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Abstract

Supply chain management aims to understand and explain how organizations should col-

laborate within a chain to improve the overall competitiveness of the chain and smooth the

flow of the money, material, and information between them. Any risks associated with each

member will affect the overall performance of the chain. In this dissertation, we consider

analytical modeling approaches to two specific components related to risks in supply chains,

specifically the risk associated with manufacturing and transportation categories. In the first

part (Chapter Two), we consider the problem of employing job rotation schemes to improve

worker safety in a manufacturing setting by combining optimization methods with novel mod-

eling techniques developed in the occupational safety community. Recent studies suggest that

job rotation schedules may increase the overall risk of injury to workers included in the rotation

scheme. We describe an optimization framework evaluating the effectiveness of a job rotation

scheme using the fatigue failure model of MSD development and a case study with real injury

data. Results suggest that the effect of job rotation is highly-dependent on the composition

of the job pool, and the inclusion of jobs with higher risk results in a drastic decrease in the

effectiveness of rotation for reducing overall worker risk. The study highlights that in cases

when high-risk jobs are present, redesign of those high risk tasks should be the primary focus

of intervention efforts rather than job rotation. In the second part (Chapters Three, Four, and

Five), the goal is to improve transportation safety in a supply chain. To do so, we first aim to

reduce the start-up burden of data collection and descriptive analytics for statistical modeling

and route optimization of risks associated with motor vehicles. Then, we focus on improving

the safety of truck drivers. The emergence of sensor-based Internet of Things (IoT) monitoring

technologies have paved the way for conducting large-scale naturalistic driving studies, where

continuous kinematic driver-based data are generated, capturing crash/near-crash safety critical

events (SCEs) and their precursors. However, it is unknown whether the SCEs risk can be pre-

dicted to inform driver decisions in the medium term (e.g., hours ahead) since the literature has

ii



focused on SCE predictions either for a given road segment or for automated breaking applica-

tions, i.e., immediately before the event. Here, we examine the SCE data generated from 20+

million miles-driven by 496 commercial truck drivers to address three main questions. First,

whether SCEs can be predicted using disparate driving-related data sources. Second, if so, what

the relative importance of the different predictors examined is. Third, whether the prediction

models can be generalized to new drivers and future time periods. We show that SCEs can

be predicted 30 min in advance, using machine learning techniques and dependent variables

capturing the driver’s characteristics, weather conditions, and day/time categories, where an

area under the curve (AUC) up to 76% can be achieved. Moreover, the predictive performance

remains relatively stable when tested on new (i.e., not in the training set) drivers and a future

two-month time period. Our results can inform dispatching and routing applications, and lead

to the development of technological interventions to improve driver safety.
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Chapter 1

Introduction and motivation

1.1 Introduction

Supply chain management aims to understand and explain how organizations should collabo-

rate within a chain to improve the overall competitiveness of the chain and smooth the flow of

the money, material, and information between them (Asgari et al. 2016; Stadtler et al. 2015).

A supply chain consists of different partners such as customers, distributors, manufacturers,

and suppliers. It involves other components within each partner like materials, resources, and

activities (Samaranayake 2005). Hence, managing a supply chain requires considering a large

number of elements and their interactions to maximize the efficiency of the flow in a chain in

terms of money, information, and materials.

Any components in the chain should work appropriately with the other members to de-

liver a given product to the customers with the promised quality in a reasonable timeline. Any

risk associated with each member will affect the overall performance of the chain. It indicates

the importance of macro and micro strategies aiming to identify, assess, mitigate, and moni-

tor potential disruptions in supply chains (Aqlan and Lam 2016). Thus, Supply Chain Risk

Management (SCRM) plays a vital role in managing uncertainties to minimize the impact of

adverse events in supply chains (Ho et al. 2015). It should be noted that since there are a large

number of partners, elements, and interactions in each supply chain, it is not straightforward to

determine a clear definition for supply chain risk to cover all the associated risks. For exam-

ple, Zsidisin (2003) defines it as “the probability of an incident associated with inbound supply

from individual supplier failures or the supply market occurring, in which its outcomes result

in the inability of the purchasing firm to meet customer demand or cause threats to customer
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life and safety.” Also, Ellis et al. (2010) has a more general definition for supply chain risk: “an

individual’s perception of the total potential loss associated with the disruption of supply of a

particular purchased item from a particular supplier.”

Ho et al. (2015) classified the supply chain risk factors into seven categories: 1) macro

(e.g, natural disaster, war and terrorism) 2) demand (e.g, inaccurate demand forecasts, short

products’ life cycle) 3) manufacturing (e.g, employee incidents, insufficient maintenance), 4)

supply (e.g., inability to handle volume demand changes, technologically behind competitors),

and 5) information (e.g, lack of information transparency between logistics and marketing,

E-commerce), 6) transportation (e.g, accidents in transportation, damages in transport ), and

financial (e.g, exchange rate, currency fluctuations).

Figure 1.1 which used data provided by Ho et al. (2015), shows the distribution of publi-

cations based on the risk categories. It is worth noting that most of the publications are focused

on the mitigating risk associated with supply and demand sections. There are a limited number

of studies focused on risk mitigation methods on issues such as quality risk, lead time uncer-

tainty, capacity inflexibility, machine failures in the manufacturing and transportation sections.

Especially, no studies are investigating the effects of safety outcomes such as truck crashes and

worker injuries on the disruption of supply chains.
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Figure 1.1: Distribution of publications based on the risk categories until 2015

Neal and Griffin (2006) introduced safety climate, which is an antecedent to safety out-

comes as “individual perceptions of the policies, procedures, and practices relating to safety in
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the workplace.” It has been shown that safety organizations that value and reward safety affects

workers’ behavior (Zohar and Luria 2003). Several studies showed that there is a relationship

between safety climate and safety performance within organizations. For example, Tharaldsen

et al. (2008) suggested that there is a negative correlation between safety climate and incident

rate in the offshore industry. Varonen and Mattila (2000) had the same observation in wood pro-

cessing companies. Clarke (2006) conducted a comprehensive meta-analysis of safety climate

research and showed a positive relationship between safety climate and safety performance.

Zohar (2000) indicated that in a manufacturing section, workgroup members share a set of

perceptions of safety in the workplace. In other words, the safety of each worker can affect

the other workers’ safety. This point becomes more critical when considering manufacturing

safety in a supply chain consisting of several manufacturing companies. Seemingly minor

safety-related incidents (e.g., transportation-related incidents such as truck crashes; workplace

injuries such as musculoskeletal disorders) can have a direct, cascading effect on the perfor-

mance of the supply chain.

A recent study by Romero and Stahre (2021) discusses the need for smart resilient man-

ufacturing systems, which is based on human operator resilience and human-machine sys-

tems’ resilience. They suggest that the manufacturing systems should move toward both self-

resilience and system-resilience. Self-resilience is related to biological, physical, cognitive,

psychological, occupational health and safety, and workers’ productivity. System-resilience

refers to interactions between humans and machines by sharing & trading control (Inagaki

et al. 2003).

As discussed above, both manufacturing and transportation safety, directly and indirectly,

impact the overall performance of each component (e.g., suppliers, manufacturers) of a supply

chain. Thus, in this dissertation, we aim to study approaches to use analytical methods to

understand and mitigate supply chain risk, specifically as it applies to two particular facets:

minimizing the risk associated with manufacturing and transportation categories. In Section

1.2 the contributions of this dissertation are explained in more details.
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1.2 Contributions

The contributions of this dissertation are two-folds: In the first part (Chapter Two), we consider

the problem of employing job rotation schemes to improve worker safety in a manufacturing

setting by combining optimization methods with novel modeling techniques developed in oc-

cupational safety community. The work is based on a recently proposed fatigue-failure model

for musculoskeletal disorders (MSD) risk evaluation. This part aims to minimize the likelihood

of workers getting injured in manufacturing sections so that the overall safety of a supply chain

would increase. In the second part (Chapters Three, Four, and Five), the goal is to improve

transportation safety in a supply chain. To do so, we first aim to reduce the start-up burden of

data collection and descriptive analytics for statistical modeling and route optimization of risk

associated with motor vehicles. Then, we focus on improving the safety of truck drivers by

predicting the likelihood of a safety-critical event (SCEs) in the next 30 minutes.

Improving safety in manufacturing settings Job rotation is an organizational strategy that

can be used, in part, to reduce occupational exposure to physical risk factors associated with

work-related musculoskeletal disorders (MSDs). Recent studies, however, suggest that job

rotation schedules may increase the overall risk of injury to workers included in the rotation

scheme. We describe a novel optimization framework evaluating the effectiveness of a job

rotation scheme using the fatigue failure model of MSD development and a case study with

real injury data. We examine the efficacy of reducing MSDs through job rotation using nu-

merical simulation of job rotation strategies and utilizing the fatigue failure model of MSD

development.

Improving transportation safety The emergence of sensor-based Internet of Things (IoT)

monitoring technologies have paved the way for conducting large-scale naturalistic driving

studies, where continuous kinematic driver-based data is generated, capturing crash/near-crash

safety-critical events (SCEs) and their precursors. However, it is unknown whether SCEs can

be predicted to inform driver decisions since the literature has focused on SCE predictions for

a given road segment or automated breaking applications. Our aim for the third chapter is to

4



examine the SCE data generated from 20 million miles-driven by 497 commercial truck drivers

to address three main questions: (a) can SCEs be predicted using disparate driving-related data

sources? (b) if so, what is the relative importance of the different predictors examined? and (c)

can the prediction models be generalized to new drivers and future time periods? In the fourth

Chapter, our goal is to investigate the effect of drivers’ type (local, regional, and over-the-road),

and different geographical areas on the likelihood of high-risk driving situations.

The remainder of this dissertation is organized as follows. In Chapter Two, we present

our research about improving safety in manufacturing settings. This work has been presented

as it was published in Ergonomics journal. Our recent research about improving the safety of

truck drivers is shown in Chapters Three, Four, and Five. Chapter Three and Four involve the

parts that are published on Sensors and Accident Analysis & Prevention journals respectively.

In Chapter Five, we expand our work on the previous chapter.
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Chapter 2

Job rotation and work-related musculoskeletal disorders: a fatigue-failure perspective

2.1 Introduction

Work-related musculoskeletal disorders (MSDs) are prevalent conditions associated with sub-

stantial direct (e.g, medical treatment) and indirect (e.g, lost workdays, lost wages) costs for

both workers and organizations (Gallagher and Heberger 2013; Mossa et al. 2016). Exposure to

occupational risk factors such as large forces, high rates of repetition, non-neutral postures, and

vibration contributes to MSDs, which account for approximately one third of the work-related

injuries and illnesses in the United States annually with each MSD injury case requiring an

average of 12 days away from work (Bureau of Labor Statistics 2015).

Job rotation is an administrative control that has been used, among other purposes, in an

attempt to reduce occupational exposure to physical risk factors associated with MSDs. While

potential benefits of job rotation include improved worker cross-training, reduced boredom

and monotony associated with simple repetitive tasks (Yoon et al. 2016), and increased mo-

tor variability, which may have positive health effects if biomechanical loading is moderated

(Srinivasan and Mathiassen 2012; Mathiassen 2006; Sandlund et al. 2017), research examin-

ing job rotation to reduce MSDs has been equivocal (Comper et al. 2017; Padula et al. 2017).

Trade-offs associated with job rotation may also include increased operational costs related to

training workers, particularly those tasks that require high levels of experience or expertise.

Recently, several studies have suggested that job rotation may not have a net positive effect

on reducing exposure to physical risk factors, and could even potentially increase the overall

risk of a workplace injury in some cases (Leider et al. 2015; Padula et al. 2017; Vinel et al.
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2018). To the best of our knowledge, no study has comprehensively evaluated the effectiveness

of job rotation by considering multiple risk factors with a job pool consisting of jobs with

different ranges of MSD risk.

A significant proportion of the existing literature is based on a linear dependency between

risk and exposure. As will be clear from our analysis, if such an assumption is made, a rotation

can indeed be expected to be effective at reducing the effect of MSD injuries. At the same

time, recent developments in the literature suggest that a nonlinear dependency may be more

accurate (Gallagher and Schall Jr 2017; Edwards 2018). In such a circumstance, a rotation

scheme would be predicted to increase the overall injury risk, as will be demonstrated in this

paper.

The goal of our study is to assess the effect of implementing a job rotation scheme on the

overall injury risk of a group of workers by developing a general mathematical model. Our

model is constructed as an optimization problem for evaluating rotation effects on multiple

affected body segments (e.g., the distal upper extremity and the low back) among a pool of

rotating workers based on fatigue-failure theory. Specifically, we use the Lifting Fatigue Failure

Tool (LiFFT; Gallagher et al. 2017) and Distal Upper Extremely Tool (DUET; Gallagher et al.

2018) as the underlying exposure assessment models for assessing the probability of an injury.

It must be emphasized that unlike many previous efforts, we are not considering the prob-

lem of designing a practical rotation schedule, which requires advanced modeling and algorith-

mic tools. Our goal is to evaluate the potential of rotation in principle, and hence we are able

to relax a number of practical constraints usually considered in the literature, while allowing

us to make analytic conclusions on the properties of rotations. Combined with a numerical

case study based on realistic data, we can evaluate the expected benefits to MSD risk due to

rotation. Specifically, our model confirms some of the claims made in the literature pertaining

to the potential for job rotation to have a negative effect on exposure to physical risk factors,

especially when high-risk jobs are included in the rotation.

It is worth noting here that MSD risk reduction is not the only reason to implement a

rotation. As mentioned above, other benefits, e.g., cross training, reduction of boredom or
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monotony (and consequently, psychological stress), and increased motor variability are poten-

tial advantages to rotating. Our study does not consider these aspects. Instead, our conclusions

suggest that MSD risk reduction may not be achievable based on rotation alone (and, in some

cases, may lead to an increase in pooled risk to the rotation cohort), and hence all other ben-

efits must be weighed against the effect on MSD risk. Further, we do not consider any of the

psychosocial factors in the etiology of MSDs. At the same time, it should also be noted that

our findings suggest that those who might use job rotation to attempt to ameliorate psychoso-

cial MSD factors may, in doing so, expose workers to increased physical MSD risk. A future

study, including all economic and ergonomic factors involved in rotations is needed to develop

comprehensive guidelines to determine when rotation is appropriate in practice.

The remainder of this paper is organized as follows. We present a general overview of

the related literature in Section 2.2. Then, we provide background information regarding the

Fatigue-Failure Theory (FFT) for evaluating MSDs risk in Section 2.3. In Section 2.4, an

optimization model for job rotation scheduling is introduced. We also describe a number of

properties of the proposed model and its solution, which then lead to general conclusions re-

garding job rotation. These conclusions are then illustrated with a case study based on injury

data in Section 2.5. Finally, general conclusions and discussions are presented in Section 2.6.

2.2 Literature review

Job rotation is a widely used organizational tool that has received significant attention in the

literature. There are a number of benefits associated with rotation. In this paper, we focus

specifically on the effect of rotation on MSD risk. A recent survey of relevant literature has been

presented by Otto and Battaı̈a (2017). The authors categorized papers based on the ergonomic

risk assessment method applied, how ergonomic risks were considered in the optimization

models (as objective function or constraint) and algorithms for solving the optimization models.

The reader is referred to this survey for detailed treatment of the related literature. In addition

to the articles reviewed in Otto and Battaı̈a (2017), below we have also included papers found

by Web of Science based on the combination of keywords: “job rotation + optimization”.
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In our review, in order to provide necessary context, we follow the classification presented

in Otto and Battaı̈a (2017). Specifically, we summarize the major contributions in Tables 2.1

and 2.2. Table 2.1 describes the risk factors that have been used, including general safety cri-

teria, risk assessment methods, the type of risk function (linear or non-linear) applied and the

number of risk factors (single or multiple) considered. Table 2.2 focuses on the mathematical

models employed (type of optimization problem and the algorithms used) in the studies and

summarizes the contributions. Linear or nonlinear risk function refers to the way that subse-

quent job assignments are aggregated by the ergonomic model used in order to produce the

overall risk value for each worker. As will be highlighted by our analysis, whether a linear

or nonlinear risk function is used, fundamentally changes the effect of rotation, and hence we

explicitly focus on this aspect. Note that some of the studies listed are concerned with risks

associated with noise exposure. While noise exposure is, of course, different in nature com-

pared to MSDs, it can be argued that the overall effect is quite analogous. Sound pressure is

expressed as Force/Area over which that force is applied. With MSD fatigue failure model,

stress on tissues is also represented as Force/Area, and both relationships are exponential in

nature, both can be the product of a single highly stressful event or (more often) the result of

exposure to repetitive stress (see, for example, Zahnert 2011). For this reason we prefer to

include those in the review.

The majority of the studies reviewed focused on methods and algorithms for develop-

ing practical rotation schedules. Rotation scheduling can be computationally intensive (in fact

NP-hard, see for example, Otto and Scholl 2013), and a significant portion of the literature is

devoted to developing efficient algorithms. Most of the approaches are based on an integer

programming (IP) formulation where binary variables are used to assign specific workers to

specific job stations at specific time intervals, and constraints/objectives are used to enforce a

required structure and evaluate selected ergonomic criterion. Since the resulting model is typi-

cally not computationally scalable, the authors propose heuristic solution approaches based on

either specifically developed approximation ideas or metaheuristics (e.g., genetic algorithms,

ant colony, simulated annealing, tabu search). Some of the articles add criteria to the algorithm
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in addition to ergonomic risk. For example, Diego-Mas et al. (2009) and Mossa et al. (2016)

considered worker disabilities and skills, respectively.

Table 2.1: Summary of the reviewed literature: ergonomic evaluation and classification.

Reference Safety criteria Evaluation method Type Risk factors
Carnahan et al. (2000) MSD JSI L Single
Tharmmaphornphilas et al.
(2003) Occupational noise DND L Single

Tharmmaphornphilas and Nor-
man (2004)

MSD, Occupational
noise JSI, DND L Single

Asawarungsaengkul and Nan-
thavanij (2006) Occupational noise DND L Single

Bhadury and Radovilsky
(2006) - - L Single

Yaoyuenyong and Nanthavanij
(2006) Occupational noise DND L Single

Seçkiner and Kurt (2007) Workload cost General job-specific phys-
ical demand parameters L Single

Tharmmaphornphilas and Nor-
man (2007) MSD JSI L Single

Asawarungsaengkul and Nan-
thavanij (2008a) Occupational noise DND L Single

Asawarungsaengkul and Nan-
thavanij (2008b) Occupational noise DND L Single

Seçkiner and Kurt (2008) Workload cost General job-specific phys-
ical demand parameters L Single

Yaoyuenyong and Nanthavanij
(2008)

Occupational noise,
energy expenditure

General job-specific phys-
ical demand parameters,
DND, EnerExp

L Single

Aryanezhad et al. (2009) MSD, Occupational
noise JSI, DND L Multiple

Diego-Mas et al. (2009)
MSD, Mental and
communication
capacities

Force loads, awkward and
static postures, repetitive-
ness, capacities of workers

NL Multiple

Asensio-Cuesta et al. (2012a) MSD Force loads NL Multiple
Ayough et al. (2012) - - L Single
Asensio-Cuesta et al. (2012b) MSD OCRA, monotony NL Multiple
Otto and Scholl (2013) MSD EAWS L Single
Huang and Pan (2014) MSD Discomfort level NL Multiple
Mossa et al. (2016) MSD OCRA L Single

Song et al. (2016) MSD NIOSH-eq, force loads,
geometry of tasks NL Multiple

Yoon et al. (2016) MSD REBA L Multiple
Digiesi et al. (2017) MSD RULA L Single

Sana et al. (2018) MSD OCRA, RULA, NIOSH-
eq NL Multiple

Notes. JSI - job severity index, DND - daily noise dosage, EnerExp - energy expenditure, OCRA - occupational repetitive action, EAWS -
ergonomic assessment work sheet, NIOSH - National Institute for Occupational Safety and Health, REBA - rapid entire body assessment,
RULA - rapid upper limb assessment, L - linear, NL - non-linear

Most of the articles reviewed aimed to minimize the maximum risk among the workers.

In other words, the implicit assumption is that improving the worst job assignment leads to

the overall improvement of the risk to the worker pool. However, one can intuitively argue

that in addition to the importance of reducing the maximum risk, the risk increment faced by

the rest of the rotating workers must also be considered. To highlight this point, consider two

examples from the reviewed studies. Tharmmaphornphilas et al. (2003) identifies the optimal

job rotation schedule for three jobs performed by three workers. According to their results,
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Table 2.2: Summary of the reviewed literature: optimization problem classification and major
contributions.

Reference Model Algorithm Major Contributions

Carnahan et al. (2000) IP Genetic Cluster analysis provided a general set of rules for designing
safe job rotation schedules without the use of a computer.

Tharmmaphornphilas et al. (2003) IP - A case study in a manufacturing setting was presented.

Tharmmaphornphilas and Norman (2004) IP - Rotation interval of approximately 2 hours was determined to
be optimal.

Asawarungsaengkul and Nanthavanij
(2006) IP Heuristic

A hierarchical planning approach proposed as a combination
of engineering controls, job rotation, and/or the use of protec-
tive devices.

Bhadury and Radovilsky (2006) Multiobjective IP Heuristic
A hybrid model considering both the total number of tasks and
the total number of the same consecutive tasks assigned to a
worker was developed.

Yaoyuenyong and Nanthavanij (2006) IP Heuristic A hybrid procedure utilizing four algorithms was proposed. It
outperformed all four algorithms individually.

Seçkiner and Kurt (2007) IP Simulated Annealing The algorithm was successful in identifying the optimal job
rotation schedules.

Tharmmaphornphilas and Norman (2007) IP Heuristic Uncertain task demands and non-identical worker profiles
were considered.

citetasawarungsaengkul2008heuristic IP Genetic
The algorithm first finds the minimum number of work-
ers. Then, based on the minimum total worker-location
changeover criteria, workers are assigned to jobs.

Asawarungsaengkul and Nanthavanij
(2008b) IP Heuristic A hierarchical planning approach was proposed as a combina-

tion of engineering controls and job rotation.

Seçkiner and Kurt (2008) IP Ant Colony The algorithm was successful in identifying the optimal job
rotation schedules.

Yaoyuenyong and Nanthavanij (2008) IP Heuristic Heuristic solutions were able to identify the minimum number
of workers required.

Aryanezhad et al. (2009) Multiobjective IP LP-metric Results from the multiobjective model dominated the results
from the single objective models.

Diego-Mas et al. (2009) - Genetic
The algorithm took into account workers’ preferences and
their abilities as well as their assignments in the previous ro-
tation.

Asensio-Cuesta et al. (2012a) - Genetic The algorithm took into account ergonomic risk, physical
skills of the workers and their competences.

Asensio-Cuesta et al. (2012b) - Genetic The algorithm took into account disabilities of workers and
their assignments in the previous rotation.

Ayough et al. (2012) IP
Genetic, Imperialist
Competitive Algorithm
(ICA)

A multi-period imbalance assignment model which considers
both boredom and cost was developed.

Otto and Scholl (2013) Mixed IP Heuristic A tabu search based meta heuristic with promising computa-
tional performance

Huang and Pan (2014) - Particle swarm opti-
mization (PSO)

An automated job rotation strategy based on the anthropomet-
ric measurements of workers was proposed.

Mossa et al. (2016) Mixed IP -
Both ergonomic risk and production rate were considered.
The effectiveness of the optimal solutions can be significantly
increased when flexible workers are employed.

Song et al. (2016) Multiobjective Genetic
Risk factors were considered simultaneously. The average er-
gonomic risk was decreased compared to sequential and single
job assignments.

Yoon et al. (2016) Mixed IP - The proposed model prevented sequential assignment to
workstations with high workloads.

Digiesi et al. (2017) Mixed IP -
The trade-off between production rate and ergonomic risk was
investigated. The reduction in ergonomic risk was larger than
the reduction in production rate.

Sana et al. (2018) Multiobjective IP Genetic
Risk factors were considered simultaneously. The proposed
algorithm was competitive with the models with only one risk
factor.
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the maximum daily noise dose was reduced by 6.0% after the rotation. However, after per-

forming the rotation, the minimum daily noise increased by 8.72%. Therefore, even though the

proposed rotation reduced the maximum daily noise dose, it also increased the overall daily

noise exposure for the rest of workers. Yoon et al. (2016) compared their optimal job rotation

scenario which was referred to as job rotation reducing cumulative workload (CWJR) with no

job rotation (NJR) and serial job rotation (SJR) scenarios for three workstations (chassis, trip

and finishing) using the Rapid Entire Body Assessment (REBA) risk assessment tool (Hignett

and McAtamney 2000). Based on their results, CWJR provided the lowest variance of REBA

scores. However, in addition to the reduction in variance, the proposed rotation decreased the

maximum REBA score by 18.14%, 26.45% and 4.70% for chassis, trim and finishing work-

stations, respectively, in exchange for an increase in the minimum score by 43.27%, 36.00%

and 13.09%, respectively. Therefore, the reduction in the maximum REBA score was always

smaller than the increment in the minimum REBA score bringing into question the effective-

ness of their proposed rotation. It should be noted that REBA tool guidance is qualitative in

nature with higher scores simply implying a greater sense of urgency regarding the investiga-

tion of and subsequent improvement of jobs. It is unclear whether or not increases or decreases

in tool output can be assumed proportional to scores.

These observations are at the center of our analysis. Specifically, we argue that when de-

veloping a job rotation schedule, it is important to consider the overall pool of workers affected,

and hence the benefit to the most exposed worker should be measured against the inevitable in-

crease in the risk faced by the rest of the pool. Based on Tables 2.1 and 2.2 we can observe

that while the existing studies consider various risk evaluation methods and occupational do-

mains, most share the following properties: a) a linear function for accumulating risk across

different tasks; b) a single factor considered in the optimization; c) the objective function aims

to minimize the worst assignment. In the current study we propose a model that relaxes these

assumptions. We are then able to characterize the trade-off described above and make general

conclusions on the effect of rotation on MSD risk.

Note that contrary to many of the reviewed studies we do not design our rotation model as

an IP. This stems from the fact that instead of aiming at designing a practical rotation schedule
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with the corresponding application specific constraints (e.g., rotating once every hour, or limit-

ing the number of unique stations per worker), we focus on evaluating potential benefits of the

rotation in principle.

2.3 Material fatigue-failure theory for risk assessment

According to material fatigue failure theory (FFT), all materials fail as a result of an accumula-

tion of damage resulting from loading. The damage resulting from a given load is nonlinearly

related to the number of cycles to failure for that load. For example, a structure, be it metal,

wood, or biological tissue, can sustain many low force loads (virtually infinite if the forces

are low enough), but relatively few loads close to the ultimate strength of the given material.

The ultimate strength is the load at which a material will fail with a single loading cycle. The

damage resulting from a load configuration can be calculated as a percentage of the ultimate

strength of the structure. For example, if a structure, such as a spinal motion segment, requires

20,000 repetitions at a given load to cause failure (structural breakdown/injury), then 2 repeti-

tions at this load would result in 0.01 % damage (2/20,000 = 0.0001= 0.01%). Theoretically,

when 100% damage is reached, the structure fails. As the theoretical percentage of damage

increases, so does the risk of failure.

It has been recognized for some time that musculoskeletal tissues incur damage in accor-

dance with fatigue failure principles when tested in vitro, including spinal motion segments

(Brinckmann et al. 1987; Gallagher et al. 2005), tendons (Schechtman and Bader 1997; Wren

et al. 2003), and ligaments (Thornton et al. 2007; Lipps et al. 2013). Further, several lines of ev-

idence have bolstered the notion that fatigue failure may be a causal mechanism of MSDs. For

example, epidemiological studies examining the factors of force and repetition have demon-

strated a pattern of interaction indicative of a fatigue failure process across a wide variety of

MSDs (Gallagher and Heberger 2013). Furthermore, a recent review of fatigue testing in ten-

dons has concluded that the damage observed in biopsies of tendinopathic tendons strongly

correlate to the damage that occurs in vitro fatigue testing (Shepherd and Screen 2013). In
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addition, both the DUET (Gallagher et al. 2018) and LiFFT (Gallagher et al. 2017) risk as-

sessment tools used in the current paper (both based on fatigue failure principles) have demon-

strated strong concurrent criterion-related validity against low back and upper extremity MSD

outcomes, respectively. An important feature of these risk assessment tools is the ability to sum

exposures associated with multiple tasks. Thus, there is substantial evidence supporting fatigue

failure as a mechanism in the development of MSDs, and fatigue failure theory has validated

methods to assess cumulative risk across multiple tasks. These characteristics support the use

of fatigue failure methods to assess the effects of job rotation on MSD risk.

This work is based on a generalized model that follows the form shown in (2.1), where

the estimated damage from a given job (y) can be related to the probability of a negative health

outcome in populations of industrial workers:

f(y) =
ayp

1 + ayp
. (2.1)

This equation was used here for both the distal upper extremity and the low back with different

coefficients from the fatigue-failure literature, specifically, LiFFT (low back) and DUET (distal

upper extremity) risk assessment tools discussed above. The coefficients are given in Table 2.3.

Table 2.3: Equation (2.1) coefficients for LiFFT and DUET tools.

Risk Assessment Method a p
LiFFT 101.723 1.024
DUET 101.573 0.747

A key distinction for biological materials is their ability to heal. Hence, a summation

of damage exceeding 100% may not result in an injury. Both DUET and LiFFT considered

this healing factor when relating damage to injury risk. A job or rotation of jobs that greatly

exceeds 8-12 hours per day or includes regular 6 or 7 work weeks may pose much greater risk.

A worker’s quantity and quality of sleep, rest, and recovery are other potentially important

factors. Healing and recovery were not considered here, but on-going work is beginning to

address these issues so that they can be incorporated in future work.
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2.4 Mathematical optimization model

2.4.1 Problem formulation

Consider a set of N jobs and M workers. Suppose there are K anatomical sites of MSD

risk (e.g., injuries to the distal upper extremities, lower back, etc.). The jobs involve highly

repetitive work and we model the corresponding risks according to the fatigue-failure theory

described in Section 2.3. Specifically, MSD risk for each worker is calculated by determin-

ing the cumulative damage on each MSD anatomical site and then applying (2.1). A rotation

scheme is then selected in such a way as to minimize a pre-selected measure of the overall

worker pool risk.

We denote by Xij the decision variable representing the number of cycles of job j per-

formed by worker i. The total damage that worker i carries from MSD anatomical site k is

denoted as CDik. The corresponding risk based on the fatigue-failure model for worker i from

the MSD anatomical site k is denoted as Pik. The overall fatigue-failure risk for worker i is

denoted with TPi, which is calculated according to the standard formula for the probability for

a union of random events. The following list summarizes the nomenclature.
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List of parameters and variables

Parameters

α number of cycles that each worker is required to perform

ak, pk coefficients in risk function (2.1) for the MSD anatomical site k

dpcjk damage on MSD anatomical site k per cycle of job j

K total number of MSD anatomical sites

M total number of jobs

N total number of workers

NCj number of cycles of job j

Variables

CDik cumulative damage for worker i on MSD anatomical site k

Pik FFT risk for worker i on MSD anatomical site k

TPi overall FFT risk for worker i

Xij number of cycles performed by worker i on job j

In order to simplify the analysis, we assume that all workers are of the same skill level,

or in other words, there are no restrictions on assigning any job to any worker, and no known

preference for any workers to perform any of the jobs. Similarly, we assume that all workers
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are required to perform the same total number of cycles (α). Note that both of these assump-

tions can be easily relaxed by introducing additional parameters. Further, we also assume that

different MSD anatomical sites are probabilistically independent, which simplifies calculation

of the cumulative FFT risk for each worker. While this assumption is rather restrictive, in gen-

eral it can also be relaxed by introducing correlation coefficients. These assumptions allow

us to concentrate on the mathematical properties of the solutions rather than effect of specific

parameter values.

The problem of determining the optimal job rotation can be formulated as follows.

min F (TP1, . . . , TPN) (2.2a)

s.t.

CDik =
M∑
j=1

dpcjkXij, i = 1, . . . , N, k = 1, . . . , K, (2.2b)

Pik =
ake

pk lnCDik

1 + akepk lnCDik
, i = 1, . . . , N, k = 1, . . . , K, (2.2c)

TPi = G(Pi1, ..., PiK), i = 1, . . . , N, (2.2d)
N∑
i=1

Xij = NCj, j = 1, . . . ,M, (2.2e)

M∑
j=1

Xij = α, i = 1, . . . , N, (2.2f)

X ≥ 0. (2.2g)

The optimization model above minimizes the objective function F (TP1, . . . , TPN), which

evaluates the risk profile of the pool of workers (e.g., average or maximum risk). The con-

straints ensure that the risk for each worker is calculated according to the fatigue-failure theory,

i.e., constraint (2.2b) calculates the total exposure for each worker, and constraint (2.2c) cor-

responds to equation (2.1) for each anatomical site. Constraint (2.2d) refers to the overall

probability of getting injured for worker i from any of the MSD anatomical sites, which is cal-

culated according to the standard formula for a union of independent random events (function
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G). For example, if K = 2, then G(p1, p2) = p1 + p2 − p1p2. Finally, constraints (2.2e) and

(2.2f) ensure that each worker performs the required number of cycles and each job is com-

pleted. Note that the problem is only feasible if
∑

j NCj = αN , i.e., the total amount of work

demanded is equal to the total worker availability.

2.4.2 Job rotation scenarios and properties

The set of feasible solutions to the problem above describes all possible rotations. Depending

on the choice of the objective function different risk profiles will be preferred. For the purpose

of the analysis, we define two natural rotation schemes, which we will refer to as min-max and

min-average. In addition we also describe a naive approach (referred to as complete), which

will be used for comparison in the case study.

Min-max rotation. If F (TP1, . . . , TPm) = max{TP1, . . . , TPN}, then the rotation aims

at minimizing the worst assignment. Intuitively, this means that if permitted by other con-

straints, such a rotation should result in assignments with TP1 = . . . = TPN , i.e., all workers

are equally exposed (see Claim 3). This objective corresponds to the approach used in most

studies in the literature, and also naturally coincides with intuitive rotation goal of reducing the

risk associated with the worst assignment.

Min-average rotation. If F (TP1, . . . , TPN) =
TP1+...+TPN

N
, then the optimal rotation min-

imizes the average worker risk without concern for relative equity. It follows from concavity of

risk function in equation (2.1) (see Figure 2.1 for the case of two anatomical sites) that average

risk will be minimal when the rotation has maximum possible difference between the best and

the worst assignments. In other words, the solution can be constructed with a greedy algo-

rithm, which iteratively selects the least risky but still feasible assignments one by one. Most

importantly, if the number of jobs is the same as the number of workers, then the min-average

solution can be obtained by not rotating, i.e., each worker performs a full single job (see Claim

2). For this reason, we will also refer to the model with the min-average function as the no

rotation case.
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Complete rotation. We denote as a complete rotation a heuristic idea which distributes

equal amounts of each job to each worker, i.e., it assigns 1/N of each job to each worker. Intu-

itively, this results in equal risk distribution between all workers, yet, as we will demonstrate,

it is always worse than min-max approach.

Given these definitions, the following results on properties of the rotation schemes can

be established. For the purpose of this paper we will omit formal proofs and instead provide

intuitive justifications.

Claim 1 For two independent MSD anatomical sites, the corresponding risk function for cal-

culating the total FFT risk of individual worker, TPi, is concave.

Note that for two independent MSD anatomical sites, TPi = f(yi1) + f(yi2) − f(yi1)f(yi2),

where yik is the total damage on the MSD anatomical site k for worker i and fatigue-failure

function f is given in (2.1). The claim can be verified visually, by inspecting the corresponding

graph on Figure 2.1.

Figure 2.1: Risk predicted by fatigue-failure theory for two independent MSD anatomical
sites. x and y axes correspond to the cumulative damage on the two sites, while z-axis

measures the risk according to fatigue-failure theory.

Min-average risk criterion is linear, hence, the objective of the corresponding optimization

problem is concave, and Jensen’s inequality implies the following claim.

Claim 2 For two independent MSD anatomical sites, if N = M , α = 1, and NCj = 1 for

all j, min-average solution is equivalent to no rotation solution, i.e., Xij = 0, for i 6= j and

Xii = 1, is optimal for min-average problem.
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This claim essentially establishes that if each job requires an equal number of cycles, and each

worker will perform equal number of cycles, then the minimum average risk is achieved if no

rotation is implemented, i.e., each worker is performing a single job in its entirety. Alterna-

tively, the min-max criterion implies an opposite extreme.

Claim 3 Optimal min-max solution is such that TPi = TPj for all i, j.

This claim describes a rotation in which all workers are equally exposed to risk. This claim

can be justified intuitively. Suppose that there is a risk distribution among the workers such

that some of them do not face equal risk. We can then reduce the maximum risk by rearranging

the cycles between the worst and the best assignments until the corresponding workers are

equally exposed. This argument can be continued until the risk is equally distributed among

all workers. Note that if multiple MSD anatomical sites are considered, such assignment is not

unique. Hence, in order to obtain an optimal min-max rotation, in general, one still needs to

solve an optimization problem.

Consequently, min-max rotation and no rotation can be viewed as two extremes on the

spectrum of FFT risk distributions, and any other rotation would result in a probability dis-

tribution that is either in some sense “in-between” the no rotation and min-max rotation or

dominated by them. Indeed, min-max corresponds to the most conservative approach (all risk

is equalized), while the no rotation enforces the largest possible inequality.

The results above imply the central claim of our analysis.

Claim 4 If MSD risk exposure of workers is evaluated through the fatigue-failure theory (or

in fact any other approach that is based on a concave risk function, such as (2.1)), then it is

impossible to design a rotation that does not result in the increase in the average risk exposure

of the worker pool.

Indeed, by design any decrease in the maximum risk exposure, is accompanied by an increase

in exposure for some of the rest of the workers, and since the risk function is concave, this

trade-off is always negative, i.e., the risk improvement is always smaller than the risk increase.

In the next section we illustrate this result with a realistic case study and characterize the scale

of this effect depending on the job pool composition.
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Note that concavity of the risk function used to aggregate the MSD risk for each worker is

the main reason for the negative trade-off above. Indeed, if instead we consider a linear func-

tion, then any rotation will not change the average risk in the worker pool, or in other words, all

risk increases will be exactly compensated by risk reductions. Consequently, with this assump-

tion one can be expected to be able to take advantage of benefits of rotation (equalization of

risk exposure), without paying the corresponding cost (in terms of overall risk increase). This

is indeed the assumption made in most of the studies reviewed in Section 2.2. Our conclusions

suggest that while very helpful in simplifying the optimization step, a linearity assumption

changes the fundamental structure of the problem, and hence should not be made lightly. It is

also worth noting that if a convex risk function is used, then a rotation will in fact lead to an

improvement to the overall worker pool risk (min-average and min-max solutions coincide).

That said, ultimately, the choice of risk function is not up to the decision maker, and rather the

risk function should be selected based on the best available ergonomic evidence.

2.5 Case study

In the case study presented here, each job is characterized in terms of damage per cycle at the

low back and distal upper extremity. FFT risks corresponding to these two MSD anatomical

sites are determined using the LiFFT and DUET risk assessment tools, respectively, which are

described in Section 2.3. Without loss of generality we assume that α = 1, (i.e., each job

consists of a single cycle, but each worker can be assigned any fraction of that cycle). Our goal

is to compare the results of the three described rotation scenarios (min-max, no rotation and

complete). Min-max rotation is obtained by solving the corresponding optimization problem in

AMPL modeling language (Fourer et al. 1990). No rotation and complete assignments can be

obtained analytically.

2.5.1 Data description

We have used two datasets for the case study. The datasets have been collected and described

in detail in Marras et al. (1993) and Sesek (2000) respectively, and have been used to val-

idate LiFFT and DUET fatigue-failure tools in Gallagher et al. (2017) and Gallagher et al.
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(2018). For our purposes, the datasets consist of 235 and 441 jobs, each represented with total

cumulative damage on either low back (LiFFT tool) or upper extremities (DUET tool). The

corresponding fatigue-failure probabilities are calculated according to (2.1). The distribution

of cumulative damage and probabilities for both datasets is given in Figure 2.2. Both include a

wide range of jobs from low- to high-risk.

Figure 2.2: Fatigue-failure probabilities and cumulative damages in the job pools for the two
datasets used.
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2.5.2 Methodology and experiment setup

We are interested in investigating the effect of rotation depending on job composition. We

consider an equal number of jobs and workers. Consequently, a default rotation corresponds

to the case of one worker performing a single job. As suggested in the analysis above, this

approach (referred as no rotation below) is equivalent to the min-average rotation scheme, i.e.,

minimizes the expected number of affected workers. Then, any rotation scheme compared to

the no rotation case represents a trade-off between improving working conditions for some
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workers (by giving them portions of less physically demanding tasks) and increasing risk faced

by others (by assigning them portions of more physically demanding tasks). Hence, our goal is

to evaluate this trade-off. Consequently, we use a combination of numerical characteristics and

visual inspection of the risk distribution among workers.

In each experiment we create M = 10 jobs, assigned to N = 10 identical workers, by

sampling from a given collection of jobs. Specifically, since we do not have any real datasets

simultaneously measuring fatigue-failure damage for multiple anatomic sites, we create syn-

thetic jobs by combining the datasets described above. For each of M = 10 created jobs we

sample independently one job from each of the datasets and pair them together. This then re-

sults in a collection of 10 jobs that are subjected to rotation schemes. This allows us to study

the effect of multiple MSD anatomical sites of risk and changes in job composition, while still

relying on realistic data.

To analyze rotation effects, we employ two approaches: a visual inspection of risk dis-

tribution and two quantitative measures. Figure 2.3 depicts an example of risk distribution

resulting from the three rotation schemes on 10 randomly sampled jobs. We plot the resulting

MSD risk calculated according to the fatigue-failure model for each of the 10 workers, where

workers are ordered by the risk given by the no rotation regime. As analyzed earlier, both the

min-max and complete rotations result in assignments that have the same risk for each worker.

This graph lets us visually asses the trade-off due to incorporating a rotation.

We also define two quantitative measures, which will be referred to as Average Increased

Probability per Worker (AIPW) and Efficiency Ratio (ER). AIPW provides the average per

worker change (increase) in MSD risk due to rotation. Formally, if the risk for worker i before

and after the rotation are pi and ri respectively, the AIPW is calculated as AIPW =
∑n

i
ri−pi
n
.

Similarly, ER measures the total improvement due to rotation as a fraction of the total worsen-

ing: ER =
∑

i max{ri−pi,0}∑
i max{pi−ri,0} . Larger values of ER and lower values of AIPW correspond to greater

efficiency in the rotation scheme. Note that, as follows from the analysis in Section 2.4, for any

rotation scheme AIPW > 0 and 0 < ER < 1. Table 2.4 presents the quantitative description

of the random case given in Figure 2.3. Observe that complete rotation is objectively worse

than min-max scheme, though the difference is minimal. Both rotations improve on (decrease)
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the risk faced by the two most exposed workers, but at the same time, considerably worsen the

conditions of the other eight workers. ER at 0.08 means that the observed deterioration is 12.5

times larger than the improvement, and on average each worker’s risk is increased by 16.5%

(AIPW = 0.165).

Figure 2.3: Risk distribution for the three rotation schemes (complete, min-max and no
rotation) for an illustrative random case
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Table 2.4: Summary of rotation effectiveness for the three rotation schemes (complete,
min-max and no rotation) for an illustrative random case. Columns range and mean represent
the difference between minimum and maximum risk and average risk among the the workers.

AIWP and ER measures are defined in Section 2.5.2.

Scenario Range Mean AIPW ER
No rotation 0.339 - 0.981 0.724 - -
Min-max 0.889 - 0.889 0.889 0.165 0.083
Complete 0.896 - 0.896 0.896 0.172 0.072

We expect that the effectiveness of rotation will dramatically decrease as we introduce

higher-risk jobs into the pool. In order to test it, we implemented the following sampling

procedure. We split the jobs from both datasets into five groups using four quantiles (20%,

40%, 60% and 80%), which are denoted as classes C1 through C5, where class C1 corresponds

to the 20% least risky jobs, class C2 is the 40% least risky, etc. Tables 2.5 and 2.6 and Figure 2.4

provide descriptions of job composition in each class. We then sample separately from each
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class, which guarantees that we obtain job pools with wide variety of risk levels. We repeat

sampling 100 times for each class. Note that this specific sampling procedure is adopted as a

way to create cases with a diverse set of exposure levels, which could have been achieved in

alternative ways. The selected procedure enables us to analyze model performance for various

profiles of MSD risk.
Table 2.5: Risk class composition for low

back dataset

Class Risk # of Jobs

C1 (0, 0.25] 47

C2 (0, 0.32] 94

C3 (0, 0.47] 141

C4 (0, 0.72] 188

C5 (0, 1] 235

Table 2.6: Risk class composition for
distal upper extremity dataset

Class Risk # of Jobs

C1 (0, 0.29] 89

C2 (0, 0.40] 180

C3 (0, 0.47] 265

C4 (0, 0.54] 353

C5 (0, 1] 441
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(a) low back dataset
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(b) distal upper extremity dataset

Figure 2.4: Job risk distribution in the risk classes for the two datasets.

2.5.3 Case study results

Figure 2.5 plots AIWP and ER measures as functions of the maximum fatigue-failure proba-

bility in the job pool. In other words, it depicts how potential effectiveness of rotation changes

as we include more and more risky jobs into the pool. Results for representative samples from

each class are also provided in Table 2.7 and Figure 2.6. As discussed earlier, complete rotation
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Table 2.7: Effectiveness measures (AIWP and ER) and rotation scheme characteristics for the
representative instances from each of the classes.

Class Scenario Range Mean AIPW ER

C1
No rotation 0.239 - 0.452 0.396 - -
Min-max 0.404 - 0.404 0.404 0.008 0.707
Complete 0.404 - 0.404 0.404 0.008 0.701

C2
No rotation 0.290 - 0.583 0.483 - -
Min-max 0.496 - 0.496 0.496 0.012 0.668
Complete 0.496 - 0.496 0.496 0.013 0.659

C3
No rotation 0.308 - 0.711 0.560 - -
Min-max 0.585 - 0.585 0.585 0.025 0.579
Complete 0.587 - 0.587 0.587 0.026 0.563

C4
No rotation 0.321 - 0.839 0.633 - -
Min-max 0.682 - 0.682 0.682 0.049 0.437
Complete 0.687 - 0.687 0.687 0.054 0.402

C5
No rotation 0.339 - 0.981 0.724 - -
Min-max 0.889 - 0.889 0.889 0.165 0.083
Complete 0.896 - 0.896 0.896 0.172 0.072

is always outperformed by the min-max scheme. At the same time, the difference is mostly

insignificant.
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(a) AIPW vs maximum risk in the pool
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Figure 2.5: Effectiveness of job rotation depending on the job pool composition.

As shown in Figure 2.5, both performance measures (AIPW and ER) indicate that the

effectiveness of job rotation is reduced by the inclusion of higher risk jobs in the pool. For

example, as indicated by the figure, if there is even one job with the risk probability of 90% in

the job pool, the average risk for each worker in a min-max rotation increases by around 15%

(AIPW = 0.15) and the observed improvement of the worst assignments is around 5.5 times
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(a) C1 job class
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(b) C2 job class
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(c) C3 job class
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(d) C4 job class
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(e) C5 job class

Figure 2.6: Comparison of illustrative cases for the five risk classes. Each case presents the
three rotation schemes for a representative instance sampled from the corresponding job class.
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lower than the deterioration observed for easier jobs (ER = 0.18). On the other hand, if only

low-risk jobs are present, while improvement due to rotation is still less in absolute value com-

pared to the increased risk for easier jobs, the trade-off inefficiency is considerably less drastic.

Compare the risk profiles given in Figures 2.6(a) and 2.6(e). In the former (sampled from low-

risk class C1), the rotation improves the risk for seven workers by increasing exposure faced

by three workers. The average risk is essentially unchanged (AIPW = 0.007) with relative

difference between improvement and deterioration at 0.7 (worsening of conditions is 1.4 times

larger than improvement). On the other hand, in the representative sample for class C5, eight

workers see their risk increase in order to improve the conditions for only two workers, with

average increase in MSD risk of 16%. Even more concerning, the relative difference is only

0.08.

2.6 Conclusions

In this study, the effectiveness of using job rotation as a strategy for reducing exposure to

physical risks associated with MSDs was evaluated following the precepts of fatigue-failure

theory. Based on the evidence presented, we have drawn the following conclusions:

1. In general, any rotation leads to a trade-off between increasing the risk associated with

low-risk jobs for the sake of reducing the risk of high-risk jobs.

2. Min-max and min-average rotations can be viewed as two extremes on the spectrum of

risk distributions. Any rotation would result in a probability distribution that is either

“between” the min-average and min-max solutions or dominated by them.

3. Due to concavity of the risk-function, any gain in efficiency is guaranteed to be smaller

in absolute value when compared to the losses if measured according to fatigue-failure

theory. The difference varies from very large, if even a single high-risk job is present in

the pool, to small if all jobs are fairly low risk.

4. The effectiveness of job rotation is highly dependent upon the composition of the job

pool.
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5. It is unlikely that any rotation alone can be expected to substantially help in alleviating

the effect of high risk jobs on MSD injuries. On the other hand, in the case of a job

pool which contains only low risk jobs, a rotation may be helpful in achieving risk eq-

uity between workers. In the case of medium-risk pools, a general conclusion cannot

be made and the optimal strategy depends on the associated costs and specific decision

preferences.

6. The current study considers the effect of rotation on exposure to physical risk factors,

specifically highlighting their potential to increase MSD risk. Any judgement on the ef-

fectiveness of a particular rotation scheme in a practical setting must be evaluated consid-

ering the full spectrum of potential benefits and costs, e.g., psychosocial factors, worker

training and productivity.

It must be emphasized that our conclusions are consequences of a mathematical model,

and hence are subject to our assumptions. At the same time, results of this study have important

implications for occupational health and safety practitioners. Most importantly, job rotation

alone does not appear to be an effective means of redistributing injury risk between low-risk

and high-risk jobs when considering the fatigue-failure perspective. The increase in risk for

those in formerly low-risk situations as a result of a rotation scheme can exceed the decrease in

risk for a worker in a high-risk situation. Job rotation will thus be counterproductive in terms of

overall injury risk in such scenarios. When high-risk jobs are present, the best recommendation

remains the use of ergonomic principles to redesign such jobs to reduce injury risk. However,

if all jobs in the rotation are relatively low risk, according to our model, workers may derive

benefits from rotation such as decreased boredom, increased skill development, and increased

motor variability without significant increases to injury risk.

The proposed procedure for evaluating the effectiveness of job rotation has some limita-

tions. The model itself relies on a number of assumptions. First, we assume that MSD risk is

accurately described with fatigue-failure theory, which, while supported by the literature (Gal-

lagher and Schall Jr 2017; Edwards 2018), remains an approximation of a real physical system.
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Musculoskeletal tissues have the capacity to recover, heal, and adapt that is not currently cap-

tured by the fatigue failure tools used in this optimization. Future work examining the healing

and recovery of musculoskeletal tissues and its relationship with the fatigue failure mechanism

is warranted.

Another limitation is our assumption that anatomical sites are independent and that there

are no constraints on rotation structure (e.g., each worker can perform any amount of each job).

By assuming a ”typical” worker and not including personal characteristics (e.g., gender, body

mass index, level of experience/training) in the proposed model, the specificity to any particular

occupational group is limited. Individual differences and abilities, particularly as they relate to

subsequent susceptibility or resistance to MSD injuries, should be considered in future work as

the workforce is both aging and increasingly obese.

Finally, we considered MSDs as the sole safety criterion and the severity of injury was not

considered. Of course, other criteria (e.g., occupational noise, exposure to psychosocial risk

factors, production rate and the resulting return on investment) come into consideration when

deciding whether to adopt job rotation. These effects should certainly be considered in any

practical evaluation of job rotation plans. We believe, however, that our findings have relevance

to those who may use job rotation for other risks and/or purposes, since, as evidenced by our

findings, any rotation scheme has the potential to inadvertently lead to increased physical MSD

risk, regardless of potential positive effects of other factors.

Supplementary materials

The data and the corresponding code (AMPL and R) used in the case study are available

through the following GitHub Repository: https://github.com/mehdizadeamir/

Job-rotation.git.
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Chapter 3

Review of data analytic applications in road traffic safety. descriptive and predictive modeling

3.1 Introduction

Despite the significant technological advances in motor vehicle sensing technologies (e.g., lane

departure detection and collision mitigation sensing systems), road crashes have remained a

pressing global health issue. The World Health Organization estimated that road injuries are

the 8th leading cause of death worldwide, resulting in 1.4 million deaths annually World Health

Organization (2018a). Perhaps more importantly, the incidence of such crashes and their sever-

ity are on the rise. By 2030, traffic-related deaths are predicted to become the 7th leading cause

of death worldwide (World Health Organization 2018a). The increase in annual deaths is seen

in low- and high-income countries alike. For example, in the U.S., an estimated 37,133 people

died in road crashes in 2017 (National Highway Traffic Safety Administration, NHTSA 2018),

which constituted a 7.5% increase from the average annual deaths recorded in 2012-2016 (In-

surance Institute for Highway Safety 2018). In addition to the massive loss of life, motor

vehicle (which is used to capture passenger cars, motorcycles, buses and trucks) crashes cause

significant economic losses. According to the World Health Organization (2018b), “road traffic

crashes cost most countries 3% of their gross domestic product.” In the U.S., it is estimated

that the total value of societal harm from motor vehicle crashes exceeds $830 billion annually

(Blincoe et al. 2015), which is equivalent to ≈ 4.4% of the country’s gross domestic product

(World Bank, 2018).

Consequently, there are multiple diverse streams of research dedicated to curbing such

driving-related risks. This review focuses on data analytics approaches, which revolve around

the idea of using data to characterize and predict traffic risk in order to prescribe better (safer)
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routes, driver assignments, rest breaks, etc. With the advances in information technology it

is possible to collect ever increasing amounts of relevant data, such as comprehensive incident

databases, real-time driving data feeds, or relevant factor characteristics (e.g., detailed historical

and forecasted weather and traffic reports). Further, there has been a tremendous improvement

in the variety and capabilities of data analytics tools and methods that can be applied to all steps

of modeling (data collection, processing, prediction, or prescription). The goal of this study

then, is to pull together and categorize the existing literature on different aspects of research

relevant to enabling data-driven analytics approaches to traffic safety.

The study was inspired by an observation that there exists an apparent disconnect between

two essential facets of pertinent research efforts: statistical modeling of crash risk on one hand

and prescriptive modeling for decision making on the other. For example, it is very common in

operations research (OR) literature to assume that the crash probability is time-invariant (Erkut

et al. 2007; Androutsopoulos and Zografos 2012), and is, in fact, in the range of 10−8 to 10−6

per mile (Abkowitz and Cheng 1988). This contradicts the findings from the predictive stream

of research, with multiple efforts studying the effect of real-time crash risk factors (traffic and

weather conditions) on the likelihood of a crash. According to the reviews in Theofilatos and

Yannis (2014) and Roshandel et al. (2015) different traffic and weather conditions would result

in different crash risk profiles, bringing into question the effectiveness of the methods often

used by OR community for considering risk in decision-making process.

In order to further examine this apparent gap we have conducted a more formal bibli-

ographic study. Based on the keywords and search strategy described in the Supplementary

Materials Section, we identified 856 relevant documents (i.e., published articles, proceeding

papers, and book chapters). To categorize these documents for this review, a text/bibliometric

analysis was performed using the bibliometrix R package (Aria and Cuccurullo 2017), with the

goals of: (a) examining the co-occurrences of keywords within documents since this shows a

link between the topics captured by these keywords; and (b) constructing a conceptual structure

map of the literature based on a more streamlined keywords list (“Keyword Plus”, see Garfield

and Sher (1993) for a detailed introduction). The results are shown in Figures 3.1 and 3.2,

respectively.
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In the keyword co-occurence network, induced by the documents found, a pair of key-

words is connected by a link, if they appear in the same document (the links are weighted

according to the number of co-occurrences). This network is then clustered with K-means

clustering algorithm (all parameters selected automatically by bibliometrix package). The clus-

ters and most important links (corresponding to more than four co-occurrences) are depicted

on Figure 3.1 with the black and red links depicting within-cluster and between-cluster connec-

tions respectively. The conceptual structure map (Figure 3.2) aims at identifying the common

emerging concepts in the expanded “Keyword Plus” network. Here, dimensionality reduction

technique (multidimensional scaling) is applied to the concept co-occurrence network in or-

der to project it to two dimensions, and the result then clustered with a K-means clustering

algorithm. More details on the precise implementation can be found in (Aria and Cuccurullo

2017).

Based on Figures 3.1 and 3.2, two important observations can be made. First, the lit-

erature can indeed be grouped into two main groups: (a) an explanatory/predictive modeling

stream, where the keywords emphasize the collected data (loop detector data), predictors (traf-

fic, weather, time and/or infrastructure), models used (regression, spatial-analysis, Poisson-

gamma and negative binomial), and model outcomes (rates, crash frequencies, and crash pre-

diction); and (b) a prescriptive modeling stream, where the focus is on developing algorithms

to manage risk, particularly for hazardous materials (hazmat) trucking, through the selection

of paths and routes. Second, the cluster agreement between the keyword co-occurrence net-

work and the concept map generated using the Web of Science’s Keywords Plus field implies

that there is a clear division between the two research streams, despite the fact that the out-

puts from the first stream should be inputs for the optimization models used for prescriptive

decision-making. Based on the second insight and a separate thorough examination of the rel-

evant operations research (OR) literature we can then conclude that the prescriptive literature

largely ignores the recent results on factors influencing crash risk.

Against this backdrop, the primary purpose of this review is to help bridge the gap be-

tween the different research streams that relate to the modeling and minimization of crash risk.

Our goal is to bring the research into better focus and to encourage future work that crosses
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Figure 3.1: A keyword co-occurrence network of the literature, depicting the 60 most used
keywords. The nodes correspond to the keywords, with node size reflecting relative frequency. The
links are limited to keywords that co-occurred at least five times (black and red lines correspond to
between and within clusters, respectively). The network plot divides the literature into two clusters:

prescriptive modeling (left), and explanatory/predictive modeling (right).

Figure 3.2: A data-driven conceptual structure map based on “Keywords Plus” (keywords tagged
by the ISI or SCOPUS database scientific experts) and the application of multiple correspondance
analysis and k-means clustering. The nodes are limited to keywords that have occurred ≥ 5 times,
and the gray circle and orange triangle depict the corresponding cluster center. Similar to Fig 3.1,

the concept map also divides the literature into the same two clusters.34



the siloed divisions within the literature. To achieve this goal, we divide this review into two

parts. Part 1 covers the sensing, data acquisition, data exploration, and explanatory/predictive

modeling, i.e., focuses on the first research stream. Part 2 reviews the prescriptive modeling

component (i.e., second stream), provides a simple case study for how both streams can be

integrated, and presents ideas for future research. Note that the research presented in Part 2

primarily targets hazardous materials (hazmat) trucking operations, where optimization mod-

els are used to minimize crash risk through path/route selection and/or rest-break scheduling,

while meeting delivery requirements. On the other hand, in Part 1, the research relates to both

commuters and commercial drivers since the unit of analysis is a “road segment”.

This paper is structured to follow the standard data analytics framework: data collec-

tion −→ data exploration −→ predictive modeling. The final part—prescriptive modeling—is

discussed in Part 2 of this effort. We would like to emphasize that in addition to the need

for connecting siloed research streams identified above, there also may exist a relatively high

“start-up cost” for initiating new efforts in this area. Specifically, as we survey in the remain-

der of this paper, there exist multitudes of disparate datasets, data processing approaches and

statistical methods that all may be relevant. Hence, the goal of this review is to attempt to

reduce this burden by categorizing the existing efforts. The remainder of the first part of this

review is structured utilizing a data analytic framework (data collection −→ data exploration

−→ predictive modeling). We present an overview of the sensors and data collection mecha-

nisms used in these studies in Section 3.2. In Section 3.3, we provide a taxonomy and review

of the commonly utilized data exploration and summarization techniques. Then, we synthesize

the explanatory/predictive modeling techniques used for crash risk modeling in Section 3.4.

We offer our concluding remarks in Section 3.5, and provide links for our code and analysis in

the Supplementary Materials Section.

3.2 Data acquisition protocols: An overview of the types of collected data and their associated

sensing systems

In this section, we provide an overview of the data acquisition strategies typically used in motor

vehicle safety studies as well as a brief to introduction to the corresponding sensing systems.
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The ability to extract such data is an indispensable component in any crash risk prediction study,

yet it is typically under-described. Thus, we view this section as an important practical contri-

bution of our review since a potential reason for the gap between the predictive and prescriptive

analytic research streams can be attributed to the “large start-up burden”, associated with the

lack of sufficient/targeted documentation for collecting quality data. While we primarily focus

on U.S.-based systems, the protocols described here can be extended to many transportation

locales. To facilitate and encourage the collection of data pertaining to important factor sets

(per the reviews of Theofilatos and Yannis (2014) and Roshandel et al. (2015)) in future pre-

scriptive studies, we provide R code that can be used to scrape data for many important crash

risk predictors (see the link in our Supplementary Materials Section). ’

It must be emphasized that both data sources needed and data acquisition methods used

to access these sources depend on the design of the study in question. Specifically, since this

review is focused on the literature dedicated to models for quantifying crash risks, the corre-

sponding studies can generally be divided into two main study designs: (a) retrospective case-

control studies in which police crash reports are used, and (b) prospective naturalistic driving

studies (NDS), in which a pre-specified set of drivers is followed for a certain period of time.

As one can expect, the choice of study design affects the data collection mechanism (as well

as the statistical methodologies used for analysis, which are discussed in Section 3.4). For the

sake of completeness, we provide some background on each of these two design strategies in

the following subsection.

3.2.1 Background: Study designs

Most research on motor vehicle safety has assumed that the sampling unit is a spatiotempo-

ral snapshot of a highway, i.e., researchers typically study a given section of a highway for

a pre-specified time period. Note that it is not sufficient to study the conditions under which

crashes tend to occur; one must also study the conditions under which crashes do not occur,

and compare the two. The problem is analogous to that faced by epidemiologists when inves-

tigating the cause(s) of a disease, where they examine the prior behavior of individuals with

and without a disease and attempt to identify differences in their prior behavior. The most
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common design that epidemiologists use is the case-control design. A number of individuals

with the disease are first identified, representing the cases. The demographic and behavioral

characteristics (e.g., age, sex, race, smoking status, body mass index, etc.) for the cases are

then determined/computed. A control group, as similar as possible to the case group, is then

identified. In a matched pair case-control study, each case is matched with one or more control

subjects.

In motor vehicle highway safety applications, these retrospective case-control studies are

typically conducted using police crash reports. In the U.S., crash reports include information

pertaining to number of vehicles, involvement of pedestrians, number of injuries/fatalities, road

type, crash location, date-time, intersection type, presence of a nearby work zone, weather

conditions, and road surface conditions (Thiese et al. 2017; Newnam et al. 2019). While a

lot of information can be captured in these reports, case-control studies are inherently limited

for two main reasons. First, the information captured in the crash reports combines: (a) factual

information, e.g., type of road and number of vehicles involved in the crash; (b) information that

is estimated by the police officer, e.g., classifying weather into one of pre-defined categories;

and (c) information captured from witnesses which is subject to recall and/or information bias,

e.g., it is often hard to gauge the veracity of information extracted from drivers involved in the

crash. Second, the inference from case-control studies can be limited when the denominator

(e.g., non-crashes or healthy individuals) is unknown to the researchers (Dingus et al. 2011). In

highway safety research, traffic flows can be captured using cameras and on-the-road sensors;

however, such information is not typically available for every road segment (e.g., in rural local

roads and/or for all highway exits). Thus, this is a prevalent issue in existing case-control

highway safety studies.

To alleviate the limitations in case-control studies, there has been an increasing number

of prospective naturalistic driving studies (NDSs) in the past decade. Contrary to the case-

control studies, the information is captured via one or more sensors that are mounted in the

vehicle in an effort to collect (Guo 2019): (a) high-resolution real-time driving data under

real-world circumstances; (b) location/GPS, speed, and multiple views of the driver/road; and

(c) naturalistic/individualized driving behaviors that can help explain differences if a crash is
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observed during the study period. Compared to traditional case-control studies, NDSs resemble

prospective cohort studies, where a pre-specified set of drivers is followed for a certain period

of time. The sampling units here are the drivers instead of road segments, and all the events

or non-events of the sample drivers are collected. Therefore, it is possible to compare the

rates of events in NDSs. In addition, the data are automatically collected using sensors, which

minimizes the impact of police/witnesses’ judgement in imputing the data and/or estimating

values for certain predictors.

3.2.2 Outcome variables used in crash risk modeling

In retrospective case-control studies, the most frequently used outcome variable is crash counts.

In the U.S., historical crash data are hosted by different Department of Transportation (DoT)

divisions depending on: (a) the types of vehicles involved, i.e., commercial vehicles or personal

commuter vehicles; and (b) whether the crash resulted in any fatalities. When these models are

utilized/deployed for predictive purposes, real-time traffic data can often be used as model in-

puts. In the U.S., such data can be obtained from state specific reporting systems. For example,

the 511 reporting system highlighted in Figure 3.3, is the predominately used sensing system

in the U.S. since it is used by more than 45 states (Federal Highway Administration 2016).

On the other hand, in prospective NDSs, the use of safety-critical events (SCEs) as a proxy

outcome variable is more common since: (a) NDSs do not focus on crash-prone highways, (b)

SCEs have a much higher incidence rate than crashes, and (c) they are assumed to be positively

correlated with the incidence of crashes (Guo et al. 2010; Dingus et al. 2011). SCEs are defined

as events that avoid crashes by last-second evasive maneuver(s) (Dingus et al. 2011). The most

commonly studied SCE is “hard brakes”, which can be detected using accelerometers/inertial

measurement units mounted in the vehicle or through a driver’s smart phone. The identification

of a “hard break” is threshold dependent; for example, several studies equate a “hard break”

to a deceleration higher than 3.0 m/s2 (Jansen and Simone Wesseling 2018; Mollicone et al.

2019). Several detailed reviews have been published on surrogate indicators using in the field

of traffic safety.Zheng et al. (2014); Johnsson et al. (2018); Mahmud et al. (2017). It is impor-

tant to note that, while SCE has been extensively used as the outcome variable in NDSs, its
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validity and causal relationship with crashes have not yet been conclusively confirmed (Kni-

pling 2015, 2017). We provide a visual summary of the hierarchical nature of the described

outcome variables in Figure 3.3.

Outcome variables ∗,∗∗

Crash data
retrospective reports

Safety-critical events
NDSs

Historical
(yearly)

∼Real-time
(≤ 1 hr)

Real-time
(in seconds)

FMCSA |
all truck
crashesNHTSA
| all fatal
crashes

By state
| e.g.,

511 sys.

VT —
e.g.

SHRP2

A
no

ny
m

iz
ed

an
d

no
ta

gg
re

ga
te

d

* Acronyms: FMCSA = Federal Motor Carrier Safety Administration, NHTSA = National Highway
Traffic Safety Administration, VT = Virginia Tech.

** Code: To simplify the data collection process, we present the R code needed to
scrape and clean these different data sources at: https://caimiao0714.github.io/
TrafficSafetyReviewRmarkdown/.

Figure 3.3: A hierarchical view of outcome variables in crash risk modeling studies. The
first level captures the data type, the second level shows the frequency, and the third level

highlights examples and sources.

3.2.3 Predictor variables used in crash risk modeling

Factors that have been shown in the literature to contribute to motor vehicle crash risk are

discussed in detail in Section 3.4. Here we concentrate on strategies and sensing technologies

used to obtain relevant data.

From a data acquisition viewpoint, the sensors can be divided into (Guerrero-Ibáñez et al.

2018): (a) intra-vehicular sensing platforms, where conditions extracted from the vehicle are
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captured, and (b) urban sensing platforms, where the sensors are integrated in the road infras-

tructure. Intra-vehicular sensors can capture driver behavior, vehicle speed, traffic environment,

etc. (Abdelhamid et al. 2014), and are widely used in NDS studies. On the other hand, urban

sensing platforms are more commonly utilized in case-control studies.We can categorize such

platforms into the following three categories: (a) traffic sensing systems (e.g., traffic cameras,

inductive loop detectors, infrafred sensors), which can be used to estimate traffic flow, speed,

occupancy, and volume (Guerrero-Ibáñez et al. 2018); (b) weather sensing systems, which can

be used to compute/estimate important factors for both explanatory/predictive (e.g., visibility,

rain/ snow accumulation, and potential for icy conditions) and prescriptive modeling (e.g., wind

direction and speed which are important considerations in hazardous material routing since they

are used in predicting the severity of a possible crash through estimating the radius of disper-

sion of toxic materials); and (c) geometric road descriptors (e.g., number of lanes, speed limit

information, longitudinal grade, road shoulder width, and whether the road segment of interest

contains a straight, merge, and/or diverge sections), which are typically tagged in geographic

information systems (GIS) and can be accessed using popular application programming inter-

faces (APIs) such as OpenStreetMaps (Wikipedia contributors 2019; Eugster and Schlesinger

2013). A visual summary of predictor variables extracted from urban sensing systems is pro-

vided in Figure 3.4

3.3 Descriptive analytic tools used for understanding crash data

In this section, we review the exploratory data analysis (EDA) techniques used to examine

transportation datasets prior to the explanatory/predictive modeling stage. EDA is an especially

important pre-processing steps when dealing with large datasets, where predictive modeling

and optimization can be computationally intensive. In Figure 3.5, we depict the two major

goals of EDA as well as the methodologies used to achieve these goals. Note that these methods

may not be mutually exclusive and can be used to complement each other.
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Figure 3.4: A hierarchy of predictor variables used in modeling crash risk. The first level
captures the data type, the second level shows the frequency, and the third level highlights

examples and sources.
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Figure 3.5: Exploratory data analysis (EDA) goals and their associated
techniques/methodological frameworks.
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3.3.1 Data summarization and visualization

Data summarization include both univariate (e.g., central tendency, dispersion, etc.) and mul-

tivariate tools (e.g., correlation). We assume that both predictive and prescriptive modeling

researchers are well-versed with these methods, and thus we will not discuss them here (see

Washington et al. Washington et al. (2010) for a detailed introduction). As a complement to

data summarization, data visualization is a succinct approach to understanding trends, patterns,

and anomalies in data. In a survey paper on the application of visualization techniques for traf-

fic datasets, Chen et al. Chen et al. (2015) categorized visualization approaches based on four

data types: (a) temporal data, (b) spatial data, (c) spatiotemporal data, and (d) multivariate data.

This framework can be extended to more comprehensive crash modeling studies where traffic,

weather and other predictor sets are combined. Table 3.1 presents an overview of the appro-

priate/recommended visualization techniques for each data type, with example references from

the literature. In the following subsections, we discuss each of these groups in further detail.

Visualization of time-oriented data

Line graphs are the most frequently used visualization technique for time-oriented data, where

the x-axis represents time and y-axis demonstrates transportation-related variable. There are

numerous applications of line graphs in traffic/crash visualizations, for example, visualizations

of tips per trip and fare per miles-driven among New York City taxi drivers (Ferreira et al.

2013), carbon monoxide pollution over the course of the day in London (Croxford et al. 1996),

traffic volumes in Beijing, China (Han et al. 2006) and Porto, Portugal (Alam et al. 2017), or

the effects of road surface conditions and time of day on traffic volumes (Nookala 2006). Since

line graphs can become visually overwhelming as the number of variables increases. Other

time-series based graphs can be considered in this case, such as ThemeRiver stacked chart

(Havre et al. 2000), which uses a flowing river metaphor to capture changes in several variables

of interest over time. This chart was used by Guo et al. (2011) for understanding traffic volume

patterns.
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Table 3.1: Categorizing visualization techniques for transportation data, adapted from Chen
et al. (2015).

Variable type
(Main group)

Subgroup Visualization techniques Examples

Time-series data
Linear time Line and stacked graphs Han et al.

(2006); Nookala
(2006); Guo
et al. (2011);
Ferreira et al.
(2013); Tsai
et al. (2015);
Alam et al.
(2017)

Periodic time Radial layout and cluster-and-
calendar based visualization

Pu et al. (2013);
Tsai et al.
(2015)

Spatial
Point-based Symbol maps NHTSA (2018)
Line-based Line maps, edge bundling, and

kernel density estimation charts
(KDE)

Xie and
Yan (2008);
Lovelace et al.
(2019)

Region-
based

Radial metaphor charts, choro-
pleth, proportional symbol maps,
and heat maps

Kraak (1999);
Erdogan (2009);
Wongsupha-
sawat et al.
(2009); Liu
et al. (2013);
Zeng et al.
(2013)

Spatiotemporal - Space-Time-Cube (STC), ani-
mated maps, GeoTime, and
stacking-based STC

Kraak (2003);
Kapler and
Wright (2005);
Romero (2015);
Galka (2016);
Tominski et al.
(2012)

Multiple
properties

- Parallel coordinates plot, trellis
plot, and multidimensional scal-
ing

Pack et al.
(2009); Wong-
suphasawat
et al. (2009);
Cottrill and
Thakuriah
(2010); Pack
(2010); Chu
et al. (2014);
van Huys-
duynen et al.
(2015); Liu
et al. (2017);
Das et al. (2018)

43



When the data are inherently periodic or cyclic, three charts can be applied (Chen et al.

2015): radial layout, cluster- and calendar-based (where line graphs are used for showing clus-

ter averages over time, and calendar-based charts are used to show cluster membership per day)

Van Wijk and Van Selow (1999), and statistically derived charts. Pu et al. (2013) used the ra-

dial layout chart to depict traffic volumes in different days and times. Tsai et al. (2015) showed

how the cluster- and calendar-based charts can be effective in understanding traffic flows in

the state of Alabama. In their case study, they showed that the data exhibited eight distinct

clusters of daily traffic volumes (at hourly intervals within each day). Two of the clusters were

somewhat unexpected, where one captured game-day traffic for college football, and the other

captured travel patterns around different holidays (including Fourth of July, Thanksgiving, and

Christmas). Statistically derived plots (based on time-series analysis techniques) can be used

to quantify the periodic/seasonal nature of the data. From a time-series analysis perspective,

the data can be decomposed into: (a) seasonal, (b) trend, and/or (c) cyclical components within

a season. These components can be visualized, along with the autocorrelation function (ACF)

and the partial autocorrelation function (PACF) for the differenced series to provide an under-

standing of what type of time-series models to use. The reader is referred to Washington et al.

(2010) for a detailed coverage of time-series modeling applied to transportation data analyses.

Visualization of spatial and spatiotemporal data

Crash datasets provide rich spatial information including the location of vehicles, construction

sites, road closures, and crashes. Visualizing them spatially gives insight(s) on the geograph-

ical patterns and clusters, which may improve the decisions made when setting up the dataset

for predictive/ prescriptive modeling. Chen et al. (2015) presented three visualization options

(point-based, line-based, and region-based visualizations), which should be selected based on

the dataset’s aggregation level.

In point-based visualizations, each symbol on a map represents the position of an object at

a given point in time. An example of such a visualization is the motor vehicle fatality symbol

map, which is used by NHTSA to depict fatalities (NHTSA 2018). We provide a screenshot of
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their dashboard in Figure 3.6, showing the location of vehicle occupants killed in speed-related

crashes on Saturdays in December, 2016.

Figure 3.6: Symbol map showing the location of vehicle occupants killed in speed-related
crashes in the US in December, 2016. The dashboard is available at (NHTSA 2018).

Popularized by the ubiquity of modern navigation applications, a line map visualizes travel

routes and traffic flow. An example can be found at Lovelace et al. (2019), who presented the

trip patterns in Bristol, England. They used the “line width” to encode the number of trips and

“color” to encode active travel percents. Given the widespread use of navigation applications,

we do not discuss other examples in this review.

Region-based spatial visualizations include three popular visualization techniques. The

first is the “proportional symbols map” (Kraak 1999), where the size of a point/symbol in a

map is proportional to the number of observations in that location. This can be seen as an

extension to the point-based visualization, where the point-position on the map is now used to

encode count. The second technique is based on “choropleth maps” (Erdogan 2009; Wong-

suphasawat et al. 2009; Liu et al. 2013), where areas/regions in maps are shaded, colored, or

patterned relative to the value of the metric of interest. These maps are common when compar-

ing crash/fatality rates between larger geographic regions (e.g., counties, states, or countries).

The third, and least commonly used visualization is the “radial metaphor“. One existing ap-

plication was provided by Zeng et al. (2013), who used a “radial metaphor” chart to visualize

interchanging traffic patterns among different regions of a city.

For spatiotemporal visualizations, there are two overarching strategies that can be used.

The first strategy is intended for web-based visualizations, where a time effect is added to the
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map by animation or transition effects. Examples can be found in Romero (2015) and Galka

(2016). On the other hand, the second strategy is intended for print and utilizes dedicated

visualization methodologies. Space-time-cube (STC) visualizations, are the most commonly

utilized approach, where the x and y axes are used to capture spatial information, while the

temporal information is shown on the z axis (Kraak 2003). Applications of such technique

include: (a) traffic analysis where the changes in a traffic-related variable of multiple vehicles

across time and space is shown by stacking-based STC (Tominski et al. 2012); and (b) crash

analysis where crashes are displayed and tracked based on their spatiotemporal information by

an enhanced version of standard STC (Kapler and Wright 2005; Gudes et al. 2017). Despite

their perceived utility for showing spatiotemporal patterns in a 2-dimensional screen/paper, we

do not recommend this approach since the actual values cannot be easily shown and compar-

isons depend on one’s ability to estimate the patterns over space and time. Instead, we would

recommend the use of either panel visualizations (i.e., trellis/ small multiples), or a tabulated

representation of the results to show the time component.

Visualization of high-dimensional datasets

For high-dimensional data, visualization requires more data cleaning and curation. On the

lower end of the spectrum, Parallel coordinates plots (PCP) and trellis (small multiples of bar

charts or scatter plots) are commonly used fast plotting tools and require less data preprocess-

ing. For example, PCP can be applied to visualize the correlation/interaction among several

crash descriptors including: cars involved, day/month effects, incident type, and road condition

Pack et al. (2009); Wongsuphasawat et al. (2009); Pack (2010). Additionally, the trellis plot

was used by Cottrill and Thakuriah (2010) to visualize variations in the number of crashes by

different census tracts. On the upper end of the analytical spectrum, visualizations are preceded

with the application of projection methods to reduce the problem’s dimensionality. Examples

include: (a) van Huysduynen et al. (2015) where cluster analysis and multidimensional scal-

ing were used to produce a 2-dimensional (2D) plot of the relationship between the different

constructs and types of drivers examined in the study; (b) Das et al. (2018) who utilized mul-

tiple correspondence analysis (MCA) to present a proximity map of key factors contributing
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to wrong-way driving in a 2D space; (c) Liu et al. (2017) where the multivariate time-series

data capturing the driver behavior were reduced to a 3D feature space using deep learning

techniques, and then visualized using a driving color map.

3.3.2 Dimension reduction

In the previous subsection, we highlighted how projection methods can be used to reduce the

data dimensionality and assist in its visualization. Here, we discuss how dimension reduction

techniques can be used to prepare the data for the predictive modeling stage. In general, there

are three main goals for dimension reduction: (a) feature selection, where important variables

are identified and selected; (b) feature extraction/generation, where the variable set is projected

into lower subspace without losing significant information and; and (c) clustering, where sim-

ilar observations are grouped together. Since researchers could combine these approaches in

their analysis, we classified dimension reduction methods according to their goals.

Feature selection

One of the recommended steps before the use of statistical and machine learning models is

to identify and use only the variables/features deemed important for the analysis since this

(Sawalha and Sayed 2006): (a) avoids over-fitting, (b) reduces the computational complexity

in the analysis, and (c) leads to better prediction performance. This step is often referred to

as variable or feature selection. In the context of crash prediction models, variable selection

plays an important role since there are many potential predictors (e.g., traffic, weather, road

geometry related variables) which may have effect on the probability of a crash. In addition,

in order to capture the spatial and temporal effects of these variables, new variables need to be

introduced in the model. For instance, Shi and Abdel-Aty (2015) developed a crash prediction

model where each traffic-related variable is collected prior to the crash from two upstream and

two downstream sensors. This means that the information for each traffic variable is divided

across four variables, and that these variables contain some redundant information within them.

In such cases, feature/variable selection will improve model performance (Hassan and Abdel-

Aty 2013; Hossain and Muromachi 2013; Yu and Abdel-Aty 2013; You et al. 2017; Basso et al.
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2018). For the sake of conciseness, hereafter we use the term feature selection to denote feature

and variable selection methods.

Feature selection methods can be classified into three groups: filter, wrapper, and embed-

ded methods (Chandrashekar and Sahin 2014). In the filter methods, the process of selecting

a subset of features is independent from the statistical and machine learning model used, i.e.,

a subset of features will be selected according to an algorithm (e.g., Pearson correlation or

Mutual Information Criterion), and then the selected features will be the inputs to the explana-

tory/predictive model. Advantages of filter methods include: (a) simplicity, (b) computational

efficiency, (c) speed, and (d) reduction of the risk of over-fitting. However, they can ignore the

dependency between features and do not guarantee the selection of an optimal set of features

(Saeys et al. 2007; Chandrashekar and Sahin 2014). In contrast, wrapper methods consider the

prediction performance of the classifier (while accounting for the dependencies/interactions

between features) and subsets the feature space using heuristic searching algorithms such as

genetic algorithms (Goldberg and Holland 1988) and particle swarm optimization (Kennedy

and Eberhart 1995). While they can improve performance when compared to filter methodolo-

gies, they are computationally inefficient. In addition, they also do not guarantee optimality

and may over-fit (Saeys et al. 2007; Chandrashekar and Sahin 2014). To avoid such problems,

feature selection is a part of the model training process in embedded approaches, which makes

them the preferred approach in many crash risk modeling scenarios. Random forest (RF) was

widely used in the literature as a feature selection method and to determine variable importance

(Xu et al. 2013a; You et al. 2017; Basso et al. 2018). For more information about the feature

selection methods and their applications, we refer the reader to Guyon and Elisseeff (2003);

Saeys et al. (2007); Jović et al. (2015).

Feature extraction

Feature extraction methods offer an alternative approach to dimension reduction by projecting

input space to a more efficient dimension space. The projection can combine input variables,

reduce the problem complexity, and present a useful abstraction of the data (Khalid et al. 2014).
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Thus, feature extraction differs from feature selection as the focus is not on dropping unimpor-

tant variables, but rather to combine the information across the variables through a mathemat-

ical transformation. Principal Component Analysis (PCA) is the most commonly used feature

extraction method in the crash prediction literature (Nagendra and Khare 2003; Lee et al. 2003;

Li et al. 2007; Caliendo et al. 2007; Guo and Fang 2013; Lee et al. 2018). Through an orthog-

onal transformation, PCA transforms the original variables into a set of linearly uncorrelated

variables (i.e., principal components, PCs). Typically, the variation in the data can be explained

with a few PCs, which reduces the dimensionality of the problem with minor loss of informa-

tion. The determination of the number of PCs to retain is often determined through a scree

plot or a threshold for the eigenvalues (Cook 2018). Since PCA was originally designed for

numeric variables that can be linearly combined, there are several extensions to PCA which

do not require such assumptions. These include: (a) probabilistic PCA Tipping and Bishop

(1999), (b) non-linear PCA (Khalid et al. 2014), and (c) kernel-based PCA (Schölkopf et al.

1997). These methods have also been implemented extensively in the literature (Khalid et al.

2014).

Clustering

Contrary to feature selection and extraction, clustering is an unsupervised machine learning

method that attempts to group observations together with the goals of maximizing the similarity

within a cluster (i.e., minimizing distance between observations) and minimizing the similarity

between clusters (i.e., maximizing the distance between cluster centers/centroids) (Berkhin

2006; Rai and Singh 2010). Clustering approaches can be divided into: partitioning-based,

hierarchical-based, density based, grid-based, and model-based methodologies (Berkhin 2006;

Fahad et al. 2014).

Crash risk modeling datasets have a number of characteristics that make clustering a vi-

able and useful approach for dimension reduction. For example, if you consider traffic datasets,

the goal is typically to understand the impact of traffic conditions on crash likelihood, which

is typically achieved through: (a) classifying traffic into different states, and then (b) evaluat-

ing the impact of each traffic state (e.g., congested or not congested) on the crash likelihood
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(Theofilatos and Yannis 2014). Historically, step (a) was achieved through an analysis of traffic

flow characteristics (e.g., see (Hall et al. 1993; Kerner and Rehborn 1996; Wu 2002)). A lim-

itation of such an approach is that the modeling can be influenced by researchers’ biases and

perceptions. Alternatively, one can use an assumption-free, data-driven approach to identify

how observations can be clustered. Tsai et al. (2015) showed how clustering can be used to

identify logical, but hard to model, groupings of the data. Applications of clustering include,

but are not limited, to: (a) traffic categorization (Golob and Recker 2004; Xu et al. 2012; Tsai

et al. 2015), (b) identifying accident clusters (Steenberghen et al. 2004; Xie and Yan 2013; Shen

et al. 2019), and (c) grouping of weather conditions (Kwon and Park 2016). To demonstrate

how an optimal number of clusters (k∗) can be obtained, we provide a detailed example in the

supplementary materials where we use k−means clustering and the elbow method to determine

the k∗ clusters for traffic data.

3.4 Explanatory/predictive models for crash risk

This section focuses on two aspects: the risk factors that affect crash risk and statistical/machine

learning models. In the risk factors part, we specifically consider the effects of fatigue, dis-

tracted driving, and environmental variables including traffic and weather on traffic safety. For

the statistical part, we will review how some of the research that has been done to analyze those

factors and build predictive models.

3.4.1 Risk factors for traffic safety

Roshandel et al. (2015) discussed five sets of factors that affect crash risk: (a) behavioral

characteristics of the driver—e.g., impairment, fatigue, distractions; (b) vehicle condition; (c)

traffic conditions—e.g., traffic speed, density and variation in speed between vehicles; (d)

geometric characteristics of the road, i.e., type of road, number of lanes, curvature, nearby

ramps/intersections, etc.; and (e) weather conditions—e.g., rain, visibility, ice/sleet/snow, etc.
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Sleep and fatigue

Early work on the study of fatigue and the risk of adverse outcomes such as crashes relied on

sample surveys of drivers. For example, Crum et al. (2001) conducted face-to-face interviews

with approximately 500 truck drivers at five rest stops on interstates spread across the United

States. The three outcomes were “close calls,” “perception of fatigue,” and “crash involve-

ment.” All of these were based on driver recall from survey responses. They identified three

sets of variables that could affect drivers’ fatigue, with self-reported measures. These measures

included truck driving environments, economic pressures, and carrier support for safety. Three

specific variables, all from the truck driving environment category, were identified as influenc-

ing fatigue, including: (a) drive regular or irregular shifts; (b) short or long load wait time;

and (c) start the work week tired (or not). Crum et al. (2001) ran a regression analysis with

these factors as predictors, with each of the responses described above. The first variable (drive

regular or irregular shifts) was measured by determining how many six-hour times periods the

drivers routinely drove. They found that starting the work week tired was a significant predictor

for all three outcome measures described above. Long wait times were positively associated

with close calls and self-perception of fatigue. Paradoxically, the number of time periods driven

per day was negatively associated with close calls.

In another early study, Crum and Morrow (2002) conducted a stratified sample of trucking

companies based on their safety record. They selected a sample from each of three strata de-

fined as the bottom quartile (poorest safety performers), the middle two quartiles, and the top

quartile (the highest safety performers). After taking a sample of carriers within each stratum

they sent seven questionnaires to be filled out by various employees in the company, including

the executive, the safety director, two dispatchers and three drivers. They also arranged focus

groups within each company. Using the same three sets of variables as in Crum et al. (2001)

they concluded that the most significant variable in predicting fatigue was “starting the work-

week tired.” Other significant factors were “difficulty finding a place to rest” and “shipper and

receiver scheduling practices and requirements.”

51



Garbarino et al. (2016) conducted a cross-sectional study of truck drivers in Italy to deter-

mine the risk factors for accidents and near misses. Data on sleep apnea, sleep debt, daytime

sleepiness, frequency of naps, and frequency of rest breaks, as well as the accident responses

were conducted from survey questionnaires and medical exams. They found that obstructive

sleep apnea, sleep debt, and excessive daytime sleepiness were positively correlated with acci-

dents; these yielded odds ratios of 2.32, 1.45, and 1.73, respectively. Naps and rest breaks were

negatively associated with accidents, having odds ratios of 0.59 and 0.63 respectively. All of

these odds ratios had confidence intervals that excluded the null value of 1.0.

With automatic data collection systems that can detect events like accidents, hard-breaks

(sudden deceleration caused by braking), lane departures, and others. Mollicone et al. (2019)

studied hard braking as safety critical events, which are highly correlated with crashes (Dingus

et al. 2006). Their model used a predicted fatigue model of McCauley et al. (2009) and Mc-

Cauley et al. (2013) to develop a Poisson regression model having the number of hard brakes

as the response. The predictor variables included the predicted fatigue and six variables for the

time of day. They found that there is an increasing and concave up relationship between the

predicted fatigue and the relative risk of a hard brake.

In a recent study, Stern et al. (2019) reviewed the research related to fatigue of commercial

motor vehicle drivers. Because of the difficulty of running a controlled experiment by imposing

treatments, most research designs are observational studies, that is, they compare the effects of

variables that are observed, not imposed. One exception to this is a randomized encouragement

design where drivers are randomized to receive some sort of incentive to apply some treatment,

but are not forced to do so. If an effect is observed, we would conclude that it is due to the

incentive, not necessarily to the actual treatment. Many studies use a cohort design or a case-

control study. In a cohort design, a number of drivers is identified and studied across time.

In a case-control study, a number of cases (e.g., crashes) are identified and are matched with

controls; focus is then placed on the differences between the cases and controls. Both cohort

studies and case-control studies can be useful in assessing safety.

Recently, Bowden and Ragsdale (2018) developed an optimization algorithm for driver

scheduling. The algorithm, denoted FAST (Fatigue Avoidance Scheduling Tool) was designed
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to minimize the trip duration subject to a minimum fatigue level along with other constraints,

such as the maximum driving hours under United States law. The algorithm assumes the three

process model of alertness (TPMA) developed by Åkerstedt and Folkard (1995) and Åkerstedt

et al. (2004).

Distracted driving

Other researchers have looked at the effect of distracted driving. The problem of mobile phone

usage and distracted driving has been noticed by the World Health Organization (Organization

et al. 2011). They noted that world-wide use of cell phones has increased by up to 11% in the

past 5 to 10 years. Their data suggest that cell phone usage increases the chance of a crash

by a factor of four, and this is similar for hand-held phones and hands-free devices. Young

et al. (2007) noted that at the time, about one fourth of all crashes (trucks and personal vehicles

combined) were due at least in part to distractions, particularly mobile phones and navigational

systems. They reviewed much of the literature available at the time of their writing. Wilson and

Stimpson (2010) reviewed trends in distracted driving accidents and noted that deaths due to

distracted driving had increased 28% from 2005 to 2008 when the rate was nearly 6000 deaths

per year.

Olson et al. (2009) studied distracted driving in 203 commercial drivers. The data involved

4452 critical events, such as crashes, near-crashes, and unintentional lane departures, along

with 19,888 time periods that involved no special events. The found that 71% of all crashes

and 46% of near crashes involved drivers who were engaged in tasks not related to driving.

Overall, 60% of critical events occurred while the driver was performing non-driving tasks.

Klauer et al. (2014) conducted a study in which 42 young drivers (16.3 to 17.0 years of age)

who had just received their driver’s license and 109 experienced drivers were studied. Here the

unit of measurement is the driver. Equipment, such as accelerometers and cameras, were used

to detect distracted motion while driving. They found that distracting events like eating or cell

phone dialing or texting led to an increased risk of accident, with odds ratios often exceeding

3.0.
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In terms of safety optimization, the choice here is clear. Distracted driving, such as hands-

on cell phone use and texting, should not be allowed. From a general public perspective, these

have translated into driving laws in many countries as well as have been translated into com-

pany policies for many commercial transportation firms. In addition, there are several smart

phone-based applications that disables texting while driving and/or encourage safe driving be-

havior. From a commercial driving perspective, there are wearable technologies (e.g., headsets

embedded with sensors that are linked to a smartphone application) that are used by profes-

sional drivers that provide voice-alerts when their mirror-check rate deviates from a pre-set

standard. This information is also shared with dispatchers to schedule rest-breaks as an in-

tervention. While these smart-phone applications/technologies seem promising, there is not a

large body of literature that examines the effectiveness of these interventions.

Weather, traffic conditions, and road geometry

In Sections 3.4.1 and 3.4.1, we have discussed driver-related factors. In many cases, the crash

likelihood and severity can be impacted by non-driver/external factors. Variables/features cap-

turing weather (e.g., temperature, precipitation, wind speed, humidity, and visibility), traffic

conditions (e.g., traffic flow, occupancy, density, and volume), and road geometry (e.g., ele-

vation, curvature, road surface, and the number of lanes) represent the main external factors

that impact the crash likelihood and severity (Xu et al. 2013b; Theofilatos and Yannis 2014;

Roshandel et al. 2015). Note that these factors should not be considered in isolation since their

interactions are complex and can significantly change the crash likelihood. Thus, in this sub-

section, we highlight three relevant studies that have investigated the combined effect of such

factors on crash risk.

Ahmed et al. (2012) investigated the effect of the interaction between road geometric

features, real-time weather parameters, and traffic data on crash likelihood. Using a Bayesian

logistic regression framework, the authors developed two models for snowy and dry seasons.

Based on their models and case study, their results showed that in, both models, the main effects

and at least one interaction term were significant. The authors showed that the crash risk during

the snowy season was two times that of the dry season. Furthermore, the authors suggested that
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the crash risk likelihood may also be influenced by the interaction effects between the snowy,

icy, or slushy road surface conditions with road segments involving steep grades.

In another study, Yu et al. (2013) conducted their study on a 15-mile segment of the I-70

interstate in Colorado. The authors utilized: (a) 30 Remote Traffic Microwave Sensor (RTMS)

sensors to extract real-time traffic data; (b) six weather stations for obtaining real-time weather

data; and (c) the Roadway Characteristics Inventory (RCI) for obtaining descriptors of road

geometry. Different scenarios were considered in the study based on the season and crash

type. The results showed that the adverse weather condition combined with critical roadway

conditions (e.g., steep slopes) can increase the crash likelihood significantly. Further, single

vehicle (SV) and multiple vehicle (MV) models shared some common significant predictors

such as precipitation and average speed. Furthermore, in the SV model, the significant variables

were more related to weather conditions and vehicle speed. On the other hand, MV crashes

were more affected by traffic-related variables.

Wang et al. (2019a) studied several of the factors that could lead to high risk traffic con-

ditions. They considered traffic, weather, road geometry, and some behavioral aspects, such

as trip generation and social demographics. These variables were taken as the characteristics

of the region surrounding the crash, not the individuals involved in the crash. They used a

case-control design with a 10:1 ratio of non-crashes to crashes. They used support vector ma-

chines (SVM) for variable selection and Bayesian logistic regression for inference. They found

that the percentage of home-based work production, which includes commuters, was the only

behavioral characteristic that had a significant effect on the risk of accident.

Xu et al. (2013b) developed crash prediction models at different levels of crash severity.

Three levels of crash severity were considered: fatal/incapacitating injury crashes (KA), non-

incapacitating/possible injury crashes (BC), and property-damage-only crashes (PDO). Results

showed that under different crash severity levels, the effect of environmental variables is dif-

ferent. For example, in the all crashes model (KA, BC and PDO), adverse weather conditions

would increase crash risk. However, under the injury crashes model (KA and BC), adverse

weather conditions had the opposite effect which indicated that it could possibly reduce the

likelihood that a crash would result in injuries and fatalities (possibly due to uncaptured changes
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in driver behaviors). Note also that the significant traffic-related variables are different in these

two models which indicates that the interaction of the external variables would result in differ-

ent level of crash risk and severity.

3.4.2 Statistical modeling

Retrospective case-control studies are usually analyzed using logistic regression or other clas-

sification models. Since crashes are very rare compared with non-crashes, matching a case

(crash) with one or more controls (non-crashes) is considered; this matching is then accounted

for in the analysis. In other situations, non-crashes are unmatched; a set of controls is selected

to mimic the aggregate of conditions of the crashes. Many studies are unclear about match-

ing and whether (and also how) the matching was taken into account in the analysis. Since

non-crashes are much more common than crashes, it is common to take several times as many

non-crashes as crashes. Ratios as high as 10:1 are found.

Theofilatos and Yannis (2014) surveyed previous research on the relationships between

these factors and traffic crashes. Some of the commonalities in the conclusions were that safety

was a nonlinear function of traffic flow, speed limits were a factor, and precipitation was re-

lated to accident frequency, although the effect on severity is unclear. Roshandel et al. (2015)

conducted a review and meta analysis of previous traffic safety studies and found that four vari-

ables are likely contributors to accident likelihood. These include speed variation around the

crash site (odds ratio = 1.226), speed difference (odds ratio = 1.032), average traffic volume

(odds ratio = 1.001) and average speed (odds ratio = 0.952).

Shi and Abdel-Aty (2015) used a matched control design to study rear end crashes. They

matched 243 crashes with 962 non-crashes, a ratio of about 4:1. They used a random forest

for variable selection, and then used a Bayesian approach for logistic regression. They found

that peak hour, high volume upstream (from the accident), low speed downstream, and high

congestion index downstream were significant factors for rear end crashes. Pande and Abdel-

Aty (2006a) also studied exclusively rear end crashes in an unmatched case-control study. They

found 2179 rear-end crashes, but only 1620 with full data, in a period of five years and selected

a random sample of 150,000 of the roughly 363 million possibilities for the controls. They
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used classification and regression trees (CART) to discriminate low and high risk situations.

Their approach could classify a situation as high-risk about 75% of cases where there was an

accident, with approximately a 33% positive rate. Since crashes were rare events, one can

conclude that their false positive rate was ≈ 33%.

In a later study, Pande et al. (2011) studied rear end crashes in a case-control study. They

used a 5:1 ratio of non-crashes to crashes and used a random forest for variable selection and

a multilevel perception neural network for inference. They found that occupancy downstream

and average speed upstream were significant.

Theofilatos et al. (2018) studied traffic safety on a multi-lane belt-line highway in Athens,

Greece, where there were 17 crashes and 91,118 non-crashes. In one model they use all data,

and in another model they use a random sample of the non-crashes. They assume a logistic

regression model and in one model they use a penalized maximum likelihood approach, called

the Firth method, which uses all of the data. In another approach, they use a bias correction

method to estimate parameters in the logistic regression, and for this they use a subset of the

data. They find that average speed has a negative effect on crashes. The proportion of trucks

on the road was considered but not found to be significant.

Lin et al. (2015) studied traffic safety on a corridor of Interstate 64 in Virginia, USA. Their

study used a matched case-control design. They propose a frequent pattern (FP) tree which they

use for variable selection. For inference on which variables are significant they use a k nearest

neighbors algorithm and a Bayesian network. They conclude that the “accident risk prediction

models based on FP tree variable selection outperform the models based on all variables ...”

They also suggest using 10-minute intervals is more efficient than 5-minute intervals. Finally,

they conclude that the Bayesian network model works well, yielding a false alarm rate of 0.38

and a sensitivity of 0.61.

Sun and Sun (2015) used a matched case-control design with a ratio of 5:1 to implement

a Markov model involving the traffic states upstream and downstream. For example, if one

upstream and one downstream segment is considered, then an expressway segment may be in

the state FF (free flow upstream and free flow downstream); this leads to a four-state Markov

chain. They also consider two upstream and two downstream conditions, leading to a nine-state

57



Markov chain. The transition probabilities were estimated using a dynamic Bayesian network

model. Their model with nine states had a crash accuracy of 0.764 with a false alarm rate of

0.237. In addition to their work on the Bayesian network, they found an interesting nonlinear

relationship between speed and risk, which they show in the second figure of their paper.

The effect of weaving, that is, traffic entering the expressway and merging while other traf-

fic is exiting, was studied by Wang et al. (2015) in a case-control study of 125 crashes and 1250

non-crashes, a 10:1 ratio. They applied a multilevel Bayesian logistic regression model with

weaving segments (that is, sections of the expressway where entering and exiting traffic had to

merge) as random effects. These random effects were incorporated into the model as random

intercepts. They found that the speed at the beginning of the weaving segment, difference in

speed between the beginning and end, and the log of traffic volume were significant effects in

these weaving segments. Wang et al. (2017) approached the traffic safety problem from two

perspectives. One involved the crash frequency. This took as the sampling unit a section of the

expressway and the number Yi of accidents as the response. The other approach applied the

usual logistic regression, taking the sampling unit as an expressway/time period slice and the

indicator variable yij which is 1 for crash and 0 for a non-crash. The first approach leads to

Poisson regression and the second approach leads to the usual logistic regression. The innova-

tive contribution of their method is to combine, or integrate, these two models. This effectively

uses two sources of data. Their integrated model includes the Poisson rate in the logistic regres-

sion model, yielding a multi-level model. They find that the integrated model performs better

yielding a higher receiver operating characteristic (ROC) curve.

There are a lot of aspects of crash prediction models that can be studied, including model

setting, specification, and validation, but those are beyond the scope of this review. Details

of statistical models can be found in previously published reviews by Lord and Mannering

(2010); Mannering and Bhat (2014); Abdulhafedh et al. (2017); Ambros et al. (2018); Yannis

et al. (2016).
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3.5 Conclusions

Given the tremendous loss of life and property directly attributed to motor vehicle incidents on

one hand, and significant advances in relevant data availability on the other, it is natural that

data analytics is viewed as having great potential for contributing to solving these problems. A

successful effort in this direction necessarily has to rely on a combination of data collection,

descriptive analytics, predictive/explanatory modeling, and optimization. At the same time,

each piece separately can be a significantly nontrivial problem on its own. Hence, development

of a mature data-driven decision support tool incorporating all of these stages “from scratch” is

probably beyond the scope or ability of any single researcher. This is especially true since there

is not a conscious effort in pulling all of these areas together with the goal of informing practical

decision-making. The most significant gap that we have identified, is in the translation of

outcomes/insights from predictive/explanatory models (which aim to help us better understand

and quantify crash risk) into prescriptive optimization models (which aim to inform route/path

selection, driver assignment, etc.). Perhaps, a partial underlying reason is the absence of readily

available convenient data sources and/or data processing tools.

In this review, we highlighted a promising opportunity to develop advanced analytical

methods for safety-enabled transportation. The following areas represent the main avenues for

progress (ordered according to the sections in this review):

(A) The availability of historical, real-time and forecasted weather and traffic data, as well

as the potential to collect driver performance data, means that the accessibility of data is

no longer a major factor preventing progress in this area. However, a lack of a unified

repository and the reluctance of sharing code/models by our research community leads

to a fairly high overhead cost of developing such models (since every researcher has to

develop many data collection techniques from scratch);

(B) Descriptive analytics tools are widely used in the preprocessing of driving-related data.

Since the applicability of a particular preprocessing technique (e.g., visualization and

clustering) often depends on the specific problem, the challenge here is to determine
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which method is the most suitable. Sharing best practices by creating reproducible doc-

uments (e.g., R Markdown and Jupyter notebook) represents one avenue for making the

process more efficient for researchers and practitioners alike.

(C) Statistical methods for risk evaluation are well-researched and consider a wide range of

factors. At the same time, it must be noted that (in some cases) these studies follow a

similar pattern of a case-controlled study based on a single road segment data. In our

view, there is an opportunity for a statistical analysis of a larger scale since:

(i) real-time or near-real-time data are more widely available now;

(ii) the computational advancements in the recent years can allow for paralleliz-

ing/computing risk across the entire road network or at the very least for all major

highways and interstates;

(iii) the insights from these relatively small road segments may not be generalizable to

the entire road network; and

(iv) it is unclear how drivers (regular commuters or commercial) can utilize these in-

sights to make more informed decisions about their time-of-travel, path and/or route

selection.

In our estimation, a more comprehensive/interdisciplinary approach to crash risk modeling is

needed. The research questions should not be limited to only better understand the factors con-

tributing to crash risk, but to also consider how the output from the research can be utilized

by commuters and commercial drivers. This is especially important since, despite the techno-

logical advancements in sensing technologies and development of public policies that tackle

distracted driving/ cell phone usage, the rate and counts of motor vehicle injuries and fatalities

have remained alarmingly high.
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3.6 Supplementary materials

In an effort to bridge the gap between the crash prediction literature and the haz-

mat/optimization literature, we have made all our source code used for (a) scraping crash-

related data, (b) preprocessing of such-data; (c) descriptive analytics (i.e., visualizing

traffic/weather/crash data and/or clustering); and (d) explanatory modeling available on

a GitHub repository https://github.com/caimiao0714/TrafficSafetyReviewRmarkdown. To

facilitate the consumption of this code, we host a website showcasing how the code

can be used and depicting some of its results. The website was constructed using

an R Markdown file (Xie et al. 2018), which is stored on the following GitHub Page

https://caimiao0714.github.io/TrafficSafetyReviewRmarkdown/. We hope that the supplemen-

tary materials provided in this manuscript help promote “open data science” practices in our

research community.
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Chapter 4

Predicting unsafe driving events among commercial truck drivers: Lessons learned from the
surveillance of 20 million driving miles using IoT sensors

4.1 Introduction

Road crashes are a widely-recognized global public health issue. According to the World

Health Organization (2020), road injuries result in 1.35 million annual deaths and an esti-

mated 20-50 million non-fatal injuries. Moreover, road crashes cause massive societal eco-

nomic losses, which can be divided into (Wijnen and Stipdonk 2016): (a) human costs, (b)

medical costs, (c) production losses, (d) property damages, (e) administrative costs, and (f) en-

vironmental costs. The World Health Organization (2018c) estimates that the total societal cost

of road injuries corresponds to approximately 3% of a given country’s gross domestic product

(GDP). In the U.S., it is estimated that the total value of societal harm from vehicle crashes

exceeds $830 billion annually (Blincoe et al. 2015; Wijnen and Stipdonk 2016), corresponding

to 6% of U.S. GDP (Wijnen and Stipdonk 2016).

Large commercial vehicles (e.g., large trucks) are often involved in the most severe

crashes. Large trucks and buses account for only 4% of registered vehicles in the U.S. (IACP

2018); however, they are involved in 13.2% of fatal crashes (FMCSA 2020). More alarmingly,

the crash rates of such vehicles have increased over the past decade or so despite the technolog-

ical safety innovations. In 2008, the fatal crash involvement rate of large trucks has increased

from 1.32 to 1.48 per 100 million miles driven between 2008 and 2016 (NHTSA’s National

Center for Statistics and Analysis 2019). In addition, the numbers of large trucks involved in

fatal, injury, and property damage crashes have increased by 1%, 5%, and 14%, respectively,

from 2017 to 2018 (FMCSA 2018) – the most recent year where statistics are available.

62



In our estimation, the existing research dedicated to understanding road crash (and/or

trucking) risk factors and their precursors can be divided into three major streams: (a) crash

frequency models, (b) real-time crash prediction, and (c) naturalistic driving studies (NDSs).

The overarching goal of crash frequency studies is to identify factors affecting crash risk such

that appropriate interventions can be made (e.g., changing the design of a road/intersection).

These studies collect data (e.g., crash count, weather conditions, annual average daily traffic

(AADT, etc.) pertaining to a predetermined road segment over a relatively large time period

(often measured in months), and then a statistical modeling technique is typically used to model

the association between these factors and crash risk/frequency (see Lord and Mannering 2010;

Saeed et al. 2019; Ziakopoulos and Yannis 2020, for an overview of possible modeling tech-

niques). With recent advances in sensing and information technologies, more granular data

on weather and traffic conditions are now available and can be processed in near real-time

by existing computing infrastructure. Hence, studies in the second stream have attempted to

identify/investigate factors that have immediate effect (next 10-30 minutes) on crash likelihood

and then prescribe immediate preventive actions (e.g., variable speed limits) (see, among oth-

ers, Theofilatos and Yannis 2014; Shi and Abdel-Aty 2015; Mehdizadeh et al. 2020). In these

studies, the unit of analysis is a short roadway segment, where the collected data include real-

time weather and traffic as well as cross-sectional data describing roadway geometry and type.

Statistical and machine learning models are widely used to predict crash likelihood over a rel-

atively short time span (often measured in minutes). With the choice of road segment as the

unit of analysis, the first two streams are limited since: (a) they do not consider the effect of

drivers’ characteristics/behaviors (e.g, sleepiness, distraction and/or fatigue) on crash risk; (b)

the number of observed crashes is typically small, which limits the power and inference of the

developed models; and (c) the conclusions from these models may not be generalized to other

road segments where traffic patterns, weather conditions and/or state policies are different.

Naturalistic driving studies (NDSs) have been proposed to overcome the limitations in the

first two streams. The primary purpose of an NDS is to collect driver-based data such that the

relationship between driver behavioral factors and crash risk can be better understood (Din-

gus et al. 2006; Olson et al. 2009; Eenink et al. 2014; Victor et al. 2015). Furthermore, such
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studies allow for the collection of vehicle-based kinematic safety critical events (SCEs), which

include hard brakes, activation of forward collision system, and/or activation of rolling stabil-

ity systems. Numerous studies have shown positive associations between SCEs and crashes

(e.g., Pande et al. 2017; Gitelman et al. 2018; Cai et al. 2021). As a result, SCEs can be used

as proxies for crash risk since they are more frequent to rare crash-events, and hence, can

facilitate modeling by allowing for larger statistical power. While the existing NDSs have pro-

vided excellent insights to inform driver-behavior regulations (Victor et al. 2015), their impact

on transforming trucking operations is limited because most NDSs were conducted on non-

commercial drivers and in a few testing areas (Cai et al. 2021) and because the analyses have

typically focused on the association between behavioral factors and crash risk. Existing NDS-

based models have not examined the likelihood of a crash or SCE for a given time window by

using both behavioral factors and driving conditions (e.g., speed limits, types of roads, weather

conditions, etc.) The implications of these limitations are two-fold. First, it is unclear whether

the findings can translate to commercial drivers who are heavily regulated and have superior

driving training. Second, from a trucking operator’s perspective, it is unclear how to capitalize

on insights from NDSs to assign schedules or routes that can minimize crash risk.

The overarching goal of this study is to develop predictive models that can be used to

quantify the impact of trip (e.g., day of the week and time), driver (e.g., age, cumulative driving

time, gender and history of SCE), traffic and weather conditions on the likelihood of observing

at least one SCE over a 30-minute driving window. We use SCEs as crash surrogates based on

the findings of Cai et al. (2021) that showed that headway, hard breaks, activation of the rolling

stability, and forward collision mitigation systems are positively associated with increased crash

risk based on data collected from 30,000+ trucks and 2 billion miles of driving. To address

our overarching goal, we capitalize on SCE data routinely collected by a large U.S. trucking

company to examine the following research questions:

(A) Can SCEs be predicted using easy-to-access driving-related data sources? Here, we ex-

amine whether date-time, driver, traffic, weather, and past SCE driver records can inform

the prediction of SCE occurrence over a 30-minute window.
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(B) If the SCEs can be predicted, what is the relative importance of the various predictors?

Here, we attempt to understand which factors can distinguish trips for which at least one

SCE has been recorded versus trips where no SCEs were reported. This question is perti-

nent since existing studies have not considered the association between SCE occurrence

and driving conditions for window sizes greater than a few seconds.

(C) Can the prediction models be generalized to new drivers and future time periods? This

question tackles the inherent assumptions behind how machine learning models are

trained. Specifically, if were only interested in question (A), then a random partition-

ing of the available data would be sufficient. However, we posit that practitioners would

also be interested in understanding if the developed models can be used to predict SCE

occurrence for drivers whose data were not used in model training, e.g., new drivers, and

for future time periods without daily/weekly retraining of the model.

The remainder of the paper is organized as follows. We describe the data collection proto-

col in Section 4.2. We present the methodological framework used to address our overarching

goal and its associated three research questions in Section 4.3. In Section 4.4, the prediction

and variable importance results are presented. This is followed by a discussion and the anal-

ysis of results and its potential contributions in both literature and the trucking community in

Section 4.5. To encourage the adoption of our work by industrial practitioners and facilitate

future research, we provide the link for the repository containing our code and analysis in the

Supplementary Materials Section.

4.2 Data description

This study capitalizes on data routinely collected by a large U.S.-based trucking company, pro-

viding transportation, delivery and logistics services to customers in North America. Unlike

most NDSs, the vehicle-based data were collected by a trucking company, and not by the re-

search team. The data were originally collected for regulatory compliance, routine performance

monitoring, and driver assistance purposes. The company’s trucking data were anonymized

prior to its access by the research team. Furthermore, the study protocol and data usage for

research purposes were approved by the Institutional Review Board of Saint Louis University.

65



To address our three research questions, we utilized data collected by the company from

April 1, 2015 to March 31, 2016 (and first reported on by Cai et al. (2021)). The company data

set is comprised of: (a) drivers’ characteristics, which provides an anonymized driver’s ID, age,

gender, business unit, etc.; (b) trajectory data, which were collected by on-board GPS trackers,

providing the vehicle’s location and speed; and (c) SCEs, which captured kinematic-based

unsafe driving events from the Bendix® Wingman® Advanced™ monitoring systems equipped

on each truck. We supplemented the trucking company’s datasets with weather information,

which captured the precipitation probability, precipitation intensity, wind speed, and visibility

conditions for each GPS ping of the truck (i.e., using both the location and time-stamp to depict

the associated weather conditions). Moreover, we utilized the truck’s mean speed and standard

deviation as proxies for traffic conditions during each trip. The rationale was to account for the

importance of traffic conditions on crash risk (see the review of Theofilatos and Yannis 2014,

for a detailed introduction), while overcoming the lack of a national and freely available dataset

capturing traffic experienced by our drivers.

4.2.1 Drivers’ characteristics

For this study, we randomly sampled 500 out of the 15,707 regional truck drivers in the dataset.

Regional drivers are typically on duty for five or more days, return home on a weekly ba-

sis, and provide delivery in a geographic area that may include nearby states. Note that: (a)

regional drivers were selected for our analysis since we surmised that their experience in driv-

ing in varying traffic conditions and road types can make our developed prediction models

more comprehensive and generalizable; and (b) we limited our analysis to 500 drivers to make

the computations more tractable and to facilitate the collection of the associated weather data

(which was limited in speed and volume due to querying restrictions).

Over the course of the data collection period, the selected drivers drove from 1 to 2, 100

hours, covering 20 to 98, 000 miles. Approximately, 85% of the selected drivers drove at least

250 hours for a total of 10,000+ miles. We have eliminated four drivers due to an unrealistically
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high rate of reported SCEs relative to their miles driven (likely due to recording errors). Here-

after, all the reported data will correspond to only those generated by the 496 drivers, whose

characteristics are summarized in Table 4.1.

Table 4.1: A summary of driver characteristics including their average age ± SD, number of
drivers per gender, and business unit (with their % in parentheses).

Variable Statistic

Age:
Range 21 to 76 years
Mean age ± SD 48.0 ± 11.8

Gender: (%)
Male 456 (91.9%)
Female 36 (7.3%)
Unknown 4 (0.8%)

Business unit: (%)
Intermodal 496 (100%)

4.2.2 Trajectory data

For each truck, intermittently collected real-time driving pings were obtained. Hereafter we

use the term pings to these data records, each including: (a) date and time, (b) GPS coordinates

(latitudes and longitudes with five decimal precision), (c) GPS quality, (d) speed, and (e) the

driver’s unique identification code (which we can use to link the driver to the characteristics

presented in Section 4.2.1). In Figure 4.1(a), we show the cumulative density function for the

interval time between two pings, which varied between a couple of seconds to approximately

16 minutes. The median interval time was 4.41 minutes, and more than 95% of the pings had

interval times < 15 minutes. We show the associated geographic distribution of active (i.e.,

truck speed > 0) pings for the 496 sampled drivers in Figure 4.1(b). Note that a darker color

indicates a higher number of pings. Observe that despite the sampling of drivers, the reported

pings span most of continental U.S., generally following the U.S.’s population density and the

distribution of major highways. Hence, we posit that our sample is representative of truck

driving throughout the continental U.S.
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(a) Cumulative density function of time between two pings.

(b) The geographic location of active pings in our dataset.

Figure 4.1: An overview of the pings data generated by our 496 drivers from April 1, 2015 to
March 31, 2016.
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4.2.3 Safety critical events

An SCE was recorded whenever a pre-specified kinematic threshold was exceeded while driv-

ing. The recording of an SCE event was performed using the Bendix® Wingman® Advanced™

monitoring system, which was equipped on each truck, and recorded the exact date-time, lat-

itude and longitude, driver, and the type of SCE. Four different types of SCEs were recorded

(Cai et al. 2021):

• Headway, which denoted an instance when an unsafe gap of ≤ 2.8 seconds between

leading and trailing vehicles was maintained for ≥ 118 seconds (Grove et al. 2015);

• Hard brakes, which captured instances when the truck decelerated at a rate of≥ 9.5 miles

per hour per second.

• Activation of the rolling stability system, which assisted drivers by applying brake pres-

sure (and potentially applying trailer pressure) to align the vehicle when the Bendix®

monitoring system’s thresholds were approached (Bendix® 2007); and

• Activation of the forward collision mitigation system, which intervened to avoid or miti-

gate forward collisions by the truck (Grove et al. 2015).

Over the course of the study period, the 496 drivers had a total of 9,032 SCEs, which were

divided into: (a) 3,944 headway events, (b) 3,588 hard brakes, (c) 869 initiations of the forward-

collision mitigation system, and (d) 631 initiations of the rolling stability system.

Note that (Cai et al. 2021), who used the same dataset, has previously established that

these SCEs are significantly positively correlated with actual crashes as well as injuries. Con-

sequently, this observation justifies the use of these specific SCEs as surrogates for traffic inci-

dents.

4.2.4 Weather data

To capture the weather conditions encountered by each driver we collected data on: (a) precip-

itation probability, (b) precipitation intensity, (c) visibility, and (d) wind speed. These variables

were selected since they have have been shown to be significant in several crash prediction

models (see e.g., Theofilatos and Yannis 2014; Lin et al. 2015; Wang et al. 2015; Cai et al.
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2021). We queried the historical values for the four weather variables from the DarkSky API

(Dark Sky Company 2020) by inputting the timestamp, latitude, and longitude of each active

ping.

4.3 Methods

To address our overarching goal and three research questions, we propose a 6-step machine

learning framework. In the first step, the ping data are prepared/transformed by filtering noise,

determining stay point locations (such that origin and destinations of each trip can be esti-

mated), and segmenting each trip into ≤ 30-minute intervals. In the second step, two features

are engineered from the SCE dataset: (a) a binary outcome variable is computed for each trip

based on the SCE dataset, where y = 1 if at least one SCE is observed, and it is set to zero

otherwise; and (b) an independent/predictor variable capturing the number of observed SCEs

for each driver-trip over seven previous days (SCELag7). We have considered other defini-

tions (3-, 5-, 10- and 14-day alternatives) but have observed that the model prediction accuracy

generally increases when longer periods are considered, but this effect is not substantial. For

a practical application, the selection of SCELag depends on the availability of the data. With

the computation of these two variables, our four disparate data sources (ping, drivers, SCE,

and weather) are combined into a tabular format. In the third step, the tabular data are divided

into three sets of training and testing samples, corresponding to the random, driver-based, and

time-based sampling strategies discussed in Section 4.1. In the fourth step, each of the three

training sets are divided into 5-folds to facilitate the assessment of the fit of the trained models,

and sub-sampling strategies are used to handle the data imbalance problem resulting from the

frequency mismatch between the 0s (majority class) and 1s (minority class since the occurrence

of an SCE is relatively rare) when training the models. In the fifth step, nine machine learning

algorithms are trained, and they are evaluated/interpreted in the sixth step of our framework.

We depict our six-step machine learning framework in Figure 4.2. The details for each step are

presented in the subsections below.
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Figure 4.2: An overview of the proposed 6-step machine learning framework.

4.3.1 Data preparation

Noise filtering The first component in data preparation is to remove noisy/low-quality pings.

Based on the GPS quality indicator, ∼ 98% of the pings were of “good quality.” Furthermore,

we removed pings where the speed was over 80 miles per hour or the returned dates were

outside of our analysis window (April 1, 2015 to March 31, 2016).

Stay point detection Our ping data were not limited to moving pings, but also included pings

where the trucks were stationary. From an SCE occurrence perspective moving pings are more

valuable than stationary pings since SCEs are triggered based on kinematic thresholds, i.e., no

SCEs can be observed when the truck is stationary (or near stationary when parking, loading,

and/or unloading). Based on the GPS trajectories, stay point detection algorithms are used to
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detect stop episodes from GPS trajectories with gaps or infrequent ping data (e.g., see Hwang

et al. 2017; Wu et al. 2018; Li et al. 2008). In this study, we adopted the algorithm of Yuan et al.

(2012), which uses both a time-based and a distance-based threshold to detect movements. In

our analysis, we set the time-based threshold to 30 minutes and the distance-based threshold to

0.5 miles, i.e., if a truck spends greater than 30 minutes within a distance of 0.5 miles, these

pings will be considered within a stay point.

Trajectory segmentation After applying the stay point detecting algorithm, we grouped the

actively moving pings into trips. A trip is defined to include the sequence of moving pings

between two stay points. However, the lengths of these trips varied between a few minutes

to a maximum of eight hours. This heterogeneity undermines both the high resolution of our

data and its statistical validity. Specifically, a trip of eight hours can include hundreds of pings,

and aggregating all these pings into a single observation (since we are using the trip as our

unit of analysis) will result in a significant loss of information. Furthermore, the developed

machine learning models will not be actionable since, for longer trips, practitioners are likely

more interested in detecting the pattern of SCEs within a trip, i.e., whether the events occur

in early or later stages of a trip, or there is no pattern in the distribution of events within a

trip. On the other hand, if a trip becomes too short the prediction model would not be practical

since there is no enough time to perform preventive actions (e.g, rest breaks). Recent studies

in the crash prediction field (e.g, You et al. 2017; Sun and Sun 2015; Sun et al. 2014; Hassan

and Abdel-Aty 2013) have used time intervals between 5 to 30 minutes before the crash to

develop their crash prediction models. In this study, we cut trips into 30-minute intervals. For

example, a 67-minute trip would be divided into three intervals (two 30-minute intervals and

one 7-minute interval).

4.3.2 Data aggregation

The process of aggregating ping data into trips was described in Section 4.3.1. In this step, the

true value for the binary outcome/response variable to be used in the machine learning models

is computed. We have set y = 1 if at least one SCE of any type is reported in a given trip,
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and y = 0 otherwise. For each trip, we recorded the values for 15 predictor variables, which

are categorized and defined in Table 4.2. Furthermore, we summarize their obtained values and

their distribution by the value of the response variable in Figure 4.3. Note that box plots by SCE

overlap for a given continuous predictor, which provides evidence that the prediction problem

is non-trivial. Furthermore, several of the predictors are highly skewed. While some machine

learning models can handle such skewed data, we centered and scaled (i.e., z−transformed)

each predictor so that the inputs across our different machine learning models are consistent.

This process of centering and scaling the predictors is commonly used in machine learning

research and practice (see James et al. (2013) for a detailed introduction).

Table 4.2: Definition of the predictors

Predictor Definition Type

Block 1: trip related

dayOfWeek day of the week categorical
holiday whether or not the trip is within a holiday binary
hourDayCat time of the day’s category (rush1, mid day, rush2, night) categorical
intervalTime trip duration continuous
weekend whether or not the trip is on weekend binary

Block 2: driver related

age driver’s age continuous
cumdrive cumulative driving time within each shift continuous
gender driver’s gender binary

Block 3: traffic related

speedMean average speed during the trip continuous
speedSD average standard deviation of speed during the trip continuous

Block 4: weather related

prepInten average precipitation intensity during each trip continuous
prepProb average probability of precipitation during each trip continuous
visibility average visibility during each trip continuous
windSpeed average wind speed during each trip continuous

Block 5: sensor related

SCELag7 number of SCEs recorded for a given driver in the past 7 days
divided by their total hours driven during that period

continuous
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(a) Histograms of continuous predictors

(b) Box plots of continuous predictors by SCE occurrence

Figure 4.3: An exploratory analysis of the trip-based data.

As a final step prior to training the machine learning models, we investigated the corre-

lation between the different variables. The goal here is to examine whether the dimension of

the aggregated data can be reduced, which would increase the efficiency of training different
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machine learning models. Based on Table 4.2, our variables have three different types: continu-

ous, binary/dichotomous, and polytomous/categorical. Hence, the standard Pearson correlation

approach cannot be utilized among non-continuous predictors. To account for the mixed data

types, we have utilized the approach of Revelle et al. (2010) who recommended the use of:

(a) Pearson correlation coefficient for continuous predictors, (b) tetrachorics for dichotomous

variables (c) polychorics for the polytomous variables, (d) and the polyserial/biserial correla-

tions for the mixed variables (e.g., correlation between SCELag7, continuous, and weekend,

binary). The results from the correlation analysis are presented in Figure 4.4.
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Figure 4.4: A correlation plot of the predictors.

Based on Figure 4, there are two important observations to be made. First, the correlation

between each of the predictors and our response variable (SCE) is low, with an absolute value

|≤ 0.1|, with the exception of SCELag7 which had a correlation coefficient of 0.48. One
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implication from such observation is the potential utility of non-linear machine learning models

given the small correlation values. Second, all the correlations < |0.90|. The following three

pairwise correlations were in the 0.50 < |ρ| < 0.75: speed mean and speed standard deviation,

precipitation intensity and probability, and holiday and weekend. We chose to retain all three

pairs since: (a) their absolute values were less than the default cutoff in the R caret package

of 0.90 (Kuhn 2020); (b) Tsai et al. (2015) showed differences in traffic flow patterns between

weekends and holidays; and (c) Cai et al. (2021) showed that both precipitation intensity and

probability are important in modeling the association between crashes and safety critical events

for truck drivers.

4.3.3 Model training scenarios

As with any predictive analytics application, the statistical and machine learning models are

trained using one dataset and assessed using a separate holdout dataset that is unseen during

model training (Shmueli 2010). While it is customary to randomly split the available data, other

non-random ways may be more appropriate in some cases. In this paper, we have considered

three sampling scenarios. In the first scenario (random-based sampling), we randomly assign

trips into the training and testing sets such that the proportion of events (i.e. y = 1) in both

datasets is the same. This sampling strategy allows us to address research questions 1 and 2. On

the other hand, the purpose of the other two sampling strategies is to mimic how the developed

models can be used in practice. Hence, in the second driver-based scenario, we separate the

training and testing data based on the drivers, i.e., each driver’s trips are assigned to either the

training or testing set. This way, we can evaluate the generalizability of the prediction, i.e.,

whether the models are significantly dependent on the subset of drivers used for training, or

whether the prediction accuracy is transferable to other drivers, not seen by the model during

training. This experiment is referred to as driver-based sampling. Finally, we sample training

and testing sets chronologically, i.e., all testing trips occur after all training trips. This way we

evaluate the potential of the models to be used in predicting future events. This experiment is

referred to as time-based sampling. For all the sampling scenarios, we divide the dataset into

training and testing/holdout sets with 80/20 ratio.
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4.3.4 Cross validation and subsampling

Cross validation In this paper, we have employed a five-fold cross validation to tune hyper

parameters and select the best model from the training set for each learning algorithm. Both

five- and ten-fold versions have been widely used in the literature (e.g., see Fernández-Delgado

et al. 2014; Wainer 2016). As stated in James et al. (2013)[p. 184], “there is a bias-variance

trade-off associated with the choice of k in k-fold cross-validation. Typically, given these con-

siderations, one performs k-fold cross-validation using k = 5 or k = 10, as these values have

been shown empirically to yield test error rate estimates that suffer neither from excessively

high bias nor from very high variance.” We have chosen k = 5 in our analysis since it is more

computationally efficient than the 10-fold cross validation approach. Tuning and optimizing

hyper parameters in machine learning algorithms is an important step especially given unbal-

anced data. Two popular methods can be identified: (a) random search where the values for the

hyper parameters are randomly sampled from the hyper parameters domain; and (b) grid search

where the values for the each combination of the hyper parameters are selected from a specified

grid. We have used random search method in this study since, at least according to some re-

ports, it has demonstrated better performance and/or computationally efficiency (Bergstra and

Bengio 2012; Khayyer et al. 2021).

Subsampling While we have used SCEs in place of actual crashes due to their higher occur-

rence frequency, they are still relatively rare. In our dataset, only 0.75% of trips contained at

least one SCE. Hence, we have examined several standard subsampling methods to overcome

the data imbalance problem (Batista et al. 2004; Wang et al. 2019b), which can lead to the de-

velopment of naive models where the model (almost) always predicts the majority class. Based

on our preliminary analysis, we have selected down sampling strategy, where the majority class

is down sampled to equal to the size of the minority class since: (a) we have observed no sig-

nificant differences were observed between down sampling and more advanced sub-sampling

approaches methods, and (b) it is the most efficient, from a computational perspective, approach

to handle the data imbalance problem.
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4.3.5 Machine learning algorithms

It should be noted that while each learning method has its own advantages and disadvantages,

it is generally impossible to predict a priori which will perform best for a particular application

domain, let alone a particular dataset. Consequently, it is often advisable to try multiple meth-

ods and observe the prediction performance. Machine learning models can be grouped into the

following three categories (Dolatsara et al. 2020):

(A) Statistical models, considered as parametric models. In these models there is an assump-

tion about the form of prediction model. Logistic and other generalized linear models

(glm) are often used. Also, ridge, and lasso regression, and naive Bayes (nb) are well-

known statistical model which were widely used in the literature (e.g., Theofilatos 2017;

Wu et al. 2018; Wang et al. 2019a).

(B) Single (data-driven) classifiers, which unlike the statistical models are considered as non-

parametric models and have no assumptions about the form of the prediction models.

There are a wide variety of these algorithm that have been used in the literature such

as the classification and regression tree (cart), support vector machine (svm), and neural

network (nnet) (e.g., Pande and Abdel-Aty 2006b; Hossain and Muromachi 2011; You

et al. 2017; Parsa et al. 2020).

(C) Ensemble approaches, where the idea is to aggregate singular models together with the

goal of reducing the overall bias or variance. Random Forest (rf) and XGBoost (xgb) are

well-known ensemble models that were used in different applications (e.g., Theofilatos

2017; Zhang and Zhan 2017; Parsa et al. 2020).

From an interpretation perspective, statistical models are more explainable. However, the

performance of machine learning models can be superior in some applications, especially when

the two classes are not linearly separable. Therefore, we examine nine popular algorithms (glm,

lasso, ridge, cart, rf, nb, nnet, svm, xgb) capturing statistical methods, single classifiers, and en-

semble methods. These models have been shown to produce excellent predictive performance

in a number of applications, e.g., traffic safety (Silva et al. 2020), transplantation (Dolatsara

et al. 2020), physical fatigue prediction (Maman et al. 2020), and stock market movements
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(Weng et al. 2018). Hence, in our estimation, they are representative of models that would have

both good predictive performance and are relatively computationally efficient (i.e., do not need

a GPU to run effectively).

In our implementation, we have used the caret package (Kuhn et al. 2008) in the R pro-

gramming language, and utilized a random search of 20 combinations of the tunable parameters

for each tunable model (i.e., all the models with the exception of the logistic regression model

which has no tunable parameters). For more details, the reader is referred to our code in the

supplementary materials.

4.3.6 Models’ evaluation and insight

Performance metrics In this paper, we report five performance measures for each machine

learning model. Note that, for a binary response variable, there are 2 × 2 possible outcomes

from the application of a predictive model. These outcomes are typically summarized using a

confusion matrix, which we schematically present in Table 4.3.

Table 4.3: Confusion Matrix for a classification problem with a binary response variable

Predicted outcomes
0 1

Actual class
0 true negative (TN) false positive (FP)
1 false negative (FN) true positive (TP)

Based on this confusion matrix, we can compute four metrics: (a) accuracy, which mea-

sures the number of observations (both positive and negative) that were correctly classified; (b)

sensitivity, proportion of the true positive observations among the ones predicted to be positive;

(c) specificity, which measures the proportion of the true negative observations among the ones

predicted to be negative; and (d) Gmean, which measures the geometric mean between sensi-

tivity and specificity, and consequently gives a balanced measure of model performance on the
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majority and minority classes. Mathematically, these measures can be computed as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

Sensitivity =
TP

TP + FN
(4.2)

Specificity =
TN

TN + FP
(4.3)

Gmean =
√

Sensitivity× Specificity (4.4)

Our fifth metric can be obtained from the receiver operating characteristics (ROC) curve, where

sensitivity is plotted on the y-axis versus 1− specificity on the x-axis. The area under the curve

(AUC) captures how well the model predicts actual 0s as 0s and actual 1s as 1s. AUC is our

fifth metric. All five metrics can vary between 0 and 1.

Variable importance and model interpretation The study of variable importance can help

explain the outputs from machine learning models by quantifying the impact of each predictor

variable on the model’s predictive performance. That being said, variable importance can be

computed based on either the training or test/holdout dataset (see Molnar 2020, Section 5.5.2

for a detailed introduction on each approach). The fundamental difference between both ap-

proaches stems from the definition/purpose of computing feature importance (Molnar 2020).

To allow for different interpretations and to evaluate the consistency of our predictors (an indi-

rect measure for assessing over-fitting), we will consider both approaches. For the training set

analysis, we have utilized the standard variable importance methodology from the R caret

package (Kuhn et al. 2008), which attempts to measure the contribution of each predictor on

each class of the response variable through ROC curve analysis, and then ranks the importance

of each predictor by assigning them a relative score between 0 and 100. As an alternative

method, we have used a sequential approach to perform variable importance on the testing

set, where we have divided the predictors into five blocks (defined in Table 4.2) and examined

the change in prediction accuracy as variables from a given block are made available to the

models. We started with block 1 as our baseline since this trip-based information would be
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readily available for practitioners. We then sequentially added blocks 2 through 5. The ratio-

nale for this approach was based on: (a) our hypothesis that if researchers/practitioners have

access to one predictor in a given block, they would likely be able to compute and/or query the

remaining predictors within the block, and (b) examining all different permutations would be

computationally expensive (given that we have 15 variables and 9 machine learning model).

4.3.7 Statistical software used and computational infrastructure

All data cleaning, statistical modeling, and visualization were performed in the statistical com-

puting environment R 3.6.0 (R Core Team 2019) using the Ohio Supercomputer Center, with

a virtual machine of 28 CPU cores, and 112 GB of RAM. We used the caret (Kuhn et al.

2008) and caretEnsemble packages (Deane-Mayer and Knowles 2019) and their depen-

dencies to train the models and perform variable importance analysis. Note that we estimated

the driving distances from the trajectory data using the haversine method which was computed

by distHaversine() function in geosphere package (Hijmans 2019). To facilitate the

adoption of our methodology, we provide a link of a compiled R Markdown file, containing the

code for data aggregation and model building, and their associated results, in the supplementary

materials section.

4.4 Results

4.4.1 The baseline/random-sampling scenario

In Table 4.4, we present the test/holdout results obtained from the application of the nine ma-

chine learning models to our random-sampling scenario, which is designed to address our first

research question: whether SCEs can be predicted using the kind of data available. First, ob-

serve that all models make informative prediction, since AUC values range from 0.693 (cart)

to 0.765 (xgb). Note also that the models exhibit larger variation if we focus on the speci-

ficity (0.663 to 0.805) and sensitivity (0.534 to 0.684). Interestingly, all models achieve higher

specificity relative to their sensitivity results, which means that all models have higher errors

when predicting trips with SCEs compared to those without. It can be explained by considering
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that 99.24% of our observations are without SCEs. Overall, it can argued that xgb model can

be considered to have the best performance, since it achieves the highest AUC, sensitivity and

Gmean, and has relatively low difference between sensitivity and specificity. Compare it to

the nb model, which produced the best accuracy and specificity, but very low sensitivity. The

confusion matrix for the xgb model is presented in Table 4.5.

Table 4.4: The predictive performance of the machine learning models on the holdout dataset
for the random sampling scenario. We use bold text to highlight the best reported value for a

given metric.

Metric/Model cart glm lasso nb nnet rf ridge svm xgb

AUC 0.693 0.723 0.722 0.740 0.752 0.752 0.710 0.745 0.765
Accuracy 0.662 0.745 0.736 0.803 0.711 0.688 0.711 0.696 0.700
Sensitivity 0.641 0.548 0.554 0.534 0.652 0.679 0.579 0.647 0.684
Specificity 0.663 0.747 0.738 0.805 0.711 0.688 0.712 0.696 0.700
Gmean 0.651 0.640 0.639 0.656 0.681 0.683 0.634 0.671 0.692

Table 4.5: Confusion Matrix for the best classifier (xgb)

Predicted outcomes
No SCE SCE

Actual class
No SCE 141,589 60,562

SCE 487 1,056

To further confirm the validity of our results and conclusions, following the machine learn-

ing literature we also performed additional verification steps. We first compared the results

from the cross validation stage with those reported for the holdout dataset. From this check,

we observed that there are no significant differences in each model’s performance, which in-

dicates that there is no strong evidence of over-fitting. Then, we trained and deployed three

greedy ensemble algorithms to predict the occurrence of SCEs in a trip similar to the procedure

detailed for the nine machine learning models in Section 4.3.5. The reader is referred to our

R Markdown document in the supplementary materials for the exact implementation details.

The AUC results for the three ensembles were 0.748, 0.765, and 0.765, i.e., they do not im-

prove upon the xgb model’s performance. Finally, as was noted earlier, during our preliminary

experiments, we have also considered alternative definitions for the SCELag variable. Table 6

summarizes the results observed. We report AUC and Gmean only for the xgb model here for
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the sake of brevity. As discussed earlier, while a larger lag window marginally improves the

model performance, this improvement is not substantial and in practice must be balanced with

data availability and collection concerns.

Table 4.6: xgb performance based on different lag values in the definition of SCELag variable

Metric SCELag3 SCELag7 SCELag10 SCELag14
Gmean 0.672 0.682 0.693 0.708
AUC 0.749 0.765 0.769 0.780

Based on these observations, we posit that using a larger grid for tuning the models and/or

investigating the use of more advanced machine learning models would likely result in a similar

prediction performance to our existing models. Further improvements are likely only possible

if we were to explore additional independent variables for our analysis, which is outside the

scope of this study.

4.4.2 Variable importance

Figure 4.5 shows the relative importance, scaled between 0 and 100, of each predictor on the

training set for xgb. From the figure, we can observe that (a) the sensor and driver-based

SCELag7 variable is the most important predictor, followed by the two traffic-related proxy

variables; (b) precipitation intensity, precipitation probability, holiday indicator, and day of

the week have limited importance (the latter two variables may be explained by the weekend

indicator variable); and (c) at least one variable from the five predictor sets, defined in Table

4.2, had an importance score≥ 9.7, which provides evidence to the multidimensional nature of

SCE occurrence/prediction. Note that the results for the other models were generally similar.

The interested reader is referred to the supplementary results to view these results (which are

omitted here for the sake of conciseness).

In the second variable importance approach, we retrained the nine machine learning mod-

els using five strategies, where we incrementally increase the set of possible predictors available

to each model using the blocks defined in Table 4.2. Once the models are trained using the in-

cremental strategy, we have examined the predictive performance (measured using AUC) of
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Figure 4.5: The scaled/relative importance of each predictor based on the trained xgb model.

these models on the holdout dataset. The obtained results are presented in Table 4.7. The addi-

tion of all blocks results in an increase in the AUC for all models, with the exception of block 4

which contained the weather-related predictors. This observation is consistent with Figure 4.5,

which showed that the precipitation probability and intensity are the least important predictors.

Hence, the inclusion of these variables in our models may result in more noise, which reduces

the predictive performance of the models. Furthermore, the SCELag7 variable seems to be the

most important since the inclusion of the fifth block improves the models’ AUC by an average

of 11.16%.

Table 4.7: The incremental change in AUC for each model based on limiting the set of
possible predictors to those contained in the pre-specified set of blocks

cart glm lasso nb nnet rf ridge svm xgb

Block 1 0.545 0.555 0.554 0.554 0.555 0.550 0.555 0.548 0.552
Blocks 1− 2 0.575 0.556 0.557 0.575 0.579 0.594 0.551 0.555 0.628
Blocks 1− 3 0.607 0.586 0.586 0.637 0.638 0.665 0.587 0.642 0.681
Blocks 1− 4 0.591 0.590 0.591 0.625 0.641 0.666 0.590 0.634 0.670
Blocks 1− 5 0.693 0.723 0.722 0.740 0.752 0.752 0.710 0.745 0.765
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4.4.3 The driver- and time-based sampling scenarios

Table 4.8 presents the results for the driver-based and chronological (time-based) sampling

scenarios. Compared to the base (random sampling) scenario, both the driver- and time-based

sampling scenarios result in a slight decrease in prediction performance. This is not surprising,

since both intuitively result in higher dissimilarity between training and testing sets, and hence

higher perdition errors on the testing set. At the same time, the reduction in performance

is relatively minor, especially for the best performing methods (xgb, svm, rf and nnet); for

example, the xgb’s AUC changes from 0.765 to 0.746 (driver) and 0.747 (chronological). From

a trucking operator’s perspective, this result means that a trained xgb model can be used for

new drivers. Similarly, the model can be deployed and applied to future observations, i.e., it

can be deployed without the need for daily/weekly retraining (since we held out more than 2

months of data in the chronological sampling scenario).

Table 4.8: The predictive performance of the machine learning models on the holdout dataset
for the driver-based and chronological-based sampling scenarios. We use bold text to

highlight the best reported value for a given scenario and metric.

cart glm lasso nb nnet rf ridge svm xgb

Driver-based sampling scenario

AUC 0.694 0.705 0.705 0.724 0.735 0.736 0.697 0.727 0.746
Accuracy 0.708 0.765 0.775 0.802 0.740 0.721 0.742 0.744 0.743
Sensitivity 0.597 0.495 0.495 0.517 0.582 0.613 0.506 0.570 0.606
Specificity 0.709 0.767 0.771 0.804 0.741 0.722 0.744 0.745 0.744

Gmean 0.651 0.616 0.620 0.645 0.657 0.665 0.613 0.652 0.671

Chronological sampling scenario

AUC 0.679 0.707 0.710 0.719 0.742 0.736 0.701 0.722 0.747
Accuracy 0.653 0.731 0.744 0.770 0.700 0.684 0.713 0.699 0.702
Sensitivity 0.596 0.538 0.548 0.541 0.655 0.652 0.560 0.621 0.658
Specificity 0.654 0.733 0.746 0.772 0.701 0.685 0.714 0.700 0.703

Gmean 0.624 0.628 0.639 0.647 0.677 0.669 0.633 0.659 0.680
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4.5 Discussion and conclusions

4.5.1 Summary of the main contributions

This study provides robust evidence that the occurrence of SCEs can be predicted over the

span of 30-minute time windows based on merging routinely collected NDS and kinematic

data from 20+ million miles driven by 496 commercial truck drivers with variables/proxies

capturing trip, driver, weather, and traffic characteristics. Using a machine learning framework,

we demonstrated the following:

(A) Statistical and machine learning models can predict the occurrence of SCEs in 30-minute

trips/intervals, with the best model (xgb) achieving an AUC of 0.765 in the random sam-

pling scenario. This result is excellent considering that the prediction problem is complex

since (i) trips containing≥ 1 SCE are relatively rare; (ii) the distribution of each continu-

ous predictor seems to be similar, for trips where no and at least one SCE were observed,

based on the box plots in Figure 4.3; and (iii) we did not directly observe behavioral fac-

tors (e.g., fatigue, sleepiness, and/or inattention) and traffic parameters (e.g., traffic flow,

construction zones, road geometries, etc.) which are important per the retrospective/real-

time crash risk modeling literature (Mehdizadeh et al. 2020), but are difficult to account

for in an NDS study.

(B) The relative importance of the predictor variables was generally consistent based on

two distinct variable importance techniques. Specifically, we showed that the kine-

matic (SCELag7) predictor was the most important, followed by the proxies for traffic-

conditions (speedMean and speedSD), while the precipitation-related variables (prepIn-

ten and prepProb) were the least important. Hence, we also demonstrated that additional

insights can be generated from traditionally black-box machine learning models through

utilizing state-of-the-art methods in interpretable machine learning/explainable artificial

intelligence (Molnar 2020).

(C) The models can be used for both new drivers and future time periods based on our driver-

based, and time-based training/sampling scenarios. Specifically, the AUC for the best

model was within 0.02 for our best model (xgb) when compared to the base (random)
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sampling scenario. From an implementation perspective, this difference is practically

insignificant.

In addition to the reported results, we believe that the innovative use of non-random sampling,

for assessing the generalizability of machine learning models, has not been considered prior in

the transportation safety literature. In our estimation, such sampling strategies can be tailored

to other transportation research to assist in evaluating predictive models’ performance when

deployed.

4.5.2 Contributions to the trucking industry

Our results can directly inform dispatching and routing applications and lead to the develop-

ment of behavioral-based technological interventions to improve the safety of both commercial

truckers and commuters. We have shown that the developed prediction models can be used

to identify high-risk driving situations. Consequently, trucking operators and dispatchers can

capitalize on our models to explain the risks to their drivers and/or inform their routing and

rest-break scheduling policies (Hu et al. 2020; Mehdizadeh et al. 2020). Furthermore, with the

question of how would our models perform when deployed in mind, we have shown that our

models can be used for new drivers and can be updated using a batch process (i.e., every 1-2

months instead of being continuously retrained with new data). Hence, we estimate that oper-

ations research analysts at trucking companies can utilize our predictive modeling framework

to inform their prescriptive dispatching and routing models by minimizing/mitigating high-risk

driving situations.

4.5.3 Limitations and future research opportunities

This study has a number of limitations and data gaps that should be highlighted. First, the anal-

yses presented throughout the study capitalize on observational and secondary data that were

not originally collected for SCE predictions. The implications of this limitation are four-fold:

(a) the research team had no input on driver and sensor system selection, (b) due to the data

collection issues, the ping data seems sparse for some trips which cause the vehicle speed mean

and standard deviation to not be an accurate estimation for traffic, (c) no causal relationships
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can be established between the SCEs and the predictors, and (d) potentially important predictors

pertaining to traffic and weather conditions were not recorded (and had to be queried and/or es-

timated using external data sources). Second, our analysis herein was limited to regional truck

drivers. It is unclear whether the insights obtained from this analysis can be translated to reg-

ular commuters and commercial drivers who have a significantly different driving experience

(e.g., local truck and bus drivers). Third, we used only 30-minutes as the cut-off window for

the trajectory segmentation. The impact of window-size has not been examined by the research

team (for the purposes of the analyses performed in this paper) and hence, it is unclear whether

the results would significantly change with other choices for window size.

Finally, it is worth noting that if deployed directly, the proposed models would need to rely

on forecasted values for some of the predictors. The trip, driver and sensor-related predictors

are fixed (i.e., have no uncertainty for a given 30-minute interval). Additionally, weather-related

factors can be accurately obtained from weather forecasts since they are generally reliable for a

30-minute ahead time-window. The two remaining factors: speed mean and standard deviation,

while they can be estimated based on trucking organization’s routing and scheduling models,

are less amenable for accurate forecasting. Note that we chose to use these as surrogates for

traffic-related factors, since there are not any freely-available sources for accessing such data

for 5+ million GPS pings (Mehdizadeh et al. 2020). The observed relative importance of speed-

Mean and speedSD reflects how much traffic-related features are important. Consequently, in

a practical setting, it may be preferable to instead use explicit forecasts of traffic factors (e.g.,

delay due to traffic, traffic volume, etc.), that are available through a number of services for

commercial use.

In our estimation, there are two main streams of research that can capitalize on our frame-

work and findings. First, our work can be extended to investigate the impacts of combining

driver types (e.g., non commercial drivers), driver’s attention, direct measures of traffic flow,

and/or actual depictions of road surface conditions with the predictors investigated on the pre-

dictive performance of the trained machine learning models. We posit that the inclusion of

additional predictors is likely to be more beneficial than examining a larger grid for tuning our

machine learning models and/or examining more complex machine learning models (e.g., deep
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learning techniques). Our hypothesis is based on our observation that the ensemble models

used to assess our models’ performance did not improve upon our xgb model. Second, it is

important to examine how prescriptive dispatching, routing and/or rest-break scheduling mod-

els can integrate the results from our models. Specifically, the probability of an SCE over the

next 30-minutes based on predicted values for our independent variables can be easily com-

puted from any of our models. With this in mind, optimization/prescriptive analytic models

are needed for data-driven actions/decisions (e.g., rest-break, stop, decrease/increase speed) to

minimize SCE/crash risk. Our predictive models developed in this paper can help address this

critical gap (Hu et al. 2020; Mehdizadeh et al. 2020) by estimating the parameter values needed

for the prescriptive models.

Online supplementary materials

As a supplement to this manuscript, we provide an R Markdown document that details the pro-

cess by which we have obtained the machine learning results on our dataset. Specifically, the

R Markdown document is comprised of five sections: (a) preliminaries, which provide the de-

tailed information of the packages used for analyzing the data and their versions; (b) descriptive

analysis of the dataset through statistical summaries and exploratory data analysis visualiza-

tions; (c) the setup and implementation procedure for the predictive models; (d) procedure used

to compute variable importance; and (e) concluding remarks. Each section provides both the

code used and its corresponding results. We host the HTML document generated by knitting the

R Markdown at https://mehdizadeamir.github.io//sce_predictions. We

placed our code/Markdown in the public domain through a CC0 - “No Rights Reserved” li-

cense to encourage both the research and practitioner communities to build upon our analysis.
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Chapter 5

Investigating the robustness of the predication models

5.1 Introduction and motivation

In the previous chapter, we have shown that for the regional drivers, SCEs can be forecasted

30 minutes in advance, using machine learning techniques and dependent variables capturing

the driver’s characteristics, weather conditions, and day/time categories, where an area under

the curve up to 76% can be achieved. Moreover, the predictive performance remains relatively

stable when tested on new (i.e., not in the training set) drivers and a future two-month time

period. However, we did not investigate the possibility of using the same prediction models that

we trained for the regional drivers to predict unsafe driving situations for other type of drivers.

Note that in our data, there are three types of truck drivers (Cai et al. 2020): (a) local drivers

who provide service in at most 200-mile radius and should be returned home in the same day,

(b) regional drivers who provide service in wider regions compare to the local drivers which

might involve surrounding states, and (c) over-the-road drivers who provide service for long

distances and are on the road for several days or weeks. We hypothesize that each type of driver

has a distinct working environment that might affect the precursors that cause unsafe driving

situations. Further, we think the different geographical areas might affect the likelihood of a

safety critical event and need to be investigated due to their associated weather conditions, road

types, and driving regulations. Furthermore, the transferability of the models was not tested in

the previous chapter. Hence, we aim at investigating the temporal and spatial transferability of

the models that we trained and developed for predicting SCEs. Our last goal for this chapter
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is to examine the possibility of developing crash prediction models to identify precursors for

each SEC’s type which as described in Section 4.2.3 are:

• Headway, which denoted an instance when an unsafe gap of ≤ 2.8 seconds between

leading and trailing vehicles was maintained for ≥ 118 seconds (Grove et al. 2015);

• Hard brakes, which captured instances when the truck decelerated at a rate of≥ 9.5 miles

per hour per second.

• Activation of the rolling stability system, which assisted drivers by applying brake pres-

sure (and potentially applying trailer pressure) to align the vehicle when the Bendix®

monitoring system’s thresholds were approached (Bendix® 2007); and

• Activation of the forward collision mitigation system, which intervened to avoid or miti-

gate forward collisions by the truck (Grove et al. 2015).

To sum up, the goals of this chapter are:

• Investigating the tranferability of the prediction models

• Investigating the effects of drivers’ type and geographical regions on the likelihood of

safety critical events.

• Developing Multi-class prediction models to be able to predict SCE’s type.

5.1.1 Transferability of the prediction models

Spatial Here, we want to see the performance of the trained prediction models in different

geographical locations. In chapter four, we trained and tested the prediction models with no

restrictions on the geographical locations of the data. Now, we designed several experiments to

investigate the spatial transferability of the prediction models in more detail. As the first step,

we grouped similar data point based on their GPS locations. To do so, we used the K-mean

clustering algorithm as shown in Figure 5.1.

Then, we trained the models on one cluster and tested the models on other clusters. For

example, when we have two clusters (Figure 5.1.a), we trained the models on data colored with

dark blue and then tested the models on data with red colors. Table 5.1 shows the results.

We repeated the same process while choosing three as the number of clusters (Figure

5.1.b). Table 5.2 shows the results.
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(a) Two clusters (b) Three clusters

(c) Four clusters

Figure 5.1: Clustering results based on latitude and longitude of data.

Table 5.1: The predictive performance of the machine learning models when grouping data
into two clusters.

Metric/Model cart glm lasso nb nnet rf ridge xgb

AUC 0.786 0.801 0.801 0.751 0.820 0.801 0.790 0.824
Accuracy 0.655 0.743 0.714 0.722 0.674 0.654 0.705 0.633
Sensitivity 0.778 0.706 0.721 0.673 0.771 0.774 0.714 0.801
Specificity 0.653 0.743 0.714 0.723 0.673 0.653 0.705 0.631
Gmean 0.713 0.724 0.717 0.698 0.721 0.711 0.710 0.711

Finally, we conducted the same experiment while selecting four clusters (Figure 5.1.c) to

group data. Table 5.3 shows the results.

According to Table 5.1, Table 5.2, and Table 5.3, we have the following observations:
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Table 5.2: The spatial transferability of the machine learning models when grouping data into
three clusters.

cart glm lasso nb nnet rf ridge xgb

Train: Red, Test: Green

AUC 0.672 0.682 0.680 0.700 0.719 0.709 0.670 0.725
Accuracy 0.713 0.781 0.779 0.802 0.770 0.730 0.740 0.740
Sensitivity 0.573 0.433 0.435 0.449 0.516 0.560 0.471 0.570
Specificity 0.713 0.784 0.781 0.804 0.771 0.731 0.741 741

Gmean 0.639 0.583 0.583 0.601 0.629 0.640 0.590 0.650

Train: Red, Test: Blue

AUC 0.787 0.801 0.800 0.695 0.818 0.806 0.781 0.827
Accuracy 0.653 0.771 0.777 0.771 0.704 0.666 0.733 0.693
Sensitivity 0.784 0.687 0.677 0.590 0.760 0.785 0.682 0.773
Specificity 0.652 0.772 0.778 0.773 0.703 0.665 0.734 0.692

Gmean 0.715 0.728 0.726 0.675 0.731 0.723 0.708 0.732

Table 5.3: The spatial transferability of the machine learning models when there are four
clusters.

cart glm lasso nb nnet rf ridge xgb

Train: Green, Test: Blue

AUC 0.677 0.666 0.669 0.688 0.707 0.690 0.655 0.713
Accuracy 0.713 0.739 0.729 0.785 0.731 0.743 0.706 0.703
Sensitivity 0.544 0.466 0.473 0.464 0.547 0.521 0.496 0.595
Specificity 0.714 0.741 0.731 0.787 0.732 0.745 0.708 0.704

Gmean 0.623 0.587 0.588 0.604 0.633 0.623 0.592 0.647

Train: Green, Test: Red

AUC 0.682 0.670 0.674 0.687 0.709 0.694 0.657 0.715
Accuracy 0.737 0.767 0.765 0.815 0.767 0.783 0.710 0.755
Sensitivity 0.511 0.442 0.455 0.432 0.491 0.474 0.483 0.522
Specificity 0.739 0.769 0.766 0.817 0.769 0.785 0.711 0.757

Gmean 0.615 0.583 0.591 0.594 0.615 0.610 0.586 0.629

Train: Green, Test: Purple

AUC 0.799 0.790 0.795 0.697 0.822 0.805 0.771 0.819
Accuracy 0.714 0.786 0.771 0.795 0.761 0.746 0.746 0.756
Sensitivity 0.738 0.665 0.687 0.558 0.735 0.743 0.652 0.733
Specificity 0.713 0.787 0.772 0.798 0.762 0.747 0.747 0.756

Gmean 0.726 0.724 0.729 0.667 0.748 0.745 0.698 0.744
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• The results are consistent with the previous chapter meaning that SCEs are predictable

even the geographical locations of the models are varied.

• In general, the predictive models showed good performance while trained and tested on

different geographical locations.

• XGBoost model had the best predictive performance.

• SCEs are more predictable on the west side of the USA.

To further investigate why the predictive performance in the west side of the USA is higher

than the east side, we trained the models on 496 regional drivers that we had in the previous

chapter. However, we excluded the drivers that drove on the west side and kept it for the testing

set. The results are shown in Table 5.4.

Table 5.4: The predictive performance of the machine learning models on regional drivers in
the west side of the USA

Metric/Model cart glm lasso nb nnet rf ridge xgb

AUC 0.800 0.833 0.829 0.848 0.847 0.846 0.795 0.853
Accuracy 0.667 0.748 0.761 0.771 0.679 0.669 0.684 0.688
Sensitivity 0.811 0.739 0.728 0.800 0.822 0.800 0.739 0.844
Specificity 0.666 0.748 0.761 0.771 0.678 0.667 0.683 0.686
Gmean 0.735 0.743 0.744 0.786 0.746 0.731 0.711 0.761

We can observe that the the predictive performance in Table 5.4 is higher than Table 4.4.

It indicates that SCEs in the west part of the USA are more predictable no matter where the

predictive models were trained.

Temporal The previous chapter showed that the predictive models work well enough when

data are provided in 30-min intervals. Another aspect of a robust predicate model is to be

flexible in terms of time. More specifically, we want to ensure that we can use our predictive

models with different time intervals as input. To answer above question, we train the the model

in 30-min intervals and then we test the model on data with different time intervals.

Table 5.5 shows the results for XGboost for the first experiment. Note that we picked the

XGBoost model because it proved to have the best performance in the previous chapter.
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Table 5.5: The temporal predictive performance of the XGBoost model.

Time-Interval (minutes) AUC Sensitivity Specificity

20 0.792 0.776 0.644
30 0.764 0.708 0.672
40 0.754 0.682 0.680
50 0.741 0.677 0.674
60 0.703 0.608 0.675
70 0.714 0.640 0.666
80 0.713 0.632 0.680
90 0.708 0.625 0.664

100 0.718 0.642 0.674
110 0.702 0.622 0.678
120 0.717 0.655 0.670

As we can see in Table 5.5, the predictive performance of the XGBoost model approxi-

mately remains consistent in all time intervals. The resultss= indicated that our machine learn-

ing framework has temporal transferability. This aspect is crucial because it makes our models

more practically usable.

5.1.2 Driver’s type

We have 42.0%, 43.9%, and 8.6% local, regional, and over-the-road drivers, respectively, in the

dataset that the company provided. We aim to investigate whether or not we can have similar

prediction performance with over-the-road (OTR) drivers as regional drivers. To do so, we

sampled 500 drivers from OTR drivers datasets and took the following steps:

• Extract weather condition data for OTR data from DarkSky API. (Dark Sky 2019)

• Perform the data preparation steps that were explained in the previous chapter for OTR

drivers

• Utilize the machine learning framework which was developed in the previous chapter to

predict SCEs for the ORT drivers.

Table 5.6 shows the prediction performance of the ML framework on the ORT drivers. As

we can see, the models perform well on the new driver type. It is worth mentioning that even

the performance of the models is better when we compare the results with the regional drivers.
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Table 5.6: The prediction performance of the ml framework on the ORT drivers.

Metric/Model cart glm lasso nb nnet rf ridge svm xgb

AUC 0.808 0.845 0.840 0.857 0.864 0.856 0.785 0.858 0.867
Accuracy 0.889 0.911 0.913 0.901 0.897 0.886 0.807 0.918 0.890
Sensitivity 0.687 0.608 0.594 0.675 0.680 0.696 0.583 0.621 0.690
Specificity 0.890 0.913 0.914 0.902 0.898 0.887 0.808 0.919 0.891
Gmean 0.782 0.745 0.737 0.781 0.782 0.786 0.686 0.756 0.784

5.1.3 Prediction of SCE type

As the last step, we want to see the possibility of predicting SCE’s type. We believe that the

consequence of each SCE type is not the same. Some of them might cause a severe safety issue

(e.g., accident), and some of them might cause a minor safety issue (e.g., hard break). Hence,

it is essential to be able to identify the precursors that cause each SCEs. In this sub-section,

we aim at developing a prediction model to predict SCE’s type. We use the same data with

the same preprocessing steps that we had in the previous chapter. Next, we took the following

steps:

• Develop a prediction model for each specific SCE type.

• Develop a multi-class prediction model where a single classifier is used to predict the

class of the predicted value.

• Develop a two-stage model where the first model acts as a binary classifier. Then, if the

predicated value is in class ”1”, the second model aims that identifies its type.

As mentioned before, we have four types of SCE in our data: a) Headway (HW), b)

Hard Break (HB), 3) Activation of the rolling stability system (RS), and d) Activation of the

forward collision mitigation system (CM). However, due to the limited number of RS and CM,

we aggregated them into one class (CMRS). Table 5.7 shows the results for predicting each

specific SCE type.

Next, we developed a multi-class prediction model to predict SCE’s type. However, due

to its poor results, we designed a two-stage prediction model. For the binary classifier, we used

XGBoost due to its performance in the previous chapter. Also, a neural network classifier was

used for the second stage. Table 5.8 shows the results.
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Table 5.7: The predictive performance of the machine learning models on each specific SCE
type.

cart glm lasso nb nnet rf ridge svm xgb

HW

AUC 0.762 0.813 0.813 0.814 0.816 0.816 0.799 0.810 0.823
Accuracy 0.849 0.888 0.887 0.814 0.873 0.888 0.877 0.888 0.897
Sensitivity 0.590 0.565 0.556 0.650 0.591 0.553 0.553 0.543 0.539
Specificity 0.850 0.889 0.888 0.815 0.874 0.889 0.878 0.889 0.898

Gmean 0.708 0.708 0.703 0.727 0.719 0.701 0.697 0.695 0.696

HB

AUC 0.758 0.728 0.726 0.781 0.778 0.774 0.725 0.767 0.789
Accuracy 0.831 0.741 0.730 0.878 0.754 0.867 0.732 0.774 0.868
Sensitivity 0.501 0.546 0.552 0.415 0.652 0.436 0.554 0.575 0.466
Specificity 0.832 0.741 0.731 0.879 0.754 0.868 0.732 0.775 0.869

Gmean 0.645 0.636 0.635 0.604 0.701 0.615 0.637 0.667 0.636

CMRS

AUC 0.770 0.756 0.760 0.794 0.801 0.819 0.756 0.788 0.829
Accuracy 0.808 0.781 0.791 0.750 0.819 0.911 0.788 0.822 0.876
Sensitivity 0.586 0.541 0.532 0.673 0.627 0.500 0.527 0.591 0.545
Specificity 0.809 0.781 0.791 0.750 0.819 0.911 0.788 0.822 0.876

Gmean 0.689 0.650 0.649 0.710 0.717 0.675 0.645 0.697 0.691

Table 5.8: The prediction performance of the ml framework on the ORT drivers.

Class/Metric Sensitivity Specificity Balanced Accuracy

CMRS 0.437 0.931 0.686
HB 0.438 0.863 0.651
HW 0.481 0.904 0.693
None 0.699 0.676 0.687

According to Table 5.7 and Table 5.8, we have the following observations:

• Each type of SCE is predictable individually.

• When predicting HW, and CMRS, the models have similar performance. However, the

results for predicting HB is a bit lower compare to CMRS and HW classes.

• XGBoost had the best performance.

• Multi-class prediction had poor performance

• Two-stage model improved the performance of the multi-class prediction model signifi-

cantly.
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• The sensitivity results of each class in the two-stage model is considered low.

5.1.4 Conclusion

In this chapter, the robustness of the prediction models developed in the previous chapter was

investigated. First, we showed that the predictive has both spatial and temporal transferability.

Second, the models were tested for different types of truck drivers. The results showed that the

performance of the predictive models remains consistent. These two findings are crucial due to

their importance in utilizing the ML framework in the trucking industry. Finally, the possibility

of predicting each type of SCE was examined. Our results showed that a two-stage prediction

model could achieve a balanced accuracy of around 0.65 for each class of SCEs.

99



Chapter 6

Summary and Future Research

This chapter summarizes the contributions of this dissertation and discusses the limitations and

potential future studies.

In this dissertation, data analytics methods for supply chain risk management are studied.

We mainly focus on the risk associated with transportation and manufacturing. The contribu-

tions of this dissertation are two-folds: In the first part (Chapter Two), we consider the problem

of employing job rotation schemes to improve worker safety in a manufacturing setting by

combining optimization methods with novel modeling techniques developed in occupational

safety community. The work is based on a recently proposed fatigue-failure model for mus-

culoskeletal disorders (MSD) risk evaluation. This part aims to minimize the likelihood of

workers getting injured in manufacturing sections so that the overall safety of a supply chain

would increase. Results suggest that the effect of job rotation is highly dependent on the com-

position of the job pool, and the inclusion of jobs with higher risk results in a drastic decrease

in the effectiveness of rotation for reducing overall worker risk. Job rotation alone does not ap-

pear to be an effective means of redistributing injury risk between low-risk and high-risk jobs

when considering the fatigue-failure perspective. The increase in risk for those in formerly

low-risk situations as a result of a rotation scheme can exceed the decrease in risk for a worker

in a high-risk situation. Job rotation will thus be counterproductive in terms of overall injury

risk in such scenarios. When high-risk jobs are present, the best recommendation remains the

use of ergonomic principles to redesign such jobs to reduce injury risk. However, if all jobs

in the rotation are relatively low risk, according to our model, workers may derive benefits

from rotation such as decreased boredom, increased skill development, and increased motor
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variability without significant increases to injury risk. One limitation is our assumption that

anatomical sites are independent and that there are no constraints on rotation structure (e.g.

each worker can perform any amount of each job). By assuming a ‘typical’ worker and not in-

cluding personal characteristics (e.g. gender, body mass index, level of experience/training) in

the proposed model, the specificity to any particular occupational group is limited. Individual

differences and abilities, particularly as they relate to subsequent susceptibility or resistance to

MSD injuries, should be considered in future work as the workforce is both aging and increas-

ingly obese. Also, we considered MSDs as the sole safety criterion and the severity of injury

was not considered. Of course, other criteria (e.g. occupational noise, exposure to psychoso-

cial risk factors, production rate and the resulting return on investment) come into consideration

when deciding whether to adopt job rotation. These effects should certainly be considered in

any practical evaluation of job rotation plans. We believe, however, that our findings have rele-

vance to those who may use job rotation for other risks and/or purposes, since, as evidenced by

our findings, any rotation scheme has the potential to inadvertently lead to increased physical

MSD risk, regardless of potential positive effects of other factors.

The second part (Chapters Three, Four, and Five) aims to improve transportation safety in

a supply chain. We primarily consider truck safety as one of the most used transportation meth-

ods in a manufacturing-related supply chain. To do so, we first aim to reduce the start-up burden

of data collection and descriptive analytics for statistical modeling and route optimization of

risk associated with motor vehicles. From a data-driven bibliometric analysis, we show that the

literature is divided into two disparate research streams: (a) predictive or explanatory models

that attempt to understand and quantify crash risk based on different driving conditions, and

(b) optimization techniques that focus on minimizing crash risk through route/path-selection

and rest-break scheduling. Translation of research outcomes between these two streams is lim-

ited. To overcome this issue, we present publicly available high-quality data sources (different

study designs, outcome variables, and predictor variables) and descriptive analytic techniques

(data summarization, visualization, and dimension reduction) that can be used to achieve safer-

routing and provide code to facilitate data collection/exploration by practitioners/researchers.

Then, we review the statistical and machine learning models used for crash risk modeling. We
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show that (near) real-time crash risk is rarely considered, which might explain why the opti-

mization models have not capitalized on the research outcomes from the first stream. As the

next step, we focus on improving the safety of truck drivers by predicting the likelihood of a

safety-critical event (SCEs) in the next 30 minutes. We show that SCEs can be predicted 30 min

in advance, using machine learning techniques and dependent variables capturing the driver’s

characteristics, weather conditions, and day/time categories, where an area under the curve

(AUC) up to 76% can be achieved. Moreover, the relative importance of the predictor variables

was generally consistent based on two distinct variable importance techniques. Specifically, we

showed that the kinematic (SCELag7) predictor was the most important, followed by the prox-

ies for traffic-conditions (speedMean and speedSD), while the precipitation-related variables

(prepInten and prepProb) were the least important. Hence, we also demonstrated that addi-

tional insights can be generated from traditionally black-box machine learning models through

utilizing state-of-the-art methods in interpretable machine learning/explainable artificial intel-

ligence (Molnar 2020). Furthermore, the models can be used for both new drivers and future

time periods based on our driver-based, and time-based training/sampling scenarios. Specifi-

cally, the AUC for the best model was within 0.02 for our best model (xgb) when compared to

the base (random) sampling scenario. From an implementation perspective, this difference is

practically insignificant.

This dissertation has several limitations that should be highlighted. First, more advanced

devices (e.g., wearable sensors) can be used to evaluate workers’ safety more accurately in

manufacturing systems. Also, there is a need to utilize AI methods in manufacturing systems

to make decisions considering the safety criteria. Second, driver-behavioral features (e.g., fa-

tigue, sleepiness) and advanced methods to quantify these features need to be used to have a

more comprehensive evaluation of road and driver safety. Third, road geometry featured were

not included in our research. Fourth, more investigations are needed to improve multi-class

prediction model performance to reveal the precursors of different crash types. Despite these

limitations, the findings described in this dissertation highlight some of the understudied risk
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sources that affect supply chins’ overall performance. It also provides practical tools to miti-

gate these risks and suggest preventive actions. It is my hope that others will expand upon this

work and continue to address safety-related outcomes that affect global supply chains.
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Marı́a-Carmen González-Cruz. A method to design job rotation schedules to prevent work-

related musculoskeletal disorders in repetitive work. International Journal of Production

Research, 50(24):7467–7478, 2012b.

109



Szu-Hao Huang and Ying-Cheng Pan. Ergonomic job rotation strategy based on an automated

rgb-d anthropometric measuring system. Journal of Manufacturing Systems, 33(4):699–710,

2014.

JooBong Song, Chaiwoo Lee, WonJung Lee, Sangwoo Bahn, ChanJu Jung, and Myung Hwan

Yun. Development of a job rotation scheduling algorithm for minimizing accumulated work

load per body parts. Work, 53(3):511–521, 2016.

Salvatore Digiesi, Francesco Facchini, Giorgio Mossa, and Giovanni Mummolo. A rula-based

optimization model for workers’ assignment to an assembly line. In XVII International

Scientific Conference on Industrial Systems (IS’17), pages 8–13, 2017.

Shib Sankar Sana, Holman Ospina-Mateus, Fabian Gazabón Arrieta, and Jaime Acevedo Che-

did. Application of genetic algorithm to job scheduling under ergonomic constraints in man-

ufacturing industry. Journal of Ambient Intelligence and Humanized Computing, pages 1–28,

2018.

Sue Hignett and Lynn McAtamney. Rapid entire body assessment (reba). Applied ergonomics,

31(2):201–205, 2000.

P Brinckmann, N Johannleweling, D Hilweg, and M Biggemann. Fatigue fracture of human

lumbar vertebrae. Clinical biomechanics, 2(2):94–96, 1987.

Sean Gallagher, William S Marras, Alan S Litsky, and Deborah Burr. Torso flexion loads and

the fatigue failure of human lumbosacral motion segments. Spine, 30(20):2265–2273, 2005.

H Schechtman and DL Bader. In vitro fatigue of human tendons. Journal of biomechanics, 30

(8):829–835, 1997.

Tishya AL Wren, Derek P Lindsey, Gary S Beaupré, and Dennis R Carter. Effects of creep and
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