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Abstract 

 

 

 This dissertation presents research performed to develop a novel soft sensor, feature 

space process monitoring, and domain knowledge-based path analysis for manufacturing and 

healthcare industries.  

 In recent years, as the Internet of Things (IoT) and data storage techniques (i.e., cloud 

service) have been evolved, large-scale data are available to various industries such as retail, 

healthcare, and manufacturing. With notable demonstrations from the world’s largest companies, 

such as Google, Amazon, Facebook and Microsoft, that insights can be obtained from big data, 

many businesses and institutions have been utilizing their own big data for potentially making 

new inferences and solving challenging problems in data-driven ways. However, it is sometimes 

difficult to extract valuable information and gain insights from big data with rote application of 

machine learning (ML) since data collected from various sources may not be relevant and often 

contain noises. Without domain knowledge, the results from ML approaches can be incomplete, 

or even lead to misleading conclusions. Therefore, in this research I aim to demonstrate the 

limitations of pure data-driven ML techniques in several case studies that are relevant to 

manufacturing and healthcare, and then to address the limitations by developing solutions that 

systematically integrate domain knowledge with ML techniques.     

 In the first part of this work (Chapter 2), I introduce a novel spectroscopy-based soft 

sensor which was developed by integrating a feature engineering approach – Statistics Pattern 

Analysis (SPA) – with a new feature selection approach – Consistency Enhanced Evolution for 

Variable Selection (CEEVS) – referred to as SPA-CEEVS. Based on the understanding of the 

spectral dataset that not all features contribute equally to the sample properties, a novel feature 
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selection method, CEEVS, is proposed to identify truly relevant features that are associated with 

chemical functional group regions, leading to improved soft sensor performance and easier 

interpretation of results compared to the soft sensor based on the original spectroscopy data. 

SPA, one of the feature engineering methods, is embedded in the CEEVS algorithm to better 

capture the characteristics of spectra such as nonlinearity. SPA can also reduce the influence of 

spectral disturbance and background noise by extracting statistics and shape features from 

spectral data. To demonstrate the effectiveness of the proposed SPA-CEEVS method, 

comparison study of various variable selection methods and nonlinear models are conducted on 

several industrial near-infrared (NIR) spectral datasets.  

 In the second part of this work (Chapter 3), I propose a data-driven feature space 

monitoring (FSM) approach that monitors periodic operations of pressure swing adsorption 

(PSA) processes. In FSM framework, features extracted from process variables are used to 

monitor the process operation, instead of raw process variables themselves. Domain knowledge 

of the PSA process helps to understand which features need to be generated and selected. In this 

work, I suggest a way of selecting features based on this domain knowledge. In addition, the 

FSM based fault detection method addresses challenges in monitoring periodic processes, such 

as unequal step and/or cycle time that requires trajectory alignment or synchronization for the 

traditional statistical process monitoring (SPM) methods. In this study, the k-nearest neighbor-

based FSM (FSM-kNN) is developed for fault detection. The basic idea of FSM-kNN is that the 

distance between a faulty cycle and its neighboring training cycles (consisting of normal 

operation cycles) is greater than that between a normal cycle and its neighboring training cycles. 

In addition, a step-wise fault diagnosis is proposed to identify the root cause of faults when faults 

are detected. The proposed method not only shows superior fault detection performance 
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compared to the conventional SPM methods for both simulated faults and real faults from an 

industrial PSA process, but also correctly identifies the root causes of the faults.  

 In the third part of this work (Chapter 4), path analysis based on domain knowledge is 

proposed to examine if the hospitals specialized in certain diseases achieve better results in terms 

of costs and patient outcomes. With domain knowledge in healthcare industry, I formulate some 

hypotheses and construct paths. Pure data-driven ML approaches without hypotheses such as 

multiple linear regression and partial least square regression can lead to incomplete conclusion 

because they consider only one path among all the possible paths. However, the path analysis 

consists of all the possible paths where hospital specialization can affect the hospital 

performance so that the model can reveal full effects of hospital specialization. The comparison 

between the path analysis and the pure data-driven ML approaches suggests that domain 

knowledge can play a critical role in machine learning applications and should be incorporated 

whenever possible.  

 The contribution of this work and potential future work are summarized in Chapter 5. As 

demonstrated in this work, pure data-driven ML techniques have many limitations. For example, 

the results of pure data-driven ML tend to be sensitive to training datasets, possibly leading to 

irrational conclusions. The new feature selection and feature engineering techniques proposed in 

this work can improve the robustness and reliability of ML by reducing the influence of noises 

and disturbances, and capturing better process characteristics. In addition, the pure data-driven 

ML may fail to reveal the comprehensive effect of explanatory variables on a response variable. 

This work investigates the role of domain knowledge and how it enables us to establish 

knowledge-guided model structure. This structure would entail all logical paths to explain 
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various influences of explanatory variables on a response variable, leading to complete and 

mechanistically interpretable results.  
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Chapter 1. Introduction 

 

With the evolution of the sensing (e.g., Internet-of-Things or IoT sensors) and data 

storage techniques, many industries such as automobile, chemical, petrochemical, and healthcare 

can easily record and store massive amount of data [1]–[3]. At the same time, advance in 

computational power enables the industries to analyze large quantities of data and extract 

valuable information from the data. As a result, tremendous amount of research has been 

conducted in the past few decades in the broad area of data-driven modeling to address complex 

industrial problems and to improve operation efficiency [1]–[10]. Among various types of data-

driven methods, process monitoring and soft sensor are two of the most frequently used tools to 

improve the reliability of operation and to make better quality products. Process monitoring aims 

to detect abnormal conditions (i.e., faults) in a system or process, and to quickly identify its root 

cause after a fault is detected. Process monitoring enables process engineers to detect and correct 

the process problems and return to normal operation in a timely manner. On the other hand, soft 

sensor addresses challenges in obtaining some difficult-to-measure variables in real time, such as 

quality of product and yield in industrial processes, using other easy-to-measure variables. In 

other words, soft sensor predicts difficult-to-measure variables online based on the relationship 

between easy-to-measure variables and difficult-to-measure variables, which reduces time delay 

and enables quality monitoring of product in real time.  

The process monitoring and soft sensor techniques can be implemented via either first-

principles or data-driven approaches. First-principles approaches aim to build mathematical 

models to describe the physics of a system and failure mechanism for process monitoring and to 

quantify the effect of explanatory variables on response variables for soft sensing based on 
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physics and chemistry principles (i.e., domain knowledge) [11]–[13]. One of the major 

advantages of first-principles approaches is that they can accurately describe nonlinear and 

transient process behaviors, resulting in superior prediction performance. First-principles models 

have been used to support process operations in the manufacturing industries for over 40 years 

due to this advantage [12]. Especially, they have been actively studied in the fields such as 

prognostics of equipment, simulation of industrial processes, and equipment modeling [13]–[17]. 

However, it is often difficult to apply first-principles models to industrial processes because the 

process behaviors are too complex and stochastic in nature to understand underlying 

physical/chemical phenomena. In contrast, data-driven approaches aim to describe process 

behaviors from historical data by utilizing statistics, machine learning or deep learning [11]. 

Although data-driven models require more historical data than first-principles models, they can 

approximate complex phenomena with limited understanding of system physics. Therefore, data-

driven models are well suited for complex systems where underlying engineering and physical 

principles are not well known. Due to this nature of data-driven approaches, they are satisfactory 

for industrial applications and have been expanding to various industries. The first data-driven 

approach for process monitoring is statistical process control (SPC), which was pioneered by 

Shewhart in early 1920s [18]. SPC is used for quality control by utilizing the statistical 

distribution of quality variables. Since SPC is based on univariate Gaussian distribution, there is 

a limitation to improve model performance on multivariate processes. In the 1980 – 1990s, data-

driven process monitoring applied multivariate statistical models such as principal component 

analysis (PCA) and partial least squares (PLS) to fault detection and diagnosis for reliable 

process operations [19], [20].  
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In recent years, data-driven approaches have become preferred to first-principles models 

because multi-level control systems make operation more complex in modern industries. In 

addition, data-driven approaches can deal with a gigantic size of historical data with the advance 

of computing power and storage techniques, thereby revealing a more accurate relationship 

between variables, leading to good model performance. Therefore, the most commonly applied 

process monitoring and soft sensor techniques employ data-based machine learning (ML) 

approaches, of which the ultimate objective is to improve operational efficiency through cost 

saving and reducing process downtime. In this study, I present how data-driven methods address 

manufacturing issues and improve decision making through accurate understanding of 

relationship between explanatory and response variables in both manufacturing and healthcare 

industries. However, results from pure data-based ML approaches sometimes can be incomplete 

and lead us to misleading conclusions. Thus, I aim to develop strategies that integrate domain 

knowledge with data-driven ML approaches (i.e., hybrid ML) to obtain more reliable and 

interpretable results, leading to better decision making in manufacturing and healthcare 

industries. The ability of hybrid ML techniques to capture process characteristics is determined 

by hybrid architecture (e.g., algorithms, input features, etc.). Therefore, the domain knowledge-

guided feature selection and feature engineering frameworks are proposed to make better hybrid 

model’s structures, helping to improve model performance. I believe these frameworks are 

applicable to process monitoring, soft sensor, and prognostics as well as any prediction cases in 

various industries.     

The dissertation is structured as follows. 

In Chapter 2, I propose a novel spectroscopy-based soft sensor that was developed by 

integrating a feature engineering approach – Statistics Pattern Analysis (SPA) – with a new 
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feature selection approach – Consistency Enhanced Evolution for Variable Selection (CEEVS). 

In this chapter, I discuss background on spectroscopy-based soft sensors and necessity of 

variable selection. Then, I review the different data-driven techniques for soft sensors compared 

in this study. These methods are classified into 1) variable selection methods based on linear 

partial least square regression (PLSR) and 2) nonlinear approaches including support vector 

regression (SVR) and Gaussian process regression (GPR). In this chapter, a new variable 

selection method (CEEVS) is proposed. CEEVS aims to improve the consistency of variable 

selection regardless of different training datasets. This method is based on Darwin’s evolution 

theory, i.e., “survival of the fittest”. The characteristics and algorithm of CEEVS are discussed in 

detail in this chapter. Next, I briefly review SPA feature-based soft sensor. SPA, one of the 

feature engineering methods, is integrated with CEEVS to further improve predictive power and 

interpretability. This SPA feature-based soft sensor integrated with CEEVS (SPA-CEEVS) is 

described in detail. Lastly, a new consistency index metric is proposed to measure the 

consistency of the variable selection. Detailed comparison of SPA-CEEVS with the other 

variable selection methods as well as nonlinear models is conducted using near infrared (NIR) 

datasets from different fields of industries.  

In Chapter 3, I propose a new feature space monitoring (FSM) fault detection and 

diagnosis method for pressure swing adsorption (PSA) processes. The proposed method, k-

nearest neighbor-based FSM (FSM-kNN), is completely different from many variants of the 

FSM method. First, I discuss the importance of PSA processes in various industries and the 

necessity of fault detection for reliable process operation. Then, a PSA process is briefly 

summarized to understand how different this process is from batch and continuous processes. I 

discuss the unique characteristics of the PSA process and how these characteristics pose 
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challenges to process monitoring; (1) it is operated in a periodic fashion, which leads to 

unsteady-state, or highly dynamic process behavior, (2) one cycle consists of many different 

steps with different operation conditions, which leads to highly complex nonlinear behavior, and 

(3) cycle time is frequently adjusted to meet demand fluctuations, which leads to multimodal 

operations of the process. Many traditional fault detection methods have been studied to address 

these challenges of the PSA process monitoring. In this chapter, I review the conventional fault 

detection methods – a PCA-based fault detection method and kNN rule-based fault detection 

methods. Since these fault detection methods have some limitations for successful process 

monitoring, I develop FSM-kNN method to improve the fault detection rate and to reduce the 

false alarm rate. In this approach, the process condition is monitored using statistics and various 

features extracted from pressure profiles of each PSA step instead of utilizing the raw pressure 

profiles of the PSA process. I focus on how to extract the statistics and shape features from the 

original variables of the PSA process. Then, the algorithm of FSM-kNN method is described in 

detail. In this chapter, I next propose a step-wise fault diagnosis to identify the root cause of the 

faulty step(s). To demonstrate the effectiveness of the proposed fault detection and diagnosis 

method, I compare the FSM-kNN with three different conventional fault detection methods using 

both simulated fault data and real fault data from an industrial PSA process. Based on the 

comparison results, I discuss how the FSM-kNN method overcomes the difficulties of PSA 

process monitoring. 

 In Chapter 4, I examine whether the focused factory theory (i.e., factories that 

concentrate on narrow range of services or operations produce better products at low costs) is 

applicable to hospital operations. Since hospital operations and manufacturing processes share 

some similarities at systems level, I believe some of the theories and techniques developed for 
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manufacturing processes are also applicable to hospital operations. Specifically, I examine 

whether the hospitals that are specialized in certain diseases achieve better results in terms of 

costs and patient outcomes using a large national healthcare cost and utilization project (HCUP) 

dataset. I first introduce the HCUP dataset used in this work and share the challenges in 

analyzing this dataset. In this chapter, a specialization index is proposed to quantify hospital 

specialization. With the specialization index, pure data-driven machine learning (ML) 

approaches are used to investigate the effect of hospital specialization on hospital performance in 

terms of cost (measured by total charge) and patient outcome (measured by death of patient 

during hospitalization). The various ML approaches are briefly reviewed, and the limitations of 

the pure ML approaches are discussed; they can only uncover the partial effect of hospital 

specialization on hospital performance. To address the limitations of the pure data-driven ML 

methods, I propose a knowledge-guided path analysis to comprehensively understand how the 

hospital specialization influences the hospital performance. The path analysis consists of all the 

possible paths where the hospital specialization can affect the hospital performance. Through 

comparison between the pure data-driven ML methods and the knowledge-guided path analysis, 

I demonstrate that, without domain knowledge, the results from naive ML approaches are 

incomplete and misleading. The full effects of specialization are revealed only when ML is 

applied to a model structure that is defined based on domain knowledge. The comparison results 

suggest that domain knowledge can play a significant role in machine learning applications and 

should be incorporated whenever possible.  

 In Chapter 5, contributions of this work are summarized and the potential directions for 

future work are proposed. Specifically, I aim to advance industrial process monitoring and soft 

sensor techniques with domain knowledge. In addition, I develop a better structure of path 
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analysis with the aid of domain knowledge to understand the effect of hospital specialization. I 

believe that suggestions in future research directions make further enhancements to the proposed 

methods in this work. 
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Chapter 2. Novel spectroscopy-based soft sensor1 

2.1 Background  

With the advancements of spectroscopic technologies including near infrared (NIR), 

Ramon Spectroscopy, and UV/Vis spectroscopies, various properties could be inferred from a 

sample’s spectrum profile. Correspondingly, multivariate modeling approaches (i.e., soft sensor 

models), which correlate the spectroscopic reading of a sample to its properties of interest, have 

drawn increased research interest. These soft sensor models offer a non-invasive, fast, and cheap 

way to estimate the sample properties of interest and have been applied in many different fields. 

For example, spectra-based soft sensors have been developed to determine properties such as 

octane number of gasoline, moisture or protein content of corn, active pharmaceutical ingredient 

(API) in drug, and microorganism concentration in a mixed culture [21]–[26]. The most 

commonly used modeling approach for soft sensor is partial least squares (PLS) due to its 

simplicity, robustness and the inherent capability in addressing collinearity among predictor 

variables.  

However, since PLS is a linear model, its performance can be unsatisfactory for datasets 

with nonlinear relationship between predictors and response variables. The nonlinear soft sensors 

such as support vector regression (SVR), artificial neural network (ANN) and Gaussian process 

regression (GPR) have been studied in the literature [27]–[31]. Although the nonlinear methods 

can successfully quantify the sample properties of interest for nonlinear datasets, they have a 

couple of limitations that are originated from the following characteristics of NIR spectra: (1) 

multicollinearity, (2) spectra noise, and (3) high dimensionality. These characteristics could 

 
This chapter was excerpted from “Consistency-enhanced evolution for variable selection can 

identify key chemical information from spectroscopic data” published in Industrial & Engineering 

Chemistry Research [21] and from "Improving featured-based soft sensing through feature selection" 

published in IFAC-PapersOnLine [22]. The author is the first author of these papers.  
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increase the risk of over-fitting for high dimensional data. In addition, it is difficult to understand 

underlying predictor variables associated with chemical functional groups due to the complexity 

of the nonlinear methods. 

Variable selection can be one of the solutions to address these challenges. It has been 

well-recognized that the performance of a soft sensor can be significantly improved only when 

relevant variables are included as a predictor [32]–[36]. This is particularly important for 

spectrum-based soft sensors because readings at different wavelengths are highly correlated. In 

addition, although many multivariate statistical methods including PLS require much larger 

number of samples than the number of variables to perform well, most spectral datasets have 

relatively small sample size (less than 100) but a large number of variables (several hundreds of 

wavelengths). Therefore, eliminating irrelevant wavelengths could help circumvent the difficulty 

that arises from many variables. This has led to the development of many variable selection 

methods in the past few decades. Most of the existing variable selection methods focus on 

selecting the variables (i.e., wavelengths or wavelength segments) that are strongly correlated 

with a response variable to improve prediction performance. These variable selection approaches 

include direct methods that rank variable contributions such as variable selection based on 

variable importance in projection (VIP) [37] or regression coefficient (BETA) [34], and iterative 

methods such as uninformative variable elimination (UVE) [38], least absolute shrinkage and 

selection operator (LASSO) [39] and Elastic Net [40]. Among iterative approaches, a group of 

variable selection methods based on the principle of “survival of the fittest” have shown superior 

performance. The representative methods of this group are the genetic algorithm (GA) [41]–[43], 

the competitive adaptive reweighted sampling method (CARS) [25] and the method based on 

stability and variable permutation (SVP) [44]. By employing the principle of “survival of the 
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fittest”, these methods rely on random sampling in the variable space and/or sample space to 

identify the most relevant predictor variables to improve prediction performance. 

Despite many successful applications, existing variable selection methods also have 

limitations. It has been recognized that a soft sensor model with good fitness performance may 

not guarantee good variable selection performance [32], [34]. Specifically, for spectrum-based 

soft sensors, the selected wavelengths sometimes show little connection to the chemical bounds 

or functional groups presenting in the sample. In addition, the selected variables can be quite 

sensitive to the choice of the training and validation data. In particular, the variables selected 

from different Monte Carlo (MC) runs using randomly selected training and validation data often 

show low consistency with each other. The inconsistency among different MC runs suggests that 

the selected variables (wavelengths) may not contain the truly relevant predictors that are the 

wavelengths associated with the underlying chemical bonds or functional groups that determine 

the sample properties.  

To address this limitation of variable selection, a feature-based soft sensor was 

developed, which originated from SPA [24], [45]. In the SPA feature-based soft sensor, whole 

spectrum is split into equally spaced segments and then the statistics/features are extracted along 

the variable (wavelength) dimension in each segment. Instead of spectral reading of samples, the 

statistics/features are used as predictors to build the PLS model. This approach provides four 

benefits: (1) the features better capture spectral characteristics such as nonlinearity and peak 

shift; (2) features reduce the number of predictors (wavelengths); (3) extraction of features could 

filter out the spectral noise and disturbance; (4) the whole information in the spectrum could be 

used for the soft sensor.  
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However, although the number of features extracted from whole spectrum is significantly 

reduced compared to the number of wavelengths, SPA feature-based method still does not solve 

the curse of dimensionality, i.e., the number of features is larger than the number of calibration 

samples. In addition, considering all the features do not equally contribute to sample properties, 

variable selection would be desirable. Thus, a novel variable selection method CEEVS is 

developed, which aims to improving the consistency of variable selection [21], [46]. The basic 

idea of the method is that if the selected variables are consistent regardless of the calibration sets, 

they are likely to be truly relevant ones and would contribute to improve the prediction power. 

Details of CEEVS is discussed in Section 2.3.   

In this work, to further improve soft sensor’s performance, a novel spectroscopy-based 

soft sensor, SPA-CEEVS is proposed by integrating the feature engineering – SPA – with the 

feature selection – CEEVS to utilize the advantages of both methods. The proposed method not 

only improves the predictive accuracy (driven by SPA framework) and consistency of feature 

selection (driven by CEEVS) for NIR data sets, but also delivers easier interpretation of results. 

The effectiveness of SPA-CEEVS is demonstrated by using five NIR data sets. The performance 

of SPA-CEEVS is compared with five variable selection methods, i.e., CARS, SVP, GA, Elastic 

Net and CEEVS and two nonlinear methods, i.e., SVR and GPR. The full PLS model is used as 

the basis for comparison of all the methods. 

2.2 Review of variable selection algorithms and machine learning methods 

2.2.1 Partial least square regression (PLSR) 

PLSR is one of multivariate statistical techniques to find the relationship between 

predictor variables and response variables. PLSR aims to extract the PLS components that satisfy 

three objectives; (1) the best explanation of the X matrix (predictor variables); (2) the best 
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explanation of the Y matrix (response variables); (3) the greatest relationship between X matrix 

and Y matrix. Nonlinear-iterative partial least square (NIPALS) developed by Wold [47] is a 

popular algorithm to implement PLS. More information on the algorithm and its properties are 

discussed in [48]–[51]. 

 𝑿𝑛×𝑚 denotes the predictor matrix, which consists of 𝑛 samples and 𝑚 predictor 

variables; 𝒀𝑛×𝑙 denotes 𝑙 response variables for the 𝑛 samples. The regression equations are the 

following: 

𝑿𝑛×𝑚 =  𝑻𝑛×𝑝𝑷𝑚×𝑝
𝑇 +  𝑬𝑛×𝑚  (2.1) 

𝒀𝑛×𝑙 =  𝑼𝑛×𝑝𝑸𝑙×𝑝
𝑇 +  𝑭𝑛×𝑙   (2.2) 

where 𝑝 is the number of principal components; 𝑻𝑛×𝑝 and 𝑸𝑙×𝑝
𝑇  are the score matrices; 𝑷𝑚×𝑝 

and 𝑸𝑙×𝑝 are the loading matrices; 𝑬𝑛×𝑚 and 𝑭𝑛×𝑙 are the error or residual matrices, 

respectively. The PLS model maximizes the covariance between 𝑻 and 𝑼.  

2.2.2 Genetic algorithm (GA) 

Inspired by Darwin’s evolution theory of “survival of the fittest”, GA is one of the most 

commonly applied variable selection methods [29], [42], [43]. According to the evolution theory, 

the individuals who are well adapted to the environment will be more likely to survive and 

produce the next generation [41]. Therefore, in GA, parent chromosomes (i.e., subsets of 

selected variables) are determined based on its “fitness to the environment”, such as prediction 

performance. Then crossover and mutation are applied to produce offspring, i.e., new sets of 

selected variables.  Through crossover, portions of two parent chromosomes are crossed and 

combined to make two offspring which have new combinations of genes (i.e., variables or 

wavelengths); through mutation, new genes not included in the chromosomes population could 
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have a chance to be included, which may improve the offspring’s fitness to the environment. 

This reproduction step is repeated until a termination criterion is satisfied [52]. 

2.2.3 Competitive adaptive reweighted sampling (CARS) 

 In CARS, the importance of a variable is determined based on its absolute regression 

coefficient (BETA) obtained through PLSR. The variables with large absolute regression 

coefficients are considered as the important variables. CARS employs the iterative sampling runs 

to determine the optimal subset of variables. In each sampling run, two variable reduction 

procedures, namely exponentially decreasing function (EDF) and adaptive reweighted sampling 

(ARS), are applied to reduce the number of variables. The root mean square error of cross-

validation (𝑅𝑀𝑆𝐸𝐶𝑉) is calculated using the variables retained in the sampling run. After 

𝑛𝑆 times sampling runs, CARS obtains 𝑛𝑆 models consisting of the different subsets of variables 

and the model with the lowest 𝑅𝑀𝑆𝐸𝐶𝑉 is selected as the optimal model [25]. CARS has been 

applied to develop soft sensors in many different applications, including spectroscopic data 

collected from GC-MS, NIR, and UV/Vis [53]–[56]. 

2.2.4 Stability and variable permutation (SVP) 

Recently, SVP was proposed based on the evolutionary principles of ‘intraspecific 

competition’ and ‘survival of the fittest’. In SVP, the importance of each variable is determined 

through variable stability and variable permutation analysis. Variable stability is evaluated 

through random sampling of the sample space, while variable permutation analysis is performed 

through random sampling of the variable space. After computing the variable stability and 

performing variable permutation analysis, SVP divide all the variables into the elite variable set 

and normal variable set by adaptive reweighted sampling (ARS). The elite variable set consists 

of variables with high stability, while the normal set contains variables with relatively low 
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stability. To eliminate the uninformative variables, SVP employs exponentially decreasing 

function (EDF), which remove variables with small difference from the normal variable set. In 

each sampling run, the procedures described above are performed. After 𝑛𝑆 sampling runs, SVP 

obtains 𝑛𝑆 models with different variable subsets; then the variable subset that results in 

minimum mean and relatively low standard deviation of the 𝑅𝑀𝑆𝐸𝐶𝑉’s is selected as the optimal 

subset of the selected variables [44]. 

2.2.5 Support vector regression (SVR) 

 Consider training data set {(𝑥1, 𝑦1), ⋯ , (𝑥𝑛, 𝑦𝑛)} ⊂ 𝜒, where 𝜒 ∈ ℝ𝑚 is the space of 

predictor features, 𝑦𝑖 ∈ ℝ is the response variable, and 𝑛 is the number of the training data set. 

The goal of SVR is to find 𝑓(𝑥) that has the deviation no larger than 𝜀 for all training data 𝑦𝑖 and 

at the same time is flat as possible. The linear function 𝑓(𝑥) has the form: 

𝑓(x) = < w, x > + b with w ∈ 𝜒, b ∈ ℝ  (2.3) 

where, < ∙ , ∙ > represents the dot product in 𝜒. The flat function 𝑓(𝑥) can be obtained through 

minimizing the norm of w, i.e., ‖𝑤‖2 = < w, w >. By introducing the slack variables 𝜉𝑖, 𝜉𝑖
∗, we 

can obtain the feasible solution. The optimization problem is defined as following:  

minimize 
1

2
‖w‖2 + C ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)   (2.4) 

subject to {

𝑦𝑖−< 𝑤, x𝑖 >  − 𝑏 ≤  𝜀 +  𝜉𝑖

< 𝑤, x𝑖 > + 𝑏 −  𝑦𝑖  ≤  𝜀 + 𝜉𝑖
∗

 𝜉𝑖 , 𝜉𝑖
∗  ≥ 0

  (2.5) 

where constant C > 0 is a regularization term which determines the trade-off between the flatness 

of 𝑓(𝑥) and the toleration of deviations larger than 𝜀.  The objective function shown in equation 

2.4 can be reformulated into a dual problem by introducing a dual set of variables (i.e., Lagrange 

multipliers). The solution can be obtained by satisfying Karush-Kuhn-Tucker (KKT) conditions 

and can be defined as: 
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𝑓(x) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(x𝑖, x)𝑛

𝑖=1    (2.6) 

where 𝛼𝑖, 𝛼𝑖
∗ are Lagrange multipliers and 𝑘(x𝑖 , x) represents kernel mapping. The Gaussian 

kernel function is used for nonlinear regression, while the dot product between two sample 

feature vectors is used for linear regression. The Gaussian kernel (i.e., radial basis function 

(RBF)) is defined as: 

𝑘(x𝑖 , x𝑗) = exp (
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 )    (2.7) 

 where 𝜎 is the kernel parameter. More details about SVR can be found in [57]. 

2.2.6 Gaussian process regression (GPR) 

 Gaussian process regression model is a nonparametric kernel-based probabilistic model. 

Consider training data set {(𝑥1, 𝑦1), ⋯ , (𝑥𝑛, 𝑦𝑛)} ⊂ 𝜒, where 𝜒 ∈ ℝ𝑚 is the space of predictor 

features, 𝑦𝑖 ∈ ℝ is the response variable, and 𝑛 is the number of the training data set. The 

objective of a regression model is to find the relationship 𝑦 = 𝑓(𝐱|𝜃) +  𝜀 between predictor and 

response variables. Gaussian process regression is established as the regression function with 

zero-mean Gaussian prior distribution, shown as follows: 

𝑦 = [𝑓(𝐱1), 𝑓(𝐱2), ⋯ , 𝑓(𝐱1)] ~ GP(0, 𝐂)  (2.8) 

where 𝐂 is the covariance matrix, and in this work, automatic relevance determination (ARD) 

squared-exponential covariance function is used, which is defined as: 

𝐂(𝐱𝑖, 𝐱𝑗) =  𝜎𝑓
2 exp {−

1

2
∑

(x𝑖𝑘−x𝑗𝑘)2

𝜎𝑘
2

𝑚
𝑘=1 } +  𝛿𝑖𝑗𝜎𝑛

2 (2.9) 

where 𝜎𝑓
2 and 𝜎𝑛

2 are signal variance and noise variance, respectively; 𝜎𝑘
2 is the length scale for 

each predictor; 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗, otherwise 𝛿𝑖𝑗 = 0. Let 𝜃 = (𝜎𝑓
2, 𝜎𝑛

2, 𝜎1
2, 𝜎2

2, ⋯ , 𝜎𝑚
2 ) stand for 

hyperparameter set. The hyperparameters can be optimized by maximizing the marginal 

likelihood. Once optimizing the hyperparameters, I can obtain the posterior distribution of the 
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𝑦𝑛𝑒𝑤 for corresponding 𝐱𝑛𝑒𝑤, which follow a Gaussian distribution of which the mean and 

variance can be defined as follows: 

𝑦̅𝑛𝑒𝑤 = 𝐊𝐓(𝐱new)𝐂−1𝐲    (2.10) 

 

𝜎𝑛𝑒𝑤
2  = 𝐂(𝐱new, 𝐱new) − 𝐊𝐓(𝐱new)𝐂−1𝑲(𝐱new) (2.11) 

 

where 𝑲(𝐱new) = [𝑪(𝐱new, 𝐱1), 𝑪(𝐱new, 𝐱2), ⋯ , 𝑪(𝐱new, 𝐱n)]𝑇 . More details about GPR can be 

found in [58], [59]. 

2.2.7 Elastic Net 

Elastic net is a linear regression model trained by shrinking the regression coefficient 

with both L1 norm penalty (lasso) and L2 norm penalty (ridge). Elastic net was developed to 

encourage grouping effect during variable selection, which enables the method to select groups 

of correlated variables. The objective function can be defined as follows: 

min
𝛽0,𝛽

(
1

2𝑛
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)𝑇 + 𝜆𝑛
𝑖=1 𝑃𝛼(𝛽))  (2.12) 

where 𝑃𝛼(𝛽) =
(1−𝛼)

2
‖𝛽‖2

2 + 𝛼‖𝛽‖1 and 𝛼 is the mixing parameter between ridge (𝛼 =

0) and lasso (𝛼 = 1). More details about Elastic net can be found in [40]. 

2.3 Introduction to Consistency Enhanced Evolution for Variable Selection (CEEVS) 

The variables selected by many variable selection methods such as GA, CARS and SVP 

are not necessarily the truly relevant variables, i.e., the ones corresponding to the key chemical 

bonds or functional groups that determine the sample properties of interest. Another evidence 

that the selected variables may not be the informative variables is that variable selection results 

are very sensitive to training samples. In order to understand the reason for the low consistency 

of variable selection, first, it is important to figure out the difference between the evolution 

theory based variable selection and biological evolution. In biological evolution, it usually takes 

millions of years for natural selection to converge to an optimal solution; however, in variable 
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selection the limited sample space and the limited evolution process may cause the variable 

selection to be stuck in a local optimum and miss the global one. Therefore, I believe that the 

limited sample space and limited evolution may be one of the underlying reasons for the 

inconsistency among different MC runs. However, without knowing what the global optimum is 

(i.e., the ground truth of the truly relevant variables), it is difficult to devise approaches to 

directly address this limitation.   

I address this difficulty based on the following rationale: if a variable selection algorithm 

can identify the truly relevant input variables, it should consistently identify the same subset of 

the variables regardless of the choice of the training samples. In other words, the variable 

selection results among different MC runs should be relatively consistent to identify the truly 

relevant predictors. Therefore, I hypothesize that if a variable selection method delivers better 

consistency in terms of selected variables among different MC runs, it is more likely that it 

selects the truly relevant variables and as a result would deliver better prediction performance. 

Based on this hypothesis, the CEEVS algorithm aims to improve the consistency in variable 

selection.  

2.3.1 Notation 

 In this work, 𝑿𝑛×𝑚 denotes the spectral data, which consists of 𝑛 samples and spectral 

absorbances of 𝑚 wavelengths for each sample; 𝑦𝑛×1 denotes  a response variable vector (i.e., 

property of interest) with dimension of 𝑛 × 1. Both 𝑿𝑛×𝑚 and 𝑦𝑛×1 are autoscaled to zero mean 

and unit variance before model development through PLS. The equations of PLS model can be 

found in equations 2.1 and 2.2 where 𝑙 equals to 1 in this study. 
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2.3.1.1 Gene, chromosome, and fitness 

 The CEEVS method is based on the “survival of the fittest” principle, and follows the 

same terminologies as GA. A gene refers to an individual variable (wavelength), and a 

chromosome (𝐶𝑚×1) refers to a set of selected variables: the i-th element (𝑐𝑖) of the chromosome 

is either “1” or “0”, indicating whether the i-th variable is included in the chromosome or not, 

respectively. The fitness of a chromosome is determined through prediction error, i.e., 

normalized root mean squared error from cross-validation (𝑁𝑅𝑀𝑆𝐸𝐶𝑉). 

𝑁𝑅𝑀𝑆𝐸𝐶𝑉 =  
√

1

𝑛𝑉
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑉

𝑖=1

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
 ×  100%  (2.13) 

where, 𝑛𝑉 is the number of samples of the validation dataset. In this work, 10-fold cross 

validation is employed for all methods. Therefore, the average of the ten 𝑁𝑅𝑀𝑆𝐸𝐶𝑉’s is used. 

2.3.1.2 Variable Stability and Probability 

In existing literature [25], [44], [60], variable stability is determined through random 

sampling of the training data and evaluating how consistently the variable contributes to the soft 

sensor model. Specifically, to compute the stability, MC sampling is applied in which certain 

percentage (denoted as 𝛾) of the 𝑛 samples are randomly selected to build a PLS model, and this 

random selection is iterated for 𝑛𝑆 times. A full PLS model that include all wavelengths as 

predictor variables is established for each subset of data to compute regression coefficients. As 

regression coefficient (BETA) determines how much a variable contribute to the prediction of 

the response variable, it has been used to evaluate the stability of each variable. 

𝑆𝐵𝐸𝑇𝐴−𝑗 =
|𝑏̅𝑗|

√
1

𝑛𝑆−1
∑ (𝑏𝑖𝑗−𝑏̅𝑗)2𝑛𝑆

𝑖=1

    (2.14) 

where,  𝑆𝐵𝐸𝑇𝐴−𝑗 is the stability of the 𝑗-th variable based on regression coefficients, 𝑏̅𝑗 is the 

average value of regression coefficients of 𝑗-th variable from 𝑛𝑆 full PLS models using samples 
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randomly selected from the training dataset based on the pre-determined sampling ratio 𝛾, and  

𝑏𝑖𝑗 is the regression coefficient of 𝑗-th variable in 𝑖-th PLS model.  

Besides regression coefficient BETA, variable importance in projection (VIP) also 

indicates how much a variable contributes to the response variable. Unlike BETA, VIP scores 

estimate the importance of each variable in the projection used in a PLS model. It has been 

reported that when each predictor contributes differently to the response variable (which is the 

case for most, if not all, practical applications), BETA-based variable selection may not work as 

well as VIP-based variable selection [32], [34]. In fact, Wold et al. [37] recommended a 

combination of VIP and BETA for variable selection. To improve the consistency of variable 

selection, in this work I propose using the combination of VIP and BETA to compute variable 

stability. To do so, I first define variable stability based on VIP. 

𝑆𝑉𝐼𝑃−𝑗 =
|𝑣̅𝑗|

√
1

𝑛𝑆−1
∑ (𝑣𝑖𝑗−𝑣̅𝑗)2𝑛𝑆

𝑖=1

    (2.15) 

where 𝑆𝑉𝐼𝑃−𝑗 is the stability of the 𝑗-th variable based on VIP scores, 𝑣𝑗̅ is the average value of 

the VIP scores of 𝑗-th variable among 𝑛𝑆 models, and  𝑣𝑖𝑗 is the VIP score of 𝑗-th variable in the 

i-th model. To combine 𝑆𝐵𝐸𝑇𝐴 and 𝑆𝑉𝐼𝑃 for determining the stability for each variable, 𝑆𝐵𝐸𝑇𝐴 and 

𝑆𝑉𝐼𝑃 are first standardized since they have different scales.  

𝑍𝐵𝐸𝑇𝐴−𝑗 = 
𝑆𝐵𝐸𝑇𝐴−𝑗− 𝑆𝐵𝐸𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴)
    (2.16) 

𝑍𝑉𝐼𝑃−𝑗 = 
𝑆𝑉𝐼𝑃−𝑗− 𝑆𝑉𝐼𝑃̅̅ ̅̅ ̅̅ ̅

𝑠𝑡𝑑(𝑆𝑉𝐼𝑃)
     (2.17) 

where 𝑆𝐵𝐸𝑇𝐴
̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑉𝐼𝑃

̅̅ ̅̅ ̅ are the average stability of all variables based on BETA and VIP scores, 

respectively; 𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴) and 𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴) are the corresponding standard deviations, 

respectively. Then the average of 𝑍𝐵𝐸𝑇𝐴−𝑗 and 𝑍𝑉𝐼𝑃−𝑗, denoted as 𝑍𝑗, is used to determine the 

stability of the 𝑗-th variable. 
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𝑍𝑗 =  
1

2
(𝑍𝐵𝐸𝑇𝐴−𝑗 +  𝑍𝑉𝐼𝑃−𝑗)    (2.18) 

 Note that in this work, 𝑍𝐵𝐸𝑇𝐴 and 𝑍𝑉𝐼𝑃 were assigned the same weight, which can be 

adjusted for different applications. 

 To remove any potential bias, I first convert the variable stability into a probability; then 

each variable is randomly selected according to its probability to generate the initial population 

of chromosomes. The probability of the 𝑗-th variable is defined as followings: 

𝑝𝑗 =  𝜆1 + (𝜆2 −  𝜆1) (
𝑍𝑗− 𝑍𝑚𝑖𝑛

Z𝑚𝑎𝑥− Z𝑚𝑖𝑛
)   (2.19) 

 where, 𝜆1 is a small probability (10−5 in this work) to ensure that even the variable of the 

minimum stability has a chance to be selected and evaluated; 𝜆2 is 1; 𝑍𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 are the 

maximum and minimum stabilities among all variables, and 𝑍𝑗 is the stability of the 𝑗-th variable. 

When 𝑍𝑗 = 𝑍𝑚𝑖𝑛, 𝑝𝑗 =  𝜆1; when 𝑍𝑗 = 𝑍𝑚𝑎𝑥, 𝑝𝑗 =  𝜆2 = 1. 

2.3.2 CEEVS Algorithm 

 As shown in Figure 2.1, CEEVS consists of two main sections: Section I is to construct a 

library with optimal chromosomes, and Section II is to select the optimal subset of variables 

from the library to build the soft sensor.  

For Section I, CEEVS takes a consistency enhanced evolution process in order to obtain 

an optimal chromosome with limited iterations. In GA, the chromosomes of the initial population 

are generated randomly where each variable has the same probability to be selected. In CEEVS, 

starting with the complete variable set, the initial chromosome population is generated randomly 

based on each variable’s probability of selection as defined in equation 2.19. As shown in 

Section 2.3.1.2, the probability of selection is simply a scaled variable stability; in other words, 

variables with higher stability will be selected with higher probability. In this way, the evolution 

process will start with a better initial population, as more important variables will more likely be 
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selected for the initial population. Once the initial population of 𝑛𝑃 chromosomes are obtained, 

each chromosome is evaluated for its fitness value. I use the selected variables (i.e., the variables 

that have “1” in the chromosome) to build a PLS model, and the model’s 𝑁𝑅𝑀𝑆𝐸𝐶𝑉  value is 

used as the fitness value for the chromosome. The optimal chromosome, i.e., the one with the 

minimal 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 within the initial population, is considered as a parent to generate offspring 

for the evolution process. The objective of the evolution process is to further eliminate the 

uninformative variables in the parent chromosome before it is stored into the library. Again, 10-

fold cross validation is employed in this work for all methods. Therefore, 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 is actually 

referring to the average of the 10 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 values. 

 

Figure 2.1 Flow diagram of CEEVS algorithm 
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The evolution process of CEEVS is completely different from GA. Instead of cross-over 

and mutate, in CEEVS, I simply use the variables selected by the parent chromosome as the new 

complete variable set, and repeat the whole process to generate the next best chromosome which 

is denoted as an offspring. For each additional run of evolution, the offspring from the previous 

run is considered the parent chromosome, and the variable selected by the parent chromosome is 

considered as the new “full” variable set; Next, the variable stability and probability are re-

computed for this new “full” set; then, a population of 𝑛𝑃 offspring are generated randomly 

based on the variable’s probability for selection, and evaluated for their fitness value. In this 

way, all the offspring are guaranteed to contain fewer variables than the parent and may have a 

better fitness value. This evolution process is repeated until the fitness of the offspring is worse 

than that of the parent, meaning the parent can no longer produce better offspring. Then the 

parent of the final evolution run, i.e., the best chromosome generated from the evolution process, 

is stored into the library. This evolution process will repeat 𝑛𝐿 times with different random seeds, 

which is the pre-determined library size, i.e., the number of the optimal chromosomes to be 

stored in the library. Each time the process starts with the complete set of variables. At the end of 

𝑛𝐿 repetitions, the library will contain 𝑛𝐿 optimally evolved chromosomes, i.e., subsets of 

selected variables that deliver the lowest 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 during each repeated evolution process. 

 For Section II, starting with the library that contains 𝑛𝐿 best chromosomes generated in 

Section I, I first rank all the variables based on their frequency of presence in the library. Next, I 

build a series of PLS models with increasing the number of variables based on their selection 

frequency. In other words, the first PLS model is built with the most frequently selected 

variables in the library and the second model adds the next frequently selected variable. This 

process is repeated until the number of variables included in the model reaches a pre-defined 
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upper limit. This upper limit can be adjusted to reduce the risk of overfitting. In this work, I set 

the upper limit as 300 variables. Finally, all models are evaluated for their fitness (𝑁𝑅𝑀𝑆𝐸𝐶𝑉), 

and the variable subset that produce lowest 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 value is considered the final result of the 

selected variables. 

 It is worth noting that all Monte Carlo (MC) repetitions involved in the CEEVS and other 

variable selection methods are carried out on the training samples only. Specifically, the 

procedures of CEEVS shown in Figure 2.1 were all performed using the training samples only, 

with 𝑛𝐿 MC repetitions of different random seeds to generate library of 𝑛𝐿 chromosomes. 

2.3.3 Choice of Tuning Parameters 

One of the advantages of CEEVS is simpler tuning compared to GA. First, there are only 

four parameters in CEEVS, which include the library size (𝑛𝐿), the population size (𝑛𝑃), the ratio 

of samples (𝛾) and the number of sampling runs (𝑛𝑆). 𝑛𝐿 determines the number of the 

chromosomes to be stored in the library, which is also the number of repetition (or evolution) in 

Section I of the algorithm. 𝑛𝑃 is the number of chromosomes present in each population. 𝛾 and 

𝑛𝑆 are related to evaluating variable stability: 𝛾 is the ratio or percentage of samples to be 

randomly selected and 𝑛𝑆 is the number of the randomly selected sample subsets, i.e., the 

number of PLS models to be built in order to evaluate the variable stability. Second, CEEVS is 

not sensitive to these parameters. As detailed later in Section 2.4.3, sensitivity analysis shows 

that when 𝑛𝐿, 𝑛𝑃, 𝛾 and 𝑛𝑆 are large enough, their effect on the final soft sensor performance 

becomes negligible. Therefore, in this work I decide to keep all 4 parameters fixed instead of 

changing them from dataset to dataset. Table 2.1 lists the parameter setting used in this work, 

and the recommended range if one chooses to fine-tune the parameter.  
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Table 2.1 Parameters used in this work and recommended range of tuning parameters 

 Parameter (this work) Recommended range 

𝒏𝑳 200 100 – 500 

𝒏𝑷 400 200 – 500 

𝜸 0.9 0.8 – 0.9 

𝒏𝑺 400 300 – 800 

 

2.4 Case studies, Performance metrics, Results & Discussion 

2.4.1 Case studies 

Five published NIR datasets are used to evaluate the performance of different variable 

selection methods. Table 2.2 summarizes the five datasets, including the number of samples and 

variables, the partition of the dataset into training and testing, as well as relevant references. 

Figure 2.2 plots the sample spectra for each dataset. 

Table 2.2 Summary of the Five NIR Datasets 

 

# of samples 

in 

calibration 

set 

# of 

samples in 

test set 

# of 

samples in 

total 

# of 

variables 
Property of interest Ref. 

Corna 64 (80%) 16 (20%) 80 700 Protein content 
[24], 

[61] 

Diesel  180 (70%) 76 (30%) 256 401 Aromatic content 
[44], 

[62] 

Pharma  459 (70%) 196 (30%) 655 650 

Active 

pharmaceutical 

ingredients (API)  

[24], 

[26], 

[63] 

Wheat  121 (80%) 30 (20%) 151 150 
Protein 

concentration 

[44], 

[64] 

Beer  48 (80%) 12 (20%) 60 926 
Extract 

concentration 

[65], 

[66] 
aNIR spectra measured on mp5 spectrometer was used.   
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Figure 2.2 The spectra of five datasets. (a) corn dataset; (b) disel fuel dataset; (c) pharmaceutical 

tablet dataset; (d) wheat dataset; (e) beer dataset. For all subplots, x-axis is wavelength (nm) and 

y-axis is absorbance. 

2.4.2 Performance metrics 

To eliminate the potential bias caused by a specific partition of the whole dataset into 

calibration and testing subsets, a Monte Carlo validation and testing (MCVT) procedure that 

Shah et al. proposed previously is followed [24]. Specifically, I conduct 100 MC runs and use 

the results from all MC runs to evaluate the performance of each variable selection method. For 

each MC run, the calibration and testing subsets are randomly selected according to the 

percentage listed in Table 2.2.  

The performance of different variable selection methods is assessed through three 

metrics. The first two are based on the soft sensor prediction performance, while the third 

directly evaluates the performance of variable selection through a consistency index. 

(a) (b) 

(c) (d) 

(e) 
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I choose normalized root mean square error in prediction (𝑁𝑅𝑀𝑆𝐸𝑃) to evaluate the 

prediction performance of different soft sensor models. The definition of 𝑁𝑅𝑀𝑆𝐸𝑃 is given in 

equation 2.20, where 𝑛𝑇 is the number of samples of the test dataset in each MC runs. As shown 

in equation 2.20, the normalization in 𝑁𝑅𝑀𝑆𝐸𝑃 facilitates the comparison of different methods 

across different datasets.   

𝑁𝑅𝑀𝑆𝐸𝑃 =  
√

1

𝑛𝑇
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑇

𝑖=1

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
 ×  100%  (2.20) 

In this work, the mean and the standard deviation of 𝑁𝑅𝑀𝑆𝐸𝑃 obtained from the 100 MC 

runs are used as the two metrics to evaluate the performance of different methods. The mean 

(𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) evaluates the accuracy of each method while the standard deviation (𝜎𝑁𝑅𝑀𝑆𝐸𝑃

) 

assesses the robustness of the method [24]. 

To evaluate the consistency of the variable selection among different MC runs, I define a 

consistency index (𝐼𝑐) as the following: 

𝐼𝑐 =  
∑ 𝑝𝑟𝑜𝑏(𝑥𝑖)𝑚

𝑖=1

𝑚′       (2.21) 

where 𝑚′ is the number of the variables (among all 𝑚 variables) being selected at least once 

among all MC runs; 𝑝𝑟𝑜𝑏(𝑥𝑖) is the probability of the 𝑖-th variable being selected, which is 

quantified by how frequently a variable is selected among all the MC runs. Clearly, a higher 𝐼𝑐 

indicates that the informative variables are more consistently selected regardless of calibration 

datasets.  

It is also worth noting that different MC runs will result in different variables being 

selected due to different training samples being used and the stochastic nature of all “survival of 

the fittest” based variable selection methods. When these selected variables are used to build 

PLS models, the principal components (PC’s) will be different for different MC runs. It is also 
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possible that the number of PC’s will be different as it is determined through 10-fold cross-

validation. The goal of MCVT is to compare different variable selection methods through the 

accuracy (i.e., the average of the 100 𝑁𝑅𝑀𝑆𝐸𝑃’s) and precision or robustness (i.e., the standard 

deviation of the 100 𝑁𝑅𝑀𝑆𝐸𝑃’s) of each method. A similar approach has been reported in the 

literature [67]. 

2.4.3 Results of CEEVS 

To ensure a fair comparison, all methods being compared were optimized through 10-

fold cross-validation. The tuning parameters for each method are listed in Table 2.3. For each 

method, the optimal tuning parameters were determined through exhaustive search within a 

specified range for the parameter.  

Table 2.3 Tuning parameters that were optimized for each method 

Methods Tuning parameters 

Full PLS  # of PC’s 

CARS # of PC’s, # of Monte Carlo sampling runs 

SVP # of PC’s, # of iterations, sampling ratio of MCS-Sa and MCS-Pb,  

# of sampling in MCS-Sa and MCS-Pb 

GA # of PC’s, population size, # of iterations, crossover scheme, mutation rate, 

initial population, termination criterion 

CEEVSc # of PC’s 

aMonte Carlo sampling in sample space; bMonte Carlo sampling in variable space; cOther 

parameters are fixed as shown in Table 2.1. 
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Performance comparison 

For each dataset, the variable selection and soft sensor prediction results from each 

method are tabulated in Table 2.4 – 2.8. The best performance corresponding to each metric is 

shown in boldface. In these tables, Improvement rate (%) refers to the improvement of 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

over that of the full PLS model, 𝑛𝑃𝐶 is the “mean ± std” of the number of principal components 

of the final soft sensor among 100 MC runs, 𝑛𝑉𝐴𝑅 is the “mean ± std” of the number of selected 

variables among 100 MC runs, except full PLS where all variables are used. 

Table 2.4 The performance comparison using the corn dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 9.197  2.390 - - 11.6 ± 1.7 700 

CARS 9.263  2.760 0.063 -0.72 12.3 ± 1.7 21.4 ± 8.2 

SVP 9.569 2.602 0.062 -4.05 14.0 ± 0.9 
25.9 ± 

10.0 

GA 8.730  2.337 0.119 5.07 9.0 ± 2.4 
73.6 ± 

27.2 

CEEVS 8.335  2.051 0.212 9.37 9.1 ± 2.3 
100.9 ± 

39.2 

 

Table 2.5 The performance comparison using the diesel fuel dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 2.38  0.30 - - 12.3 ± 1.7 401 

CARS 2.94  0.65 0.136 -23.54 13.1 ± 1.6 
54.7 ± 

55.1 

SVP 2.32  0.43 0.150 2.71 13.6 ± 1.4 
47.0 ± 

13.9 



 49 

GA 2.24  0.30 0.240 6.12 11.8 ± 1.7 
92.0 ± 

41.5 

CEEVS 2.20  0.30 0.432 7.56 11.2 ± 1.8 
123.4 ± 

37.5 

 

Table 2.6 The performance comparison using the pharmaceutical tablets dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 5.05 0.76 - - 14.3 ± 2.5 650 

CARS 4.72 0.84 
0.064 6.50 15.1 ± 3.1 30.2 ± 

15.0 

SVP 4.85 0.83 
0.104 3.85 18.5 ± 1.5 50.1 ± 

25.8 

GA 4.46 0.90 
0.138 11.69 10.8 ± 3.0 69.1 ± 

44.1 

CEEVS 4.45 0.89 
0.231 11.86 13.3 ± 2.4 91.9 ± 

56.1 

 

Table 2.7 The performance comparison using the wheat dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 3.614 0.587 - - 15.9 ± 1.5 150 

CARS 3.687 0.669 
0.243 -2.02 15.2 ± 2.1 36.3 ± 

13.0 

SVP 4.011 0.685 0.151 -11.00 18.0 ± 1.7 21.8 ± 2.5 

GA 3.502 0.595 
0.286 3.08 10.7 ± 1.7 40.4 ± 

13.6 

CEEVS 3.497 0.624 
0.289 3.22 11.2 ± 2.4 35.5 ± 

11.4 
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Table 2.8 The performance comparison using the beer dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 6.57 6.46 - - 9.1 ± 2.6 926 

CARS 3.24 2.76 
0.192 50.64 9.1 ± 2.6 86.8 ± 

38.2 

SVP 4.18 5.20 
0.166 36.28 13.4 ± 2.1 113.0 ± 

12.6 

GA 2.37 1.85 
0.142 63.91 7.8 ± 2.6 94.1 ± 

58.0 

CEEVS 2.36 1.45 
0.182 64.11 8.1 ± 2.6 130.2 ± 

85.9 

As shown in the tables, across different datasets, CEEVS performs the best in almost all 

performance metrics. Specifically, among all 15 comparison instances (5 datasets × 3 

performance metrics). In terms of 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , CEEVS performs the best for all 5 datasets; in 

terms of 𝐼𝐶, CEEVS performs the best for 4 of the 5 datasets and the 2nd best for the rest one; in 

terms 𝜎𝑁𝑅𝑀𝑆𝐸𝑃
, CEEVS performs the best for 3 of the 5 datasets, while slightly larger 𝜎𝑁𝑅𝑀𝑆𝐸𝑃

 

for the rest 2 datasets. These results indicate that by enhancing the consistency of variable 

selection, we can achieve better prediction performance. 

Besides the quantitative metrics given in the tables, Figure 2.3 (a) and (b) compare the 

predicted vs measured quality variable for the diesel and beer datasets. From these two figures, it 

can be seen that the predictions of CEEVS stay the closest to the diagonal line, further indicating 
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the superior prediction accuracy and robustness.

 

 

Figure 2.3 Plot of predicted vs. measured properties from five methods. (a) beer dataset; (b) 

diesel dataset 

CEEVS can extract the underlying chemical information 

(a) 

(b) 
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 One of the limitations of the existing variable selection methods based on “survival of 

fittest” is that the selected variables (wavelengths) for the soft sensor model may not have clear 

relationship with the chemical bounds or functional groups presenting in the sample. By 

enhancing the consistency of variable selection, I expect that CEEVS could identify the truly 

relevant variables that reveal the underlying chemical information. Further examination of the 

variable selection results from different methods confirmed our hypothesis.  

Figures 2.4 and 2.5 plot the frequency of each variable being selected (denoted by the 

vertical thin bars) among all 100 MC runs for the corn dataset and the pharmaceutical tablets 

dataset for all four variable selection methods. The sample spectra (denoted by the red curves) 

are plotted on the same figures to visualize the portions of the spectra that are selected at high 

frequencies by different variable selection methods. These figures clearly show that CEEVS 

delivers the best consistency in terms of variable selection, as the variables that were selected 

from different runs are clustered together around spectrum peaks/valleys at high frequency, 

indicating high consistency. More importantly, further analysis show that the selected variables 

(corresponding to peaks or valleys) are associated with different chemical bonds/groups, which 

are labelled on the plot for the CEEVS method. The underlying chemical information revealed 

by the selected variables further support our claim that the selected variables with high 

consistency are likely the truly relevant ones.  

In terms of variable selection frequency, GA performs similar to CEEVS, while the 

clustering of the selected variables may not be as clear and distinct as that from CEEVS. For 

CARS and SVP, although the number of variables being selected by these two methods are 

usually much smaller than those from GA and CEEVS, the consistency of variable selection is 
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much worse and as a result, the selected variables could reveal little underlying chemical 

information. 

 

 

Figure 2.4 Plot of spectra (red curves) and histogram of selected wavelengths (blue vertical 

bars) over 100 MC runs for the corn dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS 

(c) 
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Figure 2.5 Plot of spectra (red curves) and histogram of selected wavelengths (blue vertical 

bars) over 100 MC runs for the pharmaceutical tablets dataset. (a) CARS; (b) SVP; (c) GA; (d) 

CEEVS 

Robustness of CEEVS 

CEEVS has four tuning parameters, the library size (𝑛𝐿), the population size (𝑛𝑃), the 

sampling ratio (γ) and the number of sampling runs (𝑛𝑆). To examine the robustness of the 

method with respect to its tuning parameters, I test 10 different levels for each tuning parameter. 

For the number of chromosomes in the library (𝑛𝐿), the ten levels I tested were [5, 10, 20, 

50, 100, 200, 300, 400, 500, 700]. The cross-validation results corresponding to the tested levels 

for the corn dataset is plotted in Figure 2.6 (a). The results for other datasets are very similar to 
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the corn dataset. Figure 2.6 (a) shows that as 𝑛𝐿 increase, 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 initially decreases sharply; 

and then it stabilizes when 𝑛𝐿 is sufficiently large. Because 𝑛𝐿 determines the number of best 

performing chromosomes to be stored in the library, the initial increase in 𝑛𝐿 allows more 

relevant variables to be stored in the library; however, as 𝑛𝐿 increasing, the enhanced variable 

selection consistency delivered by CEEVS allows all truly relevant variables being selected, 

therefore, further increasing the number of repetitions does not result in further improvement in 

the model performance. Based on the testing of all datasets, in this work, I fix 𝑛𝐿 at 200 for all 

the case studies. 

For the size of population (𝑛𝑃), the ten levels I tested were [5, 10, 20, 50, 100, 150, 200, 

300, 400, 500]. The cross-validation results for the corn dataset is plotted in Figure 2.6 (b) and 

other dataset show very similar behavior. Similar to the case of 𝑛𝐿, as 𝑛𝑃 increases, the cross-

validation performance saw significant improvement initially, then levels off as 𝑛𝑃 keep 

increasing. This is because the initial increase in 𝑛𝑃 allows more chromosomes to be evaluated, 

thereby increasing the probability of producing superior offspring. However, after sufficient 

number of chromosomes have been evaluated, this effect diminishes. Based on the effect of 𝑛𝑃 

for all the datasets, I set 𝑛𝑃 to 400 for all the case studies in this work.    
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Figure 2.6 (a) The effect of 𝑛𝐿 on performance for the corn dataset. (b) The effect of 𝑛𝑃 on 

performance for the corn dataset. (c) The effect of 𝛾 on the initial selection probability of five 

representative variables (denoted by different lines) that have different levels of probability of 

selection. (d) The effect of 𝑛𝑆 the initial selection probability of five representative variables 

(denoted by different lines) that have different levels of probability of selection.  

The sampling ratio (𝛾) and the number of sampling runs (𝑛𝑆) are involved in evaluating 

variable stability and probability for selection, so here I examine their effect on variable’s 

probability for selection. I selected 5 representative variables that have different levels of 

probability for selectin. For 𝛾, the 10 levels examined are [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 

0.80, 0.85, 0.90, 0.95], and for 𝑛𝑆, the 10 levels examined are [10, 25, 50, 100, 150, 200, 300, 

400, 600, 800]. As shown in Figure 2.6 (c) and (d), similar to 𝑛𝐿 and 𝑛𝑃, when 𝛾 and 𝑛𝑆 are large 

enough, the probability for selection become quite insensitive to the tuning parameters. In this 

work, I choose 𝛾 = 0.9 and 𝑛𝑆 = 400 for all case studies. 
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2.4.4 Discussion 

It has been well documented that variable selection can help address several challenges 

associated with soft sensor development for spectroscopic datasets, namely: (1) variable 

multicollinearity, i.e., variables are highly correlated; (2) highly noisy data; (3) curse of 

dimensionality, i.e., the number of variables is larger than the number of samples. In addition, 

variable selection could improve model predictive accuracy by eliminating irrelevant predictor 

variables and provide a better understanding of the chemically important wavelength regions by 

reducing model complexity. However, variable selection methods can be sensitive to calibration 

data and their performance may be unstable. As shown in Tables 2.4 – 2.8, PLS soft sensors 

using variables selected by CARS and SVP delivered worse prediction performance compared to 

the full PLS soft sensor without variable selection for 3 out of the 5 datasets. More importantly, 

the low consistency of selected variables among different MC runs suggests that their 

performances are sensitive to the choice of the training samples. There are two possible reasons 

to explain such sensitivity. First, both CARS and SVP use the regression coefficients to define 

the stability of variables, which introduces significant variability in variable selection as 

regression coefficients are sensitive to the choice of the training samples. Second, both methods 

adopt EDF to remove the less important variables. Once the variables are eliminated based on 

their stability (which depends heavily on the training samples), they will not be re-evaluated. 

However, some previously eliminated variables could contribute significantly to prediction when 

variable combination changes.  

To address these limitations, in CEEVS both regression coefficients and VIP scores are 

used to define the variable stability; and by using the frequency of a variable being stored in the 

library to rank the variables instead of using variable stability, CEEVS allows less important 



 58 

variables to be evaluated in different combinations. In addition, unlike GA where the initial 

population is generated completely randomly, CEEVS uses variable stability to guide the 

generation of the initial population which favors the more important variables. Moreover, the 

evolution process in CEEVS is also guided by variable stability, which enables CEEVS to 

deliver much enhanced consistency in variable selection. I believe such enhanced consistency in 

variable selection suggests truly relevant variables are selected, as the underlying relationship 

between sample spectrum and sample property does not change across different training samples. 

As expected, the enhanced consistency in variable selection not only resulted in the improved 

soft sensor prediction performance, but also revealed key chemical information in the spectra. 

Finally, compared to GA, CEEVS significantly reduces the number of tuning parameters and 

deliver highly robust performance over a wide range of turning parameters. This is highly 

desirable as it makes the implementation of CEEVS significantly easier for practitioners and 

could be adopted easily for different applications. 

2.5 Extension of CEEVS 

2.5.1 Introduction to Statistics Pattern Analysis (SPA) feature-based soft sensor 

SPA is originally developed for a process monitoring that He et al. proposed previously 

[45], [68], [69], in which the statistics/features of process variables are extracted along the time 

dimension. Instead of the process variables themselves, features of process variables are used to 

monitor process operation condition. SPA can address many process challenges such as 

dynamics, nonlinearity, non-Gaussianity and non-synchronized trajectories. In addition, since 

features can explain process characteristics much better than process variables themselves, the 

effectiveness of SPA in process monitoring has been demonstrated in many case studies [45], 

[68], [69]. In the SPA feature-based soft sensor, the statistics/features are extracted along the 
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variable (i.e., wavelength) dimension. Then, PLS is established to correlate statistics/features to 

response variable(s) (i.e., sample properties), instead of the raw spectroscopic reading of 

samples. Notice that sample-wise statistics/features are calculated for SPA based process 

monitoring approach, while variable-wise ones are calculated for SPA feature-based soft sensor. 

Figure 2.7 shows the schematic diagram of the SPA feature-based soft sensor approach. First, the 

whole spectrum is split into roughly equally spaced 𝑠 non-overlapping segments. Then, f 

different features are extracted from each spectrum segment. In this work, feature pool consists 

of eight different statistics as following: mean (𝜇), standard deviation (𝜎), skewness (𝛾), kurtosis 

(𝜅), average of first derivative of spectrum over an interval (AFD), average of second derivative 

of spectrum over an interval (ASD), slope of linear regression line (SLL), and coefficient of 

squared term for second order regression line (SSL). 𝜇 and 𝜎 describe the center and dispersion 

of spectroscopic readings (i.e., absorbance) in each segment, respectively. 𝛾, 𝜅, SLL and SSL are 

the features associated with the shape of the spectrum in each segment. AFD and ASD are used 

to measure the rate of change of absorbance in each segment. The soft sensor model is 

established using the extracted features (total 𝑠 × 𝑓 features for each sample) and response 

variables. The predictor variables have 𝑋𝑛×(𝑠×𝑓) where 𝑛 is number of samples, and (𝑠 × 𝑓) is 

number of predictors. 𝑦𝑛×1 denotes a response variable vector (i.e., property of interest) with 

dimension of 𝑛 × 1. The major advantages of SPA feature-based soft sensor are as follows: (1) it 

can utilize information from the whole spectrum with much smaller number of the features 

compared to wavelengths; (2) the features not only better capture spectral characteristics such as 

nonlinearity and peak shift, but also reduce the influence of the spectra noises and disturbances, 

which would improve the soft sensor's predictive power. More details about SPA feature-based 

soft sensor can be found in [24]. 
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Figure 2.7 Schematic of SPA feature-based soft sensor 

2.5.2 SPA feature-based soft sensor integrated with CEEVS (SPA-CEEVS) 

In Section 2.4.3, I found that CEEVS usually select the largest number of wavelengths, 

and the selected wavelengths consistently cluster around spectrum peak or valleys, which is how 

the underlying chemical information is identified. This makes sense, because the general features 

of molecular spectra are of continuous bands, and the shape of the peak or valley, in addition to 

peak height, could contain important information about the underlying molecular structure. As 

the shape of the peak cannot be captured by a single wavelength, this is why a segment of 

wavelengths around a peak or valley were consistently selected by CEEVS. However, the 

wavelengths within the peak/valley segment are highly correlated and do contain many 

redundant information. If such information could be captured by different features, I do not have 

to include the whole segment of the wavelengths, reducing the number of predictors 

(wavelengths) without scarifying prediction performance. In this work, I propose to integrate 

SPA feature-based soft sensor with CEEVS to further simplify the soft sensor model through the 

feature selection.  

In SPA-CEEVS, rooted in SPA feature-based soft sensing, I apply CEEVS to select 

relevant features, which are then used to build the soft sensor model. In this way, I could obtain a 
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significantly simplified model because CEEVS starts with smaller predictor pool (i.e., 

statistics/features) compared to wavelengths. In addition, the proposed method could further 

enhance the prediction performance, as irrelevant features are removed through feature selection. 

Finally, the selected features could reveal chemically important information, leading to easier 

interpretation of results. As shown in Figure 2.8, SPA-CEEVS follows the CEEVS algorithm but 

instead of wavelengths, the statistics/features extracted from spectrum segments are used for 

feature selection.    

 

Figure 2.8 Flow diagram of the SPA-CEEVS algorithm 
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2.5.3 Results of SPA-CEEVS 

 Table 2.9 summarizes the tuning parameters for SPA related methods and nonlinear 

methods. For a fair comparison, all methods except for GPR are optimized through 10-fold 

cross-validation. For GPR method, the optimal tuning parameters are obtained by maximizing 

the marginal likelihood. For other methods, exhaustive search is used to find the optimal tuning 

parameters. 

Table 2.9 Tuning parameters for comparison methods 

Methods Tuning parameters 

Elastic Net 𝛼, regularization parameter (𝜆) 

SVR regularization parameter, kernel scale parameter, 𝜀, kernel functiona 

GPRb Length scale for each predictor, signal standard deviation, noise standard 

deviation 

SPA # of segments, # of PC’s 

SPA-CEEVSc # of segments, # of features/Statistics, # of PC’s 

alinear and Gaussian; bAutomatic Relevance Determination (ARD) squared exponential kernel is 

used for covariance function; cOther parameters are fixed as specified in Table 2.1. 

Performance comparison 

In this work, the comparison results of SPA-CEEVS, feature engineering integrated with 

feature selection, with other variable selection methods based on the raw predictors (i.e., 

wavelengths) are listed in Table 2.10 – 2.14 to show that feature engineering can improve the 

predictive power. In addition, the comparison results of SPA-CEEVS rooted in linear PLS 

method with the nonlinear methods are presented in Table 2.15 – 2.19 to show that feature 

engineering and selection can explain nonlinear relationship between predictor and response 
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variables. Then, I demonstrate how the features can capture the spectral characteristics such as 

nonlinearity through investigating the relationship between the features and the sample 

properties. The best performance for each metric is denoted in boldface. Details about each 

metric are explained in Section 2.4.3. The SPA and SPA-CEEVS utilize all the features extracted 

from whole spectrum as described in Section 2.5.1, while the other methods use the raw 

predictor variables (i.e., wavelengths).    

Table 2.10 Performance comparison of feature selection between with feature engineering and 

without feature engineering using the corn dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 9.197  2.390 - - 12 ± 2 700 

CARS 9.263  2.760 0.063 -0.72 12 ± 2 21 ± 8 

SVP 9.569 2.602 0.062 -4.05 14 ± 1 26 ± 10 

GA 8.730  2.337 0.119 5.07 9 ± 2 74 ± 27 

CEEVS 8.335  2.051 0.212 9.37 9 ± 2 101 ± 39 

Elastic Net 12.151 2.288 0.824 -32.12 - 563 ± 13 

SPA-

CEEVS 
8.025 2.008 0.282 12.74 10 ± 3 46 ± 20 

 

Table 2.11 Performance comparison of feature selection between with feature engineering and 

without feature engineering using the diesel dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 2.38  0.30 - - 12 ± 2 401 

CARS 2.94  0.65 0.136 -23.54 13 ± 2 55 ± 55 

SVP 2.32  0.43 0.150 2.71 14 ± 1 47 ± 14 

GA 2.24  0.30 0.240 6.12 12 ± 2 92 ± 42 

CEEVS 2.20  0.30 0.432 7.56 11 ± 2 123 ± 38 
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Elastic Net 2.21 0.29 0.419 7.22 - 139 ± 10 

SPA-

CEEVS 
2.21 0.34 0.480 7.45 13 ± 2 110 ± 36 

 

Table 2.12 Performance comparison of feature selection between with feature engineering and 

without feature engineering using the pharmaceutical tablets dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 5.05 0.76 - - 14 ± 3 650 

CARS 4.72 0.84 0.064 6.50 15 ± 3 30 ± 15 

SVP 4.85 0.83 0.104 3.85 19 ± 2 50 ± 26 

GA 4.46 0.90 0.138 11.69 11 ± 3 69 ± 44 

CEEVS 4.45 0.89 0.231 11.86 13 ± 2 92 ± 56 

Elastic Net 4.87 0.80 0.289 3.49 - 91 ± 23 

SPA-

CEEVS 
4.40 0.92 0.321 12.88 9 ± 2 39 ± 15 

 

Table 2.13 Performance comparison of feature selection between with feature engineering and 

without feature engineering using the wheat dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 3.614 0.587 - - 16 ± 2 150 

CARS 3.687 0.669 0.243 -2.02 15 ± 2 36 ± 13 

SVP 4.011 0.685 0.151 -11.00 18 ± 2 22 ± 3 

GA 3.502 0.595 0.286 3.08 11 ± 2 40 ± 14 

CEEVS 3.497 0.624 0.289 3.22 11 ± 2 36 ± 11 

Elastic Net 5.806 0.846 0.862 -60.69 - 124 ± 3 

SPA-

CEEVS 
2.755 0.502 0.357 23.77 12 ± 2 50 ± 14 
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Table 2.14 Performance comparison of feature selection between with feature engineering and 

without feature engineering using the beer dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 6.57 6.46 - - 9 ± 3 926 

CARS 3.24 2.76 0.192 50.64 9 ± 3 87 ± 38 

SVP 4.18 5.20 0.166 36.28 13 ± 2 113 ± 13 

GA 2.37 1.85 0.142 63.91 8 ± 3 94 ± 58 

CEEVS 2.36 1.45 0.182 64.11 8 ± 3 130 ± 86 

Elastic Net 3.38 3.12 0.197 48.58 - 64 ± 14 

SPA-

CEEVS 
1.65 1.15 0.288 74.87 9 ± 3 24 ± 13 

 

As shown in Tables 2.10 – 2.14, across different datasets, SPA-CEEVS offers the best in 

almost all performance metrics. In terms of 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , SPA-CEEVS performs the best for 4 

datasets and the 2nd best for the rest one; in terms of 𝐼𝐶, SPA-CEEVS performs the best for 3 of 

the 5 datasets and the 2nd best for the rest 2 datasets. For corn and wheat dataset, Elastic Net has 

the largest 𝐼𝐶 but it has poor ability to identify truly relevant variables associated with chemical 

functional groups, resulting in worse predictive accuracy than Full PLS model. In terms of 

𝜎𝑁𝑅𝑀𝑆𝐸𝑃
, SPA-CEEVS performs the best for 3 of the 5 datasets, while slightly larger 𝜎𝑁𝑅𝑀𝑆𝐸𝑃

 

for the rest 2 datasets. Further investigation is conducted to understand why SPA-CEEVS has 

larger 𝜎𝑁𝑅𝑀𝑆𝐸𝑃
 compared to full PLS method for pharmaceutical tablets dataset. All the 

𝑁𝑅𝑀𝑆𝐸𝑃′𝑠 of SPA-CEEVS in 100 MC runs are lower than those of full PLS method, which 

enables SPA-CEEVS to have the lowest 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . However, for some MC runs, SPA-CEEVS 

has small improvement rate of the predictive accuracy, which makes the proposed method have 

comparatively larger deviation from 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  than full PLS method does. Therefore, SPA-
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CEEVS has larger 𝜎𝑁𝑅𝑀𝑆𝐸𝑃
 than full PLS method. It is worth noting that compared to CEEVS, 

SPA-CEEVS further improves the predictive power for almost all the datasets. These results 

indicate that SPA-CEEVS, feature engineering integrated with feature selection can achieve 

better prediction performance than other variables selection methods without feature 

engineering. Besides the quantitative metrics given in Tables 2.10 – 2.14, Figure 2.9 provides the 

detailed comparison of the prediction performance from the variable selection methods for 100 

MC runs. The predicted value by SPA-CEEVS clustered the closest to the diagonal line given 

different training data, demonstrating superior prediction accuracy and robustness than other 

variable selection methods without feature engineering.   

 

(a) 
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Figure 2.9 Plot of predicted vs. measured properties from variable selection methods. (a) Corn 

dataset; (b) Beer dataset. 

Table 2.15 Performance comparison between linear and nonlinear methods using the corn 

dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 9.197  2.390 - 12 ± 2 700 

SVR(linear) 9.258 2.495 -0.67 - 700 

SVR(Gaussian) 10.657 2.466 -15.88 - 700 

GPR 8.093 1.741 12.00 - 700 

SPA 9.413 2.186 -2.35 11 ± 3 184 

SPA-CEEVS 8.025 2.008 12.74 10 ± 3 46 ± 20 

  

Table 2.16 Performance comparison between linear and nonlinear methods using the diesel 

dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 2.38  0.30 - 12 ± 2 401 

(b) 
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SVR(linear) 2.30 0.54 3.44 - 401 

SVR(Gaussian) 2.38 0.62 -0.01 - 401 

GPR 2.37 1.30 0.59 - 401 

SPA 2.11 0.30 11.27 14 ± 2 232 

SPA-CEEVS 2.21 0.34 7.45 13 ± 2 110 ± 36 

 

Table 2.17 Performance comparison between linear and nonlinear methods using the 

pharmaceutical tablets dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 5.05 0.76 - 14 ± 3 650 

SVR(linear) 4.68 0.89 7.18 - 650 

SVR(Gaussian) 4.61 0.91 8.59 - 650 

GPR 4.69 0.91 7.13 - 650 

SPA 4.61 0.82 8.59 12 ± 3 168 

SPA-CEEVS 4.40 0.92 12.88 9 ± 2 39 ± 15 

 

Table 2.18 Performance comparison between linear and nonlinear methods using the wheat 

dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 3.614 0.587 - 16 ± 2 150 

SVR(linear) 3.734 0.69 -3.32 - 150 

SVR(Gaussian) 2.643 0.519 26.85 - 150 

GPR 2.602 0.491 28.00 - 150 

SPA 2.755 0.480 23.76 15 ± 2 184 

SPA-CEEVS 2.755 0.502 23.77 12 ± 2 50 ± 14 
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Table 2.19 Performance comparison between linear and nonlinear methods using the beer 

dataset 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 6.57 6.46 - 9 ± 3 926 

SVR(linear) 6.58 6.47 -0.20 - 926 

SVR(Gaussian) 6.58 6.48 -0.23 - 926 

GPR 2.60 1.61 60.36 - 926 

SPA 3.69 2.70 43.85 11 ± 3 216 

SPA-CEEVS 1.65 1.15 74.87 9 ± 3 24 ± 13 

 

As shown in Tables 2.15 – 2.19, SPA-CEEVS has better prediction performance 

compared with other linear methods, Full PLS and SPA for almost all the datasets. In addition, 

SPA-CEEVS is much simpler model than SPA, which approximately include 10% – 50% of 

features SPA utilizes, resulting in easier interpretation of results. More interestingly, although 

SPA-CEEVS employs the linear PLS model, it can deliver comparable performance with the 

nonlinear methods, SVR and GPR. Figures 2.10 and 2.11 answer how linear model-based SPA-

CEEVS can explain the nonlinear relationship between predictor variables and response variable. 

Figure 2.10 shows that for almost all the variables, their correlation coefficients are less or equal 

to 0.5, indicating that each variable is not strongly correlated with the response variable. 

However, As shown in Figure 2.11, the features can have large linear relationship with the 

response variable. Especially, higher-order statistics (HOS) such as 𝛾, 𝜅, and 𝑆𝑆𝐿 tend to have 

large correlation coefficients, indicating features can capture the spectral characteristics such as 

nonlinearity. In addition, during the process of the generation of the features, a large amount of 

the variability of the absorbance can be reduced via background and baseline shift correction 

[70]–[72], resulting in improving the relationship between the features and response variable.   
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Figure 2.10 Correlation coefficients between predictor variables (wavelengths) and response 

variable (sample property). (a) corn dataset; (b) pharmaceutical tablets dataset. 

 

(a) (b) 

(a) 

𝝁 𝝈 𝜸 𝜿 𝑨𝑭𝑫 𝑨𝑺𝑫 𝑺𝑳𝑳 𝑺𝑺𝑳 
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Figure 2.11 Correlation coefficients between features and response variable (sample property). 

(a) corn dataset; (b) pharmaceutical tablets dataset. The dotted lines split feature zones. Each bar 

represents correlation between a feature extracted from each segment and response variable. 

 Besides the quantitative metrics given in Tables 2.15 – 2.19, Figure 2.12 panels (a) and 

(b) compare the predicted vs measured quality variable for the corn and beer datasets. These 

figures show that the predictions of SPA-CEEVS stay the close to the diagonal line, further 

indicating the comparable prediction accuracy and robustness, compared to nonlinear methods. 

 

(b) 

𝝁 𝝈 𝜸 𝜿 𝑨𝑭𝑫 𝑨𝑺𝑫 𝑺𝑳𝑳 𝑺𝑺𝑳 

(a) 
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Figure 2.12 Plot of predicted vs. measured properties from linear-based and nonlinear methods. 

(a) corn dataset; (b) beer dataset. 

 In Section 2.4.3, I found that one major advantage of CEEVS is that it could identify the 

truly relevant variables associated with underlying chemical bond or functional groups through 

improving the consistency of variable selection. The variable selection frequency plots are used 

to demonstrate if this characteristic is conserved for SPA-CEEVS.  

Figures 2.13 and 2.14 panels (a) – (e) show the frequency of selected variables (i.e., 

wavelengths) represented by thin blue bars among all 100 MC runs for the beer dataset and the 

pharmaceutical tablets dataset for the five variable selection methods without feature 

engineering. On the other hand, Figures 2.13 and 2.14 (f) plot the frequency of selected features 

extracted from each segment and the dotted line represents each segment. These figures also 

include the sample spectra denoted by the red curves. Like CEEVS, SPA-CEEVS can deliver the 

high consistency in terms of feature selection. It is worth noting that the spectrum segments 

where SPA-CEEVS frequently selected the features are almost matched with the regions where 

(b) 
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CEEVS consistently selected the variables. Considering that the selected variables by CEEVS 

are related to chemical functional groups, SPA-CEEVS also can reveal the underlying chemical 

information and the selected features with high frequency are more likely to be the informative 

predictor variables.    

The spectral absorbances at all the wavelengths are used as predictor variables, instead of 

manually eliminating the noisy spectral regions before modeling because this study aims to 

demonstrate the usefulness of the proposed method by illustrating the proposed method does not 

select the noisy spectral regions. As shown in Figures 2.13 and 2.14, SPA-CEEVS rarely selects 

the features extracted from noisy spectral regions (1800 – 2250nm for beer dataset, 1800 - 

1898nm for pharmaceutical tablets dataset). However, although Elastic Net provides the high 

consistency of variable selection, the approach selects many variables associated with noise, 

resulting in poor predictive accuracy. For GA, CARS and SVP methods, the clustering of the 

selected variables may not be as clear and distinct as that from SPA-CEEVS, even CEEVS, 

which result in the limitation of improvement of the predictive power.  

 

(a) (b) 
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Figure 2.13 Plot of spectra (red curves) and selected wavelengths/features (vertical bars) over 

100 MC runs for the beer dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS; (e) Elastic Net; (f) 

SPA-CEEVS. In the SPA-CEEVS, the bars with different colors correspond to different features 

(brown: μ, green: σ, blue: γ, bright blue: κ, pink: AFD, yellow: ASD, black: SLL, purple: SSL). 

The dotted line denotes each segment. 

(c) (d) C-H 2nd Overtone 

Stretching 

(e) 
(f) 
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Stretching 

(a) (b) 

(c) (d) 
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Figure 2.14 Plot of spectra (red curves) and selected wavelengths/features (vertical bars) over 

100 MC runs for the pharmaceutical tablets dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS; (e) 

Elastic Net; (f) SPA-CEEVS. In the SPA-CEEVS, the bars with different colors correspond to 

different features (brown: μ, green: σ, blue: γ, bright blue: κ, pink: AFD, yellow: ASD, black: 

SLL, purple: SSL). The dotted line denotes each segment. 

2.5.4 Discussion 

In this section, I discuss the potential reasons SPA-CEEVS can further improve the 

performance, compared to 1) existing variable selection methods with no feature engineering and 

2) nonlinear methods. SPA feature-based soft sensor was developed to address the limitation of 

the existing variable selection methods; variable selection can be strongly influenced by the 

choice of the calibration set. They often fail to identify truly relevant variables, resulting in poor 

predictive accuracy for new samples. SPA feature-based soft sensor can overcome this limitation 

by using all the information contained in the whole spectrum.  

Although the feature extraction significantly reduces the number of features compared to 

the number of predictor variables (i.e., wavelengths), SPA method still does not solve the curse 

of dimensionality (i.e., the number of features is larger than the number of calibration samples). 

SPA-CEEVS removes irrelevant features based on the fact that all the features do not equally 

contribute to sample properties, thereby addressing the curse of dimensionality. Tables 2.10 – 

(e) (f) 
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2.14 show that the number of the selected features by SPA-CEEVS is less than the number of 

calibration samples for all the datasets.  

The superior prediction performance of SPA-CEEVS in terms of both accuracy and 

robustness can be attributed to the following factors. First, the eight features extracted from each 

segment possibly account for more accurate relationship with sample properties than the raw 

predictor variables because they can reflect various aspects of spectra characteristics of the 

segment. According to Figures 2.10 and 2.11, the features could successfully capture nonlinear 

relationship between sample spectra and property of interest. Therefore, SPA-CEEVS provides 

comparable and/or better performance metrics compared to the nonlinear methods such as SVR 

and GPR though it utilizes a linear PLS model. Second, feature extraction plays a role of noise 

filtering, resulting in reducing the influence of noise or disturbance. For example, when I extract 

the features such as mean or standard deviation, all the spectral readings within each segment are 

used. Therefore, the effect of potential noise can be reduced, which makes the model less 

sensitive to noise, compared to the model using the spectral readings of samples. Lastly, the 

selection of truly relevant features results in more accurate and robust prediction performance.  

In terms of consistency of variable selection, Elastic Net is also a good model for all the 

datasets, but it does not provide satisfactory predictive power especially for corn and wheat 

datasets. Tables 2.10 and 2.13 show Elastic Net has the largest 𝐼𝐶 (over 0.8), indicating almost all 

the variables are consistently selected among 100 MC runs, while the predictive accuracy is the 

worst among the all the methods. This is because Elastic Net fails to select the truly relevant 

variables, leading to poor prediction for new samples. One of potential reasons Elastic Net does 

not work well for these datasets is that all the variables are extremely highly correlated with each 
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other (i.e., all the variables have larger than 0.8 Pearson correlation coefficient), which lead to 

losing the capability of variable selection.  

2.6 Summary and conclusions 

In recent years, with an increase in demand for high product quality, spectral-based soft 

sensors have gained significant attention in various industries to predict the accurate properties 

of products with easy-to-measure process variables. Due to the characteristics of NIR spectra 

such as multicollinearity and nonlinearity, many PLS-based variable selection methods have 

been studied to deal with multicollinearity and to address the curse of dimensionality, and 

nonlinear methods such as ANN and SVR have been investigated to handle nonlinearity. 

However, these methods still have a couple of limitations. Specifically, PLS-based variable 

selection methods may result in unsatisfactory performance when spectra samples have a strong 

nonlinear relationship with properties of interest. Besides, the selected variables often show little 

connection to the chemical bonds or functional groups. CEEVS is developed to improve the 

accuracy and consistency of variable selection. I assume that if a variable selection method can 

consistently select relevant variables across different training samples, it would deliver better 

prediction performance. This is because truly relevant variables would not change depending on 

different training datasets. To enhance the consistency of variable selection, CEEVS uses both 

PLS regression coefficients (BETA) and variable importance in projection (VIP) to determine 

variable stability, which reduces the sensitivity to the training data while the probability of 

selection based on the variable stability ensures that even the variable of the minimum stability 

has a chance to be selected. The probability of selection based on the variable stability also 

ensures that the evolution process would start with a better initial population than GA where the 

initial population is completely randomly selected.  This helps the evolution to converge to 
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optimum faster. In addition, the chromosome evolution process is also different from GA. By 

using the parent chromosome from previous evolution run as a new starting point to re-evaluate 

the variable stability and using the updated stability to determine the probability for offspring 

generation, the evolution process enhances the consistency of variable selection while 

eliminating non-informative variables. The choice of the final informative variable subset is 

based on the frequency of each variable being selected into the library of optimal chromosome. 

In this way, a variable with lower stability by itself yet still informative when combined with 

other variables would be included and evaluated.  

CEEVS delivers the best consistency and predictive accuracy compared to other variable 

selection methods. However, predictive power could be further improved if features can capture 

the nonlinear relationship between spectral readings and properties of interest. Many studies 

show that nonlinear methods deliver better predictive accuracy than PLS-based variable selection 

methods. But the complexity of the nonlinear methods makes it difficult to understand key 

variables, which restrict a better understanding of the physical/chemical relationship between 

chemical functional groups and properties of interest. In addition, they may increase the risk of 

over-fitting for high dimensional data. Therefore, I present a novel soft sensor, SPA-CEEVS, 

that integrates SPA (i.e., feature engineering) with CEEVS (i.e., feature selection) to handle the 

nonlinearity and to improve the interpretation of results. 

 There are several benefits associated with SPA-CEEVS method. First, it can better 

explain the characteristics of spectra samples such as nonlinearity and peak shift through 

extraction of a variety of features from each segment. Second, there is an effect of noise filtering 

when features are calculated from each segment of whole spectrum. That is, the features can 

reduce the influence of the spectra noise and disturbance. Finally, it offers a simple model 
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through feature selection, which addresses the curse of dimensionality. In addition, the 

parsimony model makes it easy to understand key features for the prediction of the properties of 

interest. 

 The effectiveness of SPA-CEEVS is demonstrated by studying five different NIR 

datasets. These case studies show that SPA-CEEVS achieves better prediction performance than 

the absorbance-based variable selection methods. Besides, SPA-CEEVS delivers comparable 

and/or better prediction performance compared to the nonlinear methods. The results also show 

that SPA-CEEVS achieves high variable selection consistency regardless of datasets. In 

summary, SPA-CEEVS is a simple and reliable prediction model for all the datasets; it identifies 

key features associated with underlying chemical information and achieves better predictive 

accuracy. 
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Chapter 3. Feature space monitoring (FSM) for pressure swing adsorption (PSA) processes2 

3.1 Background 

In the past few decades, pressure swing adsorption (PSA) processes have gained 

increasing commercial acceptance as an energy efficient separation technology [73]. PSA 

applications range from traditional bulk gas separation and drying, to CO2 sequestration, trace 

contaminant removal, and other. With its extensive industrial applications, PSA has drawn 

significant research interests from the process systems engineering community recently. The 

research has focused mainly on PSA system modelling and simulation [74]–[76], design and 

optimization [73], [77], [78]. For process monitoring, traditional univariate approaches, such as 

the Shewhart [18], cumulative sum (CUSUM) [79], and exponentially weighted moving average 

(EWMA) [80] have been utilized in many industrial processes. The advantage of univariate 

statistical process control (SPC) charts is easy to implement. However, they have some 

limitations to improve the accuracy of fault detection on multivariate processes [81], [82]. With 

increasing product capability, modern PSA systems consist of 10 more adsorbers and hundreds 

of valves, from which tremendous process data is stored. It is not efficient to apply univariate 

approaches to PSA processes for process monitoring. To address the challenges, multivariate 

statistical process monitoring (MSPM) methods such as principal component analysis (PCA) and 

partial least square (PLS) have been studied and applied to traditional chemical batch processes, 

not PSA processes [83]–[86]. Although there is a significant need for effective MSPM methods 

to detect and diagnose PSA process abnormalities in real-time to avoid major production 

disruptions, research in this area has been scarce. This is mainly due to the non-stationary and 

 
This chapter was excerpted from " Feature based fault detection for pressure swing adsorption 

processes " published in IFAC-PapersOnLine [94]. The author is the first author of these papers. 



 82 

periodic nature of the process, which poses special challenges to monitoring such a process. For 

example, the application of the conventional MSPM methods, such as PCA and its variants, can 

lead to frequent false alarms and/or missed faults [87]. To address this challenge, Pan et al. 

(2004) proposed a process monitoring approach for continuous processes with periodic 

characteristics by identifying a stochastic state space model that captures the statistical behavior 

of changes occurring from period to period. The approach was validated using a waste water 

treatment process (WWTP). While there are similarities between WWTP and PSA processes, 

there are also differences. For example, the activated sludge process, which is a main part of a 

WWTP, is a natural periodic process with somewhat constant cycle time that is driven by the 

diurnal temperature and light fluctuations. In contrast, PSA is a forced periodic process with 

cycle time dynamically controlled to address many disturbances that affect the PSA operations 

(e.g., increased or decreased product throughput to meet customer demand or to minimize cost 

by scheduling based on electricity pricing, raw material feed composition variations), even 

weather conditions can affect the plant operations. As a result, the cycle time is heavily and 

frequently adjusted, which renders the approach proposed in [87] less effective for PSA 

processes. Another difference is that while the biological process in the WWTP is a very slow 

process, PSA is a very fast process. Recently, Wang et al. (2017) proposed a geometric 

framework for the monitoring and fault detection of periodic processes [88]. The proposed 

approach was applied to two simulated periodic processes with superior performance compared 

to the conventional dynamic PCA (DPCA) and multiway PCA (MPCA). For the simulated 2-bed 

PSA process, a total of 26 variables relating to the flow rate of the feed, as well as pressures and 

concentrations in and across both beds were used for observation. However, in industrial PSA 

processes, not all of these variables were measured, especially the concentrations in and across 
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the beds. In addition, pressure is the major process variable to be monitored, in this case the 

proposed method is not applicable as there is no centroid for a single variable. Another method 

specifically proposed for monitoring industrial PSA processes is a US patent [89]. In this 

method, a moving window discrete Fourier transform (DFT) was applied to process the data such 

as pressure profile. A number of “relevant” peaks were identified from the frequency spectra 

(i.e., their frequencies and amplitudes). Then calculate the logarithm of the amplitude ratio of 

peak 𝑘 between beds 𝑖 and 𝑗, which is defined as ℛ in this work as the following.  

ℛ = 𝑙𝑜𝑔 (
𝐴𝑖,𝑘

𝐴𝑗,𝑘
)      (3.1) 

where 𝐴 is peak amplitude, 𝑖 and 𝑗 are the bed or vessel indices, 𝑘 is the peak index. ℛ is then 

monitored over time, where the control upper and lower limits were calculated based on normal 

operation data. However, there is no clear definition of “relevant” or how the “relevant” peaks 

are identified, which makes us hard to study the approach in this work.  

 For successful PSA processes monitoring, process fault detection methods should deal 

with multimodal operations of the process since cycle time is frequently adjusted to meet 

demand fluctuations. Many researchers have studied the multimode process fault detection 

methods, which can be classified into the method with multiple models and the method with a 

global model [90]–[94]. While the method with multiple models requires dividing modes and 

building a model for each mode, the method with a global model generates one universal model, 

which captures the characteristics of all the modes. In terms of algorithms, the multimode 

process fault detection methods can be divided into the Gaussian mixture based methods and the 

k-nearest neighbor (kNN) rule based methods [95]–[98].  

In this work, I propose a novel process monitoring method, k-nearest neighbor-based 

feature space monitoring (FSM-kNN). The basic idea of the proposed approach is that instead of 
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monitoring the original pressure profile of a PSA process, I characterize the pressure profile of 

each PSA step by statistics and shape or morphology features. These features are then grouped 

by cycles and monitored by kNN rule for process monitoring (i.e., fault detection and diagnosis). 

3.2 Introduction to PSA process 

3.2.1 PSA process description 

PSA is a well-known technique for the separation and purification of the mixture of 

process gases. There are wide industrial applications as follows: (1) gas drying, (2) solvent vapor 

recovery, (3) fractionation of air, (4) production of purified hydrogen, (5) separation of carbon 

dioxide and methane from landfill gas, (6) carbon monoxide – hydrogen separation, (7) normal 

isoparaffin separation, and (8) alcohol dehydration [99]. The PSA process mainly consists of two 

basic steps – adsorption and desorption – to separate and purify gas mixtures. During the 

adsorption step, the feed gas mixtures enter an adsorber, and impurities are selectively adsorbed 

on adsorbents at relatively high pressure, producing the purified product. In the desorption step 

following the adsorption step, the pressure of the adsorber is decreased so that impurities are 

desorbed from the absorbent pores, making the adsorbents be reused. In recent years, the PSA 

process includes two adsorbers to 10 or more adsorbers depending on the product capacity on the 

plant. These vessels are operated in periodic fashion, which indicates that some vessels are in the 

adsorption step to remove impurities at high pressure, the others are in the desorption step to 

release the trapped impurities at low pressure. Those steps are designed to optimize the product 

gas purity [99], [100].  

3.2.2 PSA process characteristics 

In this section, we discuss the unique characteristics of a PSA process and how these 

characteristics pose challenges to process monitoring. Figure 3.1 shows the typical pressure 
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profile of a multi-bed PSA process. Due to the sensitivity of the actual operation and production 

data of the process, all axis tick labels in this and other figures based on real operation data were 

omitted. To reduce clutter, only the pressure profiles from three beds are plotted. This type of 

pressure time series plot is good for visualizing and observing between-bed variations. However, 

only obvious deviations/faults can be observed from this type of plot and it can become very 

cluttered and difficult to read if all beds were plotted on the same figure. Figure 3.2 plots the 

overlapping of multiple cycles of a single bed, which can be used to visualize within-bed 

variations. Figure 3.3 plots the durations of the cycles over a period of time. A cycle consists of 

several steps for adsorption/desorption process. Figure 3.4 (a) and (b) show the specific step 

durations. About half of the steps follow similar trends as the cycle duration as shown in Figure 

3.4 (a), while the other half were maintained at relatively constant as shown in Figure 3.4 (b).  

 

Figure 3.1 Typical pressure profiles of three beds in a multi-bed PSA process 
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Figure 3.2 Overlapping pressure profiles of a single bed over multiple cycles 

Figure 3.3 The cycle duration varies significantly from cycle to cycle 
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(a) (b) 

 

There are several points that can be made based on these three figures. First, the cycles 

are asynchronous across different beds as shown in Figure 3.1. They do not exactly overlap each 

other after unfolding for the same bed as shown in Figure 3.2, even for the onset, i.e., the start of 

the repressurization step, of the cycle. Second, the cycle duration, as well as the durations of the 

steps, vary from cycle to cycle as shown in Figures 3.3 and 3.4 (a). These durations are 

dynamically controlled to ensure product quality in response to dynamic scheduling, and/or 

disturbances such as demand change and weather conditions. Third, the process is highly 

nonlinear as shown in Figures 3.1 and 3.2. These characteristics pose significantly challenges to 

conventional MSPM methods such as MPCA, trilinear decomposition (TLD) and parallel factor 

analysis (PARAFAC) [101], or recently proposed methods such as multi-way independent 

component analysis (MICA) [102] and kernel PCA (KPCA) [103]. All these methods require the 

construction of a 2D or 3D array, which means that they all require synchronization of all steps 

of the entire cycle to equal step and cycle durations. This can be done through different ways, 

including simple cut, interpolation, dynamic time warping (DTW), etc. However, all these pre-

Figure 3.4 (a) The step durations follow a similar trend as the cycle duration, or (b) are 

maintained at relatively constant 
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processing steps have their drawbacks, including trajectory distortion, information loss, etc. [19], 

[97]. It is particularly undesirable for PSA process because the step and cycle durations are 

dynamically controlled. As shown in Figures 3.3 and 3.4 (a), there are significant variabilities in 

step and cycle durations in a PSA process under normal operations. Therefore, the pre-

processing steps mentioned above may result in unsatisfactory fault detection for the PSA 

process. 

3.3 Review of preprocessing and process monitoring methods 

 In Section 3.2.2, I found that the cycle time is frequently adjusted to meet demand 

fluctuations. Therefore, the pre-processing is required to synchronize the different duration of the 

cycles and the steps. In this section, DTW is introduced as the pre-processing technique. For 

process monitoring, the traditional MPCA method and two kNN based fault detection methods 

are reviewed.  

3.3.1 Dynamic Time Warping (DTW) 

 DTW warps the two asynchronous time series by compressing or expending them to 

make one resemble the other. It aims to find the optimal matching path between the two 

trajectories to achieve a minimum distance between them. DTW has been widely used in various 

fields such as speech recognition, process monitoring, prognostics, and imaging [104]–[107].  

Let 𝑋 = (𝑥1, ⋯ , 𝑥𝑁) and 𝑌 = (𝑦1, ⋯ , 𝑦𝑀) denote the two asynchronous time series. 

Assume 𝑖 and 𝑗 present the time index of the 𝑋 and 𝑌 trajectories, respectively. DTW finds a 

warping path 𝑝 of L points on a 𝑁 × 𝑀 grid.  

𝑝 = [𝑐(1), 𝑐(2), ⋯ , 𝑐(𝑘) ⋯ 𝑐(𝐿)],  max(𝑁, 𝑀) ≤  𝐿 ≤ 𝑁 + 𝑀 (3.2) 

𝑐(𝑘) = [𝑖(𝑘), 𝑗(𝑘)]       (3.3)   
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and each point 𝑐(𝑘) denotes an alignment between the two trajectories. There are several 

constraints that DTW should follow to find the best path – constraints on the endpoints of the 

path and local continuity constraints.   

 The endpoint constraints indicate that the end points of the two trajectories should be 

matched as following.  

𝑐(𝑘) = (1, 1)        (3.4) 

𝑐(𝐿) = (𝑁, 𝑀)       (3.5) 

The local continuity constraints consider physical considerations and do not allow 

excessive time compression and expansion. The monotonicity condition forces the path to be 

monotonous, which is expressed as  

𝑖(𝑘 + 1)  ≥ 𝑖(𝑘)       (3.6) 

𝑗(𝑘 + 1)  ≥ 𝑗(𝑘)       (3.7) 

The requirement of avoiding extreme time compression and expansion is satisfied by 

constraining the local slope of the path to a specified range.  

The goal of DTW is to find the best warping path through a grid of distances between 

two trajectories, which makes total distance minimum. The normalized total distance is defined 

as 

𝐷(𝑁, 𝑀) =  
∑ 𝑑[𝑖(𝑘),𝑗(𝑘)]∙𝑤(𝑘)𝐿

𝑘=1

𝑛(𝑤)
     (3.8) 

where 𝐷(𝑁, 𝑀) is a normalized total distance between the two asynchronous time series; 

𝑑[𝑖(𝑘), 𝑗(𝑘)] is the weighted local distance between 𝑖(𝑘) and 𝑗(𝑘); 𝑤(𝑘) is a nonnegative 

weighting function; 𝑛(𝑤) is a normalization factor.  

 The best path is determined by solving the following equation. 

𝐷∗(𝑁, 𝑀) =  min
𝑝

[𝐷(𝑁, 𝑀)]      (3.9) 
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𝑝∗ =  argmin
𝑝

[𝐷(𝑁, 𝑀)]      (3.10) 

where 𝐷∗(𝑁, 𝑀) is the minimum normalized total distance;  𝑝∗ is the best path. The 𝑛(𝑤) is used 

to make the normalized total distance independent of the number of path points 𝐿. More details 

about DTW can be found in [108].  

3.3.2 Principal Component Analysis (PCA) 

 Let 𝑿𝑛×𝑚 represent the data matrix with 𝑛 samples and 𝑚 variables. 𝑿 is mean-centered 

to have zero mean for covariance-based PCA or is auto-scaled to have zero mean and unit 

variance for correlation-based PCA. The algorithms such as the NIPALS [109] or a singular 

value decomposition (SVD) can decompose the matrix 𝑿 as follows: 

𝑿 = 𝑻𝑷𝑇 + 𝑿̃ =  𝑻𝑷𝑇 +  𝑻̃𝑷̃𝑇 = [𝑻  𝑻̃][𝑷  𝑷̃]𝑇   (3.11) 

where 𝑻𝑛×𝑙 and 𝑷𝑚×𝑙 are the score and loading matrices, respectively. The PCA aims to find a 

set of 𝑙 principal components (PCs), smaller than the 𝑚 variables. The score matrix 𝑻 is 

orthogonal. The loading matrix 𝑷 consists of eigenvectors of the covariance or correlation matrix 

related to the 𝑙 largest eigenvalues. The two metrics – the Hotelling’s 𝑇2 and the squared 

prediction error (SPE) – are usually used for process monitoring. The Hotelling’s 𝑇2 measures 

variations in principal component space (PCS): 

𝑇2 =  𝐱𝑇𝑷𝚲−1𝑷𝑇𝐱       (3.12) 

where 𝚲 is the 𝑙 largest eigenvalues of the covariance or correlation matrix. For a given 

significance level 𝛼, the process is considered normal if  

𝑇2  ≤  𝑇𝛼
2        (3.13) 

where the 𝑇𝛼
2 upper control limit is determined by using an 𝐹 distribution or empirical way [45], 

[110]. Otherwise, the process is considered as an abnormal condition (i.e., 𝑇2  >  𝑇𝛼
2).  
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 The SPE index reflects how much each sample deviates from normal process correlation 

and measures the projection of the sample vector on the residual space: 

𝑆𝑃𝐸 =  ‖𝐱̃‖2 =  ‖(𝑰 − 𝑷𝑷𝑇)𝐱‖2     (3.14) 

 For a given significance level 𝛼, the process is considered normal if 

𝑆𝑃𝐸 ≤  𝛿𝛼
2         (3.15) 

where the 𝛿𝛼
2 upper control limit is determined by the method that Jackson and Mudholkar 

developed or empirical way [45], [111]. Otherwise, the process is considered as an abnormal 

condition (i.e., 𝑆𝑃𝐸 >  𝛿𝛼
2). 

3.3.3 Multiway Principal Component Analysis (MPCA) 

 MPCA is a multivariate projection method to handle three-dimensional (3-D) array data. 

A batch process has 3-D array data that contains batch runs, variables, and time. As shown in 

Figure 3.5, the batch data can be configured as 3-D array 𝑿(𝐼 × 𝐽 × 𝐾), where 𝐼 denotes batch 

runs, 𝐽 is the number of variables, and 𝐾 represents times throughout the batch. In MPCA, the 3-

D array 𝑿 is unfolded into the 2-D array 𝐗 to implement the PCA. In this approach, MPCA can 

identify variations from the normal operation trajectories. 

 

Figure 3.5 Data unfolding. (a) 3-D array data; (b) unfolded 2-D array data. 
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MPCA decomposes the matrix 𝐗 as follows: 

𝑿(𝐼 × 𝐽𝐾) = 𝑻𝑷𝑇 + 𝑬      (3.16) 

where 𝑻(𝐼 × 𝑅) is the score matrix, 𝑷(𝐽𝐾 × 𝑅) is the loading matrix, 𝑬(𝐼 × 𝐽𝐾) is the residual 

matrix, and 𝑅 is the number of principal components. The fault detection is performed the same 

as in Section 3.3.2. More details about MPCA can be found in [112]–[114]. 

3.3.4 k-Nearest Neighbor Rule-based Fault Detection (FD-kNN) 

 The FD-kNN is based on the hypothesis that the distance between a fault sample and its 

nearest neighboring normal samples in the training set is much larger than one between a normal 

sample and its nearest neighboring normal samples in the training set. The kNN squared distance 

of 𝑖th sample (𝐷𝑖
2) is calculated as follows: 

𝐷𝑖
2 =  ∑ 𝑑𝑖,𝑗

2𝑘
𝑗=1        (3.17) 

where 𝑑𝑖,𝑗
2  is the squared Euclidean distance between 𝑖th sample and 𝑗th nearest neighbor. For the 

fault detection, a threshold 𝐷𝛼
2 with a significance level 𝛼 should be determined based on the 

distribution of the 𝐷𝑖
2, which can be estimated by a noncentral chi-square distribution. If the kNN 

squared distance of a new sample 𝐱 (𝐷x
2) is smaller than or equal to the 𝐷𝛼

2 (i.e., 𝐷x
2  ≤  𝐷𝛼

2), it is 

identified as a normal one. Otherwise, it is classified as an abnormal one. More details about FD-

kNN can be found in [97]. 

3.3.5 Standardized k-Nearest Neighbor-based Fault Detection (SkNN) 

 SkNN is proposed to calculate the distance between a sample and its nearest training 

neighbors more accurate for multimode data by reducing the scale’s difference of the variables 

within a mode and between the modes. As a first step, the multimode dataset 𝑿𝑛×𝑚 (𝑛: the 

number of samples, 𝑚: the number of variables) is auto-scaled to have zero mean and unit 

variance as following equation: 
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𝑿′ =  
𝑿− 𝑿̅

𝜎𝑿
        (3.18) 

where 𝑿̅ and 𝜎𝑿 represent the mean and standard deviation, respectively. A standardized distance 

is calculated as  

𝑆𝐷(𝒙𝑖, 𝒙𝑖
𝑓

) =  √
[𝒙𝑖−𝑁(𝒙𝑖

𝑓
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
]𝑇[𝒙𝑖−𝑁(𝒙𝑖

𝑓
)

̅̅ ̅̅ ̅̅ ̅̅ ̅
]

𝜎𝑁(𝒙𝑖)𝜎
𝑁(𝒙

𝑖
𝑓

)

     (3.19) 

where 𝒙𝑖 is the 𝑖th sample in 𝑿′, 𝒙𝑖
𝑓
 is 𝑓th neighbor of 𝒙𝑖, 𝑁(𝒙𝑖) is the 𝑘 nearest neighbors of 𝒙𝑖, 

𝑁(𝒙𝑖)̅̅ ̅̅ ̅̅ ̅̅  is the mean of 𝑁(𝒙𝑖), 𝜎𝑁(𝒙𝑖) is the standard deviation of 𝑁(𝒙𝑖). Once the standardized 

distance is computed, the accumulated distance is calculated as follows: 

𝐴𝐷(𝒙𝑖) =  ∑ 𝑆𝐷(𝑥𝑖 , 𝑥𝑖
𝑓

)𝑘
𝑓=1       (3.20) 

 For the process monitoring, a threshold of 𝐴𝐷 with a significance level 𝛼 can be 

calculated by the kernel density estimation (KDE). If the accumulated distance of a new sample 

𝐱 𝐴𝐷(𝐱) is smaller than or equal to the 𝐴𝐷𝛼 (i.e., 𝐴𝐷(𝐱)  ≤  𝐴𝐷𝛼), it is a normal one. Otherwise, 

it is detected as an abnormal one. More details about SkNN can be found in [98].  

3.4 k-Nearest Neighbor-based Feature Space Monitoring (FSM-kNN) 

 The periodic processes have unique characteristics, such as a nonlinear and multimodal 

operation that make traditional MSPM methods challenging for fault detection of PSA processes. 

To address these challenges, I propose a k-nearest neighbor-based feature space monitoring 

(FSM-kNN) fault detection and diagnosis method for the PSA process. In the next section, I 

briefly review statistics pattern analysis (SPA), which is the predecessor of FSM-kNN, then 

introduce the FSM-kNN framework for PSA process monitoring.  
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3.4.1 Introduction to Statistics Pattern Analysis (SPA) for process monitoring  

 Statistics pattern analysis (SPA) was originally proposed for monitoring batch processes 

[45] and later extended to the monitoring of continuous processes and other applications such as 

soft sensor [24], [69]. Since then many variations and extensions have been proposed in the 

literature [115]–[118]. Because cyclic or periodic continuous processes share many similarities 

with batch processes (e.g., they are usually highly nonlinear processes with multiple steps or 

phases and their behaviors somewhat repeat from cycle to cycle or batch to batch), batch-based 

SPA is reviewed here. 

 Batch-based SPA hypothesizes that the batch behavior can be better characterized by the 

variance-covariance of batch statistics than by the variance-covariance of process variables. In 

SPA, a statistics pattern (SP) is a collection of various statistics calculated from a batch trajectory 

which capture the characteristics of each individual variable (e.g., mean and variance), the 

interactions among different variables (e.g., covariance), the dynamics (e.g., auto-, cross-

correlations), as well as process nonlinearity and process data non-Gaussianity (e.g., skewness, 

kurtosis, and other higher order statistics or HOS). The basic idea of SPA is that the SPs of 

normal batches follow a similar pattern (i.e., normal pattern), while the SPs of abnormal or faulty 

batches must show some deviation from the normal pattern. More details on batch-based SPA 

can be found in [45]. 

3.4.2 Proposed fault detection framework (FSM-kNN)  

 As shown in Figure 3.6, the PSA processes consist of several steps whose functionality is 

different. Some steps are associated with adsorbing the impurities at high pressure, but the other 

steps are related to regenerating the adsorbents by decreasing the pressure and preparing for the 

next adsorption. The pressure in each step is a critical measurement to monitor the process 
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condition. Sometimes, the pressure profile is not sufficient to identify faults, which can lead to 

increasing false alarm rate and/or missing fault rate. To better explain the properties of process 

behavior in each step of cycles, I consider statistics as well as shape or morphological features. 

In this section, I will discuss the feature generation and the proposed fault detection and 

diagnosis. Figure 3.7 shows the flow diagram of FSM-kNN fault detection and diagnosis 

method.  

 

Figure 3.6 Pressure profile of PSA process. The dotted lines denote each step. (1) adsorption; 

(2) Equalization1 (3) Hold 1; (4) Equalization 2; (5) Equalization 3; (6) Hold 2; (7) 

Equalization 4; (8) Provide Purge; (9) Purge; (10) Blowdown; (11) Eqaulization 3-4; (12) Hold 

3; (13) Equalization 2; (14) Equalization 1; (15) Repressurization.    
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Figure 3.7 Flow diagram of FSM-kNN approach, which contains feature generation, fault 

detection, and fault diagnosis. 

3.4.2.1 Notation 

 Let 𝒙𝑖 ∈ 𝔑𝑃𝑖 denote the 𝑃𝑖 pressure measurements in 𝑖th cycle (𝑖  = 1,2, ⋯ , 𝐶), where 𝐶 

is the number of cycles and 𝑃𝑖 can vary depending on cycles. 𝒙𝑖,𝑗 ∈ 𝔑𝑃𝑖,𝑗 denotes the 𝑃𝑖,𝑗 

pressure measurements of the 𝑗th step (𝑗 = 1,2, ⋯ , 𝑇) during the 𝑖th cycle, where 𝑇 is the number 

of steps. In this work, there are total 15 steps (i.e., 𝑇 = 15). 𝒙𝑖,𝑗(𝑡) denotes the 𝑡th pressure 

measurement during the 𝑗th step in the 𝑖th cycle (𝑡 = 1,2, ⋯ , 𝑁𝑖,𝑗). It is worth noting that 𝑃𝑖 =

 ∑ 𝑃𝑖,𝑗
𝑇
𝑗=1  and 𝑃 =  ∑ 𝑃𝑖

𝐶
𝑖=1 =  ∑ ∑ 𝑃𝑖,𝑗

𝑇
𝑗=1

𝐶
𝑖=1 . In this work, the following features are extracted 

from each step using original pressure measurements without any scaling or normalization.  

3.4.2.2 Feature generation 

Features 
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• Mean (𝜇𝑖,𝑗) is a measure of the central tendency of pressure distribution in the 𝑗th step of 

the 𝑖th cycle. 

𝜇𝑖,𝑗 =  
1

𝑃𝑖,𝑗
∑ 𝑥𝑖,𝑗(𝑡)

𝑃𝑖,𝑗,

𝑡=1       (3.21) 

• Standard deviation (𝜎𝑖,𝑗) is a measure of the dispersion of pressure distribution in the 𝑗th 

step of the 𝑖th cycle. 

𝜎𝑖,𝑗 = √
1

𝑃𝑖,𝑗
∑ (𝑥𝑖,𝑗(𝑡) −

𝑃𝑖,𝑗

𝑡=1 𝜇𝑖,𝑗)2    (3.22) 

• Skewness (𝛾𝑖,𝑗) is a measure of the asymmetry of pressure distribution in the 𝑗th step of 

the 𝑖th cycle. 

𝛾𝑖,𝑗 =

1

𝑃𝑖,𝑗
∑ (𝑥𝑖,𝑗(𝑡)−𝜇𝑖,𝑗)

3𝑃𝑖,𝑗
𝑡=1

𝜎𝑖,𝑗
3      (3.23) 

• Kurtosis (𝜅𝑖,𝑗) describes the shape of pressure distribution in the 𝑗th step of the 𝑖th cycle, 

which measures how heavily the tails of pressure distribution deviate from those of 

normal distribution. 

𝜅𝑖,𝑗 =

1

𝑃𝑖,𝑗
∑ (𝑥𝑖,𝑗(𝑡)−𝜇𝑖,𝑗)

4𝑃𝑖,𝑗
𝑡=1

𝜎𝑖,𝑗
4 − 3     (3.24) 

• Root mean square (𝑅𝑀𝑆𝑖,𝑗) is a measure of the magnitude of pressure measurements in 

the 𝑗th step of the 𝑖th cycle. 

𝑅𝑀𝑆𝑖,𝑗 =  √
1

𝑃𝑖,𝑗
∑ 𝑥𝑖,𝑗

2𝑃𝑖,𝑗,

𝑡=1 (𝑡)     (3.25) 

• Maximum (𝑚𝑎𝑥𝑖,𝑗) is the largest pressure measurement in the 𝑗th step of the 𝑖th cycle. 

𝑚𝑎𝑥𝑖,𝑗 = max (|𝒙𝑖,𝑗|)      (3.26) 
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• Crest factor (𝐶𝐹𝑖,𝑗) is a measure of how extreme value is in the pressure measurements in 

the 𝑗th step of the 𝑖th cycle. 

𝐶𝐹𝑖,𝑗 =  
𝑚𝑎𝑥𝑖,𝑗

𝑅𝑀𝑆𝑖,𝑗
       (3.27) 

• Mean absolute deviation (𝐷𝑚𝑒𝑎𝑛,𝑖,𝑗) is a measure of variability of pressure measurements 

in the 𝑗th step of the 𝑖th cycle by taking average of absolute deviation from the mean. 

𝐷𝑚𝑒𝑎𝑛,𝑖,𝑗 =
1

𝑃𝑖,𝑗
∑ |𝑥𝑖,𝑗(𝑡) − 𝜇𝑖,𝑗|

𝑃𝑖,𝑗

𝑡=1     (3.28) 

• Slope of linear regression line (𝑆𝐿𝐿,𝑖,𝑗) is a measure of the slope of change in pressure 

during the 𝑗th step of the 𝑖th cycle. 𝑆𝐿𝐿,𝑖,𝑗 is determined through simple linear regression. 

𝑆𝐿𝐿,𝑖,𝑗 =
𝑃𝑖,𝑗∙∑ (𝑡∙𝑥𝑖,𝑗(𝑡))

𝑃𝑖,𝑗
𝑡=1 −(∑ 𝑡

𝑃𝑖,𝑗
𝑡=1 )∙(∑ 𝑥𝑖,𝑗(𝑡)

𝑃𝑖,𝑗
𝑡=1 )

𝑃𝑖,𝑗∙∑ (𝑡2)
𝑃𝑖,𝑗
𝑡=1 −(∑ 𝑡

𝑃𝑖,𝑗
𝑡=1 )

2    (3.29) 

• Mean absolute error (𝑀𝐴𝐸𝑖,𝑗) is a measure of difference between the actual pressure 

measurements and the estimated pressure measurements for the steps with the sloped 

pressure profiles (e.g., equalization, provide purge, blowdown and repressurization steps) 

in the 𝑖th cycle (𝑗 = 2,4,5,7,8,9,11,13,14, 𝑎𝑛𝑑 15). The estimated pressure 

measurements in the 𝑗th step of the 𝑖th cycle, 𝑥̂𝑖,𝑗(𝑡) (𝑡 = 1,2, … 𝑃𝑖,𝑗) are calculated by 

first order linear regression. 

𝑀𝐴𝐸𝑖,𝑗 =  
1

𝑃𝑖,𝑗
∑ |𝑥𝑖,𝑗(𝑡) − 𝑥̂𝑖,𝑗(𝑡)|

𝑃𝑖,𝑗

𝑡=1  for steps with sloped pressure profile  (3.30) 

• Mean absolute errors (𝑀𝐴𝐸𝑚𝑒𝑎𝑛,𝑖,𝑗 𝑎𝑛𝑑 𝑀𝐴𝐸𝑅𝑀𝑆,𝑖,𝑗) measure the deviation of pressure 

measurements from the global mean and global RMS for the steps with relatively flat 

pressure profiles (e.g., adsorption, hold, and purge steps) in the 𝑖th cycle (𝑗 =

1,3,6,10, 𝑎𝑛𝑑 12).  The global mean and global RMS of 𝑗th step are estimated based on 

all cycles under normal conditions (i.e., the training data), respectively. 
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𝜇𝑔𝑙𝑜𝑏𝑎𝑙,𝑗 =
1

𝐶
∑ 𝜇𝑖,𝑗

𝐶
𝑖=1       (3.31) 

𝑅𝑀𝑆𝑔𝑙𝑜𝑏𝑎𝑙,𝑗 =
1

𝐶
∑ 𝑅𝑀𝑆𝑖,𝑗

𝐶
𝑖=1      (3.32) 

where 𝐶 is the number of cycles in the training set.  

𝑀𝐴𝐸𝑚𝑒𝑎𝑛,𝑖,𝑗 =  
1

𝑃𝑖,𝑗
∑ |𝑥𝑖,𝑗(𝑡) − 𝜇𝑔𝑙𝑜𝑏𝑎𝑙,𝑗|

𝑃𝑖,𝑗

𝑡=1  for steps with flat pressure profiles  (3.33) 

𝑀𝐴𝐸𝑅𝑀𝑆,𝑖,𝑗 =  
1

𝑃𝑖,𝑗
∑ |𝑥𝑖,𝑗(𝑡) − 𝑅𝑀𝑆𝑔𝑙𝑜𝑏𝑎𝑙,𝑗|

𝑃𝑖,𝑗

𝑡=1  for steps with flat pressure profiles  (3.34) 

 Note that the above features except for three 𝑀𝐴𝐸s are also extracted from the residuals 

of each step which are obtained by subtracting the predicted pressure measurements from the raw 

pressure measurements. The linear regression is used to estimate the pressure measurements of 

each step. Since the residuals contain the unexplained variation, the features derived from the 

residual space can help distinguish the abnormal process behavior.  

Feature matrix 

Once all the features from a training data are calculated, I have the following training 

feature matrix. 

𝒂𝑖 = [𝝁𝑖, 𝝈𝑖, 𝜸𝑖 , 𝜿𝑖, 𝑹𝑴𝑺𝑖 , 𝒎𝒂𝒙𝑖, 𝑪𝑭𝑖, 𝑫𝑚𝑒𝑎𝑛,𝑖, 𝑴𝑨𝑬𝑖 , 𝑴𝑨𝑬𝑚𝑒𝑎𝑛,𝑖, 𝑴𝑨𝑬𝑅𝑀𝑆,𝑖]  (3.35) 

𝒃𝑖 = [𝝁̃𝑖, 𝝈̃𝑖 , 𝜸̃𝑖, 𝜿̃𝑖, 𝑹𝑴𝑺̃𝑖, 𝒎𝒂𝒙̃𝑖, 𝑪𝑭̃𝑖, 𝑫̃𝑚𝑒𝑎𝑛,𝑖]      (3.36) 

𝒇𝑖 = [𝒂𝑖 , 𝒃𝑖]           (3.37) 

𝑴𝑇𝑅 =  [

𝒇1

𝒇2

⋮
𝒇𝐶

]           (3.38) 

where 𝒂𝑖 and 𝒃𝑖 are the feature vectors from the raw pressure measurements and the residuals, 

respectively. 𝝁𝑖 = {𝜇𝑖,1, 𝜇𝑖,2, ⋯ , 𝜇𝑖,𝑇} is a row vector of dimension (1 × 𝑇) (i.e., in this work, 

𝑇 = 15). All types of features except for three 𝑀𝐴𝐸s have the same dimension. 𝑴𝑨𝑬𝑖 is a row 
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vector of dimension (1 × 10), and 𝑴𝑨𝑬𝑚𝑒𝑎𝑛,𝑖 and 𝑴𝑨𝑬𝑅𝑀𝑆,𝑖 have (1 × 5) vector dimension. 𝒇𝑖 

is the total feature vector. Let 𝐹 to denote the total number of features included in each cycle so 

that 𝒇𝑖 is a row vector containing 𝐹 features. One of the advantages of the FSM framework is 

that it is flexible to have different features for different steps. In the next section, I will discuss 

how to select the features in each step. Another advantage of FSM framework is that it can 

handle unequal step duration and asynchronous cycle trajectories without any pre-processing 

methods such as DWT. Therefore, regardless of different cycle duration and step duration, the 

training feature matrix 𝑴𝑇𝑅 has a (𝐶 × 𝐹) dimension. The test feature matrix 𝑴𝑇𝐸 are calculated 

in the same way except that 𝑴𝑨𝑬𝑚𝑒𝑎𝑛 and 𝑴𝑨𝑬𝑅𝑀𝑆 are computed with reference to the training 

data (i.e., 𝜇𝑔𝑙𝑜𝑏𝑎𝑙,𝑗 and 𝑅𝑀𝑆𝑔𝑙𝑜𝑏𝑎𝑙,𝑗 in equations 3.31 and 3.32). 

3.4.2.3 FSM-kNN algorithm and fault detection 

 The kNN method can be used for fault detection based on the idea that distance between 

a fault sample and its nearest neighboring training samples is much larger than that between a 

normal sample and its nearest neighboring training samples, as shown in Figure 3.8. A periodic 

cycle behavior can be better characterized by the features extracted from pressure measurements 

of each step than by the cycle pressure measurements themselves. Therefore, the proposed 

method FSM-kNN utilizes the features, instead of the raw process variable (i.e., pressure 

measurements).  
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Figure 3.8 Scatter plot of normal and fault samples 

 Figure 3.9 shows the flow chart of the proposed FSM-kNN approach, which contains two 

steps –model building and fault detection.  

Part Ⅰ: model building 

1. As discussed in the section 3.4.2.2, the features are extracted from the pressure 

measurements of each step and then the feature matrix is generated. Since the features 

have different scales, the autoscaling is performed to have zero mean and unit variance, 

which can reduce any bias resulting from the scale’s difference of the features.  

2. A training pool with a specific time constraint is constructed for 𝑖th training sample. For 

given 𝛼 time constraint, the training pool consists of only the training samples of which 

cycle durations are within the range of 𝑃𝑖 − 𝛼 and 𝑃𝑖 + 𝛼, where 𝑃𝑖 is the cycle duration 

of  𝑖th training sample. The time constraint helps avoid the occurrence that a fault sample 

in a particular cycle duration becomes normal in a very distinct cycle duration.  

3. Find k-nearest neighbors for each training sample in corresponding training pool.  
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4. Compute the kNN squared distance for each sample in the training set by taking 

summation of k-nearest neighbors’ distances. The kNN squared distance of 𝑖th sample 

(𝐷𝑖
2) is calculated as follows:  

𝐷𝑖
2 =  ∑ 𝑑𝑖,𝑗

2𝑘
𝑗=1        (3.39) 

where 𝑑𝑖,𝑗
2  is the squared Euclidean distance between 𝑖th sample and 𝑗th nearest neighbor. 

5. Once the kNN squared distances for all the training samples are obtained, the threshold 

should be determined to monitor whether the process is under normal condition or not. The 

threshold is computed using a noncentral chi-square distribution based on assumption that 

kNN squared distances (𝐷2) follow a normal distribution [97]. However, if the metric does 

not satisfy the normal assumption, the threshold may be inaccurate, resulting in increase of 

false alarm rate and/or missing fault rate. In this work, kernel density estimation (KDE) is 

used to estimate the distribution of kNN squared distances (𝐷2). The univariate kernel 

estimator is defined as  

𝑓ℎ(𝐷2) =
1

𝐶
∑ 𝐾(

𝐷2−𝐷𝑖
2

ℎ
)𝐶

𝑖=1      (3.40) 

where 𝑓ℎ(𝐷2) is the estimated probability density of 𝐷2, 𝐾 and ℎ are a kernel function 

and the bandwidth of kernel function, respectively. In this work, the Gaussian kernel is 

used. 𝐶 is the number of training cycles. More details about KDE can be found in [119]. 

The 99% confidence limit 𝐷𝛼
2 is determined as follows: 

∫ 𝑓ℎ(𝐷2)
𝐷𝛼

2

−∞
𝑑𝐷2 = 1 − 𝛼, where the significance level 𝛼 = 0.01   (3.41) 
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Figure 3.9 Flow chart of the proposed FSM-kNN approach. (a) model building; (b) fault 

detection. 

Part Ⅱ: fault detection 

1. The features are extracted for 𝑗th test sample in the test set. Then, in order to eliminate 

the scale’s difference of the features, the scaling is performed based on same mean and 

standard deviation as autoscaling used. 

2. A training pool with 𝛼 time constraint is constructed for 𝑗th test sample. 

3. Find k-nearest neighbors for 𝑗th test sample in corresponding training pool.  

4. Calculate the kNN squared distance 𝐷𝑗
2 of 𝑗th test sample using equation 3.39. 
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5. Compare the threshold 𝐷𝛼
2 with 𝐷𝑗

2 to determine if the process is in normal condition or 

not. If 𝐷𝑗
2 ≤ 𝐷𝛼

2, it is identified as a normal one. Otherwise, it is classified as an abnormal 

one. 

3.4.2.4 Step-wise fault diagnosis 

 Once a fault is detected, fault diagnosis is performed to identify the root cause of fault 

condition. The contribution plot is well known diagnostic tools. In this work, I propose a step-

wise kNN-based fault diagnosis method. The proposed fault diagnosis is the contribution-based 

approach, where a step with the most significant contribution is regarded as the root cause of the 

fault. In other words, the contribution plot on the steps indicates the effect of each step on the 

kNN squared distance. The kNN squared distance of 𝑖th sample (𝐷𝑖
2) can be decomposed by 

step: 

𝐷𝑖
2 =  ∑ 𝑑𝑖,𝑗

2𝑘
𝑗=1 =  ∑ 𝑑𝑖,𝑠

2𝑇
𝑠=1       (3.42) 

where 𝑑𝑖,𝑗
2  is the squared Euclidean distance between 𝑖th sample and 𝑗th nearest neighbor that is 

calculated based on the features from all the steps. 𝑑𝑖,𝑠
2  is the summation of all 𝑘 nearest 

neighbors’ squared Euclidean distances at 𝑠th step (i.e., 𝑑𝑖,𝑠
2 = ∑ 𝑑𝑖,𝑗,𝑠

2𝑘
𝑗=1 ). Figure 3.10 show the 

decomposition of 𝐷𝑖
2 into the step-wise squared Euclidean distances (𝑑𝑖,𝑠

2 ). The contribution of 

𝑑𝑖,𝑠
2  on 𝐷𝑖

2 is defined as follows: 

𝐶𝑖,𝑠 =  
𝑑𝑖,𝑠

2

𝐷𝑖
2  × 100%       (3.43) 

where ∑ 𝐶𝑖,𝑠 = 100𝑇
𝑠=1 . The step(s) with the largest contribution(s) (i.e., 𝐶𝑖,𝑠) are considered as 

the root cause of the fault.  
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Figure 3.10 the decomposition of 𝐷𝑖
2 into the step-wise squared Euclidean distances (𝑑𝑖,𝑠

2 ). The 

different colors denote the different steps and the boxes in each step represent the features 

corresponding to the step.   

3.5 Industrial case studies 

 In this section, I demonstrate the effectiveness of fault detection and diagnosis of 

proposed FSM-kNN method compared to the conventional MPCA and two kNN based fault 

detection methods, FD-kNN and SkNN, using four simulated faults and one real fault from an 

industrial PSA process. Figure 3.11 and Table 3.1 describe the five fault scenarios. The first four 

scenarios are simulated faults while the last scenario is a real fault in actual PSA operation. For 

the simulated faults, similar behaviors have been observed in actual operations, but the historical 

data for those types of faults are no longer available. In these cases, the faults were introduced by 

manipulating the real industrial data under normal operations.  

Table 3.1 Description of fault scenarios 

Fault scenarios # Description 
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1 

During adsorption step, the normal cycles have almost constant pressure 

without significant change in pressure. The faulty cycles have lower 

pressure than normal cycles. 

2 

During adsorption step, the faulty cycles have higher pressure variations 

than normal cycles. 

3 

During a hold step, the normal cycles keep constant pressure. The pressure 

of the faulty cycles decreases instead of being held steady. 

4 

During an equalization step, the pressure of the normal cycles linearly 

decreases. The pressure of the faulty cycles was held steady followed by a 

sudden drop instead of smooth decrease, which significantly deviate from 

the straight pressure profile. 

5 

During re-pressurization, the pressure of the normal cycles linearly 

increases. The pressure of the faulty cycles does not follow the normal cycle 

trajectory. The faulty cycles have the non-linear pressure profile. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

Figure 3.11 Plot of fault scenarios. (a) fault scenario 1, (b) fault scenario 2, (c) fault scenario 

3, (d) fault scenario 4, (e) fault scenario 5. Blue and red lines denote normal and fault cycles, 

respectively. 

For MPCA, FD-kNN and SkNN methods, DTW is employed to synchronize the pressure 

profile of each step, since they require that all cycles should have the same step duration, 

Therefor, for these methods, the number of variables after unfolding is 619. However, the 

proposed FSM-kNN uses only 69 features. In this work, I propose guidance on how to select the 
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features. Initially, the steps of the PSA process shown in Figure 3.6 can be grouped into four 

classes. There are three criteria to classify the steps:   

1. Shape of the pressure profile of the steps 

2. Sensitivity of pressure of each step to cycle duration   

3. Length of the steps  

Figure 3.12 shows the diagram of step classification. First, I classify the steps into steps 

with flat pressure profile and steps with sloped pressure profile based on the shape of the 

pressure profile of the steps. Second, the steps with flat pressure profile can be further divided 

into two groups, adsorption step, and hold 1/2/3 and purge steps based on the sensitivity of 

pressure of each step to cycle duration. Regardless of cycle duration, the adsorption step has 

consistent pressure measurements, compared to hold and purge steps. Lastly, for steps with 

sloped pressure profile, I can further classify the steps based on the length of the steps. Since the 

step lengths can give different impact on features, I divide them into short and long length steps. 

It is worth noting that each class can contain different features because the process characteristics 

of the class are different and can be better captured by the different subset of features.  

 

Figure 3.12 Diagram of step classification 
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 As I discussed in section 3.4.2.2, each feature can explain the different aspect of process 

conditions. Therefore, I can select the appropriate features based on understanding on 

characteristics of both abnormal process disturbance and normal condition so that I can reduce 

redundant features as much as possible and build a parsimony model. For adsorption step, 

pressure measurements are consistent regardless of cycle duration. If there is any pressure shift 

in the step, the features related to central tendency can be significantly influenced by the 

disturbance. For abnormal pressure fluctuation, the features measuring the dispersion of pressure 

distribution are well suitable to detect the anomaly. In addition, the features calculated from the 

residual space help detect the abnormality because the residuals contain more unexplained 

variation. For pressure profile distortion, we need features measuring degree of 

shape/distribution distortion such as skewness, slope of linear regression line and so on. Like the 

pressure fluctuation, the features extracted from the residual space can capture the pressure 

distortion. Table 3.2 shows the selected features for each class.  

Table 3.2 The selected features for each class. 

 

Steps with flat pressure profile Steps with sloped pressure profile 

Adsorption Hold/Purge Short length steps Long length steps 

Features 

𝜇, 𝜎, 𝐷̃𝑚𝑒𝑎𝑛, 

𝑀𝐴𝐸𝑚𝑒𝑎𝑛, 

𝑀𝐴𝐸𝑅𝑀𝑆 

𝜇, 𝜎, 𝐷̃𝑚𝑒𝑎𝑛, 

𝑀𝐴𝐸𝑚𝑒𝑎𝑛, 

𝑆𝐿𝐿 

𝜇, 𝜎, 𝛾 

𝜇, 𝜎, 𝛾, 𝐷𝑚𝑒𝑎𝑛, 

𝐶𝐹, 𝑀𝐴𝐸, 𝐷̃𝑚𝑒𝑎𝑛, 

𝑅𝑀𝑆̃, 𝑚𝑎𝑥̃ 

 In this work, among total 6007 cycles under normal condition, the approximately 80% 

and 20% of the cycles are used as the training set and the validation set, respectively. For the 

fault scenarios 1 – 4, total 20 cycles are used as the test set and among which 10 are normal 

cycles and the others are faulty cycles. For the fault scenario 5 (i.e., real fault), total 19 cycles are 
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utilized as the test set and among which 16 cycles are normal and 3 cycles are fault. For all 

methods, the tuning parameters are determined through the validation. In addition, the control 

limits on Hoteling’s T2 and SPE for MPCA and on kNN squared distance for kNN based 

methods are determined using KDE at confidence level 99%. All information about the datasets 

and the tuning parameters is summarized in Table 3.3. 

Table 3.3 The description of the datasets and the methods 

 MPCA FD-kNN SkNN FSM-kNN 

# of variables/features 619 69 

# of PC’s or kNN 14 PCs 3 NNs 11 NNs 9 NNs 

Training / Validation 4895 / 1112 normal cycles 

Testing 

20 cycles (10 normal, 10 fault)1) 

19cycles (16 normal, 3 fault)2) 

Confidence level 99% 

1) Test set for fault scenarios 1 – 4, 2) Test set for fault scenario 5 

3.5 Results 

The proposed FSM-kNN method has two tuning parameters – the number of nearest 

neighbors and time constraint for training pool. In this work, these tuning parameters are 

optimized based on two metrics: (1) false alarm rates in the training set and validation set; (2) 

Kullback-Leiber divergence (KLD). KLD is used to measure the similarity between the 

distributions of kNN squared distances of the training set and the validation set. If KLD is 0, two 

distributions of kNN squared distances are equal. The lower the KLD value, the more similar the 

distributions of kNN squared distances. Also, the lower false alarm rates in the training set and 

validation set, the better the fault detection method. Therefore, the optimal tuning parameters 
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enable the model to have a small KLD value and low false alarm rates. The effect of tuning 

parameters on two metrics are shown in Figure 3.13 (a) – (c). Figure 3.13 (a) and (b) show the 

false alarm rates in the training set and validation set against the number of NNs and time 

constraints, respectively. The four lines denote the different time constraints for training pool. I 

can see only two lines in Figure 3.13 (b) because the false alarm rates for time constraint 6 – 8 

seconds are exactly equivalent. This observation demonstrates the choice of time constraint is 

uncritical. However, in case that the time constraint is too large, a fault sample in a particular 

cycle duration can be normal in a very distinct cycle duration, which can deteriorate performance 

of the fault detection method. Therefore, in this work, I do not study the large time constraints.  

 

(a) 

 

(b) 
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(c) 

 

Figure 3.13 Plot of two metrics against tuning parameters. (a) false alarm rate in training set 

(%) against kNN and time constraints, (b) false alarm rate in validation set (%) against kNN 

and time constraint, (c) KLD against kNN and time constraint. 

 

In addition, the number of NNs do not significantly influence the false alarm rates in training set 

and validation set. This fact is consistent with the result that the performance of the model is not 

sensitive to the selection of kNN [97]. Note that like the time constraint, if the number of NNs is 

too large, the fault detection method has difficulty in detecting faults because the boundaries 

between normal and fault cycles are less conspicuous. As shown in Figure 3.13 (c), with increase 

of time constraints, KLD increases and as the number of NNs exceeds a certain value, KLD 

decreases. Therefore, I determine 9-NNs and ±7 seconds time constraint as the optimal one due 

to low false alarm rates and low KLD. However, it is worth noting that FSM-kNN method 

provides a robust solution over a wide range of tuning parameters.  

 The fault detection and diagnosis results of fault scenarios 2, 3 and 5 are shown in 

Figures 3.14 – 3.19. In Figures 3.14 – 3.16, only the initial 750 sample points from the respective 

training set and validation set are shown for simplicity. Figure 3.14 illustrates all the fault 
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detection methods except for the proposed FSM-kNN have difficulty in detecting the faulty 

cycles. They can only identify three or four faults correctly. However, FSM-kNN detects all ten 

faulty cycles without any false alarms. For fault scenario 2, all the methods correctly identify the 

root cause of the faulty step as the adsorption step as shown in Figure 3.17. Figure 3.15 shows 

that all the faulty cycles are successfully classified as the faults by all the methods. However, 

only FSM-kNN can identify the faulty step as the equalization 4 step, but the other methods mis-

identify the root cause of the faulty step as shown in Figure 3.18. The fault scenario 5 

demonstrates the capability of the proposed FSM-kNN to capture the abnormal disturbance of 

PSA process condition. Figure 3.16 illustrates that the conventional fault detection methods fail 

to detect any faulty cycles, which lead to misleading identification of the root cause of the fault. 

Again, only FSM-kNN successfully detects all faulty cycles. Besides, FSM-kNN recognizes that 

the abnormal condition results from the disturbance in the repressurization step as shown in 

Figure 3.19.        

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.14 Fault detection for fault scenario 2: (a) MPCA, (b) FD-kNN, (c) SkNN, (d) FSM-

kNN. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.15 Fault detection for fault scenario 4: (a) MPCA, (b) FD-kNN, (c) SkNN, (d) FSM-

kNN. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.16 Fault detection for fault scenario 5: (a) MPCA, (b) FD-kNN, (c) SkNN, (d) FSM-

kNN. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.17 Fault diagnosis for fault scenario 2: (a) MPCA, (b) FD-kNN, (c) SkNN, (d) FSM-

kNN. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.18 Fault diagnosis for fault scenario 4: (a) MPCA, (b) FD-kNN, (c) SkNN, (d) FSM-

kNN. 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 3.19 Fault diagnosis for fault scenario 5: (a) FD-kNN, (b) SkNN, (c) FSM-kNN.  

Interestingly, all conventional fault detection methods provide the unsatisfactory fault 

detection results for fault scenario 5. Further investigation is conducted to understand the reason 

for the failure of the fault detection methods. Since the conventional methods employ DTW to 

synchronize the cycle trajectories, I suspect that the failure is related to data pre-processing by 

DTW. Figures 3.20 (a) and (b) show the pressure profiles in repressurization step before DTW 

and after DTW, respectively. These plots illustrate that the trajectories of faulty cycles in the 

original pressure profiles are distorted after DTW. This observation demonstrates that DTW can 

introduce bias, resulting in missed detection of faulty cycles.   
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(a) 

 

(b) 

Figure 3.20 Plots of the pressure profiles in repressurization step: (a) before DTW, (b) after 

DTW. Blue and red lines denote the normal and faulty cycles, respectively. 

To summarize overall results for fault scenarios 1 – 5, the fault detection rates and 

diagnosis are listed in Table 3.4, and false alarm rates in training set and test set are shown in 

Table 3.5. In Table 3.4, the parenthesis indicates the root cause of faults that respective methods 

identify. Only the proposed FSM-kNN can detect all faulty cycles for fault scenarios 1 – 5 and 

identify the root cause of faults correctly. In addition, FMS-kNN has lower false alarm rates in 

training set and test set, compared to other fault detection methods. This satisfactory results stem 

from the following advantages of FSM-kNN method. First, the proposed method utilizes the 

features, instead of the process variable. The features can better capture process characteristics 

such as nonlinearity and non-Gaussianity than the raw process variables. Besides, the feature 

space can significantly reduce the dimension of input space, which may reduce risk of 

overfitting. Second, FSM-kNN does not require any data-preprocessing to synchronize the cycle 

trajectories. It can handle unequal step duration and asynchronous cycle trajectories through 

feature generation. Therefore, it can avoid any information loss or distortion caused by data pre-



 121 

processing methods. Lastly, FSM-kNN is well suitable for multimode processes. This is because 

kNN models can be built locally. Therefore, it does not require complex algorithms for 

multimode processes. 

Table 3.4 Fault detection rate and diagnosis 

Fault # MPCA (T2) MPCA (SPE) FD-kNN SkNN FSM-kNN 

1 

100% 

(Adsorption) 

90% 

(Adsorption) 

100% 

(Adsorption) 

100% 

(Adsorption) 

100% 

(Adsorption) 

2 

0% 

(-) 

30% 

(Adsorption) 

30% 

(Adsorption) 

40% 

(Adsorption) 

100% 

(Adsorption) 

3 

0% 

(-) 

0% 

(-) 

0% 

(-) 

0% 

(-) 

100% 

(Hold 1) 

4 

0% 

(-) 

100% 

(PP) 

100% 

(PP) 

100% 

(PP) 

100% 

(EQ4) 

5 

0% 

(-) 

0% 

(-) 

0% 

(-) 

0% 

(-) 

100% 

(Repressurization) 

Table 3.5 False alarm rates in training set and test set 

Fault # 

MPCA (T2) 

(training/test) 

MPCA (SPE) 

(training/test) 

FD-kNN 

(training/test) 

SkNN 

(training/test) 

FSM-kNN 

(training/test) 

1 1.65% / 0% 1.16% / 0% 1.33% / 0% 0.98% / 0% 0.57% / 0% 

2 1.65% / 0% 1.16% / 0% 1.33% / 0% 0.98% / 0% 0.57% / 0% 

3 1.65% / 0% 1.16% / 0% 1.33% / 0% 0.98% / 0% 0.57% / 0% 

4 1.65% / 0% 1.16% / 0% 1.33% / 0% 0.98% / 0% 0.57% / 0% 

5 1.65% / 0% 1.16% / 0% 1.33% / 6.25% 0.98% / 6.25% 0.57% / 6.25% 
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3.6 Summary and conclusions 

 Periodic operations, such as pressure swing adsorption (PSA) and simulated moving bed 

(SMB), have gained wider applications in industries. This is because they can produce high 

quality product with low energy and low capital cost. Despite extensive industrial applications of 

PSA processes, process monitoring of these operations has received limited attention compared 

to continuous or batch processes. One potential reason is that PSA processes have three distinct 

characteristics from continuous or batch processes, which pose the challenges of the process 

monitoring of these operations; (1) periodic processes are operated at unsteady-state, (2) 

processes have very complex nonlinear behaviors, and (3) processes have multimodal operations 

due to a change of cycle time. To address these challenges, I propose the k-nearest neighbor-

based feature space monitoring (FSM-kNN) method to monitor the PSA processes. First, I 

employ FSM framework where statistics and morphological features are extracted from each step 

of a cycle since these statistics/features can better capture process characteristics than the 

original process variables. Therefore, these features are used for effective fault detection of PSA 

processes instead of the raw process variables. In addition, FSM can handle asynchronous cycle 

trajectories that stem from unequal step and/or cycle duration through the generation of the 

statistics/features. Second, I use the kNN method for fault detection. It utilizes the attribute that 

distance between a faulty cycle and its nearest neighboring training cycles is much larger than 

that between a normal cycle and its neighboring training cycles. I demonstrate the effectiveness 

of fault detection and diagnosis performance of FSM-kNN compared to three conventional fault 

detection methods using five PSA fault scenarios. It is worth noting that FSM-kNN is only 

method that can detect all the faulty cycles in each fault scenario. Besides, FSM-kNN correctly 

identifies the root cause of faults for all the fault scenarios. In comparison, the conventional fault 
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detection methods fail to detect all the faults and to identify the root cause of faults in some fault 

scenarios. The success of the proposed method results from the following factors: (1) FSM-kNN 

method is well suited for multimodal datasets as the models are built locally; (2) FSM-kNN 

method makes no assumption about the linearity of a dataset. When a dataset has strong 

nonlinearity, the method can perform efficient process monitoring while linear MSPM methods 

such as PCA could have high false alarm rates and/or miss faults; (3) FSM-kNN method is 

simple and practical. It does not require any complex preprocessing methods, which may distort 

process trajectories and introduce bias. In this work, I apply the proposed method to the PSA 

process. However, FSM-kNN can be utilized to monitor other periodic processes as well as batch 

and/or continuous processes. 
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Chapter 4. Knowledge-guided path analysis for understanding the effect of specialization 

on hospital performance3 

4.1 Background 

[120] The healthcare spending in the United States accounts for about 17% of US GDP, making 

the US the highest healthcare expenditure per capita in the world. However, the United States 

has not seen an increase in life expectancy to match its huge outlay on healthcare. Therefore, 

there are areas for improvement in the healthcare system and hospital care is one of them. This is 

because hospital care represents the single largest national health expenditure by the type of 

services, accounting for approximately 31% of total healthcare costs [121]. One of many 

potential routes is through healthcare specialization based on the so-called focused factory theory 

originated from manufacturing, which states that factories that concentrate on narrow range of 

services or operations produce better products at low costs. There have been many debates over 

the subject. Consequently, several studies have been conducted to investigate the effect of 

specialization on the hospital cost and patient outcome, as well as the effects of specialization on 

other measures of hospital performance such as efficiencies quantified by data envelopment 

analysis (DEA) [122]. In general, some researchers believe that hospital specialization not only 

leads to optimal allocation of resources to right places, but also reduces needless waste of 

materials and processing time [123], [124]. In addition, some argue that physicians in specialized 

hospitals are likely to have more opportunities to improve their expertise in treating specific 

diseases, resulting in more effective treatment – better outcome at lower cost [125]. However, 

most of these studies were based on few individual cases, or a limited number of hospitals [123], 

 
This chapter was excerpted from " Understanding the effect of specialization on hospital 

performance through knowledge-guided machine learning " published in Computers & Chemical 

Engineering [120]. The author is the first author of these papers. 
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[125], [126]. There were studies that have investigated factors associated with high-quality/low-

cost hospital performance using national databases such as the healthcare cost and utilization 

project (HCUP). However, specialization was not considered in those studies [127]. 

 Focused factory theory or specialization has been extensively studied for process industry 

[128]. For example, it has been modeled using Bayesian framework [129], and it has been 

investigated for its role in decision making for planning, scheduling and dispatching tasks [130]. 

Hospital operations and services share many similarities with chemical processing or 

manufacturing processes in general. For example, they all consist of multiple units or unit 

operations. These units, which are not isolated but rather highly connected, interact with each 

other to form a dynamic system that determines the cost and patient outcome in the case of 

hospital operations, and cost/yield and quality of product in the case of manufacturing. 

Therefore, I believe that some process systems engineering (PSE) principles and techniques, 

such as machine learning regression and discriminant analysis that are developed to model 

manufacturing processes, can be adapted to model hospital operations. In this work, I examine 

whether the focused factory theory is applicable to hospital operations. Specifically, using a large 

national healthcare cost and utilization project (HCUP) dataset, I examine whether the hospitals 

that are specialized in certain diseases achieve better performance in terms of cost and patient 

outcome, measured by total charge (TOTCHG) and death of patient (DIED) during 

hospitalization, respectively. Pure data-driven machine learning (ML) approaches, and 

knowledge-guided ML approach (i.e., path analysis) are used to investigate the effect of hospital 

specialization on hospital performance (i.e., TOTCHG and DIED during hospitalization). 
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 4.2 Introduction to Health Cost and Utilization Project (HCUP) dataset 

 The Healthcare Cost and Utilization Project (HCUP) is a family of healthcare databases 

and related software tools and products developed through a Federal-State-Industry partnership 

and sponsored by the Agency for Healthcare Research and Quality (AHRQ). HCUP databases 

bring together the data collection efforts of state data organizations, hospital associations, private 

data organizations, and the federal government to create a national information resource of 

encounter-level healthcare data (HCUP Partners). HCUP includes the largest collection of 

longitudinal hospital care data in the United States, with all-payer, encounter-level information 

beginning in 1988. These databases enable research on a broad range of health policy issues, 

including cost and quality of health services, medical practice patterns, access to healthcare 

programs, and outcomes of treatments at the national, state, and local market levels [131]. The 

National Inpatient Sample (NIS) used in this study is part of HCUP, which covers all patients, 

including individuals covered by Medicare, Medicaid, or private insurance, as well as those who 

are uninsured. Overall, NIS covers more than 95 percent of the U.S. population and includes 

more than 94 percent of discharges from U.S. community hospitals. The 2102 NIS dataset used 

in this study includes 7,296,968 cases (i.e., inpatient stays). Each case has 481 variables, which 

include de-identified (i.e., all personally identifiable information has been removed to protect 

individual identities and privacy) patient data such as age, gender, ethnicity, etc.; disease, 

diagnosis and procedure data such as disease severity, length of stay (LOS), diagnosis related 

group (DRG), cost, total charge (TOTCHG), whether the patient died during hospitalization 

(DIED), etc. In addition, each case is also linked to hospital related data/information such as bed-

size, location, ownership, and teaching status of the hospital, which enable us to evaluate the 

performance of different hospitals. However, data with such diverse sources and formats presents 
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challenges for machine learning based quantitative analysis. For example, the data contains 

various data format including both number and strings. Even for numbers, some of them are 

categorical or ordinal. In addition, there are missing values, invalid values and potentially 

outliers due to reasons such as human error. Therefore, the traditional machine learning methods 

cannot be readily applied. After examining all 481 variables, I identified 20 variables that could 

potentially affect hospital performance and listed them in Table 4.1.  

Table 4.1 Key variables used in regression model 

Variable Type Classification 

Specialization index (IS) Continuous Independent 

Total charge (TOTCHG) Continuous Dependent1 

Died during hospitalization (DIED) Categorical Dependent2 

Length of stay (LOS) Continuous Control3 

No. of diagnosis (NDX) Continuous Control3 

No. of procedure (NPR) Continuous Control3 

Age Continuous Control 

No. of chronical conditions Continuous Control 

Gender Categorical Control 

Race Categorical Control 

Severity of illness Categorical Control 

Risk of mortality Categorical Control 

Hospital location Categorical Control 

Hospital region Categorical Control 

Wage index Categorical Control 

Hospital bed size Categorical Control 

Diagnosis Related Group (DRG) Categorical Control 

Hospital ownership Categorical Control 

Hospital teaching status Categorical Control 

Payment type Categorical Control 
 

1TOTCHG is a control variable in analyzing the effect of IS on DIED. 
2DIED is a control variable in analyzing the effect of IS on TOTCHG. 
3 LOS, NDX and NPR are mediator variables in path analysis of the indirect effect of IS 

on TOTCHG. 

 

To reduce the effect of confounding variables/factors, in observational (vs. experimental) study 

like this work, I can either add filters to make the other variables taking fixed values, or include 
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the confounding variables in the regression. Because the former dramatically reduces the number 

of observations/cases to be included in a model which reduces the statistical power of the 

analysis, I choose the latter approach as indicated in Table 4.1. It is worth noting that it would be 

ideal if I could analyze some DRG’s individually as well as collectively to see if the effects of 

specialization on TOTCHG are consistent across different DRG’s. Also, when DRG’s are 

analyzed collectively, it would be ideal if they are associated with fundamentally different 

procedures or physiological systems. Unfortunately, the 2012 HCUP data I have do not have 

sufficient samples for such analyses. Instead, I select five most expensive DRG’s based on the 

following three criteria: (a) Each DRG makes a different contribution to the inpatient quality 

indicator (IQI) defined by AHRQ; (b) The selected DRG’s TOTCHG must be high compared to 

that of other DRG’s because the DRG’s with low TOTCHG may not reflect the characteristics of 

specialization; and (c) The selected DRG’s must have enough observations. In addition, I focus 

on non-maternal adult patients only. Based on the above criteria, I select the five most expensive 

DRG’s based on the national median TOTCHG with at least 4,500 cases. The descriptive 

statistics of the five selected DRG’s are listed in Table 4.2. Any case with one or multiple 

missing, invalid or outlier values was excluded from this study. After these preprocessing steps, 

totally 86,999 cases were included in this study. It is worth noting that although three selected 

DRG’s are associated with cardiovascular health, each DRG contributes to a different IQI: DRG 

233 is associated with the coronary artery bypass graft (CABG) mortality rate; DRG 238 is 

associated with the abdominal aortic aneurysm (AAA) repair mortality rate; and DRG 246 is 

associated with the acute myocardial infarction (AMI) mortality rate. Nevertheless, I 

acknowledge the above-mentioned limitations of this study, which are undoubtably worth further 

investigation should I obtain additional data.  
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Table 4.2 The five most expensive DRG's with at least 4,500 cases in the 2012 HCUP-NIS 

dataset 

DRG  
No. of 

cases 

Mean 

TOTCHG 

Median 

TOTCHG 

Std. 

Deviation 
DRG Description 

233 4,634 $206,471 $170,646 $133,408 CORONARY BYPASS W CARDIAC CATH W 

MCC1 

25 5,420 $135,469 $102,905 $116, 583 CRANIOTOMY & ENDOVASCULAR 

INTRACRANIAL PROCEDURES W MCC 

238 5,325 $99,803 $87,900 $53,735 MAJOR CARDIOVASC PROCEDURES W/O MCC 

246 10,755 $99,010 $82,551 $67,254 PERC CARDIOVASC PROC MCC  

470 60,865 $55,190 $48,929 $27,826 MAJOR JOINT REPLACEMENT W/O MCC 

1 MCC: multiple chronic conditions 

4.3 Methods 

 In this section, I introduce the specialization index used to quantify hospital specialization. 

I also briefly review pure data-driven ML approaches used in this work. To address the limitations 

of pure data-driven ML approaches, I propose a knowledge-guided ML approach (i.e., path 

analysis) to investigate the complete effect of hospital specialization on hospital performance in 

terms of cost and patient outcome. Finally, I introduce measures used to quantify the statistical 

significance of regression coefficients and model goodness-of-fit.  

4.3.1 Specialization quantification 

 Farley and Hogan (1990) have proposed an index of specialization based on information 

theory. It has been shown that the index provided intuitively reasonable results in characterizing 

patterns of specialization across hospitals. In Farley and Hogan (1990), let Φ𝑖 represent the 

baseline proportion of cases in DRG category i, and let 𝑝𝑖ℎ denote the proportion of cases in the 

hth hospital observed in DRG category i. The information theory index of specialization (ITI) for 

hospital h collapses information about differences between the Φ𝑖’s and 𝑝𝑖ℎ’s as follows [132]: 

𝐼𝑇𝐼ℎ =  ∑ {𝑝𝑖ℎ ∙ 𝑙𝑛(𝑝𝑖ℎ Φ𝑖⁄ )𝐼
𝑖=1 }     (4.1) 
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 In this work, because I only focus on the five DRG’s listed in Table 4.2, I define a 

specialization index (𝐼𝑆) of hth hospital by modifying equation 4.1 as follows: 

𝐼𝑠ℎ =  ∑ {𝑤𝑖ℎ ∙ 𝑙𝑛(𝑝𝑖ℎ Φ𝑖⁄ )5
𝑖=1 }     (4.2) 

where 𝑤𝑖ℎ = 𝑝𝑖ℎ ∑ 𝑝𝑖ℎ
5
𝑖=1⁄  such that ∑ 𝑤𝑖ℎ

5
𝑖=1 = 1. 

4.3.2 Pure data-driven machine learning approaches 

 In this work, the following pure data-driven machine learning approaches are used to 

investigate the effect of specialization on hospital performance [133]. 

• Multiple linear regression (MLR): MLR is performed to investigate the effect of each 

independent variable on total charge (TOTCHG). The independent and control variables 

include the following continuous variables: specialization index (𝐼𝑆), wage index, length 

of stay (LOS), age, number of chronical conditions, number of diagnosis (NDX), number 

of procedures (NPR); as well as the following categorical variables: bed-size 

(small/medium/large), location (rural/urban), teaching status (non-teaching/teaching), 

ownership (public/private not-for-profit/private for profit), region 

(northeast/Midwest/south/west), payment (private/Medicare/Medicaid/others), DRG type 

(470/233/25/238/ 246), race (white/black/Hispanic/others), sex (male/female), severity of 

illness (minor/moderate/major/extreme) and risk of mortality 

(minor/moderate/major/extreme). Dummy variables are introduced for categorical 

variables and the first variable in each category was used as the reference. In this work, it 

is made sure that the following assumptions are satisfied for MLR: (a) linearity, i.e., the 

relationships between independent and dependent variables are linear; (b) constant 

variance of residuals, i.e., random error terms are independent and normally distributed 

with zero mean and constant variance. In order to satisfy the above two assumptions, I 
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consider transformation of variables. For LOS, which is right skewed, the square root 

helps to meet the constant variance of residuals assumption. For TOTCHG, which is 

more strongly right skewed than LOS. It is found that the 4th root of TOTCHG helps 

satisfy the above two assumptions. After variable transformations, all variables are scaled 

or standardized to zero mean and unit variance. The same variable transformations (for 

LOS and TOTCHG) and standardization (for all variables) are used for all analyses 

throughout this work. The MLR analysis is performed in R. 

• Principal Component Regression (PCR) with mixed variables: The same transformed 

and standardized dependent and independent variables used in MLR are used in principal 

component regression (PCR). The standard PCR cannot be directly applied for this case 

because of the categorical variables. Therefore, the R package of PCAmixdata is used, 

which handles a mixture of qualitative and quantitative variables. Because of the large 

number of independent variables and potential multicollinearity among them, I expect 

that PCR could address the potential multicollinearity while reducing the impact of noise 

through dimensionality reduction. 

• Principal Component Regression (PCR) and partial least squares (PLS) with 

continuous variables only: I also perform standard PCR and PLS using the following 

continuous variables only: specialization index (𝐼𝑆), wage index, length of stay (LOS), 

age, number of chronical conditions, number of diagnosis, number of procedures, and 

total discharge (to represent hospital bed size). All variables are transformed (for LOS 

and TOTCHG) and standardized. 

• Fisher discriminant analysis (FDA): In this analysis, all cases are divided into quartiles 

based on TOTCHG. Only the lowest TOTCHG group (i.e., the bottom 25%) and the 
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highest TOTCHG group (i.e., the top 25%) are used in Fisher discriminant analysis 

(FDA) to find which variables contribute highly to the separation of these two groups, 

and whether specialization (𝐼𝑆) is one of them. The same transformed and standardized 

variables used in MLR are used in FDA, which is performed in SPSS. 

• Ordinal regression (OR): To reduce the noise in TOTCHG, I categorize TOTCHG for 

all cases into four groups and use ordinal regression (OR) to investigate the effect of 

specialization. In this study, TOTCHG is divided into four groups based on the quartiles 

of cases (i.e., dividing all cases into four TOTCHG groups containing an approximately 

equal number of cases in each group). The same transformed and standardized variables 

used in MLR are used in the ordinal regression, which is performed in SPSS. 

• Logistic regression (LR): LR is performed to investigate the effect of each independent 

variable on hospital performance in terms of patient outcome, which is measured by the 

death of patient during hospitalization (coded DIED in HCUP). The dependent variable is 

DIED (alive/died). The independent/control variables are the same ones used in MLR 

with the exclusion of DIED and addition of TOTCHG. LR is performed in SPSS.  

It is worth noting that there are many statistical and machine learning methods, linear or 

nonlinear, have been developed and applied to analyze healthcare data. For example, generalized 

additive models (GAMs) have been extensively used for nonlinear regressions [134]. Interested 

readers are referred to some recent review articles on the subject [124], [135]–[138]. 

4.4 Proposed knowledge-guided path analysis 

 For pure data-driven machine learning approaches discussed in Section 4.3.2, variables 

are divided into dependent or response variable and independent or explanatory variables, and 

relationship or linkage between the independent and dependent variables are estimated by 
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minimizing certain objective function such as sum of squared residuals (SSR) or maximizing 

discriminant ratio (DR). This type of analyses do not take any relationship among independent 

variables into account other than confounding effects. In other words, they can only reveal the 

direct effects. However, by discussing with experts in health services administration, it is 

recognized that direct effect alone does not reveal the full picture of the relationship between 

specialization and total charge. Based on domain knowledge, I hypothesize that specialization 

could also influence total charge through indirect effects. Specifically, if specialization improves 

hospital performance, it can achieve so through reducing length of stay (LOS) at the hospital, 

number of diagnosis (NDX) conducted, and number of procedures (NPR) performed. This 

indirect effect is also known as mediation or mediator effect, which occurs when a change in a 

dependent variable is driven by the successive change of an independent variable and a third 

variable, termed as a mediator [139]. A change in an independent variable causes a change in a 

mediator and this change leads to a change in a dependent variable. Therefore, I examine these 

potential indirect effects through path analysis (PA) [140], [141], which can capture an indirect 

path from an independent variable to a dependent variable through a mediator [140], [142]. By 

applying PA, I examine not only the direct effect, but also the indirect effect of the specialization 

(𝐼𝑠) on total charge (TOTCHG) via three potential mediator variables – length of stay (LOS), 

number of procedures (NPR) and number of diagnoses (NDX). PA is established by the 

following equations in this work. 

𝑀1 =  𝑎1  +  𝑎𝑋1𝑋 +  ∑ 𝑎1𝑖
29
𝑖=1 𝐶𝑖 + 𝑒𝑀1    (4.3) 

𝑀2 =  𝑎2  +  𝑎𝑋2𝑋 +  ∑ 𝑎2𝑖𝐶𝑖
29
𝑖=1 + 𝑒𝑀2    (4.4) 

𝑀3 =  𝑎3  +  𝑎𝑋3𝑋 +  ∑ 𝑎3𝑖𝐶𝑖
29
𝑖=1 + 𝑒𝑀3    (4.5) 

𝑌 =  𝑏0 +  𝑏𝑋1𝑋 +  𝑏𝑀1𝑀1 + 𝑏𝑀2𝑀2 +  𝑏𝑀3𝑀3 + ∑ 𝑏𝑖𝐶𝑖
29
𝑖=1 +  𝑒𝑌 (4.6) 
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where all the variables are listed in Table 4.3 and all the 𝑒 terms are model errors or residuals. 

 Equations 4.3 – 4.5 are used for examining the relationship between a mediator (𝑀) and 

an independent variable (𝑋), which represents the first stage of an indirect effect of 𝑋 on 

dependent variable (𝑌). In other words, these models would determine if 𝐼𝑠 influences mediators 

- LOS, NPR and NDX. After substituting equations 4.3 – 4.5 into equation 4.6 and rearranging 

the terms, I yield equation 4.7. 

𝑌 = 𝑋[𝑏𝑋1 + 𝑎𝑋1𝑏𝑀1 + 𝑎𝑋2𝑏𝑀2 + 𝑎𝑋3𝑏𝑀3] + [𝑏0 + 𝑎1𝑏𝑀1 + 𝑎2𝑏𝑀2 + 𝑎3𝑏𝑀3 + 𝑏𝑀1 ∑ 𝑎1𝑖𝐶𝑖
29
𝑖=1  

       + 𝑏𝑀2 ∑ 𝑎2𝑖𝐶𝑖
29
𝑖=1  + 𝑏𝑀3 ∑ 𝑎3𝑖𝐶𝑖

29
𝑖=1 + ∑ 𝑏𝑖𝐶𝑖

29
𝑖=1 ] + 𝑏𝑀1𝑒𝑀1 + 𝑏𝑀2𝑒𝑀2 + 𝑏𝑀3𝑒𝑀3 + 𝑒𝑌 (4.7) 

 Equation 4.7 describes the total effect of 𝑋 on 𝑌 in the coefficient term [𝑏𝑋1 + 𝑎𝑋1𝑏𝑀1 + 

𝑎𝑋2𝑏𝑀2 + 𝑎𝑋3𝑏𝑀3], which combines the direct and indirect effects where each indirect effect is 

explained by the product of the first stage effect and the second stage effect. All the effects are 

depicted in Figure 4.1. 

LOS
(M1)

NPR
(M2)

NDX
(M3)

Is
(X)

TOTCHG
(Y)

aX1

aX2

aX3

bM1

bM2

bM3

bX1

 

Figure 4.1 Path analysis for direct effect (denoted as black solid line) and indirect effects 

(denoted as blue dashed line) 
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Table 4.3 Full list of variables for path analysis 

Variable Description Function Type 

𝑿 Specialization Index (𝐼𝑠) Independent variable Continuous 

𝒀 Total charge (TOTCHG1/4) Dependent variable Continuous 

𝑴𝟏 Length of stay (LOS1/2) Mediator 1 Continuous 

𝑴𝟐 Number of procedures (NPR) Mediator 2 Continuous 

𝑴𝟑 Number of diagnosis (NDX) Mediator 3 Continuous 

C1 WAGE INDEX Control variable Continuous 

C2 AGE Control variable Continuous 

C3 Number of chronic condition (NCHRONIC) Control variable Continuous 

 Bedsize reference_Small  Dummy  

C4 Bedsize_Medium Control variable Dummy 

C5 Bedsize_Large Control variable Dummy 

C6 Location_Urban Control variable Binary 

C7 Teaching status Control variable Binary 

 Ownership reference_Public  Dummy 

C8 Owenership_Private not-for-profit Control variable Dummy  

C9 Owener_Private for profit Control variable Dummy  

 Region reference_Northeast  Dummy 

C10 Region_Midwest Control variable Dummy  

C11 Region_South Control variable Dummy  

C12 Region_West Control variable Dummy  

 Pay source reference_Private  Dummy  

C13 Pay source_Medicare Control variable Dummy  

C14 Pay source_Medicaid Control variable Dummy  

C15 Pay source_Others Control variable Dummy  

 DRG reference_DRG470  Dummy  

C16 DRG_DRG233 Control variable Dummy  

C17 DRG_DRG25 Control variable Dummy  

C18 DRG_DRG238 Control variable Dummy  

C19 DRG_DRG246 Control variable Dummy  

 Race reference_White  Dummy  

C20 Race_Black Control variable Dummy  

C21 Race_Hispanic Control variable Dummy  

C22 Race_Others Control variable Dummy  

C23 Sex Control variable Binary 

 Severity reference_Minor   

C24 Severity_Moderate Control variable Dummy 

C25 Severity_Major Control variable Dummy 

C26 Severity_Extreme Control variable Dummy 

 Mortality reference_Minor   

C27 Mortality_Moderate Control variable Dummy 

C28 Mortality_Major Control variable Dummy 

C29 Mortality_Extreme Control variable Dummy 
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The models (i.e., equations 4.3 – 4.6) are estimated by ordinary least squares (OLS) 

regressions to estimate the parameters 𝑎’s and 𝑏’s as depicted in Figure 4.1, and significant 

coefficients are identified by p-values. Once I estimate the parameters 𝑎’s and 𝑏’s, the overall 

relationship described by equation 4.7 is followed to calculate the direct, indirect, and total 

effects of specialization (𝐼𝑠) on total charge (TOTCHG). PA was performed in SPSS. 

Coefficient statistical significance and model goodness-of-fit 

 The statistical significance of a coefficient is measured by its p-value and model 

goodness-of-fit is measured by adjusted R2. 

• P-value: The statistical significance of a coefficient is measured by its p-value through 

bootstrapping and t-test. I performed random sampling 1,000 times as it is typical in 

bootstrapping for estimating a distribution [143]. For the test of statistical significance of 

coefficients generated by the product of coefficients from these equations such as indirect 

and total effect, bootstrapping was employed to obtain the sampling distribution of the 

coefficients and bias-corrected confidence intervals [140], [143].  

• Adjusted R2: In this study, the adjusted R2 [144] is used to compare the explanatory 

power of regression models. The adjusted R2 is a modified version of R2 that has been 

adjusted for the number of predictors in the model. The adjusted R2, which is always 

lower than R2, increases only if the new independent variable improves the model more 

than by chance. Similarly, the adjusted McFadden's R2 [145] was used for logistic 

regression. 

4.5 Results 

Preliminary analysis and visualization 
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 For the five most expensive DRG’s listed in Table 4.2, there are totally 8,699 cases with 

the histogram of specialization index (𝐼𝑆) shown in Figure 4.2, which is approximately normally 

distributed after standardization. 

 

Figure 4.2 Histogram shows approximately normal distribution of 𝐼𝑆 after standardization 

To visually inspect the effect of specialization on the total charge, in Figure 4.3 (a), I plot 

TOTCHG vs. 𝐼𝑠 for all cases of the five expensive DRG’s listed in Table 4.2. Because TOTCHG 

is strongly right skewed, it can be seen from Figure 4.3 (a) that some of the positive residuals of 

a linear fit line are rather large. In contrast, I also plot TOTCHG1/4 vs. 𝐼𝑠 as shown in Figure 4.3 

(b), which shows more balanced residuals of a linear fitting between TOTCHG1/4 and  𝐼𝑆, 

supporting the choice of TOTCHG1/4 as the dependent variable in all regression analyses rather 

than the original TOTCHG. It is worth noting that I do not control the confounding variables in 

generating Figure 4.3. Therefore, Figure 4.3 cannot provide the true quantitative relationship 

between 𝐼𝑆 and TOTCHG1/4. 

I have also performed PCA on the combination of dependent variable TOTCHG1/4 and all 

independent variables excluding 𝐼𝑠. In the score plot of the first and the third principal 
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components, I use different colors for different ranges of 𝐼𝑠 as shown in Figure 4.4. Although the 

scores were generated without the inclusion of 𝐼𝑠, they are clustered for the same range of 𝐼𝑠, 

indicating the underlying correlation between 𝐼𝑠 and other variables. 

 
(a) 

 
(b) 

Figure 4.3 (a) Scatter plot of TOTCHG vs. 𝐼𝑠 (dots) with linear fitting (solid line); (b) Scatter 

plot of TOTCHG1/4 vs. 𝐼𝑠 (dots) with linear fitting (solid line), which shows better and more 

balanced residuals compared to (a). 

 

Figure 4.4 Score plot of 1st and 3rd principal components of PCA on all variables other than 𝐼𝑠 
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Effect of 𝑰𝒔on TOTCHG from data-driven machine learning approaches 

 Different data-driven machine learning approaches discussed in Section 4.3.2, including 

regression and discriminant analysis methods, are used to model the relationship between 

TOTCHG1/4 and various independent variables and the results are listed in Table 4.4. For PCR 

and PLS, the Kaiser criterion is used to determine the number of principal components (PC’s), 

where components with eigenvalues less than 1 were dropped. In other words, I only retained 

PCs that contain more information than the average information contained by each variable. The 

third column of Table 4.4 shows that 𝐼𝑆 has a negative effect on TOTCHG1/4 in all analyses, 

indicating that higher hospital specialization leads to lower TOTCHG and the p-values of 𝐼𝑠 

coefficients listed in the last column indicate that the effects are statistically significant in all 

regression models. The reasonably high adjusted R2 values confirm the high quality of the 

regression models.  

Table 4.4 The results of regression and discriminant analyses on the effect of 𝐼𝑆 on TOTCHG1/4 

Method 
# of 

PC’s 

Effect of 𝑰𝑺 on 

TOTCHG1/4 
Adjusted R2 

p-value of 𝑰𝒔 

coefficient 

MLR - (-) 0.5871 <0.0001 

PCR (mixed variables) 11 (-) 0.5151 <0.0001 

PCR (continuous variables only) 3 (-) 0.4009 <0.0001 

PLS (continuous variables only) 2 (-) 0.5255 <0.0001 

FDA - (-) - - 

Ordinal regression - (-) - <0.0001 

 

To quantitatively examine the effect of 𝐼𝑆 on TOTCHG1/4, I compare the contribution of 

𝐼𝑆 to TOTCHG1/4 to those of other factors based on the regression models of PCR and PLS using 

the following eight continuous variables only: 𝐼𝑠, age,  LOS, NCHRONIC, NDX, NPR, wage 

index (WAGEINDEX), and total discharge (TOTALDISC) to replace and represent hospital bed 

size, which is a categorical variable. The contribution plots based on PCR and PLS are shown in 
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Figure 4.5. As expected, LOS, NPR and WAGEINDEX are the top three positive contributors to 

TOTCHG1/4. In other words, higher LOS/NPR/WAGEINDEX leads to higher TOTCHG. On the 

other hand, age, 𝐼𝑠, and TOTALDISC are the top three negative contributors to TOTCHG1/4, 

although NCHRONIC is also ranked high in PCR. The negative effects of age and NCHRONIC 

are somewhat surprising. However, age, and hence NCHRONIC, are closely related to insurance 

or Pay Source such as private, Medicare and Medicaid, which is not modeled. Therefore, it 

makes sense in this case because elderly patients are usually having higher number of chronical 

conditions and often paid by Medicare/Medicaid, which is usually charged less. For the main 

target 𝐼𝑠 that I am focusing on, although it has higher influence on reducing total charge 

compared to hospital size, its influence dwarfs those of LOS, NPR, WAGEINDEX and NDX.  

 However, data-driven machine learning approaches can only reveal the direct effect of 𝐼𝑠. 

Based on domain knowledge, I hypothesize that 𝐼𝑠 could influence total charge through reducing 

LOS, NDX and NPR, three of the four most influential factors revealed in Figure 4.5. Therefore, 

I examine these potential indirect or mediator effects through path analysis (PA) in the following 

part.  

 
(a) 
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(b) 

Figure 4.5 Contribution of various factors to TOTCHG by (a) PCR and (b) PLS 

Effect of 𝑰𝒔on TOTCHG from knowledge-guided path analysis 

 As discussed in Section 4.4, based on the knowledge-guided hypotheses, equations 4.3 – 

4.6 are used to describe the mediator and direction effects. The parameters 𝑎’s and 𝑏’s in 

equations 4.3 – 4.6 are estimated using OLS. Bootstrapping (i.e., random sampling 1,000 times) 

is employed to obtain the sampling distribution of the coefficients and bias-corrected confidence 

intervals [140], [143]. Significant coefficients are identified by p-values of t-test. All modeling 

and calculation are carried out using SPSS. Table 4.5 lists 𝑎𝑋1, 𝑎𝑋2, and 𝑎𝑋3, which are 

standardized coefficients estimated from equations 4.3 – 4.5, where standardized LOS1/2, NPR, 

and NDX are dependent variables, respectively. 𝑏𝑋1, 𝑏𝑀1, 𝑏𝑀2, and 𝑏𝑀3 are standardized 

coefficients estimated from equation 4.6 where standardized TOTCHG1/4 is the dependent 

variable. The high values of adjusted R2 in Table 4.5 for all four models (i.e., equations 4.3 – 

4.6) indicate good fitting of the models to the observations/cases. Table 4.5 indicates that 

specialization leads to decrease in LOS1/2 at the confidence level of 0.01, decrease in NDX at the 

confidence level of 0.05, while having no effect on NPR. On the other hand, specialization, leads 
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to decrease in TOTCHG1/4 directly at the confidence level of 0.01. LOS and NPR have positive 

effects on TOTCHG1/4 at the confidence level of 0.01 but NDX has no effect on TOTCHG1/4. 

Table 4.5 Estimated coefficients and their p-values for 𝐼𝑆 and mediators (M1 – M3) 

Parameter 𝒂𝑿𝟏 𝒂𝑿𝟐 𝒂𝑿𝟑 𝒃𝑿𝟏 𝒃𝑴𝟏 𝒃𝑴𝟐 𝒃𝑴𝟑 

Value -0.09** 0.003 -0.004* -0.041** 0.363** 0.183** -0.003 

Adjusted 

R2 
0.513 0.717 0.791 0.590 

*p < 0.05     ** p < 0.01 

 By considering both stages, I obtain the indirect effects of  𝐼𝑆 on TOTCHG1/4 as listed in 

Table 4.6, which are calculated with coefficients in Table 4.5 based on equation 4.7. Table 4.6 

indicates that only the indirect effect of  𝐼𝑆 on TOTCHG1/4 through LOS1/2 is statistically 

significant, which leads to decreased TOTCHG, while the other two indirect effects are 

statistically insignificant. Table 4.7 summarizes the direct, indirect and total effects of  𝐼𝑆 on 

TOTCHG1/4, where the total effect is the summation of direct and indirect effects. Table 4.7 

shows that the negative effect of the 𝐼𝑠 on TOTCHG is strengthened by the mediator effect, 

resulting in greater total effect than direct effect alone. This full picture is revealed only when 

ML is guided by domain knowledge, i.e., by defining the model structure based on knowledge-

guided hypotheses. From managerial point of view, operational efficiency and physician 

effectiveness are two important factors determining TOTCHG [123], [124]. I argue that the 

specialization is associated with both operational efficiency and physician effectiveness. 

Specifically, the first factor, operational efficiency, is likely connected to the direct effect. This is 

because hospital specialization not only leads to optimal allocation of resources to right places, 

but also reduces needless waste of materials and processing time [123]. The other factor, 

physician effectiveness, is represented by the indirect effects. A physician’s decisions influence 

how many and what procedures a patient receives, and together with the physician’s experiences 
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and effectiveness, affect how long the patient needs to stay in the hospital, which in turn impacts 

TOTCHG. 

Table 4.6 Indirect effects of  𝐼𝑆 on TOTCHG1/4 through mediators 

Mediator LOS1/2 NPR NDX 

Parameter 𝑎𝑋1𝑏𝑀1 𝑎𝑋2𝑏𝑀2 𝑎𝑋3𝑏𝑀𝟑 

Value -0.033** 0.001 -0.00001 
*p < 0.05     ** p < 0.01 

 

Table 4.7 Direct, indirect, and total effect of  𝐼𝑆 on TOTCHG1/4 through mediators 

Effect Direct Indirect Total 

Value -0.041** -0.033** -0.074** 
*p < 0.05     ** p < 0.01 

 

Effect of 𝑰𝒔on patient outcome 

 For hospital performance in terms of patient outcome, which is measured by patient death 

during hospitalization (coded DIED in HCUP) in this work, I believe the potential mediators are 

doctors or surgeons’ experiences, hospital equipment, etc. However, because I do not have these 

information from the HCUP data, I have no means to analyze or control these potential 

mediators. Therefore, I could not perform separate analyses to quantify the direct and indirect 

effects of specialization on hospital performance in terms of patient outcome. Instead, I 

performed logistic regression (LR) to estimate the total effect of specialization on patient 

outcome. The dependent variable is DIED (alive/died). The independent variables are the same 

ones used in MLR. Since the original data is highly imbalanced (i.e., ~98% alive vs. ~2% died 

during hospitalization), I also performed a more balanced LR using synthetic minority over-

sampling technique (SMOTE) [146] to obtain an improved ratio. The adjusted McFadden's R2 is 

used to compare the explanatory power of regression models. The LR results based on the 

original data are listed in Table 4.8, which indicates that 𝐼𝑆 has a negative effect on DIED. In 
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other words, specialization reduces patient death during hospitalization. The adjusted 

McFadden’s R2 is 0.403, which is greater than the recommended range (>0.2~0.4), indicating 

excellent modeling of the data with LR. By deploying SMOTE, the alive-to-died ratio is 

improved to 82.3% alive vs. 17.7% died. Table 4.8 shows that the model quality is improved by 

SMOTE as indicated by the higher adjusted McFadden’s R2. The balanced LR analysis also 

indicates that 𝐼𝑆 leads to better patient outcome (i.e., lower DIED). 

Table 4.8 Effect of 𝐼𝑆 on DIED based on logistic regression 

Data Effect of 𝑰𝑺 on DIED Adjusted McFadden’s R2 

Original imbalanced data (-) 0.403 

SMOTE balanced data (-) 0.528 

 

4.6 Summary and conclusions 

 In this work, using a national healthcare cost and utilization project (HCUP) dataset, I 

apply pure data-driven and knowledge-guided ML approaches to investigate direct, indirect, and 

total effects of hospital specialization on hospital performance in terms of cost and patient 

outcome. 

 The results show that pure data-driven ML approaches only reveal direct effect of 

specialization (𝐼𝑆) on total charge (TOTCHG), which does not explain the complete relationship 

between 𝐼𝑆 and TOTCHG. To address this limitation, I propose a knowledge-guided ML 

approach (i.e., path analysis) by defining model structures based on domain knowledge and 

hypothesis. The results show that specialization reduces TOTCHG both directly and indirectly 

(through reducing LOS). In addition, the results demonstrate that specialization positively 

influences patient outcome (i.e., reducing patient death during hospitalization). One of the 

reasons specialization improves patient outcome is that it has a positive impact on physician 

effectiveness. This is consistent with other studies indicating physicians are likely to have more 
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opportunities to improve their expertise in treating specific diseases, resulting in more effective 

treatment – a better outcome at low cost. The results of this study indicate that the focused 

factory theory is applicable to hospital operation as well as manufacturing operation and 

specialization is a vital factor in improving hospital performance. 
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Chapter 5. Contributions and Proposed Future work 

5.1 Summary of contributions  

In this work, I aim to advance industrial process monitoring and soft sensor techniques by 

developing hybrid machine learning techniques through feature engineering, feature selection, 

and domain knowledge integration. The proposed knowledge-guided feature engineering and 

feature selection help to extract physically and/or statistically meaningful and relevant features 

from process variables and to select informative and predictive features that should be included 

in the model, respectively. This study also shows that models integrated with domain knowledge 

improve their performance and usefulness in terms of predictive power and interpretability 

compared to models without domain knowledge. These contributions are demonstrated in three 

applications detailed in the following subsections. 

5.1.1 Spectroscopy-based soft sensor 

 Spectroscopic techniques such as near-infrared (NIR) spectroscopy have gained wide 

applications in various industries. As a result, various soft sensors have been developed to 

predict sample properties from spectroscopic readings because accurate prediction of sample 

properties aids in monitoring the quality of products and process conditions. In this work, a novel 

spectroscopy-based soft sensor is proposed by integrating a feature engineering approach – 

Statistics Pattern Analysis (SPA) – with a new feature selection approach – Consistency 

Enhanced Evolution for Variable Selection (CEEVS) – to improve the predictive accuracy and 

the consistency of feature selection. 

One contribution of this work is a new variable evaluation metric, which is proposed to 

measure the importance of variables more reliably regardless of the choice of training samples. 

Both regression coefficients and VIP scores are used to calculate the importance of variables 
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(i.e., stability and probability), which plays an important role in improving the consistency of 

variable selection. In addition, a novel evolution process is proposed for efficient variable 

selection. Unlike GA, where the initial population is generated randomly, the initial population 

of CEEVS is produced based on the variable stability and probability, which enables it to include 

more important variables. This helps CEEVS to find truly relevant variables accurately and 

consistently. The evolution process has a mechanism in which less important variables can be re-

evaluated during the variable selection process. This step prevents a variable of lower stability by 

itself yet still informative when combined with other variables from being eliminated. Another 

contribution of this work is that many tuning parameters are eliminated in CEEVS compared to 

the GA method, making CEEVS easy to implement and reducing the risk of being stuck in a 

local minimum. Finally, it is proven that the performance of CEEVS is not sensitive to the 

selection of tuning parameters if respective tuning parameters are determined at recommended 

range. 

Since CEEVS employs the linear PLS-based framework, there are areas for further 

improvement of predictive power with the consideration of nonlinearity. Therefore, I propose a 

new method that integrates the SPA framework (a feature engineering approach) with CEEVS. 

Despite the successful application of the SPA framework to process monitoring and soft sensors 

in the past, there was a lack of explanation of how the SPA framework can handle nonlinearity. 

In this work, I demonstrate that features can capture the nonlinear relationship between spectral 

readings and sample properties. Through SPA framework, the linear PLS-based SPA-CEEVS 

method is able to outperform complex nonlinear methods such as SVR and GPR as well as the 

linear model-based variable selection methods such as CARS, SVP, GA and Elastic Net.  
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5.1.2 Process monitoring for PSA processes 

 In recent years, with increasing demand for tighter product quality monitoring and 

reliable process operation, process monitoring has been widely applied in a variety of fields. In 

this work, a new process monitoring method, FSM-kNN, is developed for fault detection and 

diagnosis for PSA processes. In FSM framework, statistics and morphological features are 

extracted from each step of a cycle, which can handle asynchronous pressure profiles due to 

unequal step and/or cycle duration. To the best of my knowledge, the utilization of step-wise 

features for monitoring periodic processes has not been studied. In addition, I propose criteria to 

classify fifteen steps of the PSA process into four groups based on the process characteristics of 

each step. This classification provides rough guidance on how to select the features of each 

group. By utilizing the statistics/features of pressure profiles of each step instead of pressure 

profiles themselves, the proposed FSM-kNN improves the detection performance compared to 

both PCA-based and kNN rule-based fault detection methods.  

 The FSM-kNN employs kNN rule for fault detection. The basic idea of the FSM-kNN 

method is that a distance between a faulty cycle and its nearest neighboring training cycles is 

greater than that between a normal cycle and its neighboring training cycles. Since the kNN 

method is a nonparametric ML approach, the proposed method makes no assumption about the 

linearity of the data set. Therefore, the FSM-kNN is well suited for monitoring PSA process 

condition, where nonlinear behaviors are dominant. In the proposed method, a time constraint is 

considered to build a training pool. This constraint helps avoid the occurrence false negative, 

reducing missed fault detection rates. 

 In this work, I propose a step-wise fault diagnosis method. The proposed fault diagnosis 

is the contribution-based approach, where a step with the most significant contribution is 
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regarded as the root cause of the fault. Through the proposed fault diagnosis, FSM-kNN 

outperforms all existing representative fault detection and diagnosis methods and is the only 

method that can correctly identify the root cause of faults for all fault scenarios. 

5.1.3 Knowledge-guided path analysis 

 The United States has greater healthcare spending than any other developed country, and 

healthcare spending has increased more rapidly than GDP and wages. However, considering the 

huge outlay on healthcare, clinical outcomes are not improving proportionally. As hospital care 

represents the single largest national health expenditure by the type of services, it is expected that 

the better functioning of hospitals can significantly improve the efficiency of the whole 

healthcare system. In this work, I hypothesize that hospital specialization could be one of the 

potential solutions to improving the efficiency of hospital system based on focused factory 

theory in business field. Specifically, I examine whether the hospitals that are specialized in 

certain diseases achieve better hospital performance in terms of costs and patient outcomes. 

Because hospital operations and manufacturing processes share some similarities at systems 

level, in this work I employ some of the ML approaches frequently used as process systems 

engineering tools for process and control performance monitoring to quantify the level of 

specialization of a hospital for a certain disease and reveal the relationship between the 

specialization and hospital performance. These pure data-driven ML approaches deliver results 

that the specialization has a negative effect on total charge. However, the contribution of 

specialization to the total charge is small compared to other factors such as length of stay (LOS), 

number of procedures (NPR), and number of diagnosis (NDX). It has been recognized that the 

pure data-driven approaches to complex systems may lead to incomplete conclusions as they do 

not incorporate any domain knowledge on the system. To understand complete effect of 
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specialization on hospital performance, I propose a knowledge-guided path analysis. To the best 

of my knowledge, it is the first study to take possible paths that specialization can influence 

hospital performance into account to investigate the effect of specialization on hospital 

performance. I demonstrate that specialization not only has a direct effect on total charge through 

improved administrative efficiency and stronger negotiation power, but also has indirect effects 

on total charge through effective treatment (i.e., reducing LOS). The proposed method delivers a 

comprehensive result which indicates domain knowledge plays a crucial role in machine learning 

applications.   

5.2 Potential directions for future work 

In this section, I suggest possible future research directions that can enable a better 

understanding of the methods studied in this dissertation and make further enhancements to the 

techniques. 

5.2.1 Spectroscopy-based soft sensor 

 As discussed in this work, the SPA-CEEVS is a promising spectroscopy-based soft 

sensor in terms of the predictive power and understanding/interpretation of results. However, the 

SPA-CEEVS has a high computational cost since the method evaluates fitness for each round of 

evolution. This expensive computation is common for other variable selection methods based on 

Darwin’s evolution theory of “survival of the fittest”. One way to reduce computation burden is 

to set the threshold of stopping the offspring generation. Currently, the evolution process 

continues until the fitness of an offspring chromosome is better than that of the parent 

chromosome. Therefore, the evolution process is inevitably repeated many times until the 

method finds an optimal offspring chromosome. If an offspring chromosome that satisfies a 

specific threshold (e.g., a minimum improvement in the fitness of the parent chromosome by 𝛼 
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percent) is regarded as the optimal one, the effort to search for the best offspring chromosome 

can be significantly reduced. Even though the optimal offspring chromosome determined with 

the threshold has slightly worse fitness value than that selected with current criteria, it will not 

considerably hurt the final performance. Since the optimal offspring chromosome is not directly 

used as the final variable subset, the offspring chromosome does not need to have the best 

fitness. Therefore, I believe that the adoption of threshold in the evolution process can improve 

computational effectiveness.  

 For many NIR datasets, spectroscopic readings are nonlinearly correlated with sample 

properties. Many researchers have studied nonlinear methods such as SVR, GPR, and ANN to 

improve predictive accuracy instead of the linear PLS model. Despite many applications of 

nonlinear methods, the study of nonlinear model-based variable selection has not been actively 

conducted. This work shows that CEEVS outperforms the other variable selection methods in 

terms of the predictive accuracy and consistency of variable selection. It is worth studying the 

integration of the CEEVS algorithm with nonlinear models such as SVR, XGBoost, and GPR for 

further improvement of predictive power. 

 As demonstrated in this study, statistical features extracted in each wavelength segment 

can describe the nonlinearity between input and output variables. Therefore, it is desirable to 

study more features based on domain knowledge to further improve the predictive power and 

better understand physical/chemical relationship between chemical functional groups and 

properties of interest. Especially, I suggest considering the robust features (e.g., median, 

interquartile range, etc.) because some features I utilized in the study (e.g., mean, standard 

deviation) are sensitive to outlier and/or spectral noises. Therefore, I expect that these features 

help make more robust model.  
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 In this study, I proved the proposed method could significantly improve the feature 

selection consistency through special evolution process using real NIR datasets. However, it is 

sometimes difficult to fully understand the nature of the proposed method through real NIR 

datasets. Therefore, it is worth studying the simulation experiments which control specific 

factors – the proportion of the number of relevant input variables, the magnitude of correlations 

between input variables, and the magnitude of signal to noise – for better exploration of nature of 

the proposed method.  

5.2.2 Process monitoring for PSA processes 

 The proposed FSM-kNN method is well suited to monitor periodic processes and to 

identify the root cause of faults. The framework first generates the statistics/features from the 

pressure profile of each step in a cycle. Then, similarity metrics between normal training cycles 

are measured using those features to detect faulty cycles, which have different similarity metrics 

from normal cycles. In an online detection, the framework requires that a cycle should be 

completed to monitor the abnormality of the cycle. To reduce the detection delay, a step-wise 

fault detection approach can be implemented. Currently, the FSM-kNN uses all the information 

from all steps to monitor the process condition. As a future work, individual FSM-kNN models 

can be built for monitoring the operation of each step. In other words, one FSM-kNN model is 

built for each step. In this way, fault detection can be immediately conducted right after each step 

is completed, instead of waiting for the entire cycle (i.e., all steps) to complete, which can reduce 

the detection delay.       

 In addition, in this work I provide a rough way to select the statistics/features based on 

the known characteristics of the process. However, this approach may be incomplete when the 

process has a large number of variables. Therefore, an automatic feature selection algorithm is 
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ultimately required to eliminate redundant features that do not help monitor the process 

condition. The feature selection can be performed using either grid search or conventional 

feature selection methods such as GA, particle swarm optimization (PSO), and CEEVS. In this 

case, it can be a good practice to make a larger statistics/features pool by incorporating more 

statistics/features that capture the characteristics of periodic processes so that the feature 

selection methods can find a better feature subset.  

 It is also worth studying the weighted FSM-kNN method. The contribution of 

statistics/features to specific fault scenarios is different because they can capture other aspects of 

the process characteristics. Therefore, instead of assigning constant weight to all the features, the 

different weights of features can further improve the detection and diagnosis performance.    

5.2.3 Knowledge-guided path analysis 

 In this work, I investigate if hospital specialization can affect the hospital performance in 

terms of cost and patient outcome. Since the 2012 HCUP data do not have sufficient samples for 

individual DRG’s, I select five most expensive DRG’s to conduct the hypothesis test. One future 

direction I suggest is to analyze some DRG’s individually to see if the effects of specialization 

on hospital performance are consistent across different DRG’s using several years’ HCUP data 

that provide enough samples for each DRG. In addition, it is worth studying the effect of hospital 

specialization on hospital performance for five inexpensive DRG’s to investigate if the effect of 

specialization depends on DRG’s. Since this DRG group can be used as a moderator, the path 

analysis includes more paths where the specialization influences hospital performance. It enables 

the path analysis to reveal the full effect of specialization.  
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