LULC over time. Specific objectives of this study are: 

1) How increasing urban area and agricultural area over time alter the hydrological 

response and deteriorate water quality. 

2) To quantify the change of water balance components and the rate of nitrogen and 

phosphorus level in the watershed due to climate change  

 

1.3 Organization of the Thesis 

 

This study focuses on the above-mentioned two objectives. Each objective is explained in an 

individual chapter and each chapter is written as a separate manuscript. 

Impacts of increasing urban area and expansion of the agricultural area over time (1991-2020) on 

streamflow as well as water quality are addressed in chapter 2.  

The focus of chapter 3 is to quantify the changes in streamflow and the level of nitrogen and 

phosphorus in the watershed due to climate change over time (1991-2020) and to project stream 
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flow and amount of nitrogen and phosphorus from 2021 to 2050 under two different 

Representation Concentration Pathways (RCP).  

Chapter 4 are the conclusions that contains the summary and suggestions for future work. 
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CHAPTER 2 

Impact of LULC on Hydrological Response and Nitrogen and Phosphorus of 

Big Creek Lake Watershed, South Alabama 

2.1 Introduction 

According to Zhang et al., 2017; Gao et al., 2016 and Jarsjö et al., 2012, in these recent decades, 

hydrological responses to the changing environment have become a research interest area. 

Among all the factors affecting the hydrological processes, land use change and climate change 

are given much importance to study (Li et al.,2009; Liu et al., 2014; Pan et al., 2017 and Yin et 

al., 2017). Changing Land Use and Land Cover (LULC) influence runoff-rainfall processes by 

affecting the surface components such as evapotranspiration, infiltration, and percolation. 

Various types of land use have different reflectivity (albedo), roughness, leaf areas, soil depth, 

which impacts the land-surface interactions by affecting temperature, humidity, wind speed and 

precipitation (Wei and Zhang, 2010; Pitman, 2003 and Sy et al., 2017). Changes in LULC will 

have impact on these interactions resulting in differences in surface moisture, heat, and 

momentum fluxes (Sertel et al., 2010 and Lee and Berbery, 2012). According to Marland (2003), 

local, regional, and global climate and hydrological processes depend on the spatial distribution, 

size, extent and location of land cover changes. Though many investigations have focused on the 

hydrological response due to changes in land use (Welde and Gebremariam, 2017; Wang et al., 

2017; Lin et al., 2015 and Nie et al., 2011), the relationship between changing land use and the 

hydrological response deserve more investigation. Thus, an analysis of hydrologic events is 

important to recognize changes in LULC for the prevention of hydrological problems and for 

managing water quality. 
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According to the U.S. Environmental Protection Agency (USEPA), nonpoint source (NPS) 

pollution continues to be the largest source of pollution within the USA (EPA 2012a). USEPA 

reported that 44% of water quality was deteriorated in the United States in the 21st century. NPS 

pollution is a broadly elaborative category that includes many diffuse sources of aquatic 

contaminants carried by rainfall or snowmelt runoff (EPA 2012b), or any source of water 

pollution which is not meeting the legal definition of a point source within the Clean Water Act. 

Many sources exist for NPS pollutants, but nutrients are the most common NPS pollutants, 

though, pollution from pesticides, pathogens, salts, oil, grease, toxic chemicals, and heavy metals 

are also widespread (EPA 2012c). According to National Water Quality Assessment, agriculture 

is the leading contributor to water quality impairments, particularly within rivers and lakes. The 

inventory also reported that urban area runoff is a significant contributor to the pollutants found 

in estuaries (EPA 2012a). These findings also agree with the result of Dowd, Press, and Huertos 

(2008) which identified agricultural activities and highly impervious urban areas as major 

sources of NPS pollutants. NPS pollution resulting from urban areas is exacerbated by the 

extensive expanses of impervious surfaces that hamper the absorption of water (Esen and Uslu, 

2008). 

One such water body that is susceptible to pollution due to development is Big Creek Lake in 

Mobile County, AL. A great deal of controversy exists surrounding the lake, primarily regarding 

a three-year court battle between Mobile Area Water and Sewer System (MAWSS) and the 

Alabama Department of Transportation (ALDOT) over a new eight-mile stretch of Highway 98 

which was constructed to reduce traffic congestion. In 2017, it was claimed by MAWSS and 

ALDOT that this construction project would increase erosion and transport of sediment runoff 

and it would increase pollution of the watershed and degrade water quality. This controversy led 
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to public awareness regarding the significance of responsible land use management within the 

watershed.  

The use of hydrological models is essential because of the effective planning of water resources 

and protection under changing environmental conditions and models can simulate flow regimes 

under different scenarios. Therefore, various hydrological models have been developed to 

provide a link between change scenarios and water yields, through the simulations of the 

hydrological process within the watersheds. Some of the models include Agricultural Non-Point 

Source (AGNPS) (Young et al., 1989 and Bhuyan et al., 2003), Hydrological Simulation 

Program-FORTRAN (HSPF) (Bicknell et a., 1996), MIKE SHE (DHI, 1993), Soil and Water 

Assessment Tool (SWAT) (Arnold et al., 1998) and Agricultural Policy/Environmental Extender 

(APEX) (Williams, Izaurralde and Steglich, 2008). Many of these hydrological models are 

applied for runoff, sediment yield, and soil loss prediction. Among all these models, the SWAT 

model is the most widely used and it has been applied in different areas to analyze numerous 

problems of hydrology and water quality, including the potential changes to the streamflow 

under different climate scenarios.  Simulation of runoff from a catchment can be carried out with 

the help of mathematical equations. Almost 4000 peer-reviewed articles related to the SWAT 

model have been published and among these almost 1000 articles are related to the hydrological 

responses to climate changes (Gassman et al., 2010). SWAT has achieved worldwide recognition 

because it is utilized to evaluate water and sediment yield and water quality parameters under 

present conditions, management practices, and future climate conditions with spatial and 

temporal resolutions that depend on the data availability. Woldesenbet et al. (2017), Kamali et al. 

(2017), Zhang et al. (2016), Lima et al. (2014), and Coe et al. (2009) have used conceptual and 

semi-distributed hydrological modeling to assess the impact of LULC on hydrological responses. 
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The utilization of different hydrological models is significant because it helps to adapt measures 

for water resource management, and to provide the basis for decision-making or choices related 

to sustainable development alternatives and conservation practices brought about by evaluating 

the changes in hydrological components due to changing LULC (Refsgaard and Abbott, 1996, 

Abbaspour et al., 2015 and Loucks et al. 2005). The significance of the study is the result could 

be used by the water resources planners and managers as the study is highlighting the changes of 

stream flow and water quality in terms of LULC change and future climate change scenarios.   

2.2 Materials and Methods 

2.2.1 Study Area 

The area of Big Creek Lake or J.B. Converse Lake is 3,600 acres which is a tributary-storage 

reservoir in Mobile County located in southwest Alabama. Although the lake itself is only 3,600 

acres, the watershed draining into it covers approximately 65,920 acres or 103 square miles 

(MAWSS 2011; Journey and Gill 2001). Big Creek Lake, a central reservoir, is fed by several 

tributaries including Big Creek, Jackson Branch, Juniper Creek, Collins Creek, Long Branch, 

Boggy Branch, Crooked Creek, and Hamilton Creek. Though Big Creek Lake watershed 

encompasses large areas in Mobile County, no large municipalities exist within the watershed 

but there are several smaller towns including Wilmer and Semmes which are located within the 

watershed boundaries. Figure 2.1 shows the location of the watershed and the location of the 

weather and water quality data stations. Big Creek Lake watershed lies within the Southern Hills 

District of the East Gulf Coastal Plain section of the Coastal Plain Physiographic Province in 

close proximity to the Gulf Coast. The Gulf of Mexico influences the subtropical climate of the 

watershed. Relative to the rest of the United States, the area encompassing the watershed is 

ranked second in terms of annual rainfall only to the Pacific Northwest (Baldwin, 1973). The soil 



9 
 

type of the watershed is mainly ultisols, consisting of well-developed profile characteristics that 

reflect the influence of the active factors of soil formation. These soils are well-drained and 

acidic. Ultisols make up 100% of the total watershed and it includes Troup‐Heidel‐Bama 

Association, Troup‐Benndale‐Smithton association, and Shubuta‐Troup‐Benndale association. 

  2.2.2 Data Required 

A Digital Elevation Model (DEM) and associated topography, LULC, and soils, of the study 

watershed, are all the spatial inputs that are required to run the Soil Water Assessment Tool 

(SWAT) model (Monteith, 1965, Willams, 1969 and Arnold et al., 2012). Other inputs required 

for the model to run are long-term weather data, soil properties data, and discharge data. 

Moreover, several mathematical equations are also used in different analyses. Figure 2.2, 2.3 and 

2.4 are representing the LULC, slope and soil data of the present study area respectively.  

The DEM datasets were downloaded from the USGS National Map 

(https://viewer.nationalmap.gov/basic/). The spatial resolution is 10 meters which is a 1 arc-

second (10m * 10m) pixel resolution. For LULC data, Landsat images obtained from the USGS 

data hub (https://earthexplorer.usgs.gov/) and multi-seasonal images chose from 1990 to 2020 

with minimum cloud cover to have the lowest atmospheric effects. The details of the images 

represent in Table 2.1. Each LULC product was primarily based upon the classification of 

Landsat data. Classification was performed using the unsupervised approach. Initially, a given 

Landsat image was subjected to unsupervised classification using Iterative Self-Organizing Data 

Analysis Techniques (ISODATA) clustering with 20 total clusters, convergence set to 0.995 (on 

the scale of 0 to 1), 100 iterations, and cluster means initialization along the principal axis. The 

resulting classification was then reclassified into the water, forest, urban, agriculture, and 

rangeland. Then, the accuracy assessment was performed to evaluate the classification is done 
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properly or not. Table 2.2 is representing the accuracy assessment value for each LULC product. 

Random sampling method was chosen for the accuracy assessment and this method was 

associated with the points that are randomly distributed within the study area. By comparing the 

referenced points and observed points, accuracy matrices were generated. A matrix change 

detection method was applied to show from and to LULC changes within these years. The LULC 

change detection products was generated using standard GIS overlay analysis techniques. The 

change detection approach involved a comparison of two dates of LULC classifications. 

For the soil data, SSURGO (Soil Survey Geographic Database) were used. The soil data and 

information on related soil properties were obtained from 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.  According to Natural 

Resource Conservation Service (NRCS), SSURGO is the most detailed level of county soil data. 

Climatic data including daily rainfall, maximum and minimum temperatures, and average wind 

speed at one weather station in the study were obtained from the NOAA (National Oceanic and 

Atmospheric Administrations) website from the period between 1990 and 2020. The link is given 

here https://www.ncdc.noaa.gov/cdo-web/datasets. In cases where any of the meteorological data 

are not included or missed in the model, the SWAT utilizes a built-in weather generator model 

(WXGEN) to stochastically generate daily weather values based on historical monthly averages 

of parameters such as temperature, precipitation, relative humidity, wind, and solar radiation. 

The missing values are recorded as -99. Discharge data obtained from the USGS National Water 

Information System: Web Interface. The data are available at this link 

https://waterdata.usgs.gov/nwis/rt. The data are available on daily, monthly, and annual basis. 

Water quality data are also available in the USGS National Water Information System Web 
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Interface. Water quality data are not available daily or even monthly but rather its reporting is 

random.  

The hydrological components and processes and the amount of nutrients within a watershed have 

significant impact on management practices and operations. Therefore, it is important to 

incorporate management practices information in the SWAT model to have the sufficient and 

reasonable outputs. Butler and Srivastava (2007) developed Best Management Practices (BMPs) 

database for Alabama state. Previously this management database had been used by many studies 

conducted within Alabama (Mirhosseini et al., 2016; Srivastava et al., 2010). For cropland areas, 

Peanut - Cotton rotation was used and Bermuda grass for rangeland. The management 

information for the peanut-cotton rotation is included in Table 2.3. Bermuda grass was planted in 

the beginning of March and then harvested in July every year (Ahring et al., 1974; Shaver et al., 

2006) for the period of 30 years (analyzed time).  

2.2.3 SWAT Model Description  

The SWAT (Soil Water Assessment Tool) is a physically based hydrologic model and requires 

physically based data (Jacobs and Srinivasan, 2005). SWAT is a continuous-time, spatially 

distributed model designed to simulate water, sediment, nutrient, and pesticide transport at a 

catchment scale on a daily time step under different management practices (Jain and Sharma, 

2014). The SWAT model has been developing for almost 30 years now and it has been modified 

and adapted numerously for better performance (Simić, 2009). The SWAT model is used to 

estimate relevant hydrologic components such as evapotranspiration, surface runoff, and peak 

rate of runoff, groundwater flow, and sediment yield for each Hydrological Response Units 

(HRUs). The SWAT is embedded in a GIS interface called Arc-SWAT- an Arc GIS extension 
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that is a graphical user interface for the SWAT 2012 which evolved from AVSWAT, an 

ArcView extension developed for an earlier version of the SWAT.  

The SWAT model is a continuous process-based, computationally efficient, and is also capable 

of continuous simulation over a long time. Weather, hydrology, soil temperature and properties, 

plant growth, nutrients, pesticides, bacteria and pathogens, and land management are the major 

components used to run the SWAT model. In the SWAT model, a watershed is divided into 

multiple sub-basins or sub-watersheds and then each sub-basin is further subdivided into an 

HRU. HRUs are located in the subbasin and comprised of unique land use, soil, and slope 

characteristics. The HRUs are used to describe spatial heterogeneity in terms of land cover, soil 

type, and slope class within a watershed.  

Surface runoff occurs whenever the rate of water application to the ground surface exceeds the 

rate of infiltration. SWAT provides two methods for estimating surface runoff and these are the 

Modified SCS curve number procedure (SCS, 1972) and Green & Ampt infiltration method 

(1911). In this study, the SCS curve number method was used to estimate surface runoff. 

The peak runoff rate is estimated by the use of a modification of the Rational Method. Water is 

routed through the channel network by using a variable storage routing method or the 

Muskingum routing method. In this study, Muskingum routing methods were used for surface 

runoff.  

The model estimates the evaporation from soils and transpiration from plants. Potential 

evapotranspiration can be estimated by the three methods in SWAT: Priestley–Taylor (Priestley 

and Taylor, 1972), Penman-Monteith (Monteith, 1965), and ET–Hargreaves (Hargreaves, 1985). 

In this study, the Penman-Monteith method was used to estimate potential evapotranspiration 
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because this method includes precipitation, minimum and maximum temperature, wind speed, 

relative humidity, and solar radiation to measure evapotranspiration. The other two do not 

include all these parameters. 

SWAT simulates plant growth through a simplified version of the Environmental Policy 

Integrated Climate model (EPIC), developed by Williams (1995), which considers the heat units 

(or growing Degree-Days) for each species considered. 

SWAT simulates soil erosion and sediment transport throughout the drainage channels of the 

watershed. SWAT calculates the surface erosion for each HRU using the inbuilt Modified 

Universal Soil Loss Equation (MUSLE). According to Williams (1975), The MUSLE is the 

modified version of USLE which replaced the rainfall intensity with the runoff intensity to 

eliminate the need for delivery ratio, to improve sediment yield prediction, and allow the 

equation to be applied to individual storm events (Neitsch et al., 2002). MUSLE estimates 

sediment yield from surface runoff volume, peak runoff rate, area of the HRUs, soil erodibility, 

support practice, topography, cover and management, and coarse fragment USLE factors.  

The SWAT considers two physical processes: sedimentation (deposition) and transportation, 

simultaneously. Briefly, the SWAT partitions soil N into five different N pools. Two of the pools 

are inorganic (ammonium-N [NH4-N] and nitrate-N [NO3-N]) and three pools are organic 

(active, stable, and fresh). Transformation of nitrogen (N) in different pools is modeled using 

mineralization, decomposition, immobilization, nitrification, denitrification, and ammonium 

volatilization processes (Chaubey et al., 2006). By using the supply and demand approach, plant 

use of nitrogen is estimated (Santhi et al., 2006). Unlike N, soil phosphorous (P) in SWAT is 

divided into six pools (three minerals and three organics). Crop residue and biomass contribute 

to the fresh organic phosphorus pool, and humus substances contribute to the active and stable 
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organic pool. Soil inorganic pool includes active, solution, and stable pools (Chaubey et al., 

2006). The portion of phosphorus from solution inorganic phosphorus is taken up by plants and 

is in rapid equilibrium with the active pool. The active phosphorus pool is in rapid equilibrium 

with the solution pool and slow equilibrium with the stable pool. A stable inorganic pool is 

relatively unavailable for plant uptake (Neitsch et al., 2002). Like nitrogen, plant use of 

phosphorus is estimated using the supply and demand approach (Santhi et al., 2006). 

A full explanation about SWAT model theories and structure is given in the SWAT theoretical 

documentation (http://swatmodel.tamu.edu/) (Neitsch et al., 2011). 

2.2.4 SWAT Model set up 

The SWAT model requires input parameters including DEM and associated topography, weather 

data, LULC data, and soil data. Besides, water infrastructure and other land management 

practices can also be incorporated. The first step of model set-up was the delineation of the 

watershed and the sub watershed reaches and the outlet. As SWAT is a physically derived 

model, it derived topography, contours, and slope from the DEM and it was used to divide the 

basin into subbasins.  

Once the source DEM was added, the model then used contours and slope which were calculated 

during delineation, to determine flow direction and flow accumulation. When flow direction and 

flow accumulation were extracted, the model generated a stream network in which each reach 

drained a sub-basin, all of which drained into a major reach. Each reach had an outlet. Then the 

user had to select an outlet that corresponds to the outlet at which discharge measurements for 

calibration were being collected. This outlet then determined the lower boundary for the 
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watershed basin, which then delineated based on the location of that outlet and the stream 

network.  

To define HRU, the model required the LULC, soil, and slope. Once the LULC, soil, and slope 

are defined, HRUs were created with a unique combination of those three classes. The LULC 

and soil data were imported to the model for determining the HRUs for each sub-basin. A Land 

use lookup table was used to specify the land use category and also the Soil SSURGO data were 

used to identify the soil types, linked to the SWAT databases to reclassify the land use and soil 

map. The slope was reclassified into five classes by using multiple slope option. The threshold 

percentage method was applied to eliminate minor land use, soil type, and slope and a 5% 

threshold for minimal amounts of LULC, 10% threshold for both soil and slope were used. The 

HRUs were generated, and the corresponding report was also generated by the model which was 

specifying the area of different HRUs in various subbasins.  

The final step before the simulation was the creation of input tables, including the weather data. 

The weather data included maximum and minimum temperature, precipitation, and wind speed. 

For relative humidity and solar radiation, the US Weather generator was used. The files were 

successfully rewritten and stored in the personal geodatabases of the model. After this step, the 

model ran to simulate the surface runoff. 

2.2.5 Uncertainty and Sensitivity Analysis 

Sensitivity analysis is the identification of the sensitive parameters that have an important 

influence on the performance of the model so that adjustments will be precise. This operation 

was carried out by SWAT-CUP which is developed by the Swiss Federal Institute of Water 

Science and Technology (EAWAG), and it is specialized in SWAT calibration, validation, and 
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uncertainty analysis. The SWAT-CUP is a standalone program that links to SWAT’s output text 

files, which integrates five different optimization algorithms: Sequential Uncertainty Fitting 

(SUFI-2) (Abbaspour et al., 2007), Generalized Likelihood Uncertainty Estimation (GLUE) 

(Beven and Binley, 1992), Parameter Solution (ParaSol) (Van Griensven and Meixner, 2006), 

Markov chain Monte Carlo (MCMC) (Kuczera and Parent, 1998; Marshall et al., 2004; Vrugt et 

al., 2003), and Particle Swarm Optimization (PSO) (Zhang et al., 2015). Among all of these 

algorithms, SUFI-2 is the capacity to account for all the sources of uncertainty on the parameter 

ranges such as uncertainty in driving variables (e.g., rainfall), conceptual model, parameters, and 

measured data (Abbaspour et al., 2007) and for this reason, the SUFI-2 was used in this study to 

analyze the sensitivity of the model. 

2.2.6 SWAT Model Calibration and Validation 

The calibration of the hydrological model is done to optimize its predictive capacity by 

comparing its simulated values with the observed or actual values of the study area. Validation is 

the process of demonstrating the capability of making a sufficiently accurate simulation, which 

may vary based on the aim of a project (Refsgaard, 1997). I used the five years of warm up 

periods that is from 1986 to 1990. The calibration and validation period were equal for stream 

flow, nitrogen and phosphorus. Predicted and observed values of streamflow and nutrient 

loadings at the watershed outlet were compared to determine whether the objective function 

satisfactorily involves running a model using the parameters during the calibration and 

comparing the results from the different periods of calibration to determine whether the model 

meets confidence limits. The model validation was done with the same SWAT parameter values 

calibrated without any further alterations. For calibration and validation, the period was 

determined by the length of the observed data record. If the observed data period is sufficiently 
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long that is representing the different climatic conditions, then it can be possible to split the data 

equally for the calibration and validation. However, if the length of the data record is not 

sufficiently long, then the length of the data may be different in such a way that the calibration 

period is sufficiently long. The SWAT input parameters are physically based, and calibration 

parameters are allowed to vary within a realistic uncertainty range (Gassman et al.,2005). 

2.2.7 Model Evaluation 

The performance of the model was evaluated by using qualitative graphical comparisons and 

quantitative statistical techniques. Qualitative methods were involved plotting observed and 

simulated streamflow, total phosphorus, and nitrogen loading at a monthly time-step. In 

quantitative methods, the performance of the model in the simulation was evaluated by Nash-

Sutcliffe Efficiency (NSE), Percent of Bias (PBIAS), and the Coefficient of Correlation (R2) as 

proposed by Moriasi et al. (2007) which are most commonly used. 

 

                     (1) 

   

                      (2)                                   

 

               (3)                   

 

where Oi is the ith observation for the constituent being evaluated; Pi is the ith simulated 

value for the constituent being evaluated; O̅ is the mean of observed data for the constituent 

being evaluated; P̅ is the mean of simulated data for the constituent being evaluated and n is 

the total number of observations. 

2.3 Results  
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2.3.1 Land Use and Land Cover (LULC) Change 

The LULC time series analysis between 1990-2020 had been done to present the comparative 

analysis. Figure 2.5 and Table 2.8 had been shown the percentage of land use and transformation 

of land use over the period. Water had a decreasing trend continuously from 1990 to 2020 and 

371 acres were transformed into other LULC over this period. Forest was one of the main land 

uses of the watershed and forest was lost in a large percentage. From 1990-2000, almost 60% of 

the watershed area was forest land. But, after one decade (2010) forest area reduced by about 

10%. 11,482.80 acres of forest area had been transformed into other LULC over a 30 year period 

(Table 2.8). On the other hand, urban areas increased (3,350 acres) in the past three decades, 

showing an increment of 1293 acres from 1990 to 2000, 632 acres from 2000 to 2010 and 1,423 

acres from 2010 to 2020. Agricultural land increased (11,045 acres) and rangeland decreased 

(2,542 acres) in the last three decades. From 1990 to 2000, agricultural land had increased but 

from 2000 to 2010 agricultural land again decreased and in the last decade, it had increased by 

about 10,510 acres. The LULC time series analysis between 1990 and 2020 indicates an 

expansion of the agricultural land and an increase of urban area with a reduction in forest land 

and rangeland (Table 2.8).  

Table 2.9 represents the amount of the transformation of one type of LULC to another type. 

Forest had been changed into rangeland and urban areas by approximately 8,086 and 3,905 acres 

respectively in the last three decades. Agricultural land transformed into rangeland (852 acres) 

and urban area (674 acres) mostly from 1990 to 2020. Meanwhile, during the same period, 

rangeland changed into the agricultural area (5,380 acres) and urban area (2,080 acres).  

2.3.2 Sensitivity Analysis 
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Table 2.4 represents the fifteen parameters used to calibrate and validate the stream flow. Based 

on sensitivity analysis, fifteen parameters were used such as curve number (CN), biological 

mixing efficiency (BIOMIX), Manning's "n" value for overland flow (OV_N), peak rate 

adjustment factor (PRF), exponent parameter for calculating sediment re-entrained in channel 

sediment routing (SPEXP), USPE equation (USLE_P), plant and soil evaporation factor (ESCO 

and EPCO) and groundwater (ALPHA_BF, GW_DELAY, GW_REVAP, and RCHRG_DP). 

SOL_LABP, SOL_ORGP, LAT_ORGN, and SOL_ORGN were used to calibrate the nitrogen 

and phosphorus flow in the watershed.  

These parameters had a significant impact on the stream flow. Table 2.5 is showing the list of the 

parameters that is the ranking of the parameters based on the t-stat and p-value. The highest 

value of t-stat and lowest value of p-values, the highest influence of that parameter, and vice 

versa. Based on the values, ESCO, ULSE_P, and BIOMIX are the most effective parameters, 

and SOL_AWC, OV_N, RCHRG_DP have less impact on the calibration and validation of the 

model.  

2.3.3 SWAT Model Calibration and Validation 

The graphs showing the observed and simulated monthly stream flow, total nitrogen and 

phosphorus period are shown in Figure 2.7 A, B and C respectively. The differences in average 

monthly observed simulated and values of stream flow were less than 1% (Table 2.7). The R2, 

NSE and PBIAS values for streamflow for the calibration and validation periods are listed in 

Table 2.6. Based on the classified value stated by Moriasi et al. (2015), the SWAT model 

showed a very good level in the NSE for calibration (0.77) and validation (0.73). Adjustment 

between the observed, calibrated, and validated stream flow reached a good level for an R2 of .81 
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for both calibration and validation.  A good classification was obtained for PBIAS, with values 

of -10.7% and −15.4% for calibration and validation respectively. 

The observed and simulated total nitrogen and phosphorus at a monthly time-step from January 

1991 to September 2004 are shown in Figures 2.7 B and C. According to the classification by 

Moriasi et al. (2007), the SWAT model calibrated and validated the nitrogen and phosphorus 

satisfactorily in the determination coefficient (Table 2.5).  

2.3.4 The relationship among Flow, Nitrogen, Phosphorus, and LULC 

The relationship between stream flow and LULC, nitrogen, and LULC and phosphorus and 

LULC is shown by the Figure 2.8 (A), (B), and (C) respectively. The effect of the stream flow, 

nitrogen, and phosphorus was estimated for the 30-year study period (1990-2020) by running for 

the LU_1990, LU_2000, LU_2010, and LU_2020 scenarios. The greatest differences in the total 

stream flow between LU_1990 and LU_2000 and between LU_2010 and LU_2020, with a 

decrease of around 12 m3/s and 21 m3/s respectively. These differences from 1990 to 2000 were 

characterized by increasing urban area and agricultural land by 1,293 and 894 acres respectively 

and increasing stream flow from 2010 to 2020 were influenced by increasing agricultural land 

and urban area by 10,510 acres and 1,423 acres respectively. Moreover, comparing LU_1990 

and LU_2020, total monthly stream flow increased about 38 m3/s and it can be explained by 

changing LULC that is increasing agricultural land by 11045 acres and urban area by 3,350 

acres. Also, the same behavior was noticed in the stream flow between LU_2000 and LU_2010, 

by increasing stream flow by about 5 m3/s. This behavior can be described by decreasing 

agricultural land and increasing rangeland by about 7278 acres (Table 2.8 and figure 2.5).  
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Both nitrogen and phosphorus had an increasing trend over the last three decades. From 1990 to 

2020, 1,136,919 kg nitrogen and 2010 to 2020,768893 kg nitrogen increased and this can be 

explained by increasing agricultural land by about 11045 and 10510 acres respectively. Though 

from 1990 to 2020, 324467 kg of phosphorus had increased and most of the phosphorus (around 

253975 kg) increased in the last decades (2010-2020) (Table 2.8 and Figure 2.7 B and C).  

2.3.5 Impacts on the Hydrological Components of the Changing LULC 

The seasonal averages from 1990 to 2020 of evapotranspiration (ET), percolation (PERC), 

surface runoff (SURQ), lateral flow (LAT_Q), groundwater flow (GW_Q), and water yield 

(WYLD) for LU_1990 and LU_2020 is represented by figure 2.9. On one hand, ET had an 

increasing trend in all seasons but specifically, it was noticed in the spring and summer seasons 

because the highest precipitation occurs in those two seasons and temperature is also high.  On 

the other hand, The PERC values represented the growing trend in all seasons and this trend can 

be described by the changing LULC over the period. LAT_Q increased over time and 

particularly a sharp increasing trend in the fall and winter season. However, SURQ and GW_Q 

had a decreasing trend and both had a positive relationship with the total stream flow. The 

depletion of GW can be caused by the increasing agricultural area because agriculture needs 

groundwater recharge and plants uptake groundwater also urban areas (impermeable surface) 

prevents to water to absorb by the surface. SURQ and GW_Q decreased mostly in the spring and 

summer seasons.  

For scenarios LU_1990 and LU_2020, the impact of changing LULC (Figure 2.6) from 1990 to 

2020 on the hydrological components over the average monthly values and their relative changes 

are depicted in figure 2.10 and table 2.10. A general increasing trend can be observed in monthly 

ET. A significant increase is noticed in May, June, and July at about 4.43 mm, 8.93 mm, and 
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6.56 mm respectively. The annual average of increasing ET value is 1.77 mm (Table 2.10) and it 

can be associated with the increase of agricultural land by 11,045 acres between 1990 and 2020. 

PERC had a decreasing trend over the three decades on a monthly scale with -5.38 mm. Both 

SURQ and LAT_Q had a growing trend in the relative changes on a monthly scale for the period 

between LU_1990 and LU_2020. LAT_Q ranges from 0.17 mm in July to 0.60 mm in January. 

Monthly variations for SURQ range from -0.59 mm in July to 2.91 mm in April, with an annual 

average increase of 1.51 mm (Table 2.10, Figure 2.10 A and B). GW_Q had shown a decrease 

for all the months of the year with relative changes ranging from -2.18 mm in February to -11.10 

mm during august with an annual average decrease of -5.12 mm. Both PERC and GW_Q had 

decreasing trends all over the month and it can be related in such a way that reducing PERC can 

cause the decreasing water availability from the bottom layer of the soil to the shallow aquifer 

thus creating a negative impact on the GW_Q. Moreover, the WYLD also had shown a negative 

trend all over the month in a year ranging from -0.4 mm in March to -10.58 mm during July 

(Table 2.10). A -3.56 mm decrease in the relative annual average WYLD between 1990 and 

2020 can be the result of the decreasing trend of WYLD because reducing GW_Q accelerates the 

negative trend of the WYLD.  

2.4 Discussion 

2.4.1 Hydrological Modeling  

SWAT modeling is one of the most widely used and recognized models in terms of simulating 

water balance components within a watershed (Tuppad et al., 2011 and Thai et al., 2017). 

However, the software has some limitations associated with a large number of input parameters. 

According to Nyeko (2014) and Saxton and Rawls (2006), some parameters must be obtained or 

estimated from global databases, equations, or other software. However, the SWAT has been 
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tried with continuous development in its geospatial structure to represent the physical 

characteristics of the landscape as realistically as possible (Bosch et al., 2010, Bonuma et al., 

2014 Rathjens et al., 2015 and Sun et al., 2015).  In this study, the different scenarios of LULC 

data were obtained from the USGS earth explorer data hub and the LULC were derived from the 

unsupervised classification using ERDAS imagine software. The weather data were available for 

only one station, however, by choosing the right parameters and performing good calibration, 

these weather data can be used with satisfactory results, as it was used in the present study. The 

simulation of nitrogen and phosphorus were difficult due to the availability of observed data. The 

error statistics for calibrations and validations obtaining by SWAT-CUP range from ‘satisfactory 

to good’ categories according to Moriasi et al. (2005). The use of the same period for one 

calibration and validation allowed for better results of the different water balance components on 

monthly, seasonal and annual scales under different LULC scenarios.  

2.4.2 Water Balance Components Under Different Land-Use Scenarios 

The study shows that changing LULC that occurred from 1990 to 2020 in the Big Creek Lake 

watershed were characterized by a substantial increase in agricultural land and expansion of the 

urban area. These results complement the study of the comparison of temporal images of LULC 

for the watershed that was done by Ellis et al. (2008) and another study conducted by MAWSS 

(2011). Both studies stated urban area expansion and the percentage of high residential areas and 

low residential areas is 2.3% and 10.1% respectively. A Previous work conducted by Auburn 

University relied on Landsat Thematic Mapper satellite images for 1984,1992, and 1995 to 

identify changes in land use in the Big Creek Lake watershed over time (Reutebuch and others, 

1997). The most dramatic change was noticed as net regrowth of forest cover from 1984 to 1992, 

and that was followed by a net loss of forest in 1995. However, minimal change was observed in 
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agricultural lands. The significant impact of changing LULC directly have impacts the behavior 

of the hydrological cycle components. According to Moran-Tejeda et al. (2014), ET is the key 

element to understand the impact of changing LULC on water production. The increase of 1.77 

mm per year of ET between LU_1990 and LU_2020 could be caused by the increase in 

agricultural land. This result agrees with the statement by Neitsch et al. (2005) that the SWAT 

model estimates the ET based on the water intercepted by the plant canopy, the maximum plant 

transpiration rate, and the maximum soil evaporation rate.  Esen and Uslu (2008) compared 

various cropland and found dry croplands to produce the highest runoff. He (2003) simulated a 

watershed model which showed that expansion of urban areas is likely to increase in surface 

runoff as well as peak flow. Another study by Corbett et al. (1997), stated the runoff from the 

urban area is much higher than the forested one in the South Carolina coast.  

PERC had decreased by -5.38 % from LU_1990 to LU_2020. On the other hand, LAT_Q and 

SURQ had been increased and this increasing LAT_Q and SURQ accelerated the total stream 

flow by about 38 m3/s over the last three decades. According to Cristina et al. (2015), they have 

reported that a reduction of forested areas reduces increases surface runoff (SURQ) and stream 

flow, particularly during the rainy season. When forestland is converted into agricultural land, 

soil compaction reduces infiltration due to cattle ranching, decreasing organic matter and hence 

increase overland flow in agricultural land compared to forest land (Biggs et al., 2006 and 

Moraes et al. 2006). Another factor is a large fraction of precipitation becomes surface runoff 

(SURQ) because of reduced infiltration. According to Lin et al. (2015) and Yan et al. (2013), 

deforestation and urbanization usually decrease percolation, increase SURQ, and lead to increase 

in runoff. According to Lampartar et al. (2016), changing LULC could have negative impacts on 

water balance components, such as decreased evapotranspiration (ET) and infiltration as well as 
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the increase in streamflow (Q) and surface runoff (SURQ). These can have a direct or indirect 

influence on the functions and services of the hydro systems and biodiversity conservation. 

2.4.3 The Increasing Nitrogen and Phosphorus Under Changing LULC 

The increasing LAT_Q and SURQ complement the increase of total nitrogen and phosphorus in 

the watershed by 1,136,919 kg and 32,4467 kg respectively over the past thirty years. Lateral 

flow and surface runoff contribute to the stream flow and these two types of flow also carry the 

pollutants from the agricultural land. According to Journey and Gill (2001), the percentage of 

agricultural lands is highest in the Crooked Creek subbasin, accounting for over 41% of the 

subbasin. Much of the land in the subbasin is designated as row crops. Hamilton Creek has also 

the highest percentage of agricultural land (36.1 %).  

Potential sources of nutrients in the Big Creek Lake watershed are from nonpoint contributions 

associated with fertilizer applications on agricultural and residential land, livestock wastes, 

residential runoff, failing septic systems, contaminated groundwater. No known point sources are 

located in the Big Creek Lake watershed. According to Journey and Gill (2001), the total annual 

nutrient loads to Big Creek Lake for the 1991 water year were 118,000 kg for total nitrogen and 

5,245 kg for total phosphorus. As population growth continues, the conversion of forested areas 

to agriculture and urban areas, loadings of nutrients are expected to increase because most of the 

land use is converted to urban areas. Basnyat et al. (2000) showed that forests act as nitrite 

linkage and thus reduce pollution rates and woodlands have low hydrological activities due to 

high surface storage in leaves.  

A study conducted by Gill et al. (2005) and prepared in cooperation with MAWSS and 

concluded that total nitrogen (except for Long Branch), total Kjeldahl nitrogen (except for 
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Hamilton Creek), total organic nitrogen (except Boggy Branch), ammonia (except Long Branch), 

total inorganic nitrogen, and total phosphorus (except for Long and Boggy Branches) exhibited a 

significant, positive relation with streamflow, which indicates the dominant source of nutrient 

input to the watershed is from nonpoint sources. The more residential and agricultural subbasins 

of Crooked Creek and Hamilton Creek, however, yielded over twice the total phosphorus per 

hectare of land use. Crooked and Hamilton Creek subbasins also had higher total inorganic 

nitrogen yields. These results complement the present study, that with time, the stream flow 

increases with the total nitrogen and phosphorus. This increasing nature has a completely 

positive relation with increasing agricultural land and urban areas.  

A significant, positive relation between streamflow and nutrient concentration indicates that 

nonpoint sources are the dominant source of input. Different land-use practices contribute 

different levels of nutrients by nonpoint sources. According to study done by Jones and Allain 

(2001) on the Big Creek Lake watershed, they ranked agricultural land as the highest for run-off 

risk. A study by Reckhow and others (1980) summarized that nutrient export coefficients for 

total nitrogen and phosphorus are the smallest for forested land and greatest for agricultural and 

urban land-use categories. The range in nutrient yields is due to differences in climate, soils, and 

land-management practices for each category. 

2.5 Conclusion 

The SWAT model is very significant and useful because it can predict the future hydrological 

responses. This model has the power of stimulating the stream flow, water quality, and the 

components of the water balance such as ET, PERC, SURQ, LAT_Q, GW_Q, and WYLD.  
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The total stream flow has been growing by 38 m3/s, and total nitrogen and phosphorus have 

been increased by about 113,619 kg and 32,4467 kg respectively over the last three decades. 

The ET, LAT_Q, SURQ has been increased by 1.77%, 0.35%, and 1.51% respectively but on 

the other hand, PERC, GW_Q, and WYLD have been decreased by -5.38%, -5.12%, and -

3.56% respectively between LU_1990 and LU_2020. These changes have been caused by the 

decreasing forest and increasing agricultural and urban areas. The results can be used by the 

decision-makers and public policy changers because this study is quantifying the impact of the 

changing LULC on the water balance components and water quality and can be used for future 

projections in terms of LULC changes. If this rate of LULC change is going on, it can have a 

serious affect on the environment and the people living in Mobile county. Future projection of 

LULC could be modeled using remote sensing technology and land use models, and simulated 

future LULC that could be used to assess the impacts of changing LULC on the hydrological 

components. The changing LULC should be considered by policy makers and planners 

associated with watershed management for sustainable and effective management of water 

resources.  
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Table 2.1: Description of acquired images 

Sensor Instrument Acquired Date Path Row  Resolution 

Landsat TM-5 01-10-1990 021 039 30 m 

Landsat TM-5 01-06-2000 021 039 30 m 

Landsat TM-5 02-02-2010 021 039 30 m 

Landsat OLI-TIRS 02-14-2020 021 039 30 m 

 

Table 2.2: Accuracy assessment of the classified images 

 

 Overall Classification 

Accuracy (%) 

Overall Kappa 

Coefficient 

LU_1990 80 0.71 

LU_2000 85 0.77 

LU_2010 85 0.78 

LU_2020 90 0.81 

 

 

Table 2.3: Management operations for cropland of the study area 

Plant Type Operation 

Date 

Operation Type Operation 

Attributes 

Land use 

Bermudagrass 01-March Planting 
 

 

Rangeland 01-July Harvesting 
 

Peanut 15-May Planting 
 

 

 

 

 

Agricultural land 

21-October Harvesting 
 

Cotton 25-March Tillage Generic Conservation 

tillage 

15-April Planting 
 

15-April Fertilizer application 45 kg/ha Nitrogen 
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15-April Fertilizer application 40 kg/ha Phosphorus 

10-June Fertilizer application 50 kg/ha Nitrogen 

15-September Harvesting 
 

 

 

Table 2.4: Model parameters and their descriptions in surface flow, total nitrogen and 

phosphorus calculations 

 
Parameter Parameter Description Fitted value Minimum value Maximum value 

ADJ_PKR Peak rate adjustment factor for 

sediment routing in sub 

watershed 

2 0.5 2 

ALPHA_BF Baseflow alpha factor (days) 0.1 0 1 

BIOMIX Biological mixing efficiency 0.2 0 1 

CN Curve number Decrease 20% 35 98 

EPCO Plant evaporation compensation 

factor 

0.95 0 1 

ESCO Soil evaporation compensation 

factor 

1 0 1 

GW_DELAY Groundwater delay time (days) 20 0 500 

GW_REVAP Groundwater “revap” 

coefficient 

0.02 0.02 0.2 

OV_N Manning's "n" value for 

overland flow "n" value for 

overland flow 

1 0.01 30 

PRF Peak rate adjustment factor for 

sediment routing in the main 

channel 

1 0 1 

RCHRG_DP Deep aquifer percolation factor 0.05 0 1 

SOL_AWC Available water capacity of soil 

layer 

0.7 0 1 

SOL_K Saturated hydraulic 

conductivity 

0.2 0 2000 

SPEXP Exponent parameter for 

calculating sediment retrained 

in channel sediment routing 

1.5 1 1.5 

USLE_P USLE equation support practice 

factor 

1 0 1 

SOL_LABP Initial soluble P concentration 

in sol layer 

0.01 0 100 
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SOL_ORGP Initial organic P concentration 

in sol layer 

0.01 0 100 

LAT_ORGN Organic N in the baseflow 0.01 0 200 

SOL_ORGN Initial organic N concentration 

in the soil layer 

0.01 0 10 

 

 

Table 2.5: Sensitive parameters ranking based on t-Stat and p-Value 

 

Parameter Name t-Stat p-Value 

r__ESCO.bsn -0.215278727 0.829640698 

r__USLE_P.mgt -0.226950855 0.820557782 

r__BIOMIX.mgt 0.227096486 0.820444606 

r__ALPHA_BF.gw -0.278863619 0.780468599 

r__SOL_K().sol 0.671455455 0.502250766 

r__GW_REVAP.gw -0.728852367 0.466444494 

r__GW_DELAY.gw 0.846668373 0.39759842 

r__SPEXP.bsn -0.969346487 0.332856487 

r__EPCO.bsn 1.115696614 0.265105646 

r__CN2.mgt -1.333777787 0.18290399 

r__ADJ_PKR.bsn -1.443612737 0.149494876 

r__PRF_BSN.bsn -1.948062549 0.051985146 

r__RCHRG_DP.gw -1.994993478 0.046603828 

r__OV_N.hru -2.862365089 0.004387183 

r__SOL_AWC().sol -38.3178933 0 

 

 

Table 2.6: Statistical evaluation of the model for calibration and validation time periods 

 
R2 NSE PBIAS  

Calibration Validation Calibration Validation Calibration Validation 

Stream 

Flow 

0.81 0.81 0.77 0.73 -10.7 15.4 

Nitrogen 0.75 0.77 0.62 0.65 9.34 -3.45 

Phosphorus 0.5 0.54 0.34 0.24 -20.45 -21.76 
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Table 2.7: Average annual observed and simulated streamflow, total nitrogen and phosphorus  

 

Variable Average Annual Value 

Average Observed Stream Flow 4.14 m3/s 

Average Simulated Stream Flow 4.16 m3/s 

Average Observed Nitrogen 5157.79 Kg/Ha 

Average Simulated Nitrogen 6214.33 Kg/Ha 

Average Observed Phosphorus 651.79 Kg/Ha 

Average Simulated Phosphorus 1040.19 Kg/Ha 

 

Table 2.8: Area of LULC (acres) for the LU_1990, LU_2000, LU_2010 and LU_2020 and their 

relative changes 

 

 

 

Table 2.9: Area of changing LULC (acres) between 1990-2000, 2000-2010, 2010-2020 and 

1990-2020 

 

From To 1990-2000 2000-2010 2010-2020 1990-2020 

Water Forest 303.88 40.88 153.57 155.54 

Water  Agriculture 7.54 365.07 6.42 2.06 

Water  Rangeland 18.02 1.35 11.78 10.20 

Water  Urban 29.69 0.00 3.15 4.60 

Forest  Water 79.99 83.56 72.12 190.25 

Forest  Agriculture 1064.39 417.80 855.63 2681.43 

Forest  Rangeland 2663.39 6446.73 4707.84 8086.32 

 
LULC (Acres) Relative Change (Acres)  

LU_1990 LU_2000 LU_2010 LU_2020 1990-

2000 

2000-

2010 

2010-2020 1990-

2020 

Water 3476.90 3212.34 3207.57 3105.90 264.56 4.77 101.67 371.00 

Forest 39780.30 39716.30 32168.40 28297.50 64.00 7547.90 3870.90 11482.80 

Urban 3321.40 4615.20 5248.02 6671.53 -1293.80 -632.82 -1423.51 -3350.13 

Agriculture 2813.51 3707.91 3349.13 13859.49 -894.40 358.78 -10510.36 -11045.98 

Rangeland 17409.50 15550.20 22828.60 14867.30 1859.30 -7278.40 7961.30 2542.20 
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Forest  Urban 1996.45 3607.81 1794.97 3905.79 

Agriculture  Water 6.02 10.15 0.66 6.37 

Agriculture  Forest 864.23 552.36 112.02 595.45 

Agriculture  Rangeland 964.12 2325.02 538.36 852.80 

Agriculture  Urban 606.61 348.08 313.65 674.76 

Rangeland Water 21.38 26.41 14.15 38.47 

Rangeland Forest 3782.74 1554.82 2504.36 3530.49 

Rangeland Agriculture 1722.49 1688.72 6700.13 5380.06 

Rangeland Urban 1782.42 809.48 4101.49 2080.01 

Urban Water 4.22 38.99 2.00 8.37 

Urban Forest 695.52 1337.47 2170.33 598.22 

Urban Agriculture 497.82 431.96 461.21 2.06 

Urban Rangeland 18.02 2309.30 2005.74 1091.64 

 

Table 2.10: Monthly relative change of ET, PERC, SURQ, LAT_Q, GW_Q, and WYLD; 

scenario LU_1990 vs. LU_2020 

Monthly Relative Change (%) 

Month ET PERC LAT_Q SURQ GW_Q WYLD 

January 0.092967 -2.82793 0.6043 1.7946 -2.98183 -0.80053 

February 0.4675 -2.44937 0.433 1.110567 -2.18667 -0.8156 

March 0.8779 -4.3346 0.4109 2.379067 -3.00897 -0.4 

April 0.651633 -5.6409 0.317233 2.914767 -4.01437 -0.97933 

May 4.437667 -5.8051 0.2837 1.494867 -5.02763 -3.489 

June 8.936233 -9.27813 0.2335 0.5405 -6.99267 -6.52203 

July 6.568333 -13.1515 0.1716 -0.5965 -9.76327 -10.5898 

August -1.64097 -7.82033 0.334767 1.496967 -11.1069 -9.77337 

September 0.277067 -3.1561 0.337733 2.0043 -6.19113 -4.27487 

October 0.795633 -2.8852 0.256267 1.2022 -3.38637 -2.32613 

November 0.011333 -4.7338 0.322533 2.170833 -3.1713 -1.02953 

December -0.15163 -2.51407 0.508767 1.7197 -3.6822 -1.72827 

Annual 

Average 

1.776972 -5.38308 0.351192 1.519322 -5.12611 -3.56071 
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Figure 2.1: Location map of the study area 
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Figure 2.2:  land use map of the study area 
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Figure 2.3:  Soil class map of the study area 
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Figure 2.4:  Slope class map of the study area 
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Figure 2.5: Spatial representation of the LULC of the study area for LU_1990 (a), LU_2000 (b), 

LU_2010 (c) and LU_2020 (d)  
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Figure 2.6: Changing LULC of the study area between 1990-2000 (a), 2000-2010 (b), 2010-2020 

(c) and 1990-2020 (d) 
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Figure 2.7: Observed vs. simulated stream flow (m3/s) from 1991-2020 (A), total nitrogen 

(Kg/Ha) from 1991-2004 (B) and total phosphorus (Kg/Ha) (C) from 1991-2004 
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Figure 2.8: Simulated monthly flow (m3/s) (A), total nitrogen (Kg/Ha) (B) and total phosphorus 

(Kg/Ha) (C) between 1991–2020 for different LULC scenarios (LU_1900, LU_2000, LU_2010 

and LU_2020) 
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Figure 2.9: Seasonal average: spring (March, April and May), summer (June, July, August), fall 

(September, October and November) and winter (December, January and February) of the water 

balance parameters (evapotranspiration (ET) (A), percolation (PERC) (B), surface flow (SURQ) 

(C), lateral flow (LAT_Q) (D), groundwater (GW_Q) (E), and water yield (WYLD) (F), for the 

LU_1990 and LU_2020 scenarios. 
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Figure 2.10: Monthly averages and relative changes of ET (A), PERC (B), SURQ (C), LAT_Q 

(D), GW_Q (E) and WYLD (F) for scenarios LU_1990 and LU_2020. 
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CHAPTER 3 

Modelling Climate Change on Hydrological Response and Nitrogen and 

Phosphorus of Big Creek Lake Watershed, South Alabama 

3.1 Introduction 

The changing climate has a significant affect on river discharge, extreme events, and on the 

availability and quality of water (Betts et al., 2018; Krysanova and Hattermann, 2017; Li et al, 

2016; Sorribas et al., 2016; Mehta et al., 2015; Yan et al., 2015; Elliott et al., 2014; Madsen et 

al., 2014 and Schewe et al., 2014). Climate change and its associated threats are among the 

utmost challenges of recent times. According to Intergovernmental Panel on Climate Change 

(IPCC) Fifth Assessment Report, climate change will cause substantial alterations in the quality 

and availability of water resources. A recent study conducted by Betts et al. (2018) showed that 

the spatial global trends in extreme precipitation and hydrological events including an increase of 

20C temperature that water scarcity could reach unprecedented levels in some countries. At the 

same time, extreme hydrological and climatic events have added more necessity to investigate 

changes in hydrological processes (Burn et al., 2010; Taye et al., 2011 and Hoang et al., 2016). 

According to Wu et al., 2013; Allen and Ingram, 2002 and Donat et al., 2016, the hydrological 

cycle has changed due to climate change. Some investigations concluded that in most of the 

world extreme precipitation has been observed (Alexander et al., 2006; Westra et al., 2013 and 

Min et al., 2011) and in the 21st century, extreme precipitation will further increase projections 

from various climate models (Kharin et al., 2013; Sillmann et al., 2013 and Field et al., 2012) 

thus posing a threat to water availability and security.  

Global increases of mean temperature, changes in the pattern of precipitation, and also an 

increased frequency and intensity of the extreme events can lead to substantial impact on the 

water cycle (Klove et al., 2014; Kundzewica, 2008 and Wang et al., 2013), vegetation, and 
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biodiversity (Linderholm, 2006; Vittoz et al., 2013; Kittel et al., 2013 and Lindner et al., 2014). 

Both the water quality and quantity are directly and indirectly influenced by climate change 

(Whitehead et a., 2009; Kundzewicz et al., 2007; Crossmann et al., 2013; Dunn et al., 2012 and 

Mimikou et al., 2000). According to the United States Environmental Protection Agency (2017), 

due to increasing temperature and evapotranspiration, water availability is decreasing and the 

reduced discharge will likely accelerate algal growth and reduce dilution of point source 

pollutants. Furthermore, climate change would have an impact on the nutrient turnover and 

transport processes (Denitrification, nitrification, volatilization, and leaching) in the basins 

because of the changing temperature and precipitation (Whitehead et al., 2006 and Macleod et 

al., 2012). 

To maintain ecosystem services, it is essential to keep an appropriate hydrological balance within 

a watershed. This is related to the source of water which is different for specific kinds of 

watersheds (Acreman and Miller, 2007). The services and functions of the watersheds may be 

altered by rising temperatures and changing patterns of precipitation. Recently, the nutrient loss 

dynamics are expected due to global warming in watersheds by atmospheric and meteorological 

properties, such as precipitation patterns, atmospheric water vapor, and evaporation. In recent 

years, climate change and its qualitative and quantitative aspects of water have been studied 

(Thakali et al., 2016 and Chen et al, 2008). Integration of climate change into hydrological 

systems is necessary.   

Generally, there are three methods of assessing the hydrological systems due to changing climate 

which include time series analysis, paired catchment experiments, and hydrological modeling (Li 

et al., 2009). Hydrological models have often been applied to study the relationship between 

hydrological processes and climate change (Park et al, 2014; Khoi and Suetsugi, 2014 and Tu, 
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2009). The use of hydrological models is essential and increasing in recent decades because 

these modeling outputs can be used for effective planning of quality and quantity of water 

resources and protection under changing environmental conditions and models can simulate flow 

regimes under different scenarios. Therefore, various hydrological models have been developed 

to have an understanding between climate change scenarios and water balance components, 

through the simulations of the hydrological process within the watersheds. Agricultural Non-

Point Source (AGNPS) (Young et al., 1989), Hydrological Simulation Program-FORTRAN 

(HSPF) (Bicknell et a., 1996), MIKE SHE (DHI, 1993), Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998) and Agricultural Policy/Environmental Extender (APEX) 

(Williams and Izaurralde, 2008) are some of the models used by various researchers. Many of 

these hydrological models are applied for streamflow, groundwater, base flow sediment yield, 

nutrients, pollution and soil loss simulation, and future predictions. Though many researchers 

have used various models for different purposes, the SWAT model is the most widely used and it 

has been applied in different areas to analyze numerous problems associated with hydrology and 

water quantity and quality, including the potential changes to the streamflow under different 

climate scenarios. Almost 4,000 peer-reviewed articles related to the SWAT model have been 

published and among these almost 1,000 articles are related to the hydrological responses due to 

climate changes (Gassman et al., 2010). The SWAT model has significant utilization because it 

can evaluate water and sediment yield and water quality parameters under present conditions, 

management practices, and future climate conditions. 

3.2 Materials and Methods 

3.2.1 Study Area 
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The Big Creek Lake is a tributary-storage reservoir in Mobile County located in southwest 

Alabama which has an area of 3,600 acres. Although the lake itself is only 3,600 acres, the 

watershed area around the lake is approximately 65,920 acres or 103 square miles Mobile Area 

Water and Sewer System (MAWSS) (MAWSS 2011; Journey and Gill 2001). The Big Creek, 

Jackson Branch, Juniper Creek, Collins Creek, Long Branch, Boggy Branch, Crooked Creek, and 

Hamilton Creek are several tributaries feeding by Big Creek Lake which is a central reservoir. 

Though Mobile County is occupied by the large area of the Big Creek Lake watershed, no large 

municipalities exist within the watershed. Wilmer and Semmes are two smaller towns including 

others that are located within the watershed boundaries. Figure 3.1 shows the location of the 

watershed and the location of the weather and water quality data stations used for modeling. Big 

Creek Lake watershed is located relatively close to the Gulf Coast and more specifically within 

the Southern Hills District of the East Gulf Coastal Plain section of the Coastal Plain 

Physiographic Province. The subtropical climate of the watershed is affected by the Gulf of 

Mexico's influences. Relative to the rest of the United States, the area encompassing the 

watershed is ranked second in terms of annual rainfall only to the Pacific Northwest. The soil 

type of the watershed is mainly Ultisols. Ultisols have characteristics including the well-

developed profile that reflect the influence of active factors of soil formation, including well-

drained and acidic. The watershed is made of 100% Ultisols and it includes Troup‐Heidel‐Bama 

Association, Troup‐Benndale‐Smithton association, and Shubuta‐Troup‐Benndale association. 

3.2.2 Data Utilized 

According to Monteith (1965), Willams (1969), and Arnold et al. (2012), a Digital Elevation 

Model (DEM) and associated topography, land use and land cover (LULC), and soil data are the 

spatial inputs that are required datasets to run the Soil Water Assessment Tool (SWAT) model. 
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Other than these datasets, long-term weather data, water quality data, Land use and Land cover 

(LULC), soil properties data, and discharge data are required for the model to run. Moreover, 

several mathematical equations are also used in different analyses. Figure 3.2, 3.3, and 3.4 

represent the LULC, slope, and soil data of the analyzed study area respectively.   

The USGS National Map was the provider of the DEM datasets and the datasets downloaded 

from the link (https://viewer.nationalmap.gov/basic/). The spatial resolution is 10 meter which is 

1 arc-second (10m * 10m) pixel resolution. For LULC data, Landsat images obtained from the 

USGS data hub (https://earthexplorer.usgs.gov/) and the latest images (2020) of January were 

chosen because January has the minimum cloud cover to have the lowest atmospheric effects. 

Moreover, winter month has the ability to differentiate the different features such as deciduous 

vs. coniferous forests and lack of crops. An unsupervised approach was performed for 

classification. The unsupervised classification using Iterative Self-Organizing Data Analysis 

Techniques (ISODATA) clustering with 20 total clusters, convergence set to 0.995 (on the scale 

of 0 to 1), 100 iterations, and cluster means initialization along the principal axis was applied on 

the images. The resulting classification was then reclassified into the water, forest, urban, 

agriculture, and rangeland.The random sampling method was applied for the accuracy 

assessment. This method has no rules for choosing the points and the points are scattered within 

the study area. The overall accuracy value is 85% and the kappa coefficient values is 0.82.  

The SSURGO (Soil Survey Geographic Database) soil data were used because according to 

Natural Resource Conservation Service (NRCS), the SSURGO is the most detailed level of 

county soil data. The soil data and other information about the properties of the soil were 

downloaded from https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. The NOAA 

(National Oceanic and Atmospheric Administrations) was the provider of the climatic data 



57 
 

including daily rainfall, maximum and minimum temperatures, and average wind speed. The 

data at one weather station were only available for the study area from the period between 1990 

and 2020. The datasets were downloaded from this website (https://www.ncdc.noaa.gov/cdo-

web/datasets). For future climate data, two Representative Concentrated Pathways (RCP) have 

been used in this study. According to Moss et al. (2010), the RCPs are plausible representations 

of future climatic scenarios (based on various assumptions on future atmospheric concentrations 

of greenhouse gases and socio-economic development). The Intergovernmental Panel on Climate 

Change (IPCC) adopted the RCPs for its Fifth Assessment Report (AR5) in 2014 and IPCC 

defined the RCPs as the four greenhouse gas concentration trajectories (Taylor et al., 2014). The 

RCP2.6, RCP4.5, RCP6.5, and RCP8.5 are the four scenarios that consider the future climate 

conditions and LULC changes. The numbers associated with them indicate the predicted amount 

of increasing the radiative forcing to be reached by the year 2100 (Moss et al., 2010). The 

downscaled and bias-corrected data of moderate (RCP 4.5) and extreme (RCP 8.5) scenarios up 

to 2050 (available up to 2100) were used as input to calibrate the SWAT model.  One advantage 

of the SWAT model is if any of the meteorological data are limited, it is still possible to run the 

model and have the reasonable values of hydrological parameters The SWAT model has a built-

in weather generator model (WXGEN) and it can be utilized to stochastically generate daily 

weather values based on historical monthly averages of parameters such as temperature, 

precipitation, relative humidity, wind, and solar radiation near the study area. The SWAT model 

recorded the missing precipitation, temperature, and other climate data as -99. Discharge data 

were obtained from the USGS National Water Information System: Web Interface. The data are 

available in this link https://waterdata.usgs.gov/nwis/rt. In this study, the discharge data on the 

monthly based were used. The water quality data were also extracted from the USGS National 
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Water Information System Web Interface. Though the water quality data are not available on a 

daily or monthly basis, some random water quality data were found.  

It has a significant impact to incorporate the management operations data within a watershed 

because the hydrological processes and the number of nutrients depend on the management 

practices information, and it helps to produce better results of hydrological parameters. The Best 

Management Practices (BMPs) database was developed by Butler and Srivastava (2007) for 

Alabama state. Mirhosseini et al. (2016) and Srivastava et al. (2010) used this management 

practices database for their research purposes within Alabama. Bermuda grass was used for 

rangeland and peanut-cotton crop rotation was used for cropland and the detailed information 

about the management practices are included in Table 3.1.  Bermuda grass was normally planted 

in early March and then harvested at the beginning of July each year (Ahring et al., 1974; Shaver 

et al., 2006) for the period of the last three decades (study period). 

3.2.3 SWAT Model Description  

The SWAT (Soil Water Assessment Tool) is a physically based hydrologic model and requires 

physically based data (Jacobs and Srinivasan, 2005). The SWAT is a continuous-time, spatially 

distributed model designed to simulate water, sediment, nutrient, and pesticide transport at a 

catchment scale on a daily time step under different management practices (Jain and Sharma, 

2014). The SWAT model has been developing for over 30 years and it has been modified and 

adapted numerous times for better performance (Simić, 2009). The relevant hydrologic 

components such as evapotranspiration, surface runoff, lateral flow, percolation, peak rate of 

runoff, groundwater flow, water yield, and sediment yield are computed by the SWAT model for 

each subbasin and Hydrological Response Units (HRUs) as well. Arc-SWAT is an extension of 

ArcGIS as the SWAT is embedded in a GIS interface. The SWAT 2012 is evolved from 
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AVSWAT which is an extension of ArcView developed for an earlier version of the 

SWAT2012.  

The SWAT model can run the continuous simulation over a long time as well as it is a 

continuous process-based, computationally efficient hydrological model. Some major 

components are used to run the SWAT model including weather, hydrology, different types of 

soil, plant growth, nutrients, pesticides, bacteria and pathogens, land use, and management 

practices. While running the SWAT model, a watershed or basin is divided into multiple sub-

basins or sub-watersheds and then each sub-basin or sub-watershed is further subdivided into 

multiple HRUs based on the DEM properties. The HRUs are composed of unique land use, soil, 

and slope characteristics. The HRUs are used to describe spatial heterogeneity in terms of land 

cover, soil type, and slope class within a watershed or basin.  

The SCS (Soil Conservation Services) curve number procedure (SCS, 1972) and Green & Ampt 

infiltration method (1911) are the two methods to estimate the surface runoff used by the SWAT 

model. In this present study, the SCS curve number method was used to estimate surface runoff. 

The modification of the Rational Method was used to measure the peak runoff rate. There are 

two methods to estimate the water routing through the channel such as the variable storage 

routing method and the Muskingum routing method. In this study, the Muskingum routing 

method was used to compute the surface runoff.  

To estimate the hydrological components, the model estimates the evaporation from soils and 

transpiration from plants. Potential evapotranspiration can be estimated by the three methods in 

SWAT: Priestley–Taylor (Priestley and Taylor, 1972), Penman-Monteith (Monteith, 1965), and 

ET–Hargreaves (Hargreaves, 1985). The Penman-Monteith includes precipitation, minimum and 

maximum temperature, wind speed, relative humidity, and solar radiation to measure 



60 
 

evapotranspiration. For this reason, this method was used to estimate potential 

evapotranspiration. But the Priestley–Taylor and the ET–Hargreaves methods do not include all 

the parameters. 

Sedimentation (deposition) and transportation are two physical processes that SWAT considers 

in the processes simultaneously. Briefly, in the SWAT, soil Nitrogen (N) is comprised of five 

different Nitrogen pools. Two of the pools are inorganic (ammonium-N [NH4-N] and nitrate-N 

[NO3-N]) and three pools are organic (active, stable, and fresh). Mineralization, decomposition, 

immobilization, nitrification, denitrification, and ammonium volatilization processes are used to 

transform one type of nitrogen into another nitrogen pool used by the SWAT model (Chaubey et 

al., 2006). The estimation of nitrogen by the plant use is estimated by using the supply and 

demand approach (Santhi et al., 2006). Unlike N, soil phosphorous (P) in the SWAT is divided 

into six pools (three minerals and three organics). The fresh organic phosphorus pool and active 

and stable organic pool are contributed to by the crop residue, and biomass and humus 

substances respectively. The soil inorganic pool includes active, solution, and stable pools 

(Chaubey et al., 2006). The portion of phosphorus from solution inorganic phosphorus is taken 

up by plants and is in rapid equilibrium with the active pool. The active phosphorus pool is in 

rapid equilibrium with the solution pool and slow equilibrium with the stable pool. The stable 

inorganic pool is relatively unavailable for plant uptake (Neitsch et al., 2002). Like nitrogen, 

plant use of phosphorus is estimated using the supply and demand approach (Santhi et al., 2006). 

3.2.4 SWAT Model set up 

The first step of model set-up was the delineation of the watershed, the subwatershed, and the 

outlet using the 10 m DEM data. As the SWAT is a physically derived model, it derived the 

topography, contour, and slope from the DEM and it was used to divide the basin into subbasins. 
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Once the source DEM was added, the model then used contours and slope to determine flow 

direction and flow accumulation which were calculated during delineation. When flow direction 

and flow accumulation were depicted, a stream network was generated by the model in which 

each reach drained a sub-basin, all of which drained into a major reach. Each reach had an outlet. 

Then an outlet was selected that corresponds to the outlet at which discharge measurements for 

calibration were being collected. This outlet then determined the lower boundary for the 

watershed basin, which was then delineated based on the location of that outlet and the stream 

network.  

To define the HRU, the model required LULC, soil, and slope. Once the LULC, soil, and slope 

were defined and incorporated in the model, the HRUs were created with a unique combination 

of those three classes. A LULC lookup table was created manually and used to specify the land 

use category and also the Soil SSURGO data were used to identify the soil types and then linked 

to the SWAT databases to reclassify the land use and soil map. Slope was reclassified into three 

classes by using multiple slope options because the topography of the study area was not 

verified. The threshold percentage method was applied to eliminate the minor land use, soil type, 

and slope, and a 5% threshold for minimal LULC, 10% threshold for both soil and slope were 

used. The HRUs generated and the corresponding report was also generated by the model which 

would be specifying the area of different HRUs in various subbasins.  

The final step before running the model was the creation of input tables, including the weather 

data. In this study, maximum and minimum temperature, precipitation, and wind speed were 

incorporated in the model. As relative humidity and solar radiation were not available, the US 

Weather generator was used. The files were successfully rewritten and stored in the personal 
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geodatabases of the model. After this step, the model became capable to simulate the streamflow, 

water balance components, total nitrogen, and phosphorus. 

3.2.5 Uncertainty and Sensitivity Analysis 

Some parameters have the greatest impact on the hydrological parameters and water balance 

components. The model is sensitive to some parameters to provide reasonable outputs. 

Sensitivity analysis is done to identify the parameters by altering some parameters to the 

acceptable ranges to get the better performance of the model. The SWAT-CUP software was 

used to identify the sensitive parameters which are developed by the Swiss Federal Institute of 

Water Science and Technology (EAWAG). This method is useful for model calibration, 

validation, and uncertainty analysis by altering some parameters. The SWAT-CUP has five 

different optimization algorithms: Sequential Uncertainty Fitting (SUFI-2) (Abbaspour et al., 

2007), Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), 

Parameter Solution (ParaSol) (Van Griensven and Meixner, 2006), Markov chain Monte Carlo 

(MCMC) (Kuczera and Parent, 1998; Marshall et al., 2004; Vrugt et al., 2003), and Particle 

Swarm Optimization (PSO) (Zhang et al., 2015). In this study, SUFI-2 has been used because it 

has the ability to take all the considerations of all the sources of uncertainty on the parameter 

ranges such as uncertainty in driving variables (e.g., rainfall), conceptual model, parameters, and 

measured data (Abbaspour et al., 2007). 

3.2.6 SWAT Model Calibration and Validation 

The calibration of the SWAT model was based on the optimization of the parameter values by 

adjusting its simulated values with the observed or actual values of the analyzed area. The 

validation involved the process of performing accurate calibration steps and enabling the 
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capability of making a sufficient simulation according to the purposes of the study (Refsgaard, 

1997). Comparison of the predicted and actual values was essential to achieve the satisfactory 

acceptable values of objective function which involves running a model and continuously 

comparing the results for the different periods of calibration until the model meets confidence 

limits. The model validation was done with the same SWAT parameter values calibrated without 

any further alterations because it is one of the requirements to follow to do the validation. For 

calibration and validation, the period will be determined by the length of the observed data 

record. The time frame can be equally divided for the calibration and validation if the observed 

data period is sufficiently long because long periods can represent the different climates. In this 

study, the total time length was divided equally; the first fifteen years (1991-2005) is for 

calibration and the last fifteen years (2006-2020) for the validation. The warmup period of 5 

years from 1985-1990 was chosen to achieve a steady-state for modeling. However, if the length 

of the data record is not sufficiently long, one should remember to use the time length in such a 

way that the calibration period is way longer than the validation. According to Gassman et al. 

(2005), the SWAT input parameters are physically based and researchers are allowed to change 

calibration parameters within an acceptable range.  

3.2.7 Model Evaluation 

In this study, the qualitative graphical comparisons and quantitative statistical techniques both 

were used to evaluate the performance of the model. The plotting observed and simulated 

streamflow, total phosphorus, nitrogen loading at a monthly time-step, and the relationship of 

water balance components with these parameters were the qualitative methods used. The 

performance of the model was also evaluated by different statistical measures such as Nash-
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Sutcliffe Efficiency (NSE), Percent of Bias (PBIAS), and the Coefficient of Correlation (R2). 

According to Moriasi et al. (2007), these three statistics are most commonly used. 

 

                     (1) 

   

                      (2)                                   

 

               (3)                   

 

where Oi is the ith observation for the constituent being evaluated; Pi is the ith simulated 

value for the constituent being evaluated; O̅ is the mean of observed data for the constituent 

being evaluated; P̅ is the mean of simulated data for the constituent being evaluated and n is 

the total number of observations. 

3.3 Results 

3.3.1 Climate Variability  

Figure 3.5 is representing the total precipitation of the last three decades and two RCPs (RCP4.5 

and RCP8.5) from 2021 to 2050. The average total precipitation between 1991 and 2020 is 1708 

mm. The maximum average precipitation is 2197.60 mm and occurs in 1998. However, the 

minimum precipitation is 1161.79 mm in 2000. The average total precipitation is showing 

irregular behavior between 1991 and 2020. On the other hand, the average total precipitation for 

RCP4.5 and RCP8.5 is 6582.43 mm and 7065.77 mm respectively which is more than the last 

thirty years. The difference of the maximum average total precipitation between RCP4.5 

(8872.53 mm) and RCP8.5 (9564.16 mm) is 691.63 mm. The minimum average total 

precipitation for RCP4.5 and RCP8.5 is 3989.10 mm and 4127.35 mm. Though the values are 
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representing the growing trend from the past thirty years, the average total precipitation has an 

irregular trend for both RCP4.5 and RCP8.5.  

Figure 3.6 is showing the growing trend of the average yearly temperature from 1991 to 2020 

and the irregular trend of two RCPs (RCP4.5 and RCP8.5) between 2021 and 2050. The average, 

maximum, and minimum temperatures between 1991 and 2020 are 19.840C, 20.960C, and 

18.500C respectively. On the other hand, the average temperature is 21.760C for RCP4.5 and 

21.670C for RCP8.5 which is almost 1.80C and 1.70C more than the last thirty years. The 

difference between the maximum (23.580C) and minimum (20.230C) average temperature for 

RCP4.5 is 3.350C. The maximum and minimum average temperature for RCP8.5 is 23.180C in 

2033 and 20.210C in 2021.  

3.3.2 Sensitivity Analysis 

The sensitivity analysis has been done by the SUFI-2. Some parameters were chosen to calibrate 

and validate the model and the parameters are shown in table 3.2. The table is showing the 

fifteen parameters to calibrate and validate the streamflow such as curve number (CN), 

biological mixing efficiency (BIOMIX), Manning's "n" value for overland flow (OV_N), peak 

rate adjustment factor (PRF), exponent parameter for calculating sediment re-entrained in 

channel sediment routing (SPEXP), USLE equation (USLE_P), soil and plant evaporation factor 

(ESCO and EPCO) and groundwater (ALPHA_BF, GW_DELAY, GW_REVAP, and 

RCHRG_DP). However, all the parameters did not have the same impact on the streamflow. 

However, some parameters had the greatest influence on the streamflow modeling, and a list of 

the parameters ranking is shown in table 3.3 based on the t-stat and p-value. The parameter 

which has the highest impact on the streamflow modeling has the highest value of t-stat and 

lowest value of p-values, and vice versa. Based on the highest t-stat and low p-value, ESCO is 
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the highest, ULSE_P is the second highest, and then BIOMIX is the impactful parameter. 

SOL_AWC, OV_N, RCHRG_DP rank as the least impactful for the calibration and validation of 

the model. 

According to table 3.2, to calibrate and validate the total nitrogen and phosphorus in the 

watershed, four parameters have been used such as initial soluble Phosphorus concentration in 

sol layer (SOL_LABP), initial organic Phosphorus concentration in sol layer (SOL_ORGP), 

organic Nitrogen in the baseflow (LAT_ORGN), and initial organic Nitrogen concentration in 

the soil layer (SOL_ORGN). Before calibrating the total nitrogen and phosphorus, streamflow 

needed to be calibrated because there is a correlation between the streamflow and the amount of 

nitrogen and phosphorus.  

3.3.3 SWAT Model Calibration and Validation 

Table 3.4 is representing the value of R2, NSE, and PBIAS values for streamflow, total nitrogen, 

and phosphorus for the calibration and validation periods. The R2 value is 0.81 indicating a good 

level of classification for both calibration and validation of streamflow. The calibration value 

(0.75 for nitrogen and 0.77 for phosphorus) and the validation value (0.50 for nitrogen and 0.54 

for phosphorus) are different but falling in the good criteria of classification. According to 

criteria set by Moriasi et al. (2007), the NSE value for evaluating the model performance in 

calibration and validation between .55 and 0.70 for streamflow, 0.35 to .60 for nitrogen, and 0.40 

to 0.50 for phosphorus is considered “satisfactory”, a value between 0.70 and 0.85 for 

streamflow, 0.60 to 0.70 for nitrogen and more than 0.70 for phosphorus is considered as “good” 

and more than 0.85 for streamflow, more than 0.70 for nitrogen and more than 0.65 for 

phosphorus is attributed as “very good”. Therefore, calibration and validation of the streamflow 

are rated as “good”. The calibration and validation value of total nitrogen are also “good”, on the 



67 
 

other hand, the calibration and validation of total phosphorus do not seem “satisfactorily” (Table 

3.4). Moreover, the PBIAS value for the streamflow calibration is negative, which indicates 

model overestimation. On the other hand, the PBIAS value for the streamflow validation is 

positive, indicating an underestimation. Besides, nitrogen calibration and validation scenarios are 

just the opposite. PBIAS values for calibration and validation are negative, therefore phosphorus 

is overestimated (Table 3.4 and 3.5).  

Figure 3.7 A, B and C is showing the observed and simulated streamflow, total nitrogen, and 

phosphorus respectively. The difference between the average actual streamflow (4.14 m3/s) and 

average simulated streamflow (4.16 m3/s) is less than 1% and a bit overestimated but the 

percentage for total nitrogen and phosphorus are higher and overestimated. 

3.3.4 Relationship between Precipitation, Temperature and Stream Flow  

Figures 3.8 and 3.9 represent the relationship between precipitation with streamflow and 

temperature with streamflow respectively. From 1991 to 2020, precipitation was highest 

(5856.22 mm) in July though the maximum streamflow (5.90 m3/s) was in January likely 

because lower temperature causes lower evaporation. For RCP4.5 and RCP8.5, the maximum 

precipitation is also in July and the highest streamflow is in February month. It is clear from the 

graph that streamflow will be higher in January, February and March for all the scenarios but 

precipitation will be higher in July, August and September.   

The temperature was highest in June, July, August and September ranging from 25.6 to 27.8 0C, 

but the streamflow was high in January, February and March. Again, for RCP4.5 and RCP8.5, 

the temperature will be high in June, July, August and September and streamflow will be low in 

October, November and December. There is a negative correlation between temperature and 
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streamflow and it is justified because higher temperature means more evaporation and leads to 

less streamflow.  

3.3.5 The Projected Stream Flow and the Total Nitrogen and Phosphorus Loadings 

The projected streamflow for RCP4.5 and RCP8.5 scenarios is shown in figure 3.10 (by year) 

and 3.11 (by month). The average streamflow between 1991 and 2020 was 4.15 m3/s, while the 

average streamflow from 2021 to 2050 is 4.54 m3/s and 4.77 m3/s for RCP4.5 and RCP8.5 

respectively. The maximum streamflow is 7.41 m3/s in 1998 over the past thirty years. The 

maximum streamflow is more than 8 m3/s for both scenarios. The average streamflow is 

minimum in June and November and maximum in January and February between 1991 and 

2020. The same scenario is noticed in RCP4.5 and RCP8.5.  

Figure 3.12 (by year) and 3.13 (by seasonal) are representing the total nitrogen for RCP4.5 and 

RCP8.5 scenarios. The average total nitrogen is ranging from 20910 kg/ha to 100600 kg/ha and 

the average total nitrogen is 50290.33 kg/ha over the past three decades. Conversely, the average 

total nitrogen is 58920.33 kg/ha for the RCP4.5 scenario and 61282.33 kg/ha for the RCP8.5 

scenario. The total nitrogen is high in April amounting to 14941.66 kg/ha and the total nitrogen 

is also high in April (11384.52 kg/ha) for RCP4.5 and March for RCP4.5 (15400.64 kg/ha). The 

strongest nitrogen loading will increase in the winter season. Overall, the simulations show that 

nitrogen loadings will increase in the future.  

The total phosphorus is shown in figure 3.14 (by year) and 3.15 (by seasonal) for RCP4.5 and 

RCP8.5 scenarios. The total phosphorus value is ranging from 6193 kg/ha to 24570 kg/ha but the 

average value is 14032 kg/ha. The average value of total phosphorus is 15003 kg/ha which is 

higher than RCP4.5 (13397.3 kg/ha). The total phosphorus is higher in February and March 
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between 1991 and 2020 and this case is also true for RCP4.5 and RCP8.5. In general, the 

phosphorus loadings will increase in the future, and the rate of increase will be higher in the 

spring season.  

3.3.6 Impact on the Water Balance Components of RCP4.5 and RCP8.5 

The effect of the two climate scenarios on the changing water balance components such as 

evapotranspiration (ET), percolation (PERC), surface runoff (SURQ), lateral flow (LAT_Q), 

groundwater flow (GW_Q), and water yield (WYLD), and the relative change from the last thirty 

years to the future thirty years are depicted in figure 3.16. Most of the months are showing an 

increasing trend of monthly ET except April, July, October and December. The PERC has been 

growing for both RCP4.5 and RCP8.5 for the last three decades. The PERC value is supposed to 

increase about 135 mm and 168 mm for RCP4.5 and RCP8.5 respectively. Overall, the monthly 

value of PERC will increase almost every month in both scenarios. The trend is also same for the 

LAT_Q which is growing for the past thirty years. The increasing value for RCP4.5 is 5 mm and 

RCP8.5 is 9 mm. On the contrary, SURQ is showing a significantly decreasing trend. In the case 

of RCP4.5 and RCP8.5, 174 mm and 84 mm of SURQ will be low in the future thirty years. On 

contrary, GW_Q will increase at about 132 mm (RCP4.5) and 165 mm (RCP8.5) from the last 

thirty years. Overall, the monthly change is showing a positive trend that is increasing the 

GW_Q almost every month.  

3.4 Discussions 

3.4.1 Hydrological Modeling 

According to Arnold et al. (1998), among the most commonly used continuous-time, semi-

distributed, and physically-based models is the SWAT model, which can assess different 
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hydrological components and pollution problems for watersheds. Modeling uncertainties 

originate from the model structural uncertainties, input data uncertainties as it requires a large 

number of input datasets, and parameter uncertainties because these are associated with the 

global database, equations, or by using other software (Nyeko, 2014 and Saxton and Rawls, 

2006). However, representation of the physical characteristics of the landscape as realistically as 

possible is significant to run the model and the SWAT model developer has been used to develop 

it continuously (Bosch et al., 2010, Bonuma et al., 2014 Rathjens et al., 2015 and Sun et al., 

2015). In this study, the historic climate data were only available for one station in proximity of 

the study area. The two scenarios (RCP4.5 and RCP8.5) of climate data have been used. The 

weather information is one of the important input variables in the SWAT model including 

precipitation and temperature. The quantity and quality of the precipitation data have a 

significant effect on the accuracy of the hydrological simulation. Regular and sufficient rain 

gauges can help to extract the exact spatial distribution of the weather data. According to Chen et 

al. (2013) and Miao et al. (2015), there are fewer rain gauges in some areas but Mobile County 

AL has relatively homogenous precipitation. This study used weather data from one rain gauge. 

The actual total nitrogen and phosphorus data were not available for the whole watershed and 

available only for few years. The calibration and simulation of total nitrogen and phosphorus 

were difficult because the data were not available for a good amount and a good range of years. 

However, altering some parameters by SWAT-CUP provided a solution to get a satisfactory to 

good’ clasification (Moriasi et al., 2005) of streamflow, total nitrogen, and phosphorus 

calibration and validation.  

3.4.2 Changing Precipitation and temperature Pattern on Stream Flow  
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The study shows that the precipitation and temperature will increase in the next thirty years in 

comparison to the past thirty years. According to the RCPs and observed data the precipitation 

will increase at about 4874 mm and 5357 mm for RCP4.5 and RCP8.5 respectively. The study 

also shows the pattern of the precipitation is irregular through the years. The average streamflow 

will also increase, and these results complement the increase in the precipitation. The irregular 

yearly trend of the precipitation also goes with the irregular trend of the streamflow. The 

variability and changing pattern of precipitation could lead to the changes in the frequency and 

intensity of extreme precipitation events, which could result in the variation in streamflow and 

peak flow (Chen et al., 2009; Sajikumar and Remya, 2015 and Tadesse et al., 2015). The results 

show the precipitation is highest in the year 2047 for the RCP8.5 scenario.  The streamflow is 

also high in 2047 with a value of more than 8 m3/s.  

The temperature from the last three decades will increase for both RCP4.5 and RCP8.5 

scenarios. The highest temperature will increase about 30 C in the future thirty years. The overall 

trend of the temperature will increase but the pattern is irregular on a yearly basis. This 

increasing temperature could theoretically decrease the streamflow by increasing 

evapotranspiration but due to increasing precipitation, streamflow will be growing. The irregular 

trend in the average temperature goes with the resultant irregular behavior of the streamflow. 

The result agrees with the study done by Oki and Kanae (2006) and Stocker (2014), in general 

the increased temperature is the result of corresponding changes in the timing and volume of 

flooding and streamflow. The increase in the streamflow is the result of the average increase in 

the precipitation but the seasonally disproportionate precipitation of the watershed results in 

higher flows during the winter season.  

3.4.3 Water Balance Components due to Climate Change  
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In addition to streamflow, other major hydrological components such as evapotranspiration, 

water yield, percolation are considered to provide beneficial information for sustainable water 

management in the future. Moreover, surface runoff, groundwater flow, and lateral flow are 

important to describe and understand the changes in the water yield and streamflow. The study 

represents the changing climate is characterized by substantial changes in the water balance 

components. Though the temperature will increase; the evaporation rate will decrease. Therefore, 

the temperature is not the major driving source for evapotranspiration. Evapotranspiration also 

depends on the available water and increasing precipitation also contributes to this as it 

complements the overland flow and reduces infiltration. Another reason is likely associated with 

the changing LULC. In comparison, the percolation will increase from the last thirty years and 

this rate of percolation will have influences on the streamflow. Moreover, the lateral flow will 

also have a growing trend in the next thirty years and lateral flow will impact the volume of the 

streamflow. Conversely, the surface runoff will decrease. Again, the groundwater flow will have 

an increasing trend in future years, and it will have substantial impacts on the pattern of the 

streamflow. The groundwater normally has a high positive correlation with increased 

precipitation and a high negative correlation with temperature.   

3.4.4 The Increasing total Nitrogen and Phosphorus due to Climate Change  

In both scenarios of climate change, the total amount of nitrogen will increase from the last three 

decades.  However, the rate of increasing total nitrogen is more in the RCP8.5 than the RCP4.5. 

The total amount of phosphorus will also have a growing trend for both the RCP4.5 and RCP8.5 

scenarios. Like nitrogen, the amount is also high in the RCP8.5 than the RCP4.5. Increasing 

nitrogen and phosphorus is primarily driven by increased streamflow and rainfall intensity. 

These results complement the findings of Woznicki and Nejadhashemi (2012) on Big Blue 



73 
 

watershed in Kansas and Nebraska state, USA as they showed increase of the total nitrogen and 

phosphorus yields also using SWAT outputs under future climate change. The increasing 

precipitation intensity affects the Dissolved Reactive Phosphorus (DRP) yields. Similar studies 

conducted by Gombaults et al. (2015) on Pike River watershed in southern Québec, Canada and 

Ahmadi et al. (2013) on Eagle Creek watershed in Indiana state, USA and their results were 

similar to this study that the amount of nitrogen will also increase in the winter season. This also 

can be explained by the variation in the future seasonal changes in precipitation. The increasing 

precipitation accelerates the runoff passing through the groundwater and thus the pollutants 

accumulated on the surface are carried into the waterbody, causing the pollution of surface water 

and even groundwater within the drainage area (Kaste et al., 2006). Therefore, the change in the 

precipitation intensity and increasing frequency will affect the non-point source pollution. 

Nitrogen and phosphorus are the two main elements of non-point source pollution, and both are 

influenced by the precipitation process. If the precipitation increases, then the effect of the runoff 

will intensify and the nitrogen and phosphorus loadings flowing in the waterbody will increase 

accordingly (Whitehead et al., 2009). The surface temperature will also increase due to the 

increase of the air temperature. It leads to an increase in the temperature difference and the 

thermocline in the upper and lower layers of water. The formation of anoxic layers at the bottom 

of water bodies such as lakes can develop because of the presence of the thermoclines. The 

nitrogen and phosphorus loadings release easily from sediments to the bottom of the water 

environment and can lead to an increase in nitrogen and phosphorus concentrations in surface 

water, which is the main reason that nitrogen and phosphorus loadings increase with the surface 

runoff coming into the watersheds. Moreover, the increase in the water temperature will also 

increase the activities of microorganisms and release the endogenous nitrogen and phosphorus in 
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the sediment. If the temperature and light are sufficient and the nitrogen in the water reaches a 

certain level, then the eutrophication will be intensified (Luo et al., 2013). The increasing 

precipitation and temperature accelerate the eutrophication process in a water body (Ducharne, 

2008; Harvell, et al, 2002 and Walter et al., 2006).  

3.5 Conclusion 

In this study, the trend and variations of hydro-meteorological and climate elements 

(precipitation, temperature, evaporation, streamflow, groundwater flow, and percolation) have 

been investigated during historical and future periods. The SWAT model is employed to simulate 

the effects of climate change on the hydrological elements using the method of scenarios 

simulation. By integrating the downscaled and corrected future climatic data with the SWAT, the 

trends, variations of the hydrological components from 2021-2050 are predicted and compared 

with the climatic data from 1991-2020 used as reference data. Results indicated that, with 

increasing precipitation and temperature, the streamflow, percolation, lateral flow, groundwater 

flow will increase. As climate variability has a profound impact on the water balance 

components, planners and resource managers should emphasize the importance of increasing the 

adaptation to climate variability when planning and managing water resources.  
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Table 3.1: Management operations for cropland of the study area 

Plant Type Operation 

Date 

Operation Type Operation 

Attributes 

Land use 

Bermudagrass 01-March Planting 
 

 

Rangeland 01-July Harvesting 
 

Peanut 15-May Planting 
 

 

 

 

 

Agricultural 

land 

21-October Harvesting 
 

Cotton 25-March Tillage Generic 

Conservation tillage 

15-April Planting 
 

15-April Fertilizer application 45 kg/ha Nitrogen 

15-April Fertilizer application 40 kg/ha Phosphorus 

10-June Fertilizer application 50 kg/ha Nitrogen 

15-September Harvesting 
 

 

Table 3.2: Model parameters and their descriptions in surface flow, total nitrogen and 

phosphorus calculations 

 
Parameter Parameter Description Fitted value Minimum value Maximum value 

ADJ_PKR Peak rate adjustment factor for 

sediment routing in sub 

watershed 

2 0.5 2 

ALPHA_BF Baseflow alpha factor (days) 0.1 0 1 

BIOMIX Biological mixing efficiency 0.2 0 1 

CN Curve number Decrease 20% 35 98 

EPCO Plant evaporation compensation 

factor 

0.95 0 1 

ESCO Soil evaporation compensation 

factor 

1 0 1 

GW_DELAY Groundwater delay time (days) 20 0 500 
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GW_REVAP Groundwater “revap” 

coefficient 

0.02 0.02 0.2 

OV_N Manning's "n" value for 

overland flow "n" value for 

overland flow 

1 0.01 30 

PRF Peak rate adjustment factor for 

sediment routing in the main 

channel 

1 0 0 

RCHRG_DP Deep aquifer percolation factor 0.05 0 1 

SOL_AWC Available water capacity of soil 

layer 

0.7 0 1 

SOL_K Saturated hydraulic 

conductivity 

0.2 0 2000 

SPEXP Exponent parameter for 

calculating sediment retrained 

in channel sediment routing 

1.5 1 1.5 

USLE_P USLE equation support practice 

factor 

1 0 1 

SOL_LABP Initial soluble P concentration 

in sol layer 

0.01 0 100 

SOL_ORGP Initial organic P concentration 

in sol layer 

0.01 0 100 

LAT_ORGN Organic N in the baseflow 0.01 0 200 

SOL_ORGN Initial organic N concentration 

in the soil layer 

0.01 0 10 

 

 

Table 3.3: Sensitive parameters ranking based on t-Stat and p-Value 

 

Parameter Name t-Stat P-Value 

r__ESCO.bsn -0.215278727 0.829640698 

r__USLE_P.mgt -0.226950855 0.820557782 

r__BIOMIX.mgt 0.227096486 0.820444606 

r__ALPHA_BF.gw -0.278863619 0.780468599 

r__SOL_K().sol 0.671455455 0.502250766 

r__GW_REVAP.gw -0.728852367 0.466444494 

r__GW_DELAY.gw 0.846668373 0.39759842 
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r__SPEXP.bsn -0.969346487 0.332856487 

r__EPCO.bsn 1.115696614 0.265105646 

r__CN2.mgt -1.333777787 0.18290399 

r__ADJ_PKR.bsn -1.443612737 0.149494876 

r__PRF_BSN.bsn -1.948062549 0.051985146 

r__RCHRG_DP.gw -1.994993478 0.046603828 

r__OV_N.hru -2.862365089 0.004387183 

r__SOL_AWC().sol -38.3178933 0 

 

 

 

 

 

 

Table 3.4: Statistical evaluation of the model for calibration and validation time periods 

 
R2 NSE PBIAS  

Calibration Validation Calibration Validation Calibration Validation 

Stream 

Flow 

0.81 0.81 0.77 0.73 -10.7 15.4 

Nitrogen 0.75 0.77 0.62 0.65 9.34 -3.45 

Phosphorus 0.5 0.54 0.34 0.24 -20.45 -21.76 
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Table 3.5: Average annual observed and simulated streamflow, total nitrogen and phosphorus  

 

Variable Average Annual Value 

Average Observed Stream Flow 4.14 m3/s 

Average Simulated Stream Flow 4.16 m3/s 

Average Observed Nitrogen 5157.79 Kg/Ha 

Average Simulated Nitrogen 6214.33 Kg/Ha 

Average Observed Phosphorus 651.79 Kg/Ha 

Average Simulated Phosphorus 1040.19 Kg/Ha 
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Figure 3.1: Location map of the study area 
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 Figure 3.2: Land use map of the study area 
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Figure 3.3: Slope class map of the study area 
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Figure 3.4: Soil class map of the study area 
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Fig 3.5: Annual Precipitation (mm) from 1991 to 2050 

Fig 3.6: Annual Temperature (0C) from 1991 to 2050 
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Figure 3.7: Observed vs. simulated stream flow (m3/s) from 1991-2020 (A), total nitrogen 

(Kg/Ha) from 1991-2004 (B) and total phosphorus (Kg/Ha) (C) from 1991-2004 
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Fig 3.8: Precipitation vs. Stream Flow 

 

 

 

Fig 3.9: Temperature vs. Stream Flow 
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Fig 3.10: Stream Flow (m3/s) Historic vs. RCP4.5 vs. RCP8.5 by Year 

 

 

 

Fig 3.11: Stream Flow (m3/s) Historic vs. RCP4.5 vs. RCP8.5 by Month 
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Fig 3.12: Nitrogen (Kg/Ha) Historic vs. RCP4.5 vs. RCP8.5 by Year 

 

 

 

Fig 3.13: Nitrogen (Kg/Ha) Historic vs. RCP4.5 vs. RCP8.5 by Month 
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Fig 3.14: Phosphorus (Kg/Ha) Historic vs. RCP4.5 vs. RCP8.5 by Year 

 

 

 

 

 

Fig 3.15: Phosphorus (Kg/Ha) Historic vs. RCP4.5 vs. RCP8.5 by Month 
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Figure 3:16: Monthly averages and relative changes of ET (A), PERC (B), SURQ (C), LAT_Q 

(D), GW_Q (E) and WYLD (F) for Historic, RCP 4.5 and RCP 8.5 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

4.1 Conclusions 

 This study used the SWAT model to detect and predict the effects of changing LULC and 

climate on the stream flow and nitrogen and phosphorus. The major conclusions from this 

research were: (a) the stream flow has significant impact and on growing trend because of 

increasing agricultural and urban areas and decreasing forest land, (b) the amount of nitrogen and 

phosphorus have great effects and they are increasing because increasing agricultural area has 

likely increased the use of fertilizer and thus this increases the nitrogen and phosphorus in the 

stream flow, (c) though the stream flow will increase in both climate change scenarios, the rate 

of increasing is higher in RCP8.5 than RCP4.5 with the increase of the precipitation and decrease 

of the temperature, and (d) the nitrogen and phosphorus will also increase and again the 

increasing trend is higher in the RCP8.5 scenario than the RCP4.5 scenario because of increasing 

stream flow. 

 The agricultural land increased in a substantial amount as well as the urban area because 

of the increasing the population of the Mobile County. In addition, the reduction of the forest 

land is the result of the increasing stream flow and the increase in the agricultural land results in 

a growing amount of the nitrogen and phosphorus. The precipitation will increase in the future 

three decades comparing to the past three decades and this growing precipitation leads to 

increasing stream flow and nitrogen and phosphorus. The increasing precipitation has more 

impact on the increasing stream flow and deterioration of the water quality of the watershed than 

the increasing temperature. 
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4.2 Recommendations  

The results of the study can be used for further studies. If the rate of stream flow and associated 

nitrogen and phosphorus has been increasing, then there will be environmental consequences. 

Water resource managers and policy makers should take some measures to reduce the stream 

flow and control the pollution of the water. Some management practices could be included such 

as crop rotation, reduction of fertilizers, irrigation water management, nutrient management and 

grass streamside buffers.  

 

 


