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Abstract 
 

It is a well-known fact that predicting shear strength of concrete beams is a very complex 

topic. The traditional approach is to assume that the shear strength is the sum of the concrete 

contribution (Vc) and the shear reinforcement contribution (Vs). In recent years, several proposals 

including Bentz & Collins (2017), Cladera et al. (2017), Frosch et al. (2017), Li et al. (2017), 

Park & Choi (2017) and Reineck (2017) were published based on different failure mechanisms. 

The current code ACI318-19 (2019) also updated the one-way shear design specifications with a 

new set of empirical equations based on Kuchma’s research (1998). However, none of these 

methods can fully agree with each other either. Therefore, methods which are not directly related 

with failure mechanisms will be valuable to provide alternative ways to predict shear strength of 

concrete beams as comparisons. Recently, two database including shear database without shear 

reinforcement (Reineck, Kuchma, & Kim, 2003) and shear database with shear reinforcement 

(Reineck, Bentz, & Fitik, 2014)were collected and reviewed. With these two databases, several 

statistical and machine learning (ML) methods can be applied and evaluated as alternative 

methods to compare with traditional theoretical methods. In this thesis, three theoretical methods 

(ACI318-19, Frosch et al. and Li et al.) were chosen to be validated by these two databases. 

Selected statistic (multiple linear regression, LASSO, LARS) and machine learning (random 

forest, neural network, and support vector machine) methods were applied on the databases to 

evaluate the efficiency and accuracy of these methods on predicting shear strength. This study is 

the first study attempting to apply the statistical/ML methods on these databases to predict the 

shear strength of concrete beams. A sensitivity analysis was conducted on all these different 

methods at the end of this thesis to evaluate the stability of these methods. 
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Chapter 1. Introduction 

1.1 Motivation for the Research 

It is difficult to predict one-way shear strength of concrete beam due to its complex failure 

mechanism. Even today, there is no widespread agreement regarding a shear resistance 

mathematical model. The traditional assumption is the contribution of concrete and rebars in 

reinforced concrete beam is separate, that is, they are independent from one another. Nevertheless, 

consider Figure 1-1, if the primary resistance mechanisms (Kuchma & Collins, 1998) are observed 

one can notice the external shear is resisted by shear transfer through uncracked concrete, the 

aggregate interlock along cracks also contributes to the shear strength and the dowel action of 

longitudinal reinforcement. Moreover, If the beams have an amount of shear reinforcement, the 

transverse reinforcement also participates in the shear resistance mechanism. On the one hand, the 

shear reinforcement holds some of the shear force, but also it keeps the cracks from widening; 

therefore, it has an influence in the concrete contribution coming from aggregate interlock. The 

quantification of these mechanisms is by no means not straightforward. The shear strength of 

concrete members is influenced by tensile concrete strength, coarse aggregate size, presence of 

axial force, slenderness ratio, amount of longitudinal reinforcement, and overall size of the 

member. Yet, the relative influence of these variables is still debated (Aguilar, 2020). Several 

proposals including Frosch et al. (2017) and Li et al. (2017) were published based on their thought 

of failure mechanisms on the concrete beam bending behavior. The empirical formula which was 

developed by Kuchma (1998) was accepted as new method to predict and design shear strength of 

reinforced concrete beam in the current concrete code. 
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Figure 1-1: Primary shear resistance mechanisms (Aguilar, 2020) 

Given the complexity of the topic, there have been numerous experimental efforts to try to 

understand the shear strength of concrete members. Thus, databases have been assembled and 

reviewed by the engineering community (Reineck et al. 2003, Reineck et al. 2014). Aguilar (2020) 

studied the accuracy of those shear design equations and the ACI 318 (2019) building code 

requirements for structural concrete against the available ACI 445 databases. The result of analysis 

showed none of these theoretical methods can agree with each other since the assumed shear failure 

mechanisms they have were different from one another. In addition, the conclusions indicated that 

the new ACI 318-19 shear design method is the simplest of the methods reviewed, and it gives 

reasonably accurate predictions for members with and without shear reinforcement. Also, the 

performance of the proposals from Frosch et al. (2017) and Li et al. (2017) was highlighted. 

Therefore, the one-way shear equations from ACI 318-19(2019), Frosch et al. (2017), and Li et al. 

(2017) are selected for further analysis and comparisons in this thesis. Also, in this thesis, with the 

available experimental databases, statistical (multiple linear regression, LASSO, LARS) and 

machine learning (Random Forest, support vector machine) method were the first-time attempt to 

be applied to provide alternative ways to predict the one-way shear strength of concrete beams.  

Further, sensitivity analysis was conducted to evaluate the stability of all these statistical/ML 
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methods compared with the theoretical methods developed by previous researchers (ACI 318-19 

(2019), Frosch et al. (2017), and Li et al. (2017)).  

1.2 Scope of work 

The purpose of this thesis is to attempt to predict one-way shear strength of reinforced 

concrete beam from ACI 445 database by using statistical/ML techniques and evaluate these 

methods by conducting sensitivity analysis. Three statistical methods including multiple linear 

regression, LASSO and LARS and the three machine learning methods including Random 

Forest, Neural Network and Support Vector Machine were selected in this thesis to be evaluated. 

The datasets used in this thesis include reinforced concrete members without shear reinforcement 

(784 samples), and reinforced concrete members with shear reinforcement (87 samples) from the 

ACI 445 database. To assess the performance of the statistical/ML techniques, three theoretical 

(mathematical) methods which are ACI318-19 (2019), Frosch et al. (2017) and Li et al. (2017) 

were also used for comparison purposes in this thesis. 

1.3 Organization of thesis 

Chapter 1 contains an introduction to define the specific problem that exists in structural 

engineering in this thesis. The motivation of the research and scope of the work are also 

discussed in this chapter. 

Chapter 2 provides a literature review on shear behavior and shear strength of concrete 

beam, database used in this thesis and, statistical/ML in civil engineering field. 

Chapter 3 provides an overview on the selected statistical/ML and theoretical 

(mathematical) methods in this thesis.    
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Chapter 4 presents the details of comparison between experimental results(databases) and 

results which predicted by all these different methods (theoretical and statistical/ML methods). 

The results of sensitivity analysis were also presented in this chapter. 

Finally, Chapter 5 consists of the conclusion and future work. This chapter will 

summarize the whole research done in this thesis and provide recommendations for further 

research.  
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Chapter 2 Literature Review 
 

2.1 Introduction of shear behavior and shear strength of concrete beam 

In structural design, beam is one of the most common elements in the buildings, bridges, 

stadiums and so on. The major function of beam is to transfer the load to columns then the 

foundations. Figure 2-1 shows a simple support beam which is subjected to a distributed load and 

the corresponding cracking due to flexure behavior. When the external force was applied in the 

beam, the internal force including bending moment and shear force will be generated along 

beam. Then, due to bending moment, normal compression stress occurs above neutral axis while 

normal tensile stress occurs below neutral axis. The shear force is the internal force resultant of 

all the vertical forces acting on beam, at the section under consideration, and it tends to cut or 

shear the beam. The shear force creates both vertical and horizontal stress. 

 

Figure 2-1: Simple support beam subjected to distributed load (Aguilar, 2020) 

Figure 2-2 shows the stress conditions on the different location of beam which are above 

neutral axis, at neutral axis and below neutral axis, respectively. Based on the property of 
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concrete material, The concrete is strong in compression and weak in tension. Therefore, the 

concrete below neutral axis will start to crack first which is shown in Figure 2-1. 

 

Figure 2-2: Stress condition on the different location of beam (Aguilar, 2020) 

2.1.1 Behavior of beams without shear reinforcement 

For the simple support beam under vertical uniformed distributed load, the maximum 

moment occurs in the middle span of the beam while the maximum shear force occurs at the 

support. When the tensile stress generated by bending moment exceeds the rupture modulus, 

cracks open almost perpendicular to the axis of beam which was called flexural cracks. When the 
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shear stress generated by shear force reaches the critical stress, the diagonal crack starts to occur. 

In the location where large shear force occurs, inclined cracks will be developed after those exist 

flexural cracks which is called flexural-shear cracks.  

There are two types of shear failure modes for concrete beam due to its slenderness 

which is the ratio of the shear span (distance between load and support) to the depth of cross 

section. When the slenderness is between 1 and 2.5, either shear compression or shear tension 

failure will happen. This type of failure mode is brittle failure mode with very small deflection 

which will not be discussed in this thesis. When the slenderness is between 2.5 and 6, the 

diagonal tension failure will occur. When the slenderness is larger than 6, flexure failure will 

happen before shear failure. Figure 2-3 shows the sketch of a beam with diagonal tension failure.  

 

Figure 2-3: Sketch of diagonal tension failure of beam (Aguilar, 2020) 

 

The cracking start to occur in the middle span of beam with some small vertical cracks. 

Then, more flexural crack shows up along the beam. These flexural cracks will break the bond 

between concrete and bottom tensile rebars. Then, diagonal flexural-shear crack shows up and 

widens into a diagonal tension crack which is extended to the top of beam (Wang & Salmon, 

1985). Based on Wight’s (Wight & MacGregor, 2012) book, the beam without shear 
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reinforcement will fail quickly after the diagonal tension crack occurs. Therefore, the shear force 

which causes the inclined crack is considered as the shear strength of concrete beam. Although 

there are some different shear failure models of beam without shear rebars by different 

researchers, it was widely accepted that the external shear force was resisted by: (1) shear 

transfer through uncracked concrete; (2) the aggregate interlock along cracks also contributes to 

the shear strength; and (3) the dowel action of longitudinal reinforcement. Based on Wang and 

Salmon’s (1985) book, for the rectangular beam without shear rebars, 20-40 percentage of shear 

is transferred by (1) uncracked concrete, 33-50 percentage of shear is transferred by (2) the 

aggregate interlock along cracks and 15-25 percentage is transferred by (3) the dowel action of 

longitudinal reinforcement. According to these major resistance mechanisms, the shear strength 

of the concrete beam is affected by a lot of variables such as the size of beam, concrete 

compression strength, the aggregate size, the longitudinal reinforcement ratio and so on. 

2.1.2 Behavior of beams with shear reinforcement 

When the slenderness is between 2.5 and 6 or the bottom longitudinal reinforcement is overly 

designed, the inclined crack will happen before the beam reaches its flexural capacity which 

means shear force will control the design in these cases. Therefore, it is important to provide 

enough shear strength to resist the shear force. When the shear resistance provided by concrete 

itself is not enough in the beam, shear reinforcement becomes necessary in the beam design. The 

purpose of shear rebars is to ensure that the flexural strength can be fully achieved to have a 

ductile failure mode instead of a brittle shear mode for safety purpose. The prime idea of shear 

reinforcement is to provide steel to cross the diagonal tension cracks to stop them from widening. 

The most common shape of shear rebar is vertical U-shape. Figure 2-4 shows the beam with 

shear reinforcement. 
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Figure 2-4: Beam with shear reinforcement (Aguilar, 2020) 

The shear rebars will not start to be functional until the diagonal tension crack forms. 

Before that, the stress in the shear rebar is very small. After the diagonal crack forms, the shear 

rebars start to work to prevent the crack becoming larger and larger. Wang’s (1985) book said 

that if the shar reinforcement is too little, the shear rebars will yield immediately after the 

formation of inclined crack. If the shear reinforcement is too much, the brittle shear failure will 

occur. There are three major functions of shear reinforcement in the concrete beams: (1) carry 

part of shear force, (2) prevent the widening of inclined shear cracks and, (3) hold the 

longitudinal rebars in the right position to reduce the dowel effect (Wight & MacGregor, 2012). 

Traditionally, the one-way shear strength is assumed to be the sum of shear strength from 

concrete and shear strength from the shear reinforcement. Besides the variables which affect the 

shear strength from concrete, rebar yields strength of shear reinforcement and the space of shear 

reinforcement are both important which will affect the shear strength from shear rebars. 

2.2 Database for one way shear in reinforced concrete beams 

To investigate the one-way shear strength of concrete beam, a significant number of 

efforts were invested in the experimental tests as well. In the past 15 years, a database of slender 
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beams (slenderness ratio larger than 2.4) with clear shear failure was assembled and summarized 

by the Joint ACI-ASCE Committee 445 and German Committee of reinforced concrete 

(DAbStb). The dataset with 784 samples was used for the concrete beam without shear 

reinforcement. There are two datasets which can be used for concrete beam with reinforcement. 

The large dataset has 170 samples while the small dataset has 87 samples. The small dataset is a 

subset of large dataset which all the shear rebars were ensured to yield before shear failure 

occurs under observation. The small dataset was selected to be used in this thesis for the 

clarification purpose. The description of all the information related with the variables 

(information of beam geometry, concrete and rebar)  in the dataset can be found in the research 

report from Reineck at el. (Reineck, Kuchma, & Kim, 2003) (Reineck, Bentz, & Fitik, 2014).  

2.3 Statistical/ML methods in structural engineering 

Before 1990s, linear elastic analysis is very common in the design and analysis practice 

of structural engineering. A linear elastic analysis is a type of analysis which holds a linear 

relation between force and displacement. Based on this assumption, this method is suitable for 

structural engineering problems where all the materials remain in the elastic range during the 

analysis. For linear elastic analysis, both theoretical and numerical methods can be used. The 

theoretical methods can be formulated by differential equations or simple calculations based on 

different concepts while the numerical methods are commonly explained and demonstrated by 

using matrix method according to all degrees of freedom. In addition, for a linear elastic analysis, 

the global and local stiffness matrices for systems and elements are constant. Therefore, the 

corresponding solve process is relatively short and computational inexpensive compared with 

nonlinear analysis procedures. However, the assumption of linear elastic is not always true in the 

real world, nonlinear plastic process sometimes is necessary when a more accurate estimate of 



11 

 

behavior is needed. A nonlinear analysis is a type of analysis which holds a nonlinear relation 

between force and displacement. There are three major types of nonlinear effects in structural 

engineering including geometrical nonlinearity, material nonlinearity, and contact nonlinearity.  

Numerical methods are commonly used in the nonlinear analysis. The global and local 

stiffness matrices cannot remain the same during the analysis opposed to the linear elastic 

analysis. Therefore, the corresponding solve process is relatively long and computational 

expensive. Meanwhile, the development of analysis hardware and software provide the 

possibility for engineers to get results from nonlinear process, for example, finite element 

analysis. However, to perform a nonlinear analysis, more theoretical and practical knowledge is 

required to determine all the input parameters and models including the effect of different types 

of nonlinearities which can easily be inappropriate. Incorrect selection of parameters and 

assumptions will cause significant error in the analysis while correct selection of parameters and 

assumption can obtain reasonable results. Therefore, model validation with experiments or field 

test is often needed to make final decision. In conclusion, linear elastic analysis is simple and 

relatively inaccurate while nonlinear plastic analysis is complicated and relatively accurate.   

Meanwhile, in the past several decades, structural data generation has increased 

dramatically due to the development of technology of measuring, recording and storing data. 

These data come not only from reliable nonlinear analysis but also from laboratory and field 

tests. By using these growing volumes of databases, opportunities are opened to engineers and 

scientists to come up with simple and accurate ways to predict structural behavior including 

beam behavior, column behavior, joint behavior and so on. Artificial intelligence is one of them. 

The research of artificial intelligence has been developed since 1956, when the term “Artificial 

Intelligence, AI” was used at the meeting hold in Dartmouth College (Lu, Chen, & Zheng, 2012). 
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AI is the simulation of human intelligence processes by machines, especially computer systems. 

These processes include learning (the acquisition of information and rules for using the 

information), reasoning (using rules to reach approximate or definite conclusions) and self-

correction. There are several ways to achieve artificial intelligence, machine learning is one of 

the most popular approaches. Figure 2-5 illustrates the relationship between Artificial 

Intelligence, ML and ML techniques (AGUILAR, WU, & MONTGOMERY, 2021). Based on 

Figure 2-5, artificial intelligence is the broadest term which includes the whole machine learning 

term. Tree-based method, Neural Networks and Support Vector Machine are three different 

techniques for implementing machine learning approach. These three machine learning 

techniques have been used in some structural problems which will be emphasized in this 

literature review.  
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Figure 2-5: Relationship between Artificial Intelligence, Machine Learning and Machine 

learning techniques (AGUILAR, WU, & MONTGOMERY, 2021) 

Practical applications of machine learning are very different from traditional or empirical 

approaches in structural engineering. Figure 2-6 shows the differences of analysis procedures 

between traditional approach and machine learning approach.  

 

Figure 2-6: Difference between Traditional Method and Machine Learning Method 

(AGUILAR, WU, & MONTGOMERY, 2021) 
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The definition of traditional methods is very broad since all the methods which don’t 

belong to artificial intelligence approaches in the past several decades will be considered as 

traditional methods including laboratory test, field test, finite element analysis, empirical 

methods and so on. There are several common characteristics among these traditional methods. 

First, the input data information is preselected and reasonably simplified which means the input 

values are normally required to be preprocessed before the test or analysis. Then, all the test and 

analysis procedures and methods which are described as “Rules” in Figure 2-6 need to be well 

understood and properly applied to physical tests or computer analysis. Otherwise, the test or 

analysis results might not be reliable and valuable. Last but not the least, the relationship 

between answer or prediction and input valuable values are clear and interpretable since all the 

rules are known and well applied which is different from machine learning approaches. For 

machine learning approaches, the procedures of methods are completely different from 

traditional methods. First, the raw data sets are not necessarily to be pre-processed before 

applying machine learning approach. Second, the theories of machine learning approaches need 

to be well understood. However, this is different from the “Rules” referred in the traditional 

method, the “rules” are created by machine learning approaches in training phase. The most 

different part between traditional methods and machine learning methods is the interpretation 

section. Although the “Rules” are created by machine learning approaches which are well 

understood and carefully selected, the “Rules” itself is developed by computer in a “Black box 

“which means there is no direct relationship between input values and answers or predictions 

which can be interpreted. The main goal of machine learning approaches is to provide an answer 

or prediction as accurate as possible in the inference phase. There are a lot of machine learning 

techniques which have been developed in the past several decades. Among all these techniques, 
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Tree-based method, Neural Networks and Support Vector Machine are three different techniques 

which have been frequently used in structural engineering recently. 

Similar with the machine learning methods, the traditional statistic methods can also be 

used to solve some complex structural engineering problems. The process of statistical methods 

is very similar with machine learning methods. However, the statistical methods also have a 

couple of differences compared with machine learning approaches. The statistical methods will 

also be applied on the observed data first. Different from machine learning methods, different 

statistical methods will require to do different data transformation to get reasonable output 

(“Rule”). Then, these “Rules” are not developed in the “Black box”. The statistical models will 

be developed to describe these “Rules”. In the end, these “Rules” which are made of statistical 

models can also be used to do prediction. The statistical methods including multiple linear 

regression, LASSO and LARS were used in this thesis.  
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2.6 Summary 

In this chapter, the bending behavior of concrete beams with simple support was 

briefly introduced. Then, the process of failure mechanism was detailly explained for the 

concrete beams with shear reinforcement and without shear reinforcement, respectively. 

One-way shear strength of concrete beam without shear rebars is contributed by concrete 

only while, for concrete beam with shear reinforcement, the shear strength is the 

contribution of both concrete and shear rebars. The database which was used in this thesis 

was also briefly introduced in this chapter. Finally, the reason why statistic and machine 

learning methods are valuable to be used to solve structural engineering problems were 

mentioned. The difference of basic concept between traditional methods and 

statistical/ML methods were explained in the end.  
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Chapter 3 Methodology  
 

An overview of traditional and statistical/ML methods to predict shear strength 

and a comparison between the statistical/ML techniques and the traditional methods are 

given in this chapter. First, three traditional methods from structural engineering point of 

view are introduced. These are ACI318-19 (2019), and the methods proposed by Frosch 

et al. (2017) and Li et al. (2017). Then, three statistical methods were introduced 

including simple multiple regression, LASSO and LARS.  Finally, the basic concepts of 

three machine learning methods were presented. 

3.1 Traditional methods (Theoretical methods)   

3.1.1 ACI 318-19 

Based on the method given by ACI 318-19 (2019), for beams without shear 

reinforcement and slabs, the estimate of contribution of concrete is shown below: 

𝑽𝒄 = [𝟖𝝀𝒔𝝀𝝆𝒘

𝟏

𝟑 √𝒇𝒄
′ +

𝑵𝒖

𝟔𝑨𝒈
]𝒃𝒘𝒅                            Equation 3-1 

 

𝝀𝒔 =
𝟏.𝟒

√𝟏+
𝒅

𝟏𝟎

≤ 𝟏. 𝟎                                         Equation 3-2 

where: 

𝑉𝑐= shear strength contributed by concrete 

𝜆𝑠= size effect factor which is defined in Equation 3-2 

𝜆 = modification factor to reflect the reduced mechanical properties of light-weight concrete 

relative to normal-weight concrete of the same compressive strength. It is always 1.0 in this 

thesis since all the concretes in this thesis are normal weight concrete.  

𝜌𝑤= longitudinal reinforcement ratio  
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𝒇𝒄
′ = compressive strength of concrete 

𝑵𝒖= Axial force in the beam. It is always 0 in this thesis since axial force in the beam is 

not considered. 

𝑨𝒈= gross cross section area 

𝒃𝒘= web width of beam  

𝒅 = distance from extreme compression fiber to centroid of longitudinal tension steel.  

For the beam with shear reinforcement, the shear strength contributed by concrete 

is provided in Equation 3-3. The first line is the traditional shear equation while the 

second line is Equation 3-1 without size effect factor, which is adopted in this thesis. 

𝑽𝒄 = 𝑬𝒊𝒕𝒉𝒆𝒓 𝒐𝒇 {

[𝟐𝝀√𝒇𝒄
′ +

𝑵𝒖

𝟔𝑨𝒈
]𝒃𝒘𝒅]

𝟖𝝀𝝆𝒘

𝟏

𝟑 √𝒇𝒄
′ +

𝑵𝒖

𝟔𝑨𝒈
]𝒃𝒘𝒅

                        Equation 3-3 

 The shear strength which is provided by shear reinforcement is given by. 

𝑽𝒔 = 𝑨𝒗𝒇𝒚𝒕 (
𝒅

𝒔
)                                                Equation 3-4 

where: 

𝑽𝒔= shear strength contributed by shear reinforcement, 

𝑨𝒗= area of shear reinforcement within spacings, 

𝒇𝒚𝒕= yield strength of shear reinforcement, 

S= center-to-center space between shear rebars. 

 The total shear strength 𝑽𝒏 of beam with shear reinforcement is given below. 

𝑽𝒏 = 𝑽𝒄 + 𝑽𝒔                                               Equation 3-5 

3.1.2 Method by Frosch et al. (2017) 

Based on Frosch et al. (2017), for beams with or without shear reinforcement and 

slabs, the estimate of contribution of concrete is shown below: 

𝑽𝒄 = (𝟓𝝀√𝒇𝒄
′ 𝒃𝒘𝒄)𝜸𝒅                                     Equation 3-6 

𝜸𝒅 =
𝟏.𝟒

√𝟏+
𝒅

𝒅𝟎

≤ 𝟏. 𝟎                                        Equation 3-7 
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𝒅𝟎 = {
𝟏𝟎′′   𝒊𝒇 𝑨𝒗 < 𝑨𝒗𝒎𝒊𝒏

𝟏𝟎𝟎′′ 𝒊𝒇 𝑨𝒗 ≥ 𝑨𝒗𝒎𝒊𝒏
                              Equation 3-8 

where: 

𝒄= distance from extreme compression fiber to neutral axis  

𝜸𝒅= size effect factor which is defined by Equation 3-7 

𝒅𝟎= factor which is defined in Equation 3-8, for beam without shear reinforcement, it is 

equal to 10’’. For beam with shear reinforcement, it is equal to 100’’. 

𝑨𝑣𝑚𝑖𝑛= minimum shear reinforcement which is required within space s 

𝑽𝒄, bw, and  fc are the same as defined before. 

 The shear strength which is provided by shear reinforcement is same with 

ACI318-19 method which is shown in Equation 3-4. The total shear strength 𝑽𝒏 of beam 

with shear reinforcement was also same with ACI318-19 method which is shown in 

Equation 3-5. 

3.1.3 Method by Li et al. (2017)  

Based on Li et al. (2017), for beams with or without shear reinforcement and 

slabs, the estimate of contribution of concrete is shown below: 

𝑽𝒄 = 𝟏𝟕𝝀(
𝑽𝒖𝒅

𝑴𝒖
)𝟎.𝟕√𝒇𝒄

′ 𝒃𝒘𝒄
𝟏

√𝟏+
𝒉

𝟏𝟏.𝟖

  .                                 Equation 3-9 

 

where: 

𝑽𝒖= factored shear force at section 

𝑴𝒖= factored moment at section 

𝒉= depth of beam 

a= shear span, distance from center of the concentrated load to center of support for simple 

support beam. 
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This equation in Equation 3-9 is very unstable because of the term of  
𝑽𝒖𝒅

𝑴𝒖
. Therefore, in 

this evaluation, it is replaced by d/a.  

The shear strength which is provided by shear reinforcement is the same with 

Equation 3-4. The total shear strength 𝑽𝒏 of beam with shear reinforcement is also the 

same with Equation 3-5. 

3.2 Statistical methods   

3.2.1 Multiple linear regression and Stepwise Variable Selection Methods  

  Multiple linear regression (MLR) is a statistical technique and attempts to model 

the relationship between two or more explanatory (predictors) variables and a response 

variable by fitting a linear equation to observed data. A multiple linear regression model 

with m predictor variables X1, X2, Xm and a response variable y as  

𝒚 = 𝜷𝟎 + ∑ 𝑿𝒋𝜷𝒋 + 𝒎
𝒋=𝟏                                Equation 3-10 

If there are n observations on the m+1 predictor variables, and the MLR model 

can be written as   

𝒚𝒊 = 𝜷𝟎 + ∑ 𝑿𝒊𝒋𝜷𝒋 + 𝒊   , 𝒊 = 𝟏, … , 𝒏𝒎
𝒋=𝟏 .         Equation 3-11 

where, 

𝒚𝒊= dependent variables 

𝑿𝒊𝒋= explanatory variables 

𝜷𝟎= y-intercept (constant term) 

𝜷𝒋= slope coefficient for each explanatory variable 

𝒊= residuals with assumptions of 0 mean and 𝜎2variance 
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To estimate regression coefficients parameters, 𝜷𝟎, 𝜷𝒋s, least -squares method 

was employed which aimed at finding regression coefficients minimizing the objective 

function, residual sum of squares, given by  

𝑹𝑺𝑺(𝜷) = ∑ (𝒚𝒊 − 𝜷𝟎 + ∑ 𝑿𝒊𝒋𝜷𝒋
𝒎
𝒋=𝟏 )𝟐𝒏

𝒊=𝟏                Equation 3-12 

here: 

The resulting fitted equation can be written as  

𝒚𝒊̂ = 𝜷𝟎̂ + ∑ 𝑿𝒊𝒋𝜷𝒋̂
𝒎
𝒋=𝟏  , 𝒊 = 𝟏, … , 𝒏.                 Equation 3-13 

Three variable selection procedures were used to find the best model in this thesis 

including forward selection, backward selection, and stepwise selection. Forward 

selection begins with no candidate variables in the model. Then, select the variable that 

has the highest R-Squared. At each step, select the candidate variable that increases R-

Squared the most. Stop adding variables when none of the remaining variables are 

significant. The backward selection starts with all candidate variables in the model. At 

each step, the variable that is the least significant is removed. This process continues until 

no nonsignificant variables remain. Stepwise regression is a combination of the forward 

and backward selection techniques. It is a modification of the forward selection so that 

after each step in which a variable was added, all candidate variables in the model are 

checked to see if their significance has been reduced below the specified tolerance level. 

If a nonsignificant variable is found, it is removed from the model (NCSS, 2021). 

3.2.2 Least absolute shrinkage and selection operator (LASSO) 

Least absolute shrinkage and selection operator (LASSO) is a regularized 

regression which can tackle the problem of overfitting by adding penalty term to the 

least-squares objective function to control complexity (Tibshirani, 1986). The purpose of 
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this shrinkage is to prevent overfit arising due to either collinearity of the covariates or 

high dimensionality. LASSO is L1 penalized estimation technique that shrinks the 

estimates of the regression coefficients toward zero relative to least squares estimates. In 

LASSO penalized regression, the objective (cost) function is 

𝑱(𝜷) = 𝑹𝑺𝑺(𝜷) + 𝝀 ∑ |𝜷𝒋|
𝒎
𝒋=𝟏                          Equation 3-14 

When 𝝀 is 0 (i.e., no shrinkage), it will lead to the least squares estimates for all 

regression coefficients associated with predictors in a standard multiple regression. 

Intercept term is not regularized in this method. When 𝜆 increases, the bias increases. 

The most common mode of selecting penalty parameters is using k-fold cross-

validation (CV).  Presence of outliers in data can exert undue influence over the 

coefficient estimates and the active set selection of a Lasso fit. However, outliers also can 

affect the amount of sparsity induced in the model. This influence is most notable in CV-

selected penalty parameters, even in low-dimensional settings. Also, as multicollinearity 

becomes more serious, it also appears as though cross validation tends to select larger 

models in the presence of higher correlation between predictors (Kirtland, 2017). 

3.2.3 Least angle regression (LARS) 

Least angle regression (LARS) is an algorithm used in regression for high 

dimensional dataset. It is like forward stepwise regression. The general model is same 

with multiple regression model which is shown in Equation 3-10. The LARS algorithm is 

given below (EFRON, HASTIE, JOHNSTONE, & TIBSHIRANI, 2004): 

1) Start with all 𝛽𝑖 = 0 

2) Find the predictor, 𝑋𝑖1, most correlated with y 
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3) Increase 𝛽𝑖 from 0 by a series of small steps in the direction of the sign of its 

correlation with y. Along this way, compute residuals, 𝑟 = 𝑦 − 𝑦̂. Stop when some other 

predictor, 𝑋𝑗2, has as much correlation with r as 𝑋𝑖1 has. 

4) Increase (𝛽𝑖, 𝛽𝑗) in their joint least square direction until some other predictor, 𝑥𝑘, has 

as much correlation with the residual, r. 

5) Continue until all predictors are in the model. 

As penalty parameter values are generally unknown a priori, the LARS algorithm 

works very similarly like CART (Breiman, Friedman, Stone, & Olshen, 1984). Standard 

tree-building method: begin with a model with no predictors and gradually add in 

predictors until the model is “full”. The path may then be “prunned” to an optimal size by 

setting the penalty parameter to an appropriate value.The LARS algorithm has also been 

shown to be stable with multicollinearity among the predictors (Hebiri & Lederer, 2013). 

3.3 Machine learning method   

3.3.1 Tree based method 

Tree-based methods partition the feature space into a set of rectangles, and then fit 

a simple model (like a constant) in each one. They are conceptually simple yet powerful 

(Hastie, Tibshirani, & Friedman, 2017). There are two major types of decision trees in 

tree-based machine learning approaches. One is classification tree analysis which means 

the predicted results are the class to which the data belongs. The other one is regression 

tree analysis which means the predicted results are real number, for example, beam 

column joint moment capacity, roof displacement and so on. Figure 3-1 illustrates a 

simple decision tree model that includes a single binary target variable Y (0 or 1) and two 

continuous variables, x1 and x2, that range from 0 to 1. The main components of a 
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decision tree model are nodes and branches and the most important steps in building a 

model are splitting, stopping, and pruning (SONG & LU, 2015). Classification and 

Regression Tree (CART) analysis covers both classification tree and regression tree 

which is initially proposed by Breiman et al. in 1984 (BREIMAN, FRIEDMAN, 

OLSHEN, & STONE, 1984). It is non-parametric decision tree. It produces regression or 

classification tree depends on dependent variable’s type either numeric or categorical 

respectively. The CART method addresses the classification and regression problem by 

building a binary decision tree according to some splitting rule based on the predictor 

variables. In this way, the space of predictor variables is partitioned recursively in a 

binary fashion. The partition is intended to increase within-node homogeneity, where 

homogeneity is determined by the response variable in the problem. The partitioning is 

repeated until a node is reached for which no split improves the homogeneity, whereupon 

the splitting is stopped, and this node becomes a terminal node. Prediction is determined 

by terminal nodes and takes the form either of a class level in classification problems, or 

the average of the response variable in least squares regression problems (BREIMAN, 

FRIEDMAN, OLSHEN, & STONE, 1984).  
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Figure 3-1: Sample decision tree based on binary target variable Y (SONG & LU, 

2015) 

 

The CART method only constructs one non-parametric decision tree which leads 

either a weak or an amazing prediction.  However, there are a lot of more complicated 

decision tree methods which can construct more than one decision trees to make 

predictions be more accurate and reliable, for instance, random forest and boosting.    

Random forest (Breiman L. , 2001) is an ensemble learning method of 

classification, regression and other tasks which construct decision tree at training time 

and predicts the class at output time. It grows many deep regression trees to randomized 

of the training data and average them which overcomes the over fitting problem of 

decision trees. Here “randomized” is a wide-ranging term and includes bootstrap 

sampling and/or subsampling of the observations, as well as subsampling of the variables. 

(Efron & Hastie, 2016) 

Boosting is one of the most powerful learning ideas introduced in the last twenty 

years. It was originally designed for classification problems, but also was extended to 
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regression as well. The motivation for boosting was a procedure that combines the 

outputs of many “weak” classifiers or predictions to produce a powerful “committee” 

(Hastie, Tibshirani, & Friedman, 2017). It repeatedly grows shallow trees to the residuals, 

and hence build up an additive model consisting of a sum of trees. The basic mechanism 

in random forests is variance reduction by averaging. Each deep tree has a high variance, 

and the averaging brings the variance down. In boosting the basic mechanism is bias 

reduction, although different flavors include some variance reduction as well. Both 

methods inherit all the good attributes of trees, most notable of which is variable 

selection (Efron & Hastie, 2016). 

3.3.2 Neural Networks 

In the mid-1980s, neural networks (NNs) were first introduced, and they marked a 

shift of predictive modeling towards computer science and machine learning. A neural 

network is a highly parametrized model, inspired by the architecture of the human brain, 

that was widely promoted as a universal approximator—a machine that with enough data 

could learn any smooth predictive relationship (Efron & Hastie, 2016). Figure 3-2 shows 

a simple example of a neural network diagram with a single hidden layer. Based on this 

neural network diagram, the neurons can be separated into three layers, including input 

layer, hidden layer and output layer. In addition, the hidden layer can contain one or more 

layers which is shown in figure 3-3. 
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Figure 3-2: Neural network diagram with a single hidden layer (Efron & Hastie, 

2016) 

 

 
 

Figure 3-3: Neural network diagram with three hidden layers (Efron & Hastie, 

2016) 

Neural networks are biologically inspired systems consisting of a massively 

connected network of computational “neurons,” organized in layers. By adjusting the 

weights of the network, NNs can be “trained” to approximate virtually any nonlinear 
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function to a required degree of accuracy. NNs typically are provided with a set of input 

and output exemplars. A learning algorithm would then be used to adjust the weights in 

the network so that the network would give the desired output, in a type of learning 

commonly called supervised learning (ISHAK & TRIFIRÒ, 2007). There are lots of 

neural network training techniques can be used based on different approaches, including 

backpropagation, quick propagation, conjugate gradient descent, projection operator, 

Delta-Bar-Delta and so on. The back-propagation algorithm is one of the most frequently 

used methods for training a multilayer network with onward connections. In this method, 

random values are used to set initial weights and biases. The NNs is then processed for 

the entire set of input data and known outputs, measuring the error or difference between 

the target output and the computed output. This error is then propagated backwards to 

modify and update the weights and biases, again processing the network with the new 

values and obtaining a new error. This process is repeated until reaching a minimum error 

(or until a maximum number of iterations, or epochs, is reached). At this point, the 

weights and biases are fixed, and the NNs can be used to make predictions (Aguilar, 

Sandoval, Adam, Garzon-Roca, & Valdebenito, 2016). Other neural network training 

techniques can be performed as well to select a better solution.  

3.3.3 Support vector machines 

Support Vector Machines (SVMs) were first described by Boser, Guyon, & 

Vapnik (1992). It is a supervised machine learning algorithm which can be used for both 

classification and regression . However, it is mostly used in classification problems. The 

goal of SVMs algorithms is to find a separating hyperplane among two or more classes in 

a high-dimensional space. The individual data points are called vectors. The vectors 

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Radial_basis_function
https://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=understandingsupportvectormachinearticle
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closest to the separating hyperplane are called support vectors and they are the only ones 

which define the hyperplane. Support vectors are like swing state voters in a tight 

election: they are the only vectors whose vote "counts". Thus, if the support vectors are 

altered, deleted, or replaced, the hyperplane will be altered as well. A separating 

hyperplane is considered optimal when the distance from the support vectors to the plane, 

called the margin, is maximized (Swan, 2017). Figure 3-4 shows that all the lines (a, b, c, 

d) are potential separating hyperplanes while line b is the best one since it maximizes the 

distance between support vectors and decision boundary (line b).  

 
Figure 3-4: Margin maximization of SVMs (Swan, 2017) 

Besides the straight hyperplanes, SVMs can learn a smooth, curved boundary by 

remapping the raw data into a higher dimensional space (Tso & Mather, 2009). There are 

three advantages to use SVMs. First, as a non-parametric method, SVMs make no 

assumptions about the distribution of their input data (Wilson, 2008). In the real world, 

most of data is not normally distributed while lots of methods were developed based on 

normal distribution assumption. Therefore, SVMs can handle datasets which are not 

normally distributed well. Second, SVMs have been proven to generalize well even with 
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a small amount of training data (Foody & Mathur, 2004). This is a big advantage since 

collecting raw data is always expensive and time consuming and most of machine 

learning approach often requires a relatively big data set.   Finally, SVMs is good at 

handling high dimensional dataset. It is also valuable since we might have lots of 

parameters in the structural analysis. 

 

3.5 Summary 

In this chapter, all the methods which were used in this thesis were introduced. 

The equations of three traditional methods which were developed by ACI318-19 (2019), 

Frosch et al. (2017) and Li et al. (2017) were presented first. The notation of all the 

variables in these equations were also included in the same section. Then, three statistical 

methods including multiple regression, LASSO and LARS were introduced. Finally, a 

brief introduction of basic concepts of three machine learning methods were presented in 

the end. 
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Chapter 4 Result and Discussion 
 

4.1 Introduction 

The result and discussion in this chapter were separated into two sections. One is 

the result and discussion of concrete beam without shear reinforcement and the other one 

is that of concrete beam with shear reinforcement. Each result and discussion will include 

the descriptive analysis, variable selection, comparison of accuracy among all the 

methods and the sensitivity analysis to evaluate the stability of all the methods. 

4.2 Beam without shear reinforcement 

4.2.1 Descriptive analysis 

First, a descriptive analysis of dataset of beam without shear reinforcement was 

conducted. There are 13 predictors including beam width (b), beam web width (bw), 

beam depth (h), moment to shear ratio (kap) which is equivalent to 
𝑀𝑢

𝑉𝑢𝑑
, effective depth of 

beam (ds) which is distance from extreme compression fiber to centroid of longitudinal 

tension steel, average diameter of longitudinal rebars (dst), area of longitudinal rebars 

(As), geometrical reinforcement ratio (rhos) which is equivalent to 
𝐴𝑠

𝑏∗𝑑𝑠
, geometrical 

reinforcement ratio related to web width (rhosw) which is equivalent to 
𝐴𝑠

𝑏𝑤∗𝑑𝑠
, yield strength 

of longitudinal steel (fsy), maximum diameter of aggregates (diaa), mechanical reinforcement 

ratios (oms) and compression strength of concrete (fc_prime). The one-way shear strength of 

concrete beam without shear reinforcement (Vu_Rep) is the dependent variable. The 

summary statistics of these variables are and the correlation matrix are given in Tables 4-1 

and 4-2. The mean values of all the variables are closer to the minimum value compared with 

maximum value because most concrete beams for experiment are relatively small since they 
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are less costly. The correlation coefficients between b and bw and h and ds are significant 

since they are geometrically related. As is highly related with b, bw, h, and ds since larger 

cross section usually contains more longitudinal reinforcement. The response variable, shear 

strength (Vu_Rep), is strongly related with b, bw, h, ds, As, as expected since they are also 

significant variables for predicting shear strength in the theoretical problems as well. 

However, rhosw and fc_prime are not highly correlated with shear strength which we 

expected.  

Table 4-1: Summary Statistics of variables for beam without shear reinforcement 

Variables unit Mean 
Standard 
deviation Maximum  Minimum 

b mm 241.7 211.5 3005.0 50.0 

bw mm 218.6 207.1 3005.0 50.0 

h mm 390.8 322.3 3140.0 76.2 

kap - 3.5 0.99 8.1 2.4 

ds mm 345.5 303.3 3000.0 57.2 

dst mm 20.4 7.2 40.0 6.0 

As mm² 1410.5 1682.2 18252.0 56.5 

rhos % 1.9 1.05 6.64 0.14 

rhosw % 2.2 1.14 6.64 0.14 

fsy MPa 449.9 153.6 1779.3 174.5 

fc_prime MPa 36.9 21.1 136.6 10.5 

diaa mm 17.8 7.1 51.0 2.5 

oms - 0.25 0.1 0.95 0.03 

Vu_Rep kN 98.1 124.0 1308.4 7.2 
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Table 4-2: Correlation Matrix of all the variables for beam without shear reinforcement 

  b bw h kap ds dst As rhos rhosw fsy fc_prime diaa oms Vu_Rep 

b 1 0.922 0.321 -0.035 0.323 0.198 0.628 -0.299 -0.137 0.028 0.02 -0.073 -0.289 0.804 

bw 0.922 1 0.387 -0.104 0.388 0.219 0.678 -0.203 -0.292 0.095 0.075 0.028 -0.201 0.875 

h 0.321 0.387 1 -0.139 0.999 0.417 0.701 -0.24 -0.331 0.097 -0.004 0.154 -0.205 0.639 

kap -0.035 -0.104 -0.139 1 -0.143 0.058 -0.048 0.148 0.239 0.022 -0.109 0.019 0.242 -0.158 

ds 0.323 0.388 0.999 -0.143 1 0.405 0.692 -0.255 -0.344 0.099 -0.009 0.152 -0.216 0.637 

dst 0.198 0.219 0.417 0.058 0.405 1 0.525 0.394 0.312 -0.24 0.082 0.142 0.241 0.382 

As 0.628 0.678 0.701 -0.048 0.692 0.525 1 0.051 -0.024 -0.04 0.112 0.078 -0.043 0.888 

rhos -0.299 -0.203 -0.24 0.148 -0.255 0.394 0.051 1 0.765 -0.233 0.26 0.076 0.616 -0.116 

rhosw -0.137 -0.292 -0.331 0.239 -0.344 0.312 -0.024 0.765 1 -0.334 0.152 -0.123 0.42 -0.203 

fsy 0.028 0.095 0.097 0.022 0.099 -0.24 -0.04 -0.233 -0.334 1 0.177 -0.048 -0.067 0.068 

fc_prime 0.02 0.075 -0.004 -0.109 -0.009 0.082 0.112 0.26 0.152 0.177 1 -0.232 -0.391 0.166 

diaa -0.073 0.028 0.154 0.019 0.152 0.142 0.078 0.076 -0.123 -0.048 -0.232 1 0.217 0.042 

oms -0.289 -0.201 -0.205 0.242 -0.216 0.241 -0.043 0.616 0.42 -0.067 -0.391 0.217 1 -0.209 

Vu_Rep 0.804 0.875 0.639 -0.158 0.637 0.382 0.888 -0.116 -0.203 0.068 0.166 0.042 -0.209 1 

 

4.2.2 Variable selection and Estimation 

There are 13 explanatory variables in the dataset which might not be needed since the sample size is not large, only 784 

samples. What’s more, based on the correlation matrix in Table 4-2, there are some explanatory variables are not significantly related 

with shear strength. Therefore, the variable selection and estimation was conducted by using multiple linear regression, LASSO, 

LARS and random forest method first in this thesis.  Tables 4-3, 4-4 and 4-5 show the results of forward, backward, and stepwise 
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methods, respectively. Figures 4-1, 4-2 and 4-3 show the variable selection result from 

LASSO, LARS and random forest, respectively. 

Table 4-3: Results of variable selection by forward method from MLR for beam 

without shear reinforcement 

 

 

Table 4-4: Results of variable selection by backward method from MLR for beam 

without shear reinforcement 
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Table 4-5: Result of variable selection by stepwise method from MLR for beam 

without shear reinforcement 

 

 

Figure 4-1: Result of variable selection from LASSO for beam without shear 

reinforcement 

 

Figure 4-2: Result of variable selection from LARS for beam without shear 

reinforcement (Cross validated MSE as number of steps increases) 
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Figure 4-3: Variable Importance Plot generated by random Forest for beam without 

shear reinforcement 

The results of variable selection from statistical methods (MLR, LASSO, LARS) 

were similar with each other. Bw, As and ds are very significant to keep. Fc_prime and 

kap are also significant but not as much as previous three variables. The remaining 

variables are not significant at all. The results of variable selection from statistical 

methods are exactly same with the variables in the traditional methods. For the result of 

random forest, bw, As, ds are same with the results from statistical methods which are 

highly statistically significant. However, kap and fc_prime is not significant in the 

random forest. Based on the results of variable selection and knowledge of subject 

matter, bw, As, ds, kap and fc_prime were decided to keep in the following study. 
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4.2.3 Accuracy 

A scatter plot matrix was created in Figure 4-4 to visually show the relationship 

between all the variables. Based on Figure 4-4, bw, As and ds have a very strong positive 

correlation with shear strength while this trend is not significant for kap and fc_prime 

(fp). The KDD densities show that distributions of bw and ds were skewed right which 

means that the dataset at hand does not contain many big concrete beams. 

 

Figure 4-4: Scatter Plot Matrix of selected variables for beam without shear 

reinforcement 
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For theoretical methods, the equations to calculate the shear strength of beam 

without shear reinforcement were provided in chapter 3. One thing needs to be noticed 

here is that the theoretical methods usually underestimate the shear strength for safety 

purpose. Figure 4-5 shows the comparison between experimental shear strength and 

predicted shear strength using three theoretical methods. If the predicted values are 

exactly same with the experimental values, all the observations should be on the solid 

line. The dashed lines in Figure 4-5 correspond to 20% error lines. It was clear that an 

embedded factor was applied to these theoretical methods to make sure that the most of 

predicted values were less than the experimental values. Therefore, a correction factor 

was added in the calculation. These correction factors were calculated by using simple 

regression to shift the results to have best fit with accuracy line. They are 1.23 for 

ACI318-19, 1.49 for Frosch et al. and 1.31 for Li et al.  

 

Figure 4-5: Comparison between experiment and uncorrected prediction by 

theoretical methods for beam without shear reinforcement 
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Figure 4-6 shows the comparison of corrected predicted shear strength and 

experimental shear strength by using theoretical methods. 

 

Figure 4-6: Comparison between experiment and corrected prediction by 

theoretical methods for beam without shear reinforcement 

Statistical models were achieved by using MLR, LASSO and LARS which were 

shown in Equations 4-1, 4-2 and 4-3, respectively.  

For MLR method after use of variable selection methods, the final model is the 

following: 

𝑽𝒖_𝑹𝒆𝒑 = −𝟐𝟑. 𝟔𝟗 + 𝟎. 𝟑𝟏𝒃𝒘 − 𝟕. 𝟏𝟏𝒌𝒂𝒑 + 𝟎. 𝟎𝟓𝟏𝒅𝒔 + 𝟎. 𝟎𝟑𝟐𝑨𝒔 +
𝟎. 𝟒𝟑𝟏𝒇𝒄_𝒑𝒓𝒊𝒎𝒆      Equation 4-1 

 For LASSO method, 

𝑽𝒖_𝑹𝒆𝒑 = −𝟐𝟏. 𝟔 + 𝟎. 𝟐𝟗𝒃𝒘 − 𝟏. 𝟓𝟑𝒌𝒂𝒑 + 𝟎. 𝟎𝟑𝟒𝒅𝒔 + 𝟎. 𝟎𝟑𝟐𝑨𝒔 +

𝟎. 𝟏𝟐𝟏𝒇𝒄_𝒑𝒓𝒊𝒎𝒆     Equation 4-2 
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For LARS method, 

𝑽𝒖_𝑹𝒆𝒑 = −𝟐𝟑. 𝟔𝟗 + 𝟎. 𝟑𝟏𝒃𝒘 − 𝟕. 𝟏𝟏𝒌𝒂𝒑 + 𝟎. 𝟎𝟓𝟏𝒅𝒔 + 𝟎. 𝟎𝟑𝟐𝑨𝒔 +

𝟎. 𝟒𝟑𝟏𝒇𝒄_𝒑𝒓𝒊𝒎𝒆     Equation 4-3 

The MLR model and LARS model were exactly same which make sense. That’s 

because the way how it works. The first step of LARS method is to identify the predictor 

variable which is most correlated with the dependent variable. Instead of fitting this 

predictor completely, LARS moves the coefficient of this predictor continuously towards 

its least squares value. Then the second predictor will join the procedure. The process 

continues till all the predictors are in the model and ends at the full least-squares fit. Least 

angle regression only enters as much of a predictor as it deserves. However, in this 

section, variable selection has been done before. All the variables in this reduced dataset 

were significant. Therefore, the LARS method will have full least squares fit like MLR. 

The result of LARS will not be shown in this chapter. Figure 4-7 shows the comparison 

of predicted shear strength and experimental shear strength by using statistical methods. 

The accuracy of prediction is decent. Most of predictions were within the 20% error. 
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Figure 4-7: Comparison between experiment and prediction by statistical methods 

for beam without shear reinforcement 

Then the machine learning methods were applied on the reduced dataset as well. 

The comparison of predicted shear strength and experimental shear strength by using 

machine learning methods was shown in Figure 4-8. 500 trees (ntree=500) were selected 

in the random forest method while 5 hidden layers (hidden=5) was chosen for the NN 

method. The accuracies of prediction of random forest and NN are also decent. Most of 

the predictions fall with 20% error line. For support vector method, it performs well for 

the smaller beams (shear strength is relatively small) while it severely underestimates 

shear strength for the larger beams.  
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Figure 4-8: Comparison between experiment and prediction by machine learning 

methods for beam without shear reinforcement 

To reduce the bias and uncertainty of statistical/ML methods, in other words, to 

measure the quality of our models, one of the widely used method is employed to validate 

the models which is the 10-fold cross validation for the assessment of the quality of the 

predicted models obtained based on different methods. The dataset will be partitioned 

into 10 folds. 9 out of 10 folds will be used as a training dataset while the remaining fold 

will be used as a test dataset. The statistical/ML methods will be applied to the training 

dataset first. Then, the test dataset will be used to see the goodness of fit for each method 

by using the criteria called root of mean square error (RMSE), which a metric to 

summarizes predicted model quality. This process will be repeated by 10 times since each 

fold will be used as test dataset once. It is unnecessary to apply the 10-fold cross 

validation for the theoretical methods since the equations for theoretical methods are 
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fixed which will not change based on different training dataset. Table 4-6 shows the 

results for the 10-fold cross validation of statistical/ML methods compared with 

theoretical methods. The results show that all statistical/ML methods perform well except 

SVM. As known before, SVM method is not successful for predicting the big beams 

since the dataset contains a small set of large beam samples.  

Table 4-6: Results of goodness of fit for all the methods  

Group Method RMSE 

Theoretical 

ACI318-19 (2019) 36 

Frosh et al. (2017) 27 

Li et al. (2017) 31 

Statistical 
MLR 31 

LASSO 34 

Machine Learning 

RF 40 

NN 32 

SVM 75 

 

4.2.4 Sensitivity Analysis  

The sensitivity analysis was applied on all these methods except LARS regression since 

the LARS based model is exactly the same as multiple linear regression-based model. 

The purpose of sensitivity analysis is to check the stability of the performance of all these 

methods when one predictor variable changes. In other words, sensitivity analysis 

determines how different values of a predictor variable affects a particular dependent 

variable under a given set of assumptions. New test datasets were created based on the 

experimental dataset. The range of five selected predictor variables was determined based 

on their maximum and minimum values in Table 4-1. Table 4-7 shows the range and 

median value of each variable   used in test dataset. The longitudinal reinforcement ratio 

(low) which is 𝜌𝑤 in the theoretical methods can be calculated by As, bw and ds, 𝜌𝑤 =
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𝐴𝑠

𝑏𝑤∗𝑑𝑠
. Therefore, only low was listed in the table, the corresponding As will be calculated 

in the analysis. If the sensitivity analysis is applied for bw, the bw in the test dataset will 

increase from 50mm to 3050mm while the other variables will remain median value. The 

baseline shear strength will be calculated as well when all the variables are equal to their 

median value. Then, the predicted shear strength will be divided by the baseline shear 

strength which is shear strength ratio. Finally, a shear strength ratio vs. bw plot can be 

generated to see the trend of shear strength ratio as the widths of concrete beams increase 

among all different methods. The same procedure will be repeated by five times for each 

explanatory variable. Figures 4-9, 4-10, 4-11, 4-12 and 4-13 show the sensitivity analysis 

for bw, fc_prime, kap, low and ds, respectively. The trend of theoretical method can give 

a reference to compare with the statistical/ML methods since the theoretical methods 

were published with peer review. 
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Table 4-7: The details of test dataset for beam without shear reinforcement 

Variables unit median Maximum  Minimum 

bw mm 1550.0 3050.0 50.0 

Kap - 5.0 8.0 2.4 

ds mm 1550.0 3050.0 50.0 

low - 0.0286 0.0542 0.0030 

fc_prime Mpa 50.0 80.0 20.0 

 

 

 

Figure 4-9: Sensitivity analysis on bw for concrete beam without shear 

reinforcement 
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Figure 4-10: Sensitivity analysis on fc_prime for concrete beam without shear 

reinforcement 

 

Figure 4-11: Sensitivity analysis on kap for concrete beam without shear 

reinforcement 
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Figure 4-12: Sensitivity analysis on low for concrete beam without shear 

reinforcement 

 

Figure 4-13: Sensitivity analysis on ds for concrete beam without shear 

reinforcement 
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For sensitivity analysis on bw (Figure 4-9), the trends of shear strength ratio from 

theoretical methods and statistical methods are very similar to each other. The machine 

learning methods only have an increasing trend at very beginning.  

For sensitivity analysis on fc_prime (figure 4-10), none of the statistical/ML 

methods have a similar trend with theoretical methods.  

For sensitivity analysis on kap (Figure 4-11), ACI and Frosch methods don’t have 

any trend since kap is not considered at all. MLR, LASSO, NN and SVM didn’t show 

any trend along with kap as well. Random forest has a slightly similar trend with Li et al. 

method, but the trend diminished when kap became larger.  

For sensitivity analysis on low (Figure 4-12), statistical methods have an 

increasing trend while the machine learning methods are not in agreement with 

theoretical methods at all.  

For sensitivity analysis on ds (Figure 4-13), the statistical methods resulted in 

similar trends as the theoretical methods. Neural network and random forest methods are 

in agreement to each other, but not to the theoretical methods when ds measurements are 

less than the median value. SVM method cannot reflect the change of shear strength 

along with ds at all.  

Overall, statistical methods can capture the increasing or decreasing trend, but it 

cannot capture any curved trend since both of two methods are based on linear 

regression. The machine learning methods do not perform well, especially when the 

predictor variables become larger and larger. That’s because there are more small beams 

than the large beams in the experimental dataset. After the dataset was trained by 

different methods, the results are good at predicting the small concrete beams. In the test 
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dataset, the shear strength of baseline concrete beam might not be predicted properly. 

Therefore, a smaller test dataset was established based on the boxplot of each variable. 

Figure 4-14 shows a typical boxplot. The range of each variable in the smaller test dataset 

will be between Minimum and Maximum in their boxplot. Table 4-8 shows the range and 

median value of each variable which were used in small test dataset. 

 

 

Figure 4-14: Typical boxplot (Galarnyk, 2018) 

 

Table 4-8: Ranges for small test dataset for beam without shear reinforcement 

Variables unit median Maximum  Minimum 

bw mm 205.0 360.0 50.0 

Kap - 4.2 6.0 2.4 

ds mm 325.0 600.0 50.0 

low - 0.0255 0.0500 0.0010 

fc_prime Mpa 40.0 70.0 10.0 

 

The same process of sensitivity analysis was applied for each predictor variable 

given in the Table 4-8 by using small test dataset which contained the ranges of 

predictors as depicted in table 4-8. Figures 4-15, 4-16, 4-17, 4-18 and 4-19 show the 

sensitivity analysis for bw, fc_prime, kap, low and ds by using small test dataset, 

respectively.  
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Figure 4-15: Sensitivity analysis on bw for concrete beam without shear 

reinforcement in small dataset 

 

Figure 4-16: Sensitivity analysis on fc_prime for concrete beam without shear 

reinforcement in small dataset 
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Figure 4-17: Sensitivity analysis on kap for concrete beam without shear 

reinforcement in small dataset 

 

Figure 4-18: Sensitivity analysis on low for concrete beam without shear 

reinforcement in small dataset 
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Figure 4-19: Sensitivity analysis on ds for concrete beam without shear 

reinforcement in small dataset 

For sensitivity analysis on bw (Figure 4-15), the trend of shear strength ratio from 

theoretical methods and statistical methods are very similar. The machine learning 

methods have also similar trend. The shear strength ratio-based sensitivity analysis from 

machine learning methods gives some different result compared with those from 

theoretical methods when bw is small. The results of NN methods is closest and most 

smooth among all the machine learning methods. (What does this mean?? Make it 

clear!!!The result of random forest is not very stable. 

For sensitivity analysis on fc_prime (Figure 4-16), the result of LASSO regression 

is worst since it didn’t capture the changes along with fc_prime. MLR and random forest 

performs somewhat fine but not very accurate. The random forest method- based model 

is not stable, which is like the previous result. The SVM and NN gives very similar result 
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as Frosh and Li’s methods, especially NN method. ACI method is a little bit different 

from the other theoretical methods. 

For sensitivity analysis on kap (Figure 4-17), ACI and Frosch methods don’t have 

any trend since kap is not considered at all. LASSO only reflects a small change of shear 

strength ratio along with kap. The other methods have similar trends as Li et al.’s method 

but not as significant as Li’s method. SVM has the most similar trend to Li’s method. The 

result of random forest was observed to be not stable again. 

For sensitivity analysis on low (Figure 4-18), two statistical methods provide very 

similar trends and closer to theoretical methods than random forest and SVM when 

reinforcement ratio is smaller than median value. Random forest and SVM are more 

accurate when reinforcement ratio is larger than median value. NN performs well all the 

time.  

For sensitivity analysis on ds (Figure 4-19), all the methods are similar to each 

other. Similar with Previous result, random forest is not very stable. NN method produces 

the result the closest to theoretical methods. 

Overall, the statistical/ML methods performed better in the small test dataset than 

big test dataset. MLR, NN and SVM are more accurate compared with LASSO and 

random forest based on sensitivity analysis. NN method has the best performance among 

all these statistical/ML method. All the statistical/ML methods are closer to Frosh and Li 

et al’s methods when they have disagreement with ACI method on sensitivity analysis 

with fc_prime. 
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4.3 Beam with shear reinforcement 

4.3.1 Descriptive analysis 

First, a descriptive analysis of dataset of beam with shear reinforcement was 

conducted. There are two datasets established by researchers including a large dataset 

with 170 samples and a small dataset with 87 samples which was used in this thesis. The 

small dataset is a subset of large dataset where there is certainty that the shear rebars 

yielded when the concrete failed. All the explanatory variables except diaa and oms 

which are used in the concrete beam without shear reinforcement is kept in the analysis 

of concrete beam with shear reinforcement. Besides these explanatory variables, another 

three variables which are related with shear reinforcement were added in the dataset. 

They are yield strength of shear reinforcement (fyw), center-to-center space between 

shear rebars (sw) and area of shear reinforcement with spacing sw. Same with concrete 

beam without shear reinforcement, the one-way shear strength of concrete beam without 

shear reinforcement (Vu_Rep) is the dependent variable. The summary statistics of these 

variables and the correlation matrix are shown in Table 4-9 and 4-10. The contribution of 

concrete and the contribution of shear reinforcement is considered as explanatory with each 

other. All three added variables have positive correlation with shear strength of concrete 

beam which is a little bit unusual. The purpose of adding shear reinforcement is to increase 

the shear strength of concrete beam. Therefore, increase the area and yield strength of shear 

rebars will increase the shear strength. However, increase the space of shear rebars which is 

equivalent to reduce the density of shear reinforcement should decrease the shear strength. A 

negative correlation is expected between sw and Vu_Rep. The parameter of sw needs to be 

concerned in the statistical model later. In addition, the correlation between b and bw is very 
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small which is usual as well since they have high positive correlation in the concrete beam 

without shear reinforcement dataset before. 

Table 4-9: Summary Statistics of variables for beam with shear reinforcement 

Variables unit Mean 
Standard 
deviation Maximum  Minimum 

b mm 470.4 280.7 1500.0 125.0 

bw mm 193.3 90.3 457.2 50.0 

h mm 531.9 260.7 1250.0 250.0 

kap - 3.3 0.7 7.1 2.4 

ds mm 468.5 244.5 1200.0 198.0 

dst mm 25.7 6.3 36.0 15.9 

As mm² 3465.5 3169.7 14137.2 603.2 

rhos % 1.8 1.1 4.7 0.5 

rhosw % 4.3 3.1 15.6 0.5 

fsy MPa 483.9 117.7 990.0 271.0 

fc_prime MPa 47.0 26.2 122.9 13.3 

Asw mm^2 97.4 60.3 232.0 24.6 

sw mm 147.0 57.7 325.0 63.5 

fyw Mpa 456.9 135.9 820.0 270.0 

Vu_Rep kN 363.1 288.2 1330.0 94.0 
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Table 4-10: Correlation Matrix of all the variables for beam with shear reinforcement 

  b bw h kap ds dst As rhos rhosw fsy Asw sw fyw fc_prime Vu_Rep 

b 1 -0.42 0.377 0.317 0.363 -0.233 0.513 -0.619 0.641 0.101 0.717 -0.033 -0.06 -0.382 0.516 

bw -0.42 1 0.207 -0.256 0.193 0.602 0.119 0.439 -0.573 -0.333 -0.21 0.399 0.041 0.421 0.108 

h 0.377 0.207 1 0.058 0.998 0.309 0.786 -0.23 0.299 -0.166 0.589 0.594 0.107 -0.025 0.803 

kap 0.317 -0.256 0.058 1 0.054 -0.383 0.206 -0.257 0.335 0.058 0.27 0.152 -0.525 -0.349 0.049 

ds 0.363 0.193 0.998 0.054 1 0.294 0.763 -0.244 0.291 -0.152 0.573 0.595 0.108 -0.041 0.784 

dst -0.233 0.602 0.309 -0.383 0.294 1 0.346 0.518 -0.077 -0.507 -0.094 0.197 0.446 0.525 0.348 

As 0.513 0.119 0.786 0.206 0.763 0.346 1 -0.006 0.617 -0.166 0.743 0.318 0.105 0.194 0.944 

rhos -0.619 0.439 -0.23 -0.257 -0.244 0.518 -0.006 1 -0.179 -0.334 -0.364 -0.172 0.265 0.722 -0.073 

rhosw 0.641 -0.573 0.299 0.335 0.291 -0.077 0.617 -0.179 1 0.085 0.651 -0.169 0.147 -0.017 0.565 

fsy 0.101 -0.333 -0.166 0.058 -0.152 -0.507 -0.166 -0.334 0.085 1 0.08 -0.235 0.044 -0.056 -0.076 

Asw 0.717 -0.21 0.589 0.27 0.573 -0.094 0.743 -0.364 0.651 0.08 1 0.269 -0.079 -0.127 0.742 

sw -0.033 0.399 0.594 0.152 0.595 0.197 0.318 -0.172 -0.169 -0.235 0.269 1 -0.156 -0.195 0.255 

fyw -0.06 0.041 0.107 -0.525 0.108 0.446 0.105 0.265 0.147 0.044 -0.079 -0.156 1 0.37 0.216 

fc_prime -0.382 0.421 -0.025 -0.349 -0.041 0.525 0.194 0.722 -0.017 -0.056 -0.127 -0.195 0.37 1 0.253 

Vu_Rep 0.516 0.108 0.803 0.049 0.784 0.348 0.944 -0.073 0.565 -0.076 0.742 0.255 0.216 0.253 1 

 

4.3.2 Variable selection and Estimation 

The variable selection is conducted by using multiple linear regression, LASSO, LARS and random forest method on the small 

dataset in this thesis first. Table 4-11, 4-12 and 4-13 show the result of forward, backward, and stepwise methods from multiple 

regression, respectively. Figures 4-20 and 4-21 show the variable selection result from LASSO, and random forest, respectively
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Table 4-11: Results of variable selection by forward method from MLR for beam 

with shear reinforcement 

 

 

Table 4-12: Results of variable selection by backward method from MLR for beam 

with shear reinforcement 
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Table 4-13: Results of variable selection by stepwise method from MLR for beam 

with shear reinforcement 

 

 

 

 

 

Figure 4-20: Result of variable selection from LASSO for beam with shear 

reinforcement 
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Figure 4-21: Variable Importance Plot generated by Random Forest for beam with 

shear reinforcement 

The results of variable selection from statistical methods (MLR, LASSO) were 

similar with each other. As, kap, rhos (related with As, b, ds) are highly statistically 

significant. fc_prime, h (related with ds), sw, Asw and fyw is also significant but not as 

much as previous variables. The remaining variables are not significant at all. The results 

of variable selection from statistical methods are very similar with the variables in the 

theoretical equations. For the result of random forest, As, ds and Asw are highly 

statistically significant as well as rhosw (related with bw, ds, As). However, kap, 

fc_prime, sw and fyw are not significant in the random forest. Based on the results of 

variable selection and knowledge of subject matter, bw, As, ds, kap, fc_prime, Asw, sw 

and fyw were decided to keep in the following study. 
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4.3.3 Accuracy 

A scatter plot matrix was created in Figure 4-22 to visually show the relationship 

between all the variables. Based on Figure 4-22, ds, As and Asw have a very strong 

positive correlation with shear strength while the trend is not significant for the remaining 

selected variables. The KDD densities show that distributions of bw and ds were skewed 

right which means that the dataset at hand does not contain many big concrete beams. 

 

Figure 4-22: Scatter Plot Matrix of selected variables for beam with shear 

reinforcement 
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For theoretical methods, the equations to calculate the shear strength of beam with 

shear reinforcement were provided in chapter 3. Same with the concrete beam without 

reinforcement, the theoretical methods usually underestimate the shear strength for safety 

purpose. Figure 4-23 shows the comparison between experimental shear strength and 

predicted shear strength using three theoretical methods. Then, a correction factor was 

added in the calculation. These correction factors were calculated by using simple 

regression to shift the results to have best fit with accuracy line. They are 1.16 for 

ACI318-19, 1.14 for Frosch et al. and 1.27 for Li et al.  

 

Figure 4-23: Comparison between experiment and uncorrected prediction by 

theoretical methods for beam with shear reinforcement 

Figure 4-24 shows the comparison of corrected predicted shear strength and 

experimental shear strength by using theoretical methods. After correction, some cases 

are overestimated which are not conservative anymore. 
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Figure 4-24: Comparison between experiment and corrected prediction by 

theoretical methods for beam with shear reinforcement 

Statistical models were achieved by using MLR, LASSO and LARS which were 

shown in Equations 4-4, 4-5 and 4-6, respectively.  

For MLR method after use of variable selection methods, the final model is the 

following: 

𝑽𝒖𝑹𝒆𝒑 = −𝟏. 𝟒𝟎 + 𝟎. 𝟎𝟒𝟐𝒃𝒘 − 𝟐𝟔. 𝟏𝟐𝒌𝒂𝒑 + 𝟎. 𝟑𝟑𝒅𝒔 + 𝟎. 𝟎𝟓𝟓𝑨𝒔 + 𝟏. 𝟏𝟐𝒇𝒄𝒑𝒓𝒊𝒎𝒆 +

𝟎. 𝟎𝟗𝟕𝒇𝒚𝒘 − 𝟎. 𝟔𝟒𝒔𝒘 + 𝟎. 𝟗𝟔𝑨𝒔𝒘     Equation 4-4 

 For LASSO method, 

𝑽𝒖𝑹𝒆𝒑 = 𝟓. 𝟑𝟐 − 𝟏𝟎. 𝟎𝟓𝒌𝒂𝒑 + 𝟎. 𝟏𝟒𝒅𝒔 + 𝟎. 𝟎𝟔𝟒𝑨𝒔 + 𝟎. 𝟒𝟒𝒇𝒄𝒑𝒓𝒊𝒎𝒆 + 𝟎. 𝟎𝟖𝟐𝒇𝒚𝒘 +

𝟎. 𝟒𝟓𝑨𝒔𝒘     Equation 4-5 

For LARS method, 

𝑽𝒖𝑹𝒆𝒑 = −𝟏. 𝟒𝟎 + 𝟎. 𝟎𝟒𝟐𝒃𝒘 − 𝟐𝟔. 𝟏𝟐𝒌𝒂𝒑 + 𝟎. 𝟑𝟑𝒅𝒔 + 𝟎. 𝟎𝟓𝟓𝑨𝒔 + 𝟏. 𝟏𝟐𝒇𝒄𝒑𝒓𝒊𝒎𝒆 +

𝟎. 𝟎𝟗𝟕𝒇𝒚𝒘 − 𝟎. 𝟔𝟒𝒔𝒘 + 𝟎. 𝟗𝟔𝑨𝒔𝒘          Equation 4-6 
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The MLR model and LARS model were exactly same again. One thing needs to 

be noticed here is the parameter of bw and sw are zero in LASSO method which means 

they are considered as insignificant variables in LASSO regression. The result of LARS 

will not be shown in this chapter. Figure 4-25 shows the comparison of predicted shear 

strength and experimental shear strength by using statistical methods. The accuracy of 

prediction is decent. Most of predictions were within the 20% error. 

 

Figure 4-25: Comparison between experiment and prediction by statistical methods 

for beam with shear reinforcement 

Then the machine learning methods were applied on the reduced dataset as well. 

The comparison of predicted shear strength and experimental shear strength by using 

machine learning methods was shown in Figure 4-26. 500 trees (ntree=500) were selected 

in the random forest method while 10 hidden layers (hidden=10) was chosen for the NN 

method. The accuracies of prediction of random forest and SVM are decent. Most of the 

predictions fall with 20% error line. Neutral network performed bad in this dataset. The 

sample size might be the reason why NN is not good here. 
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Figure 4-26: Comparison between experiment and prediction by machine learning 

methods for beam with shear reinforcement 

To reduce the bias and uncertainty of statistical and machine learning methods, 

leave-one-out cross validation was applied on the dataset by using these different 

methods. Each observation will be used as a test dataset while the remaining fold will be 

used as a training dataset. The statistical/ML methods will be applied on the training 

dataset first. Then, the test dataset will be used to see the goodness of fit for each method 

by using the criteria called root of mean square error (RMSE), which a metric to 

summarizes predicted model quality. This process will be repeated by 87 times since each 

observation will be used as test dataset once. Table 4-14 shows the result of cross 

validation of statistical/ML methods compared with theoretical methods. The result 

shows that all statistical/ML methods are doing well except NN which was reflected in 

Figure 4-26 as well. Compared with the prediction of concrete beam without shear 

reinforcement, the accuracy of all the methods drops a lot, especially NN method. 
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Table 4-14: Results of goodness of fit for all the methods for concrete beam with 

shear reinforcement 

Group Method RMSE 

Theoretical 

ACI318-19 
(2019) 

107 

Frosch et al. 
(2017) 

102 

Li et al. (2017) 111 

Statistical 
MLR 81 

LASSO 86 

Machine 
Learning 

RF 81 

NN 467 

SVM 87 

 

4.2.4 Sensitivity Analysis 

The sensitivity analysis was applied on all these methods except LARS regression 

since the LARS based model is the same as multiple linear regression-based model. A 

test dataset was established based on the boxplot of each variable. The range of each 

variable in the test dataset will be between Minimum and Maximum in their boxplot. 

Table 4-15 shows the range and median value of each variable which were used in test 

dataset. Figures 4-33, 4-34, 4-35, 4-36, 4-37, 4-38, 4-39 and 4-40 show the sensitivity 

analysis for bw, fc_prime, kap, low, ds, Asw, sw and fyw, respectively. The trend of 

theoretical method can give a reference to compare with the statistical/ML methods since 

the theoretical methods were published with peer review. 
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Table 4-15: The detail of test dataset for beam with shear reinforcement 

Variables unit median Maximum  Minimum 

bw mm 205 360 50 

Kap - 4.2 6 2.4 

ds mm 325 600 50 

low - 0.0255 0.05 0.001 

fc_prime Mpa 40 70 10 

Asw mm^2 128.5 232 25 

sw mm 163 262.5 63.5 

fyw Mpa 545 820 270 

 

 

 

Figure 4-27: Sensitivity analysis on bw for concrete beam with shear reinforcement  
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Figure 4-28: Sensitivity analysis on fc_prime for concrete beam with shear 

reinforcement 

 

Figure 4-29: Sensitivity analysis on kap for concrete beam with shear reinforcement 
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Figure 4-30: Sensitivity analysis on low for concrete beam with shear reinforcement  

 

Figure 4-31: Sensitivity analysis on ds for concrete beam with shear reinforcement  
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Figure 4-32: Sensitivity analysis on Asw for concrete beam with shear reinforcement 

 

Figure 4-33: Sensitivity analysis on sw for concrete beam with shear reinforcement 
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Figure 4-34: Sensitivity analysis on fyw for concrete beam with shear reinforcement 

For sensitivity analysis on bw (Figure 4-27), the trend of shear strength ratio from 

theoretical methods and statistical methods are very close to each other. The random 

forest method has similar trend as well, but it is very unstable. The SVM method 

performs well only when bw is less than median value while NN method behaves well 

only when bw is larger than median value. 

 For sensitivity analysis on fc_prime (Figure 4-28), the result of LASSO 

regression is worst since it didn’t capture the changes along with fc_prime. MLR and 

random forest have the similar trend compared with theoretical methods but not very 

accurate. Similar with previous result, the random forest method is not stable. The SVM 

and NN are very close to theoretical methods when fc_prime is less than median value, 

especially NN method.  
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For sensitivity analysis on kap (Figure 4-29), ACI and Frosch methods don’t have 

any trend since kap is not considered at all. Only NN method has similar trend with Li’s 

method. The other statistical/ML methods didn’t reflect significant change of shear 

strength along with kap. 

For sensitivity analysis on low (Figure 4-30), all the statistical/ML methods have 

the positive trend along with the increasement of longitudinal reinforcement ratio, but 

none of them is close to theoretical methods. 

For sensitivity analysis on ds (Figure 4-31), the statistical methods and NN 

method are close the theoretical methods. Random forest and SVM method perform well 

when ds is less than median value. 

For sensitivity analysis on Asw (Figure 4-32), none of the statistical/ML methods 

except SVM method is close to theoretical methods. The SVM method only performs 

well when Asw is less than median value. 

For sensitivity analysis on sw (Figure 4-33), none of the statistical/ML methods is 

close to theoretical methods. The NN method even has the opposite trend compared with 

the theoretical methods. 

For sensitivity analysis on fyw (Figure 4-34), none of the statistical/ML methods 

except SVM method is close to theoretical methods. The SVM method only performs 

well when fyw is less than median value. 

Overall, the statistical/ML methods performed bad in the sensitivity analysis. The 

main reason of this is because the experimental dataset is too small for concrete beam 

with shear reinforcement. The performance of sensitivity analysis on the properties of 

shear reinforcement is even worse than that on properties of concrete, especially on Asw 
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and sw. That’s because the Asw and sw are not exactly “continuous” which can be found 

in the scatter plot (Figure 4-22). The designers would like to pick the similar Asw and sw 

for shear reinforcement in the concrete beam which means a lot of beams in the dataset 

have exactly same Asw and sw. 

4.4 Summary 

In this chapter, data description and variable selection were applied on the 

concrete beam with and without shear reinforcement, respectively. Statistical models by 

using MLR, LASSO and LARS regression were established as well in this chapter. Since 

variable selection was conducted first, the MLR and LARS model were exactly same 

with each other. Then, goodness of fit was checked by RMSE for all the methods on 

concrete beam with and without shear reinforcement dataset, respectively. For concrete 

beam without shear reinforcement, all the methods performed well. however, for beam 

with shear reinforcement, the NN didn’t have a good performance. Finally, the sensitivity 

analysis was applied on the concrete beam with and without shear reinforcement dataset, 

respectively. For concrete beam without shear reinforcement, the statistical/ML methods 

performed decent in the small test dataset. However, for concrete beam with shear 

reinforcement, the statistical/ML methods performed bad because the training dataset 

which is the experimental dataset for beam with shear reinforcement is too small. 
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Chapter 5 Conclusion and Future work 
 

The goal of this thesis is to evaluate statistical/ML methods for predicting one-

way shear strength of reinforced concrete beam with and without shear reinforcement. 

Three statistical methods including multiple linear regression, LASSO and LARS and the 

three machine learning methods including Random Forest, NN and SVM were selected in 

this thesis for the evaluation. A dataset with 784 observations was used to evaluate the 

concrete beam without shear reinforcement while a dataset with 87 observations was used 

to evaluate the concrete beam with shear reinforcement. Three theoretical methods 

including ACI318-19 (2019), Frosch et al. (2017) and Li et al. (2017) were also 

employed in this thesis to compare with the statistical/ML methods. The statistical 

models and the “Rules” of machine learning methods were accomplished by using the 

experimental datasets. Goodness of fit and sensitivity analysis were used to evaluate all 

statistical/ML methods in this thesis. The results of theoretical methods were used as a 

reference to evaluate whether the statistical/ML methods performed well or not.  

For concrete beam without shear reinforcement, all the statistical/ML methods 

performed well in the goodness of fit test. In the sensitivity analysis, the statistical/ML 

methods did not perform well in the large test dataset which contains a lot of large beams. 

The reason for this poor performance was that the training dataset with 784 observations 

does not have enough samples of large beams. However, the statistical/ML methods 

performed better in the small test dataset. MLR, NN and SVM are more accurate 

compared with LASSO and random forest. NN method has the best performance among 

all these statistical/ML method. 
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For concrete beam with shear reinforcement, all the statistical/ML methods 

performed well except NN method in the goodness of fit test. In the sensitivity analysis, 

the statistical/ML methods have not performed well at all, especially the sensitivity 

analysis on the properties of shear reinforcement. The main reason for this is because the 

experimental dataset is too small for concrete beam with shear reinforcement. In addition, 

the variables which were related with shear reinforcement are identical in the structural 

design which means a lot of beams in the dataset have exactly same Asw, sw and fyw. 

All the drawback of the concrete beam with shear reinforcement dataset had a negative 

impact on the accuracy of prediction by using statistical/ML methods. 

Overall, the statistical/ML methods can be used to evaluate the one-way shear 

strength of concrete beam if the experimental dataset is sufficient and well designed. The 

prediction will be less accurate or just bad if the properties of beams are significantly 

beyond the range of properties of beams in training dataset. More experimental work 

needs to be done to increase the size of dataset which can make prediction more accurate. 

With the development of computer hardware and software, the finite element analysis can 

be used to simulate the shear failure of concrete beam with much less cost compared with 

experiment. When the sufficient and well-designed datasets are generated, the 

statistical/ML methods might be more accurate compared with theoretical methods since 

they can capture more nonlinear behavior during the simulation. 
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