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Abstract 
 

 
 Threading a query protein sequence onto a library of weakly homologous structural 

templates remains challenging. In light of the recent advancements in residue-residue contact 

prediction technologies powered by sequence co-evolution and deep learning, we propose a new 

contact-assisted threading method. In particular, the method integrates the residue-residue contact 

information with various sequential and structural features to improve the threading scoring 

function for the better template selection. A large-scale benchmarking result on 500 targets 

demonstrates that our contact-assisted threading method attains a statistically significantly better 

threading performance than a baseline contact-free threading acting as a control. Our study further 

reveals contact-assisted threading using high-quality contacts with the Matthews Correlation 

Coefficient (MCC) ≥ 0.5 improves the threading performance in nearly 30% of the cases, while 

low-quality contacts with the MCC <0.35 degrades the performance for 50% of the cases. 

Moreover, instead of leveraging binary contacts, we move one step further by developing a new 

distance- and orientation-based covariational threading method called DisCovER by effectively 

integrating information from inter-residue distances and orientations along with the topological 

network neighborhood of a query-template alignment. Multiple large-scale benchmarking results 

on query proteins classified as weakly homologous from the Continuous Automated Model 

Evaluation (CAMEO) experiment and from the current literature show that our method 

outperforms several existing state-of-the-art threading approaches. It also shows that the 

integration of the neighborhood effect with the inter-residue distance and orientation information 

synergistically contributes to the improved performance of DisCovER. 
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Chapter 1 

Introduction 

 

1.1 Protein structure prediction problem 

 The computational prediction of the three-dimensional (3D) structure of a protein from its 

amino acid sequence remains elusive (Baker and Sali 2001, 200; Dill and MacCallum 2012; D. T. 

Jones, Taylort, and Thornton 1992; Moult et al. 2014). Depending on the availability of relevant 

proteins in the Protein Data Bank (PDB) (Berman et al. 2000), protein structure prediction methods 

are broadly classified in two categories: (1) ab initio folding, and (2) template-based modeling 

(TBM). Methods based on ab initio folding predict protein 3D structures from the scratch by using 

the sequence information alone. Despite the encouraging recent progress in ab initio protein 

structure prediction (S. Wang et al. 2016; J. Yang et al. 2020; Greener, Kandathil, and Jones 2019; 

Adhikari et al. 2015; Adhikari and Cheng 2018, 2; Roche, Bhattacharya, and Bhattacharya 2021; 

Jinbo Xu 2019), template-based modeling (TBM) remains one of the most reliable approaches in 

protein structure prediction, especially when homologous templates are available in the PDB. 

TBM approaches can be broadly classified into homology modeling and protein threading based 

on the degree of homology. Homology modeling or comparative modeling is the process of 

building a structure of a query protein from a homologous template with a high degree of sequence 

similarity  (Moult 1996). The success of homology modeling critically depends on the ability to 

identify the homologous template and generate accurate query-template alignment. Intuitively, the 

performance of these methods sharply deteriorates when the direct evolutionary relationship 

between the query and templates becomes very low, the so-called remote-homology modeling 

scenarios (Bowie, Luthy, and Eisenberg 1991; Petrey and Honig 2005). Protein threading, an 
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advanced homology modeling technique, aims to address the challenge by leveraging multiple 

sources of information by mining the evolutionary profile of the query and templates to reveal the 

potential distant homology and perform low-homology modeling to predict the 3D structure of the 

query protein. 

1.2 Overview of protein threading 

The general principle behind protein threading is that there exists a finite number of unique 

folds in nature, and many proteins (~90% (Jinbo Xu et al. 2003)) share the same folds (Kinch and 

Grishin 2002; Y. Zhang and Skolnick 2005a), even though their sequences differ, illustrating that, 

in theory, the structure of most proteins can be successfully predicted by threading a query protein 

sequence onto a library of structural templates (Jinbo Xu et al. 2003). Therefore, the goal of protein 

threading is to optimally align a query sequence to a known structural template (Bienkowska and 

Lathrop 2005). This requires identifying the correct or best-fit template from a library of templates 

and the optimal query-template alignment from the space of all possible query-template 

alignments. The query-template alignment represents a correspondence between each query 

residue and the spatial positioning of the aligned template residues. Overall, protein threading can 

be mainly considered to involve three components: (1) a threading scoring function that evaluates 

the fitness of query-template alignments; (2) identification of the best-fit structural template from 

the library of templates; and (3) an optimal alignment of the query sequence to the template. In the 

following, we discuss each component in more detail: 

1.2.1 Threading scoring function 

The scoring function plays an important role to quantitatively assess the fitness of query-

template alignments (Jinbo Xu et al. 2003). The scoring function normally consists of the profile 

similarity score, the structural consistency score, and the gap penalty. The profile similarity score 
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can be calculated by comparing the query and template profiles. It quantifies how the query is 

evolutionary related to the template. The structural consistency score contains two components: 

consistency of local structures such as secondary structure and solvent accessibility compatibility, 

and consistency of global structures or pairwise inter-atomic interactions. Weights can be used in 

the scoring function to control the relative importance of different scoring terms.  

1.2.2 Template Selection 

Identifying the best-fit template inevitably requires using the alignment score of query-

template alignments. The raw query-template alignment score cannot be directly used to rank 

templates due to the biases introduced by the protein length (Jinbo Xu et al. 2003). Both machine 

learning-based methods and Z-score are used to mitigate the bias. Several protein threading 

methods (David T. Jones 1999; Y. Xu and Xu 2000; Y. Xu, Xu, and Uberbacher 1998; Akutsu and 

Miyano 1999; Zhu et al. 2018) use machine learning models such as the neural network for the 

template ranking by formulating the template selection as a classification problem, even though a 

majority of the threading methods (S. Wu and Zhang 2008; Zheng, Zhang, et al. 2019; Du et al. 

2020) rely on the Z-score for the template selection. Z-scores of the query-template pair are 

computed from the means and standard deviations of the scores of the query sequence with all the 

templates of the template library. However, it cannot cancel out all the biases introduced by protein 

length. A large protein appears to have a high Z-score. It is also difficult to interpret the Z-score, 

particularly when the scoring function is the weighted sum of different scoring terms (Jinbo Xu et 

al. 2003). 

1.2.3 Optimal query-template alignment  

The optimal query-template alignment is the alignment that optimally aligns residues in 

the query sequence homologous to residues in the template. While a threading scoring function 
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can be effective in selecting the homologous template, the query-template alignment may be 

suboptimal (Petrey and Honig 2005; Venclovas 2003; Du et al. 2020; Zheng, Zhang, et al. 2019; 

Zhu et al. 2018), which might result in less accurate template-based models built from such an 

alignment. That is, the sensitivity of the query-template alignment directly affects the overall 

performance of template-based modeling. 

1.2.4 Dynamic programming  

Dynamic programming, one of the most popular pairwise alignment methods, is used to 

find the optimal query-template (global or local) alignment. The Needleman-Wunsch algorithm 

(Needleman and Wunsch 1970) is used to produce the optimal global alignment, whereas the 

Smith-Waterman algorithm (Smith and Waterman 1981) is used for local alignments. In particular, 

the Needleman-Wunsch algorithm, developed in 1970, is a widely used nonlinear global 

optimization method. It divides a large task (e.g. alignment between the full query and the full 

template sequence) into a set of smaller sub-tasks and uses the solution to the sub-tasks to find the 

optimal solution to the larger task. The worst-case time complexity is O(Lq, Lt), where Lq and Lt 

are the length of the query and the template protein, respectively. However, obtaining the global 

alignments might not useful for distantly related sequences because of the noise added by low 

similarity regions. Local alignments are useful to focus more on conserved motifs, where the 

Smith-Waterman algorithm, developed in 1981, guarantees to find the optimal local query-

template alignment. One of the main differences to the Needleman-Wunsch algorithm is the 

traceback procedure. It also has the worst-case time complexity of O(Lq, Lt), where Lq and Lt are 

defined earlier. Both of these algorithms are guaranteed to find an optimal alignment using a 

scoring function, however, a robust scoring function plays a vital role in the threading 

performance, as discussed in Section 1.2.1.                 
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1.3 Protein threading assisted by inter-residue interaction maps  

1.3.1 Granularities of protein inter-residue interaction maps 

Protein inter-residue interaction maps are predicted at various resolutions ranging from 

binary contact maps to finer-grained distance and orientation maps as well as their combination. 

A low-resolution version of inter-residue interaction is a contact map, which is a square, symmetric 

matrix with binary entries, where a contact indicates the spatial proximity of a residue pair at a 

given cutoff distance, typically set to 8Å between the Cα or Cβ carbons of the interacting residue 

pairs. Here, the set of contacts between residue pair (𝑖, 𝑗) is defined as: 

𝐶(𝑖, 𝑗) = 	 )1				𝑖𝑓		𝑑-. ≤ 8Å
0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
where 𝑑-. is the distance between the residue pair (𝑖, 𝑗).  

 

 

 

Figure 1.1 shows a representative protein 3D structure and its corresponding 2D residue-

residue contact map. The inter-residue distance map is finer-grained in that it captures the 

distribution of real-valued inter-residue spatial proximity information rather than the binary 

Figure 1.1 A representative protein 3D structure and its corresponding 2D binary contact 
map. (A) 3D structure of a representative protein (PDB ID 1cc8A), (B) the corresponding 2D 
residue-residue contact map, considering Cα atoms and a distance threshold of 8Å. 
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contacts at a fixed cutoff distance. Recent studies (Jinbo Xu and Wang 2019; Jinbo Xu 2019) have 

demonstrated the advantage of using distance maps in protein structure prediction over binary 

contacts as distances carry more physical constraints information of protein structures than 

contacts. The granularities of predicted distance maps vary from distance histograms to real-valued 

distances (Greener, Kandathil, and Jones 2019; J. Yang et al. 2020; Ding and Gong 2020; Adhikari 

2020; T. Wu et al. 2021; J. Li and Xu 2020). Very recently, trRosetta(J. Yang et al. 2020) has 

introduced inter-residue orientations in addition to distances to capture not only the spatial 

proximity information of the interacting pairs but also their relative angles and dihedrals. 

Collectively, inter-residue distances and orientations encapsulate the spatial positioning of the 

interacting pairs much better than only distances let alone binary contacts. 

1.3.2 Contact map alignment 

            Contact map alignment is a way of measuring the similarity between two contact maps. 

The maximum contact map overlap problem tries to evaluate the similarity of the two proteins by 

calculating the maximum overlap between their contact maps while preserving the ordering of the 

residues of both sequences, leading to a pairwise sequence alignment as illustrated in Figure 1.2. 

Since the direct contact map alignment is computationally expensive (Zheng, Wuyun, et al. 2019), 

several approximation algorithms (Yosi Shibberu, Holder, and Lutz 2010; Y. Shibberu and Holder 

2011; Teichert, Bastolla, and Porto 2007; Di Lena et al. 2010; Teichert et al. 2010; Malod-Dognin 

and Pržulj 2014; Ovchinnikov et al. 2017) have been developed to address the contact map 

alignment problem including the eigen-decomposition-based strategy, the graphlet degree-based 

approach, and the iterative double dynamic programming-based approach. The eigen-

decomposition decomposes a contact map into eigenvectors and corresponding eigenvalues. This 

approach compares two proteins by comparing their contact map eigenvectors, which can be 
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performed in polynomial time. For example, approaches such as EIGAs (Yosi Shibberu, Holder, 

and Lutz 2010), SABERTOOTH (Teichert, Bastolla, and Porto 2007), and Al-Eigen (Di Lena et 

al. 2010) use the eigen-decomposition to approximate contact maps using the top eigenvectors and 

use the global alignment of key eigenvectors to find the similarity between two contact maps. GR-

Align (Malod-Dognin and Pržulj 2014) is a fast contact map alignment approach based on the 

graphlet degree distribution. Moreover, (Skolnick and Zhou 2017) proposes a contact map 

alignment algorithm C-Align based on Cα atoms using a dynamic programming. Recent methods 

such as map_align (Ovchinnikov et al. 2017) employ an iterative double dynamic programming to 

calculate contact map alignments, with the goal of optimizing the number of contact overlaps while 

minimizing the number of gaps.  

 

 

 

Figure 1.2 Contact map alignment. (A) contact map of a representative protein (PDB ID 
1cc8A), (B) contact map of another representative protein (PDB ID 1wvnA), (C) sequence 
alignment of 1cc8A and 1wvnA using Al-Eigen. In both cases, Cα atoms and the distance threshold 
of 8Å are considered.  
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1.3.3 Inter-residue interaction map threading 

  Figure 1.3 Illustration of protein interaction map threading. 
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Figure 1.3 shows an overview of an interaction map threading of a query protein. 

Generally, threading has three components: (1) an effective scoring function to evaluate the fitness 

of query-template alignments; (2) an efficient templates searching strategy; and (3) generating 

optimal query-template alignments (Bhattacharya et al. 2021). One of the most important 

components of threading approaches is the scoring function, which is composed of standard 

threading features ranging from sequential features such as secondary structures, solvent 

accessibility, and sequence profiles to non-linear features such as pairwise potentials (Brylinski 

and Skolnick 2010; Bienkowska and Lathrop 2005). Weights control the relative importance of 

different terms. An efficient scoring function should reliably differentiate a homologous template 

from the alternatives because the accuracy of the predicted model significantly depends on the 

evolutionary relatedness of the identified template. The inter-residue interaction map helps to 

improve the sensitivity of the threading scoring function by augmenting the standard scoring terms 

with additional contributions from the predicted interactions. Specifically, the score to align the 

𝑖th residue of the query protein to the 𝑗th residue of the template can be defined as: 

𝐸(𝑖, 𝑗) = 𝑤;𝐸<=>-?@AB=C@-D?(𝑖, 𝑗) + F 𝑤G𝐸G
HA=@IBA(𝑖, 𝑗)

G∈K@=?L=BL	
@MBA=L-?N	HA=@IBAK

 

 

where the first term accounts for the contribution of the interaction map and the second term 

accounts for the standard threading features with 𝑤- being their relative weights. Typically, the 

similarity between the predicted inter-residue interaction map of the query protein and that derived 

from the template structure informs the interaction map term in the threading scoring function. It 

is worth noting here that the raw alignment score is biased to the protein length (Jinbo Xu et al. 

2003). As such, most threading methods use a normalized alignment score in standard deviation 

units relative to the mean score of all templates in the template library. 
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1.4  Overview of existing threading methods 

Current threading strategies are based on various techniques ranging from dynamic 

programming to profile-profile comparison based on hidden Markov models to more advanced 

machine learning approaches (S. Wu and Zhang 2008; Lobley, Sadowski, and Jones 2009; Y. Yang 

et al. 2011; Ma et al. 2012; 2013; Peng and Xu 2010; Söding 2005; Peng and Xu 2009; Jaroszewski 

et al. 2005; Rychlewski et al. 2000; Cheng and Baldi 2006; Marti-Renom, Madhusudhan, and Sali 

2004; Ginalski et al. 2003; Zhou and Zhou 2005; David T. Jones 1999; S. Wu and Zhang 2007; 

Gniewek et al. 2014; Rost, Schneider, and Sander 1997; Olmea, Rost, and Valencia 1999; Peng 

and Xu 2011; Y. Xu and Xu 2000; Ma et al. 2014; Yan et al. 2013; Lee and Skolnick 2010). Some 

of these methods use only sequence-based features, while others (Jinbo Xu et al. 2003; S. Wu and 

Zhang 2008; 2010; Söding 2005) use sequence and structure-based features for calculating the 

fitness score between the query and template. Popular profile-based threading methods include 

MUSTER (S. Wu and Zhang 2008), SEGMER (S. Wu and Zhang 2010), HHsearch (Söding 2005), 

GenTHREADER (David T. Jones 1999), SPARKS-X (Y. Yang et al. 2011), CNFpred (Ma et al. 

2012; 2013), PROSPECT (Y. Xu and Xu 2000), RAPTOR (Jinbo Xu et al. 2003), and MRFalign 

(Ma et al. 2014). However, there is still room for improvement, particularly with the rapid growth 

in both sequence and structure databases (Yan et al. 2013). 

With the recent progress in protein residue-residue interaction map prediction powered by 

sequence co-evolution and machine learning (David T. Jones et al. 2015; S. Wang et al. 2017; He 

et al. 2017; Adhikari, Hou, and Cheng 2018, 2; David T. Jones et al. 2012; Kandathil, Greener, 

and Jones 2019; Kaján et al. 2014; Seemayer, Gruber, and Söding 2014; Hanson et al. 2018; 

Greener, Kandathil, and Jones 2019; Jinbo Xu 2019), the contact or distance maps may become a 

valuable additional structural feature that can assist protein threading. While there exist pure 
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contact driven ab initio folding methods such as CONFOLD (Adhikari et al. 2015), CoinFold (S. 

Wang et al. 2016), CONFOLD2 (Adhikari and Cheng 2018), and DConStruct (Roche, 

Bhattacharya, and Bhattacharya 2021) based on distance geometry; cutting-edge threading 

methods including EigenTHREADER (Buchan and Jones 2017), map_align (Ovchinnikov et al. 

2017), CEthreader (Zheng, Wuyun, et al. 2019), CATHER (Du et al. 2020), and DeepThreader 

(Zhu et al. 2018) are increasingly integrating contact or distance information along with other 

features to boost threading accuracies. The usefulness of these cutting-edge contact- or distance-

assisted threading methods are particularly noteworthy in low-homology protein modeling 

scenarios (Zheng, Wuyun, et al. 2019; Du et al. 2020; Zheng, Zhang, et al. 2019). Here, we provide 

an overview of existing contact- or distance-assisted threading methods, highlighting some of the 

recent advances in low-homology protein modeling. We also discuss some of the current 

limitations of contact- or distance-assisted threading. 

1.5  Existing contact-assisted threading methods 

Table 1.1 shows several publicly available contact-assisted threading methods. These 

approaches can be broadly subdivided into two classes: (1) methods that implicitly use contact 

information via pairwise-contact potential such as PROSPECT (Y. Xu and Xu 2000), 

PROSPECTOR (Skolnick and Kihara 2001; Skolnick, Kihara, and Zhang 2004), and RAPTOR 

(Jinbo Xu et al. 2003); and (2) methods that explicitly use contact information via predicted 

residue-residue contacts including the current state-of-the-art contact-assisted threading methods 

such as EigenTHREADER, map_align, CEthreader, CATHER, ThreaderAI (H. Zhang and Shen 

2020), and our in-house threading method (Bhattacharya and Bhattacharya 2019a). We briefly 

discuss them below. 
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Table 1.1       Selected publicly accessible threading methods that implicitly or explicitly use 

contact information. 

 

Name (Reference)  Method Availability 

PROSPECT (Y. Xu 

and Xu 2000) 

Divide-and-Conquer 

algorithm 

http://compbio.ornl.gov/structure/prospect/ 

PROSPECTOR 

(Skolnick and 

Kihara 2001; 

Skolnick, Kihara, 

and Zhang 2004) 

Hierarchical approach http://bioinformatics.danforthceneter.org/ser

vices/threading.html 

RAPTOR (Jinbo 

Xu et al. 2003) 

Linear programming http://www.cs.uwaterloo.ca/~j3xu/RAPTOR

_form.htm 

EigenTHREADER 

(Buchan and Jones 

2017) 

Dynamic programming 

and eigen-decomposition 

http://bioinfadmin.cs.ucl.ac.uk/downloads/ei

genTHREADER/ 

map_align 

(Ovchinnikov et al. 

2017) 

Iterative double dynamic 

programming 

https://github.com/sokrypton/map_align 

CEthreader (Zheng, 

Wuyun, et al. 2019) 

Dynamic programming 

and eigen-decomposition 

https://zhanglab.ccmb.med.umich.edu/CEth

reader/ 

CATHER (Du et al. 

2020) 

Iterative double dynamic 

programming  

https://yanglab.nankai.edu.cn/CATHER/ 

ThreaderAI (H. 

Zhang and Shen 

2020) 

Deep residual neural 

network and dynamic 

programming 

https://github.com/ShenLab/ThreaderAI 
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1.5.1  Threading methods that implicitly use the contact information via pairwise-contact 

potentials 

PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit) is one of the 

earliest protein threading methods, which makes use of pairwise contact potentials by introducing 

a contact term into its scoring function. This study considers that pairwise contact potentials are 

measured only between core secondary structures. The contact cutoff is set at 7Å between the Cβ 

atoms. Additionally, the method uses a Divide-and-Conquer algorithm for the alignment searching 

procedure. Another method, PROSPECTOR (PROtein Structure Predictor Employing Combined 

Threading to Optimize Results) uses a “partly thawed” technique to assess the contact potential 

based on the previous alignment iterations. RAPTOR (RApid Protein Threading by Operation 

Research technique) (Jinbo Xu et al. 2003) is another protein threading method that introduces the 

contact capacity score. It considers only contacts between two core residues where the spatial 

distance between the Cα atoms is 7Å with a sequence separation of 4. It addresses threading as a 

problem of wide-scale integer programming, relaxes it to a problem of linear programming, and 

uses a branch-and-bound approach to solve the integer program. However, the performance 

contribution of pairwise contact potentials in the above methods is not significant compared to that 

of sequence profiles, particularly for distantly related proteins. The underlying reason may be the 

noisy contacts that do not hold any extra signal, yielding just a modest improvement.  

1.5.2  Threading methods that explicitly use the contact information via predicted residue-

residue contacts 

Recent successful applications of deep learning have resulted in significantly improved 

inter-residue contact prediction methods (David T. Jones et al. 2015; S. Wang et al. 2017). As 

such, the newest contact-assisted threading methods have been explicitly integrating predicted 
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residue-residue contact information to improve the threading performance. EigenTHREADER, 

developed in 2017, extends Al-Eigen (Di Lena et al. 2010) to enable threading by predicting a 

protein’s contact map using a classical neural network-based predictor MetaPSICOV (David T. 

Jones et al. 2015), and then searching a library of templates’ contact maps. Despite the superior 

performance of EigenTHREADER over other profile-based threading methods for low homology 

threading, it can be further improved by integrating other linear features such as sequence profiles 

along with inter-residue contact maps. map_align, developed in 2017, proposes an iterative double 

dynamic programming algorithm (Taylor 1999) that aligns contact maps, predicted by a pure co-

evolutionary based predictor GREMLIN (Kamisetty, Ovchinnikov, and Baker 2013), in 

combination with metagenomics sequences of microbial DNA (Söding 2017). The elevated 

performance of map_align can be attributed to the contribution of contact maps in low-homology 

threading. However, considering that the outcomes rely on the initial estimate of the similarity 

matrix, which is not always the optimal, this approach does not necessarily guarantee optimal 

solutions. CEthreader (Contact Eigenvector-based threader), developed in 2019, uses contact maps 

predicted from a deep residual neural-network based predictor ResPRE (Y. Li et al. 2019). Similar 

to Al-Eigen, this work uses the eigen-decomposition technique to approximate contact maps by 

the cross product of single body eigenvectors. CEthreader introduces a dot-product scoring 

function by incorporating the contact information along with secondary structures and sequence 

profiles to align contact eigenvectors and uses dynamic programming to generate the query-

template alignments. However, the method can be further strengthened by considering negative 

eigenvalues in addition to positive eigenvalues, since the incorporation of both positive and 

negative eigenvalues restores the contact map. Another new contact-assisted threading algorithm 

CATHER (Du et al. 2020) (Contact Assisted THreadER), developed in 2020, uses both 
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conventional sequential profiles and contact maps predicted by a deep learning-based method 

MapPred (Q. Wu et al. 2020). A very recent method, ThreaderAI (H. Zhang and Shen 2020) 

integrates the deep learning-based contact information with traditional sequential and structural 

features by formulating the task of threading as the classical computer vision’s classification 

problem. This work introduces a deep residual neural network to predict query-template 

alignments. Based on the reported results of the above methods, contact-assisted threading 

methods significantly outperform profile-based threading methods by a large margin, particularly 

for low-homology targets.  

Our in-house threading method (Bhattacharya and Bhattacharya 2019a), developed in 

2019, integrates the standard threading technique along with the inter-residue contact information 

predicted by the state-of-the-art ultra-deep learning-based method RaptorX (S. Wang et al. 2017). 

First, our method applies the standard threading technique to select the top templates based on the 

Z-score and then applies the contact map overlap score using AlEigen along with the Z-score to 

calculate the final score for selecting the best-fit template. Based on large-scale benchmarking 

results, this method outperforms the profile-based threading method MUSTER as well as other 

contact-assisted threading methods EigenTHREADER and map_align.  

1.6  Existing distance-assisted threading methods 

Building on the successes of contact-assisted threading methods, Xu and coworkers 

developed a distance-based threading method called DeepThreader (Zhu et al. 2018). The method 

predicts distance maps by employing deep learning, and then incorporates the predicted inter-

residue distance information along with sequential features into threading through Alternating 

Direction Method of Multipliers (ADMM) algorithm. The inter-residue distance is binned into 12 

bins: <5Å, 5-6Å,  .., 14-15Å, >15Å. Based on their reported results as well as the performance 
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evaluation in the 13th Critical Assessment of protein Structure Prediction (CASP13), incorporating 

distance information boosts the threading performance, particularly for low homology targets, 

outperforming contact-assisted threading methods by a large margin (Jinbo Xu and Wang 2019). 

Zhang and coworkers have recently extended CEthreader to develop a distance-assisted threading 

method DEthreader introduced during the recently concluded CASP14 experiment by 

incorporating distance-based scoring term into the scoring function. The method uses the Cα-Cα 

and Cβ-Cβ distance distribution, both are binned into 38 bins: 1 bin of <2Å, 36 bins of 2-20Å with 

a width of 0.5Å, and 1 bin of ³20Å. Similarly, Yang and coworkers have extended CATHER into 

a distance-based threading approach by replacing contacts with distances in CASP14.  

To further improve the threading performance, NDthreader (F. Wu and Xu 2021) (New 

Deep-learning Threader) and ProALIGN (Kong et al. 2021) move one step further by integrating 

deep learning to optimally predict query-template alignments using distance potentials. Their 

reported state-of-the-art performance demonstrate the effectiveness of deep learning in distant 

homology protein modeling.  

1.7 The role of sequence databases in interaction map threading 

The prediction of inter-residue interaction maps depends heavily on the availability of 

homologous sequences. As such, the role of the sequence databases is becoming increasingly 

important in protein homology detection via interaction map threading. In addition to the well-

established whole-genome sequence databases such as the nr database from the National Center 

for Biotechnology Information (NCBI), UniRef (Suzek et al. 2015), UniProt (The UniProt 

Consortium 2019), and Uniclust (Mirdita et al. 2017); emerging metagenome sequence databases 

from the European Bioinformatics Institute (EBI) Metagenomics (Mitchell et al. 2018; Markowitz 

et al. 2014) and Metaclust (Steinegger and Söding 2018) are playing a prominent role. For 
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example, (Y. Wang et al. 2019) have demonstrated the applications of marine metagenomics for 

the improved protein structure prediction. map_align uses the Integrated Microbial Genomes 

(IMG) database (Markowitz et al. 2014), containing around 4 million unique protein sequences, to 

reliably predict high-quality models for low-homology Pfam families of unknown structures. 

Another recent method for generating protein multiple sequence alignments, DeepMSA (C. Zhang 

et al. 2020), combines whole-genome and metagenome sequence databases and reports improved 

threading performance, particularly for distant-homology proteins. Newer sequence databases are 

getting larger and diverse. For example, BFD (Steinegger, Mirdita, and Söding 2019), a recent 

sequence database, is one of the largest sequence databases containing 2 billion protein sequences 

from soil samples and 292 million sequences of marine samples. Another very recent sequence 

database MGnify (Mitchell et al. 2020) contains around 1 billion non-redundant protein sequences. 

As such, the availability of the evolutionary information of low-homology proteins is getting 

enriched, likely leading to the improved prediction accuracy of inter-residue interaction maps and 

hence more accurate interaction map threading for low-homology protein modeling. 

1.8 Structural similarity measure 

 Measuring the structural similarity between the predicted and the native protein 3D 

structure is of utmost importance for evaluating the quality of the predicted 3D model of the query 

protein. The most commonly used scores are the template modeling score (TM-score) (Y. Zhang 

and Skolnick 2004), the root mean square deviation (RMSD) (W. Kabsch 1976), the global 

distance test (GDT) (Zemla 2003), and the local distance difference test (lDDT) (Mariani et al. 

2013). Here, we discuss the widely used scoring metric TM-score. It is calculated by: 

	
𝑇𝑀 − 𝑠𝑐𝑜𝑟𝑒 =

1
𝐿F

1

1+ 𝑑-U

V1.24	√𝐿 − 15\ − 1.8]
U

^_`a

-b;
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where 𝑑- is the distance between the ith residues of the query and the template after an optimal 

superimposition, L is the length of the query sequence, and Lali is the length of the aligned regions. 

TM-score measures the similarity between two protein 3D structures and gives a score in the range 

(0,1], where a higher score means a better similarity. TM-score > 0.5 indicates the pair of proteins 

share the same fold, whereas a score < 0.17 indicates a random fold (Jinrui Xu and Zhang 2010).  

1.9 Dissertation outline and contributions 

The contents of Chapter 1 are mostly from the following manuscripts: 

S. Bhattacharya, R. Roche, MH. Shuvo, and D. Bhattacharya, “Recent advances in protein 
homology detection propelled by inter-residue interaction map threading”, Frontiers in 
Molecular Biosciences, 8, 377, 2021. https://doi.org/10.3389/fmolb.2021.643752 

 
S. Bhattacharya, R. Roche, MH. Shuvo, and D. Bhattacharya, “Contact-assisted threading 
in low-homology protein modeling”, Methods in Molecular Biology by Springer Nature, 
2021 (Under revision). 

 
The remainder of this dissertation is structured as follows. In Chapter 2, we analyze whether the 

addition of residue-residue contact information helps increase the accuracy of protein threading by 

proposing a new threading approach that integrates sequence and structural information with 

residue-residue contacts in order to examine how much more accuracy gain can be obtained by 

incorporating contact information than a pure threading-based approach (Bhattacharya and 

Bhattacharya 2019a). The contents of Chapter 2 are mostly from the manuscript published as: 

 S. Bhattacharya and D. Bhattacharya, “Does inclusion of residue-residue contact 
information boost protein threading?,” Proteins: Structure, Function, and 
Bioinformatics, vol. 87, no. 7, pp. 596–606, 2019, doi: 10.1002/prot.25684. 

 
In Chapter 3, we explore the significance of diverse quality of contact maps in contact-assisted 

threading performance by seamlessly customizing our new method to perform contact-assisted or 

contact-free threading modes (Bhattacharya and Bhattacharya 2020). The contents of Chapter 3 

are mostly from the manuscript published as: 
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 S. Bhattacharya and D. Bhattacharya, “Evaluating the significance of contact maps in low-
homology protein modeling using contact-assisted threading,” Scientific Reports, vol. 10, 
no. 1, Art. no. 1, Feb. 2020, doi: 10.1038/s41598-020-59834-2. 

 
In Chapter 4, we present DisCovER (Bhattacharya, Roche, and Bhattacharya 2020), a new 

distance- and orientation-based threading method that effectively integrates information from 

inter-residue distances and orientations along with the topological network neighborhood of a 

query-template alignment. It demonstrates the integration of the neighborhood effect with the 

inter-residue distances and orientations information synergistically contributes to the improved 

threading performance. The contents of Chapter 4 are mostly from the manuscript: 

S. Bhattacharya, R. Roche, and D. Bhattacharya, “DisCovER: distance- and orientation-
based covariational threading for weakly homologous proteins”, bioRxiv, 2020 (Under 
revision). https://doi.org/10.1101/2020.01.31.923409 

 
The final chapter, Chapter 5, outlines the conclusion.  

Moreover, throughout this work, TM-score (Y. Zhang and Skolnick 2004) is used to evaluate the 

performance of competing threading methods. A TM-score of more than 0.5 is considered as the 

correct fold against the native structure. It is worth highlighting a higher TM-score illustrates a 

better topological similarity between a pair of protein structures.   



 33 

Chapter 2 

Does Inclusion of Residue-Residue Contact Information Boost Protein Threading?    
 

 
 

2.1    Abstract 

Template-based modeling is considered as one of the most successful approaches for 

protein structure prediction. However, reliably and accurately selecting the optimal template 

proteins from a library of known protein structures having similar folds as the target protein and 

making correct alignments between the target sequence and the template structures, a template-

based modeling technique known as threading, remains challenging, particularly for non- or 

distantly-homologous protein targets. With the recent advancement in protein residue-residue 

contact map prediction powered by sequence co-evolution and machine learning, here we 

systematically analyze the effect of inclusion of residue-residue contact information in improving 

the accuracy and the reliability of protein threading. We develop a new threading algorithm by 

incorporating various sequential and structural features, and subsequently integrate residue-residue 

contact information as an additional scoring term for the threading template selection. We show 

that the inclusion of the contact information attains statistically significantly better threading 

performance compared to a baseline threading algorithm that does not utilize the contact 

information when everything else remains the same. Experimental results demonstrate that our 

contact-based threading approach outperforms the popular threading method MUSTER, the 

contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted 

protein threading methods EigenTHREADER and map_align on several benchmarks. Our study 

illustrates that the inclusion of contact maps is a promising avenue in protein threading to 

ultimately help improve the accuracy of protein structure prediction.  
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2.2     Introduction 

With the recent progress in protein residue-residue contact prediction powered by sequence 

co-evolution and machine learning (David T. Jones et al. 2015; S. Wang et al. 2017; Adhikari, 

Hou, and Cheng 2018; David T. Jones et al. 2012; Kaján et al. 2014), contact maps may become a 

valuable additional structural feature that can assist protein threading. Cutting-edge threading 

methods, including EigenTHREADER (Buchan and Jones 2017), map_align (Ovchinnikov et al. 

2017), and DeepThreader (Zhu et al. 2018), are increasingly integrating the contact or distance 

information along with other features to boost threading accuracies. For example, 

EigenTHREADER integrates predicted contact maps from MetaPSICOV (David T. Jones et al. 

2015) and the sequential information whereas map_align uses a pure contact driven threading 

approach by maximizing the overlap of the co-evolutionary predicted contact map of the target 

protein to the template’s true contact map. Very recently, DeepThreader proposes to select top 

templates by combining sequential features and predicted inter-residue distances for generating a 

query-template alignment. 

Here, we analyze whether the addition of the residue-residue contact information helps 

increase the accuracy of protein threading. We develop a new threading approach that integrates 

the sequence and the structural information with residue-residue contacts in order to examine how 

much accuracy gain can be obtained by incorporating the contact information. First, we investigate 

whether incorporating the contact information into a threading-based approach helps in predicting 

the top ranked models with better accuracy than a pure threading-based approach. We further 

explore whether the residue-residue contact information along with a threading-based approach is 

more promising than purely contact driven ab initio folding methods. Finally, we compare the 

performance of our work with the state-of-the-art contact-assisted protein structure prediction 
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methods in a blind manner using protein targets from the recently concluded 13th Critical 

Assessment of protein Structure Prediction (CASP13) experiment. 

2.3 Materials and methods  

2.3.1 Alignment scoring function for threading 

We develop a threading approach (Figure 2.1), which uses sequential and structural 

features to search a library of templates. Specifically, we use structure profiles, native secondary 

structures, native solvent accessibility, and native torsion angles as features for the template. For 

the query protein, sequence profiles, predicted secondary structures, predicted solvent 

accessibility, and predicted torsion angles are used as features. We use DSSP (Wolfgang Kabsch 

and Sander 1983) for extracting native secondary structures, native solvent accessibility, and 

native torsion angles for each template whereas SPIDER3 (Heffernan et al. 2017) is used to predict 

the corresponding features from the sequence of the query protein.  

The alignment score for aligning the query position i with the template position j is: 

	 𝑆𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑆KAd_>BDH + 𝑆KK + 𝑆K@BIC_>BDH + 𝑆K= +	𝑆>K- + 𝑆>M- + 𝑆MfLBD + 𝑆KM-H@ 	 (1)	
	

= 	F
g𝑃𝑐d(𝑖, 𝑘) + 𝑃𝑑d(𝑖, 𝑘)j 𝐿@(𝑗, 𝑘)

2 + 𝑤;𝛿 g𝑠d(𝑖), 𝑠@(𝑗)j
Ul

Gb;

	
	

	
+	𝑤U 	F𝑃𝑠@(𝑗, 𝑘)𝐿d(𝑖, 𝑘) + 𝑤m	V1 − 2n𝑆𝐴d(𝑖) − 𝑆𝐴@(𝑗)n]

Ul

Gb;

	
	

	 +	𝑤pV1 − 2n𝜑d(𝑖) − 𝜑@(𝑗)n] + 𝑤rV1 − 2n𝛷d(𝑖) − 𝛷@(𝑗)n]	 	
	 +𝑤t𝑀 g𝐴𝐴d(𝑖),𝐴𝐴@(𝑗)j + 𝑤u	 	

 

where “q” stands for the query and “t” stands for the template protein. The first term in Equation 

(1) is the sequence profile-profile alignment between the query and the template. The frequency 

of the kth residue at the ith position of the multiple sequence alignment (MSA), Pcq(i,k) and 

Pdq(i,k), are obtained by two iterations of PSIBLAST (Altschul et al. 1997) search against a non-

redundant (nr) sequence database with an e-value cutoff of 0.001 and 1.0 to get “close” and 
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“distant” homologues, respectively. The sequence-derived log-odds profile of the template, Lt(j,k), 

is obtained by PSIBLAST with an e-value cutoff of 0.001. The second term in Equation (1) 

compares the predicted secondary structure with the native secondary structure. The term 

𝛿(𝑠d(𝑖), 𝑠@(𝑗)) is 1 if 𝑠d(𝑖) = 𝑠@(𝑗) and -1 otherwise. Both 𝑠d(𝑖) and 𝑠@(𝑗) have three distinct states: 

helix, strand, and coil. The third term Sstruc_prof is a structure-derived profile where Pst(j,k) denotes 

the kth amino acid’s frequency at the jth position of the template, Lq(i,k) denotes the log-odds 

profile of the query, and both are obtained by PSIBLAST search with an e-value cutoff of 0.001. 

The fourth term Ssa computes the difference between the predicted solvent accessibility and the 

native solvent accessibility, where SAq(i) is for the ith residue of the query and SAt(j) is for the jth 

residue of the template. The next two terms (fifth and sixth) account for the match between the 

predicted torsion angles of the query (𝜑d(𝑖) and Φd(𝑖) of the ith position of the query) and the 

native torsion angles of the template (𝜑@(𝑗) and Φ@(𝑗) of the jth position of the template). Both psi 

and phi angles are normalized by 3600. The seventh term Shydro matches the hydrophobic residues 

(V, I, L, F, Y, W, M) of the query and the template. 𝑀(𝐴𝐴d(𝑖),𝐴𝐴@(𝑗)) = 1 if the ith position of 

the query (𝐴𝐴d(𝑖)) and the jth position of the template (𝐴𝐴@(𝑗)) are both hydrophobic; 

𝑀(𝐴𝐴d(𝑖),𝐴𝐴@(𝑗)) = 0.7 if 𝐴𝐴d(𝑖) and 𝐴𝐴@(𝑗) are identical; otherwise, 𝑀(𝐴𝐴d(𝑖),𝐴𝐴@(𝑗))= 0. 

Finally, Needleman-Wunsch (Needleman and Wunsch 1970) dynamic programming algorithm is 

used to get the best query-template alignment. A position-specific gap penalty is also employed. 

The last term of Equation (1) is a constant, 𝑤u, which is used to discourage the alignment of 

unrelated residues. Seven weight parameters and two gap penalty parameters (gap opening go and 

gap extension ge) are used (S. Wu and Zhang 2008): 𝑤; = 0.66, 𝑤U = 0.39, 𝑤m = 1.60, 𝑤p = 0.19, 

𝑤r = 0.19, 𝑤t = 0.31, 𝑤u = 0.99, go = 7.01, and ge = 0.55.  
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  Figure 2.1 Flowchart of our work. The query sequence is threaded against the template 
library by calculating the similarity score using sequential and structural features. Subsequently, 
contact map overlap (CMO) score between the contact map of each template and the predicted 
contact map of the query is calculated, and integrated to the threading-based similarity score in 
a weighted manner to select the best-fit template for predicting the 3D structure of the query. 
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Initially, the templates are ranked by the following 𝑍KCDBA 

	
𝑍KCDBA =

(𝑅KCDBAy −	< 𝑅KCDBAy >)

|< 𝑅KCDBAyU > −	< 𝑅KCDBAy >U
	

(2)	

 

where RKCDBAy  is the score normalized by the greater one of the raw alignment score with L (full 

alignment length) and L.y (partial alignment length), and < ⋯ > denotes the average of all 

templates in the library.  

2.3.2  Inclusion of residue-residue contact information 

A residue-residue contact map is a binary, symmetric matrix that provides a two-dimensional (2D) 

view of the inter-residue spatial distances in a protein 3D structure with contacts denoted as 1, and 

non-contacts as 0. That is, whenever the distance between any two residues in the 3D structure 

within a distance threshold value, typically considered between 6 and 16 Å, considering some 

specific atoms (mostly Cα or Cβ) of the residue pairs, the corresponding residue pairs are said to 

be in contact. In this work, we use 8 Å as the distance threshold for contact maps. Contact map 

overlap (CMO) is used to find the similarity between two contact maps, where the higher CMO 

score means there is a higher likelihood of being similar. The state-of-the-art method for CMO, 

Al-eigen (Di Lena et al. 2010), applies a heuristic approach to obtain a set of principal weighted 

eigenvectors by using the eigenvalue decomposition of symmetric matrices or contact maps. 

Finally, the overlap score between two contact maps is obtained by calculating the optimal global 

alignment between two sets of weighted eigenvectors by using the Needleman-Wunsch global 

alignment algorithm. In our present work, we run Al-eigen using seven eigenvectors to get the 

CMO score between a pair of contact maps. 

For the threading template scoring, we integrate the CMO score along with the 𝑍KCDBA 
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described above to calculate the final score for selecting the best-fit template. Since the range of 

CMO is [0,1], we use the weight 10 as the weight of CMO in calculating the final score. 

Consequently, the final score for the threading template selection is: 

	 𝐹KCDBA = 𝑍KCDBA + (𝐶𝑀𝑂 × 10)	 (3)	
 

After selecting the top template using Equation (3), we build the 3D model of the query 

protein using the query-template alignment by copying the coordinate of aligned residues from the 

template.  

2.3.3 Template libraries, benchmark data, and programs to compare 

We use a representative non-redundant template library collected from 

https://zhanglab.ccmb.med.umich.edu/library/ (J. Yang et al. 2015), which contains 70,670 

template structures.  

We benchmark against three datasets. The first data set is the Test500 (S. Wu and Zhang 

2008), which contains 500 test proteins. It is a set of nonhomologous proteins with sequence 

identity < 25% and having length from 50 to 633 residues. On Test500 dataset, we compare the 

performance of our work against a popular threading-based method, MUSTER (S. Wu and Zhang 

2008). MUSTER (Multi-Source ThreadER) is a threading algorithm that uses various structural 

and sequential single-body features to generate the query-template alignment using the 

Needleman-Wunsch dynamic programming algorithm. We also benchmark our approach against 

our in-house baseline threading approach that does not use the contact information but utilizes the 

same alignment scoring function described above. For a fair comparison, we use the same template 

library for all competing methods where templates with sequence identity > 30% to the query 

protein are excluded. As the source of contact, we use both true contact maps extracted from the 

native structures of the query proteins as well as contact maps predicted from their sequences by 
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RaptorX (S. Wang et al. 2017), a state-of-the-art contact prediction method that integrates 

sequence co-evolution and deep learning. To reduce the noise in RaptorX predicted contact maps, 

residue pairs with predicted contact probability < 0.5 are excluded. 

The second test set is the 150 proteins in the PSICOV (David T. Jones et al. 2012) dataset, 

which contains 150 single chains and single domain monomeric proteins. On this dataset, we 

benchmark our work against the state-of-the-art contact guided ab initio folding method 

CONFOLD2(Adhikari and Cheng 2018), which builds 3D protein structures using predicted 

contact maps and secondary structures. It constructs a pool of models by exploring the fold space 

using different subsets of contacts and then selects the top five models through clustering. As the 

source of contacts, CONFOLD2 uses contact maps predicted from MetaPSICOV (David T. Jones 

et al. 2015), another state-of-the-art contact predictor that integrates sequence co-evolution and 

machine learning. The published work of CONFOLD2 fails to report results for 4 targets from the 

PSICOV dataset. We, therefore, consider 146 targets for the current benchmarking. For a fair 

comparison, we use the same MetaPSICOV predicted contact maps after excluding homologous 

templates. To do this, we use three different increasingly stringent homology cutoffs as follows. 

First, we exclude all templates from the template library with sequence identity > 30% to the query 

proteins (referred to as Cutoff-1). In addition to sequence identity cutoff, to make the template 

selection cutoff more stringent, we exclude templates in the same SCOP (Hubbard et al. 1997) 

(Version 1.75) family of the query proteins (referred to as Cutoff-2); and templates in both SCOP 

family and superfamily (referred to as Cutoff-3).  

The third test set is CASP13 targets officially released in December 2018. We consider 

only 20 full-length targets resulting in a total of 32 domains that CASP has officially released so 

far. Here, we benchmark against two state-of-the-art contact-assisted methods: EigenTHREADER 
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(Buchan and Jones 2017), and map_align (Ovchinnikov et al. 2017). EigenTHREADER is a fold 

recognition method, which uses MetaPSICOV contact maps for searching the template library of 

contact maps. Similar to Al-eigen (Di Lena et al. 2010), it uses the eigenvector decomposition and 

dynamic programming to generate alignment between two sets of weighted eigenvectors. Since 

EigenTHREADER produces three kinds of alignment scores for each template, we use the contact 

map overlap (CMO) to rank templates, as it gives the best result among the three. map_align uses 

a pure co-evolutionary based contact maps to find analogous folds from the library of templates. 

To make a fair comparison, we use the same template library curated before CASP13 started on 

May 1, 2018 containing 69,041 template structures as well as the same contact maps predicted by 

RaptorX (S. Wang et al. 2017) for all three methods.  

2.3.4 Evaluation criteria 

TM-score (Y. Zhang and Skolnick 2004) is used to evaluate the performance of each competing 

method. TM-score gives a score in the range (0,1], where a higher score means a better structural 

similarity. TM-score > 0.5 indicates the pair of proteins share the same fold (Jinrui Xu and Zhang 

2010).   

2.4     Results and discussion 

2.4.1  Performance on Test500 set 

As shown in Table 2.1, our threading method that includes residue-residue contact 

information (referred to as ‘This work’) outperforms MUSTER as well as our baseline threading 

implementation that does not include contacts (referred to as ‘This workNOCONTACT’) in predicting 

the top ranked model both when using native contact maps and RaptorX predicted contact maps. 

On an average, our method that includes the contact information predicts the top ranked model 

with an average TM-score of 0.528 and 0.524 by using native contact maps and RaptorX predicted 
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contact maps respectively. In terms of average TM-score of top ranked models, our work (with 

native contacts) outperforms MUSTER as well as our baseline threading method by 0.011 and 

0.01 TM-score points respectively, whereas the differences are 0.007 and 0.006 TM-score points 

respectively when we evaluate our work (with RaptorX contacts) with MUSTER and our baseline 

threading method. It is worth mentioning that the higher average TM-score means the higher 

topological similarity of the query protein with the native structure. Moreover, an average TM-

score >0.5 over 500 targets illustrates that the corresponding method predicts correct folds (TM-

score >0.5) for the majority of the cases. Table 2.1 also shows that the performance of our baseline 

threading method is comparable to that of MUSTER. Our work, therefore, delivers consistently 

better average TM-score compared to MUSTER as well as our baseline threading method, 

indicating that the inclusion of the residue-residue contact information helps to boost the average 

accuracy of the top ranked predicted model.           

Table 2.1 Performance comparison on Test500 dataseta based on the average TM-score of top 

ranked models. 

Contact Source MUSTER (p-value*) This workNOCONTACT (p-value*) This work 

Native contact 0.517 (0.001) 0.518 (0.002) 0.528 

RaptorX 0.517 (0.007) 0.518 (0.012) 0.524 

a excluding templates with sequence identity > 0.30 to the query protein. 
*one sample t-test’s p-value of the TM-score difference compared to This work. 

 

To examine whether the performance boost attained by our work is statistically significant, 

we perform t-test of the TM-score improvements. On Test500 dataset, our work (with native 

contacts) is statistically significantly better at 95% confidence level compared to MUSTER (p-

value = 0.001) and our baseline threading method (p-value = 0.002). Furthermore, the performance 
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improvement of our work (with RaptorX contacts) is also statistically significant at 95% 

confidence level compared to MUSTER and our baseline threading method with p-values < 0.05 

(Table 2.1). Overall, the results indicate that incorporating the contact information yields 

statistically significantly better threading performance in terms of the top ranked model using both 

native and predicted contact maps. 

Figures 2.2 and 2.3 show a head-to-head comparison of our work (referred to as ‘This 

work’) with MUSTER and our baseline threading method (referred to as ‘This workNOCONTACT’) 

respectively. In Figures 2.2(A) and 2.3(B), there are 12% and 11% more points, respectively 

below the diagonal line, which indicates that our work identifies better alignment than MUSTER 

regardless of using native contacts or RaptorX predicted contacts. We also observe a similar trend 

in Figures 2.3(A) and 2.3(B) when we do a head-to-head comparison of this work with our 

baseline threading method. Figures 2.2(C) and 2.2(D) show the bimodal distribution of TM-score 

of top one models predicted by our work (in red) and MUSTER (in blue). These figures illustrate 

the bimodality due to the diversity of Test500 data set, which has roughly a balanced combination 

of easy targets (both methods predict the top one model with TM-score > 0.5) and hard targets 

(both methods predict the top one model with TM-score <= 0.5). In Figure 2.2(C), the highest 

peak of our work is slightly higher than that of MUSTER, which means the density of models of 

this work (with native contacts) in the TM-score range [0.6,0.8] is more than MUSTER. We also 

observe that the second highest peak of our work is lower than MUSTER in the TM-score range 

[0.1,0.3], which demonstrates a fewer number of models with low TM-score are predicted by our 

work compared to MUSTER. Moreover, in the TM-score range [0.3,0.5], the density of models of 

our work is more than MUSTER. Figure 2.2(D) shows a similar trend with the density of models 

of our work (with RaptorX contacts) and MUSTER being comparable for easy targets, and for a   
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TM-score range around [0.3,0.5], our work predicts more models than MUSTER as opposed to 

the TM-score range (0,0.3].  

 

 

 

 

 

 

Figure 2.2 A head-to-head performance comparison of our work and MUSTER based on the 
accuracy of the top ranked models on Test500 dataset. (A) MUSTER versus This work (with native 
contact maps), (B) MUSTER versus This work (with RaptorX contact maps). Each point in (A) 
and (B) represents the TM-score of the top ranked models predicted by This work (x-axis) and 
MUSTER (y-axis), respectively. (C) Bimodal distribution of TM-score of the top ranked models 
predicted by MUSTER (in blue) and This work with native contact maps (in red), (D) Bimodal 
distribution of TM-score between MUSTER (in blue) and This work with RaptorX predicted 
contact maps (in red). Templates with sequence identity > 30% to the query protein are excluded.  
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Figure 2.3 TM-score comparison between our work and our baseline threading method for 
the top ranked model on Test500 dataset. This workNOCONTACT refers to our baseline threading 
method, which does not use contact information; This work refers to our work. (A) This 
workNOCONTACT versus This work (with native contact maps), (B) This workNOCONTACT versus 
This work (with RaptorX contact maps). Each point in (A) and (B) represents the TM-score of 
the top ranked models predicted by This work (x-axis) and This workNOCONTACT (y-axis), 
respectively. (C) Bimodal distribution of TM score of the top ranked models predicted by This 
workNOCONTACT (in blue) and This work with native contact maps (in red), (D) Bimodal 
distribution of TM-score between This workNOCONTACT (in blue) and This work with RaptorX 
predicted contact maps (in red). Templates with sequence identity > 30% to the query protein 
are excluded.  
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A similar trend is observed in Figures 2.3(C) and 2.3(D), where we plot the TM-score 

distribution of the top one model predicted by both of our threading approaches – one using contact 

information while the other does not. For easy targets and for the TM-score range [0.3,0.5], the 

density of models of our work (referred to as ‘This work’) is more than that of our baseline 

threading method (referred to as ‘This workNOCONTACT’); whereas the opposite trend is shown for 

TM-score range (0,0.3], which indicates that our work predicts more models with a higher 

accuracy than that of our baseline threading method that does not include the contact information. 

In summary, the results demonstrate that inclusion of the residue-residue contact information 

boosts protein threading by shifting its performance distributions towards the higher accuracy.  

2.4.2  Performance on PSICOV-150 set 

Next, we compare the performance of our work with CONFOLD2, a state-of-the-art 

contact driven ab initio folding method, using the PSICOV-150 dataset after excluding four targets 

for which CONFOLD2 fails to report the performance. As shown in Table 2.2, our work 

consistently outperforms CONFOLD2. For targets with the predicted contact map precision ≤ 50% 

(122/146 cases), our work (using Cutoff-1) achieves a mean TM-score of 0.628 compared to 0.573 

of CONFOLD2, whereas we achieve mean TM-score of 0.627 and 0.617 using Cutoff-2 and 

Cutoff-3 respectively.  For the remaining targets with a high precision contact maps (24/146 cases), 

though there is an improvement in mean TM-score of both methods, our work (using Cutoff-1) 

outperforms CONFOLD2 by achieving a mean TM-score of 0.691, which is about 0.07 TM-score 

points better than that of CONFOLD2. The increase in TM-score reaches to 0.068 using Cutoff-2 

or Cutoff-3. Considering all targets, our work (using Cutoff-1) predicts top ranked models with an 

average TM-score of 0.638 that is 0.058 TM-score points more than that of CONFOLD2. We 

achieve average TM-score of 0.637 and 0.628 using Cutoff-2 and Cutoff-3 respectively. It is also 
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worth mentioning that while CONFOLD2 fails to report the performance for four targets 1atzA, 

1bkrA, 1c44A, and 1c52A, our work predicts the top ranked model with an average TM-score > 

0.53, irrespective of different homology cutoffs.  

Table 2.2 Performance comparison of our work against CONFOLD2 on PSICOV-150 

dataseta based on the average TM-score of top ranked predicted models. 

Homology cutoff Contact Precisionb CONFOLD2(p value*) This work 

Cutoff-1c <= 50%f 0.573 (0.004) 0.628 

 > 50% 0.621 (0.08**) 0.691 

 All 0.580 (0.0009) 0.638 

Cutoff-2d <= 50% 0.573 (0.007) 0.627 

 > 50% 0.621 (0.087**) 0.689 

 All 0.580 (0.002) 0.637 

Cutoff-3e <= 50% 0.573 (0.032) 0.617 

 > 50% 0.621 (0.087**) 0.689 

 All 0.580 (0.009) 0.628 
a considered 146 targets as the published work of CONFOLD2 fails to report results for 4 targets 

namely: 1atzA, 1bkrA, 1c44A, and 1c52A whereas our work predicts the top ranked model with a 

mean TM-score > 0.53, irrespective of different cutoffs. 
b calculated over all the contacts with probability of being in contact is at least 0.5 and showing 

here as a percentage. 
c excluding templates with sequence identity > 0.30 to the query protein. 
d excluding SCOP family and sequence identity > 0.30 to the query protein. 
e excluding SCOP family and superfamily, and sequence identity > 0.30 to the query protein. 
f calculated over 122 targets. 
*one sample t-test’s p-value of the TM-score difference of our work. 
**calculated over only 24 targets, which might not be sufficiently large sample size to meaningfully 

evaluate statistical significance. 
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We also perform the t-test of the TM-score difference to examine whether the improvement 

attained by our work is statistically significant. As reported in Table 2.2, for targets with contact 

precision ≤ 50% and for all targets, our work is statistically significantly better than CONFOLD2 

at 95% confidence level in all cutoffs. For targets with low precision contacts (≤ 50%), p-value is 

0.032 in the most stringent cutoff (Cutoff-3) compared to 0.004 in Cutoff-1 and 0.008 in Cutoff-

2. Similarly, for all targets, p-value is 0.009 in Cutoff-3 compared to 0.0009 in Cutoff-1 and 0.002 

in Cutoff-2.  For targets with high accuracy contact maps with a precision > 50%, the average TM-

score of our work is slightly better than CONFOLD2, but the difference is not statistically 

significant at 95% confidence level. It should be noted here that there are only 24 targets with high 

accuracy contact maps with a precision > 50% and a sample size of only 24 may not be large 

enough for a meaningful statistical significance test. It is also worth mentioning that the exclusion 

of SCOP family, superfamily along with 30% sequence identity cutoff to the query protein is a 

very stringent cutoff for our work to compare it with CONFOLD2. Overall, these tests demonstrate 

that the inclusion of the contact information into threading yields statistically significantly better 

performance than the contact- assisted ab initio folding.  

Figure 2.4(A) shows a head-to-head comparison between both methods based on the TM-

score of top ranked predicted models with our work (in Cutoff-3) significantly outperforming 

CONFOLD2. We chose the homology Cutoff-3 for this comparison because it represents the most 

stringent homology cutoff.  69.2% of data points (in Figure 2.4(A)) lie below the diagonal line, 

which indicates that our work predicts a significantly better accurate top ranked model than 

CONFOLD2.  In 28 cases, CONFOLD2 predicts the top ranked model with a TM-score < 0.5, 

while our work successfully predicts the correct fold (the top ranked model with a TM-score > 

0.5). On the other hand, CONFOLD2 predicts the correct folds (the top ranked model with a TM-
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score > 0.5) for 25 targets, but our work fails. Out of 146, our work predicts models from the top-

ranked template with a TM-score >= 0.5 for 109 test proteins (marked in green quadrilateral in 

Figure 2.4(A)). Out of these 109 test proteins, our work attains better TM-score than CONFOLD2 

for 97 cases. Figure 2.4(B) shows the TM-score distribution of top ranked models predicted by 

our work (in Cutoff-3) and CONFOLD2. The highest peak of the distribution of our work (in red) 

is larger as well as skewed towards the higher accuracy (right) side compared to CONFOLD2 (in 

blue), indicating that our work predicts more models with a better accuracy than the other method. 

 

 

 

2.4.3  Performance on CASP13 set 

We further evaluate the performance of our work on the CASP13 dataset consisting of 20 

full-length targets resulting in a total of 32 domains officially released so far. For a fair 

performance evaluation, the same template library and the same non-redundant (nr) sequence 

database are used by all competing methods and both the databases were created before CASP13 

Figure 2.4 A head-to-head performance comparison between our work (using Cutoff-3) and 
CONFOLD2 based on the TM-score of the top ranked models on PSICOV-150 dataset. (A) Each 
point represents the TM-score of the top ranked models predicted by our work (x-axis) and 
CONFOLD2 (y-axis), respectively. For 109 test proteins, our work predicts top ranked models with 
TM-score >= 0.5, which is shown in green quadrilateral. (B) TM-score distribution of the top 
ranked models predicted by this work (in red), and CONFOLD2 (in blue) over the 109 test proteins.  
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started on May 1, 2018. Furthermore, we use the same RaptorX predicted contact maps for all 

competing methods. We use the default settings with 65 threads to run map_align for each target. 

Since map_align is highly computationally expensive (Refer to Appendix 1) for target-by-target 

CPU hours needed by map_align), we only consider 11 full-length targets of length < 300 residues, 

resulting in a total of 14 domains. For EigenTHREADER, we use the default setting except setting 

values of the parameters c (the distance threshold for contact maps) as 8 Å and t (the number of 

eigenvectors) as seven.  Since we run Al-eigen using seven eigenvectors in our work, the same 

number of eigenvectors is used for EigenTHREADER to make a fair performance comparison. 

Table 2.3 Performance comparison over 20 full-length CASP13 targetsa based on top ranked 

models by our work and two state-of-the-art contact-assisted threading methods. TM-align results 

are included as a reference. 

Methods Average TM-score % time TM-score > 0.5b 

map_alignc 0.39 18.2 

EigenTHREADER 0.43 30.0 

This work 0.45 40.0 

TM-alignd 0.67 85.0 
a officially released by CASP on December 2018. 
b percentage of time the respective method predicts the correct fold (TM-score> 0.5). 
c since map_align is too computationally expensive, we run it only on 11 CASP full-length targets 
(of length < 300 residues) out of 20 full-length targets and the results are based on those 11 targets. 
d using native 3D structures of the query proteins officially released by CASP. 
 

As shown in Table 2.3, our work (referred to as ‘This work’) outperforms map_align and 

EigenTHREADER over 20 full-length targets in terms of average TM-score of top ranked models 

and the percentage of time the top ranked model is predicted with a TM-score > 0.5 (i.e. with the 

correct fold). Our work predicts the top ranked model with an average TM-score of 0.45 compared 

to that of 0.43 of EigenTHREADER and 0.39 of map_align. Moreover, 40% of the time our work 

predicts the similar fold (the top ranked model with a TM-score > 0.5) which is about 21% and 
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10% better than map_align and EigenTHREADER respectively. It is worth mentioning that 

map_align’s performance is analyzed over 11 full-length targets having length < 300 residues 

instead of 20 targets due to the expensive computation. To investigate whether the performance of 

contact-assisted threading methods is the optimal, we run TM-align (Y. Zhang and Skolnick 

2005b) using the CASP13 officially released native 3D structure of the query protein. TM-align 

performs the structural superposition between the query protein and the template library in order 

to select the optimal template. The average TM-score (by TM-align) of the best template selected 

by TM-align is 0.67 and 85% of the time it finds the correct fold, revealing the gap between top 

templates found by the state-of-the-art contact-assisted threading methods and the best possible 

templates.  

Table 2.4 Performance comparison on CASP13 dataset over 32 domainsa based on top ranked 

models by our work and two state-of-the-art contact-assisted threading methods. TM-align results 

are included as a reference. 

Methods Average TM-score % time TM-score > 0.5b 

map_alignc 0.36 14.3 

EigenTHREADERd 0.38 25.0 

This work 0.39 28.1 

TM-aligne 0.70 93.75 
a CASP officially releases 20 full-length targets in a total of 32 domains on December 2018. 
b percentage of time the respective method predicts the correct fold (TM-score> 0.5).  
c considering only 14 CASP13 domains of length < 300 residues and values are based on those 14 
domains. 
d considering only 28 domains because TM-score fails to calculate TM-score for the following 
domains: T0960-D4, T0960-D2, T0960-D1, and T0957-D2 as EigenTHREADER’s predicted 
models do not have any common residues to the native domains. 
e using native 3D structures of the query proteins officially released by CASP. 
 

In Table 2.4, we report the results of head-to-head comparisons between all competing 

methods over 32 domains based on TM-score of top ranked models. For EigenTHREADER, we 
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exclude 4 domains namely: T0960-D4, T0960-D2, T0960-D1, and T0957-D2 because the TM-

score tool fails to superimpose EigenTHREADER’s predicted models with the native domains as 

there are no common residues. Moreover, the results of map_align are based on 14 domains of 

length < 300 residues. On this dataset, our work outperforms EigenTHREADER and map_align 

in terms of average TM-score of top ranked models and the percentage of time it finds the correct 

fold (the top ranked model predicted with a TM-score > 0.5). On an average, our work achieves a 

TM-score of 0.39 compared to 0.38 of EigenTHREADER and 0.36 of map_align. Moreover, 28.1 

% of the time our work finds the correct fold (TM-score > 0.5) which is about 3% and 14% better 

than EigenTHREADER and map_align respectively. It is worth mentioning that our work achieves 

an average TM-score of 0.415 and 32% of the time it predicts the correct fold (TM-score > 0.5) 

by considering 28 domains like EigenTHREADER. Considering 32 domains, once again 93.75% 

of the time TM-align finds the correct fold (TM-score > 0.5) including the average TM-score of 

0.7, indicating that there is a large room for improvement. Figure 2.5 shows the TM-score 

distribution of the top ranked model predicted by our work and EigenTHREADER over 28 

domains. For a low TM-score range, the density of models of our work is lower than that of 

EigenTHREADER as opposed to a higher TM-score range, which indicates that our work predicts 

more models with a better accuracy compared to EigenTHREADER. 

As a representative example, we present a case study on CASP13 target T0966 with 494 

residues where SPIDER3 predicts the secondary structure with the Q3 accuracy of 87.6%. It is a 

single domain TBM-hard target as per the CASP official domain classification. Figure 2.6(B) 

shows that TM-align detects the template (PDB ID: 2ebfX) that has a correct fold to T0966 with a 

TM-score (by TM-align) of 0.84 by using the native 3D structure of T0966 released by CASP. We 

include TM-align as a reference to see the best possible template for the target T0966 can be found 
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in our template library. Figure 2.6(C) shows that our method detects the same template as the top 

template and predicts the top ranked model using that template with a TM-score of 0.8 to the native 

structure (Figure 2.6(D)). However, EigenTHREADER finds a different template (PDB ID: 

1phpA2), which has an incorrect fold with a TM-score (by TM-align) of 0.36 and predicts the top 

one model with a TM-score of 0.19 to the native structure (Figure 2.6(E) and 2.6(F), respectively). 

 

 

 

  

Figure 2.5 TM-score distribution of the top ranked models predicted by This work (in red) 
and EigenTHREADER (in blue) over 28 CASP released domains. We exclude 4 domains for 
which native domains do not have any residue match with EigenTHREADER’s predicted models.  
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Figure 2.6 Performance of our work and EigenTHREADER on target T0966. (A) TM-align 
finds 2ebfX as the best template in the template library with a TM-score (by TM-align) of 0.84, 
(B) Experimental structure of T0966, (C) Similar to TM-align, our work  finds the same template 
(i.e. 2ebfX) as the top ranked template, (D) Structural alignment between the top ranked model 
predicted by our work (in thick rainbow) with a TM-score of 0.8 and the native structure of 
T0966 (in thin gray). (E) EigenTHREADER finds 1phpA2 as the top ranked template with a 
TM-score (by TM-align) of 0.36 for the same target. (F) Structural alignment between the top 
ranked model predicted by EigenTHREADER (in thick rainbow) with a TM-score of 0.19 and 
the native structure of T0966 (in thin gray).  
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2.5 Conclusion 

In this article, we analyze whether the inclusion of residue-residue contact information 

improves the performable of protein threading. We develop a new threading method by combining 

sequential and structural features, and subsequently incorporate the residue-residue contact 

information in the form of the contact map overlap (CMO) score. We benchmark our work on 

three different datasets comprising of a diverse set of protein targets of varied difficulties. 

Experimental results demonstrate that our work outperforms a popular threading method 

MUSTER as well as our baseline threading approach that does not utilize the contact information, 

the state-of-the-art contact-assisted ab initio folding method CONFOLD2, and latest contact-

assisted threading methods EigenTHREADER and map_align. Collectively, our study indicates 

that the inclusion of the contact information improves protein threading.  
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Chapter 3 

Evaluating the significance of contact maps in low-homology protein modeling using 
contact-assisted threading 

 
 
 
3.1 Abstract 

Chapter 2 discusses the utility of contact information to boost protein threading by 

developing a new contact-assisted threading method. However, the nature and extent to which the 

quality of a predicted contact map impacts the performance of contact-assisted threading remains 

elusive. Here, we systematically analyze and explore this interdependence by employing our 

newly-developed contact-assisted threading method over a large-scale benchmark dataset using 

predicted contact maps from four complementary methods including direct coupling analysis 

(mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta 

approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental 

results demonstrate that contact-assisted threading using high-quality contacts having the 

Matthews Correlation Coefficient (MCC) ³ 0.5 improves the threading performance in nearly 30% 

of cases, while low-quality contacts with the MCC < 0.35 degrades the performance for 50% of 

cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC 

³ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study 

uncovers the mutual association between the quality of predicted contacts and its possible utility 

in boosting the threading performance for improving low-homology protein modeling. 

3.2 Introduction 

In Chapter 2, we have discussed our newly developed contact-assisted threading method by 

successfully integrating the accurate residue-residue contact information for the improved protein 
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threading (Bhattacharya and Bhattacharya 2019a). Specifically, we have integrated residue-

residue contact maps predicted by RaptorX (S. Wang et al. 2017), one of the most accurate contact 

prediction methods, with structural and sequential information such as profiles, secondary 

structures, solvent accessibility, torsion angles (psi and phi), and hydrophobicity for contact-

assisted threading. Experimental results have shown that the inclusion of the contact information 

attains statistically significantly better performance compared to a contact-free threading method 

when everything else remains the same, demonstrating that the inclusion of the contact information 

in protein threading is a promising avenue for improving the performance of threading methods. 

Furthermore, in a head-to-head performance comparison utilizing the same RaptorX-derived 

contact maps to guarantee a fair comparison, our method has successfully outperformed state-of-

the-art contact-assisted threading methods EigenTHREADER and map_align, indicating our 

method as one of the best contact-assisted protein threading protocols.  However, it is not clear 

how the quality of a predicted contact map affects contact-assisted threading. Nor it is clear 

whether contact-assisted threading with low-quality contact maps is as advantageous over the pure 

threading as contact-assisted threading with high-quality contact maps such as those predicted 

from RaptorX. Finally, in the presence of competing contact maps of comparable qualities 

predicted by state-of-the-art contact predictors, is there any advantage of using one over the other 

in terms of the improved threading performance? While assessing the efficacy of contact maps for 

low-homology protein modeling requires a head-to-head comparison between the contact-assisted 

threading and the contact-free pure threading, neither EigenTHREADER nor map_align can 

perform threading in a contact-free mode. Our method, on the other hand, can be seamlessly 

customized to perform contact-assisted or contact-free threading modes, enabling the evaluation 

of the utility of contact maps for remote homology modeling. 
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To evaluate the significance of contact maps in low-homology protein modeling, here we 

systematically investigate the impact of the quality of predicted contacts on the accuracy of 

contact-assisted threading by employing our newly developed contact-assisted threading method 

over several datasets. First, we analyze predicted contact maps from RaptorX and three other 

complementary methods having a wide range of qualities of their predicted contacts based on 

different contact map evaluation criteria to objectively evaluate how to select the most informative 

contact map. Then, we integrate the predicted contact maps from these contact predictors one by 

one into our contact-assisted threading method to examine the impact of each predicted contact 

map on the threading performance and compare them with a baseline threading algorithm that does 

not utilize contact information as well as RaptorX-assisted threading. Finally, we compare the 

performance of our contact-assisted threading by incorporating comparable-quality contact maps 

predicted by the top two officially ranked contact predictors from the CASP13 experiment to 

further study the impact of the quality of contacts in the threading performance. Collectively, our 

study unravels the mutual association that exists between the quality of a contact map and the 

performance of contact-assisted threading. 

 
3.3 Materials and methods 

3.3.1 Scoring a query-template alignment 

Our newly-developed contact-assisted threading method, described in Chapter 2, is an 

iterative query – template alignment approach where query-template alignments are performed by 

the Needleman-Wunsch global alignment algorithm (Needleman and Wunsch 1970) The threading 

scoring function consists of close and distant sequence profiles, secondary structures, solvent 

accessibility, structure profiles, torsion angles, and hydrophobicity match based on which the 

normalized alignment score or 𝑍KCDBA is calculated for ranking the templates. 
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A residue-residue contact map, which is a binary, square, and symmetric matrix, is a two-

dimensional representation of the protein’s 3D structure. A contact indicates that the spatial 

distance between a pair of residues is less than a given distance threshold, typically set at 8 Å, 

between the Cα or Cβ atoms of the residue pairs. Contact Map Overlap (CMO) finds the similarity 

between two contact maps, where the higher CMO score indicates that a higher similarity between 

the two comparing contact maps. Al-Eigen (Di Lena et al. 2010), one of the state-of-the-art CMO 

methods, computes an overlap between two input contact maps and gives a score between [0,1] 

with a higher score indicating a better agreement of contact maps. We integrate the CMO score 

returned from Al-Eigen into our threading method for selecting the best-fit template by formulating 

the final score as discussed in (Bhattacharya and Bhattacharya 2019a). After identifying the best-

fit template, the query-template alignment is used to copy the coordinate of the aligned residues 

from the template to build the final 3D model of the query protein. Please refer Chapter 2 for 

further details about the method and its scoring function. 

3.3.2 Template libraries, benchmark data, and predicted contact maps  

We use a representative non-redundant library of templates containing 70,670 templates, 

collected from: https://zhanglab.ccmb.med.umich.edu/library/ (J. Yang et al. 2015). 

Our first benchmark dataset is the PSICOV150 dataset (David T. Jones et al. 2012), which 

contains 150 single chain and single domain proteins. In order to test the impact of different types 

of contact maps in the performance of contact-assisted method, we choose predicted contact maps 

from four complementary methods having a wide range of qualities of predicted contacts including 

(i) a mean field direct coupling analysis (mfDCA) (Kaján et al. 2014; Morcos et al. 2011), (ii) a 

sparse inverse covariance estimation method (PSICOV) (David T. Jones et al. 2012), (iii) a 

classical neural network-based meta approach (MetaPSICOV) (David T. Jones et al. 2015), and 
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(iv) a state-of-the-art ultra-deep learning model (RaptorX) (S. Wang et al. 2017). Here, we give a 

brief introduction of each contact predictor. mfDCA, an advanced formulation of direct coupling 

analysis (DCA), is a statistical inference framework used to infer direct co-evolutionary couplings 

between pair of residues in multiple sequence alignments. Another Evolutionary Coupling 

Analysis (ECA) technique, PSICOV, uses sparse inverse covariance estimation for the contact 

prediction. Although ECA methods are useful for predicting long-range contacts in the presence 

of a large number of sequence homologs, their accuracy is substantially poor if the number of 

sequence homologs is low (Z. Wang and Xu 2013). In recent years, machine learning or deep 

learning-based methods boost the accuracy of contacts. One such contact predictor, MetaPSICOV, 

a meta predictor, which uses a two-stage neural network by combining outputs of several ECA 

classifiers. It was ranked as one of the best contact predictors in CASP11 and CASP 12 (Wuyun 

et al. 2018). Another contact predictor powered by deep learning, RaptorX, incorporates the entire 

protein ‘image’ as a context for prediction by utilizing a Residual Convolutional Neural Network, 

or ResNet. It was ranked as one of the best contact predictors in CASP12 and CASP13 

(Schaarschmidt et al. 2018). 

We use the FreeContact package (Kaján et al. 2014) to obtain contact-maps predicted by 

mfDCA. Since the contact likelihood scores of mfDCA predicted contact maps are not normalized 

in the range [0,1], we normalize the contact likelihood scores by dividing each score by the 

maximum likelihood score of a given predicted contact map. PSICOV and MetaPSICOV contacts 

are obtained directly from the MetaPSICOV benchmark dataset (David T. Jones et al. 2015). 

RaptorX contacts are collected by submitting jobs to the RaptorX online server 

(http://raptorx.uchicago.edu/ContactMap/ (S. Wang et al. 2017; 2016). Residue pairs with contact 

likelihood scores < 0.5 are excluded to reduce the noise in all predicted contact maps. To make a 
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fair performance comparison, we use the same template library for all competing methods by 

excluding templates with sequence identity > 30% to the query protein to remove close homologs. 

It should be noted that, unlike other contact predictors, RaptorX fails to predict contacts for two 

targets namely: 1tqhA and 1hdoA. We, therefore, consider 148 targets for the current 

benchmarking. 

Next, we benchmark on CASP13 dataset officially released in December 2018. We consider 

20 full-length targets in a total of 32 domains for which CASP organizers released experimental 

structures so far. We consider the top two officially ranked contact predictors in CASP13(Shrestha 

et al. 2019) to test the impact of using comparable-quality contact maps in the performance of our 

contact-assisted method. In CASP13, the contact prediction category is heavily dominated by the 

latest breakthroughs in deep learning technologies. For example, G498 (ranked 1) or RaptorX-

Contact, developed by Xu and coworkers, has attained the top performance since CASP12. It 

predicts residue-residue contacts using an ultra-deep learning model. It is worth mentioning that 

we also use RaptorX predicted contacts for our previous study (Bhattacharya and Bhattacharya 

2019a) as well as for benchmarking on the PSICOV150 dataset for this current work. The second-

ranked contact predictor, G032 or TripletRes, developed by Zhang and coworkers (Y. Li et al. 

2019), is implemented by a deep residual fully convolutional neural network with evolutionary 

coupling features from deep multiple sequence alignments.  

For CASP13 benchmarking, the template library is curated before CASP13 started on May 

1, 2018, which contains 69,041 template structures. For a fair comparison, we use the same 

template library for all competing methods. We have downloaded the predicted contact maps from 

the official website of CASP and subsequently exclude residue pairs with a contact probability < 

0.5 from all predicted contact maps to reduce the noise. It is also worth mentioning all residue 
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pairs of a predicted contact map with a contact likelihood of at least 0.5 with a minimum sequence 

separation of 6 residues are considered for all experiments. 

3.3.3 Evaluation criteria of contact maps, and the resulting contact-assisted 3D structures 

We use the following evaluation measures to evaluate predicted contact maps: precision, 

coverage, mean false positive error, spread, and Matthews correlation coefficient (MCC) 

(Monastyrskyy et al. 2014; Adhikari et al. 2016; Schaarschmidt et al. 2018). Precision is the 

percentage of correctly predicted contacts, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ��
�����

 , where TP represents true positives 

or correctly predicted contacts, and FP represents false positives or incorrectly predicted contacts. 

Coverage is the percentage of correctly predicted contacts with respect to the number of true 

contacts in the native contact map (Nc), 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	 ����  . Mean false positive error is the mean 

of absolute deviation of all incorrectly predicted contacts and is calculated by: 𝑀𝑒𝑎𝑛	𝐹𝑃	𝐸𝑟𝑟𝑜𝑟 =

	 ;
��	
∑(𝑑-. − 𝑑), where d represents the distance threshold (usually 8 Å) and dij represents the true 

distance of an incorrectly predicted pair of contacts. Spread is calculated by: 𝑆𝑝𝑟𝑒𝑎𝑑 =

	 ;
��
∑ min{	𝑑𝑖𝑠𝑡	(𝑇- − 𝑃)}
��
-b; , where Nc represents the number of true contacts, Ti is a true contact, 

and min{	𝑑𝑖𝑠𝑡	(𝑇- − 𝑃)} is the minimum Euclidean distance between true pair of contacts and 

predicted contact pairs. Matthews correlation coefficient (MCC) is calculated by: 𝑀𝐶𝐶 =

	 ��∗�����∗��
|(�����)(�����)(�����)(�����)	

 , where TP, TN, FP, and FN represent true positive, true negative, 

false positive, and false negative respectively. 

TM-score (Y. Zhang and Skolnick 2004) is used to evaluate the quality of the predicted 3D 

structure of query proteins with respect to the native (experimentally determined) structures. The 

value of TM-score lies in the range (0,1], where a higher score indicates a better similarity. A TM-

score > 0.5 suggests a highly similar structure to the native fold (Jinrui Xu and Zhang 2010). 
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3.4 Results and discussion 

3.4.1   Robust assessment of qualities of predicted contact maps 

To objectively evaluate the most informative contact map, we compare the performance of 

each predicted contact map from different perspectives using various contact evaluation measures 

(Adhikari et al. 2016) over PSICOV150 dataset after excluding two targets (1tqhA and 1hdoA) for 

which RaptorX fails to predict contact maps.  

Table 3.1  Evaluation of predicted contact mapsa on PSICOV150 datasetb, sorted by non-

increasing order of the value of the MCC (the best performance and the best performer are listed 

in bold). 

Contact Source Precision Coverage Mean FP 
Error 

Spread MCC 

RaptorX 72.08 66.88 0.67 1.78 0.68 

MetaPSICOV 71.61 34.20 0.73 5.63 0.47 

PSICOV 72.83 8.78 1.08 8.32 0.24 

mfDCA 75.22 3.20 1.03 20.05 0.14 

a excluding residue pairs with contact probability < 0.5.  
b excluding two targets (1tqhA and 1hdoA) for which RaptorX could not predict contact maps. 

 

As shown in Table 3.1, mfDCA attains the highest precision of 75.22% compared to 

72.83% of PSICOV, 72.08% of RaptorX, and 71.61% of MetaPSICOV. From the standpoint of 

the precision, mfDCA seems to be the best contact predictors. However, all the other contact 

evaluation measures indicate that RaptorX attains the best performance. For example, RaptorX 

attains an MCC of 0.68 compared to 0.47 of MetaPSICOV, 0.24 of PSICOV, and 0.14 of mfDCA. 

RaptorX is also shown to reach the best score according to the coverage (66.88%), the mean 

floating point error (0.67), and the spread (1.78), whereas, MetaPSICOV, PSICOV, and mfDCA 
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achieve coverage of 34.2%, 8.78% and 3.2%, mean FP error of 0.73, 1.08 and 1.03, and spread of 

5.63, 8.32 and 20.05 respectively. The results reveal that relying purely on one contact evaluation 

measure such as precision may not always be sufficient since evaluation measures focus on various 

aspects of the quality of predicted contacts that can sometimes be mutually contradictory. 

Furthermore, the fact that we only consider residue pairs with a contact probability of at least 0.5 

to remove the noise, may have resulted in a very few numbers of contact pairs for mfDCA thereby 

artificially raising the precision. In contrast, MCC considers true and false positives and negatives, 

and therefore is a more balanced evaluation measure for predicted contacts. 

 

 

 

 

 

 

Figure 3.1 Representative examples of contact maps predicted by four complementary methods for 
targets 1aapA and 1dsxA. The upper triangles represent true (native) contacts of the target and the lower 
triangles represent predicted contacts with contact probability of at least 0.5. Numbers inside parenthesis 
indicate the precision (%), and the MCC respectively. For target 1aapA, (A) native contacts versus mfDCA 
contacts with a precision of 100% and an MCC of 0.09, (B) native contacts versus PSICOV contacts with 
a precision of 100% and an MCC of 0.22, (C) native contacts versus MetaPSICOV contacts with a precision 
of 84.62% and an MCC of 0.55, (D) native contacts versus RaptorX contacts with a precision of 83.78% 
and an MCC of 0.65. For target 1dsxA, (E) native contacts versus mfDCA contacts with a precision of 
46.15% and an MCC of 0.13, (F) native contacts versus PSICOV contacts with a precision of 42.86% and 
an MCC of 0.09, (G) native contacts versus MetaPSICOV contacts with a precision of 86.21% and an MCC 
of 0.39, (H) native contacts versus RaptorX contacts with a precision of 78.12% and an MCC of 0.64.  
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As a representative example, we present two case studies on targets 1aapA (56 residues) 

and 1dsxA (87 residues) to illustrate mutual comparisons between the precision and the MCC, and 

to substantiate how the MCC is more balanced evaluation measure for predicted contacts. In 

Figure 3.1, the upper triangles represent the native contact map and the lower triangles represent 

the predicted contact map by different contact predictors after applying the contact likelihood score 

cutoff of at least 0.5. Figures 3.1(A) to 3.1(D) represent native contacts of the target 1aapA versus 

contacts predicted by mfDCA, PSICOV, MetaPSICOV, and RaptorX respectively. Based on the 

precision, mfDCA and PSIOCOV appear to be the best contact predictor for the target 1aapA with 

a precision of 100%, as opposed to 84.62% of MetaPSICOV and 83.78% of RaptorX. However, 

mfDCA and PSICOV achieve high precision by predicting only a very few contact pairs correctly, 

but with a very low coverage. Precision of MetPSICOV and RaptorX, on the other hand, are 

comparatively lower due to the presence of few false positive contacts, but with a substantially 

higher coverage compared to mfDCA or PSICOV. MCC successfully addresses this issue with 

RaptorX achieving the best performance having an MCC of 0.65 compared to 0.55 of 

MetaPSICOV, 0.22 of PSICOV, and 0.09 of mfDCA. These results illustrate the fact that the MCC 

is more balanced evaluation measure and therefore better suited for predicted contact maps that 

are often noisy. Figures 3.1(E) to 3.1(H) present a similar case study for target 1dsxA (87 

residues). Once again, RaptorX predicted contact map achieves the best performance in terms of 

the MCC with a value of 0.64 compared to 0.39 of MetaPSICOV, 0.13 of mfDCA, and 0.09 of 

PSICOV; whereas MetaPSICOV contacts achieves the best performance in terms of precision 

(86.21%) compared to 78.12% of RaptorX, 46.15% of mfDCA, and 42.86% of PSICOV. Although 

this time precision offers a better balance, still it overly emphasizes prediction of true positive 

contacts. Overall, these examples demonstrate that MCC is more robust and consistent for noisy 
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contact maps compared to other contact evaluation measures. We, therefore, choose MCC as the 

main evaluation measure of the quality of predicted contact maps in this study. 

3.4.2 Performance evaluation of contact-assisted threading with contact maps of diverse 

qualities 

To investigate the impact of the quality of contact maps on the performance of contact-

assisted threading, we benchmark our method using contact maps of diverse qualities over 

PSICOV150 dataset.  

Table 3.2 Impact of the quality of contact maps on the performance of contact-assisted 

threading on PSICOV150 targetsa based on top ranked models. The table is sorted by non-

decreasing order of performance (best performance and best performer are listed in bold) with 

shaded row representing the performance of pure threading method.  

Methods Average TM-score (p-value*) %time TM-score > 0.5b 

rrmfDCA-assisted threadingc 0.58 (1.5e-11) 69.6 

rrPSICOV-assisted threadingd 0.59 (1.3e-09) 71.6 

pure threadinge 0.63 (0.0001) 75.7 

rrMetaPSICOV-assisted threadingf 0.64 (0.0007) 77.7 

rrRaptorX-assisted threadingg 0.66 80.4 
a excluding two targets (1tqhA and 1hdoA) for which RaptorX could not predict contact maps. 
b percentage of time the respective method predicts the correct fold (TM-score > 0.5)  
c contact-assisted threading method using mfDCA contacts  
d contact-assisted threading method using PSICOV contacts  
e pure threading method (without contacts)  
f contact-assisted threading method using MetaPSICOV contacts  
g contact-assisted threading method using RaptorX contacts 

*one sample T-Test’s p-value of the TM-score difference compared to rrRaptorX-assisted 

threading. 
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As shown in Table 3.2, our contact-assisted threading method powered by the high-quality 

contacts from RaptorX (referred to as rrRaptorX-assisted threading) and moderate-quality contacts 

from MetaPSICOV (referred to as rrMetaPSICOV-assisted threading) outperform the contact-free pure 

threading method (referred to as pure threading) serving as a control in terms of the accuracy of 

the top ranked predicted models. Considering TM-score of top ranked models, RaptorX-assisted 

threading method delivers the best performance by achieving a mean TM-score of 0.66, which is 

0.03 TM-score points more than that of the baseline threading method, whereas the mean TM-

score improvement reaches to 0.01 for MetaPSICOV-assisted threading method compared to 

baseline threading method. Moreover, 80.4% and 77.7% of the time RaptorX-assisted threading 

method and MetaPSICOV-assisted threading method predict the correct fold (TM-score > 0.5), 

respectively, as opposed to 75.7% of the baseline threading method. We also perform T-Test to 

examine whether the performance boost attained by the contact-assisted threading work using the 

high-quality RaptorX contacts and the moderate-quality MetaPSICOV contacts over the baseline 

threading method are statistically significantly better. Compared to the baseline threading method, 

RaptorX-assisted threading method is statistically significantly better at 95% confidence level with 

a p-value of 0.0001. However, MetaPSICOV-assisted threading method improves the threading 

performance compared to the baseline threading method, but the improvement is not statistically 

significant at 95% confidence level with a p-value of 0.07 (Appendix 2). Overall, the results 

demonstrate that the threading method using high-quality contact maps leads to better threading 

performance in terms of the TM-score of top ranked models and the percentage of time finding the 

correct overall folds.  

Table 3.2 also shows that low-quality contacts such as mfDCA and PSICOV degrade the 

contact-assisted threading (referred to as rrmfDCA-assisted threading and rrPSICOV-assisted threading 
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respectively) performance with respect to the pure threading method by 0.04 and 0.05 TM-score, 

respectively, in terms of the accuracy of top ranked predicted models. In finding the correct overall 

folds, the performance of mfDCA-assisted threading method and PSICOV-assisted threading 

method drop by around 4% and 6%, respectively, compared to the baseline threading method. The 

deterioration of the performance of contact-assisted threading method using low-quality contact 

maps mfDCA and PSICOV are also statistically significant with p-values of 5.8e-08 and 2.9e-05, 

respectively with respect to the baseline threading method. Moreover, Table 3.2 also shows that 

RaptorX-assisted threading attains statistically significantly better performance compared to the 

other three contact-assisted threading method, mfDCA-assisted threading, PSICOV-assisted 

threading, and MetaPSICOV-assisted threading, with p-values of 1.5e-11, 1.3e-09, and 0.0007 

respectively. Results presented in Table 3.2, therefore, demonstrate that low-quality contacts 

degrade the threading performance compared to the baseline threading method as opposed to high-

quality contacts, which boost the threading performance.  
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Figure 3.2 A head-to-head comparison of different contact-assisted threading methods and the baseline 
contact-free pure threading method on PSICOV150 dataset. (A) mfDCA-assisted threading method (referred 
to as rrmfDCA) versus baseline threading method (referred to as Pure threading), (B) PSICOV-assisted threading 
method (referred to as rrPSICOV) versus baseline threading method, (C) MetaPSICOV-assisted threading 
method (referred to as rrMetaPSICOV) versus baseline threading method, (D) RaptorX-assisted threading method 
(referred to as rrRaptorX) versus baseline threading method. Each point in each scatter plot represents joint TM-
score of top ranked model predicted by baseline pure threading method and contact-assisted threading method. 
(E) TM-score distribution of top ranked models predicted by pure threading method versus mfDCA-assisted 
threading method (referred to as rrmfDCA-assisted threading), (F) TM-score distribution of top ranked models 
predicted by pure threading method versus PSICOV-assisted threading method (referred to as rrPSICOV-assisted 
threading), (G) TM-score distribution of top ranked models predicted by pure threading method versus 
MetaPSICOV-assisted threading method (referred to as rrMetaPSICOV-assisted threading), (H) TM-score 
distribution of top ranked models predicted by pure threading based method versus RaptorX-assisted 
threading method (referred to as rrRaptorX-assisted threading).  
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Figure 3.2 shows a head-to-head comparison of different contact-assisted threading 

methods with the baseline contact-free threading method in terms of the accuracy (TM-score) of 

top ranked models built from the first-ranked template. Each point in each scatter plot represents 

the joint TM-score of the top ranked model predicted by the pure threading and the contact-assisted 

threading method. In Figures 3.2(A) and 3.2(B), a majority of points are below diagonal lines, 

which clearly indicates that low-quality contacts (mfDCA and PSICOV) substantially degrade the 

threading performance compared to the baseline threading method. In contrast, we observe a slight 

performance improvement using the moderate-quality MetaPSICOV contacts (Figure 3.2(C)), 

where MetaPSICOV-assisted threading method improves the threading performance for 22 targets 

(out of 148) compared to the pure threading method. Moreover, Figure 3.2(D) shows a noticeable 

boost in the threading performance using the high-quality RaptorX contacts, where 35.8% of points 

(or 53 targets) are above the diagonal, indicating RaptorX-assisted threading method improves the 

TM-score of the top ranked model for 53 targets (out of 148) compared to the baseline threading 

method. Furthermore, we examine the TM-score distribution of the top ranked model predicted by 

contact-assisted threading methods and the baseline threading method in Figures 3.2(E) to 3.2(H). 

Specifically, in Figures 3.2(E) and 3.2(F), the highest peak of the baseline threading method is 

larger as well as skewed towards the higher accuracy (right) side compared to mfDCA-assisted 

threading method and PSICOV-assisted threading method, respectively. These figures indicate 

that the threading method using each low-quality contact map predicts more models with low TM-

score than the baseline threading method, resulting bimodality due to the second highest peak of 

the density of predicted models in the TM-score range [0,0.4], which deteriorates the overall 

threading performance. In contrast, in Figures 3.2(G) and 3.2(H), we see an opposite trend when 

we plot TM-score distribution of our threading approaches – one using contacts (MetaPSICOV, 
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and RaptorX respectively) of higher qualities while the other does not use the contact information. 

Figure 3.2(G) shows a slight performance improvement by MetaPSICOV-assisted threading 

method compared to the baseline threading method in that in TM-score range [0,0.3], 

MetaPSICOV-assisted threading method predicts fewer models as opposed to higher TM-score 

range, indicating using moderate contacts such as MetaPSICOV helps to improve the TM-score of 

a few targets compared to the purely threading based method. In Figure 3.2(H), we see a 

significant performance boost by incorporating the high-quality RaptorX contacts in threading 

method. The highest peak of RaptorX-assisted threading method is larger as well as skewed 

towards the higher TM-score (right) side compared to the baseline threading method. In TM-score 

range [0.5,1.0], RaptorX-assisted threading method predicts more models as opposed to low TM-

score range [0,0.5), indicating incorporating the high-quality RaptorX contacts helps to find the 

overall correct folds (TM-score > 0.5) for a number of targets where the purely threading based 

method fails. In summary, these results demonstrate that incorporating high-quality contacts in 

threading significantly boosts the threading performance in contrast with low-quality contacts, 

which degrades the performance. 

 

  



 72 

 

  Figure 3.3 A head-to-head comparison of different contact-assisted threading methods and the 
baseline RaptorX-assisted threading method on PSICOV150 dataset. (A) mfDCA-assisted threading 
method (referred to as rrmfDCA) versus baseline RaptorX-assisted threading method (referred to as rrRAPTORX-
assisted threading), (B) PSICOV-assisted threading method (referred to as rrPSICOV) versus baseline 
RaptorX-assisted threading method, (C) MetaPSICOV-assisted threading method (referred to as 
rrMetaPSICOV) versus baseline RaptorX-assisted threading method. Each point in each scatter plot represents 
joint TM-score of top ranked model predicted by baseline RaptorX-assisted threading and one of the other 
three contact-assisted threading methods respectively. (D) TM-score distribution of top ranked models 
predicted by RaptorX-assisted threading method versus mfDCA-assisted threading method (referred to as 
rrmfDCA-assisted threading), (F) TM-score distribution of top ranked models predicted by RaptorX-assisted 
threading method versus PSICOV-assisted threading method (referred to as rrPSICOV-assisted threading), 
(G) TM-score distribution of top ranked models predicted by RaptorX-assisted threading method versus 
MetaPSICOV-assisted threading method (referred to as rrMetaPSICOV-assisted threading).  
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Since RaptorX-assisted threading method delivers the best threading performance we 

compare the performance of other three contact-assisted threading methods one by one against 

RaptorX-assisted threading acting as a control. In Figure 3.3, each point in each scatter plot 

represents the TM-score of the top ranked model predicted by RaptorX-assisted threading vs. one 

of the other three contact-assisted threading methods. Figure 3.3(A) shows a head-to-head 

comparison of mfDCA-assisted threading (referred to as rrmfDCA) and RaptorX-assisted threading 

(referred to as rrRaptorX-assisted threading method) in terms of the TM-score of the top ranked 

model, where a majority of the points (>70%) are below the diagonal line, RaptorX-assisted 

threading clearly outperforms mfDCA-assisted threading by a large margin. We see almost a 

similar trend in Figure 3.3(B) when we compare PSICOV-assisted threading (referred to as 

rrPSICOV) with RaptorX-assisted threading method. Around 67% of points are below the diagonal 

line, which demonstrates the superior performance of RaptorX-assisted threading over PSICOV-

assisted threading. In Figure 3.3(C), we compare our contact-assisted threading approaches – one 

using the moderate-quality MetaPSICOV contacts (referred to as rrMetaPSICOV) while the other using 

the high-quality RaptorX contacts. Around 28% more points are below the diagonal line, which 

illustrates the positive influence of the higher-quality contact maps (RaptorX) for the improved 

threading performance. In Figures 3.3(D) and 3.3(E), compared to both mfDCA- and PSICOV-

assisted threading methods (referred to as rrmfDCA-assisted threading and rrPSICOV-assisted threading 

respectively), the highest peak of RaptorX-assisted threading (referred to as rrRaptorX-assisted 

threading) is larger as well as skewed towards the higher TM-score side, indicating RaptorX-

assisted threading finds more correct folds compared to others. Similarly, Figure 3.3(F) illustrates 

the TM-score distribution of MetaPSICOV-assisted threading (referred to as rrMetaPSICOV-assisted 

threading) and RaptorX-assisted threading, where the highest peak of RaptorX-assisted threading 
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is still larger than MetaPSICOV-assisted threading as well as skewed towards the higher accuracy 

(right) side, illustrating the performance boost attained by the contact-assisted threading method 

using the high-quality contacts (RaptorX) over the moderate-quality contacts (MetaPSICOV). 

Overall, the high-quality contacts predicted from RaptorX leads to a statistically significantly 

better threading performance compared to that attained from the inferior-quality contacts predicted 

from other methods.  

 

 

 

 

 

 

 

 

Figure 3.4 The relationship between changes in TM-score of contact-assisted threading methods 
compared to the pure threading method, and the MCC (Matthews correlation coefficient) of predicted 
contact maps, tested on PSICOV150. The dataset includes all four contact-assisted threading methods 
over 148 targets resulting in a total of 592 instances. Each point in the scatter plot represents the MCC of 
a predicted contact map and change in TM-score of a top ranked model predicted by various contact-
assisted threading methods compared to pure threading. The dark points indicate improvement in TM-
score (positive change in TM-score), whereas the grey points indicate performance deterioration (negative 
change in TM-score) compared to pure threading. The data points are separated based on the quality 
(measured by the MCC by considering residue pairs with contact probability of at least 0.5) of contacts: 
(i) 211 pairs with high quality contacts (MCC ≥ 0.5), (ii) 301 pairs with low-quality (MCC < 0.35) 
contacts, and (iii) the twilight zone comprises of 80 pairs with moderate-quality contacts (0.35 ≤ MCC < 
0.5). Each bar plot represents the percentage of TM-score improvement and deterioration compared to 
pure threading.  
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Figure 3.4 shows how the quality of contact maps (measured by the MCC for residue pairs 

having the contact probability of at least 0.5) affects the contact-assisted threading performance as 

quantified by the changes in TM-score of top ranked models of contact-assisted threading methods 

compared to pure threading method considering all four contact-assisted threading methods over 

148 targets resulting in a total of 592 instances. Each point in the scatter plot represents the MCC 

of a predicted contact map and the change in TM-score of a top ranked model predicted by the 

respective contact-assisted threading method compared to the pure threading method respectively. 

The data points have been separated based on the quality (MCC) of contacts: (i) 211 pairs with the 

high-quality contacts (MCC ³ 0.5), (ii) 301 pairs with the low-quality (MCC < 0.35) contacts, and 

(iii) the twilight zone comprises of 80 pairs with the moderate-quality contacts (0.35 ≤ MCC < 

0.5). The bar plot on the upper right corner of Figure 3.4 shows that the contact-assisted threading 

performance is significantly improved for around 29% of the cases (out of 211), which is more 

than three times of the number of cases the performance is degraded, demonstrating that the high-

quality contacts (MCC ³ 0.5) boost the threading performance. In contrast, the bar plot on the 

upper left corner of Figure 3.4 shows that the low-quality contacts degrade the contact-assisted 

threading performance for almost half of the points (out of 301) as opposed to only around 14% 

of the cases where the performance is improved, illustrating the adverse effect of the low-quality 

contacts (MCC < 0.35) on the contact-assisted threading performance. The bar plot on the upper 

middle section of Figure 3.4 represents a twilight zone with the moderate-quality contacts where 

there is no significant difference in the number of cases the contact-assisted threading performance 

is improved (around 18%) or degraded (25%) out of 80 pairs. Furthermore, in Appendix 3, targets 

are grouped into three bins based on their sequence length to investigate how the quality of contacts 

affects the changes in TM-score of contact-assisted threading compared to the baseline pure 
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threading for different length bins. In Appendix 3, there are 34 targets of length <100 residues 

resulting in a total of 136 instances (Appendix 3 (A)), 47 targets of length [100,150] residues 

resulting in a total of 188 instances (Appendix 3(B)), and 67 targets of length >150 residues 

resulting in a total of 268 instances (Appendix 3(C)). For every length bin, we see a similar trend, 

contacts with the MCC ³ 0.5 lead to the improved threading performance as opposed to contacts 

with the MCC < 0.35, which degrade the threading performance. Specifically, in the presence of 

high-quality contacts (MCC ³ 0.5), Appendix 3(A) shows the highest threading performance boost 

of ~37% for the small proteins followed by ~29% for the proteins of length [100,150] residues 

(Appendix 3(B)) and ~24% for the proteins of length >150 residues (Appendix 3 (C)) compared 

to ~8% performance degradation in each distance bin. On the other hand, low-quality contacts 

(MCC < 0.35) degrade the threading performance for ~50% of the cases, irrespective of the protein 

length. Overall, the results show that contact maps with an MCC score of at least 0.5 lead to 

significantly better threading performance, whereas a score below 0.35 corresponds to a significant 

deterioration in the threading performance. 
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Figure 3.5 Representative example of contact-assisted threading with contact maps of diverse 
qualities on target 2mhrA. (A) Structural alignment between the top ranked model predicted by RaptorX-
assisted threading (in thick rainbow) with a TM-score of 0.59 and the native structure of the target (in thin 
gray), (B) Structural alignment between top ranked model predicted by MetaPSICOV-assisted threading 
(in thick rainbow) with a TM-score of 0.44 and the native structure of the target (in thin gray), (C) 
Structural alignment between top ranked model predicted by PSICOV-assisted threading (in thick rainbow) 
with a TM-score of 0.26 and the native structure of the target (in thin gray), (D) Structural alignment 
between top ranked model predicted by mfDCA-assisted threading (in thick rainbow) with a TM-score of 
0.19 and the native structure of the target (in thin gray). (E) native contact map (upper triangle) versus 
predicted contact map by RaptorX (lower triangle) with an MCC of 0.55. (F) native contact map (upper 
triangle) versus predicted contact map by MetaPSICOV (lower triangle) with an MCC of 0.44. (G) native 
contact map (upper triangle) versus predicted contact map by PSICOV (lower triangle) with an MCC of 
0.25. (H) native contact map (upper triangle) versus predicted contact map by mfDCA (lower triangle) 
with an MCC of 0.12.  
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A representative example sheds some light on the impact of diverse quality of contacts on 

the threading performance, as shown in Figure 3.5 for target 2mhrA from the PSICOV150 dataset 

that is a Hemerythrin HHE cation binding domain (David T. Jones et al. 2012) of 118 residues. 

Figure 3.5(A) shows RaptorX-assisted threading predicts the correct fold (the top ranked model 

predicted with a TM-score > 0.5) with a TM-score of 0.59 (and a root-mean-square deviation or 

RMSD of 4.8 Å) by using RaptorX predicted contacts with an MCC of 0.55 (Figure 3.5(E)). In 

contrast, Figures 3.5(B), 3.5(C) and 3.5(D) reveal the inability of the other three contact-assisted 

threading methods in finding the correct fold due to the inferior-quality of contacts. In particular, 

threading using the moderate-quality MetaPSICOV contacts (MCC of 0.44, Figure 3.5(F)) 

predicts the 3D structure of the target with a TM-score of 0.44 (and a RMSD of 12.15 Å, Figure 

3.5(B)) while as shown in Figures 3.5(C) and 3.5(D), TM-scores (and RMSD) are 0.26 (and 11.85 

Å) and 0.19 (and 13.48 Å) for method using PSICOV contacts (an MCC of 0.25, Figure 3.5(G)) 

and mfDCA contacts (an MCC of 0.12, Figure3.5(H)) respectively. 

3.4.3 Performance evaluation of contact-assisted threading with contact maps from top 

CASP13 groups 

To further study the effect of the quality of contacts in the threading performance over 

challenging CASP13 targets, we employ contact-assisted threading using the top two officially 

ranked contact maps on CASP13 dataset, consisting of 20 full-length targets (and 32 domains) 

officially released so far with native structures, the same template library and the same nr sequence 

database, curated before CASP13 started on May 1, 2018, are used by all competing methods. For 

each target, we make the prediction for the full sequence without utilizing any domain information. 

After the prediction phase, the threading performance at the domain level is evaluated using the 

domain definitions provided by the official CASP13 assessors.  
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Table 3.3 Impact of high-quality contacts on the performance of contact-assisted threading 

on CASP13 dataseta based on average TM-score of top ranked models. 

Target type TripletRes- assisted 

threading (p-value*)b 

RaptorX-Contact- 

assisted threading (p-

value*)c 

pure threading 

d 

Full-length 0.457 (0.001) 0.449 (0.006) 0.403 

Domain level 0.392 (0.0002) 0.387 (0.0008) 0.340  

a CASP officially released 20 full-length targets in a total of 32 domains on December 2018. 
b Zhang and coworkers participated in CASP13 with TripletRes (group number G032). 
c Xu and coworkers participated in CASP13 with RaptorX-Contact (group number G498). 
d pure threading method (without contacts). 

*one sample T-Test’s p-value of the TM-score difference compared to pure threading. 

 

Table 3.3 shows incorporating the high-quality contacts statistically significantly 

outperforms the baseline pure threading method both for full-length targets and domain level 

targets. Over 20 full-length targets (and 32 domains), the mean TM-score of threading methods 

using TripletRes contacts (referred to as TripletRes-assisted threading) and RaptorX-Contact 

(referred to as RaptorX-Contact-assisted threading) are 0.457 (and 0.392) and 0.449 (and 0.387), 

respectively, as opposed to 0.403 (and 0.34) of the baseline pure threading method. Moreover, the 

performance improvement of TripletRes and RaptorX-Contact are also statistically significant 

with p-values of 0.001 (and 0.0002) and 0.006 (and 0.0008), respectively, for full-length (and 

domain level) targets. Additionally, Appendix 4 shows how the threading performance is affected 

by the quality of contacts over 20 full-length targets. The set contains 40 instances, out of which, 

there are 29 instances with the high-quality contacts (MCC ³ 0.5) as opposed to only one instance 

(TripletRes contact map for T1008) with an MCC < 0.35. The figure demonstrates how the high-
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quality contacts with an MCC ³ 0.5 lead to a significant threading performance boost (22 out of 

29), illustrating contact maps with an MCC score of at least 0.5 lead to a significantly better 

threading performance. A case study shown in Appendix 5 for CASP13 target T0954 of length 

350 residues demonstrates the impact of the high-quality contacts on the threading performance. 

The baseline pure threading method attains a TM-score of 0.301 for the target, whereas the contact-

assisted threading using the high-quality contact maps (MCC ≥ 0.5) from RaptorX-contact and 

TripletRes successfully predict the correct fold with TM-score ≥ 0.56, illustrating how the high-

quality contacts with an MCC ≥ 0.5 boost the threading performance. 

3.5 Conclusion 

Chapter 2 demonstrates contact-assisted threading as a promising avenue for remote-

homology protein modeling. However, the nature of the interdependence between the quality of 

contact maps and the contact-assisted threading performance remains elusive. Here, we present a 

large-scale analysis to study their mutual association by employing contact-assisted threading 

using contact maps of diverse qualities predicted from various contact predictors ranging from 

pure co-evolutionary methods (mfDCA and PSICOV) to hybrid approaches that combine sequence 

co-evolution and machine learning such as the classical neural network (MetaPSICOV) and the 

ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted 

threading method using the high-quality RaptorX contacts and the moderate-quality MetaPSICOV 

contacts outperform the baseline contact-free threading, whereas, the low-quality contacts 

predicted from mfDCA and PSICOV deteriorate the threading performance compared to the 

baseline pure threading method. Contact-assisted threading with the best-quality contacts 

(RaptorX) delivers the best threading performance that is statistically significantly better compared 

to the contact-free threading, demonstrating that the accurate (MCC ³ 0.5) residue-residue contact 
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information is highly effective in boosting the threading performance as opposed to the low-quality 

(MCC < 0.35) contact information. This holds true even on the CASP13 dataset, where contacts 

with an MCC ³ 0.5 lead to an improved threading performance. Collectively, our study shows that 

contact-assisted threading is effective in the presence of the high-quality (MCC ³ 0.5) contact 

maps – indicating an evolving new direction for the improved protein threading that is likely to 

mature further with future advancements in contact prediction methods. 
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Chapter 4 

DisCovER: distance- and orientation-based covariational threading for weakly 

homologous proteins 

 
 
 

4.1 Abstract 

Threading a query protein sequence onto a library of weakly homologous structural 

templates remains challenging, even when the sequence-based predicted contact or distance 

information is used. Contact- or distance-assisted threading methods utilize only the spatial 

proximity of the interacting residue pairs for the template selection and the alignment, ignoring 

their orientation. Moreover, existing threading methods fail to consider the neighborhood effect 

induced by the query-template alignment. We present a new distance- and orientation-based 

covariational threading method called DisCovER by effectively integrating information from 

inter-residue distances and orientations along with the topological network neighborhood of a 

query-template alignment. Our method first selects a subset of templates using the standard profile-

based threading coupled with topological network similarity terms to account for the neighborhood 

effect, and subsequently performs distance- and orientation-based query-template alignment using 

an iterative double dynamic programming framework. Multiple large-scale benchmarking results 

on query proteins classified as weakly homologous from the Continuous Automated Model 

Evaluation (CAMEO) experiment and from the current literature show that our method 

outperforms several existing state-of-the-art threading approaches. The study also shows that the 

integration of the neighborhood effect with the inter-residue distances and orientations information 

synergistically contributes to the improved performance of DisCovER. Availability: 

https://github.com/Bhattacharya-Lab/DisCovER.  
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4.2 Introduction 

 We have so far discussed the utility of the predicted contact information as a valuable 

source of additional information for remote-homology threading, as well as the development of 

state-of-the-art contact-assisted threading methods such as EigenTHREADER and map_align.  

Very recently, CEthreader (Zheng, Wuyun, et al. 2019) and CATHER (Du et al. 2020) perform 

contact-assisted threading using contacts predicted by ResPre (Y. Li et al. 2019) and MapPred (Q. 

Wu et al. 2020), respectively, together with sequence profile-based features. DeepThreader (Zhu 

et al. 2018) goes one step further by incorporating the finer-grained distance information instead 

of contacts for boosting the threading performance (Jinbo Xu and Wang 2019). 

 While these methods exploit the predicted contact or distance information during threading 

often in conjunction with the sequential information, they do not consider two key factors that can 

further improve the threading accuracy. First, the recent extension of deep residual network 

architecture has resulted in accurate inter-residue orientations predicted from coevolution (J. Yang 

et al. 2020) in addition to distances, but none of the threading methods incorporate the orientation 

information. Second, most of the threading approaches do not include the effect of the residue 

pairs in the neighborhood of an aligned query-template residue pair. That is, they ignore the 

neighborhood effect induced by the query-template alignment. 

In this chapter, we introduce a new distance- and orientation-based threading method 

DisCovER (Distance- and orientation-based Covariational threadER) that effectively integrates 

information from inter-residue distances and orientations along with the topological network 

neighborhood of a query-template alignment using an iterative double dynamic programming 

framework to greatly improve the threading template selection and the alignment. Experimental 

results show that our new method performs better than profile-based threading methods SparkX, 
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HHpred, CNFpred, MUSTER, PPAS, and pGenThreader; as well as state-of-the-art contact-

assisted approaches CEthreader, map_align, EigenTHREADER, and CATHER, especially on 

weakly homologous proteins. At one of the most challenging threading situations, DisCovER 

yields better performance than the RaptorX server (Källberg et al. 2012; Zhu et al. 2018) 

participating in the Continuous Automated Model Evaluation (CAMEO) experiment (Haas et al. 

2019) and employing the distance-based threading method DeepThreader (Zhu et al. 2018). 

DisCovER is freely available at https://github.com/Bhattacharya-Lab/DisCovER. 

4.3  Materials and methods 

4.3.1 Feature sets and inter-residue geometries 

Our feature set includes both sequential and pairwise features for the query protein and 

templates. For a query protein, we generate sequence profiles based on multiple sequence 

alignments (MSA) (C. Zhang et al. 2020), and predict profile-based features including secondary 

structures, solvent accessibility, and backbone dihedral angles using SPIDER3 (Heffernan et al. 

2017). We also predict inter-residue geometries including distances and orientations by feeding 

the MSAs into trRosetta (J. Yang et al. 2020). The predicted distance map is then binned into 9 

segments at 1Å interval: <6Å, <7Å, …, and <14Å, by summing up probabilities for distance bins 

below specific distance thresholds. The predicted inter-residue orientations include two dihedral 

angles (w and q), both binned into 24 evenly spaced segments with a bin width of 15° each, and 

one planar angle (j), binned into 12 evenly spaced segments with a bin width of 15° each. All 

distance orientation bins have associated likelihood values for the query protein predicted by 

trRosetta. For the templates, we use structure-derived profiles, extract secondary structures and 

solvent accessibility using DSSP (Wolfgang Kabsch and Sander 1983), and compute backbone 
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dihedral angles, inter-residue distance maps, and the orientation information including ω, θ 

dihedrals and φ angle from the structure. 

4.3.2 Geometry-based scoring of a query-template alignment 

DisCovER scores a query-template alignment as follows: 
 
 𝑍H-?=� = 𝑍�-@MDI@_NAD<A@Bf + 𝑍�-@M_NAD<A@Bf (1) 

 
where 𝑍H-?=� is the normalized alignment score for selecting the top-ranked template, 

𝑍�-@MDI@_NAD<A@Bf  is the normalized alignment score based only on the profile information with 

the neighborhood effect, and 𝑍�-@M_NAD<A@Bf  is the normalized alignment score using the profile 

information, the neighborhood, and the inter-residue geometries including distances and 

orientations. In the following, we describe each term in detail. 

Stage 1 Scoring profile-based alignment with neighborhood effect: A profile-based query-template 

alignment is scored for aligning the 𝑖th residue of the query and the 𝑗th residue of the template 

similar to our recent work (Bhattacharya and Bhattacharya 2019a) as follows: 
 
 𝑆�-@MDI@_NAD<A@Bf(𝑖, 𝑗) = ∑ VH�(-,G)	�	H�(-,G)]	^�(.,G)

U
Ul
Gb; + 𝑐;𝛿V𝑆𝑆-, 𝑆𝑆.] +

𝑐U ∑ g𝑓K(𝑗, 𝑘) + 𝐿d(𝑖, 𝑘)j +	𝑐m𝐸V𝑆𝐴-, 𝑆𝐴.] + 𝑐p𝐸V𝜙-, 𝜙.]Ul
Gb; +  

(2) 

 𝑐r𝐸V𝜓-, 𝜓.] + 𝑐t𝑀V𝐴𝐴-, 𝐴𝐴.] + 𝑐u  
 

 
where the first term defines the sequence profile-profile alignment. 𝑓C(𝑖, 𝑘) and 𝑓L(𝑖, 𝑘) define the 

frequency of the 𝑘th residue at the 𝑖th query position of the MSA for “close” and “distant” 

homologous sequences, respectively. The frequency is determined using the Henikoff weighting 

scheme (Henikoff and Henikoff 1994). 𝐿@	is the log-odds profile of the template for the 𝑘th residue 

at the 𝑗th position, which is obtained by PSI-BLAST (Altschul et al. 1997) with an E-value of 
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0.001. The next term measures the consistency between the predicted and the observed three-state 

secondary structures, such that the function 𝛿	returns 1 if two variables are matched and -1 

otherwise. The next term is the agreement between the structure-derived profiles (𝑓K) of the 𝑘th 

residue at the 𝑗th position of the template structure and the sequence profile (𝐿d) of the 𝑘th residue 

at the 𝑖th position of the query sequence. The function 𝐸 in the next three terms is defined by: 

𝐸V𝑥-, 𝑥.] = (1 − 2|𝑥- − 𝑥.|), where the variables are the predicted and the observed values of 

relative solvent accessibility (𝑆𝐴) and backbone dihedral angles (𝜙	and	𝜓) of the 𝑖th position of 

the query and the 𝑗th position of the template, respectively. The seventh term corresponds to the 

match between the hydrophobic residues of the query and the template. 𝑐 is the weighting 

parameter adopted from (Bhattacharya and Bhattacharya 2019a). 

 To further improve the sensitivity of profile-based alignments, we borrow ideas from 

comparative network analysis. We adopt an approach similar to that was originally used in the 

IsoRank network alignment algorithm (Singh, Xu, and Berger 2008) and very recently adopted in 

network-based structural alignment of RNA sequences (Chen et al. 2019), in which two nodes in 

different networks are more likely to be aligned to each other if their neighbors are also aligned 

well to one another. This results in a similarity diffusion scheme to compute the agreement between 

the networks, leading to an improved alignment. Following similar principles, we integrate the 

connected similarity, attempting to estimate the topological agreement between the query and the 

template by capturing the similarity between the neighborhoods of two residues.  

Connected similarity (𝑆C) is based on the principle that one query-template residue pair is likely to 

be aligned if their neighboring residues are also aligned. It is calculated for the residue pair (i, 𝑗) 

as follows: 

 𝑆C(𝑖, 𝑗) = 	
1
2	(𝑆�-@MDI@¢£¤¥£�¦§

(𝑖 − 1, 𝑗 − 1)	+	𝑆�-@MDI@_NAD<A@Bf(𝑖 + 1, 𝑗 + 1)) 
 

(3) 
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Connected similarity (𝑆C) is then added to the profile-based alignment score as follows: 

 𝑆�-@MDI@_NAD<A@Bf(𝑖, 𝑗)	+= 	𝑆C(𝑖, 𝑗) 
 

(4) 

We use the Needleman-Wunsch (Needleman and Wunsch 1970) global dynamic programming to 

score every query-template alignment. To select the top-fit templates, we compute the 

𝑍�-@MDI@_NAD<A@Bf  based on the raw alignment score 𝑆�-@MDI@_NAD<A@Bf  to assess the quality of each 

query-template alignment as follows: 
 
 

𝑍�-@MDI@_NAD<A@Bf = 	
(𝑆�-@MDI@_NAD<A@Bfy −	< 𝑆�-@MDI@_NAD<A@Bfy >)

¨< 𝑆�-@MDI@_NAD<A@Bfy	U > −	< 𝑆�-@MDI@_NAD<A@Bfy >U
 

(5) 

 
where 𝑆�-@MDI@_NAD<A@Bfy  is the larger one of the raw alignment score 𝑆�-@MDI@_NAD<A@Bf  divided by 

the full alignment length (including the query and the template ending gaps) and the partial 

alignment length (excluding the query ending gaps). < 𝑆�-@MDI@_NAD<A@Bfy > is the average 

𝑆�-@MDI@_NAD<A@Bfy  across all the templates in the template library. A subset of fifty top-scoring 

templates is selected for the next stage. 

Stage 2 Scoring distance- and orientation-based alignment: A similarity score is calculated for 

each row of the query (Q) and the template (T) distance maps as follows: 
 
 𝑆�-@M_NAD<A@BfBD��BD� [(𝑖, 𝑖y), (𝑗, 𝑗y)] = ∑ 𝑤G × Q¬L[𝑖][𝑖y] × T¬L[𝑗][𝑗y] ×G∈{®tÅ,®uÅ,…,®;pÅ}

𝑤KA>(𝑠) × 𝐺(0, 𝑠𝑑, 𝑠𝑒𝑝) + ∑ Q¬±[𝑖][𝑖y] × T¬±[𝑗][𝑗y] × 𝑤KA>(𝑠)G∈{;r°,ml°,…,mtl°} +

∑ Q¬³[𝑖][𝑖y] × T¬³[𝑗][𝑗y] × 𝑤KA>(𝑠)G∈{;r°,ml°,…,mtl°} + ∑ Q¬
´[𝑖][𝑖y] ×G∈{;r°,ml°,…,;µl°}

T¬
´[𝑗][𝑗y] × 𝑤KA>(𝑠)   

 (6) 

  
where the first term calculates the similarity between the predicted distance map of the query and 

the true distance map of the template at a given distance threshold of k, where k ∈{<6Å, <7Å, …, 

<14Å}. Q¬L[𝑖][𝑖y] is the predicted likelihood value of the residue pair 𝑖 and 𝑖y of the query to be 
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within a distance threshold of kÅ; T¬L[𝑗][𝑗y] is a Heaviside step function that has a value 1 if the 

residue pair 𝑗 and 𝑗y of the template is within the distance threshold of kÅ and 0 otherwise; 𝑤G  is 

the corresponding weight parameter adapted from the literature (Du et al. 2020) with 𝑤G =

	 ;
;�A¶>|·¸¹º|

; 𝑤KA>(𝑠) is the weight of the minimum of sequence separation of query residues and 

template residues defined as 𝑤KA>(𝑠)	= 0.75 for s = 5 and log10(1+s) for s ≥ 6, similar to other 

studies (Ovchinnikov et al. 2017), and 𝑠 = min	(|𝑖 − 𝑖y|, |𝑗 − 𝑗y|); 𝐺(0, 𝑠𝑑, 𝑠𝑒𝑝) is a zero-mean 

Gaussian function, which is also adopted from the literature (Ovchinnikov et al. 2017) and defined 

as 𝑒𝑥𝑝(-𝑠𝑒𝑝2/(2	𝑠𝑑2)), where 𝑠𝑒𝑝 is an absolute difference of the sequence separation of query 

residues and the sequence separation of template residues, and 𝑠𝑑 or standard deviation is a 

function of the smaller of the sequence separation of query residues and the sequence separation 

of template residues. The next three terms calculate dihedral (w, q) and planar (j) angles 

similarities between the query and template residue pair. We treat the orientation information 

similar to distances and compute the similarity between the predicted ω, θ dihedrals or φ angle of 

the query and the corresponding true angles of the template at a specific angle bin of k, where k 

∈{15°,30°,…,360°} for the ω and θ dihedrals, and k ∈{15°,30°,…,180°} for the φ angle. 

Analogous to distances, Q¬±[𝑖][𝑖y], Q¬³[𝑖][𝑖y], and Q¬
´[𝑖][𝑖y] are the predicted likelihood values of 

the residue pair 𝑖 and 𝑖y of the query to be within an angle bin of k° for the angles w, q, and j, 

respectively. Similarly, T¬±[𝑗][𝑗y], T¬³[𝑗][𝑗y], and T¬
´[𝑗][𝑗y] are the box functions corresponding to 

the angles w, q, and j, respectively, having values 1 if a residue pair 𝑗 and 𝑗y of the template is 

within an angle bin of k° and 0 otherwise. 𝑤KA>(𝑠) is the weight term described before.  

Our double dynamic programming framework for computing the optimal alignment score 

between the query and each of the fifty top-scoring templates selected from the previous stage 



 89 

comprises of two dynamic programming steps. In the first step, we perform row-by-row 

comparisons between the query and the template. Dynamic programming is used to find the 

alignment for the two rows being matched which maximizes the composite distance- and 

orientation-based alignment score described in Equation 6. These scores are stored in a similarity 

matrix and are used to obtain the optimal alignment by using the Smith-Waterman (Smith and 

Waterman 1981) algorithm. At this step, however, the scores for individual row-row comparisons 

are overestimated since the alignments for each pair are independently computed in the first step. 

We subsequently update the similarity matrix using a second step based on the current alignment 

by employing a second dynamic programming. Such an iterative updating strategy is originally 

proposed in (Taylor 1999) and later adopted in (Ovchinnikov et al. 2017) although our score is 

quite different. After obtaining the optimal alignment from the similarity matrix, the profile score 

and the gap-score are re-calculated to compute the raw alignment score (𝑆�-@M_NAD<A@Bf). The 

similarity score for each query-template pair is normalized using 𝑍�-@M_NAD<A@Bf  as follows: 

 
 

𝑍�-@M_NAD<A@Bf =
V𝑆�-@M_NAD<A@Bfy −	< 𝑆�-@M_NAD<A@Bfy >]

¨< 𝑆�-@M_NAD<A@BfyU > −	< 𝑆�-@M_NAD<A@Bfy >U
 

(7) 

 
where 𝑆�-@M_NAD<A@Bfy  is the larger one of the raw alignment score 𝑆�-@M_NAD<A@Bf  divided by the 

full alignment length (including the query and the template ending gaps) and the partial alignment 

length (excluding the query ending gaps). 〈…〉 denotes the average 𝑆�-@M_NAD<A@Bfy  of all the top-

scoring templates. 

Building full-length 3D models: After selecting the first-ranked template using Equation 

(1), we use MODELLER (V9.22) (Webb and Sali 2014) to generate the full-length 3D model of a 

query protein using the associated query-template alignment. In addition to employing the standard 

automodel() class of MODELLER for model building purely through the satisfaction of spatial 
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restraints from the query-template alignment, we also experiment with model building with 

additional restraints from predicted distances, orientations, and secondary structures by redefining 

the automodel.special_restraints() class. Specifically, we feed bounded harmonic restraints for the 

predicted distance thresholds corresponding to the 9 distance bins used in query-template 

alignments with a minimum likelihood cutoff of 0.85 using the physical.xy_distance() function, 

bounded harmonic restraints for the predicted orientation information derived from the highest 

likelihood bins having the minimum likelihood cutoff of 0.85 with the j angle using 

physical.angle() function and ω, θ dihedrals using physical.dihedral() function, and secondary 

structure restraints for realizing the predicted secondary structure using the secondary_structure() 

module. Of note, all of these additional restraints are integrated to the list of spatial restraints 

derived from the query-template alignment to instruct MODELLER to satisfy them as best as it 

can. 

4.3.3 Benchmark datasets, methods to compare, template libraries used, and threading 

performance evaluation 

To evaluate the remote-homology threading performance, we benchmark our new method 

DisCovER using targets from the Continuous Automated Model Evaluation (CAMEO) 

experiments consisting of 117 proteins classified as “hard” (Haas et al. 2019), released between 8 

December 2018 and 1 June 2019 having length between 50 and 500 residues (range is 51 to 487). 

On this dataset, DisCovER is compared against profile-based threading methods such as SparkX 

(Y. Yang et al. 2011), CNFpred (Ma et al. 2012; 2013), MUSTER (S. Wu and Zhang 2008), PPAS 

(S. Wu and Zhang 2007), and pGenThreader (Lobley, Sadowski, and Jones 2009); as well as state-

of-the-art contact-assisted methods including CEthreader (Zheng, Wuyun, et al. 2019) utilizing 

ResPRE-predicted contact maps (Y. Li et al. 2019) and EigenTHREADER (Buchan and Jones 
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2017) utilizing DMPfold-predicted maps (Greener, Kandathil, and Jones 2019). The template 

libraries for DisCovER, CEthreader, EigenTHREADER, SparkX, MUSTER, PPAS, and 

pGenThreader are generated from the same set of 70,670 templates downloaded from 

https://zhanglab.ccmb.med.umich.edu/library/ (J. Yang et al. 2015), curated before the release of 

the CAMEO targets. The template library for CNFpred is downloaded from 

http://raptorx.uchicago.edu/download/. For all methods, we evaluate the threading performance by 

comparing the top-ranked full-length predicted 3D models, built using the standard automodel() 

class of MODELLER from the query-template alignment, against the experimental structures of 

the target proteins using the TM-score metric (Y. Zhang and Skolnick 2004), which ranges from 

0 to 1 with a higher score indicating a better performance and the TM-score >0.5 indicating the 

attainment of the correct overall fold (Jinrui Xu and Zhang 2010). Of note, DisCovER utilizes 

distances and orientations predicted from trRosetta (J. Yang et al. 2020), which uses a training set 

collected from a snapshot as of 1 May 2018, older than the CAMEO test set used here. DisCovER 

also relies on the secondary structure predictor SPIDER3 (Heffernan et al. 2017) which uses a 

much older training dataset and thus independent of the CAMEO test set. We collect publicly 

available multiple sequence alignments (MSAs) independently generated using non-overlapping 

protein sequence databases from https://yanglab.nankai.edu.cn/trRosetta/benchmark/ to feed into 

trRosetta and SPIDER3. Furthermore, the template library used in DisCovER excludes any 

templates released after starting of the CAMEO experiments (8 December 2018), free from any 

overlap. Finally, the “hard” target difficulty classification of the CAMEO test set defined by 

CAMEO (Haas et al. 2019) warrants their non-overlapping and weakly homologous nature, 

thereby enabling us to focus on difficult targets in which existing methods have limitations (Zhu 

et al. 2018). 
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 The definition of “hard” can be made even more stringent by requiring that the TM-score 

of the HHpredB server (Söding 2005) participating in the CAMEO to be less than 0.5. This reduces 

the number of targets to 60. This harder set simulates one of the most challenging threading 

situations while enabling a comparison between DisCovER and the distance-based threading 

method DeepThreader (Zhu et al. 2018). DeepThreader method is not publicly available, but the 

RaptorX server (Källberg et al. 2012; Zhu et al. 2018) participates in the CAMEO and employs 

the DeepThreader method according to the CAMEO assessment paper (Haas et al. 2019). While 

RaptorX uses PDB90 as the template database and builds 3D models using Rosetta (Jinbo Xu and 

Wang 2019) as opposed to MODELLER, we compare the performance of DisCovER on this 

common set of 60 very hard targets to that of DeepThreader after downloading the predictions 

submitted by the RaptorX server from the official website of CAMEO (https://cameo3d.org/) and 

computing their TM-scores. 

 We are unable to directly compare DisCovER with two other state-of-the-art contact-

assisted methods map_align (Ovchinnikov et al. 2017) and CATHER (Du et al. 2020) on the 

CAMEO test set, because map_align is too computationally expensive to run locally given our 

limited computational resources and CATHER is only available as a webserver and thus not 

suitable for a large-scale benchmarking. However, the published work of CATHER reports the 

mean TM-scores of 3D models predicted using various threading methods including CATHER, 

map_align, EigenTHREADER, HHpred (Söding 2005), SparkX, and MUSTER over a dataset of 

480 targets including 304 easy, 45 medium, and 131 hard targets with a pairwise sequence identity 

<25% and the length ranging from 50 to 500 residues (Du et al. 2020). We use this set to compare 

DisCovER against CATHER and map_align by running DisCovER locally after excluding 

templates with the sequence identity >30% to the query proteins, and comparing its average 
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performance against the reported results of CATHER and map_align, in addition to the other 

threading methods presented. 

4.4 Results and discussion 

4.4.1 Performance on 117 hard targets from CAMEO 

Table 4.1  Benchmark results of various threading methods on 117 hard targets from 

CAMEO. Values in bold represent the best performance. 

Methods TM-score p-value* #Correct folds† 
pGenThreader 0.423 1.1E-08 46 

PPAS 0.456 9.3E-05 54 

MUSTER 0.459 0.0006 54 

SparkX 0.461 0.0003 57 

CNFpred 0.464 0.004 56 

EigenTHREADER 0.461 1.9E-05 58 

CEthreader 0.483 0.029 61 

DisCovER 0.505 - 67 

*Column “p-value” represents one sample t-test’s p-value of the TM-score difference compared to 
DisCovER. 
†Column “#Correct folds” represents the number of models with TM-score >0.5 
 
 

Over the 117 hard targets from the CAMEO, our distance- and orientation-based threading 

method DisCovER performs better than the two contact-assisted threading methods as well as all 

five profile-based approaches. As shown in Table 4.1, DisCovER attains a mean TM-score of 

0.505, which is higher than the next best contact-assisted threading method CEthreader (0.483) 

and the best among profile-based threading methods CNFpred (0.464). The performance 

improvement for DisCovER is statistically significant at 95% confidence level compared to all 

other methods. DisCovER also predicts the highest number of correct folds (TM-score >0.5) with 
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a success rate of 57.3%, which is ~5% higher than the success rate of CEthreader and ~9% higher 

than that of CNFpred. Of note, the best contact-assisted threading method CEthreader falls short 

of achieving a mean TM-score of 0.5, whereas DisCovER exceeds this criterion. 

 

Figure 4.1  Head-to-head performance comparison between DisCovER (x-axis) vs. 
CEthreader and CNFpred (y-axis) on 117 hard targets from CAMEO. 

 

Figure 4.1 shows the head-to-head comparison between DisCovER and the best contact-

assisted threading method CEthreader and the best profile-based threading method, CNFpred. 

DisCovER attains higher TM-score for 74 and 66 targets compared to CEthreader and CNFpred, 

respectively. In summary, the advantage of DisCovER in threading remote-homology proteins 

over the others is significant. 
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4.4.2 Contribution of individual components 

Table 4.2  Contribution of individual features to DisCovER performance.  

Methods Mean TM-score 
CAMEO dataset MUSTER dataset 

117 hard targets 60 very hard targets 86 easy and hard targets 

DisCovERNo neighborhood, 

No geometry† 
0.470 0.329 0.404 

DisCovERNo geometry† 0.472 0.335 0.405 

DisCovERNo distance 0.488 0.349 0.420 

DisCovERNo orientation 0.503 0.372 0.416 

DisCovER 0.505 0.376 0.432 

TM-align‡ 0.636 0.542 0.562 

†geometry includes distance and orientation information. 
‡TM-align results are included as a reference.  
 

In addition to profile-based alignments, DisCovER incorporates a) the neighborhood effect, 

b) the distance, and c) the orientation. To investigate the contributions of each of these components 

to the DisCovER performance, we perform ablation studies on the CAMEO test set as well as 

another independent dataset from the MUSTER paper (S. Wu and Zhang 2008) by gradually 

removing each component from the full-fledged DisCovER method one at a time and evaluate the 

performance. The same template library, sequence databases, and the same set of features are used 

in all cases to generate the query-template alignments that are then fed into the standard 

automodel() class of MODELLER to generate the 3D structures. While the study on the CAMEO 

test set exclusively focuses on hard and very hard targets, the study on the MUSTER dataset 

comprises of targets from easy to hard categories. Specifically, the original MUSTER test set 

contains 500 targets, including 203 easy and 255 hard targets as defined in the published work of 

MUSTER, with a pairwise sequence identity <25% and the length ranging from 50 to 633 residues. 
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For the purpose of our study, targets with a sequence identity >40% to the training set of trRosetta 

are excluded following the literature (Zheng, Wuyun, et al. 2019) in order to make the test set free 

from any overlap, thus reducing the number of targets in the MUSTER test set to 86. Moreover, 

we exclude templates with a sequence identity >20% to the query proteins or detectable by BLAST 

(Altschul et al. 1997) with an E-value <0.05 to remove the homologous templates, a practice 

adopted from the literature (S. Wu and Zhang 2008). 

As reported in Table 4.2, the full-fledged DisCovER attains the best performance (mean 

TM-score of 0.505) than any of its ablated variants over the 117 hard targets from the CAMEO. 

Without orientations, the mean TM-score decreases to 0.503, which is further decreased to 0.488 

without the distance information. The performance of the ablated variant of DisCovER that only 

incorporates distances but no orientations outperform the variant that only incorporates 

orientations but no distances. It is interesting to note that the average performance of either variant 

is still better than state-of-the-art contact-assisted methods CEthreader and EigenTHREADER, 

indicating that the incorporation of either distances or orientations information in DisCovER is 

sufficient to outperform top contact-assisted threading methods such as CEthreader. When both 

the distance and the orientation terms are excluded, the mean TM-score drops to 0.472, but it is 

still better than the top profile-based threading method CNFpred. Upon further exclusion of the 

neighborhood effect, the mean TM-score slightly reduces to 0.470. The results demonstrate that 

all components contribute to the improved performance of DisCovER, with distances and/or 

orientations information having significant contribution. We note that DisCovER incorporates 

distances and orientations information only in stage 2 for computing the optimal alignment score 

between the query and each of the fifty top-scoring templates selected from stage 1 based on 

profile-based threading in combination with the neighborhood effect. That is, the distance- and 
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orientation-based alignment further improves the alignment accuracy over the top template 

recognition performance achieved by profile-based threading with the topological network 

neighborhood. The trend remains very similar considering the subset of 60 very hard CAMEO 

targets, although the exclusion of the neighborhood effect results in a noticeable performance 

decline in this case (a mean TM-score drop from 0.335 to 0.329) that shows the effectiveness of 

incorporating the topological network neighborhood for challenging threading scenarios. 

The ablation study on the MUSTER dataset amplifies the importance of incorporating the 

orientation information and the complementarity of distances and orientations. As shown in Table 

4.2 (last column), the ablated variant of DisCovER that only incorporates orientations but no 

distances (mean TM-score 0.420) outperform the variant that only incorporates distances but no 

orientations (mean TM-score 0.416). That is, the incorporation of the orientation information, 

which is a major contribution of this work, significantly contributes to the threading performance. 

It is also interesting to note that the full-fledged DisCovER that integrates both distances and 

orientations attains a noticeably higher mean TM-score of 0.432 than its ablated variants using 

distances or orientations alone, demonstrating the complementarity of distances and orientations 

information. We notice that in the MUSTER dataset, which contains a mix of easy and hard targets, 

there is a positive but minor contribution of the neighborhood effect. This is consistent with our 

earlier observation in the CAMEO dataset that the topological network neighborhood contributes 

the most for very hard targets. Overall, all components contribute to the improved threading 

performance of DisCovER with the orientation and the distance information playing significant 

and complementary roles. 

Table 4.2 also reports a reference oracle method that uses TM-align(Y. Zhang and Skolnick 

2005b) to structurally align the experimental structure of the query protein with each of the 
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templates in the template library to select the structurally closest template and the resulting optimal 

query-template alignment is then fed into the standard automodel() class of MODELLER to 

generate the 3D structures. Not surprisingly, the TM-align-based oracle achieves much better 

performance with a mean TM-score > 0.5 even for the very hard CAMEO targets (Table 4.2, last 

row), indicating that there is still a large room for improvement.          

4.4.3 3D model building using MODELLER from query-template alignment with 

additional restraints 

 
 
Figure 4.2  3D model building performance using standard MODELLER and MODELLER 
with additional restraints for 117 hard targets from CAMEO. The x-axis represents TM-score. The 
mean TM-scores are represented by triangles. 

 
 

To examine whether the additional information used in DisCovER for threading template 

selection and alignment can further improve the full-length 3D model building, we compare the 

standard automodel() class of MODELLER that builds 3D models using spatial restraints collected 

from query-template alignments to another approach using MODELLER that integrates additional 
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restraints from predicted distances, orientations, and secondary structures. As shown in Figure 

4.2, the mean TM-score attained by MODELLER with additional restraints is 0.544 over the 117 

hard targets from the CAMEO, better than that of the standard MODELLER. MODELLER with 

additional restraints also attains 75 correct folds while shifting the TM-score distribution towards 

the higher accuracy. That is, 3D model building using MODELLER from query-template 

alignments with additional restraints can be an effective use of the additional information used in 

DisCovER. We follow this model building approach henceforth. 

4.4.4 Performance comparison with CAMEO server RaptorX employing DeepThreader 

 
 

Figure 4.3  TM-score distribution of DisCovER and RaptorX on 60 very hard targets from 
CAMEO.  

 
 

We compare the performance of DisCovER to that of DeepThreader (Zhu et al. 2018) on the 

60 very hard targets from the CAMEO after downloading the predictions submitted by the 

CAMEO server RaptorX (Källberg et al. 2012; Zhu et al. 2018), which, according to the CAMEO 

assessment paper (Haas et al. 2019), employs the DeepThreader method, otherwise not publicly 
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available to run. As shown in Figure 4.3, DisCovER achieves a mean TM-score of 0.435, 

outperforming RaptorX (mean TM-score of 0.397), while skewing the overall TM-score 

distribution towards the higher accuracy. DisCovER attains higher TM-scores for 36 targets (60%) 

compared to RaptorX. In summary, DisCovER attains better overall performance over the 60 very 

hard targets from the CAMEO for which HHpredB has TM-score less than 0.5. That is, DisCovER 

outperforms DeepThreader at one of the most challenging threading situations. 

4.4.5 Performance on 480 targets from CATHER 

The performance of DisCovER is further benchmarked against recent contact-assisted 

threading methods: CATHER (Du et al. 2020) and map_align (Ovchinnikov et al. 2017) by 

running DisCovER over 480 targets containing 304 easy, 45 medium, and 131 hard targets used 

in CATHER and directly comparing the mean TM-score with the results reported in the published 

work of CATHER (Du et al. 2020) over the same set. 

Table 4.3  Benchmark results on 480 targets from CATHER. Mean TM-score are reported. 

Type HHpred SparkX MUSTER map_align EigenTHR

EADER 

CATHER DisCovER 

Easy 0.691 0.692 0.728 0.678 0.682 0.747 0.750 

Medium 0.376 0.456 0.500 0.418 0.442 0.543 0.615 

Hard 0.327 0.349 0.359 0.383 0.386 0.456 0.551 

All 0.562 0.576 0.606 0.573 0.579 0.649 0.683 

Note: Except DisCovER, the results of other methods are taken from the reported results of 
CATHER. Values in bold represent the best performance. 

 

As shown in Table 4.3, DisCovER outperforms all the competing methods by attaining a 

mean TM-score of 0.683 over all targets in the dataset, which is about ~0.03 TM-score better than 

the next best method CATHER. The performance gap between DisCovER and CATHER and the 

other competing methods is more pronounced with the increasing target difficulty. Specifically, 
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while DisCovER outperforms the next-best method CATHER by 0.003 TM-score points for easy 

targets, the performance gap between DisCovER and CATHER steadily increases to ~0.07 and 

~0.1 TM-score points for medium and hard targets, respectively, underscoring the advantage of 

DisCovER for weakly homologous protein targets. In particular, DisCovER significantly 

outperforms CATHER and map_align by attaining a mean TM-score of 0.551 as opposed to 0.456 

of CATHER and 0.383 of map_align over 131 hard targets. DisCovER also greatly outperforms 

the reported mean TM-scores of other profile-based methods including HHpred (0.327), SparkX 

(0.349), and MUSTER (0.359) as well as the other contact-assisted approach EigenTHREADER 

(0.386) over the hard targets. DisCovER also delivers noticeably better performance than the other 

methods including contact-assisted approaches CATHER, map_align, and EigenTHREADER as 

well as the profile-based methods HHpred, SparkX, and MUSTER for the medium difficulty 

targets. We note that we are unable to perform a target-by-target analysis since the CATHER paper 

reports only the average performance. Nonetheless, the better average performance of DisCovER 

across all target categories, especially for the medium and the hard targets, continues to 

demonstrate its competitive advantage over current threading methods. 

4.4.6 Effect of homologous information 

The performance of DisCovER is weakly correlated with the number of effective sequence 

homologs, as quantified by Nf (C. Zhang et al. 2020). As shown in Appendix 6, the Spearman 

correlation between the TM-score attained by DisCovER and Nf are 0.23 over the 117 hard targets 

from the CAMEO. We have similar observation (maximum Spearman correlation of 0.25) across 

various target categories from the CATHER dataset. In summary, there is a weak correlation 

between the performance of DisCovER and Nf. 
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4.4.7 Running time 

 

Figure 4.4  The running time of eight methods building alignments for 117 hard targets from 
CAMEO. 

 

Figure 4.4 shows the running time of various threading methods with respect to the target 

length. All methods are run on the same Linux machine with 128 GB RAM and using a single 

CPU thread of Intel Xeon Processor (2.20 GHz). While it is expected that DisCovER is slower 

than most profile-based threading methods, but the running time of DisCovER is considerably 

faster than the top profile-based method CNFpred and orders of magnitude faster than the top 

contact-assisted approach CEthreader. Overall, DisCovER is reasonably efficient in terms of the 

running time. 

4.5 Conclusion 

This chapter introduces DisCovER, a new protein threading method that effectively 

integrates the covariational signal encoded in inter-residue distances and orientations information 
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along with the topological network neighborhood to significantly improve the threading template 

selection and the alignment for weakly homologous proteins. Experimental results show that our 

method yields better accuracy than existing threading methods, including profile-based methods 

and latest contact-assisted approaches such as CEthreader, EigenTHREADER, map_align, and 

CATHER. Controlled experiments reveal that the distance and the orientation information 

contributes significantly to the superior performance of DisCovER, complemented by the 

neighborhood effect particularly for weakly homologous proteins. At one of the most challenging 

threading situations, DisCovER outperforms the CAMEO server RaptorX employing the distance-

based threading method DeepThreader. 

It is important to note that the performance of our method is weakly correlated with the 

number of sequence homologs available for the query protein. This suggests that our distance- and 

orientation-based coevolutionary threading method DisCovER is well-suited for remotely 

homologous targets. Being reasonably efficient in terms of its running time, our study opens the 

possibility of successfully extending threading for many more protein sequences that were 

previously not amenable to template-based modeling. 
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Chapter 5 

Conclusion 

 

The development of computational approaches for accurately predicting the protein three-

dimensional (3D) structure directly from the sequence information is of central importance in 

structural biology. Protein threading, the most widely used distant-homology modeling technique, 

aims to address the challenge by leveraging multiple sources of information by mining the 

evolutionary profile of the query and templates to reveal the potential distant homology and 

perform distant-homology modeling to predict the 3D structure of the query protein. However, 

remote homology detection via threading remains challenging, in part, due to the limitations of the 

threading scoring function for selecting optimal structural templates (Bhattacharya and 

Bhattacharya 2019b).  

In Chapter 2, in light of the recent advancements in residue-residue contact prediction 

technologies powered by sequence co-evolution and deep learning, we have discussed a new 

threading method by integrating the residue-residue contact information with various sequential 

and structural features to improve the threading scoring function for better template selection 

(Bhattacharya and Bhattacharya 2019a). Our contact-assisted threading attains a statistically 

significant boost in the threading performance with the incorporation of the true contacts as well 

as the predicted contacts compared to a baseline contact-free threading acting as a control. 

Furthermore, our contact-assisted threading greatly outperforms the cutting-edge contact-assisted 

ab initio folding method, CONFOLD2, that utilizes the same predicted contacts - indicating that 

contact-assisted threading can be advantageous over contact-driven ab initio folding.  
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Next, in Chapter 3, we systematically explore the mutual association between the quality 

of predicted contacts (Bhattacharya and Bhattacharya 2020), and the resulting threading 

performance. The study reveals that contact-driven threading with the low-quality contacts 

predicted from pure co-evolutionary analysis is not as useful as incorporating the high-quality 

contacts from hybrid approaches that combine sequence co-evolution and machine learning, in 

that the high-quality contacts lead to an improved threading performance while the low-quality 

contacts deteriorate it. On the Critical Assessment of protein Structure Prediction (CASP13) 

targets, our method outperforms contact-assisted threading methods EigenThreader and map_align 

based on the average TM-score of the top ranked models as well as the success rate of identifying 

the correct overall folds, thereby attaining the state-of-the-art performance.  

In Chapter 4, instead of relying on binary contacts, we move one step further by developing 

a new distance- and orientation-based covariational threading method DisCovER, which is capable 

of effectively integrate information from inter-residue distances and orientations along with the 

topological network neighborhood of a query-template alignment to greatly improve the threading 

template selection and the alignment. The major contributions of DisCovER are: (a) successfully 

incorporating inter-residue orientations into threading, and (b) considering the network 

neighborhood effect induced by the query-template alignment, i.e., the effect of the residue pairs 

in the neighborhood of an aligned query-template residue pair. DisCovER outperforms several 

existing state-of-the-art threading approaches on multiple large-scale benchmarking datasets. 

Controlled experiments reveal that the integration of the neighborhood effect with the inter-residue 

distances and orientations information synergistically contributes to the improved performance of 

DisCovER. The open-source DisCovER software package, licensed under the GNU General 

Public License v3, is freely available at https://github.com/Bhattacharya-Lab/DisCovER.  
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Very recently, NDthreader (F. Wu and Xu 2021) and ProALIGN (Kong et al. 2021) utilizes 

deep learning to optimally predict query-template alignments using the distance potential and 

demonstrate the state-of-the-art threading performance. Therefore, our future work can be further 

extended by the integration of deep learning into distant-homology protein modeling via 

interaction map threading. Moreover, recent CASP experiments have witnessed dramatic advances 

by DeepMind’s AlphaFold series (Senior et al. 2020; 2019) in ab initio protein structure prediction, 

significantly outperforming the other groups. The success of AlphaFold series is primarily 

attributed to the successful application of deep neural networks for accurately predicting inter-

residue spatial proximity information coupled with end-to-end training, significantly improving 

the accuracy of protein structure prediction (Pearce and Zhang 2021). The integration of deep 

learning into various stages of protein modeling represents an exciting future direction that shall 

have a transformative impact on distant-homology protein modeling via interaction map threading, 

complementing and supplementing ab initio protein structure prediction methods developed by 

DeepMind. 
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Appendix 1 
 
 
 

Target by target CPU hours needed by map_align over 11 CASP13 full-length targets of 

length < 300 residues. 

Target Length CPU hours 

T0951 276 2450 

T0953s1 72 162.5 

T0953s2 249 1950 

T0955 41 65 

T0957s1 163 840 

T0957s2 164 930 

T0958 96 292.5 

T0968s1 126 510 

T0968s2 116 450 

T1008 80 225 

T1016 203 1300 
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Appendix 2 
 
 

 

 
  

p-value of different contact-assisted threading methods on PSICOV150 dataset compared 

to the baseline pure threading method. (p-values < 0.05 listed in bold)* 

  mfDCA-assisted 
threading 

PSICOV-assisted 
threading 

MetaPSICOV-assisted  
threading 

pure threading 5.80E-08 2.90E-05 0.07 

*excluding two targets (1tqhA and 1hdoA) for which RaptorX could not predict contact 

maps. 
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Appendix 3 
 

 

The relationship between the changes in TM-score of contact-assisted threading methods 

compared to the baseline pure threading method, and the MCC of predicted contact maps, 

tested on PSICOV150. The targets are grouped into three bins based on their sequence length. 

(A) 34 targets of sequence length < 100 residues are considered. This set includes 136 instances, 

considering all four contact-assisted threading methods. (B) 47 targets of sequence length 

[100,150] residues are considered, resulting in a total of 188 instances by considering all four 

methods. (C) 67 targets of sequence length >150 residues are considered, resulting in a total of 268 

instances by considering all four contact-assisted threading methods.  
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Appendix 4 
 
 

The relationship between the changes in TM-score of contact-assisted threading methods 

compared to the baseline pure threading method, and the MCC of predicted contact maps, 

tested on the officially released 20 full-length targets of CASP13. This set includes a total of 

40 instances, considering two contact-assisted threading methods. Out of these, there are 29 

instances with high-quality contacts (MCC ³ 0.5) as opposed to only one instance (TripletRes 

contact map for T1008) with an MCC < 0.35. An instance for which there is a change in the TM-

score (either positive or negative) compared to the baseline pure threading is only plotted.  
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Appendix 5 
 
 

A representative example of contact-assisted threading with the top2 officially ranked 

contact predictors of CASP13 on target T0954. (A) Structural alignment between the top ranked 

model predicted by the pure threading method (in thick red) with a TM-score of 0.301 and the 

native structure of the target (in thin gray). (B) Structural alignment between the top ranked model 

predicted by threading methods using the high-quality (MCC ³ 0.5) contacts, TripletRes (in thick 

salmon red) and RaptorX-contact (in thick limon yellow), with TM-scores of > 0.56 and the native 

structure of the target (in thin gray).  
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Appendix 6 
 
 

TM-score of DisCovER vs Nf (the number of sequence homologs) on (A) 117 hard targets from 

CAMEO having a Spearman correlation of 0.23, (B) 304 easy targets from CATHER having a 

Spearman correlation of 0.19, (C) 45 medium targets from CATHER having a Spearman 

correlation of 0.16, and (D) 131 hard targets from CATHER having a Spearman correlation of 

0.25. 

 


