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Abstract

This dissertation approaches methods of improving autonomous vehicle design through

two separate lenses. In the first study, we investigate how technological transparency can

improve driver trust in artificial intelligence and ultimately encourage the adoption of automated

driving systems. Automated driving systems provide a means of reducing the inherent danger

of operating a personal motor vehicle. However, barriers to adoption exist due to low trust in the

artificial intelligence that powers the systems. To fill this deficit of trust, Chapter 3 proposes

a deep learning-based visual alert system that allows passengers to monitor the artificial

intelligence performance in real-time. Using a trained object detection model, we design a

novel perception augmentation system for conveying information about the driving scene to the

passenger through the lens of artificial intelligence. We conduct an empirical study that confirms

that the proposed system improves the trust in the underlying artificial intelligence technology.

Trust in artificial intelligence is also found to not only positively affect the perceived benefit from–

and intention to use an automated driving system, but also negatively influence the perceived

risk associated with using the technology. Perceived enjoyment from the autonomous vehicle

is also found to have a strong effect on the perceived benefit from– and intention to use the

system.

In the second study in this dissertation, we take a close look at methods to improve the

quality of sensor data in automated driving systems. Although deep learning methods continue

to set new state-of-the-art metrics on deblurring benchmarks, a comprehensive understanding

of what losses are effective for the deblurring task is missing from the literature. The study in

Chapter 4 provides an empirical foundation for the selection of a loss function when developing

image deblurring models. Despite the popularity of mean squared error as a content loss

function for image restoration tasks, we demonstrate that mean absolute error produces higher
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quality results to the human visual system. Furthermore, we show that deblurring models

trained solely using a perceptual content loss produce outputs that are perceptibly better than

the same model trained using a plain mean absolute error or mean squared error loss despite

validation metrics that would indicate otherwise. Finally, we demonstrate that adversarial losses

do not produce generators capable of confidently deblurring images in the absence of auxiliary

loss functions; however, the combination of adversarial and content losses in some cases

produces higher quality results than either constituent loss when trained in isolation. Compared

to state-of-the-art methods, the best model developed in this work produces worse quantitative

validation metrics, but visibly better results on real-world blurs in natural images.
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Chapter 1

Introduction

This dissertation studies two separate but related methods to improve the design of

Autonomous Vehicles (AVs). In the first part of this dissertation, we approach the problem

from the perspective of the user. By developing a user interface based on the same Artificial

Intelligence (AI) technology that powers the Automated Driving System (ADS), we aim to

improve the user’s trust in the autonomous control system. Beyond the design of the system,

the first part of this study also describes the validation of the proposed system on human

subjects through a psychological study. We show that the proposed system improves the user’s

trust in artificial intelligence and that this trust positively influences the user’s experience and

intention to adopt and use the ADS. Relative to the effect of enjoyment, we show that trust in AI

significantly reduces the perceived risk from the system.

Another way of improving the design of AVs is through improving the perception modules

that provide data to the control and presentation layers. This has the effect of not only improving

the performance of the ADS but also any other AI features, such as user interfaces, that rely

on the perception data. A common degradation that occurs in AV sensor data is motion blur

due to the motion of the objects in the scene and the motion of the vehicle itself. Although

a large amount of contemporary research surrounds developing models for restoring blurred

images, few works provide comprehensive comparisons of how the different selections of model

components affect optimization. Because authors frequently pack many innovations into a

single published model, it can be challenging to unpack what innovations are truly effective. In

particular, a variety of loss functions have been applied in image restoration models on many

different generators, but there is no empirical study to explore each loss function in a common

training environment.
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This dissertation consists of two parts. The first part introduces a novel perception augmen-

tation system and a psychological study to validate its effect in terms of human constructs. The

second part describes a comparative study of the different loss functions used in deep learning

image restoration models to determine an empirically grounded selection of loss functions. Sec-

tion 1.1 elaborates the motivation for the first part of the dissertation while Section 1.2 proposes

the reasoning behind the second part. Section 1.3 goes on to describe the organization of this

dissertation.

1.1 Motivation for studying trust in autonomous vehicles

An AV is a motor vehicle equipped with any number of driving automation features to

augment or replace the human driver’s abilities during the Dynamic Driving Task (DDT) (Various

2018). These systems embody a combination of sensors, decision-making processors, and

hardware controllers to provide these ADS to the human driver. As the features of the AVs

evolve and become more complex, so do the underlying ADS. Newer vehicles are moving

towards a centralized computer architecture capable of handling the high throughput of data

from the sensors (Lin et al. 2018). Centralization of onboard compute allows for synchronized

processing of the sensor data and drive-by-wire control systems. It also simplifies the task of

interfacing with the human driver through IO devices. These IO devices can be used to explain

unexpected behavior of the ADS, augment the driver’s perception through the sensors of the

vehicle, and adjust decision-making policies to fit the driver’s preference.

The adoption of AVs could benefit society in a variety of ways, namely, (1) by reducing

the number of road deaths, (2) improving traffic patterns, (3) optimizing freight lines, and (4)

enabling drivers to participate in other tasks instead of the DDT that they would otherwise be

responsible for (Lutin et al. 2013, Bimbraw 2015). The National Highway Traffic and Safety

Administration (NHTSA) reports that human error accounts for 90% of road deaths each

year (Rosenzweig and Bartl 2015). In theory, AVs can reduce the number of road deaths

by replacing sub-optimal human driving policies and reaction times with quicker and more
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informed decision-making, thus preventing wrecks, traffic, and the like. AVs can reduce traffic

by preventing wrecks and other holdups, and also by planning optimal routes through traffic.

In a similar vein, AVs stand to optimize freight lines by removing the failure-prone elements

of human drivers, like drowsiness. Finally, AVs can improve the lives of individual people by

freeing up time for other activities, such as daydreaming, reading, and talking, to name a few.

The features that compose an AV can have varying degrees of autonomy, ranging from

none, where a human is required for all elements of the DDT, to fully autonomous, where

no human interaction is required to perform the DDT. The SAE J3194 standard defines a

classification system for characterizing the levels of automation in an ADS (Various 2018).

Level 0 refers to purely manual vehicles with no automation features. Level 1 introduces the

notion of driver assistance, specifically in the lateral or longitudinal axis, but not both. This

level describes independent ADS features that are responsible for specific sub-tasks along a

singular transport axis (e.g., cruise control). Level 2 introduces the combination of multiple

lateral and longitudinal components into a more seamless package. The driver is still expected

to remain in the loop to monitor both the driving scene and the performance of the ADS. Level 3

ADS are capable of handling most situations autonomously to the point that the driver no

longer needs to attentively monitor the system. However, the driver is expected to maintain

situation awareness and perform interventions when the ADS reaches an edge case that it

cannot handle. Level 4 is where an ADS becomes fully autonomous in that the system no

longer expects human interventions within the operational design domain. Level 5 improves

upon Level 4 in that the vehicle can handle situations without condition, even those situations

that are outside the operational design domain of the system.

ADS can be decomposed into a conceptual framework with three processing phases,

namely, perception, planning, and control (Badue et al. 2020). In the perception phase, the

system combines data from sensors into a synchronized view. A variety of sensors, like video

cameras, lidar, and radar, to name a few, are used depending on the features of the ADS.

The perception phase also contains computer vision logic for processing the sensor data to

3



understand the salient properties of the driving environment, such as people, cars, and road

markings. In the planning phase, route data, such as from GPS, are used in conjunction with

the perception data to determine the needed hardware controls for the vehicle to maintain

the optimal route. This phase can include complex forward models that track instances of

salient objects in the scene, like neighboring vehicles. In the control phase, the planned

controller updates are mapped to the control surface of the vehicle in terms of accelerator pedal

compression, brake pedal compression, and steering angle.

Current ADS primarily address the DDT without explicitly considering interaction with the

driver. As a result, ADS can be opaque to the end-user and behave like a “black box”. In

cases where the ADS performs unexpectedly, the driver could become confused due to lacking

information and in turn, begin to distrust the actions of the ADS. This is a problem because if

the human driver fails to sufficiently trust the ADS, they may elect to override the ADS features

and resume manual control of the vehicle.

Explaining the results of the ADS is a complicated task that can be approached from a

variety of directions (Amershi et al. 2019). One method is for the system to react to driver

prompts regarding vehicle decision-making and respond with answers that explain what the

vehicle is perceiving and/or why the vehicle may have performed a certain action. An alternative

method involves pro-actively relaying data from the perception, planning, and control phases

to the driver to keep the driver informed about critical information and/or events during the

DDT. This information could include perceptual data, like the names and locations of objects

surrounding the vehicle; planning data, such as adjustments to the route based on traffic or

weather patterns; or control data, like that the vehicle is coming to an abrupt halt.

The study in Chapter 3 follows the second aforementioned approach to design a perception

augmentation module that improves the trust of the driver in the underlying ADS. The perception

augmentation module utilizes the outputs of a theoretical perception phase in an ADS to

describe the visual surroundings of the AV using a video camera, an object detection model,

and a screen. The object detection model is a deep learning algorithm that detects people, cars,
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etc. in the video camera data represented as still images. The detected objects are shown to

the driver using a screen (e.g., with dimensions 6”× 8”) placed on the dashboard of the vehicle.

Overlaid on the camera data are color-coded bounding boxes which highlight the objects that

are detected in the scene. The detected objects are also mapped to physical space to illuminate

a color-coded Light Emitting Diode (LED) strip around the windshield of the vehicle to show

roughly where objects are in the real world. An experiment utilizing a software-in-the-loop

simulation and survey is designed to test whether the proposed system improves human trust

in the ADS and whether improving trust truly impacts the intent to adopt autonomous features.

The simulation and survey are administered remotely using the Qualtrics platform to collect

data from 517 people.

The results of the study in Chapter 3 confirm a variety of hypotheses in the field of

autonomous driving. It is validated that the presented perception augmentation module does

increase the driver’s trust in the ADS. This increased trust, in turn, has a positive impact on the

perceived benefits and a negative impact on the perceived risks of using the ADS. Improving

trust is also shown to have a positive impact on the intention to adopt autonomous features,

as do the constructs of perceived risks and benefits. As such, the results provide a strong

argument for the inclusion of components like the perception augmentation module alongside

consumer ADS to improve human trust in– and adoption of AVs.

1.2 Motivation for comparing loss functions in deep image restoration

Although user interfaces that provide insight into the underlying functionality of the system

can improve the trust of the driver and encourage adoption of the system (see Chapter 3), these

systems are limited by the quality of the sensor data and models on which they operate. Camera

sensors on AVs are subject to motion blur effects, i.e., due to the fast movement of objects

in the scene, that can cause severe degradation in the performance of down-stream models

that may not have been trained specifically to handle the dynamics of the motion blurs (Kupyn

et al. 2018). As such, prior research has investigated methods of restoring images that have
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been degraded by external systems that have predictable patterns, either in the latent data, the

degradation systems, or both.

Removing blur from natural images without underlying knowledge of the blur system is a

challenging problem in digital image processing. Recently, deep learning methods have proven

to be effective deblurring tools that demonstrate success when tested on public benchmarks.

Although these networks continue to set new state-of-the-art metrics, there is a lack of principled

understanding of what loss functions are truly effective in the learning process. Furthermore,

leading state-of-the-art models produce poor results relative to some other methods when

tested against real-world datasets, indicating high degrees of over-fitting to the training and

validation data. Koh et al. (2021) have investigated the effect of single- versus multi-scale

training, but their comparative study neglects elements such as loss functions and normalization

settings. Lucic et al. (2018) have studied the effect of Generative Adversarial Network (GAN)

loss functions on the standard image synthesis task, but the results of their study do not

necessarily map directly to image-to-image translation tasks where the learned transformation

is structurally different. Motivated by these limitations in the literature, this work presents a

comparative study of recent deep learning innovations to provide an understanding of how

different loss functions interact as it relates to image deblurring.

Two major types of loss functions are used in the context of deep image restoration, namely,

content losses and adversarial losses. Content losses are computed using paired image data

to enforce a generator model’s output to match the expected images. A separate school of

thought applies adversarial losses through the lens of an auxiliary discriminator network that is

trained to detect sharp versus degraded images. Adversarial losses are notoriously difficult

to stabilize during training and as such, authors that utilize GANs for image restoration tasks

typically combine the adversarial loss with an auxiliary content loss or perceptual content loss

to regularize the network (Nah et al. 2017, Kupyn et al. 2019). Although research continues to

achieve state-of-the-art performance on the standard benchmarks for image deblurring (Chen

et al. 2021), few works attempt to compare the innovations of new research on a granular
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level. In particular, several works have suggested and demonstrated the use of adversarial loss

functions and perceptual content loss functions, but no research provides a deep comparison

between the results of these different losses.

The study in Chapter 4 provides a large comparative study of various losses that have been

effective in prior research. In particular, the study addresses the following research questions.

1. Which content loss functions are the most effective for image deblurring?

2. Without using content losses, do adversarial losses stably converge?

3. How does the combination of content and adversarial losses affect deblurring performance

relative to using adversarial loss or content loss in isolation?

The results of Chapter 4 provide empirical evidence that despite the popularity of Mean

Squared Error (MSE) as a content loss function for image restoration tasks, Mean Absolute

Error (MAE) frequently produces higher quality results. Furthermore, we show that generator

models trained solely using a perceptual content loss produce outputs that are perceptibly

better than the same model trained using a plain MAE or MSE loss despite validation metrics

that would indicate otherwise. We show that adversarial losses do not produce generators

capable of confidently deblurring images in the absence of auxiliary loss functions. Likewise,

we show that the combination of adversarial and content losses in some cases produces higher

quality results than either constituent loss when trained in isolation. Finally, we show examples

where the best model in this study produces results that are in some cases perceptibly better

than the current state-of-the-art models when tested against real-world blur data. To the best

of our knowledge, this is the first work to comprehensively assess the impact of content and

adversarial losses on deep learning image deblurring models.

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides a comprehensive review of

the prior literature. In Chapter 3, a perception augmentation system is presented to measure
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how system transparency affects user trust in autonomous vehicles. A psychological survey

is described and the results of two trials and one primary study are presented and discussed.

Chapter 4 describes a comparative study of losses in deep learning to summarize the effect

of different innovations on model performance on deblurring tasks. A model is described that

achieves worse metrics than state-of-the-art methods but generalizes better to real-world data.

Chapter 5 concludes the dissertation with a summary of the contributions made and notes for

future research.
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Chapter 2

Literature Review

This chapter first presents a review of the literature surrounding AVs, AI, and trust in Sec-

tion 2.1. In section 2.2, we go on to provide a comprehensive background of image processing,

deep learning, adversarial networks, and state-of-the-art image restoration approaches.

2.1 Automated Driving Systems, Artificial Intelligence, and Trust

ADS are exciting technological advancements that could restructure the transportation

engineering profession (Chan 2017, Lutin et al. 2013); however, ADS adoption is limited by

various social and regulatory factors. Namely, legal liability, regulation, and public reception of

the technology are known to be the primary barriers to adoption (Rosenzweig and Bartl 2015,

Kyriakidis et al. 2015). Currently, liability in traffic incidents is based on how as opposed to why

the human driver has failed. As the driving task shifts from the human pilot to the ADS, liability

becomes harder to assign because the reason for the driving failure may place liability with

the technology manufacturer instead of the driver of the vehicle (Goodall 2016). Furthermore,

the opacity of current automatic systems (i.e., that are machine-learned) makes it difficult to

understand if and/or why the system has failed. Regulation of ADS presents a challenge due

to the difficulty of verifying the technology. Because it’s infeasible to perform exhaustive edge

case testing (Kalra and Paddock 2016, Schwarting et al. 2018), defining a robust set of laws

surrounding ADS is nontrivial. Furthermore, the regulation requires an adept understanding of

the moral and ethical implications of the driving task (Fleetwood 2017). Defining how the ADS

should perform in mission-critical situations is not only challenging to accomplish in software,

but also challenging to confer on as a society. A utilitarian belief is an accepted ethical model

for an ADS; however, people tend to disavow this belief when the utilitarian decision results
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in harm or misfortune (Bonnefon et al. 2016). From a regulatory adoption perspective, our

perception augmentation module increases the transparency of the underlying technology by

providing a clear means of describing how the ADS sees the world. For this same reason, our

perception augmentation module partially resolves the issue of liability by explaining one-third

of the ADS functionality – i.e., the perception module, but not the planning or control modules.

The explanation of the planning and control modules is left for future work.

Public opinion is one of the most studied limiting factors to the adoption of ADS. Part

of the problem lies in the current levels of autonomy on the market that achieve SAE levels

0–3, but not levels 4–5. It is known that younger audiences are more receptive to levels

4–5 that allow the driver to engage in other tasks without monitoring the vehicle or driving

environment (Nees 2016); however, older audiences show resistance towards this level of

autonomy and instead prefer features in the SAE level 3 classification (Abraham et al. 2017).

Despite the increased interest in higher levels of autonomy, the public shows clear resistance

due to unwillingness to pay, financial liability in the event of an incident, and general distrust of

the technology. Although various ADS are available in various vehicles in the current market,

these features are often part of premium packages or otherwise available only on high-end

models. Furthermore, customers show concern about financial liability in cases where the

ADS is involved in an automotive incident (Howard and Dai 2014). This financial barrier is a

known social barrier to the advancement of ADS (Bansal and Kockelman 2018, Schoettle and

Sivak 2014). With an increased number of data leaks and privacy violations in modern times,

data collection has also become a major concern. Those worried about data collection and

misuse by ADS manufacturers have shown resistance to adopting the technology (Kyriakidis

et al. 2015). Additionally, trust in the technology itself has become a known problem. People

have been shown to fear transferring control to an autonomous agent and express a clear

desire to be able to override the system (König and Neumayr 2017). Furthermore, distrust of

the technology tends to raise stress levels while using ADS (Morris et al. 2017). Such additional

stress increases the likelihood that a driver will disable the autonomous systems because

10



the driver views the monitoring task as more work than the driving task it replaces (Koo et al.

2015). Finally, media coverage of ADS-related incidents can harm the public perception of

the technology (Shariff et al. 2017). Although accidents related to ADS are rare relative to the

number of human-induced accidents, the accidents receive massive media coverage, some of

which may sensationalize or misrepresent the event. Our perception augmentation module (see

Chapter 3) improves the trust and enjoyment in current and future levels of autonomy without

dramatically increasing the cost of the ADS. In this way, our perception augmentation module

improves the intent of all age groups to adopt ADS.

2.1.1 Trust in Artificial Intelligence

Because trust is a known barrier to the adoption of higher levels of autonomy from

ADS (Choi and Ji 2015), improving trust in the technology is a highly relevant task. One

approach to improving trust is through increasing the transparency of the technology. Because

fully testing a level 4–5 ADS is infeasible (Kalra and Paddock 2016, Schwarting et al. 2018),

various methods, namely Bayesian neural networks, have been proposed to quantify the

uncertainty of the models powering the ADS (McAllister et al. 2017, Kendall and Gal 2017).

This sort of technology can be applied to end-to-end systems – like the one proposed by Bojarski

et al. (2016) – as a means of conveying model uncertainty to the driver, both to improve trust and

to accurately signal a handover when the model is overly uncertain. Another way of improving

trust is by notifying the driver preemptively when the ADS is going to behave in a way that

deviates from its expected behavior (Haspiel et al. 2018). Further transparency that shows

more general-purpose decision-making of the ADS has also been proposed by Gowda et al.

(2014). It has been shown that ADS with AI that show high autonomy and anthropomorphic

characteristics can increase the trust of the driver in the ADS (Lee et al. 2015). Although

transparency can improve trust, it can also increase the cognitive load resulting in negative

feelings from the driver. As such, determining the proper amount of transparency is a nontrivial

task (Koo et al. 2015). By providing a reasonable level of transparency through a multi-modal
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interface, our perception augmentation module (see Chapter 3) improves trust in the ADS

without introducing a source of additional cognitive load, i.e., the driver enjoys using the system.

2.1.2 Artificial Intelligence and Human Interfaces

Designing proper computer-human interfaces for ADS that provide an enjoyable experience

is a grand challenge in the literature (Dikmen and Burns 2016, Endsley 2017, Brown and Laurier

2017). The problem is two-sided in that (1) vehicles must be able to convey data to the driver

using an information interface of any combination of visual and auditory alerts, and (2) the

vehicles must embrace an appropriate control interface that allows the driver to intervene if

necessary, or simply desired (Goodrich et al. 2008). Arguments have also been made for the

application of AI to understand and respond to human actions (Khandelwal et al. 2017). The

prevalence of using AI techniques in ADS coupled with the patterns of research surrounding

AI and Human-Computer Interaction (HCI) has rendered AI systems that are opaque to the

end-user and unable to explain the rationale behind the artificially intelligent logic (Grudin 2009).

The notion of Explainable Artificial Intelligence (XAI) has emerged as a means of unifying the

two fields of study – i.e., AI and HCI (Gunning 2017).

Because ADS may behave in unpredictable ways based on sensor data and complex

nonlinear systems, informing the driver of the ADS state through an information interface is

both a vital and challenging task (Surden and Williams 2016). To complicate matters, drivers of

vehicles with ADS show interest in disengaging from the driving task to perform more enjoyable

activities like listening to the radio, talking to passengers, etc. (Pfleging et al. 2016). This

desire to disengage introduces a need to study multimedia systems capable of conveying

the proper amount of information to the driver. Often, information interfaces are composed

of a set of multi-modal approaches – i.e., using visual and auditory alerts. Alerts can be

concrete like visually displayed text or a spoken phrase. Alerts can also be abstract like a

“beep” played at high volume and/or frequency, or a static/flashing colored light. Because of the

additional processing time required for concrete alerts to propagate and be understood by a
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human, abstract alerts produce faster response times than concrete alerts in ADS handover

simulations (Politis et al. 2017). Auditory alerts, like before Automatic Emergency Braking (AEB)

activates or when Forward Collision Warning System (FCWS) detects an imminent collision,

have been shown to reduce anxiety and increase enjoyment and perceived control of the

driver (Koo et al. 2016, Bazilinskyy and de Winter 2015). In a similar vein, virtual assistants,

like Amazon’s “Alexa” or Apple’s “Siri”, can augment the experience in vehicles with ADS by

responding to voice prompts (Lugano 2017). Likewise, visual alerts, including dashboards and

infotainment systems, have also been proposed to accommodate the more autonomous nature

of vehicles with advanced ADS (Udovicic et al. 2015, Gowda et al. 2014). Although information

interfaces can improve trust and HCI, proper design and thorough study are necessary because

the cognitive load introduced by the system could potentially evoke a negative emotional

response from the driver to the point that they disengage or ignore the system (Koo et al. 2015,

Casner et al. 2016). Our perception augmentation module, presented in Chapter 3, features

a combination of abstract and concrete visual alerts. Although the system features concrete

alerts, these are a secondary mechanism intended to improve the learn-ability of the abstract

alerts.

2.2 Image Degradation and Restoration

2.2.1 Image Acquisition Model

In the context of this dissertation, the term image refers exclusively to natural images that

are collected through Red-Green-Blue (RGB) image sensors, i.e., Complementary Metal-Oxide-

Semiconductors (CMOSs) or Charge-Coupled Devices (CCDs). Although the details of image

acquisition extend past the scope of this work, a brief discussion of the model of acquisition

aids in the presentation of the concepts of image degradation and restoration. Image sensors

integrate the reflection of light off of real-world objects over a period known as exposure time.

To form two-dimensional images, image sensors are arranged into a grid array where each
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sensor is responsible for the acquisition of a single discrete picture element, i.e., pixel, in the

digital image. The cones of the Human Visual System (HVS) sense three primary bands of

colored light: red, green, and blue. As such, color image sensors contain three separate planes

of sensor grids that independently acquire the red, green, and blue bands of light into RGB

pixel vectors. For CMOS sensors, image sensors are frequently arranged using the mosaiced

Bayer pattern and reconstructed via de-mosaicing algorithms (Bayer 1976). Equation 2.1

introduces the model of image acquisition for a single image sensor where T represents the

exposure time and I(x, y, t) is the intensity measured by the sensor at row x and column y at

the continuous point in time t. α represents the Camera Response Function (CRF), which is

typically a positive sigmoid-shaped activation function that captures the nonlinear mapping of

radiance to luminance in the human eye.

f(x, y) = α
( 1
T

∫ T

0

I(x, y, t)dt
)

(2.1)

2.2.2 Image Degradation Models

The term degradation loosely includes a variety of destructive systems that may influence

the acquisition of the image signal during the exposure window. A simple example of degradation

is motion blur where an object in the scene quickly moves during the acquisition window,

resulting in a low-pass smearing effect on the pixels containing the moving object. Other

degradation systems include sensor noise and mosaicing artifacts. It is implied that restoration

means the reconstruction of a clean image from one that has been affected by any of the

aforementioned degradation systems. Image degradation is frequently modeled as an operator

H that degrades an image and applies an additive noise term. In the special case where the

degradation system H is linear and shift-invariant, it can be represented using Equation 2.2 as

the convolution of the image f(x, y) with the point-spread function h(x, y) plus the noise image

η(x, y).

g(x, y) = (f ∗ h)(x, y) + η(x, y) (2.2)
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The application of this operator to an input image f(x, y) produces the degraded image g(x, y).

The noise term is optional and typically models the digital or analog noise that occurs as the

result of over-exposure, compression, storage, transmission, or precision of the numerical

system, to name a few causes. Applying the convolution theorem to Equation 2.2 allows the

system to be rewritten in Equation 2.3 as the point-wise product of the Fourier coefficients of

the image F (u, v) and the point-spread function H(u, v) plus the noise term N(u, v).

G(u, v) = F (u, v)H(u, v) +N(u, v) (2.3)

In many practical cases of image degradation, the operation H is nonlinear and shift-

varying. For instance, motion blur that occurs as the result of moving objects in the scene, and

out-of-focus blur that manifests due to objects in the scene existing at different depths are two

examples of image degradation systems that are not strictly linear shift-invariant. The model

of image degradation can be extended to more realistic blur systems by loosening the global

constraint of the point-spread function in Equation 2.4. In this new model, each pixel has a

blur kernel and the degraded image is the result of super-imposing each pixel’s degradation.

Because each pixel in the model can be affected by degradation individually, the model can

better represent blur that results due to motion either of objects in the scene or the sensor itself.

However, this model cannot account for the occlusion between objects of different depths in the

scene.

g(x, y) =

(∑
x′ ,y′

(f(x
′
, y

′
) ∗ hx′ ,y′ )(x, y)

)
+ η(x, y) (2.4)

2.2.3 Classical Image Restoration Approaches

A common problem in image processing is to invert the effect of the degradation system

on a previously degraded image g(x, y) to produce a restored image f̂(x, y) that is equal to-

or approximately equal to the clean image f(x, y). In the special case where H is known to

be linear and shift-invariant, h(x, y) is known, and η(x, y) is known, the restoration of f̂(x, y)
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may be accomplished trivially using an inverse filter to perfectly recover f(x, y), – i.e., by

deconvolving in the frequency domain (see Equation 2.3). In most practical cases, η(x, y) is

not known and inverse filters will not recover f(x, y). When η(x, y) is unknown, a common

technique is to apply regularized inverse filters, Wiener filters, or the Lucy-Richardson method

that account for the noise in the image (Wiener 1949, Richardson 1972, Lucy 1974). Practical

problems often embody a lack of knowledge of both the noise term η(x, y) and the point-spread

function h(x, y). In the case where H is still guaranteed to be linear and shift-invariant, the data

of f(x, y) may provide a reasonable estimate of h(x, y). In a large number of applications, H is

nonlinear and shift-varying (see Equation 2.4). When a large amount of data exists describing

the mechanics of the degradation systems at play, deep learning is a viable solution for learning

to restore images that have been degraded by non-uniform blur systems (Nah et al. 2017).

2.2.4 Non-Uniform Image Degradation Dataset Synthesis

Because standard deep learning frameworks rely on paired samples, it is necessary to

understand a method of obtaining a dataset of paired samples where each image pair embodies

a clean version and a degraded version of the same real-world scene. A common approach

is to approximate the acquisition process in Equation 2.1. Nah et al. (2017) use a camera

that captures frames at 240Hz to record a video then approximate the continuous acquisition

process using Equation 2.5.

f̂ [m,n] = α̂
( 1

K

K∑
k=0

α̂−1(f [m,n, k])
)

(2.5)

To generate an image pair, a linear sub-sequence of K frames of the source video f is averaged

to approximate the integration of luminance over the time window of length T as f̂ . Nah et al.

(2017) use K values between 7 and 13. Because each frame will have been influenced by the

CRF of the camera, it is necessary to take this into account when averaging frames. Nah et al.

(2017) use a gamma curve to approximate the CRF as α̂(·) and apply the inverse α̂−1(·) before
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averaging sharp images. Their final dataset, coined as the “GoPro” dataset, contains 2103

training samples and 1111 validation samples. Nah et al. (2019) extend the method using a

camera with a source rate of 1920Hz to produce a blurred video with a cinema-standard rate of

24Hz. The larger dataset of Nah et al. (2019), entitled “REDS”, contains 24000 training samples

and 3000 validation samples. It is worth noting, paired samples are not strictly necessary in all

deep learning frameworks; Zhang et al. (2020) demonstrates the success of using unpaired

samples to first build a generative model of the degradation system then use the model to

generate paired training data to train a restoration model from.

2.2.5 Metrics

When paired image data are available, image processing models can be validated ob-

jectively using Peak Signal-to-Noise Ratio (PSNR) in Equation 2.6 which measures the log

of the reciprocal MSE between source image x and restored image xr times the squared

maximum of the image data domain R2. For 8-bit fixed-point RGB images, R = 255 and for

32-bit floating-point RGB images R = 1. The images must both be M pixels tall, N pixels wide,

and have C channels of image data. For monochromatic images C = 1 and for color images,

such as RGB, C = 3. PSNR reduces image tensor pairs to a scalar value measured in decibels

(dB) that approaches infinity as the images become more similar. As such, a restored-sharp

image pair will have a higher PSNR relative to the restored-degraded pair when the restoration

of pixels is accurate.

PSNR = 10 log10

(
R2

1
MNC

∑M
i

∑N
j

∑C
k (x[i, j, k]− xr[i, j, k])2

)
(2.6)

Because the HVS is non-linear and tuned to extract structured information from image data,

PSNR is frequently a poor measure of image quality to humans. As an alternative, Wang

et al. (2004) develop the Structural Similarity Index Measure (SSIM) which operates under

the heuristic that structural information in the image is salient for human perception. SSIM is
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computed from three independent comparisons of luminance values, contrast, and structure

between two images to provide a quality measure that is better matched to the HVS than is

PSNR. The mathematical definition of SSIM is verbose and extends past the scope of this

work; we refer the reader to the work of Wang et al. (2004) for the full details of the computation

of SSIM.

2.2.6 Generative Adversarial Networks

Specifically related to image synthesis, Goodfellow et al. (2014) formalized the method

of GANs for learning a mapping between a Gaussian latent space and a structured image

domain. They formulate the synthesis problem as an adversarial game between a generator

and a discriminator network to train both networks using the same learning framework in

tandem. This allows the discriminator to adapt to the improvements of the generator at run-time

and also share its representational understanding with the generator through its upstream

gradient. Several extensions to the GAN have been vetted in the literature. Mirza and Osindero

(2014) propose the Conditional GAN (CGAN) to condition the generation/discrimination of

images on known latent parameters. Opposed to the traditional usage of random latent spaces,

this allows the authors to enforce conditional representation learning in the model which

then allows for the synthesis of objects of particular classes (e.g., digits, object types). An

alternative approach, first discussed by Odena et al. (2017), is known as Auxiliary Classifier

GAN (AC-GAN). AC-GAN is similar to CGAN but refactors the discriminator as a dual network

with one branch to discriminate real versus fake samples, and one branch to perform latent

mapping, i.e., for classification. Empirically, this results in training a generator that produces

more visually appealing images than either CGAN or the vanilla GAN. A final innovation in

the general GAN framework worth mentioning is the Wasserstein GAN (WGAN) studied by

Arjovsky et al. (2017). The WGAN replaces the standard loss function of cross-entropy for the

Wasserstein loss (i.e., the Earth mover’s distance). Put simply, this loss allows the loss network

to better separate the distributions of the degraded and latent images by removing the limit on
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the dynamic range that the usage of probability imposes. The WGAN model also uses a weight

clipping strategy to impose a 1-Lipschitz continuity constraint on the model. Gulrajani et al.

(2017) show that replacing this discontinuous weight clipping policy with a gradient penalty loss

stabilizes the training.

Although vanilla GANs learn a mapping from a flattened latent space in a spatially unrelated

domain to images, the idea can extend to image-to-image transformations where both the inputs

and outputs are structured images. Isola et al. (2017) first studied this idea to map semantic

segmentation maps to natural images. The proposed pix2pix model allows them to enforce

semantic structure on the synthesized images. This runs contrary to the vanilla GAN that has

no parameterization over where objects in the synthetic image will be placed. Zhu et al. (2020)

extend the idea of image-to-image translation with the method of cycle consistent translations

where a mapping back to the input image is also learned to find translations between domains

without paired training samples. Image-to-image translation has also been applied to the

problem of image super-resolution where a generator model up-samples an image and imputes

missing data to produce a higher resolution image. Ledig et al. (2017) have demonstrated the

efficacy of GANs on the image super-resolution problem.

The GAN learning framework embodies a min-max game between the discriminator

and the generator. Nguyen et al. (2017) rework the discriminator into a duality between

KullbackâĂŞLeibler (KL) and reverse KL divergences. By training one discriminator branch with

a bias towards the generator and another branch with a bias toward the discrimination task,

they can mitigate the impact of mode collapse. Li et al. (2017) propose a similar idea where the

optimization of a GAN is restructured as a dual to resolve instability.

Adversarial Loss

Equation 2.7 describes the mini-max loss function for the vanilla GAN framework (Good-

fellow et al. 2014). During training, the discriminator D attempts to maximize the loss while

the generator G tries to minimize it. D(x) represents the discriminator’s calculation of the
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probability that a sample of real data x is fake. Here pdata is the empirical distribution of the

real training data and Ex∼pdata(x) is the expectation over the real training data. z represents

a sample vector from an unknown latent space that the generator G maps to a convincing

realistic sample xf = G(z). D(G(z)) then expresses the discriminator’s belief that xf is fake.

Ez∼pz(z) describes the expectation over the empirical distribution of the fake training data pz

based on the latent sample z. It is worth noting that Equation 2.7 is a dual formulation of the

binary cross-entropy loss where real samples are labeled as 0 and fake samples are labeled as

1.

LD
GAN = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.7)

Because the weights of the generator do not influence the calculation of the left term in the loss,

Equation 2.7 only represents the loss of the discriminator. Equation 2.8 describes the loss of

the generator, which follows the same derivation, but omits the left-hand term that the generator

cannot back-propagate through.

LG
GAN = Ez∼pz(z)[log(1−D(G(z)))] (2.8)

Goodfellow et al. (2014) also note that the form of the generator objective in Equation 2.8

that attempts to produce samples that are not like fake data causes saturation of the generator’s

gradient signal. As an amendment, they refactor the semantics of the generator loss to produce

samples that are the most like real data. Equation 2.9 describes this non-saturating GAN loss

that is typically used.

LG
GAN−NS = −Ez∼pz(z)[log(D(G(z)))] (2.9)

Least Squares Adversarial Loss

Mao et al. (2017) note that sigmoidal losses like cross-entropy introduce vanishing gradients

in the cases where the generator produces data that defeats the decision-boundary of the

discriminator, but fails to adequately capture the distribution of real data pdata. This results in
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generators that synthesize samples that lack adequate detail when evaluated by the HVS and

discriminators that cannot produce a strong backward pass signal to improve the synthesis.

To resolve this limitation, Mao et al. (2017) propose replacing the cross-entropy loss with a

least-squares loss that targets these particular samples that fall far past the decision boundary

but are far from the realistic samples. Equations 2.10 and 2.11 describe the revised minimization

loss functions for the Least-Squares GAN (LSGAN) discriminator and generator, respectively.

LD
LSGAN =

1

2
Ex∼pdata(x)[(D(x)− 1)2] +

1

2
Ez∼pz(z)[(D(G(z)) + 1)2] (2.10)

LG
LSGAN =

1

2
Ez∼pz(z)[(D(G(z))− 1)2] (2.11)

Wasserstein Adversarial Loss

The loss function in vanilla GANs tends to over-saturate resulting in poor separation of the

distributions of real and fake data. Arjovsky et al. (2017) propose adopting the Wasserstein loss

function (i.e., “earth movers distance”) to mitigate this shortcoming in the vanilla GAN learning

framework. The loss of the Wasserstein GAN (WGAN) restructures the discriminator D from

estimating probits to estimating unconstrained logits as the critic C. Equation 2.12 displays the

loss that the critic maximizes. This loss encourages the critic to produce large output values for

data that derive from the real distribution and small output values for data that derive from the

fake distribution.

LC
WGAN = Ex∼pdata(x)[C(x)]− Ez∼pz(z)[C(G(z))] (2.12)

Like the generator in the vanilla GAN framework, the generator in the WGAN has a modified loss

that omits the pathways in the graph that are specific only to the discriminator. Equation 2.13

shows the loss that the generator maximizes in the WGAN framework. The generator loss

encourages the critic to produce large output values based on the synthetic data of the generator
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without influencing the parameters of the critic during back-propagation.

LG
WGAN = Ez∼pz(z)[C(G(z))] (2.13)

To enforce the 1-Lipschitz continuity during training of WGANs, Arjovsky et al. (2017)

use a naive weight clipping strategy that results in unstable training. Gulrajani et al. (2017)

demonstrate that an additional gradient penalty loss can be applied in place of this weight

clipping strategy to enforce the 1-Lipschitz continuity while exhibiting a more stable training

process. Equation 2.14 describes the gradient penalty loss used to enforce continuity of

the updated WGAN Gradient Penalty (WGAN-GP). The loss is calculated based on random

samples x̂ ∼ px̂ that are generated by randomly sampling a pair of real and fake data and then

randomly sampling a linear interpolation between the two samples. The goal of the loss is to

encourage the L2 norm of the gradients to be at most 1.

LGP = Ex̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2] (2.14)

Relativistic Adversarial Loss

Jolicoeur-Martineau (2018) proposes the concept of Relativistic average GANs (RaGANs)

to address issues of instability with vanilla GAN and WGAN loss functions. In a vanilla GAN,

the discriminator calculates a probability D(·) that represents whether data are real or fake. In

a RaGAN, the output of the discriminator is modified to represent the probability that real/fake

data are more realistic than randomly sampled fake/real data. Let C, the critic, be the logits of

the discriminator D before the final sigmoid activation function. Equation 2.15 describes the

calculation of the probability that real data x are more realistic than the expected critic of fake

data xf = G(z) by the relativistic discriminator D̂ where σ is the sigmoid activation function.

D̂(x) = σ(C(x)− Ez∼pz(z)[C(xf )]) (2.15)
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Likewise, Equation 2.16 shows the calculation of the probability that fake data xf = G(z) are

more realistic than the expected critic of real data x.

D̂(xf ) = σ(C(xf )− Ex∼pdata(x)[C(x)]) (2.16)

The loss function for the relativistic average discriminator in Equation 2.17 can be formulated

following the vanilla GAN discriminator loss function (see Equation 2.7). The discriminator is

trained to minimize this value.

LD
RaGAN = Ex∼pdata(x)[log(D̂(x))] + Ez∼pz(z)[log(1− D̂(xf ))] (2.17)

The loss function for the generator to minimize in the relativistic framework, shown in Equa-

tion 2.18, follows the same form as the discriminator, but with inverted labels. This updated

formulation allows the generator’s loss function to incorporate information from the distribution

of real data that is neglected in the vanilla GAN generator loss function in Equation 2.8 and the

WGAN generator loss function in Equation 2.13.

LG
RaGAN = Ex∼pdata(x)[log(1− D̂(x))] + Ez∼pz(z)[log(D̂(xf ))] (2.18)

It is worth noting, RaGAN is a generalization of Relativistic GAN (RGAN) that addresses

issues with the runtime complexity of the originally formulated RGAN loss during optimization.

In RGAN, the expectation in the formulation of D̂(·) in Equations 2.15 and 2.16 is simply

replaced with a critic of a randomly sampled data of the opposing class referred to as D̃. The

problem with the RGAN formulation is that it requires O(n2) combinations of paired data to visit

the entire data space. By instead approximating the average critic using an expectation, this

complexity is reduced to O(n) in the RaGAN model.
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Content Loss

Specific to image-to-image translation tasks with paired image data, content losses directly

enforce that a generator model learns a particular transform between the image pairs. Unlike

adversarial losses, there is no learned component and the loss is instead calculated based on

image pairs. Common applications of content losses include image restoration tasks where

degraded images are mapped back to sharp images and super-resolution tasks where down-

sampled images are up-scaled. One such content loss is MSE shown in Equation 2.19 where

x is a real image and xf = G(z) is a synthetic image.

LMSE = Ex∼pdata(x),z∼pz(z)[(x− xf )
2] (2.19)

MSE places more precedent on errors that diverge far from the mean. A choice of content

loss that is piece-wise linear is MAE that replaces the square root operation in MSE with the

absolute value operator in Equation 2.20.

LMAE = Ex∼pdata(x),z∼pz(z)[|x− xf |] (2.20)

For image synthesis tasks, MSE and MAE over luminance can introduce unwanted artifacts

when applied as the primary loss function. To encourage stronger natural image priors in

generator models, Johnson et al. (2016) apply a perceptual content loss based on pre-trained

classification networks. Namely, the mean-squared error between shallow activation maps of a

pre-trained model is calculated based on a real image x and corresponding fake image xf . The

particular activation map is the block3_conv3 output of the Visual Geometry Group (VGG)-

19 network after the ReLU activation. This particular layer is known to extract low-level

representations and filter for object presence according to the ImageNet labels on which the

network was trained (Simonyan and Zisserman 2014). This is a salient property, both for style
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transfer and image restoration, as the perceptual content loss calculates image differences

according to experimental natural image priors.

Some prior work has further developed content loss functions based on frequency-domain

transformations, namely, the Discrete Fourier Transform (DFT) and Discrete Cosine Trans-

form (DCT). When applied to estimation-based image processing tasks, the DFT frequently

introduces artifacts due to the periodic nature of the Discrete Fourier Series (DFS) that results

in discontinuities around the window of the image. For image processing tasks, it is common to

apply to DCT Type-2, which symmetrically extends the image in the spatial domain to prevent

such discontinuities from occurring in the DFS of the extended image. It has further salient

properties of being real-valued, as compared to the complex DFT, and good energy compaction

capabilities. The DCT-2 is the standard transform applied by the Joint Photographic Experts

Group (JPEG) compression algorithm (Wallace 1992). Equation 2.21 presents the Type-2 DCT

in its orthogonal form (i.e., with scaling factor α shown in Equation 2.22). Because frequency-

domain representations are sparse, the JPEG algorithm applies the transform over patches of

size M = N = 2l to achieve a better compression ratio than using a DCT over the entire image

would produce. Standard values of l are l ∈ {3, 4, 5}.

F [k, l] = α(k,M)α(l, N)
M−1∑
m=0

N−1∑
n=0

f [m,n] cos
((2m+ 1)kπ

2M

)
cos
((2n+ 1)lπ

2N

)
(2.21)

α(x,X) =


√

1
X
⇐= x = 0√

2
X
⇐= otherwise

(2.22)

Because the DCT is linear, it has a well defined analytical derivative (Reeves and Kubik

2006), which is necessary for the DCT to be used in deep learning pipelines. Khan et al.

(2019) apply the DCT-II in their development of Spectral Dropout, which drops the activation

of neurons that have DCT coefficients with low magnitude or excessive noise. Czolbe et al.

(2020) study a GAN model using a loss function based on the p-norm of DCT coefficients of
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images. Compared to using perceptual content losses, they find that their approach produces

better results. Bhattacharya et al. (2018) argue that the sparse nature of frequency domain

representations allows auto-encoder models to be more efficient by packing signal energy

into smaller spatial forms This is because natural images have frequency spectra that are

Gaussian centered around the DC coefficient. Sims (2020) specifically find that using DFT and

DCT-based loss functions allows for the training of super-resolution models that produce higher

PSNR values and better qualitative evaluation relative to the same models trained with spatial

loss functions. The intuition behind their method derives from the fact that spatial loss functions

place equal weighting over the frequency spectrum, but the average HVS is biased toward a

specific band of the spectrum.

2.2.7 Training Deep Networks

Because the training of GANs relies on the parallel training of two networks and is known

to be highly convex, stabilizing the training and convergence is a frequently discussed topic.

During the training of GAN models, it is common for the discriminator to converge fully, resulting

in a vanishing gradient for the generator. Arjovsky and Bottou (2017) provided analytical

grounds for why adding noise to the inputs of the model during training would resolve the issue

of vanishing gradients. The concept of adding noise to the inputs of neural networks to act as a

regularization mechanism has been well studied empirically as well (Shorten and Khoshgoftaar

2019). Specifically related to training models using synthetic data, Carlson et al. (2018) have

shown that applying a noise model inspired digital camera image acquisition to input images

can improve the generalization of the model to real-world data. From the opposing angle, Xie

et al. (2016) have studied the idea of disturbing target labels. They propose to randomly perturb

training labels to prevent the classification model from converging on local optima.

Another common problem that is observed in training GANs is mode collapse where

the generator converges on a small and sub-optimal subspace akin to emitting mean value

estimates. Wang et al. (2016) expanded the idea of ensemble learning to the discriminator of
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a GAN model to improve the learned distribution of the parallel generator model. This allows

their generator model to produce synthetic images that better resemble test examples in their

structured content. Metz et al. (2016) propose unrolling several steps of the discriminator

optimization algorithm to prevent mode collapse. From a different perspective, Srivastava

et al. (2017) suggest preventing mode collapse by altering the generator with an additional

inverse network that maps synthesized outputs back to the latent noise space. One final way of

preventing mode collapse, presented by Lin et al. (2020), is to modify the discriminator model

to classify bins of samples, as opposed to individual samples.

Besides the issues specific to GANs, deep neural networks often benefit from normal-

ization and regularization methods to counteract data bias and prevent over-fitting. Ioffe and

Szegedy (2015) introduced the method of batch normalization where mini-batches of layer

activation maps are normalized during training. The batch normalization technique has been

widely adopted by countless works and remains a highly effective strategy for classification,

object detection, and semantic segmentation, to name a few applications. Ulyanov et al. (2016)

expanded upon the idea of batch normalization with the idea of an instance normalization layer

that normalizes individual channels of the activation maps. Kupyn et al. (2018) have demon-

strated the efficacy of instance normalization for image restoration tasks. Layer normalization,

presented by Ba et al. (2016), takes a different approach by normalizing the entire activation

map for each independent sample in a mini-batch. The benefit of layer normalization lies in

the reduced impact of batch size on the optimizer and improved convergence of the training

algorithm.

Traditional normalization strategies in deep learning act upon the activation maps that emit

from individual layers. Salimans and Kingma (2016) introduce a novel method that involves

a re-parameterizing the weights to produce a weight normalization effect similar to batch

normalization, but without some of the challenges associated with batch normalization. They

show that their method is effective for applications like generative synthesis that are sensitive

to noise. Specifically related to GAN discriminator models, Miyato et al. (2018) suggest an
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idea called spectral normalization to stabilize the model. Their idea is closely related to that of

Gulrajani et al. (2017) in that they aim to constrain the Lipschitz continuity of the WGAN model.

Spectral normalization is an important discovery that can replace the unstable weight clipping

mechanism employed by the original WGAN.

2.2.8 State-of-the-art Image Restoration Approaches

Lai et al. (2016) provide a comprehensive survey of various algorithms used for single

image blind de-blurring. Their analysis reveals that the algorithms perform well on synthetic

data, but do not generalize well to real-world systems of degradation. Schuler et al. (2015)

present some of the first works using Convolutional Neural Networks (CNNs) to deblur images.

Their model estimates the kernel of uniform blur to deconvolve the degradation from the image

using, e.g., regularized inverse filters. Nah et al. (2017) address the limitation of classical

de-blurring algorithms for real-world non-uniform motion blur systems both by proposing a

technique for approximating real-world blurs using digital systems (see Section 2.2.4) and by

developing a deep auto-encoder method, “DeepDeblur”, for learning to restore blurry images.

Their auto-encoder method outperforms the existing algorithms in terms of PSNR, SSIM, and

subjective evaluation. DeepDeblur is a multi-scale generator architecture that takes advantage

of the encoder-decoder design to produce restored image outputs at full-size, half-size, quarter-

size, etc. The multi-scale architecture aids in the perceptible quality of fine detail in the image as

well as more global, large-scale features that require the larger receptive field that is achieved

by down-sampling the image. DeepDeblur is the first work on deblurring to use an adversarial

loss, namely GAN, in the training process.

Kupyn et al. (2018) further improve state-of-the-art image de-blurring using a GAN algo-

rithm coined as “DeblurGAN”. DeblurGAN applies a WGAN-GP loss function during training,

which differs from the vanilla GAN loss used in DeepDeblur. A novelty in the loss function of

DeblurGAN lies in the application of the method of Johnson et al. (2016). Kupyn et al. (2018)

note that MSE does not correlate with quality to the HVS and propose replacing the MSE
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content loss function with a perceptual loss function. Using the block3_conv3 layer outputs of

the VGG-19 network as an auxiliary content loss, DeblurGAN can produce perceptibly better

results than prior works. To solve issues with training stability, Kupyn et al. (2018) also introduce

the notion of a global residual skip connection that forwards the input image to the output of the

network for a residual update. Kupyn et al. (2019) improve upon DeblurGAN with an update

called “DeblurGAN-v2”. The updated DeblurGAN-v2 can utilize various backbone generator

architectures to fit the needs of the network designer in terms of the ratio of SSIM to Floating

Point Operations (FLOPs). They also replace the WGAN-GP loss with a more stable relativistic

loss, namely, RaGAN.

Tao et al. (2018) extend upon the multi-scale model of DeepDeblur with the concept of

recurrent restoration. Their “Scale-Recurrent Network (SRN)” iteratively restores and up-scales

down-scaled versions of the input in a recurrent graph to produce the final full-resolution output.

This is driven by the intuition that the problem solved at each scale is the same and will thus

benefit from parameter sharing. Zhang et al. (2020) note that existing synthetic blur datasets

poorly reflect the dynamics of realistic blur systems due to invalid assumptions made when

generating paired sets of sharp and blurry images using methods of, e.g., Nah et al. (2017). To

address this limitation, they design an auto-encoder that learns to realistically blur images then

deblur them in cascade. The strength of their method lies in the training procedure that no longer

relies on paired images and can thus be trained with independent sets of sharp and degraded

images. Zhang et al. (2020) also point out that the outputs of block3_conv3 are sparse due to

the REctified Linear Unit (ReLU) activation function. They propose developing the perceptual

loss from the activation maps before this loss function to provide a denser gradient signal. Gao

et al. (2019) replace the local and global residual skip connection structures used in Kupyn

et al. (2018) and Kupyn et al. (2019) with high-order skip connections between scales in the

auto-encoder network. They argue that the global skip and local skip connections have gradient

pathways that do not cross in training due to their first-order nature. Replacing these simpler
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structures with high-order residuals allows their model to learn more complex representations

without sacrificing the benefits of residuals in terms of reducing the vanishing gradient problem.

Zhang et al. (2019) note that end-to-end image restoration models suffer from a high

capacity to performance ratio. To improve the statistical performance of deep learning image

restoration, they propose using hierarchical multi-patch models, where images are restored in

non-overlapping chunks that grow in size until reaching the full-size image output at the final

stage. This allows them to efficiently compute progressive updates in a fine-to-coarse manner,

whereas prior methods have all used coarse-to-fine approaches. Their “Deep Multi-Patch

Hierarchical Network (DMPHN)” achieves state-of-the-art performance on the GoPro dataset

at the time of their publication. Suin et al. (2020) extend upon the hierarchical multi-patch

concept by introducing a self-attention mechanism in their “Spatially-Attentive Patch-Hierarchical

Network (SAPHNet)” to improve the PSNR metric while simultaneously reducing the inference

time. The self-attention module allows their model to learn data-dependent masks for applying

non-uniform restoration in the case of, e.g., motion blur of a single object in the scene. Purohit

and Rajagopalan (2020) develop a similar technology that further focuses on the non-uniform

nature of real-world blurs using “Region-Adaptive Deblurring Networks (RADNets)”. A novelty of

their approach lies in the Dense Deformable Module (DDM) that introduces awareness of motion

trajectories to the model. Such mechanics are normally modeled using affine transformations

of pixel coordinates, which cannot be implicitly learned using traditional convolutional layers.

Tsai et al. (2021) extend the self-attention concept with their Blur-Aware Modules (BAMs) that

address the slow inference time of existing works. Their “Blur-Aware Network (BANet)” can

replace the recurrent self-attention structures of Suin et al. (2020) and Purohit and Rajagopalan

(2020) and achieve a faster inference time and higher PSNR as a result. The BAM applies

a combination of strip-pooling and attention-refinement to better identify blurred regions of

the still image. Zamir et al. (2021) approach the image restoration problem with a multi-stage

architecture, “Multi-Stage Progressive Image Restoration Network (MPRNet)”, that is capable

of adapting to several image restoration tasks, including deblurring, deraining, and denoising.
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They also propose a combined loss function based on the error between image gradients, i.e.,

they calculate the MSE between images after being convolved with a Laplacian kernel. Chen

et al. (2021) extend the idea of MPRNet with their Half-Instance Normalization (HIN) block in a

model entitled “Half-Instance Normalization Network (HINet)”. The key innovation of HINet lies

in the HIN block that applies instance normalization to only half of the data. HINet is the current

state-of-the-art for the image restoration datasets studied in this work.

Table 2.2 presents a comparison of the choice of optimization parameters of state-of-the-

art image deblurring models. All prior methods use the Adam optimizer with a patch size of

256×256 when training other than Zhang et al. (2020) who use a patch size of 128×128. The

choice of learning rate varies little between the various works and is frequently selected as

the default value of 1e−4 (Kingma and Ba 2014). Most authors do not provide the β1 and β2

parameters, but those who do report using the default values of β1 = 0.9 and β2 = 0.999 (Tao

et al. 2018, Gao et al. 2019, Tsai et al. 2021). It is worth noting, Zhang et al. (2020) do not

explicitly state the optimizer of choice, but provide parameters α = 0.005 and β = 0.01 that do

not resemble usual selections for Adam. There is a high degree of variance in the batch size

with some authors choosing as few as b = 1 sample per batch and others going as high as

b = 64 samples per batch. Likewise, there is a wild amount of variation in the training duration,

measured in epochs, and the learning rate schedules. This is to be expected as each work

presents a different model, but provides little insight into the appropriate choice of optimization

parameters.

There is little consensus on the choice of learning rate schedule, other than the confirmed

usage of either linear, exponential, or Cosine (Loshchilov and Hutter 2016) decay strategies.

Nah et al. (2017) apply an exponential decay strategy using a rate of 0.1 after 3e5 epochs have

transpired at the initial learning rate. Kupyn et al. (2018) train at the initial rate for 150 epochs

then apply a linear decay to 0 for another 150 epochs. Tao et al. (2018) use an exponential

decay throughout the entire training that reduces the rate to 1e−6. Kupyn et al. (2019) follow

their original method and decay to 1e−7 after the first 150 epochs. Gao et al. (2019) use an
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exponential decay schedule with a power of 0.3. (Zhang et al. 2019) also use exponential decay,

but with a rate of 0.1. Suin et al. (2020) describe a quantized exponential decay strategy that

halves the learning rate every 1e5 epoch. (Tsai et al. 2021) train at the initial learning rate for 50

epochs before linearly decaying to 1e−7 for the next 150 epochs. Zamir et al. (2021) and Chen

et al. (2021) both utilize the Cosine annealing strategy of Loshchilov and Hutter (2016) to decay

the learning rate to 1e−6 and 1e−7, respectively.

Data augmentation is scantly mentioned in the literature surrounding image restoration;

however, some researchers report success from using data augmentation approaches. Nah

et al. (2017), (Tsai et al. 2021), (Zamir et al. 2021), and (Chen et al. 2021) all perform random

horizontal flips, vertical flips, and rotations during training to regularize their models against the

spatial properties of natural images. Nah et al. (2017) additionally apply a noise augmentation

model (see Equation 2.2) during training to regularize their model against subtle Gaussian

noises that arise in digital images.

When validating against the GoPro testing data, most authors use models trained using

only the GoPro training set; however, there are exceptions to this practice. Kupyn et al. (2018)

use supplementary training data from the Microsoft Common Objects in Context (COCO) Lin

et al. (2014) dataset that they synthetically blur using a uniform blur synthesis algorithm that

resembles camera shakes. Kupyn et al. (2019) re-calculate the estimated blurs of the GoPro

dataset by interpolating the data up to a higher sampling rate before generating the blurry

training samples. They also train their models using a mixed training dataset containing samples

from the GoPro dataset, the Deep Video Deblurring (DVD) dataset (Su et al. 2017), and the

Need For Speed (NFS) dataset (Kiani Galoogahi et al. 2017). Gao et al. (2019) use the GoPro

data and also utilize a bespoke dataset that is not publicly available. Finally, Zhang et al. (2020)

use real-world blurred and sharp images in addition to GoPro data in their end-to-end model

that learns to blur and to deblur. It is standard for researchers in this area to provide PSNR and

SSIM metrics on the GoPro testing data, but some authors also elect to provide metrics on the
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Human-aware Image DEblurring (HIDE) dataset or the REalistic and Dynamic Scenes (REDS)

dataset in addition to the GoPro validation (Shen et al. 2019, Nah et al. 2019).

34



M
od

el
B

at
ch

S
iz

e
E

po
ch

s
Le

ar
ni

ng
R

at
e

Va
lid

at
io

n
In

iti
al

D
ec

ay
R

E
D

S
H

ID
E

D
ee

pD
eb

lu
r

(N
ah

et
al

.2
01

7)
2

9e
5

1e
−
5

E
xp

on
en

tia
l

7
7

D
eb

lu
rG

A
N

(K
up

yn
et

al
.2

01
8)

1
30

0
1e
−
4

Li
ne

ar
7

7

S
R

N
(T

ao
et

al
.2

01
8)

16
20

00
1e
−
4

E
xp

on
en

tia
l

7
7

D
eb

lu
rG

A
N

-v
2

(K
up

yn
et

al
.2

01
9)

–
30

0
1e
−
4

Li
ne

ar
7

7

Zh
an

g
et

al
.(

20
20

)
4

–
1e
−
4

Li
ne

ar
7

7

G
ao

et
al

.(
20

19
)

16
40

00
1e
−
4

E
xp

on
en

tia
l

7
7

D
M

P
H

N
(Z

ha
ng

et
al

.2
01

9)
6

30
00

1e
−
4

E
xp

on
en

tia
l

7
7

S
A

P
H

N
et

(S
ui

n
et

al
.2

02
0)

6
–

1e
−
4

E
xp

on
en

tia
l

7
3

R
A

D
N

et
(P

ur
oh

it
an

d
R

aj
ag

op
al

an
20

20
)

16
1e
6

1e
−
4

–
7

7

B
A

N
et

(T
sa

ie
ta

l.
20

21
)

–
30

00
1e
−
4

Li
ne

ar
7

3

M
P

R
N

et
(Z

am
ir

et
al

.2
02

1)
16

4e
5

2e
−
4

C
os

in
e

7
3

H
IN

et
(C

he
n

et
al

.2
02

1)
64

4e
5

2e
−
4

C
os

in
e

3
7

Th
is

S
tu

dy
4

15
0

1e
−
4

E
xp

on
en

tia
l

3
7

Ta
bl

e
2.

2:
A

co
m

pa
ris

on
of

tra
in

in
g

an
d

va
lid

at
io

n
pa

ra
m

et
er

s
us

ed
by

st
at

e-
of

-t
he

-a
rt

de
ep

le
ar

ni
ng

-b
as

ed
im

ag
e

re
st

or
at

io
n

m
od

el
s.

A
m

ar
k

of
“–

”i
nd

ic
at

es
th

at
a

va
lu

e
w

as
no

ts
pe

ci
fie

d
by

th
e

au
th

or
s.

35



Chapter 3

Does Trust Influence Autonomous Vehicle Adoption?

In this chapter, we present the design of a perception augmentation module that demon-

strably improves the driver’s trust in the underlying AI technology. The perception augmentation

module describes the visual surroundings of the AV to the driver using a video camera, an

object detection model, and a screen. In this case, the object detection model is a deep learning

algorithm that detects five generic classes of objects in the stream of images generated by

the camera sensor. The detected objects are shown to the driver using a screen that could

be placed on the dashboard of the vehicle. The screen contains an overlay with color-coded

bounding boxes describing the objects that are detected in the scene by the AI. A LED strip

provides an additional medium for providing alerts to the driver about objects in the scene but

in more localized ways. Using a software-in-the-loop simulation and a psychological survey, we

test whether the proposed system improves human trust in the ADS and whether improving

trust truly impacts the intent to adopt autonomous features. The simulation and survey are

administered remotely using the Qualtrics platform to collect data from 517 people.

This chapter validates that the perception augmentation module that we design improves

the driver’s trust in the ADS. We also show that trust in AI has a positive impact on the

perceived benefits and a negative impact on the perceived risks of using the ADS. We also

show that trust has a positive impact on the intention the adopt or use an ADS. The results

demonstrate that auto-makers should consider the development of user-interface components

like our perception augmentation module in their consumer ADS to improve the adoption and

usage of their products.

The remainder of the chapter is organized as follows. In Section 3.1, we describe a

framework for the design of human interfaces for ADS and the implementation of a perception
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augmentation module for an ADS. We go on to stage the validation of the system through an

experimental procedure in Section 3.2. A discussion of the results of the study can be found in

Section 3.3.

3.1 Perception Augmentation Module Design

3.1.1 Framework

Following the extant conceptual model of an ADS, – as a collection of sensors, a perception

module, a route planning module, and a vehicle control module (Badue et al. 2020) – we present

a framework for understanding HCI in ADS. Figure 3.1 illustrates the framework for a User

Interface (UI) layer between the human driver and each of the modules in the ADS. For each

of the preexisting modules, we present an independent interface component responsible for

relaying information to the driver, as well as responding to prompts from the passenger (e.g., by

voice).

The first UI module, the perception augmentation module, receives as input the data

from the perception module of the ADS, as well as the sensor data. The primary duty of this

perception augmentation module is to improve the human driver’s understanding of their sur-

roundings through the sensors and computational models. One implementation of a perception

augmentation module may be an alert system that flashes a light and emits a sound if the

vehicle is approaching an object, like a pedestrian, at a dangerous rate. Another implementation

of a perception augmentation system may wait for questions from the driver related to the

physical surroundings of the car, like whether any pedestrians are nearby.

The second module in the ADS HCI framework is the route guidance module. As a

downstream module, the route guidance component receives as input the data from the

previous steps in the pipeline that are related to perception. It also receives the output data

from the planning component of the ADS. This module’s function is to provide the human driver

with information related to the planned route for the vehicle. This could include functions like
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alerting the driver when the route is changing due to traffic and/or weather conditions. The

module could also contain reactive features, such as answering questions from the driver about

the route. Many of the features that fall into this component can be found in contemporary

Global Navigation Satellite System (GNSS) receivers and map applications.

The final component, the control notification module, is responsible for relaying information

to the driver about the physical control of the vehicle. Much like the route guidance module, the

control notification module is downstream and takes as input all prior data, as well as data from

the control module in the ADS. An example function of the module would be explaining to the

driver why the ADS may have performed unexpectedly or alarmingly. Because the definition

of alarming is subjective, the component may also await prompts from the driver to explain

behaviors that the driver personally found alarming or unconventional.

Human Driver
promptpromptprompt

informationinformationinformation

Control
Notification

Route 
Guidance

Perception
Augmentation

ADS User Interface

Steering
Acceleration
Braking
...

Automated Driving System (ADS)

ControlPlanningPerception
Video
Lidar
Radar
...

Figure 3.1: A framework for understanding Human-Computer Interaction (HCI) in Automated
Driving Systems (ADS).
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3.1.2 Perception Augmentation Module

This study presents an implementation of one component of the conceptual framework

for HCI in an ADS (see Figure 3.1), namely, the perception augmentation module. We base

the system on a previous prototype presented by Kauten et al. (2018). The proposed module

observes the environment of an AV through the vehicle’s sensors, aiming to show alerts to the

driver based on the semantics of the scene. Our implementation uses a single camera mounted

on the roof of the AV to capture frames of the scene in front of the vehicle at a resolution of

1280× 720p and a capture rate of 30Hz. Semantic meaning is parsed from singular frames

using an object detection model that maps images to collections of rectangular regions with

labels describing the object in the rectangle (e.g., “person”, “banana”, “bicycle”). Alerts are

generated through two mechanisms, namely, (1) a video stream of the rooftop camera bearing

color-coded rectangles, and (2) a color-coded LED strip around the windshield. It is worth

noting that the LED strip is reserved for high-priority alerts about vehicles and pedestrians; the

LED controller ignores data about generic objects, traffic signals, animals, and the like.

Figure 3.2 describes a high-level architecture of the proposed perception augmentation

module. The architecture illustrates the collaborations among the components in terms of

data flow. More specifically, the components include a roof-mounted camera, vision model,

dashboard display, object space to LED space transformation function, and a windshield

LED strip. The roof-mounted camera is an input device, whereas the dashboard display and

windshield LED strip are both output devices. The intermediary modules are conceptual

compute components of the underlying system.

Real-time pixel data acquired by the roof-mounted camera flows through the vision model

to extract a set of labeled rectangles, the possible labels of which are: “generic object” (e.g.,

backpack, skateboard), “vehicle” (e.g., car, bus, truck), “pedestrian”, “traffic signal” (e.g., stop-

light, stop sign), and “animal”. The labeled rectangles pass to a dashboard display to be

overlaid onto the camera frame using a color code. The color-coded annotated frame is then

shown to the driver using a display on the dashboard of the vehicle. The labeled rectangles
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Windshield 
LED Strip

...
LED pixels

Transformation
Function

Object Map

Dashboard
Display

Labeled Frame

Vision Model

Camera Data

Roof-Mounted  
Camera

Figure 3.2: The high-level architecture and data flow of the proposed perception augmentation
module.
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also flow through an LED controller to be interpolated to coordinates around the windshield

and shown to the driver using an LED strip.
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3.1.3 Roof-Mounted Camera

We equip a vehicle with a rooftop camera to produce a view of the scene in front of the

car. Although modern cameras are capable of producing high-resolution image data (i.e., 4K)

at a fast rate of capture (i.e., 120Hz), processing big data in a vehicle bears a significant cost

for marginal gains. As such, the rooftop camera in our setup runs at 1280 × 720p resolution

with a capture rate of 30Hz. To simulate driving experiences from the perspective of the

driver, we place a second camera (a.k.a., cockpit camera) inside the cabin to capture frames of

the windshield from the driver’s perspective. Compared with the rooftop camera, this cockpit

camera captures data at a higher resolution of 1920×1080p and a faster refresh rate of 60Hz to

produce a smooth and high-definition video. This second camera is for experimental purposes

only (see Section 3.2.4), only the roof-mounted camera is necessary for the functionality of the

perception augmentation module.

rear

front

Cockpit Camera
Rooftop Camera

Figure 3.3: The layout of the roof-mounted and cockpit cameras installed on the vehicle.

3.1.4 Vision Model

The perception augmentation module leverages the vision model of the ADS to detect

objects in the driving environment in the form of annotated rectangular regions. This particular

strategy is commonly used in contemporary ADS (Schwarting et al. 2018). The vision model

acts as a “black box” transformation function from pixel space to object space. For simplicity,

we apply a temporally agnostic vision model that considers singular frames (i.e., images) as

opposed to sequences of frames (i.e., videos).
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In what follows, we briefly introduce the object-detection model implemented in the per-

ception augmentation module. Let Eqn. 3.1 be the output domain I of the 1280× 720p RGB

rooftop camera.

I = R1280×720×3 (3.1)

We refer to an object domain as O (Eqn. 3.2), where class c is one element in a predefined set

of classes C. We denote tuples (x, y) and (w, h) as (1) the starting point and (2) the dimensions

of the rectangular region containing the object, respectively.

O = {c ∈ C, (x, y), (w, h)} (3.2)

Now we are positioned to define the vision model as function fvision in Eqn. 3.3, where n

represents the total number of objects in a scene conforming to the semantics of the labels in

set C. In practice, it is impractical to exhaustively detect all objects in a scene. Therefore, we

argue that n is bounded.

fvision : I→ On (3.3)

In practice, fvision is approximated using deep learning algorithms Girshick et al. (2013),

Redmon et al. (2015) trained on large large-object-detection datasets Lin et al. (2014). We

commonly refer to the input to fvision as the tensor I ∈ I and the output as the matrix O ∈ On –

i.e., O = fvision(I).

For our study, we implement fvision using the “You Only Look Once” (YOLO) object detection

model. Specifically, we apply the third version of the model, which achieves near state-of-the-art

detection metrics while maintaining a higher throughput than competing models. YOLO relies

on a CNN to map images from I to objects in O. We obtain trained weights for the model

directly from a prior study reported in Redmon and Farhadi (2018).
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YOLO Object Detector

The “You Only Look Once” (YOLO) vision model is a neural network that automatically

detects objects in an image. The architecture has been iterated over three times resulting in a

highly accurate and computationally efficient detector; this section briefly discusses only the

third version. For a detailed history, we refer readers to v1 Redmon et al. (2015), v2 Redmon

and Farhadi (2016), and v3 Redmon and Farhadi (2018) in order.

Training the YOLO parameters relies on large datasets that are iterated over through back-

propagation. The three distinct datasets studied in computer vision research include ImageNet

(an object classification dataset), Visual Object Classes (VOC), and COCO (object detection

datasets) Deng et al. (2009), Everingham et al. (2010), Lin et al. (2014). Although the abstract

vision model presented in Section 3.1.4 represents objects using their direct dimensions, YOLO

outputs dimensions as offsets from the dimensions of bounding box priors. These priors are

extracted from the bounding boxes in the VOC and COCO datasets using a clustering algorithm,

such as k-means.

YOLO is a fully convolutional neural network, meaning that the input and output shapes

can dynamically change to accommodate different image sizes. YOLO typically uses images

with size 416× 416 to ensure the output dimension has an odd dimension – 13× 13 in this case

– so a single cell falls in the middle of the image. This is performed under the heuristic that

larger objects typically occupy the center of an image.

The architecture contains two distinct parts, namely, a feature extractor and an object

detector. The feature extractor applies a series of convolutional, pooling, and residual layers to

reduce the image size by a factor of 32 and extract meaningful semantics. The object detector,

a single convolutional layer, then maps the extracted features to object space in the form of

(x, y) coordinates, (h,w) offsets from bounding box priors, an “objectness” score (i.e., the

likelihood that the region contains any object), and a set of conditional class probabilities.

Figure 3.4 describes the output grid of YOLO with a hypothetical bounding box. It is worth

noting, there are five bounding box priors, so there are five bounding boxes predicted for each

44



cell in the output grid. ph and pw refer to the height and width of the bounding box prior. YOLO

predicts (th, tw) to scale the prior dimensions along an exponential curve. Eqn. 3.4 and Eqn. 3.5

formulate how the bounding box priors ph and pw are scaled using the network outputs th and

tw to produce the bounding box dimensions bh and bw, respectively.

bh = phe
th (3.4)

bw = pwe
tw (3.5)

The YOLO algorithm directly predicts the center of the box (tx, ty) – as opposed to predicting

an offset from a prior – relative to the location of the grid cell whose upper left corner is at pixel

(cx, cy). Eqns. 3.6 and 3.7 describe the calculation of the center of the bounding box (bx, by)

from (cx, cy) and (tx, ty).

bx = σ(tx) + cx (3.6)

by = σ(ty) + cy (3.7)

In addition to the bounding box, the network produces an “objectness” score as the probability

of the bounding box containing any object (i.e., P (object)) multiplied by the Intersection over

Union (IoU) between the predicted and ground truth bounding box. During inference, this

score reduces to just P (object) as the IoU is undefined for unknown targets. Lastly, the model

estimates a series of class conditional probabilities (i.e., P (c|object)∀c ∈ C) that determine the

likelihoods of the bounding box containing specific object classes.

YOLO is trained using a combination of ImageNet, COCO, and VOC datasets. This strategy

allows the model to effectively detect over 1000 object classes. The datasets are combined

using a concept graph to link the disparate topics between datasets – i.e., “golden retriever”

in ImageNet is also “dog”, which is also “animal” in COCO, and so on. The implementation

of the training procedure escapes the scope of this work. We refer readers to Redmon et al.
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Figure 3.4: A hypothetical YOLO output grid with a bounding box output for a given prior.

(2015), Redmon and Farhadi (2016), and Redmon and Farhadi (2018) for the full training

algorithm.
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3.1.5 Object Color Map

Before describing the dashboard display and the LED controller, we articulate an object

color map based on a generalization set, C′, of the class set C. This simplification focuses on

five core object groups, like “vehicle”, as opposed to specific objects, like “car”, “truck”, and

the like, thereby making the results of the model easier to interpret in fast-paced environments.

Figure 3.5 outlines the color-coding in terms of the five generic class groups in C′: “generic

object”, “vehicle”, “pedestrian”, “traffic signal”, and “animal”. “generic object” describes skate-

boards, bananas, and the like; “vehicle” encompasses cars, trucks, buses, and motorcycles;

“pedestrian” stands for people and bicyclists; “traffic signal” represents traffic lights and stop

signs; and “animal” denotes non-human beings like birds, dogs, and cats, just to name a few.

It is prudent to carefully select colors in the color map and the reason is two-fold. First, we

ensure that colors are aligned with preconceived symbolic meanings for better integration with

existing driving knowledge. For example, the color orange symbolically represents the concept

of “caution”. Second, we advocate that colors intended for externally visible features must not

accidentally imitate emergency vehicles or other traffic signals. For instance, the windshield

LED strip in our module may be seen by other drivers and should not be misconstrued as

traffic signals or emergency vehicle signals. We assign “generic objects” a subdued gray color

due to their low significance to the driving task. Importantly, “pedestrians” are assigned bright

safety orange, similar to U.S. road construction signs, to convey a similar message of caution

for surrounding human beings. “Traffic signals” are designated a red color in a similar vein of

thought; stop signs are red and stoplights are easily associated with red. There is no singular

color that objectively provides a symbolic representation of motor vehicles or animals. As such,

we assign “vehicle” and “animal” a purple color and green color, respectively.

Generic
Object Vehicle Pedestrian Traffic

Signal Animal

Figure 3.5: The color-coding for the generalized object classes.
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3.1.6 Dashboard Display

To provide a real-time feed of the performance of the ADS perception component, a simple

dashboard display shows the outputs of the vision model combined with the image data from

the rooftop camera (see also Figure 3.2). The controller of the dashboard display uses the

color-coding described by Figure 3.5 to color each of the annotated rectangular regions output

by the vision model. These colored regions are then overlaid with the image to produce an

image of the scene with colored and labeled rectangles surrounding the detected objects.

Figure 3.6 illustrates an example output from the dashboard display. Similar to how

previous works have visualized object space O, the display renders detected objects in the

form of bounding boxes around the pixels that illustrate the object. The color of each box is

defined by the class label c of the object in the box (i.e. “vehicle”) and the symbolic color map

(see Section 3.1.5). A string label describing the object’s specific class is attached to the top

left corner of the box. This label serves both to reinforce the color-map, and to provide more

detailed information about the object than the color alone – e.g., “car” or “truck” as opposed to

the general class, “vehicle”.

Our dashboard display logic is simple yet effective, arguably lacking the aesthetic polish of

modern consumer software. For instance, scenes cluttered with an excessive number of objects

can be hard to understand due to the many overlaying boxes (see the clump of pedestrians in

Figure 3.6). The simple design is furnished intentionally to reduce the number of independent

variables of our study. Future work may explore how to improve the aesthetic of the display to

be easily and intuitively parsed by the human driver in object-dense scenes.
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Figure 3.6: An example object detection output.

3.1.7 Windshield LED Strip

An LED strip provides a mechanism to direct the attention of the driver to areas of interest

on the windshield. Figure 3.7 illustrates that an LED strip with seven separate zones (i.e., five on

the top and one on each side) lines the windshield of a vehicle. The LED strip conveys alert data

only for “pedestrian” and “vehicle” classes (i.e., C′), which are treated as mission-critical classes.

To generate the signal for the LED strip, the annotated regions from the vision model are

aggregated into a tensor of cumulative class confidence scores L ∈ R1280×1920×|C′| described

by the iterative process in Algorithm 1. The transformation between the pixel coordinates

(i.e., object coordinates) from the camera perspective and LED strip coordinates from the

perspective of the driver is nontrivial; however, we assume the transformation between these

coordinate planes is reasonably approximated by a straight line. As such, we apply a simple

linear interpolation technique to resize the tensor L to a matrixL ∈ Rl×|C′| where l is the number

of LED zones around the windshield – i.e., l = 7 in Figure 3.7. We define an ad-hoc threshold

for determining whether an LED zone should be illuminated. It is worth noting, “pedestrians”

49



and “vehicles” are given a weight of 0.29, and “void” is given a weight of 0.3 where void is any

class that is neither a vehicle nor a pedestrian.

Windshield

LED Strips

Figure 3.7: A windshield LED strip divided into seven zones.

Algorithm 1: Object Space to LED Space Transformation Function
O :The set of objects from the object detection model
w :The actuation weights for the various classes

1 L ∼ 0 ∗ R1280×1920×|C′| // initialize L with zeros
2 L:,:,void+ = wvoid

3 foreach o ∈ O do // accumulate scores for all objects
4 Lxo:xo+wo,yo:yo+ho,co+ = P (co)
5 end
6 L← interpolate(L) // transform from camera space to LED space
7 foreach c ∈ C′ do // apply a weight to each class channel
8 L:,c+ = wc

9 end
10 l← argmaxc∈C′ L:,c // get class with highest P for each LED
11 return l mapped to RGB space using the color-coding

The design of the LED strip is still in its infancy. Our windshield LED strip is the first of

its kind aiming at capturing the attention of the driver. We don’t imply by any means that our

design is an optimal one in terms of layout, format, and number of zones. It is arguably true
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that the windshield LED strip might be (1) substituted by an augmented reality technology

(e.g., Google Glass (Muensterer et al. 2014)) or (2) integrated into a media center (e.g.,

Android Auto (Udovicic et al. 2015)). Our LED strip design opens a door to explore advanced

mechanisms for directing the attention of the driver in autonomous vehicles. Regardless of

the various potential implementations, data acquired and managed by our proposed LED strip

controller remains unchanged.

3.2 Psychological Study

To validate the designed system, a research model is designed and a simulation study is

conducted. In this section, we first describe the theoretical foundation for the study including a

brief review of Social Contract Theory (SCT) and an extension of SCT to the adoption of AVs.

On this theoretical basis, we go on to introduce a research model and series of hypotheses

about how the designed system (see Section 3.1) will affect human drivers. To measure the

effectiveness of the perception system on human participants through the lens of our research

model, we go on to design a simulation environment and questionnaire. We finish the section

with a presentation of data collected from two rounds of trial studies and a final study.

3.2.1 Theoretical Development

This study uses SCT as the theoretical lens to understand the initial consumer acceptance

of ADS. In the below subsections we first review the philosophical roots of SCT and build the

connections with our research context. Then, we further extend the social contract model of

health IT (Li et al. 2010) to the context of ADS adoption by considering the effects of trust

in AI, joy, personal innovativeness, perceived risks, perceived benefits, and the perception

augmentation system.

Social Contract Theory (SCT) posits that there exists an implicit social contract governing

the relationship between two parties in situations involving uncertainty (Dunfee et al. 1999).
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The core assumption of SCT is that individuals are subject to bounded moral rationality, i.e.

“individual moral agents lack the information, time, and emotional strength to make perfect

judgments” (Donaldson and Dunfee 1994, p. 18). AI systems supporting an ADS are very

complex and difficult to understand. As such, AI is criticized for being non-transparent and

is comparable to a “black box”. AI not only leads to less transparency in information but also

challenges the basic human need for control. In an autonomous mode, users essentially

relinquish some or all their control to the ADS in exchange for the benefits of autonomy.

Thus, the adoption of ADS comes with inherent uncertainty due to the lack of transparency and

reduced control, demanding the existence of an implicit social contract to govern the relationship

between users and ADS.

A social contract entails implicit norms defining the rights and responsibilities of two parties.

The specific norms embedded in a social contract vary from context to context. SCT has been

applied in many different contexts such as market exchange (Dunfee et al. 1999), personal

information disclosure (Li et al. 2010), adoption of health IT (Li et al. 2014), and technology

governance by block-chain (Reijers et al. 2016). Li et al. (2014) contend that individual intention

to adopt health IT is driven by a trust-enabled social contract that governs the relationship

between patients and health IT. They suggest that 1) the core of the social contract involves

a cost-benefit trade-off analysis, and 2) trust and sufficient benefits are two key factors for

individuals to enter a social contract with embryonic health IT to overcome the potential privacy

risks of patients.

3.2.2 Extending the Social Contract Model of Health IT to AV Adoption

In this study, we further extend the social contract model of health IT proposed by Li

et al. (2014) to the context of the ADS adoption to develop the social contract model involving

new IT artifacts. In particular, we argue that the adoption of ADS is driven by a trust-enabled

hedonic social contact between drivers and AI systems of ADS. The ADS users rely more on

the underlying AI systems than the traditional car. Trust in AI could play a key role in mitigating
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drivers’ perceived risks and explaining people’s intention to use an ADS. Additionally, the social

contract between drivers and AI systems of ADS have a hedonic nature since ADS could bring

enjoyment to users (Raue et al. 2019). ADS can be considered as a mixed system since it

serves both utilitarian (e.g. improved safety and fuel efficiency) and hedonic (i.e. enjoyment)

purposes. For systems with hedonic value, perceived enjoyment has been suggested to

be a strong predictor of individuals’ adoption intention (van der Heijden 2004). In situations

with uncertainty, emotions such as enjoyment can also act as important information cues for

individuals to evaluate the risk and benefits of using the systems (Li et al. 2011). Therefore, we

incorporate perceived enjoyment as another important lever influencing an individual’s decision

to adopt ADS.

Besides developing the social contract model of IT, our study also attempts to explore

mechanisms for cultivating trust in AI and joy. The lack of trust in the ADS underlying AI system

may be largely attributed to the complexity of such AI, which makes them opaque to drivers.

According to trust literature, first-hand knowledge is an important mechanism for building

trust (Gefen et al. 2003). Therefore, we designed and implemented an alert system, also called

the perception augmentation module, to increase the transparency of the AI of ADS. The alert

system is a module that augments drivers’ perception about how the underlying AI works, which

may serve as a knowledge-based antecedent for promoting trust in AI. Additionally, personal

innovativeness, as a personal propensity to try out new technologies (Agarwal and Prasad

1998), is pertinent to our research context for explaining drivers’ trust in ADS and perceived

enjoyment. Those with high personal innovativeness have been suggested to increase trust in

IT (Schweitzer and van den Hende 2016) and more easily enter the state of cognitive absorption

that exhibits partly through heightened enjoyment (Agarwal and Karahanna 2000).

From the above, we posit that the decision to adopt ADS is influenced by a trust-enabled

hedonic social contract with cost-benefit trade-off analysis, trust in AI, and perceived enjoyment

being three vital components. The perception augmentation module and personal innovative-

ness are important external factors that help cultivate trust in AI and perceived enjoyment.
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3.2.3 Research Model and Hypotheses

The research model (Figure 3.8) shows how individuals’ willingness to use an ADS is

driven by a cognitive assessment of risks and benefits embedded in a trust-enabled hedonic

social contract. We postulate that individuals’ willingness to use an ADS could be increased

by 1) increasing people’s trust in AI, 2) enhancing people’s perceived enjoyment from using

an ADS, and 3) providing adequate benefits such as fewer traffic accidents and lower stress

related to driving. Our model also suggests that trust in AI can be elevated by the add-on

perception augmentation module and personal innovativeness.

Personal 
Innovativeness Enjoyment

Trust in AI

Perceived 
Risks

Perceived 
Benefits

Intention

Perception 
Augmentation 

Module Covariates:
• Age
• Gender

Figure 3.8: The research model describing the constructs and hypothesized paths.

Perceived Risk, Perceived Benefit, and Behavioral Intention ADS may bring various risks

to drivers, including performance risk, safety risk, psychological risk, and social risk. The

performance of an ADS is influenced by hard-to-predict road conditions and bad weather such

as heavy rain or snows, thus exposing drivers to performance and safety risks (Guo et al. 2019).

People may also perceive psychological risk in terms of reduced self-image and social risk

of embarrassment before one’s social group (Luo et al. 2010). An individual may think that

an ADS does not fit his or her self-image and could even negatively influence how (s)he is
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viewed by others. Drivers who perceive high risks from ADS will be more cautious in their ADS

adoption decisions. Therefore,

H1: Perceived risk has a negative impact on drivers’ intention to use ADS.

On the other hand, theories behind ADS suggest that the technology can reduce the

number of deaths on the road, increase the amount of free time the driver of the vehicle has,

and improve the flow of traffic on public roads (Chan 2017). To a certain extent, these perceived

benefits resolve challenges that all drivers face on the road (in varying degrees based on their

geographic location, etc.). Because these benefits make ADS appear more useful, we posit

that

H2: Perceived benefit has a positive impact on drivers’ intention to use ADS.

Perceived Enjoyment and Behavioral Intention Perceived enjoyment is the extent to which

a system is perceived to be enjoyable in its own right, apart from any anticipated performance

consequences (Lowry et al. 2013). van der Heijden (2004) emphasized the important role of

perceived enjoyment in influencing individuals’ decisions to use technology with hedonic value.

A considerable number of studies have found that perceived enjoyment increases people’s

intention to use technology with hedonic value (Agarwal and Karahanna 2000, Teo and Noyes

2011, van der Heijden 2004). Considering the enjoyment value associated with the use of

ADS (Raue et al. 2019), we posit that

H3: Perceived enjoyment has a positive impact on drivers’ intention to use ADS.

Perceived Enjoyment and Cost-benefit Analysis In uncertain situations, emotions tend to

influence people’s judgment in a congruent manner such that positive emotions (e.g. joy) are

often associated with more positive judgment and lower negative judgment (Forgas 1995).

Similarly, perceived enjoyment, reflecting the extent of joyfulness one expects to glean from

using technology, may also exert a congruent effect on their judgment. Such a congruent

effect of perceived enjoyment has been supported in prior studies. For example, perceived

enjoyment was found to increase perceived ease of use and perceived usefulness (Venkatesh
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2000, Venkatesh et al. 2002), perceived benefits of online payment systems (Rouibah et al.

2016), and reduce perceived risks of mobile banking (Koenig-Lewis et al. 2015). Due to the

embryonic and “black box” nature of ADS, consumers often do not have complete information

to evaluate the costs and benefits of ADS. Thus, those who perceive more enjoyment from

driving ADS are expected to form a more favorable judgment about ADS. Therefore, we posit

that

H4: Perceived enjoyment has a negative impact on perceived risks from using ADS.

H5: Perceived enjoyment has a positive impact on perceived benefits from using ADS.

Trust in AI and Behavioral Intention In this study, trust in AI refers to one’s belief that the

AI in ADS is robust and provides the necessary safeguards to protect drivers. It corresponds to

the structural assurance component in institution-based trust (McKnight et al. 2002), reflecting

one’s general trust belief toward AI enabling ADS. Structural assurance has been suggested to

increase one’s trusting intention. In the context of e-commerce, trust in the general Internet

environment was proposed to positively influence consumers’ intention to follow advice, disclose

persona information or make purchases (McKnight et al. 2002). Similarly, drivers who trust in

the AI of ADS would be more willing to depend on ADS. Thus, we have

H6: Trust in AI underlying ADS has a positive impact on intention to use ADS.

Trust in AI and Cost-benefit Analysis In line with the social contract model of health IT by Li

et al. (2014), trust in AI may also indirectly influence behavioral intention through modifying

the cost-benefit trade-off analysis embedded in the social contract. Trust plays a key role in

mitigating perceived risks in situations involving uncertainty (McKnight et al. 2002). Trust in

the wireless Internet platform has been found to alleviate perceived risk in mobile banking

services. Likewise, drivers who trust in AI supporting ADS are expected to be more likely to

overcome their perceived risks of using ADS. In addition to risk mitigation, trust could also

serve as one form of subjective guarantee for increasing the chance for people to attain the
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potential benefits in a situation (Luo et al. 2010). As a result, those who trust in AI are likely to

form more favorable perceptions about the benefits of ADS. Therefore, we posit that

H7: Trust in AI has a negative impact on the perceived risk of ADS.

H8: Trust in AI has a positive impact on the perceived benefit of ADS.

Personal Innovativeness and Perceived Enjoyment Personal innovativeness reflects an

individual’s disposition to try out new technologies (Agarwal and Prasad 1998). Empirical

evidence suggests that those with high personal innovativeness tend to have more favorable

perceptions about new technologies (Rouibah et al. 2016). It was found to increase perceived

enjoyment in using online payment systems (Rouibah et al. 2016), and mobile video calling

in a leisure context (Zhou and Feng 2017). ADS are an embryonic innovation enabled by AI

technology. Highly innovative people are likely to perceive the use of ADS to be more enjoyable.

H9: Personal innovativeness has a positive impact on perceived enjoyment from using ADS.

Personal Innovativeness and Trust in AI Highly innovative people tend to be more curious

and willing to take the risk from using new technologies than those with low personal innovative-

ness (Schweitzer and van den Hende 2016). Due to its association with curiosity and risk-taking

propensity, personal innovativeness has been suggested to increase people’s trust in innovative

technologies such as health-monitoring devices and smartphone apps (Schweitzer and van den

Hende 2016). Likewise, we submit that personal innovativeness helps build people’s trust in AI

underlying ADS.

H10: Personal innovativeness has a positive impact on trust in AI.

Perception Augmentation Module and Trust Extant studies have shown that the techno-

logical opacity of the AI that powers ADS results in reduced trust from the drivers that use these

systems (Kalra and Paddock 2016, Kyriakidis et al. 2015). The add-on perception augmentation

module developed in this study attempts to open the “black box” AI, which helps users better

understand how AI that enables ADS works. Personal experience or knowledge has been
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suggested as one of the most fundamental mechanisms for building trust (McKnight et al. 2002).

Therefore, we argue that the perception augmentation module increases users’ trust in AI

through imparting knowledge or building user experience.

H11: Perception augmentation module has a positive impact on trust in AI.

3.2.4 Research Methodology

We conduct extensive experiments to validate the proposed hypotheses. Because it is

costly, potentially dangerous, and prohibitively difficult to engage human subjects to validate

the system in the field in an ADS, we design a simulated environment to deploy online to

remote participants. The simulation takes the form of a video where a viewer (i.e., driver)

assumes the position of the driver of the ADS performing a monitoring task. Figure 3.9 depicts

our simulated ADS cockpit, which is comprised of three primary components, namely, (1) the

windshield camera stream, (2) the dashboard display, and (3) the simulated LED strips. The

windshield camera stream shows the frames captured by a windshield camera (see Figure 3.2).

The dashboard display shows the output of the dashboard view controller as described in

section 3.1.6. Finally, the simulated LED strip shows the data output by the LED controller (see

Section 3.1.7) using groups of pixels as a model of an LED strip.

Dashboard Display

Windshield 
Camera 
Stream

Simulated LED Strips

(a) The abstract layout of the simulator. (b) An example frame from the simulator.

Figure 3.9: The design of the perception augmentation module simulator.
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Although the LED strips and dashboard display are simulated, the videos displayed in the

simulated windshield and dashboard are real-world driving scenarios captured by a cockpit

camera and a rooftop camera mounted on the autonomous vehicle (i.e., Lincoln MKz). More

specifically, the windshield videos were recorded by the cockpit camera, whereas the dashboard

videos were acquired by the rooftop camera (see Section 3.1.3). Driving data are recorded

directly from the vehicle while driving in the real world.

The driving scene data is organized by the subjective “density” of vehicles and pedestrians

in the scene – i.e., the number of pixels in the scene that belong to either object class.

Specifically, we create four distinctive DDT datasets based on object density, namely, (1) low

vehicle and pedestrian density, (2) high vehicle and pedestrian density, (3) low vehicle and high

pedestrian density, and (4) high vehicle and low pedestrian density. Separating the data into

distinct situations allows us to study the effect of the perception module under a wide variety of

driving conditions. It is worth noting, the densities are so-called subjective because the four

scenarios are selected by hand from a larger collection of driving scene data generated by the

data collection vehicle. This is a limitation imposed by the large size of the data collected by the

car coupled with the rural nature of the tested driving environment.

Procedure

We relied on experimental design and an online survey to test our research model. The

availability of perception-based alert systems was manipulated at two levels, i.e. with and

without alert systems. The alert system consists of a dashboard display and a light strip,

providing alerts of vehicles and pedestrians detected around the front and sides of the vehicle.

The first page of our online survey provides the informed consent form. The second page

consists of two filter questions about whether they agree to fill out the survey honestly and

whether they have any prior experience of driving a car or other types of automobiles. Only

subjects who answered “Yes” to both filter questions are allowed to proceed to the next page

showing an introduction video about the alert systems in an AV. The next survey page, exhibited
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A Self Driving Car (SDC) relies on an Artificial Intelligence (AI) system to
function. The AI system collects data from sensors and cameras to make
decisions in various driving situations. Typically, such decisions are made by
the human driver in a traditional car. The control of SDC can be interrupted and
taken over by the human driver at any time.
One of the key components of the AI system is an alert system. The below
video provides a tutorial of the alert system. Please click on the play button in
the middle of the video to watch the video. Once you finish watching, click the
“Next” button to move to the next survey page.

Figure 3.10: The survey scenario that participants read before embarking on the study. Here
we use the less technical term “Self Driving Car (SDC)” to refer to an ADS or AV for ease of
communication to a non-technical audience.

in Figure 3.10, provides a short description of the AI system of an ADS and prompts subjects to

watch a short-minute video clip recorded in an AV. Here each subject was randomly assigned

to one of the two treatment groups, i.e. with and without alert systems. Subjects assigned to

the group with alert systems saw outside street view through the front window together with

the alert systems. Those assigned to the group without alert systems only saw the street view.

All subjects were required to imagine themselves as the driver of an AV while watching the

video clip. After watching the manipulation video clip, subjects answered a manipulation check

question on whether the video provided the alert systems. This manipulation question also

serves as a filter question in the final study such that only those who answered correctly are

allowed to work on the rest of the online survey.

Before the final study, we conducted two rounds of pilot studies. The first round of pilot

study yielded 50 complete responses from students in STEM programs in a university in the

southeastern U.S. and a university in the southwestern U.S. The results from the first round

were used to check the effect of video manipulation and the wording of survey questions.

We received many useful comments and suggestions about the color precision of dashboard

display in the alert systems and grammar errors and wording ambiguity in some of the questions.

The original version of the alert systems was based on a semantic segmentation algorithm,

which gives no explicit boundaries of objects such as cars or pedestrians. Following student
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comments, we recreated the alert systems using an object detection algorithm, which clearly

outlined different types of objects. We also provided an introduction video about the alert

systems and improved the wording clarity of questions in the survey.

In the second round of the pilot study, we collected 65 complete responses from the same

two universities as those in the first pilot study and 45 subjects from the Qualtrics research panel.

The panelists were randomly contacted by Qualtrics and stayed anonymous to the researchers.

Qualtrics applies sophisticated digital fingerprinting technology to ensure all survey responses

are from different subjects. The demographic profile of subjects in the two pilot studies is

provided in Table 3.1.

Gender Age Driving Experience (yr.) Furthest Education
Male 58.8% 18− 24 41.3% ≤ 1 6.9% High school 15.0%
Female 41.2% 25− 34 35.0% 2− 4 15.0% Professional school 1.9%

35− 44 15.0% 5− 10 40.0% Undergraduate 37.5%
45− 54 5.6% 11− 15 11.3% Graduate 39.4%
55− 64 3.1% > 15 26.9% Doctoral 6.3%
> 64 0.0%

Table 3.1: The demographic distribution of survey respondents from two pilot studies.

In the second round of the pilot study, we did not find any issues with the experiment and

the survey questions. In the final data collection, we only changed the manipulation check

question to be a filter question so only valid responses to this question were retained. In the end,

we received a total of 517 usable responses (143 males and 374 females). The demographic

profile of respondents in the final study is summarized in Table 3.2. The survey respondents in

the final study are older than student subjects and are mostly female.

Covariates

Besides the core constructs in the research model, we also controlled for age, gender, and

driving experience, which may influence people’s willingness to use an AV in the future. For

example, younger people may be more willing to use an AV than elderly people.
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Gender Age Driving Experience (yr.) Furthest Education
Male 27.7% 18− 24 4.8% ≤ 1 0.8% High school 30.4%
Female 72.3% 25− 34 18.6% 2− 4 4.8% Professional school 10.6%

35− 44 19.7% 5− 10 8.3% Undergraduate 31.9%
45− 54 18.8% 11− 15 11.0% Graduate 25.0%
55− 64 21.3% > 15 75.0% Doctoral 2.1%
> 64 16.8%

Table 3.2: The demographic distribution of survey respondents in the final study.

Variable measurement

We primarily used existing validated scales in prior research with slight modifications to

fit the context. The scale measuring perceived benefits was developed based on the results

of a recent survey on consumer opinions on automated vehicles conducted by Bosch LLC.

(2019). Perceived benefit was operationalized as a formative first-order instrument while other

first-order scales were operationalized as reflective instruments. All these core constructs were

measured on a seven-point scale. The detailed items in each core construct are provided in

Table 3.3.
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Joy (Adapted from Lowry et al, 2013)
JOY1 I would feel enjoyment while driving the SDC. 1 2 3 4 5 6 7
JOY2 I would have fun using the SDC. 1 2 3 4 5 6 7
JOY3 Using the SDC would be pleasant to me. 1 2 3 4 5 6 7

Trust in AI Systems (after (McKnight et al., 2002) (Strongly Agree/Strongly Disagree)
TAI1 The AI systems has enough safeguards to make me comfortable using the SDC. 1 2 3 4 5 6 7
TAI2 I feel assured that the AI systems would adequately protect me from accidents on the

road.
1 2 3 4 5 6 7

TAI3 I feel confident that the AI systems makes it safe for me to use the SDC. 1 2 3 4 5 6 7
TAI4 In general, the AI systems provides a robust and safe environment for me to use the SDC. 1 2 3 4 5 6 7

Performance Risk (Modified after Luo et al. DSS paper).
PFR1 The SDC might not perform well and create problems while driving. (1-strongly disagree,

4-not sure either way, 7-strongly agree)
1 2 3 4 5 6 7

PFR2 The safety features built into the SDC might not strong enough to protect me. (1-strongly
disagree, 4-not sure either way, 7-strongly agree)

1 2 3 4 5 6 7

PFR3 What is likelihood that there will be something wrong with the performance of the SDC or
that it will not work properly? (1-low, 7-high)

1 2 3 4 5 6 7

PFR4 Considering the expected level of performance of the SDC, for you to purchase and use it
would be . (1-Not risky at all, 7- risky)

1 2 3 4 5 6 7

PFR5 SDC may not perform well and process road information incorrectly. (1-strongly disagree,
4-not sure either way, 7-strongly agree)

1 2 3 4 5 6 7

Safety Risk
SFR1 Considering the place and time you use a SDC, what are the chances that you stand to

safety risk? (1- low, 7-High)
1 2 3 4 5 6 7

SFR2 My using a SDC would expose me to increased safety risks related to traffic accidents.
(1-strongly disagree, 4-not sure either way, 7-strongly agree)

1 2 3 4 5 6 7

SFR3 There would be high potential for safety risks associated with my using a SDC. 1 2 3 4 5 6 7
Psychological Risk (Modified after Luo et al. DSS paper).

PSR1 Driving a SDC will not fit in well with my self-image or self-concept. (1-strongly disagree,
4-not sure either way, 7-strongly agree)

1 2 3 4 5 6 7

PSR2 The usage of a SDC will lead to a psychological loss for me because it would not fit in well
with my self-image or self-concept. (1-Improbable, 7-probable)

1 2 3 4 5 6 7

Social Risk (Modified after Luo et al. DSS paper).
SCR1 What are the chances that using SDC will negatively affect the way others think of you?

(1- Low, 7-high social risk)
1 2 3 4 5 6 7

SCR2 My usage of SDC would lead to a social loss for me because my friends and relatives
would think less highly of me. (1-Improbable, 7-probable)

1 2 3 4 5 6 7

Perceived Benefits (Developed for this study) (Strongly Agree/Strongly Disagree)
PB1 To me, using SDC would result in fewer traffic accidents. 1 2 3 4 5 6 7
PB2 To me, using SDC would result in more free time on the road. 1 2 3 4 5 6 7
PB3 To me, using SDC would help reduce driving-related stress. 1 2 3 4 5 6 7
PB4 To me, using SDC would help improve fuel economy. 1 2 3 4 5 6 7
PB5 To me, using SDC would improve my productivity due to the free time while driving. 1 2 3 4 5 6 7

Personal Innovativeness in IT (Agarwal and Prasad, 1998a, 1998b). (Strongly Agree/Strongly Disagree)
PI1 If I heard about a new information technology, I would look for ways to experiment with it. 1 2 3 4 5 6 7
PI2 Among my peers, I am usually the first to try out new information technologies. 1 2 3 4 5 6 7
PI3 In general, I am hesitant to try out new information technologies. 1 2 3 4 5 6 7
PI4 I like to experiment with new information technologies. 1 2 3 4 5 6 7

Intention (Venkatesh et al, MIS Quarterly 2003) (Strongly Agree/Strongly Disagree)
INT1 I intend to use SDC in the near future. 1 2 3 4 5 6 7
INT2 My general intention to use SDC is very high. 1 2 3 4 5 6 7
INT3 I will think about using SDC in the near future. 1 2 3 4 5 6 7

Table 3.3: The survey instrument for collecting data from the participants of the study.
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3.2.5 Data Analysis and Findings

SmartPLS (Ringle et al. 2015), a type of component-based structural equation modeling

(SEM) technique, was applied to check the quality of the measurement model and test the

research hypotheses. SmartPLS technique is particularly suitable for exploratory theory building

and testing (Lowry and Gaskin 2014), which fits one of the fundamental purposes of our study,

i.e. exploring the theoretical causes for people to use the embryonic AV. SmartPLS also has an

unparalleled advantage for testing complex research models consisting of both reflective and

formative constructs. Our research model is fairly complex, including reflective and formative

constructs together with second-order constructs. We operationalize perceived risk as a second-

order formative construct consisting of four first-order risk dimensions, i.e. performance risk,

safety risk, psychological risk, and social risk. Therefore, the SmartPLS technique is appropriate

for this study. In the following subsections, we first confirm the reliability and validity of our

measurement and then perform path modeling to test our research hypotheses.

Measurement Model Results

In line with the typical practice in the literature, we followed different criteria and procedures

to test the measurement quality of reflective and formative scales. The measurement quality

of formative scales, i.e. perceived benefit and perceived risk were evaluated based on the

significance level of path weights and the extent of multicollinearity of formative indicators

as suggested by MacKenzie et al. (2005). All formative indicators except social risk have

significant path weights. The variance inflation factor (VIF) was then computed for each of

the formative indicators to check the extent of multicollinearity. Excessive multicollinearity is

suggested when VIF values are above 10. The VIF values range from 1.8 to 4.2 for indicators of

perceived benefits and from 1.4 to 2.5 for those of perceived risks. As all formative indicators

have acceptable VIF values, multicollinearity is not a concern for the two formative scales.

In the prior literature, keeping non-significant indicators is a recommended practice, espe-

cially in the situation involving low multicollinearity (Mathieson et al. 2001, Bollen and Lennox
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1991, MacKenzie et al. 2005). Retaining non-significant indicators helps ensure the content

validity of the construct. The VIF value of social risk is only 1.4, suggesting that social risk has

little overlap with the other three risk dimensions. Dropping the social risk dimension would

omit a unique part of risk perceptions. Therefore, despite the insignificance of social risk, we

retained this risk dimension in the following data analysis.

After examining the measurement quality of formative scales, we assessed the measure-

ment quality of eight first-order reflective constructs based on their reliability, convergent validity,

and discriminant validity. A measurement scale is considered reliable if its composite reliability

(CR) is 0.7 or higher and its average variance extracted (AVE) reaches 0.5 as suggested

by Bagozzi and Yi (1988). All eight reflective scales were found to satisfy these two criteria for

reliability. Convergent validity evaluates whether the items measuring the same construct load

closely together. The convergent validity of a latent construct is supported if all its measurement

items are 0.6 or higher (Bagozzi and Yi 1988) and are statistically significant (D. and D. 2005).

We found that all items except the third item measuring personal innovativeness (i.e. PI3) have

significant loadings above 0.6. Therefore, after dropping PI3, we re-run the data analysis using

SmartPLS. All data analysis reported in this section reflects the results without PI3.

Following the suggestion by Fornell and Larcker (1981), we then checked the discriminant

validity of our measurement model based on loading and cross-loading values (Table 3.4) and

the correlation matrix (Table 3.5). Discriminant validity is suggested when items tapping a

latent construct load more strongly on that construct than on any other constructs. Each item

should have its loading value higher than its cross-loading values. Also, the square root of the

AVE of each construct should exceed the correlations between that construct and any other

constructs. From Tables 3.4 and 3.5, both criteria for discriminant validity were satisfied by

the eight first-order reflective constructs. Therefore, our measurement model has sufficient

reliability and validity.

Similar to other cross-sectional studies measuring all variables at one point in time, our

findings may be subject to the bias of Common Method Variance (CMV). To test the potential
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effect of CMV, we applied the marker-variable technique proposed by Lindell and Whitney

(2001). This technique requires the identification of the second smallest positive correlation

among the manifest variables as a more conservative estimate of CMV (i.e., rm). The second

smallest positive correlation was found to be 0.004 for our data. To assess the potential impact of

CMV, we further computed CMV-adjusted correlations among latent constructs by partialing out

rm from the bivariate correlations in Table 3.5. The CMV-adjusted correlations are only slightly

different from the original correlations with differences smaller than 0.0006. The significance

levels of all correlations stay the same. Therefore, CMV was not a significant source of bias

influencing the results of our study.

Hypothesis Testing

Figure 3.11 summarizes the results of path modeling, showing completely standardized

path coefficients and significance levels along each path. Our research model explains 35.3%

variance in perceived enjoyment, 36.8% variance in Trust in AI, 39.6% variance in perceived

risk, 73.6% variance in perceived benefit, and 69.9% variance in intention. In SmartPLS, we

performed bootstrapping of 5000 samples to test the statistical significance of hypothesized

paths in our research model. All hypothesized paths except H1, i.e. the path between perceived

risk and intention, are statistically significant. Overall, our research model is well supported.

Among the three covariates, driving experience is significant with those more experienced

drivers having lower use intention. Age and sex have no significant impact on intention.
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Figure 3.11: Results of testing hypotheses using Partial Least Squares (PLS) analysis.

*p < 0.05, **p < 0.01, ***p < 0.001

3.3 Discussion

This work aimed to contribute to the extant literature surrounding ADS by providing an

understanding of how a perception augmentation module could potentially improve the driver’s

trust in the underlying AI technology of the ADS. The study first introduced a conceptual

framework of the interface between a human driver and an ADS (see Figure 3.1). Based

on the framework, a perception augmentation module was developed that interacted with a

hypothetical perception layer of an ADS to relay information about the driving environment –

observed through the sensors of the vehicle – to the driver (see Figure 3.2). A research model

was developed to validate the perception augmentation module through the lens of SCT.

Of the eleven hypotheses posed by this study (see Section 3.2.3) ten were supported

by the collected data from the survey participants. The hypothesis that was not found to be

significant, H1, posited that perceived risk (i.e., physical, financial, psychological) of using an

ADS would have a negative impact on the intention to use an ADS (Guo et al. 2019, Luo et al.

2010). There are three possible reasons for this insignificant result. First, the drivers were

informed that the ADS would allow them to intervene in the automation if the ADS began to
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fail (see research scenario in Figure 3.10,) which may reduce the effect of perceived risks on

adoption. Second, the majority of the participants in the study reported having more than ten

years of driving experience, which may help increase their confidence in intervening in case of

ADS failure. Lastly, the effect of perceived risks may be overridden by that of other competing

factors that directly influence intention. To check this issue, we performed a robustness test

by building three alternative models. In the first model (M1), we removed the link between

trust and intention from the original model. In the second model (M2), we removed the path

from perceived enjoyment to intention from the original model. In the third model (M3), we

removed the two paths from trust and perceived enjoyment to intention. H1 becomes significant

in M1 and M3 but not in M2. This suggests that trust is the major factor overriding the effect of

perceived risks. Without trust, perceived risks become a significant factor reducing adoption

intention. The detailed results of the robustness test are available in Table 3.6.

Path
Model

Original M1 M2 M3
H1: Perceived Risks→ Intention −0.024 −0.070 −0.041 −0.154
H2: Perceived Benefits→ Intention 0.171 0.244 0.371 0.652
H3: Enjoyment→ Intention 0.441 0.553
H4: Enjoyment→ Perceived Risks −0.141 −0.142 −0.141 −0.142
H5: Enjoyment→ Perceived Benefits 0.527 0.527 0.527 0.527
H6: Trust→ Intention 0.240 0.434
H7 : Trust→ Perceived Risks −0.506 −0.506 −0.506 −0.506
H8: Trust→ Perceived Benefits 0.367 0.367 0.367 0.367
H9: Personal Innovativeness→ Enjoyment 0.594 0.594 0.594 0.594
H10: Personal Innovativeness→ Trust 0.584 0.584 0.584 0.584
H11: Perception Augmentation Module→ Trust 0.115 0.115 0.115 0.115
Age→ Intention 0.013 0.007 0.003 −0.016
Gender→ Intention 0.008 0.009 −0.005 −0.010
Driving Exp. → Intention −0.073 −0.074 −0.090 −0.104
R-square 9.9% 8.6% 5.6% 9.9%

Significant path coefficients are shown in bold text.

Table 3.6: Path coefficients of alternative testing models.

We propose that, under the lens of SCT, the adoption of ADS would be governed by a

trust-enabled hedonic social contract between drivers and the underlying AI systems. This
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led to four core hypotheses surrounding the intent to adopt an ADS, namely, H1, H2, H3, and

H6. Although H1 was found to be insignificant, the remaining three hypotheses of this subset

were validated by the data. This provides support for the application of SCT to the adoption

of ADS. H2 presented the idea that perceived benefit would have a positive impact on the

intention to adopt an ADS. This was based on the previous work of Chan (2017), who theorize

as to the potential benefits from ADS, both to society and individuals. Notably, we found no

empirical works connecting perceived benefit to the adoption of ADS. As such, this work is the

first to confirm this relationship in the context of ADS. From a different angle, we postulated

H3: perceived enjoyment would have a positive impact on the intent to adopt an ADS. The

idea that perceived enjoyment will positively impact an individual’s intent to use technology was

first studied by Agarwal and Karahanna (2000), Teo and Noyes (2011), and van der Heijden

(2004), and is further confirmed by this study. Although Raue et al. (2019) noted that individuals

find ADS enjoyable, this study is the first to empirically show the positive effect of perceived

enjoyment on ADS adoption. The final hypothesis relating external constructs to the adoption of

ADS, H6, poses that an individual’s trust in the AI powering the ADS would positively influence

that individual’s intention to adopt or use an ADS. This is an idea that has been studied in the

context of e-commerce by McKnight et al. (2002) and is further confirmed in the context of ADS

by this work.

H4 (i.e., perceived enjoyment will have a negative effect on perceived risks) also proved

significant in the structural model. This result agrees with prior literature which suggests a strong

link between trust and perceived enjoyment in other discipline areas, namely, IT (Venkatesh

2000, Venkatesh et al. 2002) and mobile banking (Koenig-Lewis et al. 2015). Similarly, H7,

which theorizes that the driver’s trust in AI will have a negative impact on the perceived risks

from using the ADS, was found to be significant. No other empirical studies have reported this

result to our knowledge.

H5 and H8 were theorized in regards to the effect of perceived enjoyment and trust in

AI, respectively, on the perceived risks. Likewise, based on previous work in online payment
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systems by Rouibah et al. (2016), H5 states that perceived enjoyment would have a positive

effect on the perceived benefits of the system. H8 similarly proposes that the trust in AI would

positively impact the perceived benefits of the system, which is an idea originally coined by Luo

et al. (2010). Both of these hypotheses were supported by the data.

H9, which posits that those who perceive themselves as personally innovative would

perceive enjoyment from using an ADS, was found to be significant. This aligns with prior

empirical researches by Rouibah et al. (2016) and Zhou and Feng (2017). Similarly, H10

proposed that those same individuals who perceive themselves as personally innovative

would be more likely to trust AI. This result was also strongly confirmed, further cementing

the research surrounding personal innovativeness in regards to trust, which was originally

suggested by Schweitzer and van den Hende (2016).

A major contribution of this work is the perception augmentation system that is intended to

improve the driver’s trust in the AI technology that powers the ADS. Although the data shows

a less significant link between the perception augmentation module and trust in AI than other

links in the model, the link is still strong enough to be considered significant. One reason

that the result does not appear more significant could be the simulated nature of the study.

Participants were exposed only to a loose approximation of the system (through software-

in-the-loop simulation) for a short time. As a result, participants may not have been able to

garner appropriate experience with– or knowledge of the system to trust it (McKnight et al.

2002). Irrespective, the result shows that the perception augmentation module does improve

the driver’s trust in the AI technology. This confirms that reducing the technological opacity of

an AI system can improve human trust in the system.

3.3.1 Contributions to Theory and Research

The findings of this study provide vital contributions to the research on trust and the

decision to use emerging AI-enabled technologies. First, we extend the social contract model

of health IT of Li et al. (2014) in three notable ways. 1) We contextualize the model to examine
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the implicit social contract between drivers and AI systems of ADS. Our study represents an

initial effort of applying the social contract lens in examining the relationship between human

beings and AI-enabled new technologies and verifies the usefulness of the social contract

lens in such a research context. The results of data analysis suggest that the lens of a social

contract is useful for us to understand the relationship between drivers and AI as a black box, a

context characterized by embryonic IT artifacts with a hedonic angle. 2) We extend the model

by incorporating a hedonic angle to reflect the nature of the product for both utilitarian and

hedonic purposes. The trust-enabled hedonic social contract model proposed in our study

lays a theoretical foundation for advancing the research of complex technologies meant for

both utilitarian and hedonic purposes. Our study opens a new avenue for further applying the

trust-enabled hedonic social contract model to other similar IT artifacts such as augmented

reality drones. 3) We expand perceived risks in the original model from privacy risk to multi-

dimensional risks involving performance risk, safety risk, psychological risk, and social risk

to fit the driving-related research context. Among the four risk dimensions, all but social risk

emerge as significant. The other risk dimensions are all important risks factoring into the social

contract between drivers and AI. Future studies on ADS or in a similar research context such

as augmented reality could leverage and further validate the risk dimensions identified in this

study.

Second, our study is the first that designs, and implements a perception augmentation

module to open the black box of AI and empirically tests the mechanism for developing human

beings’ trust in AI supporting ADS. This innovative research methodology closely integrates

the design of IT artifacts and the empirical test of human and IT interactions, which not only

enhances the relevancy of our study but also spawns a new channel for advancing theory.

Particularly, our results shed important light on the mechanisms for building trust in AI. Besides

one’s inherent personal innovativeness, imparting knowledge about the underlying AI through

the perception augmentation module is found to be effective for building trust in AI. Future

research could benefit from implementing different multi-media elements in the perception
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augmentation module to gain a fine-grained understanding of why and how certain elements

are effective or not effective for nurturing trust.

Third, our study confirms the crucial role of trust in AI for drivers to enter the social contract

with a black-box AI. It not only indirectly influences the behavioral intention through the risk-

benefit calculus but also exerts a direct effect. From the robustness test results (see Table 3.6)

discussed above, trust is instrumental for drivers to overcome their perceived risks on their

adoption intention. Thus, future research on technology use decisions should not neglect the

pivotal role of trust in IT.

Lastly, our study also provides insights into the effect of perceived risks in the literature.

The study by Li et al. (2014) supports the direct effects of both trust and perceived risks on

intention simultaneously. However, our study finds perceived risks to be no longer significant

in the existence of a direct link between trust and intention. The divergence from the study

by Li et al. (2014) may be partly attributed to the differences in the characteristics of embryonic

technologies and the types of trust. Our study examines trust in AI and the ADS that is equipped

with a perception augmentation module for building the driver’s trust in AI while Li et al. (2014)

investigate patients’ preexisting trust in firms providing Personal Health Record Systems. The

conflicting findings regarding the effect of perceived risks suggest the importance of future

studies to explicitly differ trust types and consider the characteristics of technologies when

studying the effect of perceived risks.

3.3.2 Implications for Practice

Besides the theoretical contributions outlined above, two practical implications may be

drawn from this work. First, the results suggest that designers of consumer AVs should prioritize

the development of features that drivers find enjoyable, as opposed to features that may strictly

improve the trust in the underlying AI. Such features may have a stronger downstream effect

both on the intention to adopt an AV, and on the perceived benefits from using the ADS.

Because people who perceive themselves to be personally innovative are shown to already
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derive some enjoyment from using ADS, AV designers may also consider developing interfaces

that make the system more enjoyable for those with lower degrees of interest in the technology.

In the context of modern autonomy, this may include features like fully hands-free operation,

stop-and-go traffic management, and road-sign detection, to name a few. By crafting ADS

that are highly enjoyable, automakers can catalyze the adoption and encourage the continued

usage of such systems.

Although this study primarily concerned autonomy for commercial vehicles, the results

may be extrapolated to other markets with similar properties. In particular, military and aviation

markets have a long history of applied autonomy for the control of vehicles. These markets

embody significantly higher degrees of uncertainty and perceived risk than is typical of the

commercial vehicle market. It is noteworthy that trust in AI has a far stronger negative effect on

the perceived risks from using the system than the construct of enjoyment. This suggests that

designing systems for these markets that prioritize the improvement of the operator’s trust in

the AI can be an effective strategy for encouraging the adoption and usage of such autonomous

systems.

3.3.3 Limitations and Implications for Future Work

Two noteworthy limitations of this current work give way to implications for future work.

First, higher degrees of realism could be achieved in the experiment to reduce any distortion of

the driving experience. The most intuitive approach to combating this limitation is to deploy the

technology in an actual ADS and have human participants ride in the vehicles. However, this

solution imposes technical and safety challenges that are difficult to resolve. Bearing this in

mind, previous works have developed state-of-the-art driving simulators that aim to reproduce

as much of the driving experience as possible, without causing potential harm to the human

participants (Rosique et al. 2019, Shahrdar et al. 2019). The extension of the perception

augmentation system studied in this paper to more advanced simulators or experimental

procedures can help in further confirming the results shown by this work. More sophisticated
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driving simulators can also allow for the study of more complex perception augmentation

systems. This work focused primarily on the design of an interface that relayed information

to the driver using a screen and LED strip. Future work may introduce more nuanced HCI to

improve the enjoyment from using the ADS. For instance, augmented reality interfaces used in

modern video games are enjoyable. The integration of such technology into the ADS through

the framework presented in this work marks an interesting avenue for future research and

innovation.

This work focused on a single type of vision model for a particular mode of data, namely still

images. In the future, we will explore the application of additional computer vision techniques,

such as semantic segmentation (i.e., pixel classification), instance segmentation, 3-dimensional

data processing, and video processing to determine how the different technologies can be

leveraged to provide monitoring tools for the human drivers. Additionally, questions of whether

virtual reality or augmented reality provides a meaningful interface between the ADS and

the human will be investigated. A final future research direction concerns designing a more

transparent vision model. In this work, we developed a system that provided transparency down

to the object detection level, but a deeper understanding of why the object detection model

chooses the classifications that it does is not currently understood. This is an active area of

research in computer vision that can significantly improve the capabilities of the perception

augmentation system.
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Chapter 4

Choosing a Loss Function for Deep Image Deblurring

Two different kinds of loss functions are used in deep learning-based image restoration,

namely, content losses and adversarial losses. Content losses are computed using paired

image data to enforce a generator model to produce outputs that match the expected images.

An alternative is to use adversarial losses via an auxiliary discriminator network that is trained

to detect sharp versus degraded images. Adversarial losses can be difficult to stabilize during

training and as such, authors that use GANs for image restoration tasks typically combine

the adversarial loss with an auxiliary content loss or perceptual content loss to stabilize the

training procedure (Nah et al. 2017, Kupyn et al. 2019). Although research continues to achieve

state-of-the-art performance on the standard benchmarks for image deblurring (Chen et al.

2021), few works attempt to compare the innovations of new research on a granular level.

In particular, several works have suggested and demonstrated the use of adversarial loss

functions and perceptual content loss functions, but no research provides a deep comparison

between the results of these different losses.

The results of this chapter show that despite the popularity of MSE as a content loss

function for image restoration tasks, MAE frequently produces higher quality results. Further-

more, we show that generator models trained solely using a perceptual content loss produce

outputs that are perceptibly better than the same model trained using a plain MAE or MSE loss

despite validation metrics that would indicate otherwise. We show that adversarial losses do not

produce generators capable of confidently deblurring images in the absence of auxiliary loss

functions. Likewise, we show that the combination of adversarial and content losses in some

cases produces higher quality results than either constituent loss when trained in isolation.

Finally, we show examples where the best model in this study produces results that are in some
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cases perceptibly better than the current state-of-the-art models when tested against real-world

blur data. To the best of our knowledge, this is the first work to comprehensively assess the

impact of content and adversarial losses on deep learning image deblurring models.

The remainder of this chapter is organized as follows. In Section 4.1, we describe the

design of the experimental setting and the independent variables in the study. We go on to

present the results of the quantitative and qualitative validation in Section 4.2. A discussion of

the results of the study can be found in Section 4.3.

4.1 Methodology

4.1.1 Architecture

Following Lucic et al. (2018), we hold the architecture of our networks constant for compar-

ing loss functions. We define our generator model based on extant literature on image deblurring

and design the discriminator model from classifier model research. The models are kept simple

to prevent the external influences of techniques like dropout, activation normalization, weight

normalization, and the like.

Generator

We base the architecture of the generator model on the idea of residual learning. Residual

learning is a well-studied method for reducing the vanishing gradient problem in deep net-

works (He et al. 2016). Deep residual models replace the direct feed-forward architecture

of traditional neural pipelines with a residual structure. In residual blocks, activation maps

propagate through one or more layers before being added back to the output of the parallel

network. Figure 4.1 illustrates the architecture of the residual block used in the generator model

where f is the Leaky REctified Linear Unit (Leaky ReLU) activation function. Leaky ReLU

is used instead of ReLU because ReLU produces sparse gradients (Xu et al. 2015). The

residual structure is typically repeated several times in a cascade and can be adapted with
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more complex internal filtering mechanisms, such as in the Inception-v2 network of Ioffe and

Szegedy (2015). Besides classification tasks, residual learning is common in image-to-image

transformation models not only for the properties of the strengthened gradient in deeper models

but also because it reduces the impact of error propagation on the model outputs, resulting in

more stable and quicker optimization (Kupyn et al. 2018).

ff

Figure 4.1: A depiction of a simple residual block. Two convolutional layers, shown in gray, are
applied to the inputs, shown in light gray, and added back to the inputs before the final activation
function f .

Figure 4.2 illustrates the architecture of the generator in terms of the activation map outputs

of individual layers. The generator is composed of a series of cascaded convolutional layers in

an encoder-decoder structure. The first layer in the generator, a convolutional filter followed by

Leaky ReLU activation, projects the input image to 128 channels. Following this, the generator

contains three down-sampling blocks composed of a convolutional layer with a stride of two, a

Leaky ReLU activation, and a residual block. At the finest resolution, the generator cascades

an additional three residual blocks before up-sampling. In the decoder network, the generator

maps the encoded activation maps back to full size using a series of transposed convolutional

layers, each followed by a Leaky ReLU activation and a residual block. The final layer projects

the activation maps back to three channels and adds them to the input image acting as a global

residual skip connection, which Kupyn et al. (2018) find stabilizes the training processes and

reduces over-fitting. All convolutional kernels have bias terms and are size 3 × 3 other than

the final output layer which is size 7 × 7. Different from Kupyn et al. (2018), we apply the
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residual addition before the final hyperbolic tangent activation function, which we find produces

better perceptive results by preventing over-saturation of the pixel illumination space. Based

on the work of Gao et al. (2019), we apply local residual skip connections at each scale in the

encoder-decoder. Namely, the activation maps before each down-sampling stage are skipped

and added to the output activation map of each up-sampling stage. There are no feature

pyramids, such as deployed by Kupyn et al. (2019), used in the baseline generator model. Also,

no attention mechanisms, like those developed by Zamir et al. (2021) and Chen et al. (2021),

are employed in the generator. Images are normalized to the domain of [−1, 1] before being

processed by the network. In total, the generator network contains card(θG) = 3, 564, 419

parameters, which is comparable to the MobileNet architecture of Howard et al. (2017) that is

designed for embedded systems, edge nodes, mobile phones, and such.

Discriminator

In cases where an adversarial loss is utilized, we exploit the simple discriminator architec-

ture shown in Figure 4.3. The model is composed of two blocks of two convolutional layers. The

second layer in each block down-scales the activation maps by a factor of two using convolution

with a stride of two. All convolutional layers contain 128 filters, each of size 3× 3 with a bias

term, and a Leaky ReLU activation function. The final feature maps are down-scaled globally

using the spatial pyramid feature pooling strategy of He et al. (2015) before being flattened into

a one-dimensional feature vector. This feature vector is mapped to logits using a single dense

layer with one output unit. For loss functions based on probabilities, a sigmoid activation function

is applied to the output. Otherwise, the raw logits act as the output, and the discriminator

is instead a critic. When the outputs of the model are probits, input images are normalized

to the domain [0, 1] to match the range of [0, 1]. For critic models that are logit-based, input

images are normalized to the domain of [−1, 1]. In total, the discriminator network contains

card(θD) = 450, 817 parameters.
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To validate the ability of the discriminator in our adversarial pipeline, we conduct a small

experiment to ensure that the discriminator can learn to detect blurry images in isolation. Using

the GoPro dataset, we train an independent discriminator model on the classification task of

detecting blurry images among sharp ones in the training data. We train this discriminator model

for 25 epochs using a batch size of 64 and the Adam optimizer with η = 1e−4, β1 = 0.5, and

β2 = 0.9. Images are cropped randomly to squares of size 256×256 during training. Because

the pyramid pooling module produces the same number of activation maps irrespective of

the size of the image, the discriminator can be validated against full-sized images even when

trained on only small patches. The trained discriminator model can detect sharp and blurry

images with 93.1% and 84.4% accuracy, respectively, on the GoPro testing set. It is worth

noting, we do not use a pre-trained discriminator in our adversarial losses; the training of this

one model is simply to test the capacity of the architecture.

Figure 4.3: The convolutional discriminator network. The inputs to the model are RGB images
of size (M,N, 3). Gray blocks denote convolutional layer activation maps after a Leaky ReLU
activation function. The pink block describes the outputs of a pyramid pooling layer. The
flattened outputs of the pyramid pooling layer pass to a dense network with a single layer and
single output unit.

4.1.2 Loss Functions

We train generator models using different combinations of loss functions to measure the

effect of the loss on deblurring performance. We first use a single adversarial loss, which has
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not been investigated in the literature to the best of our knowledge. Next, we investigate the

effect of using only content loss. Although MSE has been well studied in the literature, MAE and

frequency domain representations have not. Finally, we combine the adversarial losses with

the content losses in a cross-study to determine the effect of the combination on the learning

process.

Adversarial Losses

GANs are an active research area that undergoes constant innovation. In the context of

image restoration and deblurring, adversarial losses have shown some success in a variety of

forms. Specifically, GAN (Nah et al. 2017), WGAN-GP (Kupyn et al. 2018), and RaGAN (Kupyn

et al. 2019, Zhang et al. 2020) have set state-of-the-art records in the past. A flavor of GAN that

has not been studied in the context of image restoration is the LSGAN. The LSGAN has salient

properties in that it can encourage the generator to produce samples that are both realistic to

the discriminator and also close to the distribution of the real data. This prevents cases where

the generator produces samples that fool the discriminator but are not drawn from a distribution

that resembles real data and thus look fake to human observers. As such, Kupyn et al. (2019)

propose that LSGANs are well suited for image restoration applications where adherence to

the sharp data distribution is paramount.

In total, we study both the standard non-saturating GAN used by Nah et al. (2017) and

the saturating GAN to set baseline metrics. Following Kupyn et al. (2018), we next utilize the

WGAN-GP for training and measure its effect on the metrics. We also apply the standard

WGAN loss with its weight clipping policy. Kupyn et al. (2019) and Zhang et al. (2020) both

report good results using the RaGAN loss. As such, we study both the RGAN and RaGAN

loss functions. Lastly, based on our aforementioned motivations we include the LSGAN in our

study. Table 4.1 illustrates the losses of the discriminator and generator applied in this study. A

comprehensive review of these losses and their foundation can be found in Section 2.2.6.
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Content Losses

MSE over RGB luminance values is a frequent choice of loss function for image restoration

tasks for its simplicity. MAE does not appear in the literature around deep image restoration

but has advantages over MSE in that it places equal weight on all errors (Steffens et al. 2020).

Because MSE computes squared errors, it is sensitive to large pixel differences (i.e., outliers)

that may cause sub-optimal convergence. Sims (2020) further note that errors computed in

spatial domains place equal weight to all frequency bands, which does not accurately represent

how the HVS perceives images. As such, they derive inspiration from Wallace (1992) and

calculate errors based on DCT coefficients instead of direct pixel illuminances. In this study,

we apply both MSE and MAE loss functions, as well as their frequency domain equivalents

MSE-DCT and MAE-DCT.

Perceptual Content Losses

For perceptual content losses based on pre-trained priors, block3_conv3 activation maps

of the VGG-19 network are often used as the auxiliary loss function due to this particular

layer’s ability to filter for object presence (Simonyan and Zisserman 2014, Johnson et al. 2016).

This is a salient property for style transfer approaches because it orients the loss function

towards pixel content with recognizable objects by masking low-entropy regions of the image.

Intuitively, such a loss could extend to image restoration algorithms, which Kupyn et al. (2018),

Kupyn et al. (2019), and Zhang et al. (2020) have shown. However, no current work related

to image restoration addresses the selection of the layer from the VGG-19 network. Although

the block3_conv3 activation maps filter for object presence, lower level layers act as simpler

edge detectors that are conditioned to natural image priors. These lower layers could provide

valuable gradient information as an auxiliary loss function for image restoration approaches

where sharpness does not necessarily correlate with object presence. Figure 4.4 illustrates

the mean activation output for the block1_conv1, block2_conv2, and block3_conv3 layers

of the VGG-19 network after the ReLU activation function for a sharp-blurry image pair taken
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from the GoPro training data. For visualization purposes, the activation maps are normalized

by the L∞ norm before mapping to pixel space using the “bone” color-map. To account for the

down-sampling between blocks in the model, images are up-scaled to the same size, which

introduces some blurring in the visualizations of the deeper layers. Due to the propagation effect

of the ReLU non-linearity in the model, the activation maps of deeper layers become sparser as

signal content is progressively filtered in a cascade. This is noted by Zhang et al. (2020), who

elect to use the final layer’s activation maps before the ReLU activation in an attempt to make

the gradient signal less sparse. For this example, it is trivial to confirm that block3_conv3 filters

for the presence of the cars and buildings in the scene. The signal of block1_conv1 is denser,

containing strong activation only for basic edges in the image. block2_conv2 exhibits strong

edge detection, and also a degree of object presence filtering indicated by the sparseness of

the low-entropy pixels describing the road and sky.

(a) Sharp (b) Sharp block1_conv1 (c) Sharp block2_conv2 (d) Sharp block3_conv3

(e) Blurry (f) Blurry block1_conv1 (g) Blurry block2_conv2 (h) Blurry block3_conv3

Figure 4.4: Example average activation outputs from the block1_conv1, block2_conv2, and
block3_conv3 layers of the VGG-19 network for a sharp-blurry image pair.

We investigate the effect of using each one of the block1_conv1, block2_conv2, and

block3_conv3 layers as an auxiliary loss function in terms of qualitative and quantitative metrics.

We also measure the impact of combining the losses of the block1_conv1, block2_conv2,

and block3_conv3 layers into an ensemble loss.
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4.1.3 Training

The training dataset used is the GoPro dataset of Nah et al. (2017), which was generated

by the authors using the method described in Section 2.2.4. Specifically, we use the gamma

subset of the data that applies a nonlinear model of the CRF to the synthetically blurry images

to better represent the image acquisition process (see Section 2.2.1). Images are cropped

randomly to windows of size (256, 256) without flipping or rotating. Random noise is added

to samples from the real-world data following the method of Nah et al. (2017). For each

sample (in the floating-point domain [0, 1]), a standard deviation is randomly sampled from

the Gaussian distribution σ = N (0, 2
255

)2. Each pixel is randomly perturbed by a random

noise generated by sampling from N (0, σ2). Before training, weights of convolutional filters are

initialized uniformly (Glorot and Bengio 2010) and bias terms are initialized to zeros. During

training, mini-batches of size b are drawn to calculate gradients and update model weights of

the generator, and batches of size b/2 are drawn for the discriminator. Both the discriminator

and generator are trained using an independent Adam optimizer with η = 1e−4, β1 = 0.5,

and β2 = 0.9 for a total of 150 epochs (Kingma and Ba 2014, Gulrajani et al. 2017). In cases

where there is no discriminator model, the generator is trained following the same policy and

parameters for all content losses. The learning rate is decayed exponentially over the full

duration of training to half of its original value, i.e., the final learning rate is ηf = 5e−5. After

the optimization algorithm completes, the best model weights are kept in terms of training

PSNR. Table 4.2 specifies the exact training parameters used for each learning framework.

It is worth noting, the WGAN framework requires the use of the RMSprop optimizer because

momentum-based approaches like Adam will fail to converge (Arjovsky et al. 2017). WGANs

discriminators are also over-trained to optimality by taking a ratio of five training steps for every

one generator step.
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Framework
Batch Size

Optimizer D : G Ratio
Discriminator Generator

GAN b/2 b Adam 1
GAN (Saturating) b/2 b Adam 1
LSGAN b/2 b Adam 1
WGAN b b RMSprop 5
WGAN-GP b b RMSprop 5
RGAN b b Adam 1
RaGAN b b Adam 1

Table 4.2: Training parameters that are held constant in this study based on associated loss
configurations.

4.1.4 Validation

Quantitative validation is performed using the GoPro test dataset of Nah et al. (2017), which

contains 1111 paired validation samples. We additionally perform quantitative validation using

the REDS dataset of Nah et al. (2019), which contains 3000 images that were generated using

a similar, but refined method as compared to Nah et al. (2017). The generator can be validated

objectively using PSNR and SSIM (see Section 2.2.5). For qualitative analysis, we use samples

from the dataset of Lai et al. (2016) that contains images degraded by real-world blur samples.

Because these are real-world blurs, there are no corresponding sharp images to compute hard

metrics from. We also use samples from Köhler et al. (2012) for qualitative analysis. Code

to train the models and generate the validation results in this study can be found at https:

//github.com/Kautenja/choosing-a-loss-function-for-deep-image-deblurring.

4.2 Results

4.2.1 Adversarial Losses

To provide an understanding of training stability for adversarial loss functions, Figure 4.5

plots the average training metrics for each model over the batches of each training epoch.

Because each epoch represents a random sample of the training data, some noise can be

expected in the data. In terms of both PSNR and SSIM, LSGAN achieves the highest overall
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values and is the only adversarial loss to achieve a nearly increasing trend on average. WGAN

and WGAN-GP perform similarly, but WGAN-GP reaches higher values and is overall smoother

than WGAN. Despite converging on high training values, both WGAN and WGAN-GP losses

begin to diverge after epoch 100. Both RGAN and RaGAN losses fail to improve the metrics

past the values produces by the initial weights. Although GAN and saturating GAN models

both converge on competitive PSNR readings around epoch 75, the SSIM improves very little

suggesting that the images are not improving in perceptive quality. Both vanilla GAN models

encounter a collapse around epoch 80 where the generator model begins to diverge.

Training metrics only provide insight into the interaction of the model and the optimization

algorithm. To understand the final generator model from each learning framework, the models

are tested against GoPro and REDS testing sets to measure the PSNR and SSIM on data that

was not observed during training. Table 4.3 displays the validation metrics for each adversarial

loss tested in this study. Overall, the LSGAN loss function produces the highest validation

metric across all datasets. No one loss function produces the second-best result, but it is worth

noting that the WGAN does produce the second-highest validation metrics on the GoPro set.

No adversarial loss produces a generator model capable of improving the baseline metrics

of the degraded images relative to the sharp images. This does not necessarily imply that

adversarial loss alone cannot produce a viable generator in all architecture and hyperparameter

configurations but is an important consideration when comparing the results of the adversarial

losses against those of the content losses and combined losses.

Because PSNR does not always correlate to perceptible quality in the HVS, it can some-

times be a misleading metric when applied to image synthesis problems. SSIM can provide a

more robust estimate of quality to the HVS, but it is frequently still useful to evaluate generator

outputs manually using the HVS. Furthermore, in the context of deblurring, all datasets avail-

able for computing hard metrics are the result of blur approximation models because it is not

currently possible to produce sharp-blurry pairs of real-world blur systems. As such, evaluation

using the HVS is the only way to examine how deblurring models generalize to real-world blur
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Figure 4.5: Average PSNR and SSIM per metric during the training procedure for models
trained with adversarial losses.
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Adversarial Loss
GoPro REDS

PSNR SSIM PSNR SSIM
Degraded Images 25.6 0.792 26.2 0.770
GAN 21.0 0.555 21.9 0.568
GAN (Saturating) 22.3 0.688 22.8 0.673
LSGAN 23.5 0.744 24.1 0.725
WGAN 22.7 0.741 21.9 0.701
WGAN-GP 20.9 0.629 21.0 0.629
RGAN 19.0 0.647 19.8 0.636
RaGAN 21.1 0.722 21.0 0.705

Table 4.3: PSNR and SSIM metrics on the GoPro and REDS test benchmarks based on
generators trained with different adversarial loss functions. The best values are shown in bold
and the second-best values are underlined.

systems. Figure 4.6 provides a comparative illustration of the generator outputs for an image

taken from the dataset of Lai et al. (2016), namely, face2. This image is selected due to the

HVSs natural ability to detect human faces.

The GAN model produces an output with a large number of checkerboard artifacts caused

by poor learning of transposed convolutional layer weights. The same artifacts are observable

in the saturating GAN and LSGAN networks, but with far less intense of an effect. Interestingly,

the saturating GAN produces a perceptibly higher quality image than the GAN in this case but

introduces a high degree of image saturation relative to the blurred image and all other model

outputs. The LSGAN produces an output that appears no less blurry than the original image and

has undergone some non-uniform DC coefficient distortion that causes shifts in hue relative to

the other images. The output of the WGAN closely resembles that of the blurry image. Despite

achieving a high validation metric, the model generalizes poorly to validation data outside the

stylized testing set. The WGAN-GP produces outputs with non-uniform checkerboard artifacts

indicative of GAN collapse. Both RGAN and RaGAN exhibit mild degrees of checkerboard

artifacts and uniform DC bias. In the case of the RGAN, the image appears darker, but without

color-shift, indicating uniform removal of signal content between channels. The RaGAN model

behaves inversely, producing outputs with uniformly more signal content resulting in a brighter

image without hue adjustment. It is a common misperception of the HVS that brighter, i.e.,
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(a) Blurred (b) GAN (c) GAN (Saturating) (d) LSGAN

(e) WGAN (f) WGAN-GP (g) RGAN (h) RaGAN

Figure 4.6: Examples restorations of “face2” from the dataset of Lai et al. (2016) based on
generators trained with different adversarial loss functions.
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higher energy, image signals are perceptually better than darker counterparts. For this reason,

the output of the RaGAN model may appear better than other models. Upon close inspection,

the RaGAN does produce a sharpening effect but fails to remove ghosted edges, such as

around the face and collar.

4.2.2 Content Losses

To compare the training performance of the content losses, Figure 4.7 displays the average

PSNR and SSIM per training epoch over the full training duration. Unlike the trends of the

adversarial losses, the trends of the content losses are smooth and relatively similar. Because

the dataset loader was conditioned on the same random seed for all optimization runs, the

influence of challenging/trivial subsets of data causes similarity in the shapes of both PSNR and

SSIM curves. Notably, perceptual content losses based on the pre-trained layers of VGG-19

produce consistently lower training metrics than do the standard pixel-based and frequency-

domain loss functions. In terms of SSIM, block2_conv2, block3_conv3, and the VGG-19

ensemble all converge to the same value. This is despite each having a different trend in terms

of PSNR. Interestingly, the block2_conv2 loss function results in diverging PSNR values, but

stably converging SSIM values. Because block1_conv1 is a relatively shallow layer that has

not been as heavily influenced by the sparseness of the cascaded ReLU functions, it has a

performance trend that is more comparable, but strictly worse than, all of the pixel-based and

frequency-domain losses. The DCT-based MAE loss function achieves the highest training

metrics among all other methods; however, the improvement over the spatially computed MAE

is marginal in terms of PSNR and immeasurable in terms of SSIM. The DCT-based MSE and

the spatial MSE behave identically, both falling slightly below the MAE loss functions.

During the validation stage, perceptually based losses continue to underperform relative

to the simpler MSE and MAE solutions, as indicated by the results in Table 4.4. On both the

GoPro and the REDS dataset, the DCT-based MAE produces the highest validation metrics in

terms of both PSNR and SSIM. The spatial MAE produces the second-highest results across
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Figure 4.7: Average PSNR and SSIM per metric during the training procedure for models
trained with content losses.
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the board. The improvement of MAE over both MSE loss functions on the GoPro testing set is

marginal, but on the REDS data, it is more significant. Similar to the behavior observed in the

training metrics, block1_conv1 produces validation metrics that are comparable to the standard

MAE and MSE losses. block2_conv2 and block3_conv3, and the VGG-19 ensemble all fail

to achieve comparable metrics to the other loss functions. It is worth noting, the perceptual

losses are intended to improve the quality to the HVS based on pre-trained natural image priors.

Although the performance on the quantitative metrics is poor, prior literature often reports that

using perceptual content losses improves the qualitative results.

Content Loss
GoPro REDS

PSNR SSIM PSNR SSIM
Degraded Images 25.6 0.792 26.2 0.770
MAE 27.6 0.848 26.1 0.783
MAE-DCT 28.0 0.855 26.4 0.794
MSE 27.5 0.842 25.4 0.765
MSE-DCT 27.5 0.843 25.5 0.770
block1_conv1 27.4 0.845 25.3 0.778
block2_conv2 25.1 0.785 24.5 0.739
block3_conv3 25.4 0.790 24.4 0.744
Perceptual Ensemble 26.0 0.806 24.4 0.737

Table 4.4: PSNR and SSIM metrics on the GoPro and REDS test benchmarks based on
generators trained with different content loss functions. The best values are shown in bold and
the second-best values are underlined.

Figure 4.8 provides a qualitative assessment of the generator models learned using a

single content or perceptual content loss function. The image used is the same face2 image of

Lai et al. (2016) that was used during the qualitative validation of the content losses. Consistent

with the results of prior literature, the usage of a perceptual content loss produces models that

are perceptually more crisp, less blurry, and generally containing fewer artifacts than the simpler

MSE and MAE approaches. This contradicts the expectation based on training and validation

metrics where the four MSE and MAE approaches all outperformed the perceptual content

losses. As was seen in the quantitative assessment of adversarial losses, the block1_conv1

loss produces outputs that closely resemble those of the models trained using MAE and MSE
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losses. Compared to the adversarial loss functions, all these examples demonstrate a higher

degree of deblurring capability indicated by the collar of the woman’s blouse where the ghosting

has been mostly removed. However, the spatial and frequency domain variants of both MSE

and MAE loss functions all fail the improve the quality of the woman’s face, and in many cases,

introduce new artifacts. block2_conv2, block3_conv3, and the VGG-19 ensemble loss all

produce relatively similar results that are qualitatively better than those of the four MSE and

MAE variants. In this case, block2_conv2 produces a smoother result that some may perceive

to be higher quality than the result of block3_conv3 that is crisper, but with added artifacts. The

VGG-19 ensemble loss appears to have a very literal effect of averaging both the benefits and

the artifacts of constituent layers. For instance, the same artifacts in the hair can be observed

from the block3_conv3 example, but the smoothness of the block1_conv1 and block2_conv2

examples can be seen in the face and eyes.
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(a) MAE (b) MAE-DCT (c) MSE (d) MSE-DCT

(e) block1_conv1 (f) block2_conv2 (g) block3_conv3 (h) Perceptual Ensemble

(i) Blurred

Figure 4.8: Examples restorations of “face2” from the dataset of Lai et al. (2016) based on
generators trained with different content loss functions.
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4.2.3 Combined Losses

Because WGAN and WGAN-GP models exhibited high degrees of model collapse, and

require five times as many computational resources to train, we omit them from inclusion in this

experiment. Performance on training metrics for the combined loss models closely resembles

those of the content losses. This coupled with a large number of adversarial and content loss

function pairs drives us to omit illustration of the combined loss metrics during training.

Table 4.5 provides a cross-reference table between the validation metrics of each adver-

sarial and content loss function combination based on GoPro and REDS testing sets. The

combinations of any adversarial loss with any of the four MSE and MAE-based losses relatively

consistently produce higher metrics on both datasets than do any of the perceptual losses

used in combination with an adversarial loss. Although in isolation the LSGAN produces the

highest metrics across the board, in combinations the basic non-saturating GAN loss produces

better metrics. However, it is worth noting that the improvement of the vanilla GAN over the

LSGAN model is relatively marginal. the Saturating GAN produces metrics that are between the

non-saturating GAN and the LSGAN. Interestingly, both RGAN and RaGAN models produce

consistently lower validation metrics across the board.

Although the combinations featuring simple GAN adversarial loss combined with MSE

and MAE content losses produced the highest validation metrics, we find the best perceptible

results with the block3_conv3 variant. Of the adversarial losses studies, we find that GAN

produces the best qualitative results overall. Figure 4.9 provides an image comparison matrix

of the four best content losses with the three best adversarial losses. Overall, there is a high

degree of variability between the different results despite having marginally similar metrics.
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Adversarial Loss Content Loss
GoPro REDS

PSNR SSIM PSNR SSIM

Degraded Images 25.6 0.792 26.2 0.770

GAN

block1_conv1 26.8 0.834 25.2 0.770
block2_conv2 26.6 0.826 24.5 0.743
block3_conv3 26.8 0.829 24.8 0.746
Perceptual Ensemble 26.6 0.832 24.3 0.743
MAE 27.4 0.845 25.9 0.785
MAE-DCT 27.1 0.833 26.0 0.786
MSE 27.6 0.843 25.9 0.781
MSE-DCT 27.6 0.843 25.7 0.777

GAN-S

block1_conv1 26.6 0.828 24.9 0.758
block2_conv2 26.8 0.828 24.4 0.743
block3_conv3 26.8 0.829 24.8 0.749
Perceptual Ensemble 27.0 0.838 24.7 0.751
MAE 27.2 0.843 25.2 0.772
MAE-DCT 24.4 0.774 24.9 0.759
MSE 27.5 0.840 25.7 0.778
MSE-DCT 27.5 0.841 25.7 0.777

LSGAN

block1_conv1 26.4 0.822 24.7 0.753
block2_conv2 26.6 0.829 24.6 0.756
block3_conv3 26.8 0.829 25.1 0.752
Perceptual Ensemble 27.0 0.836 24.7 0.751
MAE 27.3 0.844 25.4 0.775
MAE-DCT 26.4 0.808 24.8 0.742
MSE 27.4 0.840 25.8 0.776
MSE-DCT 27.3 0.838 25.9 0.777

RGAN

block1_conv1 25.7 0.804 24.3 0.733
block2_conv2 26.5 0.832 24.8 0.761
block3_conv3 26.0 0.808 24.1 0.728
Perceptual Ensemble 26.5 0.837 24.4 0.757
MAE 25.5 0.807 24.0 0.742
MAE-DCT 26.1 0.814 24.6 0.758
MSE 27.2 0.833 25.8 0.776
MSE-DCT 26.9 0.828 25.6 0.772

RaGAN

block1_conv1 26.4 0.821 24.5 0.755
block2_conv2 25.6 0.814 24.1 0.747
block3_conv3 24.8 0.783 23.2 0.701
Perceptual Ensemble 25.3 0.796 23.6 0.712
MAE 26.5 0.830 25.2 0.774
MAE-DCT 25.5 0.792 23.9 0.731
MSE 26.8 0.826 25.3 0.766
MSE-DCT 26.7 0.826 25.2 0.766

Table 4.5: PSNR and SSIM metrics on the GoPro and REDS test benchmarks based on
generators trained with different combinations of adversarial and content loss functions. The
best values are shown in bold and the second-best values are underlined.
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(a) GAN-block2_conv2 (b) GAN-block3_conv3 (c) GAN-MAE-DCT (d) GAN-MSE

(e) GAN (Saturating)-
block2_conv2

(f) GAN (Saturating)-
block3_conv3

(g) GAN (Saturating)-MAE-
DCT

(h) GAN (Saturating)-MSE

(i) LSGAN-block2_conv2 (j) LSGAN-block3_conv3 (k) LSGAN-MAE-DCT (l) LSGAN-MSE

Figure 4.9: Examples restorations of “face2” from the dataset of Lai et al. (2016) based on
generators trained with different combinations of adversarial and content losses.
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4.2.4 Comparisons to State-of-the-art

Table 4.6 outlines the mean validation metrics (i.e., PSNR and SSIM) for current state-of-

the-art deblurring methods on the 1111 samples in the GoPro benchmark testing dataset. The

works of Xu et al. (2013) and Sun et al. (2015) predate the existence of the GoPro dataset,

whereas the remaining models are trained directly using the GoPro training data. Up to the

current state-of-the-art, there is a nearly monotonically increasing trend of PSNR and SSIM

suggesting that the learned models are generalizing better to the distribution of the testing data.

Although our model does not attempt to breach state-of-the-art metrics, the performance of our

best model is shown for reference. The performance in terms of PSNR is comparable to that of

the MobileNet model of Kupyn et al. (2019), although the SSIM metric is more comparable to

that of Xu et al. (2013).

Model PSNR SSIM
Xu et al. (2013) 25.1 0.842
Sun et al. (2015) 24.6 0.890
DeepDeblur (Nah et al. 2017) 29.2 0.916
DeblurGAN (Kupyn et al. 2018) 28.7 0.958
SRN (Tao et al. 2018) 30.2 0.934
DeblurGAN-v2 (Kupyn et al. 2019) 29.5 0.934
DeblurGAN-v2 (MobileNet) (Kupyn et al. 2019) 28.1 0.925
Gao et al. (2019) 31.5 0.947
DMPHN (Zhang et al. 2019) 31.5 0.948
Zhang et al. (2020) 31.1 0.942
SAPHNet (Suin et al. 2020) 32.0 0.953
RADNet (Purohit and Rajagopalan 2020) 32.1 0.956
BANet (Tsai et al. 2021) 32.4 0.957
MPRNet (Zamir et al. 2021) 32.6 0.959
HINet (Chen et al. 2021) 32.7 0.959
Ours (GAN-block3_conv3) 26.8 0.829

Table 4.6: PSNR and SSIM metrics on the GoPro test benchmark. Metrics for previous works
were derived from the papers.

Although the combinations featuring simple non-saturating GAN adversarial loss combined

with MSE and MAE content losses produced the highest validation metrics, we found the

best perceptible results with the block3_conv3 variant. Figure 4.10 provides a qualitative
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comparison of the GAN-block3_conv3 model from this study against the current state-of-the-

art approaches for the 385/11_01_003028 image from the GoPro testing set. At low resolution,

the results of this work are comparable to those of the state-of-the-art despite achieving far

lower metrics. The primary improvements of the DMPHN (Zhang et al. 2019), MPRNet (Zamir

et al. 2021), and HINet (Chen et al. 2021) relative to our model exist in the fine details such as

around the structural beams in the image. It is worth noting, the DeblurGAN-v2 model of Kupyn

et al. (2019) produces significantly blurrier regions along these support beams than our simpler

and under-trained model. Although not obvious in this example, the HINet model introduces

structured grid artifacts in the image that result from its patch architecture.

Figure 4.11 illustrates the same face2 image from the dataset of Lai et al. (2016) that

has been used in prior qualitative evaluations to this point. Notably, the current state-of-the-art

models with regards to GoPro testing metrics, Zamir et al. (2021) and Chen et al. (2021),

produce significant artifacts for this particular example. The patch architecture of HINet results

in grid-variant image restoration that is visible along the edges of the patches of the image.

DMPHN and MPRNet both introduce artifacts and excess smoothing to the image that corrupts

significant existing detail. Furthermore, an inspection of the woman’s collar reveals that all

three of DMPHN, MPRNet, and HINet fail to remove the ghosting effect, whereas DeepDeblur,

DeblurGAN-v2, and our model all address this detail. Our result is the most comparable to

the DeepDeblur model of Nah et al. (2017), though details such as the woman’s ear and eyes

appear to be more accurately restored by their model. The DeblurGAN-v2 model of Kupyn et al.

(2019) produces crisp restoration of the woman’s eyes but does not restore detail to the hair as

well as DeepDeblur or our model.

Figure 4.12 provides an example output to illustrate cases where the models in the prior

literature are very effective. Namely, the text10 image from the dataset of Lai et al. (2016) is

used to investigate the document restoration capabilities of the models. Although some of the

state-of-the-art models did not adapt as well to natural images outside of the training distribution,

the generalization capability of those models to documents is better than our model. Of the
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(a) Sharp (b) Blurred

(c) DeepDeblur (Nah et al. 2017) (d) DeblurGAN-v2 (Kupyn et al. 2019)

(e) DMPHN (Zhang et al. 2019) (f) MPRNet (Zamir et al. 2021)

(g) HINet (Chen et al. 2021) (h) ours

Figure 4.10: Examples restorations of “385/11_01_003028” from the dataset of Nah et al.
(2017). Pre-trained models are used to evaluate existing methods.
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(a) Blurred (b) DeepDeblur (Nah et al.
2017)

(c) DeblurGAN-v2 (Incep-
tion) (Kupyn et al. 2019)

(d) DeblurGAN-v2 (Mo-
bileNet) (Kupyn et al.
2019)

(e) DMPHN (Zhang et al.
2019)

(f) MPRNet (Zamir et al.
2021)

(g) HINet (Chen et al. 2021) (h) Ours

Figure 4.11: Examples restorations of “face2” from the dataset of Lai et al. (2016). Pre-trained
models are used to evaluate existing methods.
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compared methods, only the DMPHN model fails to restore the image to full quality. Notably,

although MPRNet and HINet both produce poor results in Figure 4.11, their performance on this

document example is unparalleled. Overall MPRNet appears to produce the output that is the

most easily readable among all the comparisons. Although our model fails to restore the image

and also introduces new artifacts, there is some evidence of restoration in the sharpening of

ghosted text and lines.
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(a) Blurred (b) DeepDeblur (Nah et al. 2017)

(c) DeblurGAN-v2 (Inception) (Kupyn et al.
2019)

(d) DeblurGAN-v2 (MobileNet) (Kupyn et al.
2019)

(e) DMPHN (Zhang et al. 2019) (f) MPRNet (Zamir et al. 2021)

(g) HINet (Chen et al. 2021) (h) Ours

Figure 4.12: Examples restorations of “text10” from the dataset of Lai et al. (2016). Pre-trained
models are used to evaluate existing methods.

106



4.3 Discussion

This study sheds light on the choice of loss function for deep learning-based image restora-

tion techniques. We first provided a comprehensive review of the fields of image processing,

deep learning, and adversarial networks, which have begun to overlap in contemporary research.

As it specifically relates to deblurring, we showed a lack of concrete knowledge surrounding the

choice of loss function for training deep image deblurring models. Based on this limitation in

the literature, we proposed a comparative study phrased as three research questions:

1. Which content loss functions are the most effective for image deblurring?

2. Without using content losses, do adversarial losses stably converge?

3. How does the combination of content and adversarial losses affect deblurring performance

relative to using adversarial loss or content loss in isolation?

To answer these questions, we first defined simple generator and discriminator architectures

and a common training procedure. After training generators using each adversarial, content,

and combined loss function, we reported quantitative and qualitative results to assess the

deblurring performance of each generator model.

As it relates to content losses, the typical choice in the literature is the MSE which directly

equates to maximizing PSNR. This can be a problematic loss function due to the lacking

correlation between PSNR and perceptible quality to the HVS in some cases. As such, we

proposed that MAE could be a viable alternative due to its decreased sensitivity to outliers

and noise. We found that generator models trained using MAE produced higher validation

metrics and higher quality qualitative results relative to the MSE loss function. Indeed, the

qualitative results of the MSE loss exhibit a large number of artifacts relative to MAE suggesting

that MAE is more robust to the noise and outlier errors during training. Noting also that spatial

MSE and MAE place equal weight on all spectral bands in the image signal (Sims 2020), we

believed using a frequency-domain representation could improve the generated image quality
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to the HVS. This hypothesis was confirmed experimentally; the MAE loss computed over DCT

coefficients resulted in a generator model that outperformed the model trained using spatial

MAE in terms of the validation metrics. Notably, the MAE-DCT loss resulted in the generator

model that produced the highest overall quantitative metrics over any other model trained in

this study.

Following Johnson et al. (2016) and Kupyn et al. (2018), we also hypothesized that

perceptual content losses based on pre-trained image classification models could be effective

choices as a primary content loss function. This expectation was refuted by the quantitative

results, where perceptual losses appeared to perform significantly worse than any of the simpler

MAE or MSE loss functions. However, in qualitative assessment, the generator models trained

on block2_conv2, block3_conv3, or the ensemble of VGG-19 activations, produced results

that were of perceptibly higher quality than any of the models trained using MAE or MSE. We

found that using the block3_conv3 layer of VGG-19 indeed produces higher quality results

than either block1_conv1 or block2_conv2, but also that the ensemble of these three layers

produces comparable results to block3_conv3 in isolation.

Relative to the content losses, we showed that no adversarial loss produced generator

models that could effectively restore blurry images. We found that the generator optimized

using LSGAN loss produced the best quantitative results over all of the testing datasets, but

failed to compare to the lowest quality content losses metrics. Although both the saturating and

non-saturating version of the GAN loss collapsed during training, we found that the saturating

GAN converged on a model that produces better metrics than did the non-saturating GAN.

Notably, both losses collapsed around the same time suggesting a particular portion of the

space caused instability in both variations of the vanilla GAN. In training, all but the LSGAN

loss produced curves that decayed over the duration. The WGAN-GP loss is the only loss that

produced stable metrics during training, the remaining losses produced a large amount of noise

in the metrics. It is worth noting, this could be due to the discriminator to generator training

ratio of five to one that may produce a more stable gradient signal by merit of a fully converged
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discriminator. Qualitatively, the generators produced by adversarial losses contained more

checkerboard artifacts from transposed convolutional layers than the generator models trained

using content losses. The deblurring performance is also significantly worse as indicated by the

poor performance on the edges of the woman’s face, collar, necklace, and eyes. The empirical

results suggest that adversarial loss alone is not a viable choice for image deblurring models.

Prior deblurring research based on adversarial losses uses combined losses consisting of

adversarial and content components. In some cases, there could be more than one content

loss (Kupyn et al. 2018) or more than one adversarial loss (Kupyn et al. 2019). We showed

empirically that combined losses have a cross-regulatory effect that can help stabilize the

training relative to using any constituent loss in isolation. Checkerboard and DC bias artifacts

that appeared as a result of training with only adversarial losses and spatial distortions that

appeared as a result of training with only content losses were both mitigated somewhat by using

adversarial and content losses in combination. Although the MAE-DCT content loss produced

the highest quantitative metrics in the study, the generator trained using non-saturating GAN

adversarial loss and block3_conv3 as a perceptual content loss produced a higher quality

result subjectively in terms of the qualitative comparison.

4.3.1 Contributions to Theory and Research

This study makes three key contributions to research on deep image deblurring. First,

we provide an empirical comparison of adversarial losses in isolation, which has not been

done in the context of image deblurring to the best of our knowledge. The current literature

applies different adversarial losses to different generator architectures, making it difficult to

understand the contribution of the loss to the underlying problem. By holding the generator

model, training data, and training parameters constant, we showed that generator models

trained using adversarial losses alone fail to adequately learn the deblurring task when tested

against real-world data.
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We also provide evidence that MAE may be a better content loss function when applied

to image restoration tasks than the current standard of MSE. Although the qualitative results

were poor relative to other methods in this study, the quantitative results of MAE we persistently

higher, both in terms of PSNR and SSIM. State-of-the-art methods trained using MSE over

pixel illuminances may benefit from replacing the MSE loss function with MAE during training.

Following the suggestion of Sims (2020), we also showed that using the MAE over DCT

coefficients could further improve the quantitative performance. Qualitatively, using the MAE-

DCT produced blurrier results than the spatial MAE, but also introduced fewer new degradations

and artifacts. Ultimately, we showed that using a perceptual content loss as a sole content loss

produces perceptibly better results than any of the simple MSE or MAE approaches despite

marking lower in terms of quantitative metrics. To the best of our knowledge, no current work

attempts to train generator models using solely perceptual content loss, but the results of this

study provide a strong argument for further investigation.

Finally, we exhaustively confirm that indeed, the combination of adversarial and content

loss has an ensemble effect that produces higher quality perceptive results relative to training

generator models from solely content or adversarial loss. Notably, the combined losses did not

achieve higher PSNR nor SSIM values on the testing benchmarks despite generalizing better

to real-world data. Although prior research has suggested different adversarial loss functions

under different mathematical premises, empirically, the vanilla non-saturating GAN produced

the best quantitative and qualitative result in this study when combined with a perceptual

loss, namely, from block3_conv3 outputs from VGG-19. This suggests that the state-of-the-

art results of prior work may attribute more to the novelties and differences in the generator

architecture than the loss functions.

4.3.2 Implications for Practice

Although the models developed in academia frequently achieve state-of-the-art perfor-

mance on benchmarks, the extension to practice is often less clear. Frequently, state-of-the-art
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models can contain large parameter sets that are impractical for applications such as au-

tonomous vehicle operation, mobile phones, and edge computing. Furthermore, the usage of

complex methodologies makes implementing some cutting-edge models excessively expensive

for practitioners in some cases. In this study, we showed that a simple model consisting only of

convolutional layers, activation functions, and residual skip connections is capable of achieving

results that are perceptibly good for certain tasks. Although the model in this work did not

adapt well to fine-grained tasks, such as text and document deblurring (see Figure 4.12), it

exhibited good capability for deblurring large objects, such as human faces (see Figure 4.11)

and pedestrians in the GoPro data (see Figure 4.10). This is salient for application areas

like autonomous vehicles where accurately being able to identify pedestrians and vehicles is

paramount. Kupyn et al. (2018) have shown for instance that object-detection models such ac

YOLO can better detect objects in blurry images that have been restored.

In practice, executing large grid searches over deep learning models can be impractically

expensive or time-consuming. This work provides empirical evidence that practitioners can

use to guide the development of their image restoration pipelines without incurring excessive

expense or complexity. Practically, this work showed that the choice of the loss function can

impact the learning of the generator model. In particular, we demonstrated that perceptual

loss functions that are computed from pre-trained natural image priors result in models that

produce perceptibly better results than simple MSE or MAE losses despite measurably worse

benchmark results. Furthermore, we demonstrated that adversarial losses alone poorly adapt

to the task of image restoration despite not producing as many artifacts as content losses

are capable of. Finally, we showed that the combination of perceptual content losses with

adversarial losses produces a perceptibly better result, but only marginally. Because the

resources and time required to train adversarial models are far greater than that of the simpler

content and perceptual losses, this is something practitioners should take into account.
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4.3.3 Limitations and Implications for Future Work

Due to the stochastic nature of mini-batch gradient descent optimization algorithms, the

choice of random number seed can potentially impact the performance of a training algo-

rithm (Lucic et al. 2018). In this study we held a single random seed constant across all

models, ensuring that the training data that the models observed would be the same for each

experiment. However, due to computational limitations, results were only computed using one

random number seed. To account for the noise in the optimization procedure and produce

a more robust result, future work will execute the experiments using between ten and thirty

random number seeds. Additionally, the generator and adversarial models studied in this work

were kept simple due to the immense overhead of training factorial combinations of models

with different losses. Future work based on state-of-the-art generator models can apply the

method in this study to continue to advance the understanding of how different loss functions

apply to image restoration tasks, specifically, deblurring.

This work investigated the effect of different choices of loss function for a single generator

model similar to that of Kupyn et al. (2018) and Gao et al. (2019). The more bleeding-edge

innovations in image restoration, such as recurrent models (Tao et al. 2018), patch-hierarchical

models (Zhang et al. 2019), attentions mechanisms (Suin et al. 2020), and the like, all focus on

architectural components of the generator and omit the usage of adversarial losses. Future

work will investigate if (1) the usage of adversarial losses improves the ability of these models in

terms of perceptual output, which was shown to be weak for some real-world cases relative to

simpler models (see Section 4.2.4) and (2) what the effect of choosing different content losses

has on these models. Current state-of-the-art approaches apply an MSE content loss for pixels,

but this work provides evidence to suggest that MAE and frequency-domain losses may be

worth considering when researching deep image restoration models.
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Chapter 5

Conclusion

In this dissertation, we first developed an understanding of how trust influences the

perceived risk and benefits from using an AV and the choice to adopt one. We then performed

a study to improve image deblurring models by determining which losses are effective on a

simple model. This chapter concludes the dissertation by briefly summarizing the contributions

of both studies.

5.1 The influence of trust on autonomous vehicle adoption

The study in Chapter 3 aimed to provide an understanding of how trust and enjoyment

interact with the adoption of ADS and whether the introduction of a human-computer interface

between the ADS and the driver improved the trust in the supporting AI technology. The goal

was to develop a system that relied on the AI present in an AV to augment the intelligence

of the human driver and improve the driver’s trust in the AI technology. The results of this

study confirm ten of eleven proposed hypotheses related to ADS. The presented perception

augmentation module is also shown to increase the driver’s trust in the AI-based ADS. As a

result, this increased trust positively impacts the perceived benefits and negatively impacts the

perceived risks of using the ADS. Trust also has a positive impact on the intention to adopt

autonomous features, as does the propagation of the effects on perceived risks and benefits.

As such, there is a strong argument for the development of components like the perception

augmentation module alongside consumer ADS to improve human trust in– and adoption of

AVs.
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5.2 The choice of loss function for deep image restoration

In Chapter 4 we provide a comparative study of the different content and adversarial loss

functions applied to the task of deep image deblurring. We show that despite the prevalence of

MSE in the literature, MAE may be a stronger alternative as a content loss for non-adversarial

methods. We also demonstrate that perceptual losses are effective content losses in the

absence of an adversarial loss despite poor performance on testing metrics relative to MAE

and MSE content losses. We find consistency with the literature in terms of block3_conv3 of

VGG-19 producing the best perceptive results when applied as a primary or auxiliary perceptual

content loss. When combined with an adversarial loss, we notice that the two independent loss

functions have a cross-regulatory effect and produce better perceptive results than a generator

trained with either loss in isolation. We showed that the simple model in this study generalizes

better to real-world natural image blurs than state-of-the-art models, but fails to produce quality

results on sparse images like text, fine details, or documents.

5.3 Limitations and Future Work

Limitations of the study in Chapter 3 point out directions for future research. In future

projects, the quality of the simulated AV can be improved by replacing our software-in-the-

loop simulation with a hardware-in-the-loop simulation by utilizing a model of a vehicle in a

physical space. This allows both for deeper immersion from the passenger and more realistic

implementations of potential perception augmentation modules. Additionally, the subjective

nature of the participants’ responses is a limitation of the psychological constructs used in

the study. In future work, objective measures can be collected using technology such as eye

tracking and brain-computer interfaces that objectively measure visual attention and neural

activation from the participants, respectively. These objective measures can provide insight into

where the participant is looking and how surprising certain events are to the participant.
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Although in Chapter 4 we shed light on how different loss functions affect the training

of deep image generators, the study embodies two limitations. First, due to computational

overhead, each model was trained using a single random number seed. In the future, results

can be generated by training models with 30 different random seeds to filter noise in the metrics

and ensure that the current result is not anomalous. Second, the generator model used in the

comparative study was kept simple to reduce the impact of over-parameterization on the results.

In future work, we will investigate whether the results shown in this study are consistent across

different state-of-the-art generator architectures.
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