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Abstract 

 

 

Most agronomic traits are genetically complex and often show genotype × environment (G 

× E) interactions which complicate selection and slows down the breeding progress. As model 

parameters can represent certain genetic characteristics, crop modeling has been commonly used 

to identify and test desirable traits, to evaluate genetic improvement, and to design the optimum 

ideotype adapted to future climates. In this work, the DSSAT model was modified to evaluate 

the potential benefits of drought-tolerant traits in peanut under water-limited conditions, to 

incorporate genomic information to compute maize model inputs using marker-based 

information and combined with representative spatial model inputs to evaluate drought tolerant 

peanut performance under climate change. In Chapter two, the trait of maintaining 

photosynthesis under water deficit was observed in rainout shelter experiments and incorporated 

into the DSSAT model as a new drought tolerance cultivar coefficient. This specific trait was 

shown to be an advantageous trait for peanut varieties, which produced higher simulated rainfed 

yield with enhanced seasonal evapotranspiration and grain water use efficiency, especially for 

dry seasons. In Chapter three, we extend this approach to simulate the performance of drought 

tolerant peanuts for several important peanut production counties in the Southeastern USA. 

Results showed that a single set of cultivar coefficients and soil parameters could be calibrated to 

simulate historic peanut growth duration and county-level yields reasonably well. The simulation 

for future climate change indicated that the rainfed yields will suffer from increasing daytime 

temperature and an irrigation strategy could potentially offset the heat and drought stress to main 

higher peanut production in the Southeastern USA. Finally, In Chapter four we developed a 

methodology to use marker-based prediction of maize model inputs to assess new hybrid 

performance for plant breeding, and quantitatively assess the effect of genes by explicitly 
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accounting for G × E interactions. These findings provided a promising insight into the use of 

crop model in drought-tolerant simulation, marker-based modelling, and regional scale 

simulation. 
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Chapter 1. Literature review 

 

1.1 Review of literatures 

1.1.1 Overview of Peanut and its Genetic Characteristics 

Peanut (Arachis hypogaea L.) is an annual legume, with geocarpic fruits, and an 

indeterminate growth habit. It presumably was domesticated in South America ~6000 years 

ago and then widely distributed in the tropical and subtropical regions of Asia, Africa, and 

North America which are characterized by high temperature and erratic precipitation (Zhuang 

et al., 2019). Peanut belongs to the plant family Fabaceae and genus Arachis (Barkley et al., 

2016). The species name, hypogaea, means under the earth, which indicates that peanut can 

flower above the ground but produce their seed below the ground (Holbrook and Stalker, 

2003). The cultivated peanut is classified into two subspecies, subsp hypogaea and subsp 

fastigiata, based on the presence or absence of floral axes on the main stem (Varshney et al., 

2017). Based on location of flowers on the plant, patterns of reproductive nodes on branches, 

numbers of trichomes and pod morphology, the subsp hypogaea is further divided into two 

botanic varieties, var hirsute and var hypogaea, while the subsp fastigiata is further divided 

into four botanic varieties, var aequatoriana, var fasitigiata, var peruviana, and var vulgaris, 

based on a range of morphological characteristics (Krapovickas and Gregory 1994).  

The Arachis genus contains 81 species, mostly diploids (2n=2x=20), while cultivated 

peanut species are self-pollinating allotetraploid (AABB; 2n=4x=40). This allotetraploid (2n = 

4x = 40) originated through the hybridization of two ancient diploid species, Arachis 

duranensis (AA genome, 2n = 2x = 20) and Arachis ipaensis (BB genome, 2n = 2x = 20), 
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followed by a rare spontaneous duplication of chromosomes (Stalker 1997; Barkley et al., 

2016). Uniform growth stage descriptions were developed for peanut based on visually 

observed vegetative (V) and reproductive (R) growth. The V stages contain VE (emergence), 

V0 (cotyledons are flat and open at or slightly below the soil surface), V1 (one developed 

node with one fully unfolded tetrafoliolate leaf), and V(N) (one to N developed nodes on the 

main axis), which is named by the total number of nodes on the main axis. The R stage is 

determined by the visually observable growth stages including flowering, pegging, fruit 

development, and seed maturation. The R stages are R1 (beginning bloom), R2 (beginning 

peg), R3 (beginning pod), R4 (full pod), R5 (beginning seed), R6 (full seed), R7 (beginning 

maturity), R8 (harvest maturity), and R9 (over mature pod) (Boote 1982; Wang 2019). 

In the U.S., cultivated peanut production and marketing has resulted in designation of 

four market classes which generally correspond to subspecific and varietal groups as follows: 

Runner (subsp. hypogaea var. hypogaea), Virginia (subsp. hypogaea var. hypogaea), Spanish 

(subsp. fastigiata var. vulgaris), and Valencia (subsp.fastigiata var. fastigiata) (Boipelo 

2018). The Runner variety is mostly planted in Georgia, Alabama, Florida, and Mississippi, 

which accounts for 80% of total U.S. peanut production, while the Virginia variety is 

primarily planted in South Carolina, North Carolina and Virginia, which accounts for about 

15% of total U.S. peanut production (National Peanut Board, 2020; Kumral 2019).  

1.1.2 Drought Stress Affecting Peanut Physiology and Production  

Drought stress is a major abiotic stress contributing to the reduced agricultural 

productivity and food safety worldwide (Kambiranda et al., 2011). Drought stress affects 

physiological processes at the molecular, cellular, and whole-plant levels, including 
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metabolism, stomatal conductance, photosynthesis, nitrogen fixation, mineral nutrition 

uptake, water relations, leaf expansion, grain development and yield (Tardieu et al., 2011).  

Peanut water relations are affected by several important characteristics, such as relative 

water content, leaf water potential, stomatal conductance, transpiration rate, and canopy 

temperature (Reddy et al., 2003). Due to drought stress, leaf water potential, relative water 

content and rate of transpiration substantially decreased in leaves (Nayyar and Gupta 2006; 

Siddique et al., 2001; Wang 2019). Leaf photosynthesis is reduced by moisture stress due to 

reduced stomatal conductance and reductions in leaf area. As water stress increases, 

transpiration rate is reduced with closing stomata. Consequently, the entry of CO2 is also 

reduced (Reddy et al., 2003). Nitrogen fixation by legumes is also reduced by drought stress 

caused by a reduction in leghemoglobin in nodules, specific nodule activity and number of 

arid regions. In addition, dry weight of nodules is significantly reduced in moisture stressed 

plants. Drought stress also delays nodule formation in legumes (Reddi and Reddy, 1995). 

There is considerable evidence that mineral nutrition (N, P and K) uptake of peanut is reduced 

by drought stress (Kulkarni et al., 1988). 

Drought stress during flowering period directly reduced the rate of flower production 

(Kambiranda et al., 2011). Peg elongation, which is turgor dependent, is also delayed due to 

drought stress (Boote and Ketring, 1990). Adequate root zone moisture can keep pegs alive 

until the pegging zone moisture content is sufficient to allow penetration and initiation of pod 

development (Skelton and Shear, 1971). Pod and seed development is delayed by dry pegging 

zone soil, which leads to a large reduction in pod yield, and the reduction percentage also 

varies among different varieties (Kambiranda et al., 2011). Pod yield can be reduced by 17-
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25% due to early season drought and 15-64% due to midseason droughts depending on the 

cultivar (Wright et al., 1991; Soler et al., 2013).  Peanut may experience water stress during 

reproductive stages, such as pegging and pod development. This results in a drastic reduction 

in fruit quality and yield (Jogloy et al., 1996; Rucker et al., 1995; Wang, 2019). Drought stress 

can also reduce biomass, harvest index, water use efficiency, and specific leaf area, while it 

causes an increase in chlorophyll content and canopy temperature (Jongrungklang et al. 2008; 

Soler et al., 2013). In addition, Drought stress also influences crop production indirectly by 

influencing the growth of weeds and intensity of disease and pests (Wang, 2019). 

1.1.3 Breeding Efforts for Drought Tolerant Traits 

Drought tolerance is an important strategy for peanuts to survive during severe stress 

conditions (Ravi et al., 2011). Many drought-related traits for plants can reflect drought 

tolerant ability, including cell protection, avoidance via stomatal closure or reduced leaf area, 

maintenance of vegetative growth or photosynthesis, high water use efficiency, high nitrogen 

fixation, large root systems or reduced seed abortion rate under water deficit. These 

characteristics can be incorporated into peanut to develop cultivars adapted to drought (Parent 

and Tardieu, 2014; Hammer et al., 2020). 

Traditional breeding has been the major avenue for providing modern drought-tolerant 

peanut varieties to farmers. Conventional breeding is based on phenotypic selection. Through 

extensive selection based largely on empirical field observations, breeders have been 

successful in creating high-yielding peanut varieties under water limited conditions (Yin et al., 

2003). However, selection for drought tolerance can be time-consuming because drought 

tolerant traits are controlled by many genes which have been shown to interact with the 
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environment. Substantial genotype by environment (G × E) interactions impede the breeding 

process (Ravi et al., 2011). More rapid breeding progress may be achieved by using new 

genetic and genomic technologies (Varshney et al., 2013). 

With advances in high-throughput sequencing platforms and molecular genetic 

techniques, marker-assisted selection (MAS) has become a common means of molecular 

breeding. MAS exceeds the conventional selection on handling drought related traits. In 

addition to administering complex traits, molecular breeding can accurately and efficiently 

introgress multiple favorable alleles (Varshney et al., 2009). However, MAS is suitable only 

for traits controlled by a few major genes. Most desired traits are affected by many genes, 

each with minor effects (Wang et al., 2018). Therefore, the application of MAS in breeding 

meets with challenges. As an upgraded form of MAS, genomic selection (GS) could be a 

powerful tool in crop breeding to improve the selection and prediction accuracy for complex 

quantitative traits (Ali et al., 2020). GS using genome-wide markers simultaneously as 

predictor variables have been effective solutions to predict performance of the candidates 

(Xiao et al., 2021). Because selection objectives are no longer limited to the traits controlled 

by a small number of major genes, GS is a promising quantitative genetic approach to breed 

drought tolerant peanut varieties (Wang et al., 2018). 

1.1.4 Virtual Cultivars Incorporated into Crop Model 

Dynamic process-oriented crop models that integrate physical and physiological 

processes of plant growth and development have been widely used (Jin et al., 2018; Huang et 

al., 2019). Crop model can be an efficient way to determine optimum traits by determining if 

a target trait is positive or negative to peanut production under long-term weather conditions 
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(Tardieu and Tuberosa 2010). To anticipate the long-term climate impact on a breeding 

program, virtual cultivars incorporating various drought tolerant traits were defined and 

simulated with process-based crop models to evaluate peanut yield performance under water-

limited environments and the adaptation to climate change (Bogard et al., 2020). The desired 

traits included deeper root depth, maximum fraction of shoot dry matter diverted to root 

growth under water stress, reduced maximum transpiration rate, early stomata closure, 

drought tolerant nitrogen fixation, longer seed-filling duration (Sinclair et al., 2010; Singh et 

al., 2014; Battisti et al., 2017). These drought-tolerance simulations provide guidance on trait 

selection using hypothetical examples. 

1.1.5 Maize and Breeding Efforts for Yield Improvement 

Maize (Zea mays L.), which provides 42% of the global food calories consumed by 

humans, has exceeded rice to become the most prominent cereal crop (Luo et al., 2021). 

Maize is one of the diverse plant species containing tremendous variation. As a result, it is a 

perfect model crop for genetic and genomic studies (Luo et al., 2020). Breeding efforts have 

been focused on detecting maize functional genes with an expectation to accelerate genetic 

improvement. These uncovered functional genes and favorable alleles provided a firm basis 

for further improving yield through marker-assisted selection or genetic transformation of 

crops (Gu et al., 2014). Traditional quantitative trait locus (QTL) mapping in crops depends 

on synthetic population-based linkage analysis or natural population-based linkage 

disequilibrium analysis. However, it is not very successful due to the large population size, 

the requirement for high resolution linkage maps, and the chromosomes with low 

recombination events (Luo et al., 2021). An emerging approach, association mapping, is 
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becoming popular because it can overcome the low power of linkage analysis, facilitate the 

detection of marker–trait associations and create fine-mapping of chromosome segments with 

high recombination rates (Crossa et al., 2017). Association mapping has facilitated the genetic 

dissection of both simple quantitative traits (e.g., flowering date, kernel number) and complex 

quantitative traits (e.g., kernel weight, yield) (Luo et al., 2021). 

1.1.6 Genomic Prediction and Its Statistical Models 

Contrary to QTL and association mapping with limited detected significant loci, 

phenotype prediction of the crop performance using whole genome markers is promising for 

breeding advancements. Three statistical prediction models have been developed and tested 

based on field-measured phenotypic data, including genomic prediction (GP), integrated 

model, and gene-based modelling. Direct statistical GP models aim to construct a model for 

predicting phenotype using whole-genome markers jointly. Statistical approaches reported for 

GP models can be classified into three main categories: parametric methods (e.g., GBLUP, 

RR-BLUP, LASSO); semiparametric methods (e.g., RKHS); and machine learning methods 

(e.g., SVM, Random Forest). Genomic prediction (GP) has the potential to accelerate the 

breeding progress for drought tolerant traits, maintain genetic diversity, and improve complex 

traits with low heritability (Heslot et al., 2012). The limitation of GP models is the limitation 

of the explicit environmental inputs. 

As crop model parameters can represent certain genetic characteristics, crop modeling 

has been considered a useful tool to assist breeding (Loomis et al., 1979; Whisler et al., 1986; 

Boote et al., 1996). Shorter et al. (1991) first proposed collaborative efforts between breeders, 

physiologists and modellers, using simple biological models as a framework to integrate 
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physiology with breeding and to evaluate adaptation of genotypes to target environments. In 

addition, Hammer et al. (1999) proposed that crop models based on physiologically sound 

mechanisms, can quantify and integrate crop responses to genetic, environmental, and 

management factors, and thus, have the potential to predict performance of individual 

genotypes in different managements and environments. Recognizing the potential for 

incorporating genetic information with process-based crop models, Technow et al. (2015) 

proposed an integrated statistical approach to combine GP modeling with crop modelling for 

predicting the grain yield of maize. Following the integrated approach, Onogi et al. (2016) 

directly linked an eco-physiological model for rice heading date with the GP model, and 

simultaneously inferred the model input parameters and genome-wide marker effects on the 

parameters. Oliveira et al. (2021) integrated a dynamic statistical gene-based module into the 

CSM-CROPGRO-Drybean model to accurately predict the time of first flower appearance. 

The predictions of these integrated models would be expected to be more accurate and robust 

than the direct statistical GP model. However, the integrated approach is statistically more 

challenging (Onogi et al., 2016). 

1.1.7 Gene-based Modelling and Its Development 

The first attempt to implement the concept of gene-based modelling was published by 

White and Hoogenboom (1996) in Genegro, a process-oriented model that incorporated the 

effects of seven genes affecting phenology, growth habit and seed size of common bean 

(Phaseolus vulgaris L.). They applied linear regression to estimate values of more than 20 

model input traits from information about alleles (variants at a gene locus) of seven known 

genes in the cultivars studied. However, this approach requires extensive data on the genetic 
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makeup of cultivars, and such data are still not routinely available. Improvements of Genegro 

was further made included the simulation of the effects of temperature on photoperiod 

sensitivity regulated by the gene Tip and a new function to predict seed weight (Hoogenboom 

and White, 2003; Hoogenboom et al., 2004).  

Photothermal models (e.g., Grimm et al., 1993) that predict time to flowering and 

flowering duration based on the genetic makeup of E loci were developed for soybean 

(Stewart et al., 2003; Cober et al., 2001; Upadhyay et al., 1994a; Summerfield et al., 1998). 

Similar studies were conducted in other important agronomic traits (Lark et al., 1995; Orf et 

al., 1999; Mansur et al., 1993, 1996). To simulate cold acclimation in cereals, Fowler et al. 

(1999) described a routine whose development was partially guided by information from 

molecular studies. Further efforts have been published using genetic information to guide the 

modeling of phenology in soybean (Stewart et al., 2003) and Arabidopsis thaliana (Welch et 

al., 2003). Messina et al. (2006) also developed a gene-based model for soybean, based on the 

CROPGRO-Soybean, which contributes toward linking the crop’s genetic architecture and 

whole organism phenotypic expression. The model accurately predicted time to flowering and 

post-flowering development phases and yield. Based on the CROPGRO-Peanut, Singh et al. 

(2012) evaluated the genetic traits of peanut for improving productivity and adaptation to 

climate change in India. The results proposed that the CROPGRO-Peanut model could be 

used to evaluate the potential benefits of genetic traits to guide breeding of improved peanut 

varieties.  

With recent advancements in high-throughput sequencing, more genome-wide dense 

molecular markers of various crops have been generated. Gene-based modelling has been 
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carried out in several crop species with those markers for both simple morphological and 

complex physiological and quantitative traits, using either measured or optimized parameters, 

such as, leaf elongation rate and kernel number in maize (Chenu et al., 2008; Amelong et al. 

2015); flowering time in wheat (White et al., 2008); canopy cover dynamics and tuber bulking 

in potato (Khan et al., 2019a; 2019b); tomato fruit sugar concentration (Prudent et al., 2011); 

photosynthesis and transpiration efficiency in rice leaves (Gu et al., 2012a, 2012b). 

1.1.8 U.S. Peanut Production under Climate Change 

Within the United States, peanut production is distributed in the Southeastern Coastal 

Plains which is highly vulnerable to the changing seasonal temperatures and rainfall patterns. 

This region is characterized by high temperature and erratic precipitation. A significant 

increase in seasonal temperatures, precipitation anomalies and ambient carbon dioxide level 

under climate change could be detrimental to peanut production (Vara et al., 2003; Eck et al., 

2020). Most of the peanuts in this region are grown under rainfed conditions with sandy or 

loamy sand soil that have a lower water-holding capacity. Even peanuts grown under 

irrigation may experience extreme drought and heat because of limited water supply or 

because irrigation water is applied in amounts and frequencies less than optimal for plant 

growth. Frequent drought and heat events in the future threaten peanut growth in these areas 

(Kambiranda et al., 2011).   

Grid-based and point-based models, statistical regressions, and greenhouse experiments 

are four popular analytical methods used to assess the impacts of climate change on crop 

production (Zhao et al., 2017). With increased availability of spatial and temporal datasets 

including remotely sensed images, land cover maps, digital soil surveys, gridded weather 
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datasets, point-based crop growth models are increasingly being used to simulate the impact 

of climate change, management policies and weather disasters (Manivasagam and Rozenstein, 

2020). There is spatial variability in weather, soil, genetics, and management at larger scales 

that must be represented in the model. Developing representative spatial model inputs would 

reduce the uncertainty of using the models to study impacts of management practices or 

climate change. 

1.1.9 Regional Simulation with Crop Model and Statistical Learning Model 

Increased availability of spatial and temporal datasets has facilitated the implementation 

and evaluation of regional model simulations (Thorp and Bronson, 2013). The integration of 

remotely sensed information into the crop models for regional yield estimation can be 

achieved through data assimilation methods. Many data assimilation algorithms have been 

developed to improve the accuracy of crop models, such as Kalman Filter (KF), Ensemble 

Kalman Filter (EnKF), Three-Dimensional Variational Data Assimilation (3DVAR), Four-

Dimensional Variational Data Assimilation (4DVAR), Particle Filter (PF) and Hierarchical 

Bayesian Method (HBM) (Jin et al., 2018). The data assimilation method, which retrieves 

crop status variables, such as leaf area index (LAI), canopy cover (CC), and 

Evapotranspiration (ET) from remotely sensed data and uses these variables as inputs to 

recalibrate and optimize the grain yield simulation ability of the crop growth model (Zhuo et 

al., 2019). Other approaches are statistical regression-based methods which are commonly 

used for regional crop yield estimation using satellite data (Wall et al., 2008; Franch et al., 

2015). They are based on empirical relationships between historic yields and reflectance-

based vegetation indices such as the normalized difference vegetation index (NDVI), 
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maximum adjusted NDVI (MA-NDVI), enhanced vegetation index (EVI), green chlorophyll 

vegetation index (GCVI). These methods are typically straightforward to implement without 

requiring numerous inputs, making them flexible and scalable to new regions, even where 

field data are scarce (Nguy-Robertson., 2014; Wang et al., 2020). 

Crop model integration with geographic information system (GIS) is a potential solution 

for regional crop model simulations. GIS-based modeling systems create a platform for spatial 

yield variation analysis that can be used to understand the impacts of spatial variability of 

weather, soil, and farmer management on yield in large regions (Manivasagam and 

Rozenstein, 2020). Crop yield estimations have used the GIS-based modeling methods on 

several scales: field scale (Thorp et al., 2013), regional scale (Resop et al., 2012), national 

scale (Lv et al., 2017) and global scale (Liu et al., 2007). These methods also show potential 

for applications in precision agriculture management such as irrigation assessment (McCarthy 

et al., 2010), drainage water management (Thorp et al., 2008b) and sustainable farm 

management practices (Rao et al., 2000). 

Machine learning techniques, including decision tree, association rule mining, 

multivariate regression, and artificial neural networks, have been used for crop yield 

prediction. Machine learning models treat the model output (e.g., yield) as an implicit 

function of the input variables (e.g., soil, weather, and remotely sensing data), which can be a 

highly non-linear and complex function (Khaki and Wang, 2019). Deep learning techniques 

often achieve a better performance compared with traditional machine learning methods 

(Wang et al., 2020). Convolution Neural Networks (CNN), recurrent neural networks (RNNs), 

random forest (RF), deep fully connected neural networks (DFNN) and Long Short-Term 
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Memory (LSTM) networks which are the most popular models among deep learning 

techniques have been applied to crop yield estimation and forecasting (Khaki et al., 2020). 

1.1.10 Challenges in Capturing Spatial Heterogeneity at Regional Scale 

Regional-scale simulations cannot consider the level of precisely measured data collected 

at the field scale. Recent efforts have been focused on developing reasonable methods to 

capture spatial variability of weather data, crop varieties, soil types, and management 

practices to minimize errors in yield simulation (Jagtap and Jones, 2002). Model input 

sampling in either relatively homogeneous administration units (e.g., county) or spatial grid 

cells (e.g., soil grid) for large regions have been reported with assumptions that enough inputs 

of the spatially heterogeneous environment could be sampled to reduce aggregation error to an 

acceptable level (Hansen and Jones, 2000).  

At a larger scale, there is spatial heterogeneity in weather, soil, management, genetics, 

insects, and diseases that must be represented in the model. Climate data are often extracted 

from local representative weather stations (Xiong et al., 2008; Wang et al., 2020), or gridded 

weather data from climate simulation or interpolated from weather station networks (Xiong et 

al., 2007). While planted crop varieties vary spatially, researchers often use a single 

commonly grown variety to represent many varieties in regional simulations (Jagtap and 

Jones, 2002). Soil characteristics also vary over the larger scale. For larger scale simulation, 

soil profile characteristics are often derived from national or global soil survey databases but 

only one or a few dominant soils are chosen to represent a larger spatial scale. Southworth et 

al. (2000) divided the midwestern USA into 10 agricultural areas based on climate, soils, land 

use, and agricultural practices. The predominant soil type in each area was selected to 
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represent each area. Crop management practices also vary spatially. Researchers often define 

a representative set of management practices to represent many management practices in the 

region (Xiong et al., 2008; Jagtap and Jones, 2002). Although higher resolution of model 

inputs can potentially reduce the aggregation error due to spatial heterogeneity, not all model 

input data (e.g., management) are available at regional scale and representative model inputs 

are generally applied uniformly within a subregion (Hansen and Jones, 2000). 

1.2 Research objectives 

The objectives of this research program are to: 

Objective 1: Modify CROPGRO-Peanut model to simulate the drought tolerance of 

peanut varieties. 

1. Estimate crop model genetic coefficients for several drought tolerant peanut 

varieties grown under both well-water and water-limited conditions.  

2. Develop and evaluate a framework to simulate enhanced photosynthesis under 

drought in the model.  

3. Evaluate the impact of this trait on peanut yield for different seasons. 

Objective 2: Develop representative spatial model inputs for county-level peanut 

simulations in the Southeastern USA. 

1. Calibrate input parameters for the CROPGRO-Peanut model using historical NASS 

peanut yields for five counties across the Southeastern USA. 

2. Evaluate the calibrated baseline model using data from independent years.  

3. Assess the potential effects of future climate change on peanut production and 

irrigation water use in the Southeastern USA.  
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Objective 3: Use GWAS and marker-based information to estimate CERES-Maize 

model inputs. 

1. Identify associated genetic markers for essential model input parameters of the 

CERES-Maize model.  

2.Estimate model parameters through conventional model optimization and marker-based 

statistical prediction.  

3. Demonstrate potential application of the marker-based crop modelling as a breeding 

tool for studying the G × E interactions.  
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Chapter 2. Simulating drought tolerance of peanut (Arachis hypogaea) varieties by 

maintaining photosynthesis under water deficit 

2.1 Abstract 

Over two-third of global peanuts are grown mainly in seasonally rainfed regions across 

arid and semi-arid zones where drought is a major yield limiting factor. Breeders are targeting 

drought adaptive traits by selecting high yielding genotypes under water-limited 

environments. Recently, several peanut varieties have been developed that exhibit drought 

tolerant characteristics. Crop models can be used to simulate the impact of these traits for 

different environments. The overall goal of this study was to develop an approach to simulate 

drought tolerant traits using the CROPGRO-Peanut model and assess the long-term yield 

response to these traits. Four peanut varieties and one advanced breeding line variety with 

varying degrees of drought tolerance response were grown under both field and rainout shelter 

conditions in 2019 and 2020. The trait of maintaining photosynthesis under water deficit was 

observed in the rainout shelter experiments and incorporated into the crop model as a new 

drought tolerance cultivar coefficient. The evaluation results with independent data showed 

that the modified model simulated peanut growth and yield under water-limited conditions 

reasonably well. The rainfed yield, seasonal evapotranspiration (ET), and grain water use 

efficiency (WUE) were simulated for both drought tolerant and baseline peanut varieties at 

two representative sites using weather data from 1998-2020. The drought tolerant mechanism 

of maintaining photosynthesis under water deficit was shown to be an advantageous trait for 

peanut varieties, which produced higher simulated rainfed yield with enhanced seasonal ET 

and grain WUE, especially for dry seasons. Using sensitivity analysis, the simulated 
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photosynthesis and yield were sensitive to values of the drought tolerant factor over an 

expected range of values. Further research is needed on other potential drought tolerant 

mechanisms, such as maintaining nitrogen fixation, pod harvest index and leaf growth under 

drought.  

Keywords: Arachis hypogaea L; Drought tolerance; Photosynthesis; Yield; CROPGRO-

Peanut 

2.2 Introduction 

Drought stress is a major abiotic stress contributing to reduced yields worldwide 

(Kambiranda et al., 2011). Drought stress affects biochemical and physiological processes at 

the molecular, cellular, and whole-plant levels, including metabolism, stomatal conductance, 

photosynthesis, nitrogen fixation, mineral nutrition uptake, water relations, leaf expansion, 

grain development and yield (Tardieu et al., 2011). Drought avoidance and tolerance are two 

strategies for plants to survive during severe stress conditions (Ravi et al., 2011). Many 

physiological traits can be responsible of a crop drought tolerance ability, such as cell 

protection (Tardieu, 2012), early stomatal closure (Shekoofa et al., 2015) or reduced leaf area 

(Reddy et al., 2003), maintenance of vegetative growth (Tardieu and Tuberosa 2010), or 

photosynthesis (Zhang, 2021), high water use (Sinclair, 2011), large root systems (Ye et al., 

2018) or reduced seed abortion rate under water deficit (Tardieu, 2012). These cultivar 

characteristics can be used to develop cultivars adapted to drought (Parent and Tardieu 2014; 

Hammer et al., 2020). 

Peanut (Arachis hypogea L.) is an annual legume that has been grown extensively in the 
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tropical and subtropical regions of Asia, Africa, and North America characterized by high 

temperature and erratic precipitation (Qin et al., 2012). Drought stress is the major abiotic 

constraint affecting peanut productivity and quality worldwide (Songsri et al., 2008). Within 

the United States, peanut production is concentrated in the Southeastern Coastal Plains. Most 

of the peanuts in this region are grown under rainfed conditions with sandy or loamy sand soil, 

which is frequently subjected to drought stress of different durations and intensities (Reddy et 

al., 2003). Peanut grown under irrigation may experience extreme drought and heat because of 

limited water supply or because irrigation water is applied in amounts and frequencies less 

than optimal for plant growth (Kambiranda et al., 2011). Breeding peanut varieties adapted to 

drought through conventional and genomic approaches will provide a long-term solution to 

overcome drought limitations in peanut production (Chen et al., 2013). 

Different selection criteria have been used for breeding drought tolerant peanuts, which 

depend on physiological surrogates for 1) water use efficiency (WUE) such as specific leaf 

area (SLA), harvest index (HI), and SPAD chlorophyll meter reading (SCMR), 2) root-related 

traits such as root length, root volume, nitrogen fixation, 3) photosynthesis traits such as 

photosynthesis rate, stomatal conductance, relative water content (RWC), and canopy 

temperature, and 4) yield-related traits such as pod and seed number and above ground 

biomass (Girdthai et al., 2012; Chen et al., 2013; Zhang, 2021). Because peanut is grown in 

semi-arid environments with erratic rainfall, multiple drought adaptation mechanisms may 

exist within the same cultivar (Dang et al., 2013). To minimize yield reduction caused by 

frequent drought occurrence in the Southeastern Coastal Plains, there is a need to develop 

better drought adaptive strategies under climate change, including the improvement of 
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drought response traits through direct or indirect selection (Chen et al., 2013). 

Selection for drought tolerance can be time-consuming and labor-intensive because 

drought-related traits are controlled by many genes which have been shown to interact with 

the environment. Substantial genotype by environment interactions under long-term climate 

trends will impede the breeding process (Ravi et al., 2011). Crop simulation models have been 

commonly used to evaluate genetic improvement and support the breeding of traits adapted to 

drought under different environments (Boote et al., 2021). These include assisting with multi-

environment evaluation of advanced peanut breeding lines, understanding the nature of 

genotype × environment interactions, identification and evaluation of desirable traits, 

designing a crop ideotype for a specific environment, and evaluation of breeding strategies for 

drought tolerance (Boote et al., 2001; Suriharn et al., 2007; Narh et al., 2015). Crop modeling 

can be an efficient way to determine optimum traits by determining if a given trait is positive 

or negative to crop production under long-term climate patterns (Tardieu and Tuberosa 2010). 

In order to anticipate the consequences of climate change in a breeding program, virtual 

cultivars incorporating various drought tolerant traits have been defined and simulated using 

crop models to evaluate the peanut adaptation to climate change and the benefits for yield 

maintenance under water-limited environments (Bogard et al., 2020). The traits included deep 

root systems, maximum fraction of shoot dry matter diverted to root growth under water stress, 

reduced maximum transpiration rate, early stomata closure, drought tolerant nitrogen fixation, 

longer seed-filling duration (Sinclair et al., 2010; Singh et al., 2014; Battisti et al., 2017). 

These past drought-tolerance simulations provide guidance on trait selection using 

hypothetical examples, however, there is limited real evidence of the success of these different 
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physiological mechanisms of drought-tolerance to cultivars. There have been no attempts to 

quantitatively assess the yield gains of actual drought tolerant traits based on real cultivars 

using model simulations and experimental data. 

The overall goal of this work was to develop a modelling approach to simulate the trait 

of enhanced photosynthesis under drought using the CROPGRO-Peanut model and combine 

the modified model with historic climate data to assess the contribution of this trait on peanut 

yield across long-term seasons. The specific objectives were to 1) estimate crop model genetic 

coefficients for several drought tolerant peanut varieties grown under both well-water and 

water-limited conditions; 2) develop and evaluate a framework to simulate enhanced 

photosynthesis under drought in the model; and 3) evaluate the impact of this trait on peanut 

yield for different seasons.  

2.3 Materials and methods 

2.3.1 Experimental Sites and Design 

Three experiments were conducted to evaluate peanut drought tolerance performance and 

collect model input data (Table 2.1). Four peanut varieties (C1: AU-NPL 17, C2: Georgia 06G, 

C3: AU 16-28, and C4: TUFRunner 297) and one advanced breeding lines (C5: PI 390428) 

were selected because they showed variations in response to drought intensities in previous 

test. Peanut varieties (C1-C4) were evaluated in the field experiments (Exp. 1 and Exp. 2) at 

the E.V. Smith Research Center of Auburn University at Shorter, AL (EV, 32°29′ N, 85°53′ W) 

and the Wiregrass Research and Extension Center of Auburn University at Headland, AL (HL, 

31°22′ N, 85°19′ W) in 2019 and 2020. Each genotype was arranged in a split plot design with 
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rainfed and irrigation (main split: dryland and full irrigation) with four replications. Each plot 

had four 12-m rows with a row spacing of 0.91 m and a seeding rate of 20 seeds m−2. Plots 

were planted in late May and harvested in early October of each year at both sites. Irrigation 

and agronomic management practices followed best management practices for peanut 

according to Alabama Peanut Extension Team. The irrigated plots at E.V. Smith, AL, received 

165 and 114 mm of irrigation water in 2019 and 2020, respectively. The irrigated plots at 

Headland, AL, received 104 and 95 mm in 2019 and 2020, respectively.  

Peanut varieties (C1-C3, and C5) were evaluated for drought tolerance in the 

environmental controlled rainout shelter (5.5×12.2 m, Dang et al., 2013) experiment (Exp. 3) 

in 2019 and 2020 at National Peanut Research Laboratory, Dawson, GA (DA, 31°45′ N, 

84°26′ W). In year 2019, five shelters were treated as drought stress experimental plots and 

one shelter was maintained as a fully watered control plot. Each peanut cultivar was hand 

planted in a 4 feet single row separated by a 2 feet alley. While in year 2020, three shelters 

were treated as drought stress experimental plots and one shelter was maintained as a fully 

watered control plot. Each cultivar hand planted in an 8 feet single row separated by a 2 feet 

alley (Zhang, 2021). Plots were planted in earlier May and harvest in early October of each 

year in all rainout shelters. All plots were irrigated before planting to provide uniform 

germination. Fully watered control plots were fully irrigated throughout the growing season. 

For drought stress experimental plots, irrigation and rainfall were withheld for 4 weeks in year 

2019 and 5 weeks in year 2020 during July and August to create middle season drought, after 

which they were re-irrigated to recover until harvest (Zhang, 2021). Crop management related 

to fertilization, weed and pest control was conducted according to University of Georgia best 
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management practices (Dang et al., 2013).  

2.3.2 Weather, Soil and Crop data 

The CROPGRO-peanut model, which is distributed with DSSAT v4.7 (Hoogenboom et 

al., 2019), requires daily weather data including daily maximum/minimum air temperature, 

solar radiation, and precipitation. Long-term records of weather data from 1998-2020 was 

obtained from the Auburn University Mesonet (AWIS-AUM, 2021) for EV and HL. Observed 

weather data for DA in 2019 and 2020 was taken from the University of Georgia Weather 

Network (UGWN, 2021). 

The CROPGRO-Peanut model also required soil profile data including lower limit (LL), 

drained upper limit (DUL), saturated water holding capacity (SAT), root growth factor 

(SRGF), bulk density (BD), soil organic carbon (Org. C), clay, silt, total nitrogen (Total N) 

and pH in different soil layers in the top 200 cm. These soil data for each soil type at each site 

were taken from the Gridded Soil Survey Geographic database developed by the USDA-

National Resources Conservation Service (USDA-NRCS, 2020) and from the SoilGrids 

dataset with a spatial resolution of 1 km or 250 m (Hengl et al., 2014, 2017).  

The crop data collected in 2019 and 2020 for EV and HL include phenology dates 

(sowing, flowering, first pod and maturity), photosynthesis, stomatal conductance, SPAD, and 

aboveground biomass (separated into leaves and stems), which was measured once each 

month for the entire period of the experiment. The pod and seed yield were measured at the 

harvest maturity stage. The soil water content in the 0- to 45-cm soil profile was recorded 

regularly during the peanut growing period using PR2 soil moisture probes. The measured 

crop data in 2019 and 2020 for the DA experiment include phenology data (sowing, maturity), 
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photosynthesis, stomatal conductance, leaf water content, and specific leaf area, which was 

collected once a week during the middle season of no irrigation and rainfall period. The 

aboveground biomass and pod yield were measured at the harvest maturity stage.   

2.3.3 Development of Drought Tolerant Peanut Varieties in Model 

The C1, C2 and C3 peanut varieties demonstrated drought tolerant traits based on 

breeding trial data. These varieties were found to be drought tolerant by maintaining 

photosynthesis under drought conditions in the two-year rainout shelter experiments in DA 

(Zhang, 2021). In the model, daily photosynthesis (PG) is computed using canopy method 

(Boote et al., 2008) by  

PGd = PTSMAXd * SWFAC, 

SWFAC = TRWUPd / EP1d 
  (1) 

Where d is the day of the year, PTSMAX is the maximum daily photosynthesis as a 

function of photosynthetically active radiation, and SWFAC is a water deficit index that is 

calculated from the relationship between potential daily root water uptake over the soil profile 

(TRWUP, cm/d) and actual daily plant transpiration rate (EP1, cm/d), which is estimated in 

the soil water balance module (Ritchie, 1998). When the root water uptake is less than plant 

transpiration, the water deficit index (SWFAC) is less than one and water stress reduces daily 

photosynthesis. The lower the value of SWFAC, the larger the reduction in daily 

photosynthesis (Figure 2.1). 
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Under water limited conditions, a drought tolerant (DT) factor was developed for drought 

tolerant peanut varieties to reduce the negative effect of the water stress index (SWFAC) on 

daily photosynthesis: 

SWFAC = SWFAC * DT        SWFAC <1 (water stress occurs), 

SWFAC = SWFAC          SWFAC ≥ 1 (no water stress) 

  (2) 

DT is a drought tolerant factor designed to maintain photosynthesis under water deficit 

(Figure 2.1). This factor was defined and coded as an additional ecotype coefficient input in 

the model. 

2.3.4 Model Calibration and Evaluation Procedure 

The model calibration procedure required three steps. First, the two-year crop data and 

soil water content measured in irrigated treatments (no water stress) in the EV and HL 

experiments were used to calibrate the model to obtain the cultivar coefficients of the four 

peanut varieties (C1-C4). The next step was to use the genetic coefficients calibrated for these 

peanut varieties (C1-C4) and one advanced breeding line (C5) grown under rainout shelter 

(middle season drought) in the DA experiment during 2019 and 2020 to calibrate the DT 

value of the modified model to minimize error in simulated and observed pod yield. The two-

year rainout shelter experiments did not include the baseline peanut variety (C4). Since C4 

was a high yielding variety with less drought tolerance, the range of pod yield for drought 

sensitive varieties in the experiment was assumed to represent the possible range of pod yield 

of the C4 peanut variety grown in rainout shelter (Tillman, 2018). The last step was evaluated 

the optimum DT factor  and cultivar coefficients of peanut varieties (C1-C4) in rainfed 
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treatments in the EV and HL experiments to evaluate the modified model performance in 

simulating peanut biomass, yield and soil water content. 

To evaluate the model performance and accuracy for simulating peanut development and 

growth characteristics, statistical indicators including coefficient of determination (R2), root 

mean square error (RMSE), normalized root mean square error (NRMSE), and Willmott’s 

index of agreement (D value, Willmott, 1982) were computed from observed (Oi) and 

simulated (Si) variables. Willmott’s D value is a better indicator of model performance, 

particularly relative to the 1:1 line, than a correlation coefficient (r), and values closer to 1 

indicate better prediction while a D value of zero indicates no predictability. 

2.3.5 Modelling Impacts of Enhanced Photosynthesis under Drought across Seasons 

The modified CROPGRO-Peanut model with the optimum DT factor was then used to 

estimate the effects of this drought tolerant mechanism on rainfed yield, seasonal 

evapotranspiration (ET) and grain water use efficiency (WUE) for both dry and wet seasons at 

EV and HL in Alabama. The long-term (23 years) seasonal rainfall was classified into two 

categories: wet and dry seasons for each site. Wet and dry seasons were years with percentage 

of deviation of averages above and below -10%, respectively (Zhang et al., 2018). The grain 

WUE was calculated as the ratio of seed yield (kg/ha) to seasonal ET (mm). 

Grain WUE = Rainfed yield / Seasonal ET   (3) 

2.4 Results  

2.4.1 Test Performance of the Newly Modified Model  
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The cultivar coefficients for the CROPGRO-Peanut model were calibrated to accurately 

simulate the peanut (C1-C4) growth and yield response to irrigation treatments at EV and HL 

in 2019 and 2020. The ability of the model to simulate developmental stages was assessed by 

comparing the simulated durations of three developmental stages with the corresponding 

observed values (Figure 2.2a and Table 2.2). The model simulated the duration from planting 

to first flowering and first pod reasonably well for both seasons, with an RMSE values of 3.9 

and 3.3 days, and NRMSE values of 0.12 and 0.07. The model also simulated the maturity 

dates well for calibration seasons, with an overall RMSE value of 5.5 days and a NRMSE 

value of 0.04. The results indicated the model accurately simulated the observed durations of 

flowering, first pod, and maturity for the four peanut varieties in the EV and HL experiments. 

There was also good agreement between simulated and observed biomass, pod and seed yield 

for both seasons at both sites (Figure 2.2b-d and Table 2.2). The RMSE and NRMSE values 

for biomass, pod and seed yield were 1551.9 kg/ha and 0.12, 526.5 kg/ha and 0.08, 501.8 

kg/ha and 0.10, respectively. The D-value, a measure of model predictability, was also high 

(0.74 for Biomass, 0.90 for pod yield and 0.86 for seed yield). 

The genetic coefficients calibrated for the baseline and drought tolerant varieties were 

used in the rainout shelter experiment (DA, 2019 and 2020) to estimate the DT coefficient for 

the drought tolerant peanut varieties (C1-C3) (Figure 2.3). Varieties C4 and C5 represented 

the drought sensitive varieties and simulated and observed pod yields were in the range of 

similar drought sensitive varieties for 2019 and 2020 (Figure 2.3). The optimum value of DT 

= 3 minimized the error between simulated and observed pod yield for the three drought 

tolerant varieties (C1-C3) for 2019 and 2020 (Figure 2.3, Table 2.3). The DT factor for the 
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two drought susceptible varieties was 1. A DT coefficient of 3 gave very good simulated 

values for the pod yield for the drought tolerant varieties, and simulated well the observed 

differences in pod yield between the drought susceptible and drought tolerant varieties (Figure 

2.3). There was a large difference in simulated and observed pod yield between the drought 

sensitive (C4, C5) and drought tolerant (C1-C3) varieties for both seasons.  

The irrigated treatments in the EV and HL experiments were used to evaluate the model 

using the calibrated genetic coefficients and calibrated DT coefficient. The model simulated 

days to first flower, first pod and maturity very well as indicated by low values for RMSE and 

NRMSE, and the high values of D (Figure 2.4e and Table 2.3). This was expected since the 

genetic coefficients were calibrated for the irrigation treatment in this experiment. Figure 2.4 

shows simulated and observed biomass, pod weight and seed weight without (Figure 2.4b, c, 

d) and with (Figure 2.4f, g, h) the drought tolerant modification. When the DT factor was set 

to 1, the model systematically under simulated biomass, pod and seed weight (Figure 2.4b, c, 

d). When the DT factor was set to the optimum value of 3, the model gave good simulations 

of biomass, seed and pod weight (Figure 2.4f, g, h).  The RMSE and NRMSE values for 

biomass, pod and seed yield were 1660 kg/ha and 0.15, 919.6 kg/ha and 0.17, 812.4 kg/ha and 

0.21, respectively. The D-value, a measure of model predictability, was higher than 0.48 

(Table 2.3). 

Taking the peanut variety C1 (AU-NPL 17) for example, the simulated values fit well 

with the observed values for biomass, pod and seed weight at different growth stages in both 

irrigated (calibration) and rainfed (evaluation) experiments at EV and HL during the 2019 and 

2020 (Figure 2.5). In addition, the model accurately simulated the changes in soil water 
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content in various layers of in the top 45 cm soil profile under both irrigation (calibration) and 

rainfed (evaluation) conditions for two seasons at EV and HL (Figure 2.A1). These results 

confirmed that the cultivar coefficients of the peanut varieties and the optimum DT value (DT 

= 3) are sufficiently accurate, and the modified CROPGRO-Peanut model successfully 

simulated growth and yield of drought tolerant peanut varieties in response to water deficit. 

2.4.2 Assess Impact of the Enhanced Trait on Peanut Yield across Multiple Seasons 

The modified CROPGRO-Peanut model with the DT factor (DT =3) was used to 

investigate peanut rainfed yield, seasonal ET and grain WUE responses to different climate 

patterns (dry and wet seasons) using historical weather data from 1998–2020 at the EV and 

HL sites (Figure 2.6). At the EV site, eight seasons were classified as dry seasons while 15 

seasons were classified as wet seasons. At the HL site, 11 seasons were classified as dry 

seasons while 12 seasons were classified as wet seasons. The three-drought tolerant peanut 

varieties (C1-C3) gave higher simulated average seed weight with less yield variation 

compared to the baseline peanut variety (C4) for both dry and wet seasons at both sites 

(Figure 2.6a, b). For dry seasons at EV, the average rainfed seed yield for the three-drought 

tolerant peanut varieties were C1: 3632 kg/ha, C2: 4503 kg/ha, and C3: 4038 kg/ha, which 

were 48%, 83% and 64% higher than the baseline peanut variety C4 (2460 kg/ha). For the wet 

seasons at EV, the three-drought tolerant peanut varieties (C1: 3865 kg/ha, C2: 4809 kg/ha, 

and C3: 4286 kg/ha) also gave 13-25% higher yields compared to the baseline peanut variety 

C4 (3423 kg/ha). For the HL site, the average rainfed seed yield for varieties C1-C3 (C1: 3586 

kg/ha, C2: 4048 kg/ha, and C3: 3645 kg/ha) during the dry seasons were 16-31% higher than 

the baseline variety (C4: 3102 kg/ha). For wet seasons, the seed yield of the three-drought 
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tolerant peanut varieties (C1: 4462 kg/ha, C2: 5054 kg/ha, and C3: 4520 kg/ha) was 6-20% 

higher than the baseline peanut variety (C4: 4227 kg/ha). 

In addition to the yield advantage, the seasonal ET and grain WUE of the drought 

tolerant peanut varieties (C1-C3) were enhanced compared to the baseline peanut variety 

(C4), especially for dry seasons at both sites (Figure 2.6c-f). For dry seasons at EV, the 

seasonal increase in ET ranged from 10% to 21% and the increase in grain WUE ranged from 

33% to 50% compared to the baseline peanut variety (C4). For the wet seasons at EV, the 

seasonal ET and grain WUE were higher for drought tolerant peanut varieties (C1-C3), with 

an increase of 3%-12%, and 9%-26%, respectively. 

Compared with baseline peanut variety (C4) under dry seasons at HL, the seasonal ET 

and grain WUE were 5%-7%, and 14%-25% higher for drought tolerant peanut varieties (C1-

C3). The percentage increase under wet seasons were smaller for both the seasonal ET and 

grain WUE, which were 1%-5%, and 2%-13%, respectively. Overall, these simulation results 

indicate selection of the trait for maintaining photosynthesis rate under water deficit is 

desirable across the Southeastern USA and could be a useful trait if incorporated into new 

germplasms. 

2.4.3 Sensitivity Analysis of the Drought Tolerant Factor  

The purpose of the drought tolerant (DT) factor incorporated into the model was to 

increase daily gross photosynthesis during drought stress periods. A sensitivity analysis of DT 

was conducted using variety C1 (AU-NPL 17) for the 2019 rainfed experiment at EV. The 

model was run for different values of DT and the simulated daily and cumulative gross 
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photosynthesis was evaluated. When the DT value increased from 1 (non-drought tolerance) 

to 3 (drought tolerance), the daily gross photosynthesis increased significantly (Figure 2.7a) 

for the middle growth season period (60-100 days after planting) and the cumulative gross 

photosynthesis at final harvest increased by 51% (Figure 2.7c). For higher values of DT 

(Range: 3-9), the gross photosynthesis did not change much for the middle season period but 

increased consistently during the late growth season (Figure 2.7b). The increase of the 

cumulative gross photosynthesis at final harvest was also small, which were only 9% (DT = 

5), 3% (DT = 7) and 2% (DT = 9), respectively. A DT value of 3 was optimum for the drought 

tolerant peanut varieties grown under field conditions. The similar results were also indicated 

by Figure 2.4. The DT value did affect the daily photosynthesis and subsequent growth the 

peanut varieties (Figure 2.4a). With DT =1, the biomass, pod and seed yield of the three-

drought tolerant peanut varieties (C1-C3) were underestimated (Figure 2.4b, c, d), while with 

DT = 3, the prediction of biomass, pod and seed yield were optimized (Figure 2.4f, g, h).  

The change in pod yield response to a range of DT values for the three-drought tolerant 

peanut varieties (C1-C3) grown under rainout shelter was also simulated using the modified 

CROPRO-Peanut model (Figure 2.8a, b). For both years (2019 and 2020) and three peanut 

varieties (C1-C3), the percent change in pod yield was sensitive to the changes in DT values 

(Range: 3-9). When DT values decreased from 3 to 1, the model simulated a 20% decrease in 

pod yield for both seasons. However, the percent change in pod yield plateaued when DT 

values were larger than 9, which indicate the modified model was not sensitive to DT values 

that were too large.          

2.5 Discussions 
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Drought is the major yield-reducing factor for peanut in the Southeastern USA. Drought 

is caused by unpredictable and intermittent periods of water deficit which commonly occurs in 

the peanut growing region of the U.S. Because most peanuts are grown under rainfed 

conditions, drought tolerance is the priority trait for breeding high yielding peanut varieties 

over the long term (Soler et al., 2013; Wada et al., 2013). Using crop models as breeding tools 

in assisting the multi-environment evaluation of breeding lines is promising for peanut 

breeders as it will improve breeding efficiency and help estimate how drought tolerant traits 

may perform in different environments (Narh et al., 2015). One physiological mechanism that 

drought tolerant plants employ is maintaining a higher photosynthesis and water use under 

drought stress than drought susceptible varieties (Polania et al., 2016; Sanz Saez et al., 2019). 

In this work, a method was developed to simulate peanuts that maintain a high level of 

photosynthesis under drought stress. A new drought tolerance ecotype coefficient (DT) was 

incorporated into the CROPGRO-Peanut model to simulate this physiological response.  

2.5.1 Peanut Multiple Drought Tolerance Strategies  

Tolerance to abiotic stresses is an ambiguous concept, even after distinguishing different 

strategies (e.g., escape, avoidance and tolerance). The crop’s sensitivity to drought stress is 

related with the timing and intensity of the stress (Boote at al., 2021). Early-season water 

deficit stress may not significantly reduce yield and quality, but rather, can sometimes lead to 

increased yields (Devi et al., 2019). Water stress during reproductive stages, such as pegging 

and pod development, results in a drastic reduction in yield. The magnitude of reduction can 

be attributed to peanut varieties and agronomic practices (Dang et al., 2013). Drought 

tolerance in peanut may be attributed to multiple adaptative traits, such as deeper root depth in 
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the soil profile or altered rooting distribution, partitioning of assimilates to root growth under 

water stress, partial stomatal closure, improved harvest index, or shortening the grain filling 

phase under water deficit (Tardieu and Tuberosa, 2010). There are many complex interactions 

that arise out of drought effects on multiple singular processes (Tardieu et al., 2011).  

A given trait itself confers positive or negative effects on crop production depending on 

the environmental scenario. The long-term effects of drought tolerance traits on peanut are 

variable depending upon the rainfall pattern and the soil properties at the target sites, as well 

as the approach adopted in the model for simulated responses to soil water deficit (Tardieu, 

2012). These various plant traits have been incorporated into model to create virtual cultivars 

for adaptation to climate change (Boote, 2004). It was concluded that enhancing yield 

potential traits, including maximum leaf photosynthesis rate (LFMAX), fraction of daily 

growth partitioned to pod (XFRT) and seed-filling duration (SFDUR), each by 10% could 

increase pod yield by 9%-14% across different sites under both current and future climates 

(Singh et al., 2013). Opportunities exist to investigate the consequences of the specific trait-

maintained photosynthesis under water deficit through crop modelling that integrates genetic, 

climate, and soil process interactions. Such process-based modelling methods allow a quick 

estimation of the effect of the modified trait across different climate, soil, and management 

combinations (Zhao et al., 2019). 

2.5.2 Effects of the Maintaining Photosynthesis on Crop Production 

The target trait of the maintaining photosynthesis under water deficit was observed in 

rainout shelter experiments and chosen to incorporate into the CROPGRO-Peanut model 
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because that it was the primary drought mechanism in our peanut varieties and was explicitly 

related to dry matter accumulation and yield  (Figure 2.3). Photosynthesis is more resilient to 

soil water deficit than processes linked to leaf expansion and development (Muller et al., 

2011). Photosynthesis is reduced by soil moisture stress due to a partial reduction in stomatal 

conductance and reductions in leaf area. As moisture stress increases, stomata start closing as 

a mechanism to reduce transpiration. As a result, the entry of CO2 is also reduced (Reddy et 

al., 2003). Biomass accumulation is subsequently reduced because of decreased stomatal 

opening and reduced carbon assimilation by leaves (Figure 2.1). Effects of soil water deficit 

are imposed on the photosynthetic rate that is also the driving factor for pod addition rate, 

seed growth rate and final seed number. Genotypes with enhanced photosynthesis thanks to a 

more effective use of water (Blum, 2009; Polania et al., 2016) under water deficit would have 

greater aboveground biomass during reproductive stages which significantly increases grain 

number as compared with baseline genotypes (Zhao et al., 2019). However, the elevated 

transpiration associated with maximum biomass during dry periods could also lead to total 

water depletion and plant death before the end of the crop cycle if common mid-season 

drought suffered in the Southeastern USA develops in a terminal drought (Tardieu and 

Tuberosa, 2010). 

Whether maintaining photosynthesis under water deficit leads to increased or decreased 

yield depends on local climate conditions and stored soil water. There is a lack of systematic 

quantification of the enhanced photosynthesis across a range of climate conditions at multiple 

sites (Chenu et al., 2018). In this study, we simulated peanut behavior related to maintaining 

photosynthesis under multiple climatic scenarios to test the overall effects on yield. The long-
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term simulation of the trait for maintaining photosynthesis rate under water deficit confirmed 

that consistent yield gains could be obtained in dry seasons and no risk of yield loss in wet 

seasons, which was attributed to interactions among cultivar differences (e.g., C1, C2, C3), 

weather conditions (e.g., dry and wet), and soil types (e.g., loam and sandy loam) (Figure 

2.6a, b). Grain yield under water-limited conditions was strongly associated with the extent of 

seasonal ET and crop water use, where a higher seasonal ET and grain WUE was observed for 

drought tolerant peanut varieties, especially for dry seasons at the EV location (Figure 2.6c-f). 

2.5.3 Model Sensitivity to the Newly Designed Drought Tolerant Factor  

The simulation of responses to soil water deficit varies across current crop models due to 

differences in model structures and parameter values (Asseng et al., 2013). The CROPGRO-

Peanut model with the daily potential evapotranspiration options has no VPD (vapor pressure 

deficit) effect on photosynthesis or on stomatal function. Effects of water deficit on 

photosynthesis are simulated through reduced rates of accumulation of dry matter (Boote et 

al., 2008). The SWFAC signals are used to regulate peanut growth processes and 

photosynthesis using growth phase-specific modifiers (Figure 2.1). When SWFAC is less than 

1.0, rooting depth extension is more rapid, leaf senescence is accelerated, crop life cycle may 

be accelerated or delayed, and nitrogen mobilization is more rapid during seed fill. The 

species file contains corresponding coefficients for each given crop life cycle phase to 

designate accelerated or delayed development under water deficit (Boote et al., 2001). 

However, these regulation coefficients are species traits that are constant for all peanut 

varieties within a species. This work suggests that these regulation coefficients for drought 

responses should be cultivar specific for peanut varieties. The DT factor defined in this study 
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to maintain photosynthesis under water deficit is an example of the need for cultivar specific 

drought tolerant traits. The DT value of 3 that was optimized for drought tolerant peanut 

varieties in this study was able to accurately simulate drought tolerant peanut growth and 

yield under water deficit (Table 2.3). Furthermore, more drought tolerant ecotype coefficients 

may need to be defined for other desirable traits, for example, high nitrogen fixation under 

drought, higher pod harvest index, and leaf growth maintenance. 

A sensitivity analysis was conducted to better understanding of how DT factors in crop 

models affect peanut photosynthesis and harvest yield (Parent and Tardieu 2014). The 

modified model gave different responses to DT factors over a range of values (Range: 1-9) 

(Figure 2.7 and Figure 2.8). Peanut grown in the southeastern USA usually experience 

unpredictable and intermittent periods of water deficit during reproductive stages at middle 

seasons (Hamidou et al., 2012). Simulated changes in DT factors from 1 to 3 mainly affected 

daily gross photosynthesis during middle seasons, and drastically influenced the cumulative 

gross photosynthesis and final pod yield at the same time (Figure 2.7c). As DT factors were 

increasing from 3 to 9, the increase of gross photosynthesis occurred later in the season when 

pegging and pod development were beginning to slow down. Therefore, the change of pod 

yield caused by change in photosynthesis becomes reaches a plateau, where the peanut 

photosynthesis and yield were not sensitive to higher values of DT. The approach used in the 

modified model to maintain photosynthesis under drought gave good simulations of plant 

growth and yield for drought tolerant varieties in this study.   

2.6 Conclusions 



 

48 

 

Simulating drought tolerance of peanut varieties can enhance the process of breeding 

new germplasms adapted to drought. In this study, the peanut trait of maintaining 

photosynthesis under water deficit was observed in rainout shelter trials and incorporated into 

CROPGRO-Peanut model. The optimum DT factor was determined under rainout shelter 

conditions and gave good simulations of drought tolerant peanut growth, yield and soil water 

content for independent experiments. The long-term simulation of drought tolerant and 

baseline peanut varieties showed that the trait of maintaining photosynthesis under water 

deficit had a consistent yield advantage in dry seasons and no risk of yield loss in wet seasons, 

which was associated with higher seasonal ET and grain WUE. Further sensitivity analysis 

based on the modified model confirmed the ability of the model to accurately simulate the 

change of photosynthesis and yield in respond to changes in DT factors. The drought 

simulation approach develop in this study represents a first attempt to simulate a single 

drought tolerant mechanism for peanut using experimental data. This method can be expanded 

to consider other drought tolerant traits as data become available.   

2.7 References 

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., 

Thorburn, P.J., Rötter, R.P., Cammarano, D. and Brisson, N., 2013. Uncertainty in 

simulating wheat yields under climate change. Nature climate change, 3(9), pp.827-832. 

Agricultural Weather Information Service (AWIS)- Auburn University Mesonet (AUM), 

2021. http://awis.aumesonet.com/ (accessed 2 August 2021). 

http://awis.aumesonet.com/


 

49 

 

Boote, K.J., Kropff, M.J. and Bindraban, P.S., 2001. Physiology and modelling of traits in 

crop plants: implications for genetic improvement. Agricultural Systems, 70(2-3), 

pp.395-420. 

Boote, K.J., Sau, F., Hoogenboom, G. and Jones, J.W., 2008. Experience with water balance, 

evapotranspiration, and predictions of water stress effects in the CROPGRO model. 

Response of crops to limited water: Understanding and modeling water stress effects on 

plant growth processes, 1, pp.59-103. 

Blum, A., 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the 

target of crop yield improvement under drought stress. Field crops research, 112(2-3), 

pp.119-123.Bogard, M., Ravel, C., Paux, E., Bordes, J., Balfourier, F., Chapman, S.C., 

Le Gouis, J. and Allard, V., 2014. Predictions of heading date in bread wheat (Triticum 

aestivum L.) using QTL-based parameters of an ecophysiological model. Journal of 

experimental botany, 65(20), pp.5849-5865. 

Bogard, M., Biddulph, B., Zheng, B., Hayden, M., Kuchel, H., Mullan, D., Allard, V., Gouis, 

J.L. and Chapman, S.C., 2020. Linking genetic maps and simulation to optimize 

breeding for wheat flowering time in current and future climates. Crop Science, 60(2), 

pp.678-699. 

Battisti, R., Sentelhas, P.C., Boote, K.J., Camara, G.M.D.S., Farias, J.R. and Basso, C.J., 

2017. Assessment of soybean yield with altered water-related genetic improvement traits 

under climate change in Southern Brazil. European Journal of Agronomy, 83, pp.1-14. 



 

50 

 

Boote, K.J., Jones, J.W. and Hoogenboom, G., 2021. Incorporating realistic trait physiology 

into crop growth models to support genetic improvement. in silico Plants, 3(1), 

p.diab002. 

Chen, C.Y., Nuti, R.C., Rowland, D.L., Faircloth, W.H., Lamb, M.C. and Harvey, E., 2013. 

Heritability and genetic relationships for drought‐related traits in peanut. Crop Science, 

53(4), pp.1392-1402. 

Chenu, K., Van Oosterom, E.J., McLean, G., Deifel, K.S., Fletcher, A., Geetika, G., Tirfessa, 

A., Mace, E.S., Jordan, D.R., Sulman, R. and Hammer, G.L., 2018. Integrating 

modelling and phenotyping approaches to identify and screen complex traits: 

transpiration efficiency in cereals. Journal of experimental botany, 69(13), pp.3181-3194. 

Dang, P.M., Chen, C.Y. and Holbrook, C.C., 2013. Evaluation of five peanut (Arachis 

hypogaea) genotypes to identify drought responsive mechanisms utilising candidate-gene 

approach. Functional Plant Biology, 40(12), pp.1323-1333. 

Devi, M.J., Sinclair, T.R., Vadez, V., Shekoofa, A. and Puppala, N., 2019. Strategies to 

Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement. 

Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II, pp.131-143. 

Godfray, H. C. J. et al. 2010. Food security: the challenge of feeding 9 billion people. Science 

327, 812–818. 

Girdthai, T., Jogloy, S., Vorasoot, N., Akkasaeng, C., Wongkaew, S., Patanothai, A. and 

Holbrook, C.C., 2012. Inheritance of the physiological traits for drought resistance under 



 

51 

 

terminal drought conditions and genotypic correlations with agronomic traits in peanut. 

SABRAO J Breed Genet, 44, pp.240-262. 

Grassini, P., van Bussel, L.G., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., 

de Groot, H., van Ittersum, M.K. and Cassman, K.G., 2015. How good is good enough? 

Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops 

Research, 177, pp.49-63. 

Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B., Ribeiro, E., 

Samuel-Rosa, A., Kempen, B., Leenaars, J.G., Walsh, M.G., 2014. SoilGrids1km-global 

soil information based on automated mapping. PLoS One. 9, e105992. 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M., Kilibarda, M., 

Blagotic, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., 

Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G., Ribeiro, E., 

Wheeler, I., Mantel, S., Kempen, B., 2017. SoilGrids250m: Global gridded soil 

information based on machine learning. PLoS One. 12, e0169748. 

Hoogenboom, G., C.H. Porter, V. Shelia, K.J. Boote, U. Singh, J.W. White, L.A. Hunt, R. 

Ogoshi, J.I. Lizaso, J. Koo, S. Asseng, A. Singels, L.P. Moreno, and J.W. Jones. 2019. 

Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 

(https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA. 

Hammer, G.L., McLean, G., van Oosterom, E., Chapman, S., Zheng, B., Wu, A., Doherty, A. 

and Jordan, D., 2020. Designing crops for adaptation to the drought and 

high‐temperature risks anticipated in future climates. Crop Science, 60(2), pp.605-621. 



 

52 

 

Jongrungklang, N., Toomsan, B., Vorasoot, N., Jogloy, S., Kesmala, T. and Patanothai, A., 

2008. Identification of peanut genotypes with high water use efficiency under drought 

stress conditions from peanut germplasm of diverse origins. Asian Journal of Plant 

Sciences. 

Kambiranda, D.M., Vasanthaiah, H.K., Katam, R., Ananga, A., Basha, S.M. and Naik, K., 

2011. Impact of drought stress on peanut (Arachis hypogaea L.) productivity and food 

safety. Plants and environment, pp.249-272. 

Liu, F., Jensen, C.R. and Andersen, M.N., 2004. Drought stress effect on carbohydrate 

concentration in soybean leaves and pods during early reproductive development: its 

implication in altering pod set. Field crops research, 86(1), pp.1-13. 

Mothilal, A., & Ezhil, A. 2010. Combining ability analysis for yield and its components in 

groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding, 1(2), 162-166. 

Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. and Gibon, Y., 2011. 

Water deficits uncouple growth from photosynthesis, increase C content, and modify the 

relationships between C and growth in sink organs. Journal of experimental botany, 

62(6), pp.1715-1729. 

Narh, S., Boote, K.J., Naab, J.B., Jones, J.W., Tillman, B.L., Abudulai, M., Sankara, P., M'Bi 

Bertin, Z., Burow, M.D., Brandenburg, R.L. and Jordan, D.L., 2015. Genetic 

Improvement of Peanut Cultivars for West Africa Evaluated with the 

CSM‐CROPGRO‐Peanut Model. Agronomy Journal, 107(6), pp.2213-2229. 



 

53 

 

Parent, B. and Tardieu, F., 2014. Can current crop models be used in the phenotyping era for 

predicting the genetic variability of yield of plants subjected to drought or high 

temperature?. Journal of experimental botany, 65(21), pp.6179-6189. 

Polania, J.A., Poschenrieder, C., Beebe, S. and Rao, I.M., 2016. Effective use of water and 

increased dry matter partitioned to grain contribute to yield of common bean improved 

for drought resistance. Frontiers in plant science, 7, p.660. 

Qin, H., Feng, S., Chen, C., Guo, Y., Knapp, S., Culbreath, A., He, G., Wang, M.L., Zhang, 

X., Holbrook, C.C. and Ozias-Akins, P., 2012. An integrated genetic linkage map of 

cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. 

Theoretical and Applied Genetics, 124(4), pp.653-664. 

Ritchie, J.T., 1985. A user-orientated model of the soil water balance in wheat. In Wheat 

growth and modelling (pp. 293-305). Springer, Boston, MA. 

Ritchie, J.T., 1998. Soil water balance and plant water stress. In Understanding options for 

agricultural production (pp. 41-54). Springer, Dordrecht. 

Reddy, T. Y., Reddy, V. R., & Anbumozhi, V. 2003. Physiological responses of groundnut 

(Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant 

growth regulation, 41(1), 75-88. 

Ravi, K., Vadez, V., Isobe, S., Mir, R.R., Guo, Y., Nigam, S.N., Gowda, M.V.C., 

Radhakrishnan, T., Bertioli, D.J., Knapp, S.J. and Varshney, R.K., 2011. Identification of 

several small main-effect QTLs and a large number of epistatic QTLs for drought 



 

54 

 

tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied 

Genetics, 122(6), pp.1119-1132. 

Suriharn, B., Patanothai, A., Pannangpetch, K., Jogloy, S. and Hoogenboom, G., 2007. 

Determination of cultivar coefficients of peanut lines for breeding applications of the 

CSM‐CROPGRO‐Peanut model. Crop science, 47(2), pp.607-619. 

Songsri, P., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A., & 

Holbrook, C. C. 2008. Heritability of drought resistance traits and correlation of drought 

resistance and agronomic traits in peanut. Crop Science, 48(6), 2245-2253. 

Sinclair, T.R., Messina, C.D., Beatty, A. and Samples, M., 2010. Assessment across the 

United States of the benefits of altered soybean drought traits. Agronomy Journal, 

102(2), pp.475-482. 

Sinclair, T.R., 2011. Challenges in breeding for yield increase for drought. Trends in plant 

science, 16(6), pp.289-293. 

Soler, C. M. T., Suleiman, A., Anothai, J., Flitcroft, I., & Hoogenboom, G. 2013. Scheduling 

irrigation with a dynamic crop growth model and determining the relation between 

simulated drought stress and yield for peanut. Irrigation science, 31(5), 889-901. 

Singh, P., Nedumaran, S., Boote, K.J., Gaur, P.M., Srinivas, K. and Bantilan, M.C.S., 2014. 

Climate change impacts and potential benefits of drought and heat tolerance in chickpea 

in South Asia and East Africa. European Journal of Agronomy, 52, pp.123-137. 

Singh, P., Nedumaran, S., Ntare, B.R., Boote, K.J., Singh, N.P., Srinivas, K. and Bantilan, 

M.C.S., 2014. Potential benefits of drought and heat tolerance in groundnut for 



 

55 

 

adaptation to climate change in India and West Africa. Mitigation and adaptation 

strategies for global change, 19(5), pp.509-529. 

Shekoofa, A., Rosas‐Anderson, P., Sinclair, T.R., Balota, M. and Isleib, T.G., 2015. 

Measurement of limited‐transpiration trait under high vapor pressure deficit for peanut 

in chambers and in field. Agronomy Journal, 107(3), pp.1019-1024. 

Sanz‐Saez, A., Maw, M.J., Polania, J.A., Rao, I.M., Beebe, S.E. and Fritschi, F.B., 2019. 

Using carbon isotope discrimination to assess genotypic differences in drought resistance 

of parental lines of common bean. Crop Science, 59(5), pp.2153-2166. 

Tardieu, F., 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water 

deficit. Trends in plant science, 8(1), pp.9-14. 

Tardieu, F. and Tuberosa, R., 2010. Dissection and modelling of abiotic stress tolerance in 

plants. Current opinion in plant biology, 13(2), pp.206-212. 

Tilman, D., Balzer, C., Hill, J. and Befort, B.L., 2011. Global food demand and the 

sustainable intensification of agriculture. Proceedings of the national academy of 

sciences, 108(50), pp.20260-20264. 

Tardieu, F., Granier, C. and Muller, B., 2011. Water deficit and growth. Co-ordinating 

processes without an orchestrator? Current opinion in plant biology, 14(3), pp.283-289. 

Tardieu, F., 2012. Any trait or trait-related allele can confer drought tolerance: just design the 

right drought scenario. Journal of experimental botany, 63(1), pp.25-31. 



 

56 

 

Tillman, B.L., 2018. Registration of ‘TUFRunner ‘297’’peanut. Journal of Plant 

Registrations, 12(1), pp.31-34. 

University of Georgia Weather Network (UGWN), 2021. http://weather.uga.edu/ (accessed 2 

August 2021). 

US Department of Agriculture (USDA) - National Resources Conservation Service (NRCS), 

2020. http://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home/ (accessed 2 July 2021). 

Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., Hanasaki, N., Masaki, 

Y., Portmann, F.T., Stacke, T. and Tessler, Z., 2013. Multimodel projections and 

uncertainties of irrigation water demand under climate change. Geophysical research 

letters, 40(17), pp.4626-4632. 

Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K. and Nguyen, H.T., 

2018. Genetic diversity of root system architecture in response to drought stress in grain 

legumes. Journal of Experimental Botany, 69(13), pp.3267-3277. 

Zhang, D., Li, R., Batchelor, W.D., Ju, H. and Li, Y., 2018. Evaluation of limited irrigation 

strategies to improve water use efficiency and wheat yield in the North China Plain. PloS 

one, 13(1), p.e0189989. 

Zhao, Z., Rebetzke, G.J., Zheng, B., Chapman, S.C. and Wang, E., 2019. Modelling impact of 

early vigour on wheat yield in dryland regions. Journal of experimental botany, 70(9), 

pp.2535-2548. 

http://weather.uga.edu/


 

57 

 

Zhang, Q., 2021. Uncovering different physiological mechanisms of peanut drought tolerance 

under mid-season drought in automated Rain-out Shelters. Master dissertation. Auburn 

University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

Table 2.1 Peanut varieties, soil types, water treatments, seasonal weather and years of data 

used for CROPGRO-Peanut model calibration and evaluation. 

Experiment 

numbers 

Locations Peanut varieties Soil 

types 

Water 

treatments 

Tmax 

(◦C) 

Tmin 

(◦C) 

P 

(mm) 

Years 

Exp. 1 EV Smith research 

center at Shorter, 

Alabama (EV) C1: AU-NPL 17 

C2: Georgia 06G 

C3: AU16-28 

C4: TUFRunner 297 

Loam Dryland and 

Irrigation 

32.0 19.9 306 2019/2020 

Exp. 2 Wiregrass research 

and extension 

center at Headland, 

Alabama (HL) 

Sandy 

loam 

Dryland and 

Irrigation 

32.1 21.3 495 2019/2020 

Exp. 3 National Peanut 

Research 

Laboratory at 

Dawson, Georgia 

(DA) 

C1: AU-NPL 17 

C2: Georgia 06G 

C3: AU16-28 

C5: PI 390428 

Sandy 

loam 

Rainout shelter 32.3 20.9 575 2019/2020 
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Figure 2.1 Schematic representation indicated the daily gross photosynthesis (PG) modified 

in CROPGRO-Peanut model for a peanut variety with drought tolerance. 
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Table 2.2 CROPGRO-Peanut model calibration for four peanut varieties (C1-C4) listed in 

Table 2.1 grown under irrigated conditions in EV and HL during 2019 and 2020. 

Items 
Calibration (Irrigated field in EV and HL) 

R2 RMSE NRMSE D-value 

Days from sowing to first flowering (d) 0.31 3.9 0.12 0.58 

Days from sowing to first pod (d) 0.44 3.3 0.07 0.69 

Days from sowing to maturity (d) 0.43 5.5 0.04 0.68 

Biomass (kg/ha) 0.42 1551.9 0.12 0.74 

Pod yield (kg/ha) 0.70 526.5 0.08 0.90 

Seed yield (kg/ha) 0.60 501.8 0.10 0.86 
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Figure 2.2 Comparison of simulated and observed values for model calibration (a-d) of four 

peanut varieties (C1-C4, listed in Table 2.1) grown under irrigated conditions at EV and HL 

during 2019 and 2020.  
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Figure 2.3 Simulated (Sim) and observed (Obs) pod yields for model evaluation (a-b) of five 

peanut varieties (C1-C5, listed in Table 2.1) with drought tolerant modification (DT = 3) 

grown under rainout shelter in DA during 2019 and 2020. 
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Table 2.3 CROPGRO-Peanut model evaluation for five peanut varieties (C1-C5, listed in 

Table 2.1) with drought tolerant modification (DT = 3) grown under rainfed conditions in EV 

and HL and rainout shelter in DA during 2019 and 2020. 

Items 
Evaluation (Dryland in EV and HL)  Evaluation (Rainout shelter in DA) 

R2 RMSE NRMSE D-value  R2 RMSE NRMSE D-value 

Days from sowing to 

first flowering (d) 
0.34 3.8 0.12 0.60  - - - - 

Days from sowing to 

first pod (d) 
0.30 3.7 0.07 0.67  - - - - 

Days from sowing to 

maturity (d) 
0.53 6.3 0.05 0.67  0.02 4.7 0.04 0.50 

Biomass (kg/ha) 0.15 1660.5 0.15 0.52  0.55 1330.9 0.28 0.83 

Pod yield (kg/ha) 0.04 919.6 0.17 0.52  0.95 265.2 0.15 0.98 

Seed yield (kg/ha) 0.04 812.4 0.21 0.48  - - - - 
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Figure 2.4 Comparison of simulated and observed values for model evaluation of four peanut varieties (C1-C4, listed in Table 2.1) without (DT 

= 1) (a-d) and with (e-h) the drought tolerant modification (DT = 3) grown under rainfed conditions in EV and HL during the 2019 and 2020. 
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Figure 2.5 Simulated (Sim) and observed (Obs) values for biomass, pod, and seed weight of a drought-tolerant peanut variety (C1, listed in Table 

2.1) grown in the irrigated (calibration) and rainfed (evaluation) experiments at EV and HL during 2019 and 2020. 
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Figure 2.6 Simulated rainfed peanut grain weight (a-b), seasonal evapotranspiration (ET) (c-

d) and grain water use efficiency (WUE) (e-f) for dry and wet seasons over the period 1998-

2020 at EV (a, c, e) and HL (b, d, f) sites. The drought tolerant coefficient was DT=3. 
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Figure 2.7 Sensitivity of simulated gross photosynthesis to changes in the DT coefficient for a 

drought-tolerant peanut variety (C1, listed in Table 2.1) for the 2019 EV rainfed experiment. 

Figure a and b show the daily gross photosynthesis during the middle and late season period 

while figure c shows the cumulative gross photosynthesis throughout the entire growing 

season. 
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Figure 2.8 Sensitivity analyses indicated by change in pod yield response to DT change for 

three drought tolerant peanut varieties (C1-C3, listed in Table 2.1) grown under rainout 

shelter in DA during the 2019 (a) and 2020 (b). 

 

 

 

 

 

 

 

 

 



 

69 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

EV Irrigation 2019 (Depth 5-15 cm)
C1 Obs

C2 Obs

C3 Obs

C4 Obs

C1 Sim

C2 Sim

C3 Sim

C4 Sim

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

EV Irrigation 2019 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

EV Irrigation 2019 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

EV Irrigation 2019 (Depth 35-45 cm)

(a) (b) 

(c) (d) 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

EV Irrigation 2020 (Depth 5-15 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

EV Irrigation 2020 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

Date (mm/dd/yyyy)

EV Irrigation 2020 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

Date (mm/dd/yyyy)

EV Irrigation 2020 (Depth 35-45 cm)

(e) (f) 

(g) (h) 

 

 



 

70 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

HL Irrigation 2019 (Depth 5-15 cm)
C1 Obs

C2 Obs

C3 Obs

C4 Obs

C1 Sim

C2 Sim

C3 Sim

C4 Sim

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

HL Irrigation 2019 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

HL Irrigation 2019 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

HL Irrigation 2019 (Depth 35-45 cm)

(i) (j) 

(k) (l) 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

HL Irrigation 2020 (Depth 5-15 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

HL Irrigation 2020 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

Date (mm/dd/yyyy)

HL Irrigation 2020 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

Date (mm/dd/yyyy)

HL Irrigation 2020 (Depth 35-45 cm)

(m) (n) 

(o) (p) 

 

 



 

71 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

EV Dryland 2019 (Depth 5-15 cm)
C1 Obs

C2 Obs

C3 Obs

C4 Obs

C1 Sim

C2 Sim

C3 Sim

C4 Sim

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

EV Dryland 2019 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

EV Dryland 2019 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

EV Dryland 2019 (Depth 35-45 cm)

(q) (r) 

(s) (t) 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

EV Dryland 2020 (Depth 5-15 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

EV Dryland 2020 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

Date (mm/dd/yyyy)

EV Dryland 2020 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

Date (mm/dd/yyyy)

EV Dryland 2020 (Depth 35-45 cm)

(u) (v) 

(w) (x) 

 

 

 



 

72 

 

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

HL Dryland 2019 (Depth 5-15 cm)
C1 Obs

C2 Obs

C3 Obs

C4 Obs

C1 Sim

C2 Sim

C3 Sim

C4 Sim

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

HL Dryland 2019 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

S
o

il
 w

at
er

 c
o

n
te

n
t 

(m
3
/m

3
)

HL Dryland 2019 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/15/2019 07/04/2019 08/23/2019 10/12/2019

HL Dryland 2019 (Depth 35-45 cm)

(y) (z) 

(aa) (ab) 

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

HL Dryland 2020 (Depth 5-15 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

HL Dryland 2020 (Depth 15-25 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

S
o
il

 w
at

er
 c

o
n
te

n
t 

(m
3
/m

3
)

Date (mm/dd/yyyy)

HL Dryland 2020 (Depth 25-35 cm)

0.0

0.1

0.2

0.3

0.4

0.5

05/19/2020 07/08/2020 08/27/2020 10/16/2020

Date (mm/dd/yyyy)

HL Dryland 2020 (Depth 35-45 cm)

(ac) (ad) 

(ae) (af) 

 

Figure 2.A1. Simulated (Sim) and observed (Obs) soil water content in the 0- to 45-cm soil 

profile during the growing season of four peanut varieties (C1-C4, listed in Table 2.1) under 

irrigation (a-p) and dryland (q-af) at EV and HL during 2019 and 2020. 
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Chapter 3. County-level calibration strategy to evaluate peanut (Arachis hypogaea) 

irrigation water use under different climate change scenarios 

3.1 Abstract  

Regional-scale simulation of crop yield is challenging due to the spatial variability of soil 

properties, crop varieties, management practices and weather conditions. Point-based crop 

models are commonly used for spatial simulation with increased availability of high-

resolution spatial datasets. However, it is still difficult to calibrate crop models well due to the 

spatial variability of model inputs. The focus of this work was to determine if a single set of 

cultivar and soil parameters could be calibrated to simulated county-level peanut yield, and to 

evaluate the effects of irrigation to mitigate potential climate change impacts on peanut yield. 

Model input data for fourteen seasons and five major peanut producing counties was 

assembled and used for model calibration. Three seasons of data were withheld and used for 

an independent evaluation. Overall, peanut growth duration and county-level yields were 

simulated well with a set of optimum cultivar and soil parameters for each county. The model 

calibration showed that simulated maturity dates and yields were in good agreement with the 

observed county level values reported by NASS, giving an overall R2 of 0.71 and 0.73, and 

RMSE values of 6 days and 333 kg/ha, respectively. The model also gave good simulations of 

maturity dates and yield for the three evaluation seasons, with an overall R2 of 0.83 and 0.76 

and RMSE values of 5 days and 429 kg/ha, respectively. The results from future climate 

simulations indicated that the rainfed yields will suffer from increasing daytime temperature 

and an irrigation strategy could potentially offset the heat and drought stress to maintain 
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higher peanut production in the Southeastern USA. This study provides a calibration and 

evaluation strategy that aggregates spatial heterogeneity of model inputs. This approach can 

enhance the accuracy of simulating the impact of climate change on crop production by 

providing a method to calibrate and evaluate the underlying model at larger spatial scales. 

Keywords: CROPGRO-Peanut; Cultivar coefficients; Soil parameters; Yield; Climate change 

3.2 Introduction 

The global demand for agricultural crops is expected to double by 2050 due to increases 

in population, rising global middle class, and use of food crops for bioenergy production 

(Godfray et al., 2010; Tilman et al., 2011). Furthermore, climate change is expected to have 

adverse impacts on crop production around the world (Lobell et al., 2011, Rosenzweig et al., 

2014). Simulating crop production is critical to understanding the impact of climate change 

and plan for mitigation strategies on yield and food security. Crop models are often used to 

simulate the impact of climate change, management policies and weather disasters at the 

county scale (Johnston 2013). 

Dynamic process-oriented crop models that integrate physical and physiological 

processes of plant growth and development have been widely used (Jin et al., 2018; Huang et 

al., 2019). Most prevailing crop models are point-based and simulate growth processes over a 

homogeneous area. Physical and physiological assumptions in crop models are based on 

uniform field growth situations and commonly tested at the plot or field scale (Thorp et al., 

2008). The typical input data requirements include weather, crop management practices, 
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genetic information and soil water holding characteristics, and it is assumed that these data are 

uniform over the simulation area (Batchelor et al., 2020). The model calibration process 

usually involves trial-and-error approaches and optimization of input parameters to minimize 

error (Ma et al., 2020). The accuracy of the trial-and-error approach usually depends on the 

user’s experience to refine cultivar coefficients and/or soil parameter values until a good 

match between simulated and observed values are obtained. Automatic optimization methods 

have been developed and are increasingly being used to estimate model parameters (Thorp et 

al., 2013). Compared to the conventional trial-and-error approaches, automatic optimization 

methods are more objective and efficient and can increase model accuracy (He et al., 2010a).  

With increased availability of spatial and temporal datasets including remotely sensed 

images, land cover maps, digital soil surveys, gridded weather datasets, and county scale crop 

yield reports, crop growth models are increasingly being used to simulate crop growth and 

yield at a larger scale (Manivasagam and Rozenstein, 2020). Point-based models are 

commonly used in spatial simulations for yield gap and yield potential analysis (Liu et al., 

2021), irrigation water management (Kothari et al., 2019), leaf growth estimation (Zhen et al., 

2018), fertilizer management (Yang et al., 2020), and climate impact on yield (Adhikari et al., 

2016). There are clear benefits in using crop models for analyzing regional production 

because policy formulation and decision-making are rarely implemented at the plot or field 

level and policy makers need information at larger spatial scales. This is especially true for the 

adaptation to the future climate change on agriculture systems (Shin et al., 2020; Tofa et al., 

2021).  
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Regional-scale simulations cannot consider the level of detailed data collected at the field 

or farm scale. Efforts have been focused on development of reasonable methods to capture 

spatial heterogeneity of climate data, crop varieties, soil properties, and management practices 

to minimize errors in yield simulation (Jagtap and Jones, 2002; Grassini et al., 2015; 

Manivasagam and Rozenstein, 2020). At a larger spatial scale, there is variability in weather, 

soil, genetics, and management that must be represented in the model. Climate data are often 

taken from local representative meteorological stations, or gridded weather data from climate 

simulation or interpolated from weather station networks (Adhikari et al., 2016). While crop 

varieties and soil types vary spatially, researchers often use several commonly grown varieties 

and dominant soil types to represent many varieties and soil types in regional simulations 

(Tofa et al., 2021). Relative to many farmers management practices, researchers often define a 

representative set of management practices to represent management within the region (Wang 

et al., 2020).  

Peanut (Arachis hypogea L.) is an annual legume crop that has been grown extensively in 

the tropical and subtropical regions of Asia, Africa, and North America which are 

characterized by high temperature and erratic precipitation (Qin et al., 2012). Within the 

United States, peanut production is concentrated in the Southeastern Coastal Plains which is 

highly vulnerable to the changing seasonal temperatures and rainfall patterns. A significant 

increase in seasonal temperatures, ambient carbon dioxide level and precipitation anomalies 

could be detrimental to peanut growth in the future (Vara et al., 2003; Eck et al., 2020). Most 

of the peanuts in this region are grown under rainfed conditions with sandy or loamy sand soil 
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that have a lower water-holding capacity. Even peanut grown under irrigation may experience 

extreme drought and heat because of limited water supply or because irrigation water is 

applied in amounts and frequencies less than optimal for plant growth (Kambiranda et al., 

2011). Therefore, it is important to understand how peanut yields and irrigation requirements 

may change under climate change scenarios to allow farmers and policymakers to determine 

how to maximize profits and reduce losses (Jin et al., 2018).  

Previous research using crop models to simulate production at the county or regional 

scale rely on making an un-calibrated baseline model run and comparing results to an 

alternative management practice or climate scenario (Salazar et al., 2012; Leng et al., 2016). 

Relative yield differences are used to characterize the impact of the alternative management 

scenarios or climate change (Shin et al., 2020). There have been no attempts to assess the 

underlying accuracy in simulating historical peanut yields for multiple years at the county-

level, even though the US Department of Agriculture-National Agricultural Statistics Service 

(USDA-NASS, 2020) reports county-level yields on an annual basis (Huang et al., 2021). 

Developing representative spatial model inputs that can be evaluated against historical county-

level yields would reduce the uncertainty of using the models to study impacts of management 

practices or climate change at the county scale. The objectives of this work were to: (1) 

calibrate input parameters for the CROPGRO-Peanut model using historical NASS peanut 

yields for five counties across the Southeastern USA; (2) evaluate the calibrated baseline 

model using data from independent years; and (3) assess the potential effects of future climate 

change on peanut production and irrigation water use in the Southeastern USA.  
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3.3 Materials and methods 

3.3.1 Description of the Study Area 

The study area consisted of the top peanut producing counties by planted area in each of 

the five states in the Southeastern USA peanut belt. These states produce approximately 80% 

of US peanuts (USDA-NASS, 2020). The counties in this study included Santa Rosa 

(Florida), Houston (Alabama), Worth (Georgia), Orangeburg (South Carolina) and Martin 

(North Carolina) (Figure 3.1; Table 3.1). These counties ranged from 75.5°W to 88.5°W 

longitude and from 25.0°N to 36.5°N latitude. Table 3.2 shows a summary of weather 

conditions for each county during the growing seasons included in this study.   

3.3.2 Crop Model Input Data 

3.3.2.1 County Level Weather and Soil Data   

The CROPGRO-Peanut model, which is included with DSSAT v4.7 (Hoogenboom et al., 

2019), requires daily weather data input. A single representative point of weather was selected 

to represent average daily weather conditions within each county. Observed historical weather 

data were obtained from the cooperative observer program of the National Weather Service 

(NWS-COP, 2020) from 2006-2019 for each county. The nearest weather station to the 

centroid of each county was determined as the representative weather station. The projected 

daily weather data for the mid-century (2050s) and end-century (2080s) under representative 

concentration pathways scenarios (RCP 4.5 and 8.5) were generated by MarkSimGCM 

(http://gismap.ciat.cgiar.org/MarkSimGCM/) using spatial downscaling methods (Jones and 
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Thornton, 2013).  The ensemble of two general circulation models (GCMs) including GFDL-

ESM2G and GFDL-ESM2M developed by National Oceanic and Atmospheric 

Administration (NOAA) were used in this analysis (Dunne et al., 2012). Fourteen replicate 

years of each target future year (2050s and 2080s) were extracted to compare with the 14-year 

baseline period (2006-2019). Summary details of the climate scenarios are shown in Table 

3.2. 

The CROPGRO-Peanut model also required soil profile data in different soil layers in 

the top 200 cm (Table 3.A1). Our hypothesis was that a single soil profile can be calibrated to 

represent the seasonal water stress patterns affecting peanut yield at the county scale. These 

soil data were extracted from the Gridded Soil Survey Geographic database developed by the 

USDA-National Resources Conservation Service (USDA-NRCS, 2020) and from the 

SoilGrids dataset with a spatial resolution of 1 km or 250 m (Hengl et al., 2014, 2017). 

Properties for the most dominant soil type for peanuts within each county were used to 

represent an initial estimate of soil properties in each county. These soil properties were later 

refined through model calibration. The detailed soil profile characteristics for each 

representative soil type in each county are shown in Table 3.A1.  

3.3.2.2 Peanut Phenology, Management and Yield Data 

Historical county-level peanut yields for model calibration and evaluation were taken from 

the US Department of Agriculture-National Agricultural Statistics Service (USDA-NASS, 

2020). Yields were reported at 10% moisture content and adjusted to 0% moisture content for 

model comparison. A state-level record of peanut phenology and management practices were 
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taken from the US Department of Agriculture-Risk Management Agency (USDA-RMA, 

2020) and USDA-NASS for each county over the study period (Table 3.1).  

The Georgia 06G (Runner) variety was chosen to represent the genetics planted in these 

top production counties from 2006-2019, as it was the most widely planted peanut variety in 

the peanut belt during that period (Branch, 2007). The peanut management information 

including sowing and maturity dates and sowing density are shown in Table 3.1. Peanuts in 

these counties are predominately grown under rainfed conditions, thus yields were simulated 

without irrigation (Brown and Pervez, 2014; USDA-NASS, 2017). The NASS reported yield 

data was used directly for model simulation comparison without detrending because the 

historical peanut yields did not show an increasing trend during our study period. We assumed 

that changes in agricultural technologies (e.g., narrow rows, pest management) did not 

critically affect yields during our study period and the interannual yield variability was mainly 

due to other factors (Wang et al., 2020).  

3.3.3 Optimization Software and Package 

Thorp and Bronson (2013) developed a geospatial toolbox called Geospatial Simulation 

(GeoSim) that is distributed as a plug-in for the open-source Quantum GIS environment. 

GeoSim was designed as a model independent optimizer that can estimate spatial model 

inputs to minimize an objective function. In our study, each county was mapped in QGIS 

2.18.28 (QGIS.org, 2021) and a database was developed containing spatial soil parameters to 

be optimized. The CROPGRO-Peanut model was modified to accept optimum parameters 

from the GeoSim optimizer for simulating yields. The GeoSim software was then used to 
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optimize several soil parameters to minimize errors between simulated and observed yields 

for calibration years (Table 3.3).    

The DSSAT-PEST package was used to calibrate cultivar coefficients to minimize errors 

between simulated and observed county-level yields. The main program file of the DSSAT-

PEST package was a program in the R programming language which was executed using R 

4.0.3 (R Core Team, 2021). Ma et al. (2020) reported that DSSAT-PEST gave accurate 

estimations of cultivar coefficients for different crops with good optimization efficiency. In 

this study, the cultivar coefficients were adjusted using the DSSAT-PEST package to 

minimize errors between simulated and observed peanut maturity dates and county-level 

yields reported by NASS. 

3.3.4 Model Calibration and Evaluation Procedure 

Yield data from about fourteen seasons were analyzed for each county and characterized 

as low (i.e., bottom 25% of yields), average (i.e., 25-75% yield) and high (i.e., top 25% of 

yield) yielding seasons. One season was randomly selected from each category for the model 

evaluation years and the remainder of the years were used for model calibration (Table 3.1). 

The calibration strategy was to sequentially adjust soil, cultivar and then soil coefficients a 

second time within their range of uncertainty to minimize errors between simulated and 

observed peanut maturity dates and yields for each county. 

The CROPGRO-Peanut model was modified to allow the GeoSim optimizer to change 

three key soil parameters, including percent available soil water (PASW), root hospitality 
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reduction factor (RHRF) and the soil fertility factor that affects daily photosynthesis (SLPF). 

The optimization parameter PASW was used to adjust the lower limit (LL) in each soil layer to 

change available water holding capacity using the following equations (1)- (3).  

The available soil water (ASW) for each soil layer was defined as: 

ASWi = DULi - LLi, (1) 

where i was the number of soil layers, DUL was drained upper limit (field capacity) for 

layer i and LL was the lower limit for layer i. 

The updated available soil water (uASW) determined by the optimizer was calculated by 

the optimization parameter PASW: 

    uASWi = ASWi + ASWi × PASW / 100, (2) 

Finally, the updated LL for each soil layer was adjusted by the following: 

LLi = DULi - uASWi, (3) 

The range of PASW was set from -40 to 40% in this study. When the value of PASW is 

positive, the ASW is increased by reducing the default LL in each layer of the soil profile. 

Larger values of PASW give higher available soil water content in each soil layer.  

The root hospitality reduction factor (RHRF) was used to adjust the soil root growth 

factor (SRGF) in each soil layer at soil layer depths (DS) below 60 cm. The SRGF factor was 

defined as 1.0 in the top 60 cm soil layer (Table 3.A1). In this study, the value of RHRF 

ranged from -0.1 indicating less or no root growth to 0 indicating more root growth below 60 

cm. The crop model was modified to use the RHRF optimization parameter to adjust the soil 

SRGF factor in each soil layer by:  
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SRGFi = 1, DSi ≤ 60 cm 

SRGFi = RHRF × (DSi - 60) + 1, DSi > 60 cm 

(4) 

where DSi was the depth of soil in layer i.   

The soil fertility effect on photosynthesis (SLPF) is used by the model to represent 

limitations in crop growth attributed to factors other than water and nitrogen (i.e., pH, 

micronutrients). In the CROPGRO-Peanut model, daily photosynthesis is computed as a 

function of genetics, daily temperature, water and nitrogen stress, and CO2. Daily 

photosynthesis can be modified by SLPF by: 

PGd =PGDAY / 44.0 × 30.0 × SLPF,   (5) 

where d is the day of the year, PGDAY is the maximum daily photosynthesis as a 

function of photosynthetically active radiation, and SLPF is a reduction factor due to often 

unknown soil properties. An SLPF value of 1 indicates no reduction in daily canopy 

photosynthesis, while a value <1 reduces daily photosynthesis each day during the season.  

The model calibration procedure included three steps. First, the model was calibrated 

using the GeoSim optimizer with initial cultivar coefficients for each county to obtain a first 

estimate of soil properties to minimize error in county-level yields. In Step two, the DSSAT-

PEST optimizer was used to estimate cultivar coefficients using the first estimate of soil 

parameters from GeoSim (from step one). The final step was to use the calibrated cultivar 

coefficients to re-estimate soil parameters using the GeoSim optimizer and the optimum 

cultivar coefficients from DSSAT-PEST. The lower and upper bounds, and definition of the 

peanut cultivar coefficients and soil parameters are shown in Table 3.3. 
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3.3.5 Model Evaluation Metrics 

To evaluate the model performance and accuracy for simulating maturity dates and 

yields, statistical indicators including coefficient of determination (R2), root mean square error 

(RMSE), normalized root mean square error (NRMSE), mean absolute percentage error 

(MAPE) and model efficiency (E) were computed from observed (Oi) and simulated (Si) 

values. 

R2 = 1 − ∑ (Oi − Si)2 / ∑ (Oi − Oa)2,   (6) 

RMSE = [(∑ (Oi − Si)2) / n]0.5,   (7) 

NRMSE = RMSE / Oa × 100,   (8) 

MAPE = 1 / n × ∑| (Oi − Si) / Oi |,   (9) 

E= 1- ∑ (Oi − Si)2 / ∑ (Oi – Oa)2,  (10) 

Where Oi is the i-th observation value, Si is the i-th simulation value, Oa is the average 

value of a series observations and n is the sample number. 

3.3.6 Assessing Climate Change Impacts on Peanut Production 

The evaluated CROPGRO-Peanut model was then used to estimate the impact of climate 

change on peanut yields and irrigation water demand. The effects of climate change on both 

rainfed and irrigated yields were simulated for the 14-year baseline (2006-2019) weather data, 

while the future climate scenarios for year 2050s were simulated at 487 ppm CO2 (RCP 4.5) 

and 541 ppm CO2 (RCP 8.5) and year 2080s were simulated at 531 ppm CO2 (RCP 4.5) and 

758 ppm CO2 (RCP 8.5) based on the Intergovernmental Panel on Climate Change (IPCC) 
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projections (Meinshausen et al., 2013). Other variables such as soil, variety and management 

practices were held constant. Irrigation management was simulated with the auto-irrigation 

using a management depth of 60 cm of soil and irrigation efficiency of 90%, assuming that 

full irrigation to meet peanut water demand was the dominant practice. Automatic irrigation 

was assumed to start when 60% of available water was depleted in the root zone, which was a 

common irrigation strategy (USDA-NASS, 2017). Analyses of variance (ANOVA) and 

Tukey’s test were conducted using the GLM procedure of SAS (SAS Institute, 2013) to 

identify the climate change scenarios that resulted in statistically different simulation outputs. 

A Pearson correlation analysis was performed by SAS (SAS Institute, 2013) to determine the 

relationship between simulated peanut yields and growing season mean maximum 

temperature (Tmax), minimum temperature (Tmin), total precipitation (P), evapotranspiration 

(ET), irrigation amount.  

3.4 Results 

3.4.1 Optimum County-Level Cultivar Coefficients and Soil Parameters  

Parameter calibration is a common practice to overcome uncertainties in model inputs, 

parameters, model structure and data errors (Bilionis et al., 2015; Huang et al., 2016). A three-

step parameter estimation technique as described above was implemented to minimize error 

between simulated and observed peanut maturity dates and county-level yields. This resulted 

in a single set of soil properties and cultivar coefficients that represented the yield response of 

many soils and different varieties and management practices in each county (Table 3.4).  
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After calibration, the representative cultivar coefficient EM-FL ranged from 16.9 to 27.5 

with an average value of 20.4 photothermal days (Table 3.4). The values of FL-SH and FL-SD 

did not vary much in different counties, with average values of 8.7 ± 2.1 and 16.7 ± 0.9 

photothermal days, respectively. The SD-PM coefficient ranged from 60.4 photothermal days 

in Santa Rosa County to 78.0 photothermal days in Houston County (Table 3.4). The 

calibrated phenological parameters EM-FL, FL-SH, FL-SD, and SD-PM gave a good fit 

between simulated and observed peanut maturity dates for each county (Figure 3.2a, b).            

Santa Rosa and Houston Counties had lower values for the LFMAX coefficient (1.49 and 

1.31 mg CO2/ (m
2 s), respectively) compared to other counties (1.50 mg CO2/ (m

2 s)), 

indicating the composite of peanut varieties planted in these two counties had lower 

maximum leaf photosynthesis rate under optimum conditions. The coefficients SLAR and 

SIZELF are related to leaf area index (LAI) in the model. The calibration gave average values 

of 258.9 ± 27.5 cm2/g for SLAR and 19.8 ± 2.1 cm2/g for SIZELF. The simulated harvest 

yields for each county were calibrated by adjusting the representative cultivar coefficients 

XFRT, WTPSD, SFDUR, and PODUR. All the counties had a value of 1.00 for XFRT. In the 

crop model, weight per seed and seed number are used to determine total seed weight. The 

calibrated value of WTPSD was lower in Houston and Worth Counties (0.360 and 0.395 g, 

respectively) while the optimum SFDUR and PODUR were relatively higher compared to 

other counties. This indicated that the optimizer favored the creation of smaller seeds with a 

longer filling duration to represent the different varieties planted in these counties.  
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The initial soil properties for each county were taken from the dominant soil type in each 

county. Three soil parameters were adjusted for this soil type to represent the county-level 

yield response resulting from many different soil types in the county (Table 3.4). The 

optimizer reduced the available soil water (negative values of PASW) from the initial soil 

properties for Santa Rosa County, which had higher average seasonal rainfall (655 mm) 

compared to the other counties (Table 3.2). However, the optimizer added water holding 

capacity (positive values for PASW) to the other counties which had lower average seasonal 

rainfall, which indicated that drought stress was too severe using the default available water 

holding capacity in soil profile (Table 3.4). The second soil input that was adjusted was the 

soil root growth factor (SRGF) for each soil layer (Table 3.A1). This input factor governs the 

root growth (i.e., root length volume) that is allocated to each soil layer. The slope of tapering 

was designed as an optimization parameter RHRF in the model, where a value of 0 gave an 

SRGF factor of 1.0 below 60 cm and a value close to -0.1 cut the roots off at 60 cm depth 

(Table 3.3). Intermediate values create root structures with different maximum root depths 

and distributions, which impact root water uptake and water stress. The optimizer selected 

values of RHRF for the slope of SRGF close to 0 (range from -0.001 to -0.012), which gave 

SRGF average values of 0.8 ± 0.2 in the soil layer 60-100 cm and 0.5 ± 0.4 in the soil layer 

100-200 cm, respectively (Table 3.4, Table 3.A1). This had the effect of simulating a deeper 

root system and reducing water stress by allowing roots to access deep soil moisture later in 

the growing season.   
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The third soil parameter considered for calibration was SLPF, which can mimic the 

effects of poor management, reduction in plant stands, as well as the impact of spatial and 

systematic foliar diseases such as late leafspot (Cercosporidium personatum) which is 

common in peanuts. This parameter effectively reduces daily simulated photosynthetic rate 

and has a large effect on crop growth and yield. The optimizer was used to estimate values of 

SLPF in conjunction with the slope of SRGF and PASW to minimize error in annual peanut 

yields. The optimum values of SLPF ranged from 0.6 to 0.8 with an average of 0.7 (Table 

3.4).  

3.4.2 Model Calibration and Evaluation 

The ability of the model to simulate peanut growth duration was assessed by comparing 

the simulated and observed values of maturity dates. The model simulated the maturity dates 

reasonably well for calibration years, with an overall R2 value of 0.71, RMSE value of 6 days, 

NRMSE value of 0.04 and MAPE of 3% (Figure 3.2a). The calibrated model was evaluated for 

three separate years in each county that were randomly selected to represent a low, average, 

and high yielding seasons. Evaluation of the model indicated that the simulated peanut 

maturity dates agreed well with observed values, which was indicated by a R2 value of 0.83 

and values of RMSE, NRMSE, and MAPE of 5 days, 0.04 and 4%, respectively (Figure 3.2b). 

Table 3.5 and Figure 3.2c and d show the simulated and observed yields for fourteen 

seasons and five counties after soil and cultivar coefficient calibration. Overall, the model 

gave a very good simulation of yields across the peanut belt. The calibrated model accurately 
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simulated the inter-annual variability of yields with an overall R2 of 0.73. The overall RMSE, 

NRMSE and MAPE were 333 kg/ha, 0.09 and 8%, respectively, which is very good for large-

scale simulation (Figure 3.2c). The overall model efficiency (E) was 0.73, which indicated 

that the model was a much better predictor of seasonal yields than the observed mean yields 

(Table 3.5). The final evaluation results confirmed a good yield simulation for independent 

years resulting from the model calibration method. The model simulation accuracy for yield 

was high with an overall R2 of 0.76, RMSE of 429 kg/ha, NRMSE of 0.12 and MAPE of 10% 

(Figure 3.2d). The E was 0.71 further indicating the predictive skill of the model was high 

(Table 3.5). 

The R2 index for the calibration and evaluation years of individual counties was larger 

than 0.57 except for Santa Rosa and Worth Counties (Figure 3.3a, e, f). The indicators RMSE 

(range: 169 kg/ha to 440 kg/ha), NRMSE (range: 0.06 to 0.12) and MAPE (range: 5% to 11%) 

were reasonable for the calibration years for all five counties. For the evaluation years, the 

RMSE (range: 210-624 kg/ha), NRMSE (range: 0.06-0.18) and MAPE (range: 5%-16%) 

confirmed that the model estimated the peanut growth and yields reasonably well in 

individual counties. All of the E values were positive for both calibration and evaluation 

years, which further indicated a good model efficiency (Table 3.5). In this study, we found 

that the model underestimated high-level yields and overestimated low-level yields in some 

counties (e.g., Figure 3.3e, d). However, there were many years and counties where the 

simulation agreed very well with the observations, giving both higher R2 and lower RMSE, 

NRMSE and MAPE (e.g., Figure 3.3c, h, j).  
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3.4.3 Model Applications for Climate Change Impacts  

A case study was conducted to demonstrate the potential use of the county level 

calibration and evaluation procedure to study the impact of climate change on peanut 

production and potential irrigation water requirement at county scale (Figure 3.4 and Table 

3.6). The calibrated CROPGRO-Peanut model was used to estimate the peanut rainfed and 

irrigated yields, seasonal ET, and irrigation amount for the baseline (2006-2019) and future 

periods (2050s and 2080s) under RCP 4.5 and 8.5 climate scenarios. Fourteen replicates of 

RCP 4.5 and 8.5 weather data were compared to 14 seasons of historical weather data 

(baseline, 2006-2019) in order to evaluate the statistical significance of changes in yield.  

For future climate scenarios using current varieties and management practices, simulated 

rainfed yields decreased from 1.4%-37.4% under RCP 4.5 and 8.5 scenarios relative to the 

baseline period in four counties (Table 3.6), which was caused by the significant negative 

impacts of increased future temperature (Figure 3.4a, b). In contrast, simulated rainfed yields 

increased (range: 28.2%-42.4%) for Martin County, NC (Table 3.6), which would benefit 

from increasing temperature (Figure 3.4a, b). However, these rainfed yield changes were not 

statistically significant for all the RCPs and climate scenarios which was probably due to mix-

effects of the projected increasing temperature, rainfall, and CO2 levels. Relative to the 

baseline, there was no significant difference in rainfed ET under different climate scenarios 

for Houston, Worth, and Orangeburg Counties. A significant increase (p< 0.05, range: 6.4%-

17.2%) in rainfed ET was observed for future climate scenarios in both Santa Rosa and Martin 

Counties (Table 3.6).    
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The response of peanut yield to climate change scenarios under irrigation conditions was 

also simulated. A significant increase (p< 0.05, range: 8.5%-61.8%) of irrigated yield was 

observed in Santa Rosa, Houston and Martin Counties (Table 3.6). For Worth and Orangeburg 

Counties, the projected irrigated yield (Range: -8.5%-2.7%) varied around the baseline yield, 

with the highest decline occurring in the year 2080s under RCP 8.5 due to the significant 

negative effects of higher daytime temperature (Figure 3.4d, e). The irrigated ET for all 

counties showed a consistent significant increase (p< 0.05, range: 7.0%-26.8%) under both 

RCP 4.5 and 8.5 in future periods (2050s and 2080s), which had significant positive 

correlation with irrigated yields (Figure 3.4h). The irrigation water requirement for Santa 

Rosa, Houston and Worth Counties was projected to increase significantly (p< 0.05, range: 

33.6%-220.5%) under future periods compared with the baseline periods in order to maximize 

yields. However, there was no significant difference observed in Orangeburg and Martin 

Counties related to irrigation amount (Table 3.6). For drier counties (e.g., Worth and 

Orangeburg Counties) with relatively lower seasonal rainfall and increasing temperature, a 

larger amount of irrigation water (Range: 161-330 mm) was required in the baseline and 

future periods in order to maximize yields, especially under the RCP 8.5 scenarios. While, for 

wet counties with consistently higher seasonal rainfall (e.g., Santa Rosa and Martin Counties), 

a less irrigation amount (Range: 60-167 mm) during growth period can achieve higher peanut 

yields in the future (Table 3.6). 

3.5 Discussion 
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The focus of this research was to determine if one set of soil properties and cultivar 

coefficients could be calibrated to represent county scale peanut production. One challenge is 

that much uncertainty exists at the county scale in the distribution of crop varieties, soil 

properties, weather conditions, crop management practices and diseases within a county. The 

calibration strategy developed in our work provided excellent simulations of peanut growth 

duration and county-level yields, which could potentially be used for climate change studies 

(Jin et al., 2018; Huang et al., 2019; Wang et al., 2020). 

3.5.1 Model Performance and Sources of Uncertainties 

Unlike other crops, genetic diversity in commercial peanut varieties is limited. There 

were a limited number of peanut varieties available for planting, with Georgia 06G 

dominating the market in the Southeastern USA since 2006 (Brown et al., 2005; Branch and 

Culbreath, 2018). Therefore, the cultivar coefficients of Georgia 06G (Runner) was selected 

as the initial model inputs for our study period and was extracted from previous research 

(Prostko et al., 2012; Re et al., 2020). The approach in this work assumed that we could 

develop a set of representative cultivar coefficients that represented the inter-annual yield 

response of the mix of cultivars planted in each county. Adjustments made by the optimizer 

reflected the uncertainty in varieties planted within each county. Thus, the calibrated 

representative cultivar coefficients represented a composite of all varieties planted, harvested, 

and reported in the NASS datasets (Suriharn et al., 2011; Putto et al., 2013; Narh et al., 2015).  

Counties are comprised of many different soil types with different soil properties. 

Peanuts are usually planted in sandy or loamy sand soil with limited water holding capacity in 
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the Southeastern USA (Devi et al., 2013; Mylavarapu et al., 2014). Therefore, soil water 

availability was a dominant factor controlling peanut growth and inter-annual variation of 

peanut yield in this region (Huang et al., 2021). Water stress in the CROPGRO-Peanut model 

is a function of available soil water determined by the difference between the drained upper 

limit (DUL), lower limit (LL), thickness of a soil layer and the root length volume of roots in 

each soil layer. Water stress occurs when the evapotranspiration demand exceeds the root 

water uptake. To account for different soil types within the county, the soil parameter PASW 

was used to adjust the lower limit (LL) uniformly across soil layers to increase or decrease 

water holding capacity and ultimately, the pattern of water stress (Singh et al., 2012). In the 

model, root length density in each soil layer governs how much water can be taken up from 

that soil layer to satisfy transpiration demand. An optimization parameter, RHRF, was 

incorporated into the model to adjust the soil root growth factor (SRGF) in each soil layer 

below 60 cm in a linear fashion. Several studies have reported the need to modify the SRGF 

distributions to calibrate soil water content and enhance drought tolerance of crop cultivars 

(Singh et al., 2014; Battisti et al., 2017). Our results show that the values for SRGF below 60 

cm had to be increased in deeper soil layers to increase rooting depth and distribution (Table 

3.4). This was required to simulate inter-annual drought patterns that minimized error between 

simulated and observed yield. Some peanut cultivars grown under sandy soils and drought 

conditions have been reported to develop roots more quickly to reach moisture deeper in the 

soil profile (Songsri et al., 2008). 
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The crop model has a soil fertility coefficient that is used to reduce daily photosynthesis 

resulting from poor fertility, or sub-optimum pH. The soil fertility factor (SLPF) is a 0 to 1 

factor that affects the rate of daily photosynthesis and biomass production and accounts for 

the site-specific soil nutrient effects other than nitrogen (Narh et al., 2015). In this work, the 

optimizer found values for SLPF for each county that minimized error between simulated and 

observed yields. SLPF values ranged from 0.6 for Houston County to 0.8 for Santa Rosa and 

Martin Counties. Soils in the Southeastern USA were generally formed with abundant rainfall 

under temperate forests. Many soils in this region are acidic and low in fertility (Mylavarapu 

et al., 2014). The values of SLPF in this work were consistent with SLPF values reported 

before, where an SLPF value was 0.5 for low fertility soils and 1.0 for highly fertile soils 

(Jones et al., 1989; Narh et al., 2015).     

The input parameters for management practices such as sowing and harvesting dates, 

population, and irrigation and fertilizer dates and amount are not available at the county level. 

Farmers follow different crop management practices depending on their soil, climate, and 

socio-economic conditions. The assumption of uniform crop management across a county can 

introduce errors for some years and counties (e.g., Figure 3.3e, d) (Manivasagam and 

Nagarajan, 2018). In addition to this, tomato spotted wilt, early and late leaf spot, stem and 

root rot, and white mold are commonly endemic diseases for peanuts planted in the 

Southeastern USA, which was not simulated by crop model (Branch and Brenneman, 2009; 

Branch and Fletchler, 2017; Standish et al., 2019). It is likely that the calibration of soil 

parameters SLPF mostly accounted for these unknown factors in each county. 
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3.5.2 Applications of Model for Climate Impacts Assessment  

The case study demonstrated the potential use of this method of county-level model 

calibration to be used to evaluate future peanut production and potential irrigation demand 

under different climate change scenarios. If future production systems in the Southeastern 

USA remain non-irrigated with current varieties and management, most of the counties will 

experience a slight decline in yield, which is primarily due to future daytime temperatures 

frequently exceeding the optimum temperatures for peanuts (Figure 3.4a, b) (Vara et al., 2003; 

Eck et al., 2020; Shin et al., 2020). However, rainfed yield in Martin County would benefit 

from the increasing temperature because it is located in a relatively cooler climate zone that 

could potentially benefit from increased temperatures and rainfall in the future (Table 3.2, 

Figure 3.4a-c). Using the automatic irrigation strategy in the crop model, we determined the 

potential yield under optimum irrigation for the different climate change scenarios. Irrigation 

could potentially offset the negative impacts of heat and drought stress under climate change, 

which would significantly increase the yield under future climate scenarios in most of the 

counties (Figure 3.4i) (Lobell and Bonfils, 2008; Adhikari et al., 2016). To accomplish this, 

irrigation amount would have to increase in the future to cope with the significant increase in 

seasonal temperature and ET (Kothari et al., 2019). However, the actual irrigation demand 

varied among the five counties in the future scenarios, which can be attributed to spatial 

variability of seasonal rainfall and soil conditions across the Southeastern USA (Figure 3.4, 

Table 3.A1). Overall, supplemental irrigation during drought stress is critical to produce high 
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yield and top-quality peanuts under future climate change scenarios in the Southeastern 

Coastal Plain in the USA. 

3.6 Conclusions  

Simulating crop yield at the county scale is important for yield forecasting and studying 

the impact of climate change on production. Previous studies have shown that it is difficult to 

calibrate crop models for historical county-level yields over multiple seasons due to 

uncertainty or unavailability of many model inputs. The goal of this work was to determine if 

a single representative variety and soil type could be calibrated to simulate the long term inter-

annual yield response of peanuts, and to evaluate the irrigation water demand under different 

climate change scenarios. Five major peanut producing counties across the Southeastern 

Coastal Plain in the USA peanut belt were selected to test this concept. Eleven cultivar 

coefficients and three soil parameters were calibrated using about eleven seasons of historical 

NASS data. The calibrated cultivar coefficients and soil parameters were evaluated using 

three additional seasons of data. Overall, the model simulated the peanut growth duration and 

county-level yields reasonably well for both calibrated and evaluated seasons, with high 

values of R2 and low values of model errors (e.g., RMSE, NRMSE, MAPE). A case study was 

conducted using the calibrated model to evaluate the benefit of increasing irrigation water use 

for maintaining higher peanut production by reducing the negative impacts of climate change 

across the Southeastern USA. It was found that irrigation could mitigate the impact of climate 

change under different climate scenarios. The model calibration strategy developed in this 

study could be potentially used for other applications such as yield forecasting.         
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Figure 3.1 Study sites for the main peanut producing counties in each state in the 

Southeastern Coastal Plains, USA. 
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Table 3.1 Study sites, major peanut varieties, management practices and data resources for model simulation. 

County/State 
Major 

variety 

Sowing 

date 

Maturity 

date 

Density 

(plf/m2) 

Years used for 

calibration 

Years used for 

evaluation 

Daily 

weather 

Soil 

properties 

Peanut 

phenology 

Observed 

county yield 

Santa Rosa, FLa Georgia 06G 4/25-5/30 9/10-11/30 13 
2007-2009, 2011-2015, 

2017-2018 

2006, 2010, 

2016 

NWS-COPg 

gSSURGOh; 

SoilGrids for 

DSSAT 

 

USDAi-NASSj; 

USDA-RMAk 

 

 

USDA-NASS 

Houston, ALb Georgia 06G 4/25-5/25 9/22-10/22 13 
2006-2009, 2011, 2013, 

2015-2017 

2010, 2012, 

2014 

Worth, GAc Georgia 06G 5/6-5/31 9/25-10/31 13 
2006-2007, 2009-2012, 

2014, 2016-2019 

2008, 2013, 

2015 

Orangeburg, SCd Georgia 06G 4/25-5/15 10/2-11/1 13 
2006-2009, 2011-2013, 

2016-2019 

2010, 2014, 

2015 

Martin, NCe Georgia 06G 5/10-5/30 10/10-10/30 13 
2006-2009, 2012-2016, 

2018-2019 

2010, 2011, 

2017 

a. Florida; b. Alabama; c. Georgia; d. South Carolina; e. North Carolina; f. Plants number; g. National Weather Service-Cooperative Observer 

Program; h. Gridded Soil Survey Geographic database; i. United States Department of Agriculture; j. National Agricultural Statistics Service; k. 

Risk Management Agency. 
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Table 3.2 Baseline and projected mean maximum temperature (Tmax), minimum temperature 

(Tmin), total precipitation (P) and atmospheric CO2 concentration (CO2) during the peanut 

growing season (from sowing to maturity) for top peanut producing counties of each state 

across the Southeastern USA. 

County/State  Climate scenario Na Tmax (◦C) Tmin (◦C) P (mm) CO2 (ppm) 

Santa Rosa, FL Baseline (2006-2019) 14 32.1 20.8 655 380 

RCP 4.5 (2050s) 14 33.9 22.4 758 487 

RCP 8.5 (2050s) 14 34.4 23.0 691 541 

RCP 4.5 (2080s) 14 34.4 22.8 739 531 

RCP 8.5 (2080s) 14 35.8 24.3 685 758 

Houston, AL Baseline (2006-2019) 14 31.8 21.2 543 380 

RCP 4.5 (2050s) 14 34.0 21.2 660 487 

RCP 8.5 (2050s) 14 34.5 21.8 632 541 

RCP 4.5 (2080s) 14 34.4 21.6 685 531 

RCP 8.5 (2080s) 14 36.0 23.1 599 758 

Worth, GA Baseline (2006-2019) 14 32.7 21.4 431 380 

RCP 4.5 (2050s) 14 34.4 22.0 473 487 

RCP 8.5 (2050s) 14 34.9 22.6 480 541 

RCP 4.5 (2080s) 14 34.9 22.4 502 531 

RCP 8.5 (2080s) 14 36.4 23.9 465 758 

Orangeburg, SC Baseline (2006-2019) 14 32.4 19.7 495 380 

RCP 4.5 (2050s) 14 33.7 21.1 620 487 

RCP 8.5 (2050s) 14 34.2 21.7 612 541 

RCP 4.5 (2080s) 14 34.1 21.5 619 531 

RCP 8.5 (2080s) 14 35.7 23.0 610 758 

Martin, NC Baseline (2006-2019) 14 30.1 19.6 603 380 

RCP 4.5 (2050s) 14 31.4 19.6 730 487 

RCP 8.5 (2050s) 14 31.8 20.1 669 541 

RCP 4.5 (2080s) 14 31.7 20.0 696 531 

RCP 8.5 (2080s) 14 33.3 21.4 656 758 

a. Sample numbers. 



 

110 

 

Table 3.3 List of cultivar coefficients and soil parameters in the CROPGRO-Peanut model used for model calibration. 

Variable Units 
 Lower 

bound 

Upper 

bound 
Definition of variable References 

Cultivar coefficients 

EM-FL Photothermal days  15 28 Time between plant emergence and flower appearance 

Suriharn et al., 2011; 

Ma et al., 2020 

FL-SH photothermal days  5 11 Time between first flower and first pod 

FL-SD photothermal days  16 25 Time between first flower and first seed 

SD-PM photothermal days  50 85 Time between first seed and physiological maturity 

LFMAX mg CO2/ (m2 s)  1 1.5 Maximum leaf photosynthesis rate at 30 ◦C, 350 vpm CO2, and high light 

SLAR cm2/g  230 290 Specific leaf area of cultivar under standard growth conditions 

SIZELF cm2  16 21 Maximum size of full leaf (three leaflets) 

XFRT -  0.57 1.00 Maximum fraction of daily growth that is partitioned to seed + shell 

WTPSD g  0.36 1.20 Maximum weight per seed 

SFDUR photothermal days  23 46 Seed filling duration for pod cohort at standard growth conditions 

PODUR photothermal days  14 34 Time required for cultivar to reach final pod load under optimal conditions 

Soil parameters 

PASW -  -40 40 Percent available soil water 

Jones et al., 2003;  

Ma et al., 2009 
RHRF -  -0.1 0 Root hospitality reduction factor 

SLPF -  0 1.0 Soil fertility factor 
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Figure 3.2 Simulated and observed maturity dates, harvest yields for the top peanut producing 

counties in each state across the Southeastern USA. Figures a and c show the final calibration 

(CA) results while figures b and d show the final evaluation (EV) results for all the counties. All 

yields were converted to 0% moisture. The dashed line and solid line represent the 1:1 line and 

regression trend line, respectively.  
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Table 3.4 Representative cultivar coefficients and soil parameters calibrated for each county. 

County/State 

Cultivar coefficients   Soil parameters 

EM-FL 

(Pda) 

FL-SH 

(Pd) 

FL-SD 

(Pd) 

SD-PM 

(Pd) 

LFMAX (mg 

CO2/ (m2 s)) 

SLAR 

(cm2/g) 

SIZELF 

(cm2) 
XFRT WTPSD 

(g) 

SFDUR 

(Pd) 

PODUR 

(Pd) 
PASW RHRF SLPF 

Santa Rosa, FL 21.3 11.0 17.6 60.4 1.49 290 20.6 1.00 0.807 36.6 16.9 -18.5 -0.001 0.8 

Houston, AL 27.5 6.8 16.0 78.0 1.31 268 20.8 1.00 0.360 45.9 14.0 24.8 -0.012 0.6 

Worth, GA 18.1 7.0 18.0 69.2 1.50 230 20.7 1.00 0.395 32.7 25.3 39.8 -0.005 0.7 

Orangeburg, SC 16.9 11.0 16.0 64.9 1.50 276 21.0 1.00 1.200 36.8 27.9 36.8 -0.004 0.7 

Martin, NC 18.3 7.7 16.2 73.5 1.50 230 16.0 1.00 1.200 32.1 22.2 0.50 -0.001 0.8 

a. Photothermal days
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Figure 3.3 Calibration and evaluation results for top peanut producing counties in each state 

across the Southeastern USA. Figures a, c, e, g, and i show the final calibration (CA) results 

while figures b, d, f, h, and j show the final evaluation (EV) results. All yields were converted to 

0% moisture. The dashed line and solid line represent the 1:1 line and regression trend line, 

respectively.  
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Table 3.5 Results of the CROPGRO-Peanut model calibration and evaluation for simulating 

NASS reported county-level yields in top peanut producing counties of each state across the 

Southeastern USA. 

County/State Nc R2 RMSE (kg/ha) NRMSE MAPE E 

CAa 
      

Santa Rosa, FL 10 0.36 440 0.11 9% 0.36 

Houston, AL 9 0.90 169 0.06 5% 0.90 

Worth, GA 11 0.34 422 0.12 11% 0.34 

Orangeburg, SC 11 0.57 269 0.07 7% 0.55 

Martin, NC 11 0.66 273 0.07 6% 0.59 

Overall 52 0.73 333 0.09 8% 0.73 

EVb 
      

Santa Rosa, FL 3 0.86 365 0.10 7% 0.79 

Houston, AL 3 0.79 514 0.18 16% 0.60 

Worth, GA 3 0.11 624 0.16 15% 0.03 

Orangeburg, SC 3 0.87 210 0.06 5% 0.64 

Martin, NC 3 0.99 300 0.08 8% 0.83 

Overall 15 0.76 429 0.12 10% 0.71 

a. Calibration; b. Evaluation; c. Sample numbers.   
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Figure 3.4 Correlation between growing season mean maximum temperature (Tmax), minimum 

temperature (Tmin), total precipitation (P), evapotranspiration (ET), irrigation amount and 

simulated peanut yields in the baseline and future periods across the Southeastern USA. Figures 

a, b, c, and g show the correlation for rainfed yield while figures d, e, f, h, and i show the 

correlation for irrigated yield. The solid line represents the regression trend line. ns Not 

significant. * Significant at 0.05 level. ** Significant at 0.01 level. *** Significant at 0.001 level.  
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Table 3.6 Effects of climate scenarios on simulated rainfed and irrigated yields, seasonal 

evapotranspiration (ET), and irrigation amount in top peanut producing counties of each state 

across the Southeastern USA. Mean values with the same letter are not significantly different at 

p< 0.05 based on Tukey’s test. 

County/State  Climate scenario Na 
Rainfed yield 

(kg/ha) 

Rainfed 

ET (mm) 

Irrigated yield 

(kg/ha) 

Irrigated 

ET (mm) 

Irrigation 

amount (mm) 

Santa Rosa, FL Baseline (2006-2019) 14 3926a 465b 4553b 494c 60b 

RCP 4.5 (2050s) 14 3789a 515ab 5219ab 577ab 103ab 

RCP 8.5 (2050s) 14 3552a 495ab 5219ab 568b 123a 

RCP 4.5 (2080s) 14 3870a 514ab 5281ab 576ab 109ab 

RCP 8.5 (2080s) 14 3920a 545a 5763a 621a 125a 

Houston, AL Baseline (2006-2019) 14 2571a 484a 3261b 533c 82c 

RCP 4.5 (2050s) 14 1994a 469a 3537b 585bc 109c 

RCP 8.5 (2050s) 14 2057a 470a 4029b 600ab 122c 

RCP 4.5 (2080s) 14 2279a 477a 4089b 600ab 194b 

RCP 8.5 (2080s) 14 1904a 476a 5276a 650a 261a 

Worth, GA Baseline (2006-2019) 14 3714a 474a 6442ab 573c 189b 

RCP 4.5 (2050s) 14 3479a 511a 6619a 662b 272a 

RCP 8.5 (2050s) 14 3002a 506a 6390ab 675ab 287a 

RCP 4.5 (2080s) 14 3555a 521a 6511a 670b 258ab 

RCP 8.5 (2080s) 14 2323a 519a 5897b 726a 330a 

Orangeburg, SC Baseline (2006-2019) 14 3983a 484a 6145a 582c 161a 

RCP 4.5 (2050s) 14 3898a 539a 6256a 645b 178a 

RCP 8.5 (2050s) 14 3703a 540a 6057a 662ab 194a 

RCP 4.5 (2080s) 14 3917a 547a 6181a 658ab 183a 

RCP 8.5 (2080s) 14 3210a 548a 5714a 696a 229a 

Martin, NC Baseline (2006-2019) 14 3765a 506b 5627c 601b 163a 

RCP 4.5 (2050s) 14 5359a 567a 7039b 644a 133a 

RCP 8.5 (2050s) 14 4909a 550ab 7265b 643a 158a 

RCP 4.5 (2080s) 14 5249a 559ab 7343ab 649a 147a 

RCP 8.5 (2080s) 14 4824a 555ab 7857a 661a 167a 

a. Sample numbers. 
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Table 3.A1 Soil profile characteristics for top peanut producing counties in each state across the 

Southeastern USA. 

Soil depth 
(cm) 

LL 
(mm/mm) 

DUL 
(mm/mm) 

SAT 
(mm/mm) 

SRGF 
BD 
(g/cm3) 

Org. C 
(%) 

Clay 
(%) 

Silt 
(%) 

Total N 
(%) 

pH 

Santa Rosa, FLa 

0-5 0.15 0.24 0.39 1.0 1.46 2.18 20.6 33.8 0.12 5.1 

5-15 0.16 0.26 0.40 1.0 1.48 1.85 22.5 32.9 0.09 5.2 

15-30 0.17 0.27 0.40 1.0 1.51 1.41 24.9 31.7 0.07 5.3 

30-60 0.19 0.29 0.41 1.0 1.56 0.90 27.4 30.4 0.06 5.4 

60-100 0.19 0.28 0.41 1.0 1.62 0.52 27.2 29.8 0.05 5.5 

100-200 0.17 0.27 0.40 0.9 1.67 0.30 25.5 29.5 0.05 5.7 

Houston, ALb 

0-5 0.12 0.27 0.40 1.0 1.51 1.68 24.3 34.8 0.12 5.3 

5-15 0.13 0.29 0.41 1.0 1.53 1.42 26.3 33.9 0.09 5.3 

15-30 0.14 0.30 0.41 1.0 1.56 1.09 29.0 32.7 0.07 5.4 

30-60 0.16 0.32 0.42 1.0 1.61 0.70 31.4 31.3 0.06 5.5 

60-100 0.16 0.32 0.42 0.5 1.67 0.41 31.4 30.6 0.05 5.7 

100-200 0.15 0.30 0.41 0.0 1.72 0.23 29.6 30.3 0.05 5.9 

Worth, GAc 

0-5 0.07 0.23 0.39 1.0 1.60 1.84 19.2 33.1 0.12 5.0 

5-15 0.08 0.24 0.39 1.0 1.62 1.56 21.0 32.3 0.09 5.1 

15-30 0.09 0.26 0.40 1.0 1.65 1.19 23.5 31.1 0.07 5.2 

30-60 0.11 0.27 0.40 1.0 1.70 0.76 25.6 29.9 0.06 5.3 

60-100 0.11 0.27 0.40 0.8 1.76 0.44 25.7 29.2 0.05 5.5 

100-200 0.10 0.26 0.40 0.3 1.81 0.25 24.1 28.9 0.05 5.6 

Orangeburg, SCd 

0-5 0.07 0.24 0.39 1.0 1.52 2.18 19.3 36.1 0.12 5.2 

5-15 0.08 0.25 0.40 1.0 1.54 1.84 21.1 35.1 0.09 5.3 

15-30 0.10 0.27 0.40 1.0 1.57 1.41 23.7 33.9 0.07 5.4 

30-60 0.11 0.28 0.41 1.0 1.62 0.90 26.0 32.6 0.06 5.5 

60-100 0.11 0.28 0.40 0.8 1.68 0.52 25.9 32.0 0.05 5.6 

100-200 0.10 0.27 0.40 0.5 1.73 0.30 24.3 31.6 0.05 5.8 

Martin, NCe 

0-5 0.11 0.23 0.39 1.0 1.54 2.72 17.7 34.5 0.12 5.1 

5-15 0.12 0.24 0.39 1.0 1.56 2.30 19.5 33.7 0.09 5.2 

15-30 0.13 0.25 0.40 1.0 1.59 1.75 22.0 32.5 0.07 5.3 

30-60 0.15 0.27 0.40 1.0 1.64 1.12 24.3 31.3 0.06 5.4 

60-100 0.15 0.26 0.40 1.0 1.70 0.65 24.2 30.6 0.05 5.5 

100-200 0.14 0.25 0.40 0.9 1.75 0.38 22.5 30.3 0.05 5.7 

a. Florida; b. Alabama; c. Georgia; d. South Carolina; e. North Carolina. 
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Chapter 4. Combining genomics and crop modelling to simulate maize (Zea mays L.) yield 

and its component traits 

4.1 Abstract  

Simulation of the adaptive capacity of existing and new germplasms using process-based 

crop model and genetic information can efficiently assist in determining the potential of well-

adapted genotypes for target environments. To achieve the integration of genomic prediction 

with crop modelling, we developed an integrated marker-based modelling approach by detecting 

associated genetic markers for essential model input parameters and incorporating the genetic 

effects of these associated markers into CERES-Maize model. The performance of the marker-

based modelling in simulating yield and its component traits was tested using four observed sub-

datasets including: (i) observed genotypes grown in observed environments; (ii) observed 

genotypes phenotyped in new environments; (iii) new genotypes in characterized environments; 

and (iv) new genotypes in new environments. One outcome of this study is to improve marker-

based modelling and the prediction of genotype performance for plant breeding. The marker-

based model in this study reasonably simulated the anthesis date, kernel number, kernel weight 

and yield for all four sub-datasets. Another outcome is to assist in quantitatively assessing the 

effect of genes by explicitly accounting for genotype by environment interactions. The prediction 

performance of marker-based modelling was either affected by new genotypes or new 

environments depending on the traits being simulated. Several limiting factors for marker-based 

modelling need to be considered, including phenotyping traits and environments, marker effects, 

statistical methods, and model input parameters. Breeding programs could further exploit 

marker-based modelling to predict adaptation in diverse environmental and management 

conditions for new genotypes before they are globally distributed for multilocation yield testing. 
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Keywords: Genomic prediction; Marker-based modelling; Genotype–environment interactions; 

Yield; Zea mays L 

4.2 Introduction 

Maize (Zea mays L.) is one of the most important global staple crops, and is planted over 

most of China owing to its adaptation to a wide range of temperatures and precipitation regimes 

(Xiong et al., 2007). Maize is also one of the most diverse crop species and used as a model plant 

in genetic studies (Liu et al., 2020). Breeding efforts have focused on detecting maize functional 

genes with an expectation to accelerate genetic improvement. These discovered functional genes 

and favorable alleles provide a firm basis for further yield improvement through marker-assisted 

selection or genetic transformation of crops (Gu et al., 2014). To select the desired traits for 

ideotypes, breeders cross a panel of breeding materials with the favorable alleles for multiple 

generations at multiple sites, which can be time-consuming and labor-intensive (Xiao et al., 

2021). Most agronomic traits are genetically complex and substantial genotype by environment 

(G × E) interactions under long-term climate impedes the breeding process (Ravi et al., 2011).  

Accurate phenotype prediction using genomic data is important for plant breeding and 

management because it facilitates the design and selection of new genotypes (G). Genomic 

prediction (GP) models using genome-wide markers simultaneously as predictor variables have 

been effective solutions to predict hybrid performance for plant breeding (Xiao et al., 2021). GP 

has the potential to accelerate the breeding process, reduce the cost of inbred line and hybrid 

development, maintain genetic diversity, and improve complex traits with low heritability 

(Heslot et al., 2012). Direct statistical GP models aim to construct a statistical model for 

predicting phenotype using whole-genome DNA markers jointly. Statistical methods reported for 

GP models can be classified into three main categories: parametric methods (e.g., GBLUP, RR-
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BLUP, LASSO); semiparametric methods (e.g., RKHS); and machine learning methods (e.g., 

SVM, Random Forest). Both additive effects and nonadditive (dominance and epistasis) effects 

have been incorporated in those GP models (Crossa et al., 2017). Although GP models aim to 

predict phenotypes based on whole-genome markers, current progress for predicting phenotypes 

of plants using genetic information alone has reached a bottleneck. It is quite difficult to predict 

phenotypes of complex physiological and quantitative traits in diverse environments (E) because 

of the G × E interaction (Hu et al., 2019). A GP model has no explicit environmental inputs so it 

cannot be used to predict the performance of a new genotype in a new environment (Onogi et al., 

2016). 

Another approach for phenotype prediction is a systematic modelling approach known as 

process-based crop modelling. Crop simulation models have been commonly used to evaluate 

genetic improvement and support the breeding of target traits (Boote et al., 2021). These include 

assisting with multi-environment evaluation of advanced peanut breeding lines, assessing the 

adaptation of a new genotypes to a region, understanding the G × E interactions, identification 

and evaluation of desirable traits, and designing an ideotype for a target environment (Boote et 

al., 2001; Suriharn et al., 2007; Tardieu and Tuberosa 2010; Narh et al., 2015). Recognizing the 

potential for incorporating genetic information with process-based crop models, Technow et al. 

(2015) proposed an integrated statistical approach to combine GP models with crop modelling 

for predicting the grain yield of maize. Following the integrated approach, Onogi et al. (2016) 

directly linked an eco-physiological model for rice heading date with a GP model and 

simultaneously inferred the model input parameters and genome-wide marker effects on the 

parameters. Oliveira et al. (2021) integrated a dynamic statistical gene-based module into the 

CSM-CROPGRO-Drybean model to accurately predict the time of first flower appearance. The 
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predictions of these integrated models would be expected to be more accurate and robust than the 

direct statistical GP model. However, the integrated approach is statistically more challenging 

(Onogi et al., 2016). 

A straightforward way (two-step approach) to use GP with crop modelling is to predict the 

model input parameters using GP methods. Based on estimated marker effects, phenotypes of 

untested breeding lines in untested environments can be simulated via the prediction of model 

parameter values. This ‘marker-based modelling’ approach can dissect complex traits into 

physiologically relevant component traits, integrate effects of significant QTLs on the 

component traits over time and space at the whole-plant level and predict a complex trait of 

various allele combinations under different climatic scenarios (Gu et al., 2014). This ‘marker-

based modelling’ approach has been carried out in several crop species, for both simple 

morphological and complex physiological and quantitative traits, using either measured or 

optimized parameters, such as leaf elongation rate and kernel number in maize (Chenu et al., 

2008; Amelong et al. 2015); flowering time in wheat (White et al., 2008); canopy cover 

dynamics and tuber bulking in potato (Khan et al., 2019a; 2019b); tomato fruit sugar 

concentration (Prudent et al., 2010); and photosynthesis and transpiration efficiency in rice 

leaves (Gu et al., 2012a, 2012b).  

A major challenge for marker-based modelling is to accurately predict phenotypic 

differences for various genotypes grown in diverse environments, which can include (i) observed 

genotypes phenotyped in new environments; (ii) new genotypes in characterized environments; 

and (iii) new genotypes in new environments. Most previous studies linking crop modelling with 

genetic information were conducted on bi-parental mapping populations with one environment 

representing only a small part of the available genetic diversity and environmental variability. To 
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improve grain yield further, a deeper understanding of the physiologically relevant component 

traits contributing to grain yield, and the interaction between genotypes with the environments is 

important. The goal of this work were to 1) identify associated genetic markers for essential 

model input parameters of the CERES-Maize model; 2) estimate model parameters through 

conventional model optimization and marker-based statistical prediction; 3) demonstrate 

potential applications of the marker-based crop modelling as a breeding tool for studying the G × 

E interactions. 

4.3 Materials and methods 

4.3.1 Plant Material and Field Experiments 

 Plant material consisted of 282 maize lines developed from the Complete-diallel design 

plus Unbalanced Breeding-like Inter-Cross (CUBIC) population, as previously reported by Liu et 

al. (2020) and Luo et al. (2020). These maize lines were derived from the crossing of 1428 

maternal lines with the Zheng58 and Jing724 testers, which have diverse genetic backgrounds 

covering six heterotic groups: Reid, Lancaster, waxy, tropic, P-population, and X-population 

germplasm (Xiao et al., 2021). Field trials were conducted in the year 2014 and 2015 at five sites 

distributed in the major maize producing areas in Northern China to collect field-measured 

phenotypic data including anthesis date, kernel number, kernel weight, and grain yield, and to 

detect significant markers associated with these traits (Liu et al., 2020). The five sites had 

various environmental growing conditions with different soil types, water treatments, and 

weather conditions (Table 4.1).  

To derive crop model input parameters (Table 4.2), two of the five sites located in 

Xinxiang, Henan province (HN, 35.2° N, 113.8° E) and Baoding, Hebei province (HB, 38.7° N, 

115.8° E) were selected in this study for CERES-Maize model calibration and evaluation. The 
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maize lines were planted with a completely randomized design. About 17 individual plants were 

planted in a row for each inbred line or F1 hybrid, as described by Xiao et al. (2021). Plots were 

planted in early June and harvested in middle October of each year at both sites. Irrigation and 

agronomic management practices followed best management practices for maize at local 

agricultural experimental stations. Plots were kept free of water stress, nutrient stress, weeds, 

insects, and diseases. 

4.3.2 Weather, Soil and Phenotypic Data 

The CERES-Maize model, which is distributed with DSSAT v4.7 (Hoogenboom et al., 

2019), requires daily weather data including daily maximum/minimum air temperature, solar 

radiation, and precipitation. The required weather data for each site in year 2014 and 2015 were 

obtained from China meteorological Administration (http://data.cma.cn). The model also 

required soil profile data including lower limit (LL), drained upper limit (DUL), saturated water 

holding capacity (SAT), root growth factor (SRGF), bulk density (BD), soil organic carbon (Org. 

C), clay, silt, total nitrogen (Total N) and pH in different soil layers in the top 200 cm. These soil 

data for each soil type at each site were taken from the China Soil Scientific Database 

(http://www.soil.csdb.cn/) and from the global SoilGrids dataset with a spatial resolution of 1 km 

or 250 m (Hengl et al., 2014, 2017).  

The phenotypic data collected in 2014 and 2015 include three representative agronomic 

traits: days to anthesis (DTA), measured as the interval from sowing to the day of pollen shed for 

half of the individuals; kernel number per ear (KNPE) and kernel weight per ear (KWPE), 

measured as the average kernel number and weight of five fully formed ears in the middle of 

each row to avoid edge effects within the plots. The kernel number, kernel weight and grain yield 

were measured at the harvest maturity stage.  

http://data.cma.cn/
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4.3.3 Procedure for Estimating Crop Model Input Parameters Using Markers 

To achieve the objectives of the marker-based crop modelling, we followed a pair-wise 

methodology (Figure 4.1). The individual steps are described in the following sections. 

4.3.3.1 Conventional Model Parameters, Model Calibration and Evaluation 

A set of conventional genotype-specific model parameters (Table 4.2) for each maize line 

was determined based on field-measured data collected in the two-year experiment at HN and 

HB. These model input parameters, covering various phenological characteristics, reproductive 

growth and leaf appearance of the maize, are: P1 (Degree days from emergence to end of 

juvenile phase), P2 (Photoperiod sensitivity coefficient), P5 (Degree days from silking to 

physiological maturity), G2 (Potential kernel number), G3 (Potential kernel growth rate), and 

PHINT (Phyllochron interval). The field-measured data in the year 2014 at two sites were used 

to calibrate the CERES-Maize model using the conventional trial-and-error method by finding 

the genotype-specific parameters that minimize error between simulated and observed phenotype 

traits. The calibrated model was then evaluated using independent datasets from the year 2015 at 

two sites.  Statistical indicators including coefficient of determination (R2), root mean square 

error (RMSE), and normalized root mean square error (NRMSE) were computed from observed 

(Oi) and simulated (Si) variables to evaluate model performance. The comparisons between 

simulated and observed values of anthesis date, kernel number, kernel weight and grain yield for 

conventional crop model simulations can be found in Table 4.A1. 

4.3.3.2 Identification of Significant Markers Associated with Model Parameters   

Whole-genome resequencing and GWAS analysis of the CUBIC population including the 

282 maize lines used in this study has been previously reported by Liu et al. (2020) and Xiao et 
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al. (2021). Two methods of GWAS analysis (sGWAS and hGWAS) were conducted and 

integrated with QTL mapping using both high-quality marker and phenotyping of the 23 

agronomic traits. Based on results of multiple omics studies for the CUBIC population, many 

QTL regions were narrowed to a few candidates or to a single causal gene (Liu et al., 2020). 

These above genotypic data analysis procedures detected 839 genetic markers associated with 

anthesis date (P1 and PHINT), 322 genetic markers associated with kernel number (G2), 399 

genetic markers associated with kernel weight (G3), which were further used for marker-based 

crop modelling in this study.  

4.3.3.3 Statistical Models to Predict Marker-based Crop Model Parameters  

First, all of the associated markers related with anthesis date (839 markers), kernel number 

(322 markers), and kernel weight (399 markers) were filtered for collinearity. The filtering 

procedure consisted of identifying colinear markers (r ≥ 0.9) among associated genetic markers. 

After the filtering procedure, 137 (anthesis date), 100 (kernel number) and 146 (kernel weight) 

remaining genetic markers were used to train a partial-least-square regression (PLSR) model to 

compute marker-based values of four essential model parameters (P1, G2, G3, and PHINT) for 

each maize line (Table 4.3). The PLSR model was particularly adapted to the case of high-

dimensional data to avoid the multicollinearity problem. It was also adapted to the case that the 

number of markers is much higher than the number of phenotypic observations (Abdi, 2003; 

Kadam et al., 2019; Bogard et al., 2020). The performance of the PLSR model was evaluated by 

prediction accuracy (i.e., the Pearson correlation coefficient between conventional and marker-

based model parameters), coefficient of determination (R2), and normalized root mean square 

error (NRMSE). The estimated marker-based crop model input parameters were then used in the 
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CERES-Maize model to simulate the marker-based values of anthesis date, kernel number, 

kernel weight and grain yield. 

When training the PLSR statistical model for marker-based model parameters, the overall 

283 genotypes were randomly divided into a training (235 observed genotypes; 83% of the maize 

population) and a testing (47 new genotypes; 17% of the maize population) set, which were 

considered as observed genotype (observed G) and new genotype (new G), respectively. By 

using the hierarchical sampling approach, the random separation of the maize population had a 

minimal effect on the population structure as the testing set and training set genotypes have 

similar structure (Heslot et al., 2012). The approximate 4:1 sample ratio considered the balance 

between prediction precision and phenotyping cost, which is commonly used in the seed industry 

to perform G-to-P assisted breeding (Xiao et al., 2021). The two experimental sites (HN and HB) 

in two years (2014/2015) were also divided as training environment (HN-2014/2015, Observed 

E) and testing environment (New E, HB-2014/2015). The training and testing division strategy 

separated the whole phenotyping datasets of 283 genotypes at two sites in HN and HB into four 

independent sub-datasets: observed G and E (235 observed genotypes, HN-2014/2015); observed 

G and new E (235 observed genotypes, HB-2014/2015); new G and observed E (47 new 

genotypes, HN-2014/2015); new G and E (47 new genotypes, HB-2014/2015). The performance 

of the marker-based model simulation was then evaluated based on the four sub-datasets. 

4.3.4 Comparison of Strategies for Marker-based Crop Modelling  

The number of essential model parameters that were linked to associated genetic markers to 

predict yield and its component traits ranged from two (P1 + PHINT) to four (P1 + PHINT + G2 

+ G3) in this study. Three different strategies were tested to estimate the relative importance of 

the essential model parameters to marker-based crop modelling. The first strategy was that only 
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model input parameters P1 and PHINT were predicted using associated genetic markers and the 

other model input parameters came from the conventional calibrated parameter values. The 

second strategy was that model input parameters P1, PHINT and G2 were predicted using 

associated genetic markers and the others were taken from the conventional calibration process. 

The third strategy was model input parameters P1, PHINT, G2 and G3 were predicted using 

associated genetic markers and the others were taken from the conventional calibration approach. 

The performance of the marker-based crop modelling in simulating yield and its component 

traits for the above four independent sub-datasets, with three different sets of marker-based 

model input parameters (P1 + PHINT, P1 + PHINT + G2, and P1 + PHINT + G2 + G3), were 

compared to determine the best strategy for marker-based crop modelling. 

4.4 Results  

4.4.1 Marker-based Estimation of Essential Model Parameters 

The most immediately practical approach for employing genetic information is to estimate 

genotype-specific model parameters as a function of the genetic markers present at known loci. 

Based on the additive effects estimated by the partial-least-square regression (PLSR) analysis 

and allele information at each detected locus, marker-based values for each of the four essential 

model parameters (P1, G2, G3 and PHINT) were calculated for both training (n = 235) and 

testing (n = 47) sets of maize populations of 283 genotypes (Table 4.3). 

In the training data sets (n = 235), there was a high correlation between conventional and 

marker-based values of the four model input parameters. The marker-based prediction accuracy 

ranged from 0.69 to 0.85 and the marker-based model parameters accounted for 48% - 72% of 

variation in conventional model parameters. The marker-based prediction error indicated by 

NRMSE ranged from 0.11 - 0.22. However, for the independent testing data sets (n = 47), the 
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marker-based prediction accuracy decreased especially for model parameters G3, which gave a 

value of 0.17. The marker-based model parameters only accounted for 0.03% - 21% of variation 

in conventional model parameters and the marker-based prediction error indicated by NRMSE 

ranged from 0.19 to 0.47. Overall, the model parameter G2 was best predicted and the G3 was 

worst predicted by associated genetic markers due to the quality of detected significant QTLs 

(Table 4.3). 

4.4.2 Performance of Marker-based Modelling for Yield and Its Relevant Component Traits 

The marker-based model capabilities to predict the yield and its relevant component traits 

(anthesis date, kernel number, kernel weight) were tested using four independent sub-datasets 

(observed G and E; observed G and new E; new G and observed E; new G and E) of 283 

genotypes that were collected during 2014 and 2015 at HN and HB. 

The marker-based model was good at simulating simple morphological traits. There was 

good agreement between observed and simulated values for time to flowering for all four sub-

datasets (Figure 4.2). However, there was a consistent tendency for increased values of RMSE 

and NRMSE from 3.9 to 6.8 days and from 0.07 to 0.11 when testing four sub-datasets following 

the order of observed G and E; observed G and new E; new G and observed E; new G and E. 

This decrease in predictive ability was apparently caused by adding the new genotypes (G) and 

new environment (E) into the datasets. The marker-based model also simulated kernel number 

very well in two sub-datasets of observed and new G at observed E, with lower RMSE (469 and 

586 number/m2, respectively) and NRMSE (0.15 and 0.18, respectively) (Figure 4.3a, c). When 

changing to the other two sub-datasets of observed and new G at new E, both RMSE (721 and 

798 number/m2, respectively) and NRMSE (0.21 and 0.23, respectively) increased for the 

prediction error of marker-based values of kernel number (Figure 4.3b, d). Thus, the prediction 
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accuracy of marker-based kernel number was influenced more by new environments (E) than by 

new genotypes (G). 

It was challenging to accurately simulated complex physiological and quantitative traits 

from genetic markers. The prediction accuracy of marker-based kernel weight was influenced 

more by new genotypes (G) than by new environments (E). The marker-based model accounted 

for 20% and 18% of variation in measured kernel weight using the two sub-datasets of observed 

G at both observed and new E (Fig. 4.4a, b). In contrast, it only accounted for 14% and 10% for 

new G grown at both observed and new E (Fig. 4.4c, d). The prediction error indicated by RMSE 

and NRMSE also shows the same tendency. The range of RMSE and NRMSE values increased 

from 56 – 61 to 61 – 74 mg/grain and from 0.19 – 0.22 to 0.21 – 0.27 with sub-datasets changing 

from observed genotypes (Fig. 4.4a, b) to new genotypes ((Fig. 4.4c, d). The marker-based crop 

modelling for grain yield also gave good simulations of observed genotypes (G) compared to 

new genotypes (G). The R2 of the two sub-datasets of observed G with observed and new E were 

0.26 and 0.14, respectively (Fig. 4.5a, b). However, the R2 decreased to 0.10 and 0.11, 

respectively, for the observed G with observed and new E (Fig. 4.5b, c). The prediction 

performance of yield was sensitive to both new G and new E. The best marker-based modelling 

performance with the lowest values of RMSE (1845 kg/ha) and NRMSE (0.21) was achieved 

using the sub-datasets of observed G and E (Fig. 4.5a), compared to the RMSE (Range: 2172 – 

2476 kg/ha) and NRMSE (Range: 0.22 – 0.29) of other three sub-datasets: observed G and new 

E; new G and observed E; new G and E (Fig. 4.5b, c, d).  

4.4.3 Comparison of Different Strategies for Marker-based Modelling 

Three different sets of essential model parameters were computed using associated genetic 

markers to determine the best strategy for marker-based crop modelling (Table 4.4). For all four 
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independent sub-datasets (observed G and E; observed G and new E; new G and observed E; 

new G and E), the marker-based simulation of anthesis date was not affected by the three 

different strategies for marker-based modelling since time to flowering was only related to the 

model parameters P1 and PHINT. Compared to the strategy that only two model input 

parameters (P1 + PHINT) were predicted using associated genetic markers, the three model 

parameters strategy with newly added marker-based model parameter G2 slightly reduced the 

error of the marker-based prediction of kernel number for all four sub-datasets with less values 

of RMSE or NRMSE. There was no further change of the model accuracy when adding the fourth 

marker-based model parameter G3. 

As more marker-based parameters were added to the model, the accuracy of predicted 

kernel weight decreased, especially for the four model parameters strategy with the marker-based 

model parameter values for G3. The R2 for all four independent sub-datasets consistently 

decreased and the model error indicated by RMSE and NRMSE generally increased as more 

model inputs were estimated by the marker-based technique. The performance of maker-based 

prediction of grain yield was improved for the two sub-datasets of observed G and new G at new 

E when more marker-based parameters were added to the model, indicated by lower values of 

RMSE and NRMSE. In contrast, the values of RMSE and NRMSE increased with more marker-

based model parameters for the other two sub-datasets of observed G and new G at observed E. 

The proportion (R2) of the explained variance of observed grain yield for marker-based 

modelling slightly decreased for the two sub-datasets of observed G at both observed and new E. 

However, a decrease in R2 was found in the sub-datasets of new G at both observed and new E 

with increasing use of the marker-based model parameters.   

4.5 Discussions 
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Conventional breeding for ideotypes for target environments is quite difficult because of the 

G×E interaction and the nature of the genetic complex for economic traits (Wang et al., 2018). 

Process-based crop models together with genome wide prediction are a powerful tool for marker 

selection and designing ideotypes for different crops and cultivation environments (Gu et al., 

2014; Yin et al., 2018). In this paper, we proposed an integrated marker-based modelling 

approach by integrating essential model input parameters of the CERES-Maize model with their 

associated genetic markers. Critical findings are discussed below in detail.  

4.5.1. Challenges in Predicting Model Parameters Using Limited Genetic Markers and 

Statistical Regression  

In this study, the CUBIC population we used was created by crossing 1428 previously 

reported inbred lines, which was more genetically diversity than the previous publications with 

bi-parental mapping populations (Liu et al., 2021). Only detected QTL-associated markers 

through GWAS were used in the PLSR model to predict the input parameter values of crop 

models (Table 4.3). Although GWAS analyses has been successfully used to identify thousands 

of trait-associated genes for plant agronomic traits in the past decade, their ability to predict 

phenotypes remain limited because detected significant loci can only explain a small proportion 

of trait variation (Hu et al., 2019). It is also difficult to find the same QTLs across multiple 

environments or in different genetic backgrounds (Crossa et al., 2017). With limited numbers of 

associated genetic markers detected, the prediction accuracy of four essential model parameters 

(P1, G2, G3 and PHINT) based on PLSR (Table 4.3) was not good in independent testing data 

sets (R2: 0.03 to 0.21). Since detected QTLs usually capture only a part of the genetic variance 

and QTL effect sizes tend to be overestimated, prediction of model parameters using the whole-

genome markers is suggested for the further research (Onogi et al., 2016). 
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There are difficulties inherent in accurately linking the associated genetic markers with 

model parameters through appropriate statistical regression methods, such as the PLSR model 

we used (Table 4.3). The prediction of four essential model parameters (P1, G2, G3 and PHINT) 

was reasonable in the training data sets (R2: 0.48 to 0.72) based on PLSR. However, for a 

molecular marker effect to be incorporated into a crop growth model, most statistical regression 

models (e.g., multiple linear regression) reported consider only simple additive effects (Gu et al., 

2014; Kadam et al., 2019). It is suitable for simpler traits controlled by a small number of major 

genes. However, most economic traits are complex and affected by multiple genes, with both 

additive effects and nonadditive (dominance and epistasis) effects (Wang et al., 2018). An ideal 

statistical regression model used to link genetic markers with model parameters should consider 

incorporating these nonadditive marker effects in the gene-based crop modelling (Figure 4.6). 

Scientists have successfully used statistical methods, such as, simple linear regression and mixed 

linear regression models, for gene-based prediction of simpler traits (e.g., flower date, leaf area) 

(White et al., 2008; Zheng et al., 2013; Khan et al., 2019; Bogard et al., 2014; 2020). Enhancing 

the marker-based modelling capability for predicting complex quantitative traits (e.g., yield) may 

require machine and deep learning algorithms that can represent both additive and non-additive 

genetic effects (Figure 4.6).  

4.5.2. Benefits of Marker-based Modelling in Dissecting Complex Traits for Studying G × E 

Interactions 

Physiological dissection of target traits with marker-based modelling provides an avenue by 

which process-based crop models could be used to integrate molecular genetic technologies and 

crop improvement (Amelong et al, 2015). A complex trait like grain yield is an emergent 

property of interactions between simpler traits and environment × management, which can be 
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dissected into genetic controls related to simpler related component traits and then easily assess 

genetic variation for each component trait. An ideal marker-based modelling approach should be 

extensible to physiological traits that more directly affect grain yield (White et al., 2008). This 

was achieved in our study by dissecting maize yield into three yield physiologically relevant 

component traits (anthesis date, kernel number, and kernel weight) and four essential model 

parameters (P1, G2, G3, and PHINT) of CERES-Maize models (Table 4.2). These component 

traits and related model input parameters were a priori considered to be important for yield 

variation among the maize lines (Cooper et al., 2016).  

We found that the prediction performance of marker-based modelling was largely affected 

by the types of traits predicted (Figure 4.6). The marker-based prediction performance of 

complex traits (kernel weight and yield) (Figure 4.4 and Figure 4.5) was generally reduced 

compared to simpler traits (anthesis date and kernel number) in this study (Figure 4.2 and Figure 

4.3). For simple morphological traits, such as anthesis date and kernel number, marker-assistant 

selection comprises of selecting individuals with QTL-associated markers that have major 

effects; markers not significantly associated with a trait are not used. A higher prediction 

performance was observed for anthesis date and kernel number in four independent sub-datasets 

with both observed and new genotypes under both observed and new environments (Figure 4.2 

and Figure 4.3). Unlike previous studies that only simulated limited traits that were phenotyped 

with limited mapping populations and environments, the results in our research were more 

powerful in accounting for G × E interactions for multiple traits (Chenu et al., 2008; White et al., 

2008; Zheng et al., 2013; Amelong et al. 2015). For complex quantitative traits such as kernel 

weight and yield, improvement depends on the selection of biological interactions between 

multiple genes (Figure 4.5). Complex crop traits are also affected by age-dependent expression 
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of genes and gene effects. These underlying genetic complexities of complex traits can cause the 

prediction accuracy of marker-based kernel weight and yield (Figure 4.4 and Figure 4.5) to be 

more sensitive to new genotypes (G) than new environment (E).  

For our study, the phenotyping environments at different sites in Northern China have 

spatial heterogeneity in soil types, weather condition, and management practices, which are part 

of the sources of possible prediction bias for marker-based modelling (Table 4.1 and Figure 4.6). 

Phenotyping traits observed in these experimental fields are often highly variable from site to site 

(e.g., HN and HB) and from growing season to growing season (e.g., 2014 and 2015). That can 

lead to prediction accuracy of marker-based kernel number (Figure 4.3) being more sensitive to 

new environments (E) rather than new genotypes (G). As a result, phenotyping environments of 

experimental sites are often grouped according to similarities in growing environment and 

germplasm types grown. In addition, most economic traits of interest to plant breeders are 

emergent outcomes of many interacting gene effects and physiological processes rather than 

being simpler traits directly driven by singular genetics. An emergent outcome from a specific 

genetic trait may benefit crop yield in one environment but have little or negative effect in 

another environment, which shows complex G × E interactions. This is reflected by the 

prediction performance of marker-based yield (Figure 4.5) being highly sensitive to both new 

environments (E) and new genotypes (G). Those situations imply that crop growth models in the 

future may need improvement in the simulation of detailed biological processes and dissection of 

complex traits into physiologically relevant component traits to better predict those emergent 

outcomes (Boote et al., 2021).  

4.5.3. Contribution of Model Input Parameters to Marker-based Modelling 
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It is recognized that the model input parameters can represent certain genetic characteristics. 

With genetic-specific parameters, crop modeling has been considered a powerful tool to help 

breeders understand genetic by environment by management (G x E x M) interactions of crop 

production (Boote et al., 2021). In fact, those genotype-specific model parameters (P1, G2, G3, 

and PHINT) are artificial constructs that reproduce different growth cycles, photoperiod 

sensitivity, productivities and kernel number/growth rate traits without considering molecular 

genetics information (Table 4.2 and Table 4.4). Simple models are typically designed with less 

model parameters. In contrast, sophisticated crop models are designed with more model 

parameters. We found that using more model input parameters for marker-based modelling did 

not always improve marker-based modelling. When more marker-based model parameters (e.g., 

G2, G3) were added to the crop model, the prediction of kernel number improved but kernel 

weight was worse for all four sub-datasets with both observed and new genotypes under both 

observed and new growth environments (Table 4.4). 

 Although model parameters can provide higher prediction accuracy in crop models when 

they are independently estimated for each cultivar, these parameters may not accurately represent 

the genetic architecture of the associated crop phenotype or process (Hwang et al. 2017). The 

crop models do not use information on variation in genes among the genotypes. Instead, 

parameters of crop models are estimated primarily using phenotypic data obtained from field 

trials, and their genetic basis is largely unknown (Kromdijk et al., 2014; Oliveira et al., 2021). By 

connecting genetic markers with model parameters (P1, G2, G3, and PHINT), marker-based 

modelling showed promise in accounting for the genotype-phenotype relationships and G × E 

interactions. When more marker-based model parameters (e.g., G2, G3) were added to the crop 

models, we found that the prediction of yield in this study was improved for the two sub-datasets 
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of observed G and new G at new E but was worse for the other two sub-datasets of observed G 

and new G at observed E (Table 4.4). Increasing the number of parameters may have led to the 

complexity of the genetic effects by increasing the number of genes involved in the determinism 

of each parameter (Figure 4.6).  

In addition to natural random errors from field-measured data, another potential source of 

error is the two-step approach we adopted that first fits genetic-specific parameters of crop 

models, and then re-estimate the new parameters associated with these QTL/genes. The 

systematic errors of crop models and PLSR model can be accumulated in the two-step approach 

(Zheng et al., 2013). Multiple sets of possible parameter values for traditional crop models can 

produce very similar responses during model optimization procedures (Boote et al., 2021). The 

specific designed crop models for gene-based modelling, such as GECROS, with input 

parameters that are directly related to the phenotyping traits breeders score for selection, can 

likely further facilitate the use of crop modelling integrated with genomic prediction in support 

of breeding (Gu et al., 2014). 

4.6 Conclusions 

Simulating genetic effects of associated markers on maize yield and its components traits 

can enhance the process of breeding new germplasms adapted to new environments. Compared 

with direct statistical genomic prediction, process-based crop models with explicit environmental 

inputs have excellent potential for predicting the behavior of a genotype in an environment that 

differs from that in which QTLs were detected. Four essential model input parameters of 

CERES-Maize model were integrated with associated genetic markers to design a marker-based 

crop modelling approach. The results showed that the marker-based model can accurately predict 

yield and its component traits (anthesis date, kernel number and kernel weight) with diverse 
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genotypes and environments by combining phenotypic and genotypic data. The prediction 

performance of complex quantitative traits for marker-based modelling was generally reduced 

compared to simpler morphological traits. To further improve the prediction accuracy of marker-

based modelling, the special design of model parameters, the incorporation of non-additive 

genetic effects, the usage of statistical learning methods, and the consideration of phenotyping 

traits or environments are important. The marker-based modelling developed in this study can be 

a useful breeding tool in assisting geneticists and plant breeders for studying the genotype by 

environment interactions and selection of breeding lines to improve crop yield.  
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Table 4.1 Maize populations, soil types, water treatments, and seasonal weather conditions for 

the five phenotyping sites distributed in the major maize producing areas in Northern China. 
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Phenotyping sites Latitude, 

longitude 

Maize 

populations 

Soil 

type 

Water 

treatments 

Tmax 

(◦C) 

Tmin 

(◦C) 

P 

(mm) 

Years References 

Xinxiang, Henan 

province (HN) 

35.2° N, 

113.8° E 

CUBICa 

 

Tidal  Irrigation 29.6 20.3 389 2014/2015 Liu et al., 

2020; Luo 

et al., 

2020, Xiao 

et al., 2021 
Baoding, Hebei 

province (HB) 

38.7° N, 

115.8° E 

Brown  Irrigation 29.7 18.9 348 

Changping, Beijing 

city (BJ) 

40.2° N, 

116.2° E 

Brown  Irrigation 30.9 20.4 339 

Shengyang, Liaoning 

province (LN) 

41.8° N, 

123.4° E 

Loam  Dryland 28.3 16.3 309 

Yushu, Jilin province 

(JL) 

44.8° N, 

126.6° E 

Black  Dryland 25.8 15.3 391 

a. Complete-diallel design plus Unbalanced Breeding-like Inter-Cross. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Details of genotype-specific parameters of the CERES-Maize model that classified 

into three categories. 
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Parameters Description Unit Related traits 

Phenological characteristics  

P1 Degree days (base 8 °C) from emergence to end of juvenile 

phase 

°C days Anthesis  

P2 Photoperiod sensitivity coefficient (0-1.0) - Tassel initiation; Total Leaf 

number 

P5 Degree days (base 8 °C) from silking to physiological 

maturity 

°C days Maturity  

Reproductive growth  

G2 Potential kernel number kernels/ear Kernel number 

G3 Potential kernel growth rate  mg/(kernel day) Kernel weight 

Leaf appearance  

PHINT Degree days required for a leaf tip to emerge (phyllochron 

interval)  

°C days per tip Total leaf number; Anthesis 

date 
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Weather/Soil/Management

/Agronomic traits

CERES-Maize model

Calibration and Evaluation

Conventionally calibrated 

genetic coefficients: P1, P2, P5, 

G2, G3, PHINT  

Model-associated traits 

Phenotyping/ Genotyping

GWAS analysis

Significant markers for 

model parameters

PLSR model in R

Marker-based values of 

genetic coefficients: P1, G2, 

G3, PHINT 

Conventionally simulated 

anthesis/kernel number/kernel 

weight/yield

Marker-based simulated 

anthesis/kernel number/kernel 

weight/yield

Maker-assisted selection/Ideotype design/ Adaptation of drought/heat stress
 

Figure 4.1 Diagram of the methodology used in this study, which combines a partial-least-

square regression (PLSR) model and a crop model, CERES-Maize, into the marker-based crop 

modelling. 
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Table 4.3 Total number of filtered significant genetic markers used in partial-least-square 

regression (PLSR) for prediction of four essential CERES-Maize model input parameters of the 

maize training (n = 235) and testing (n = 47) genotypes in the 2014 and 2015 experiments at 

Henan (HN) and Hebei (HB) provinces. 

Parameters 
Significant 

markers 

Training (n = 235)  Testing (n = 47) 

Prediction 

accuracy 

R2 NRMSE   Prediction 

accuracy 

R2 NRMSE 

P1  137 0.69 0.48 0.12   0.25 0.06 0.19  

G2  100 0.85 0.72 0.11  0.46 0.21 0.19  

G3  146 0.78 0.60 0.22  0.17 0.03 0.47 

PHINT  137 0.71 0.51 0.16  0.27 0.07 0.29 
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R2 = 0.02

RMSE = 3.9 d

NRMSE = 0.07

R2 = 0.11

RMSE = 5.0 d

NRMSE = 0.08

R2 = 0.00

RMSE = 5.9 d

NRMSE = 0.10

R2 = 0.02

RMSE = 6.8 d

NRMSE = 0.11

A n = 235 HN (2014/2015)

B n = 235 HB (2014/2015)

C n = 47 HN (2014/2015)

D n = 47 HB (2014/2015)

 

Figure 4.2 Relationship between marker-based simulated and measured anthesis dates in 

Observed (A, B) and new (C, D) genotypes (G) of maize under observed (A, C) and new (B, D) 

environments (E) in the 2014 and 2015 experiments at Henan (HN) and Hebei (HB) provinces. 
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R2 = 0.41

RMSE = 469 number/m2

NRMSE = 0.15

R2 = 0.40

RMSE = 721 number/m2

NRMSE = 0.21

R2 = 0.16

RMSE = 586 number/m2

NRMSE = 0.18

R2 = 0.24

RMSE = 798 number/m2

NRMSE = 0.23

A n = 235 HN (2014/2015)

B n = 235 HB (2014/2015)

C n = 47 HN (2014/2015)

D n = 47 HB (2014/2015)

 

Figure 4.3 Relationship between marker-based simulated and measured kernel number in 

Observed (A, B) and new (C, D) genotypes (G) of maize under observed (A, C) and new (B, D) 

environments (E) in the 2014 and 2015 experiments at Henan (HN) and Hebei (HB) provinces. 
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R2 = 0.20

RMSE = 61 mg/grain

NRMSE = 0.22

R2 = 0.18

RMSE = 56 mg/grain 

NRMSE = 0.19

R2 = 0.14

RMSE = 74 mg/grain

NRMSE = 0.27

R2 = 0.10

RMSE = 61 mg/grain

NRMSE = 0.21

A n = 235 HN (2014/2015)

B n = 235 HB (2014/2015)

C n = 47 HN (2014/2015)

D n = 47 HB (2014/2015)

 

Figure 4.4 Relationship between marker-based simulated and measured kernel weight in 

Observed (A, B) and new (C, D) genotypes (G) of maize under observed (A, C) and new (B, D) 

environments (E) in the 2014 and 2015 experiments at Henan (HN) and Hebei (HB) provinces. 
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R2 = 0.26

RMSE = 1845 kg/ha

NRMSE = 0.21

R2 = 0.14

RMSE = 2172 kg/ha

NRMSE = 0.22

R2 = 0.10

RMSE = 2426 kg/ha

NRMSE = 0.29

R2 = 0.11

RMSE = 2476 kg/ha

NRMSE = 0.25

A n = 235 HN (2014/2015)

B n = 235 HB (2014/2015)

C n = 47 HN (2014/2015)

D n = 47 HB (2014/2015)

 

Figure 4.5 Relationship between marker-based simulated and measured yield in Observed (A, B) 

and new (C, D) genotypes (G) of maize under observed (A, C) and new (B, D) environments (E) 

in the 2014 and 2015 experiments at Henan (HN) and Hebei (HB) provinces. 
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Table 4.4 Comparison of three different strategies for marker-based crop modelling based on 

four independent sub-datasets. Two model input parameters (P1 + PHINT), three model input 

parameters (P1 + PHINT + G2), and four model input parameters (P1 + PHINT + G2 + G3) were predicted 

using associated genetic markers. The other model input parameters came from the conventional 

calibrated parameter values. 

Strategy Observed G and E Observed G and new E New G and observed E New G and E 

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE 

Anthesis dates (days after sowing) 

P1 + PHINT 0.02 3.9 0.07 0.11 5.0 0.08 0.00 5.9 0.10 0.02 6.8 0.11 

P1 + PHINT + G2 0.02 3.9 0.07 0.11 5.0 0.08 0.00 5.9 0.10 0.02 6.8 0.11 

P1 + PHINT + G2 + G3 0.02 3.9 0.07 0.11 5.0 0.08 0.00 5.9 0.10 0.02 6.8 0.11 

Kernel number (number/m2) 

P1 + PHINT 0.45 478 0.15 0.43 728 0.21 0.21 618 0.19 0.24 869 0.25 

P1 + PHINT + G2 0.41 469 0.15 0.40 721 0.21 0.16 586 0.18 0.24 798 0.23 

P1 + PHINT + G2 + G3 0.41 469 0.15 0.40 721 0.21 0.16 586 0.18 0.24 798 0.23 

Kernel weight (mg/grain) 

P1 + PHINT 0.32 49 0.18 0.28 52 0.18 0.27 50 0.19 0.28 58 0.20 

P1 + PHINT + G2 0.29 52 0.19 0.24 53 0.18 0.24 55 0.20 0.27 62 0.21 

P1 + PHINT + G2 + G3 0.20 61 0.22 0.18 56 0.19 0.14 74 0.27 0.10 61 0.21 

Yield (kg/ha) 

P1 + PHINT 0.30 1630 0.19 0.17 2305 0.23 0.27 1800 0.21 0.19 3130 0.31 

P1 + PHINT + G2 0.30 1678 0.19 0.16 2230 0.22 0.17 1834 0.22 0.16 2759 0.28 

P1 + PHINT + G2 + G3 0.26 1845 0.21 0.14 2172 0.22 0.10 2426 0.29 0.11 2476 0.23 
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Figure 4.6 Prediction bias of marker-based modelling caused by marker effects, phenotyping 

traits, phenotyping environments, model parameters, and statistical methods. 

5 sites: HN, HB, BJ, LN, JL

4 sites: HN, HB, BJ, LN

3 sites: HN, HB, BJ

2 sites: HN, HB

1 site: HN

Phenotyping environments

More bias

Less bias
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Table 4.A1 The comparisons between simulated and observed values of anthesis date, kernel 

number, kernel weight and grain yield for conventional crop model simulation in calibration year 

2014 and evaluation year 2015. 

Traits Unit 

Calibration (Year = 2014)  Evaluation (Year = 2015) 

R2 RMSE NRMSE   R2 RMSE NRMSE 

Anthesis date days after sowing 0.21 3.7 0.06   0.64 2.9 0.04  

Kernel number  number/m2 0.66 392 0.11  0.40 548 0.17  

Kernel weight   mg/grain 0.01 57 0.21  0.49 30 0.10 

Grain yield   kg/ha 0.17 1647 0.18  0.30 1733 0.18 

 

 

 

 


