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Abstract 

 

 

Western honey bees (Apis mellifera) have experienced high rates of colony loss over the 

past decade. Honey bees are critical to agricultural production, providing 15 billion to the United 

States (U.S.) economy each year via their pollination services. Due to their importance, studies 

have attempted to determine what factors are behind these observed losses. However, relatively 

few studies have considered the effects of weather in their analyses despite weather being a key 

driver in ecological systems. Those studies that have considered the effects of weather have not 

utilized spatial analysis despite studies in other fields finding that issues such as non-stationarity, 

where relationships between variables differ across space, and the modifiable areal unit problem 

(MAUP) may affect analysis results. 

The objectives of Chapter 2 were to determine which weather variables best predict winter 

colony loss rates at a national scale in the U.S. and then compare the results from a traditional non-

linear approach, using a generalized linear regression (GLR), to results from a spatial approach, 

using a geographically weighted regression (GWR) which takes into consideration data non-

stationarity, thus helping to elucidate how changes may occur across space. The best supported 

variables at the national scale were mean maximum temperature during the month of November, 

mean precipitation during the month of February, mean windspeed, and mean elevation. The GWR 

had an AIC score that was 328.80 points lower than the GLR and had an R-squared value of 20% 

versus 13.5% for the GLR. Thus, these results show that a spatial approach is more statistically 

robust than the traditional GLR and indicate that the effects of weather on colony loss are non-

stationary. 
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The objective of Chapter 3 was to determine how MAUP would change model results when 

a linear regression was run at six different scales - zip code, county, state, and level one, two, and 

three ecoregions. MAUP is the phenomenon of different data aggregation methods resulting in 

different results. Results indicated that the effects of the two variables analyzed – mean 

temperature and mean precipitation – differed substantially between the various scales of analysis. 

Additionally, the R-squared values changed drastically, with of low of 8% at the zip code level 

and a high of 73% for level two ecoregions. These results are consistent with findings from other 

fields and indicate that MAUP should be considered when analyzing an aggregated honey bee 

colony loss dataset.  

The results of this thesis show that spatial phenomena such as non-stationarity and MAUP 

can alter the results of honey bee colony loss analyses, sometimes to a great degree. This highlights 

the need for more localized management strategies, as the effects of weather, and potentially other 

variables, on colony loss vary by location. Additionally, this thesis shows the need for more 

research involving spatial analysis in this field. Future studies may seek to analyze other variables, 

such as varroa mite levels or pesticide presence, alongside weather variables to create a fuller 

model that may further aid local management decisions.  
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Chapter 1 

 

Literature Review 

 

1.1 Introduction 

 Weather can have a significant effect on the population dynamics of insects, with 

temperature and rainfall affecting abundance and survival (Williams 1951; Debach 1958; Williams 

1961; Drake 1994). Despite knowledge that weather affects population dynamics, it is often 

unclear how and to what degree (Knape and Valpine 2011). This information may be particularly 

important for understanding colony loss of honey bees. Western honey bees (Apis melifera), 

hereafter referred to as honey bees, have seen high colony losses over the past decade, with an 

average annual loss rate of 39% in the United States and 43% of colonies having been lost between 

April of 2019 and 2020 (Bruckner et al. 2020). Pollinator species are responsible for pollinating 

around 100 crops that account for 90 percent of food consumed in the majority of the countries of 

the world (Kluser and Peduzzi 2007) with honey bees responsible for around 15.5 percent on their 

own (Nabhan and Buchmann 1997). The pollination services provided by honey bees have been 

estimated to be worth anywhere between 4.5 and 40 billion dollars to the U.S. economy each year 

(Gill 1991), with Calderone (2012) finding their contribution to be worth 15.12 billion dollars as 

of 2009. Due to the importance of honey bees to our food production and economy, many studies 

have researched the reasons for the high losses we have observed. These studies have looked at a 

range of factors, from Varroa destructor, a parasitic mite (Zee et al. 2015; Steinhauer et al. 2018), 

to diseases such as American foulbrood (Paenibacillis larvae) (vanEngelsdorp and Meixner 2010; 

Steinhauer et al. 2018) to beekeeping practices (Steinhauer et al. 2018; El Agrebi et al. 2021, to 
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nutrition (Perry et al. 2015; Smart et al. 2016; Steinhauer et al. 2018). Past studies have found that 

numerous factors, likely working in conjunction, can lead to honey bee colony loss (Dainat et al. 

2012; Havard et al. 2019; Bird et al. 2020; Bruckner et al. 2021). However, despite the large 

number of studies on honey bee loss, the effects of weather patterns on their survival remains 

somewhat understudied (Havard et al. 2019). Additionally, most studies have not utilized any form 

of spatial analysis to this point.  

1.2 Spatial Background 

The first law of geography states that all things are related, but nearer things are more 

related than distant things (Tobler 1965). An important concept in the natural world, relating to 

this law, is spatial heterogeneity, or spatial variance. This is where attribute values for various 

features, be they temperature, elevation, etc., tend to differ across space. This is considered a 

central causal factor in ecological systems; variation across space is critical for explaining the 

phenomena we observe (Pickett and Cadenasso 1995). Despite this, spatial analysis in honey bee 

colony loss research is lacking, with very few studies including any aspect of it. Two exceptions 

include Zee et al. (2014) and Zee et al. (2015) which both found that the effects of predictor 

variables such as varroa mite loads and pesticides varied by region in Europe. There have been no 

studies to date in this field that address two issues relating to space: non-stationarity and the 

modifiable areal unit problem (MAUP). 

1.2.1 Geographically Weighted Regressions  

Geographically weighted regressions (GWR) build upon Tobler’s first law by considering 

spatially local effects of predictor variables. This method was first described by Brunsdon et al. 

(1996). One issue with traditional linear modelling is the potential for non-stationarity, where the 
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relationships between model variables are not consistent across space (Brunsdon et al. 1996). 

GWRs address this issue by creating a local regression for each feature in the dataset using a 

defined neighborhood size, either set as a distance band or a number of neighbors. Once a 

neighborhood size is defined, regressions are run using one of two local weighting functions: 

Bisquare or Gaussian. These methods are largely similar, with features in the neighborhood further 

away from the target feature being weighted less. The Bisquare method gives no weight to features 

outside of the defined neighborhood while the Gaussian method does at a decreasing rate (ESRI 

2022).  

GWRs allow for the analysis of spatial data which may not be ideal for a traditional non-

spatial regression (Brunsdon et al. 1996). There have been many studies to date that have utilized 

GWR’s including Xu et al. (2019), which used them to analyze the effects of various factors on 

pollution levels, Zarei et al. (2016), which used them to determine factors behind brown bear den 

selection, and Pirdavani et al. (2014), which sought to determine the effects of a teleworking policy 

on traffic safety. Despite work from past studies indicating that the effects of predictor variables 

vary across space, there have been no honey bee studies to date that have utilized GWRs. This is 

potentially problematic, as management suggestions may be made without the realization that the 

effects of the variables analyzed may not be constant across the study area.        

1.2.2 The Modifiable Areal Unit Problem (MAUP)  

Many studies deal with aggregated datasets, where point data, representing measurements 

such as temperature, rainfall, etc. are averaged over an area of interest (e.g., state or census tract), 

typically represented as a polygon. Aggregating data introduces the issue of MAUP, first described 

by Openshaw and Taylor (1979). MAUP is the phenomenon of different data aggregation methods 

producing different results, which can lead to different interpretations depending on the method 
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used (Openshaw and Taylor 1979). There are two aspects of MAUP: the scale of analysis, also 

known as the scale effect, and the unit definition, also known as the zone effect (Openshaw and 

Taylor 1979; Horner and Murray 2002). The scale effect is based on the number of polygons used 

in the analysis, with fewer, larger polygons resulting in reduced variation (Openshaw and Taylor 

1979; Dark and Bram 2007). The zone effect is based on the changes in results that can be caused 

by using the same number of polygons in different arrangements within a study area (Openshaw 

and Taylor 1979; Dark and Bram 2007). One common example of the zone effect is 

gerrymandering, where political districts are drawn in different shapes to provide support for one 

political party over another (Stehle 2022). Both of these aspects have been found to alter the results 

of analyses in studies in fields such as human geography, physical geography, and landscape 

ecology (Openshaw and Taylor 1979; Fotheringham and Wong 1991; Jelinski and Wu 1996; 

Horner and Murray 2002; Dark and Bram 2007). Some examples include Horner and Murray 

(2002), which found that aggregation methods have a large impact on excess commuting 

calculations, Dark and Bram (2007), which presented examples of MAUP in physical geography, 

such as hydrologic modelling, and Jelinski and Wu (1996), which found that MAUP may affect 

results from landscape analysis. Despite previous work in the aforementioned fields, MAUP has 

not been considered in research involving honey bee colony loss. Should MAUP have similar 

effects as those found in other fields, ignoring this issue when analyzing aggregated datasets may 

lead to a misunderstanding of the effects of predictor variables on colony loss.  

1.3 Previous Work on the Effects of Weather on Colony Loss 

Climate and weather are arguably the greatest drivers of natural systems (Daly and Bryant 

2013). Climate is the long-term average of weather conditions, while weather is experienced on a 

shorter-term, daily, basis. Despite the importance of climate and weather in natural systems, there 
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have been few studies that have investigated how weather affects honey bee colony loss to date 

(Havard et al. 2019). Switanek et al. (2017) conducted a study in Austria that sought to determine 

how temperature and precipitation affected colony loss rates. This study calculated conditions for 

every month of the year and found that higher temperatures each month were correlated with 

higher losses, with the exceptions of February and November, where higher temperatures were 

correlated with lower losses. Greater amounts of precipitation were correlated with fewer colony 

losses for every month except for October (Switanek et al. 2017). Calovi et al. (2021) found that 

four factors: growing degree days, maximum temperature of the warmest month, precipitation of 

the warmest quarter, and precipitation of the wettest quarter, best predicted winter mortality in 

Pennsylvania. Beyer et al. (2018) found that warm and wet conditions during winter and cool and 

wet conditions in July were associated with higher colony losses in Luxembourg (Table 1.1). 

Despite some of this previous work, the effects of weather on honey bee colony loss are still 

somewhat unclear and remain a gap in knowledge in the honey bee research field (Havard et al. 

2019).     

Table 1.1. Summary of weather effects linked to honey bee (Apis mellifera) colony loss found by 
three previous studies.   

Positive effect (increased loss) Negative effect (decreased loss) Study 

Not applicable: Non-linear effects Not applicable: Non-linear effects Calovi et al. 2021 
Warm and wet conditions in winter 
 
Cool and wet conditions in July 

None found Beyer et al. 2018 

Higher temperatures for most months Higher temperatures for February and 
November 
 
Greater amounts of precipitation for 
most months 

Switanek et al. 2017 
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1.4 Seasonal Effects on Honey Bee Colony Loss 

Past studies have analyzed 

honey bee colony loss during both 

summer and winter seasons, with 

beekeepers generally 

experiencing greater colony loss 

during winter (Figure 1.1) 

(Steinhauer et al. 2014; Kulhanek 

et al. 2017). Several factors help 

explain why this period of the 

year sees greater colony loss. 

Honey bees must live off food 

they have previously collected during the winter months as flowers will no longer be in bloom. 

Additionally, they will not produce additional bees to replace those that die until spring, with the 

exception of some southern areas of the U.S. such as parts of Florida, Alabama and Georgia. Cold 

temperatures can be deadly to honey bees. Honey bees will form a cluster – a congregation of bees 

intended to keep the colony warm during cold weather – at around 15 degrees Celsius (Phillips et 

al. 1914; Free and Spencer-Booth 1958). The exterior of clusters have been measured as low as 

4.5 degrees Celsius, but at temperatures below 8 degrees Celsius honey bees will become inactive 

and eventually die (Simpson 1961). Thus, long periods of cold temperatures may be detrimental 

to honey bee colony survival. While some areas of the country may experience higher losses during 

summer than winter, likely due to the mild nature of the winters, the overall average clearly shows 

 

Figure 1.1. Average loss of honey bee (Apis mellifera) colonies 
by season for 2015-2016 in the United States, split by operation 
type: Backyard (small), Sideline (medium), and Commercial 
(large). Stars indicate varying levels of significance between 
losses for different operation types, while N.S. indicates no 
significance. From Kulhanek et al. (2017).  
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a higher loss rate during winter months (Bruckner et al. 2020). Thus, the focus of this study is on 

winter mortality.  

1.5 Conclusion 

 Honey bees are critical to agricultural production and the economy, which makes the high 

levels of annual colony loss observed in the U.S. concerning. Despite the many studies that have 

sought to determine the causes of colony loss, the effects of weather on colony loss rates remain 

understudied despite knowledge that weather is a key driver in ecological systems. Even fewer 

studies have incorporated spatial aspects into their analyses, with no honey bee studies considering 

the impacts that non-stationarity or MAUP may have on their results. Previous studies in other 

fields have shown that these issues can greatly affect model results, making their investigation in 

the field of honey bee research critical. Investigations into the effects of weather on colony loss 

using spatial approaches may yield new insights into the causes of the high colony loss rates we 

have observed and may result in more region-specific management suggestions than were 

previously possible.  
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Chapter 2 

 

Investigating Spatial and Non-Spatial Approaches for Understanding Honey Bee  

(Apis mellifera) Winter Colony Loss Across the United States 

 

2.1 Introduction   

Western honey bees (Apis mellifera; hereafter honey bees) have experienced high colony 

losses in the northern hemisphere over the last decade, with a mortality rate of over 43% in the 

United States (U.S.) between April of 2019 and 2020 alone (Bruckner et al. 2020). Honey bees are 

responsible for pollinating many important crops and, as a result, contribute significantly to the 

economy and food security (Southwick and Southwick 1992). Their monetary contribution to the 

agricultural industry in the U.S. has been estimated to be approximately 15 billion dollars per year 

(Calderone 2012). Due to the importance of honey bees, many studies have investigated the 

reasons for these high losses, which range from pests and diseases such as Varroa destructor (Zee 

et al. 2015; Steinhauer et al. 2018) and American foulbrood (Paenibacillis larvae) among many 

others (vanEngelsdorp and Meixner 2010; Steinhuaer et al. 2018), to beekeeping practices 

(Steinhauer et al. 2018; El Agrebi et al. 2021), to nutrition (Perry et al. 2015; Smart et al. 2016; 

Steinhauer et al. 2018).  Past studies have found that numerous factors, likely working in 

conjunction, have detrimental effects on honey bee colonies (Dainat et al. 2012; Havard et al. 2019; 

Bird et al. 2020; Bruckner et al. 2021). Despite the numerous studies on honey bee colony loss, 

the effects of weather patterns on their survival remains understudied (Havard et al. 2019).  

Weather is arguably one of the greatest drivers of natural systems (Daly and Bryant 2013).  

Despite the importance of weather in natural systems, relatively few studies have considered how 
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weather variables may affect the loss rates of honey bee colonies. A few examples of studies that 

have considered the effects of weather on colony loss include Switanek et al. (2017), Beyer et al. 

(2018), and Calovi et al. (2021), although none of these studies have encompassed an area the size 

and scale of the continental U.S. Switanek et al. (2017) conducted a study in Austria that sought 

to determine how temperature and precipitation affected colony loss rates. This study calculated 

weather conditions for each month of the year and found that higher monthly temperatures were 

correlated with higher losses, with the exceptions of February and November, where higher 

temperatures were correlated with lower losses. Additionally, they found that greater amounts of 

precipitation were correlated with fewer colony losses for every month except for October. These 

results differ from Beyer et al. (2018), that found warm and wet conditions during winter months 

and cool and wet conditions in July were associated with higher colony losses in Luxembourg. 

Calovi et al. (2021) found that four factors: growing degree days, maximum temperature of the 

warmest month, precipitation of the warmest quarter, and precipitation of the wettest quarter, best 

predicted winter mortality in the State of Pennsylvania. Despite some of this previous work, the 

effects of weather on honey bee colony loss are still unknown at the national scale in the U.S. and 

remain somewhat of a gap in knowledge in the honey bee research field (Havard et al. 2019).  

Another gap in knowledge in the field of honey bee colony loss research is how the effects 

of environmental variables, such as temperature and precipitation, change across space. Studies 

that analyze effects across large, heterogenous areas often deal with non-stationarity, where 

relationships between predictor and response variables differ from location to location (Brunsdon 

et al. 1996). This phenomenon has been found to affect results in studies ranging from wildlife 

distribution modeling (Osborne et al. 2007) to hydrological modelling (Deb et al. 2019). Failing 

to consider non-stationarity may lead to a misunderstanding of the effects variables have on colony 
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loss. Despite this issue, studies investigating the effects of weather on honey bee colony loss have 

failed to integrate spatial analysis, such as the geographically weighted regression (GWR), which 

may aid in dealing with non-stationarity (Brunsdon et al. 1996), largely due to the lack of high 

resolution, spatially explicit datasets.  

Given the lack of research involving weather and spatial analysis in this field, the research 

questions of this study were: 1) which combination of weather variables best explain the observed 

winter colony loss rates over a nine-year span, and during which month of the year do these 

variables best explain the observed losses, and 2) does a spatial model (i.e., a GWR) outperform 

the non-spatial model (i.e., a generalized linear regression (GLR))? It was predicted that weather 

conditions (i.e., temperature, precipitation, dewpoint, and windspeed) would affect colony loss 

rates differently across the U.S. due to the presence of non-stationarity, resulting in the GWR being 

more statistically robust than the GLR. 

2.2 Methods 

2.2.1 Data Management 

2.2.1.1 Colony Loss Data 

Colony loss data for the winters of 2011-2012 through 2019-2020 were provided by the 

Bee Informed Partnership’s (BIP) annual national colony loss survey, a citizen science initiative 

(vanEngelsdorp et al. 2012; Spleen et al. 2013; Steinhauer et al. 2014; Lee et al. 2015; Kulhanek 

et al. 2017; Bruckner et al. 2020). This dataset details the number of colonies each responding 

apiary owner managed and the number that were lost during the winter months (defined as between 

1 October - 1 April). These values were used to calculate the percent of colonies each apiary owner 

lost each winter, with responses linked to the zip code the colonies were kept in. While migratory 
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colonies represent the majority of all colonies in the U.S., this study subset the dataset to only 

stationary beekeepers in order to link weather conditions to loss in each zip code. A total of 9718 

zip codes had colony loss data from stationary beekeepers reported over this nine-year period.   

Colony loss data were aggregated at the zip code level over the entire nine-year period to 

reduce the amount of variability within each zip code. This aggregation was calculated by dividing 

the number of colonies lost within each zip code by the number of colonies managed and 

multiplying by 100 to obtain the loss rate per 100 colonies over the entire nine-year period. The 

loss dataset was then joined to the zip code polygon shapefile using zip code as the unique 

identifier. Zip codes with fewer than ten colonies were removed from the dataset to avoid issues 

resulting from low sample sizes (Jenkins and Quintana-Ascencio, 2020). This reduced the zip code 

file from 9718 to 5806 polygons (Figure 2.1).   
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Figure 2.1. Map of winter honey bee (Apis mellifera) colony loss rates for stationary beekeepers 
from the Bee Informed Partnership (BIP) survey data from the winter of 2011-2012 to the winter 
of 2019-2020. Data were recorded at the zip code level with zip codes having fewer than ten 
colonies removed. Colors indicate the percent of colonies lost, with purples representing lower 
losses and yellows representing higher losses.    

2.2.1.2 Weather Variables 

Seven broad predictor variables were selected for analysis: six weather variables - mean, 

minimum, and maximum temperature, total precipitation, mean dewpoint, mean windspeed - and 

elevation, a confounding variable. Five of these predictor variables – all the temperature variables, 

as well as dewpoint and precipitation – were further divided by month so that each had a total of 

13 variables, one for each month and one annual variable. This resulted in a total of 67 candidate 

predictor variables. All weather data, except wind speed, were acquired from PRISM (Parameter-
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elevation Regressions on Independent Slopes Model) (Daly and Bryant 2013). These raster 

datasets detail average weather conditions for each month and year of the study period at 4 km 

spatial resolution. A dataset for average wind speed at 10 m above the surface from 2008 to 2017 

was acquired from the Global Wind Atlas (Badger and JØrgensen 2011). This dataset has a 250 m 

spatial resolution. For the purposes of this study, the average values from 2008-2017 were assumed 

to reflect the conditions during the study period. Elevation data at a 1 km resolution were acquired 

from the USGS (2007). U.S. zip code area polygons were acquired from ESRI (2021).        

Next, weather data were aggregated before also being joined to the zip code polygon file. 

To do this, monthly weather conditions were firstly averaged across the nine-year span to find the 

mean weather conditions for each set of months using the Raster Calculator tool in ArcGIS Pro. 

For example, the mean temperature for all Januarys during the nine-year period was calculated. 

This resulted in twelve rasters for each weather variable, with the exception of windspeed, which 

had one raster for total average values instead of monthly values. Additionally, an average annual 

raster was created for each variable by simply averaging the nine yearly rasters for each. The Zonal 

Statistics tool was then used to find mean values of each predictor variable for each zip code. An 

XY point layer was then created which represented the centroid of each zip code and the Extract 

Multi-Values to Points tool was used to link all weather and elevation data to this file. These points 

were then spatially joined to the corresponding zip code polygons.  

2.2.2 Model Selection 

 To determine the best set of predictor variables for further analysis, a series of GLRs were 

run in R (R Core Team 2022) using RStudio (RStudio Team 2022) for each of the 67 candidate 

variables. The Akaike information criterion scores (AIC) (Akaike 1987) for each regression were 

compared (Table 2.1). Lower AIC scores indicate a better model fit (Akaike 1987). To determine 
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which variables would be candidates for the final model, the variables were organized into groups 

by theme. For example, all precipitation variables were considered part of the precipitation group. 

The best supported variable, based on AIC score, for each group was selected as a candidate for 

further analysis. These variables were November mean maximum temperature, March mean 

temperature, march mean minimum temperature, February mean precipitation, February mean 

dewpoint, mean windspeed, and mean elevation (Table 2.1).  

Table 2.1. AIC, delta AIC, model likelihood (ModelLik), and AIC weight (AICWt) scores for all 
candidate variables for explaining variation in honey bee (Apis mellifera) winter colony loss rates, 
ranked by AIC score. The number of variables per model is represented by K. The best model for 
each covariate (temperature, precipitation, dewpoint, windspeed, elevation) was included as a 
candidate for the final model. The best supported model for each category is shown in bold. 

Model names K AIC Delta_AIC ModelLik AICWt 
Avg Max Temp November 3 51639.80 0 1 0.37 
Avg Max Temp January 3 51639.99 0.18 0.913215 0.34 
Avg Max Temp February 3 51640.38 0.58 0.748442 0.28 
Avg Max Temp Annual 3 51645.84 6.04 0.048917 0.02 
Avg Max Temp December 3 51657.05 17.24 0.00018 6.65E-05 
Avg Max Temp March 3 51661.76 21.95 1.71E-05 6.31E-06 
Avg Max Temp April 3 51670.11 30.30 2.63E-07 9.71E-08 
Avg Max Temp October 3 51673.14 33.33 5.78E-08 2.13E-08 
Avg Mean Temp March 3 51683.72 43.91 2.91E-10 1.07E-10 
Avg Mean Temp February 3 51683.84 44.04 2.74E-10 1.01E-10 
Avg Mean Temp April 3 51686.13 46.33 8.72E-11 3.22E-11 
Avg Mean Temp Annual 3 51688.37 48.56 2.85E-11 1.05E-11 
Avg Mean Temp January 3 51708.83 69.03 1.03E-15 3.78E-16 
Avg Mean Temp November 3 51718.37 78.56 8.72E-18 3.22E-18 
Avg Mean Temp December 3 51735.65 95.84 1.54E-21 5.69E-22 
Avg Mean Temp October 3 51738.89 99.09 3.05E-22 1.12E-22 
Avg Min Temp March 3 51745.73 105.92 9.98E-24 3.68E-24 
Avg Min Temp April 3 51750.07 110.27 1.14E-24 4.20E-25 
Avg Min Temp February 3 51756.59 116.78 4.38E-26 1.61E-26 
Avg Max Temp September 3 51765.72 125.91 4.55E-28 1.68E-28 
Avg Mean Dewpoint February 3 51768.76 128.96 9.93E-29 3.66E-29 
Avg Mean Dewpoint April 3 51783.16 143.35 7.44E-32 2.74E-32 
Avg Min Temp Annual 3 51785.73 145.92 2.06E-32 7.58E-33 
Avg Mean Dewpoint March 3 51802.82 163.02 4.00E-36 1.47E-36 
Avg Mean Temp September 3 51808.59 168.79 2.23E-37 8.23E-38 
Avg Min Temp January 3 51817.68 177.87 2.38E-39 8.76E-40 
Avg Mean Dewpoint January 3 51846.90 207.09 1.07E-45 3.95E-46 
Avg Max Temp May 3 51859.49 219.68 1.98E-48 7.30E-49 
Avg Min Temp December 3 51865.94 226.13 7.87E-50 2.90E-50 
Avg Mean Dewpoint Annual 3 51868.15 228.35 2.60E-50 9.58E-51 
Avg Mean Temp August 3 51874.90 235.09 8.91E-52 3.29E-52 
Avg Mean Temp May 3 51878.37 238.56 1.57E-52 5.80E-53 
Avg Mean Dewpoint December 3 51878.76 238.95 1.29E-52 4.77E-53 
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Avg Max Temp August 3 51881.09 241.29 4.03E-53 1.49E-53 
Avg Min Temp October 3 51885.00 245.20 5.70E-54 2.10E-54 
Avg Min Temp November 3 51886.29 246.49 2.99E-54 1.10E-54 
Avg Mean Dewpoint November 3 51902.06 262.26 1.13E-57 4.15E-58 
Avg Min Temp September 3 51927.13 287.33 4.05E-63 1.49E-63 
Avg Min Temp May 3 51936.32 296.51 4.11E-65 1.51E-65 
Avg Max Temp June 3 51967.88 328.08 5.73E-72 2.12E-72 
Avg Mean Temp June 3 51968.06 328.26 5.25E-72 1.94E-72 
Avg Min Temp August 3 51982.08 342.28 4.74E-75 1.75E-75 
Avg Mean Dewpoint October 3 51998.8 358.99 1.11E-78 4.10E-79 
Avg Mean Dewpoint May 3 52004.52 364.71 6.35E-80 2.34E-80 
Avg Max Temp July 3 52018.75 378.94 5.17E-83 1.91E-83 
Avg Mean Temp July 3 52021.77 381.96 1.14E-83 4.22E-84 
Avg Min Temp June 3 52028.52 388.71 3.91E-85 1.44E-85 
Avg Min Temp July 3 52099.71 459.90 1.36E-100 5.02E-101 
Avg Mean Dewpoint September 3 52124.3 484.49 6.22E-106 2.30E-106 
Avg Mean Dewpoint June 3 52136.71 496.91 1.25E-108 4.63E-109 
Avg Mean Dewpoint August 3 52179.7 539.89 5.80E-118 2.14E-118 
Avg Mean Dewpoint July 3 52217.4 577.60 3.77E-126 1.39E-126 
Avg Precipitation February 3 52236.54 596.73 2.64E-130 9.74E-131 
Avg Precipitation March 3 52251.68 611.88 1.36E-133 5.01E-134 
Avg Precipitation December 3 52273.24 633.43 2.83E-138 1.04E-138 
Avg Precipitation Annual 3 52306.36 666.55 1.82E-145 6.72E-146 
Avg Precipitation January 3 52321.67 681.86 8.61E-149 3.18E-149 
Avg Precipitation April 3 52335.8 695.99 7.36E-152 2.72E-152 
Avg Precipitation August 3 52369.51 729.71 3.51E-159 1.30E-159 
Avg Precipitation November 3 52371.3 731.49 1.44E-159 5.31E-160 
Avg windspeed 3 52401.37 761.57 4.24E-166 1.56E-166 
Avg Elevation 3 52403.19 763.39 1.71E-166 6.30E-167 
Avg Precipitation July 3 52404.81 765.01 7.61E-167 2.81E-167 
Avg Precipitation May 3 52409.73 769.92 6.51E-168 2.40E-168 
Avg Precipitation September 3 52413.1 773.30 1.20E-168 4.44E-169 
Avg Precipitation June 3 52415.05 775.24 4.55E-169 1.68E-169 
Avg Precipitation October 3 52424.45 784.64 1.52E-171 4.13E-171 

 

Following this, a correlation matrix was generated to determine the degree of correlation 

between each candidate predictor variable to eliminate highly correlated variables to reduce noise 

in the modelling process (Table 2.2). This study considered any value over 0.6 to indicate high 

correlation (Peters 2020). November mean maximum temperature was the best performing 

variable overall, so variables such as February dewpoint temperature and March mean/minimum 

temperature, which were highly correlated to November mean maximum temperature, were not 

included as candidates for further work to avoid the effects of multicollinearity, which can result 

in uncertain coefficient values (Table 2.2). A series of multi-variable models with combinations 
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of the candidate variables were then created, with the model with the best AIC score being selected 

as the final model for analysis (Table 2.3).  

Table 2.2. Correlation matrix for candidate predictor variables for explaining variation in honey 
bee (Apis mellifera) winter colony loss rates -mean windspeed (Wind), March mean temperature 
(Tmean), November mean maximum temperature (Tmax), March mean minimum temperature 
(Tmin), February mean precipitation (Precipitation), mean elevation (Elevation), and February 
mean dew point (Dewpoint) – within zip codes covered by the Bee Informed partnership (BIP) 
dataset for the U.S. Values range from -1 to 1 with values closer to 1 indicating correlation and 
values closer to -1 indicating inverse correlation.  

 Wind Tmean Tmax Tmin Precipitation Elevation Dewpoint 
Wind   -0.25 -0.29 -0.24 -0.32 -0.06 -0.29 
Tmean     0.97 0.99 0.36 -0.2 0.94 
Tmax       0.95 0.35 -0.25 0.91 
Tmin         0.4 -0.28 0.96 
Precipitation           -0.28 0.51 
Elevation             -0.33 
Dewpoint               

 

Table 2.3. AIC, delta AIC, model likelihood (ModelLik), and AIC weight (AICWt) scores for 
possible final models for explaining variation in honey bee (Apis mellifera) winter colony loss 
rates. The number of variables per model is represented by K. Variables include November mean 
maximum temperature (temperature), February mean precipitation (precipitation), mean elevation 
(elevation), and mean windspeed (wind). Dewpoint was not included due to its high correlation 
with temperature and precipitation.   

Model names K AIC Delta_AIC ModelLik AICWt 
Temperature + Precipitation + Elevation + Wind 6 51582.69 0 1 0.999 
Temperature + Precipitation + Wind 5 51599.48 16.80 0.000225 0.0002 
Temperature + Precipitation + Elevation 5 51609.85 27.16 1.26E-06 1.26E-06 
Temperature + Precipitation 4 51618.88 36.20 1.38E-08 1.38E-08 

 

2.2.3 Regression Analysis 

With the predictor variables determined, the Generalized Linear Regression (GLR) tool 

from ArcGIS Pro was used to analyze the effect of weather variables on the winter colony loss 

rate. This was a non-spatial approach that did not consider the location of the zip codes during 

analysis. Following this, the Geographically Weighted Regression (GWR) tool was used to 

determine if considering spatial variation would improve the model. A GWR is a local form of a 

linear regression that can model spatially varying relationships and allows coefficient values to 
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differ across space by calculating a regression equation for every feature by incorporating its 

neighborhood of features, which can be defined in several ways (Brunsdon et al. 1996). The GWR 

was set to define the neighborhoods needed for analysis by number of neighbors using the golden 

search method, which searches for the number of neighbors that give the lowest AIC score (ESRI 

2022). GWR’s weight neighbors nearer to the target feature heavier than those further away. The 

Bisquare weighting method was selected, which slowly reduces the weight of features further away 

and assigns features outside of a neighborhood a weight of zero (ESRI 2022). All work was done 

with the North America equidistant conic projection, which allows for distance calculations to be 

conducted accurately.    

2.3 Results 

2.3.1 Best Supported Months from Model Selection  

 The ability of weather patterns to explain colony loss, based on AIC score, differed 

between months. Two variables in the final model had monthly data associated with them: mean 

maximum temperature and mean total precipitation. Winter colony loss rates were best explained 

by November mean maximum temperature (Figure 2.2a) and February mean precipitation (Figure 

2.2b). AIC scores for winter (1 October to 1 April) were consistently lower, indicating a better 

model fit, than the rest of the year (Figure 2.2).  
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Figure 2.2. A comparison of Akaike’s Information Criterion (AIC) scores between months for 
mean maximum temperature (A) and mean total precipitation (B). Lower scores indicate a better 
model fit and thus better support for explaining the variation in honey bee (Apis mellifera) winter 
colony loss rates.  

2.3.2 Generalized Linear Regression (GLR) 

The GLR model for winter colony loss rates between 2011-2020 poorly explained variation 

in loss rates, having an adjusted R-squared value of 0.135. The effect sizes for the four predictor 

variables were as follows: for every 1 m/s increase in mean wind speed, 2.27 ± 0.84 fewer colonies 

were lost; for every 1 mm increase in mean February precipitation, 0.054 ± 0.0041 fewer colonies 

were lost; for every degree Celsius warmer the mean maximum temperature was during 

November, 1.8 ± 0.13 fewer colonies were lost; and for every 1 m increase in mean elevation, 

0.0031 ± .00145 fewer colonies were lost. All variables were highly significant (Table 2.4). In the 

case of all variables, increased values were associated with reduced colony losses. This model was 

non-stationary (Koenker statistic of <0.00000), meaning that the relationships between the 

predictors and response were not consistent across the study area.    
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Table 2.4. Coefficient values, standard error, z-statistic, and probability, for the generalized linear 
regression model used to explain variation in honey bee (Apis mellifera) winter colony loss rates. 
Asterisks indicate significant models at P <0.05.  

Variable Coefficient Standard Error Z-Statistic Probability  
Intercept 74.60 2.09 35.75 <0.000000*  
Windspeed (m/s) -2.27 0.43 -5.35 <0.000000*  
February Precipitation (mm) -0.054 0.0081 -6.69 <0.000000*  
November Temperature (°C) -1.80 0.068 -26.39 <0.000000*  
Elevation (m) -0.0031 0.00074 -4.28 <0.000000*  

 

3.3 Geographically Weighted Regression (GWR) 

The golden search identified 367 as the ideal number of neighbors for creating local 

regressions. The AIC score for the GWR model was 51,336.78 compared to 51,665.58 for the GLR 

model, an improvement of 328.80 points. The adjusted R-squared for the GWR model was 0.20, 

an improvement from the global GLR model of 0.065, or 6.5 percentage points Unlike the GLR 

model, the R-squared value was allowed to differ across zip codes, ranging from effectively zero 

to 0.30, with lowest values scattered throughout the U.S. and highest values clustered in Illinois 

(Figure 2.3). The effects of the four predictor variables (November mean maximum temperature, 

February mean precipitation, mean windspeed, and mean elevation) varied by zip code (Figure 

2.4), compared to the GLR model where the effects were constant across the entire study area 

(Table 2.4).  

Coefficient values, which show regional variation among model variables, were mapped 

for each predictor variable (Figure 2.4). Coefficient values for mean windspeed ranged from -9.96 

to 8.53 with standard errors ranging from 1.39 to 5.14 (Figure 2.4a and 2.4b, respectively). Lower 

negative coefficient values, indicating that increased predictor values were associated with lower 

colony loss rates, were scattered throughout the U.S., although concentrations were found in 

northern Pennsylvania (PA), Indiana (IN), southern Tennessee (TN), northern Alabama (AL), and 
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much of the west (for a labelled map of the U.S. see Figure 2.5). Higher positive values, indicating 

that increased predictor values were associated with higher colony loss rates, were concentrated in 

eastern PA/western New Jersey (NJ) and various parts of Appalachia such as West Virginia (WV) 

and western North Carolina (NC). Standard errors, which are a measure of coefficient uncertainty, 

were consistently highest in parts of the northeast, Virginia (VA), and Iowa (IA). 

Coefficient values for February mean precipitation ranged from -0.82 to 1.06 with standard 

errors ranging from 0.018 to 0.49 (Figure 2.4c and 2.4d, respectively). Lower negative coefficient 

values were concentrated in parts of PA, NJ, VA, and Ohio (OH) while higher positive values were 

concentrated in IA. Standard errors were consistently high in the upper Midwest, especially 

northern OH, and along the coast of VA.              

Coefficient values for November mean maximum temperature ranged from -10.23 to 9.79 

with standard errors ranging from 0.39 to 5.98 (Figure 2.4e and 2.4f, respectively). Lower negative 

coefficient values were concentrated in parts of the Midwest, especially Indiana (IN) and western 

Kentucky (KY). Higher positive values were concentrated in northeastern PA, western New York 

(NY), Southern NJ, and parts of OH and eastern KY. Standard errors were consistently high in 

parts of IN, OH, and KY.  

Coefficient values for mean elevation ranged from -0.12 to 0.15 with standard errors 

ranging from 0.0025 to 0.0672 (Figure 2.4g and 2.4h, respectively). Lower negative coefficient 

values were concentrated in OH and southern New England. Higher positive values were 

concentrated in eastern PA, southern NJ, and parts of the Midwest including northern Illinois (IL) 

and southern Wisconsin (WI). Standard errors were consistently high in parts of the Midwest such 

as IL.  
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Figure 2.3. Local R-squared values for each zip code, calculated with a geographically weighted 
regression (GWR). Colors indicate the percent of variation in managed honey bee (Apis mellifera) 
colony loss explained by the four predictor variables included in the analysis: November mean 
maximum temperature, February mean precipitation, mean windspeed, and mean elevation.  
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Figure 2.4. Coefficient and standard error values for the four predictor variables of honey bee 
(Apis mellifera) winter colony loss rates (November mean maximum temperature, February mean 
precipitation, mean windspeed, mean elevation) calculated at the zip code level with a 
geographically weighted regression (GWR). 
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2.4 Discussion 

While honey bee colony loss can be linked to numerous factors working in conjunction, 

this study sought to determine the effects of weather on winter colony loss in the continental U.S. 

and to determine if a spatial approach (GWR) would yield better results, in terms of AIC score and 

R-squared value, than a traditional non-spatial (GLR) approach. This was the first honey bee study 

to utilize a GWR for analysis of colony loss and the first to analyze loss rates at a nationwide scale 

in the U.S.  

2.4.1 Best Supported Months from Model Selection 

The model with the most support for explaining the variation in colony loss rates, based on 

the lowest AIC score, included November mean maximum temperature and February mean 

precipitation. This indicates that temperature and precipitation during these months produce a 

better model fit than during others, when analyzed at the nationwide scale, meaning that variation 

in loss rates were most related to mean maximum temperature and mean precipitation during 

November and February, respectively. There is a trend seen in the AIC graphs (Figure 2.2) of 

winter months having consistently lower AIC scores than other months of the year. This suggests 

that temperature and precipitation during winter can better explain the observed winter loss rates 

than other months of the year. Although it differs by region of the country, this period tends to be 

associated with colder temperatures, lack of forage resources, and no brood development (Dadant 

and Sons 2015). These factors, in addition to other stressors that may be present, may cause a 

colony to be especially susceptible to loss at those times of the year. However, while these months 

were the best supported in the nationwide analysis, they would likely differ from place to place 

were this model to be built at a more local scale. 
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2.4.2 Regression Analysis 

The GWR model outperformed the GLR equivalent in terms of both R-squared and AIC 

values, indicating that a spatial approach better explains the variation in observed loss rates across 

the U.S. These findings are consistent with GWR analysis in other studies such as Xu et al. (2019), 

which found that GWRs outperformed a non-spatial model when analyzing the effects of various 

factors on pollution levels across space. The findings of this study are not surprising when 

considering how geographically large and heterogeneous the continental U.S. is. A model that 

assumes equal effects of predictor variables across an entire country is unlikely to be as accurate 

given what we know from past studies (Brunsdon et al. 1996).  

As expected, the GLR was non-stationary, meaning that the relationships were not constant 

across the study area, making the GWR necessary to expose more localized relationships. For 

example, without the GWR we would not be able to see that increased November mean maximum 

temperature has a strong association with higher loss rates in northeastern PA while having a strong 

association with lower loss rates in IN (Figure 2.4e). GWR models consider spatially local 

neighborhoods which allows for the calculation of local R-squared values and effect sizes at the 

zip code scale (Brunsdon et al. 1996). This resulted in a better fitting model than was obtained 

from the GLR, which only analyzed loss at the national scale.  

R-squared values for each zip code did not exceed 0.30, with many having values close to 

zero. This indicates that for certain local neighborhoods, such as those in Michigan (MI), VA, and 

WI the predictor variables were not important for explaining the variation in the observed loss 

rates (Figure 2.3). These results can partially be attributed to the scale of analysis. Low R-squared 

values may be due to the fact that predictor values may simply not change much across certain 

local scales or that other drivers of colony loss at this scale were not included. These additional 
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variables likely include parasites, pesticides, and other causes of colony loss that have been 

previously researched (Havard et al. 2019).       

The November mean maximum temperature was by far the most important predictor 

variable of those analyzed at the national scale (GLR), having a much higher AIC weight than 

other predictors (Table 2.2). While windspeed, precipitation, and elevation were significant 

predictor variables (Table 2.4), they were not as well supported by the AIC table, having a weight 

of -9.74E-131 or lower compared to the value of 0.37 for November mean maximum temperature 

(Table 2.2). This indicates that the proportion of predictive power provided by these variables is 

very low. The results found for temperature, indicating that higher temperatures were associated 

with lower winter loss rates, corroborate somewhat with past studies which have shown that 

southern states, an area of higher mean temperatures, generally experience lower winter colony 

loss rates (Kulhanek et al. 2017).  

The effects of all variables differed substantially across space in the GWR model, meaning 

that temperature was not necessarily the most important variable for predicting loss in all locations 

(Figure 2.4). These results suggest that while the R-squared values for most zip codes were low, 

the effects of the predictor variables on colony loss rates were substantial in some locations. For 

example, the effects of mean windspeed and November mean maximum temperature are quite high 

in parts of eastern PA (Figure 2.4a and 2.4e). Although the reasons behind the large and widely 

varying effects are not necessarily clear, it is evident that changes in predictor variable values 

within each zip code neighborhood have the potential to result in vastly higher or lower colony 

loss rates in some areas of the country. Possible reasons for the vastly different coefficient values 

observed between zip codes once again include the presence of local, undetermined factors. 
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The results of this study provide support to previous work on the effects of weather on 

colony loss. Temperature and precipitation, the most common variables analyzed previously, were 

found to have significant effects on colony loss. Both Switanek et al. (2017) and Beyer et al. (2018) 

found that warmer temperatures were linked to higher losses year-round and during winter, 

respectively, with Switanek et al. (2017) noting exceptions for two months: February and 

November, where warmer temperatures were linked to lower losses. The GLR model from this 

study supports Switanek et al. (2017), also finding that higher temperatures in November were 

linked to decreased losses, potentially as a result of less cold stress, although the GWR model 

produced a different result. These two studies reported conflicting results for precipitation, with 

Switanek et al. (2017) finding that increased precipitation year-round was linked to decreased loss 

in Austria, whereas, Beyer et al. (2018) found that increased summer precipitation was linked to 

increased loss in Luxembourg. The GWR model showed that the effect of all variables varied 

substantially across space, with some areas experiencing increased loss and some experiencing 

decreased loss as predictor values increased, possibly due to the regionality of landscape and 

weather patterns and the presence of other, undetermined, variables. 

 The results of this study show how the effects of weather vary substantially from region 

to region, possibly due to the heterogeneous nature of weather and geographic characteristics. 

Additionally, these results may explain the inconsistent findings regarding the effects of weather 

on loss in previous studies. This information is critical for honey bee colony loss research, as it 

suggests that effects found in some studies may not be translatable to other regions or potentially 

more local scales within their own study area.  
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2.4.3 Limitations and Future Work 

 While this study produced several key takeaways, there are areas of the analysis that could 

be improved upon in future studies. The BIP Colony Loss and Management Survey is one of the 

most robust, long running, and complete beekeeper surveys in the U.S. Even so, there are 

geographic issues associated with collecting and analyzing data at the zip code scale although zip 

code is one of the easiest ways to collect locational information from the general public (Grubesic 

2008). For this study, the most pertinent issue with zip codes was the discrepancy in their sizes 

across the U.S. For example, the average zip code in Wyoming (WY) covers approximately 1,430 

km2, while the average zip code in NJ covers just 33 km2 (Grubesic 2008). This adds a level of 

uncertainty as colonies within the loss dataset could be located anywhere within a zip code. This 

means that, for larger zip codes, the predictor variable means are less likely to represent the 

conditions colonies within those zip codes truly experienced when compared to smaller zip codes. 

However, the usage of mean conditions across the study period somewhat reduces this issue. 

Although these aggregations introduce slight uncertainty, zip codes were the smallest possible unit 

of analysis for this study and thus more accurately reflect the conditions experienced by colonies 

than other aggregation methods.  

The spatial distribution of stationary survey respondents was uneven as there was greater 

zip code coverage in the northeastern quadrant of the continental U.S. and large gaps in some other 

parts of the country, notably in the west. This undoubtably has some effect on the model selection 

for the GLR as zip codes in the northeast are more numerous and thus had an outsized impact on 

the model. Additionally, certain neighborhoods in the GWR were likely affected by the presence 

of isolated zip codes. Ideally, colony loss data would have been available for every zip code in the 
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U.S., which would help with these issues, but this was unfortunately not realistic as some zip codes 

either lack stationary beekeepers, or those beekeepers have not participated in the BIP survey. 

 Another potential issue when working with GWR models is local multicollinearity, where 

variables that are not correlated in the global model become correlated at more local scales. The 

initial GLR model was built to avoid multicollinearity, but when the same model is run in different 

locations at a more localized scale, local multicollinearity may become an issue. This can result in 

estimates with higher degrees of uncertainty, which should be considered when interpreting 

results. This study did not seek to create a perfect GWR model, but rather sought to compare a 

GWR model using the same variables as the best supported GLR model. Future studies may refine 

the methods used to create a better local model. 

Despite the limitations present, this analysis was able to confirm that a spatially oriented 

approach is better supported when compared to a non-spatial equivalent and confirmed that the 

effects of weather on honey bee colony loss differ across space. While this study established the 

potential usefulness of the GWR for this work, future work may seek to conduct an analysis that 

can better control for missing zip code data and local multicollinearity and include additional 

variables related to colony loss. Further work may also look at year-to-year variation in the effects 

of weather and the effect extreme weather events have on loss rates.     
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2.6 Appendix 

 

Figure 2.5. Map of the continental United States with two letter state abbreviations.  
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Chapter 3 

 

The Importance of Scale When Analyzing the Effects of Weather on Winter Honey Bee 

Colony Loss: A Look at The Modifiable Areal Unit Problem 

 

3.1 Introduction 

3.1.1 The Modifiable Areal Unit Problem (MAUP) 

Data analysis is often conducted using aggregated datasets, where point data, representing 

a measurement such as pollution levels or rainfall, are averaged over an area of interest (e.g., 

county or state), typically represented as polygons in GIS. The aggregation of point data into 

arbitrary zones introduces the issue of the modifiable areal unit problem (MAUP), first described 

by Openshaw and Taylor (1979). MAUP arises when the results of statistical analyses differ based 

upon the analysis unit, or zone, used in the investigation, which in turn leads to differences in 

interpretation (Openshaw and Taylor 1979). There are two aspects of MAUP: the scale of analysis, 

or scale effect, and the unit definition, or zone effect (Openshaw and Taylor 1979; Horner and 

Murray 2002). The scale effect refers to the variation in results based on the number of units used 

in the analysis. Analyzing data with fewer, larger units reduces variation while smaller, more 

numerous units increases it (Openshaw and Taylor 1979; Dark and Bram 2007). The zone effect 

refers to changes in results caused by using the same number of units in different ways within the 

study area (Openshaw and Taylor 1979; Dark and Bram 2007). A common example of this effect 

is gerrymandering, where political districts may be drawn in different shapes to support one 

political party over another (Stehle 2022). Both aspects of MAUP have been found to alter the 

results of statistical analyses in a number of fields including species conservation and landscape 
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ecology (Openshaw and Taylor 1979; Fotheringham and Wong 1991: Jelinksi and Wu 1996; Moat 

et al. 2018). For example, Moat et al. (2018) described how grid size affected the area of occupancy 

for species on the International Union for Conservation of Nature (IUCN) Red List estimation, 

with different cell sizes and shapes producing different area of occupancy estimates, which can 

affect species extinction risk assessment. Additionally, Jelinski and Wu (1996) found that spatial 

autocorrelation of Normalized Difference Vegetation Indices (NDVI) varied based on aggregation 

and zoning schemes, leading to the authors concluding that autocorrelation changes with scale  

One area that MAUP has not been considered in is the field of honey bee (Apis mellifera) 

colony loss research. Investigations into the causes of honey bee colony loss have been numerous, 

given the high colony loss rates that have been observed in recent decades (Bruckner et al. 2020) 

and the importance of honey bees to the economy (Calderone 2012). Honey bee colony loss studies 

are typically conducted in one of two ways. Most commonly, losses are analyzed at the colony 

level, often with linear regressions (Zee et al. 2015; Switanek et al. 2017). The second method 

aggregates loss rates to ecologically arbitrary units, such as political boundaries (e.g., county or 

state). For example, Becsi et al. 2021 analyzed the effects of weather on loss using loss data 

aggregated to the 94 political districts of Austria. Additionally, other studies aggregate loss rates 

to the state level in the U.S., although do not analyze the effects of any variable on these loss rates 

(Steinhauer et al. 2014; Kulhanek et al. 2017). In the case of the latter method, results will likely 

differ based on the type of aggregation method used, as has been found in studies from other fields 

(Jelinski and Wu 1996). Additionally, Fotheringham and Wong (1991) stated that MAUP can lead 

to unpredictable estimates of effect in multivariate analyses. This could lead to misinterpretations 

of the effects that analyzed variables such as temperature, pesticides, or any number of others, 

have on colony loss rates, and potentially result in inaccurate management suggestions. Thus, it is 
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critical to understand how honey bee colony loss analysis results change based on aggregation 

method.   

3.1.2 Previous Honey Bee Colony Loss Research 

Many past honey bee studies have researched the effects of parasites, such as Varroa 

destructor, on colony loss (Zee et al. 2015; Steinhauer et al. 2018), as well as management 

practices (Steinhauer et al. 2018; El Agrebi et al. 2021) and nutrition (Perry et al. 2015; Steinhauer 

et al. 2018).However, while these variables have been well studied, relatively few studies have 

included the effects of weather in their analyses (Havard et al. 2019), despite weather being 

considered a key driver in ecological systems (Daly and Bryant 2013). To date, there are several 

examples of studies that have found variables such as temperature and precipitation to have an 

effect on colony loss rates. Switanek et al. (2017) conducted a study in Austria and found that 

higher temperatures during most months of the year were correlated with greater colony losses 

while greater amounts of precipitation during most months were correlated with lower losses. In 

contrast, Beyer et al. (2018) conducted a study in Luxembourg and found warmer and wetter 

conditions during winter months to be correlated with increased colony losses. Finally, Calovi et 

al. (2021) conducted a study in Pennsylvania and found growing degree days, maximum 

temperature of the warmest month of the year, precipitation during the warmest quarter of the year, 

and precipitation during the wettest quarter of the year best predicted winter colony loss. These 

studies provide evidence that weather does indeed affect colony loss rates, although the effects 

that conditions such as temperature and precipitation have on colony loss are still somewhat 

unclear. 

Past honey bee studies that have aggregated loss data have tended to use human-centric 

aggregation methods such as political districts (Becsi et al. 2021), which are somewhat arbitrary 
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and not ecologically meaningful. This can be useful for displaying colony loss data in a way that 

makes sense to viewers but doesn’t account for the fact that ecologically important variables such 

as mean temperature, precipitation, and elevation, among others, may vary significantly across 

these political regions. One potential method for aggregating loss data– ecoregions – may be better 

suited for this type of analysis but have not been explored in honey bee research to this point. 

Ecoregions are defined as areas where ecosystems are generally similar within a landscape of 

heterogeneity. The ecoregions of the US were identified at four different scales using the patterns 

and composition of phenomena, both biotic and abiotic, that reflect differences in ecosystems, 

including factors such as geology, soils, vegetation, climate, landforms, land use, hydrology, and 

wildlife (Omernik 1987, Omernik 1995). There are four levels of ecoregions with level one 

providing the coarsest detail and level four providing the finest detail.  Ecoregions have been used 

as an analysis unit in past ecological studies, ranging from aggregation of wildfires (Kasischke et 

al. 2002) to land use analysis (de Koning et al. 1998). Analyzing honey bee colony loss rates within 

ecoregions may provide more meaningful insights into colony loss and the factors driving them 

than analysis done using political regions.   

This study sought to determine how MAUP affects honey bee colony loss analysis results 

by exploring the aspect of scale using six different types of aggregation: state, county, and zip 

code, and ecoregions level one, two and three. Ecoregion level four was not considered because 

the majority of the polygons lacked a sufficient colony sample size to run regression analysis. To 

test the concept of MAUP on honey bee colony loss data, mean temperature and mean precipitation 

were chosen as predictor variables to use in regression analysis due to their relevance in prior 

investigations (Switanek et al. 2017; Beyer et al. 2018), and the need for more research into the 

effect of weather on honey bee colony loss (Havard et al. 2019). It was hypothesized that both 
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observed colony loss rates and the effects of weather on these loss rates would differ substantially 

between aggregation methods given what we know about MAUP.   

3.2 Methods 

3.2.1 Data Management  

Winter colony loss data between the winters of 2011-2012 and 2019-2020 were provided 

by the Bee Informed Partnership’s (BIP) annual colony loss management survey (vanEngelsdorp 

et al. 2012; Steinhauer et al. 2014; Bruckner et al. 2020). The BIP survey defines winter as the 

period between October 1st and April 1st. The survey is a citizen science initiative that obtains 

information about colony health and management from beekeepers across the U.S. The survey also 

gathers information about the number of colonies managed for a given year prior to the start of 

winter, how many were lost during the winter months, and the zip code and state in which they 

kept their colonies. Zip code information has been used in this study to geolocate beekeepers by 

geocoding five-digit zip codes to the centroid of each zip code polygon. Data were geocoded in 

ArcGIS Pro 2.9 using the Geocode Addresses tool. This enabled the loss data to be linked to zip 

code, county, and state. A total of 30,535 unique beekeepers in 9,718 zip codes had colony loss 

data reported over the span of this dataset. 

Monthly average raster datasets for both mean temperature (°C) and precipitation (mm) 

were acquired from Parameter-elevation Regressions on Independent Slopes Model (PRISM) for 

the entire continental U.S. at 1 km resolution (Daly and Bryant 2013). Monthly averages were 

aggregated for the entire nine-year study period using the Raster Calculator tool in ArcGIS Pro. 

This resulted in the creation of two new rasters: one representing average temperature and the other 

representing average precipitation for nine years across the U.S. Zip code polygons were acquired 
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from ESRI (ESRI 2021), state and county polygons were acquired from the U.S. Census Bureau 

(U.S. Census Bureau 2018), and ecoregion polygons for levels one, two, and three were acquired 

from the Environmental Protection Agency (U.S. EPA 2015). 

Colony loss data and weather data were spatially joined, and the Zonal Statistics tool was 

used to find the mean weather conditions within each analysis unit (zip codes, ecoregions, etc.). A 

point was then generated for the centroid of each polygon using the Feature to Point tool. This 

centroid was then used to link weather data to the respective analysis units using the Extract 

Multivalues to Point tool followed by a spatial join to link the point file to the polygon files. The 

winter colony loss rates were initially recorded at the zip code level. To analyze the effects of 

temperature and precipitation on loss with the other analysis units at different scales (county, state, 

etc.), the loss data also had to be aggregated to each unit. This was done using two separate 

methods. Firstly, the sumif feature in excel was used to sum the number of colonies managed and 

the number of colonies lost within each zip code over the entire nine years the data covered in 

order to calculate a total loss rate per zip code over this period. This feature worked by summing 

the managed colonies and lost colonies columns based on the zip code ID, resulting in one summed 

total for number of colonies managed and lost for each zip code. The colony loss rate for this entire 

period was then recalculated for each zip code. County and state loss rates were aggregated using 

the sumif feature in the same manner using the county and state ID columns. These excel files were 

then joined to the corresponding polygon file by either zip code, county, or state ID to link loss 

rates for each analysis unit to the weather data.  

Ecoregion aggregation was done using the Select by Location tool in ArcGIS Pro to extract 

zip codes that had their centers within an ecoregion. Once isolated, the total number of colonies 
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owned and lost within that ecoregion were calculated. The loss rate was then entered in a new 

column in the ecoregion polygon table. This process was repeated for each ecoregion.  

3.2.2 Analysis 

Once all polygon files were joined, each of the six resulting files (zip code, county, state, 

level one, two, and three ecoregions) were exported to excel and then loaded into Program R (R 

Core Team 2022) using RStudio (RStudio Team 2022). A series of simple and multiple linear 

regressions were then run for each of the six aggregation methods with the colony loss rate as the 

response variable. Each analysis unit was analyzed using three regressions. Two simple 

regressions were run with one of mean temperature or mean precipitation as the predictor variable 

in order to determine R-squared values for each variable, and one multiple regression was run with 

both mean temperature and mean precipitation as predictor variables in order to get more accurate 

predictor coefficient values and a combined R-squared value.  

3.3 Results 

Winter colony loss rates varied by aggregation level (Table 1). Losses ranged from 0% to 

100% at both the zip code and county levels and 20% to 70% at the state level (Figure 1a-c). Level 

one ecoregion rates ranged from 13% (Southern Semi-Arid Highlands) to 46% (Northern Forests) 

(Figure 1d); level two rates ranged from 13% (Southern Semi-Arid Highlands) to 56% (Mixed 

Wood Shield) (Figure 1e); and 13% (Southern Semi-Arid Highlands) to 71% (Nebraska Sand 

Hills) for level three ecoregions (Figure 1f). 

 R-squared values from the simple regressions indicated that temperature explained much 

more variation in loss than precipitation at all levels of analysis. For example, for level one 

ecoregions, temperature explained 56% of the variation in loss while precipitation explained just 
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5% (Table 2). The combined R-squared values from the multiple regressions ranged from 8% at 

the zip code level to 73% for level two ecoregions (Table 3). Coefficient values from the multiple 

regressions for mean temperature and mean precipitation varied substantially. The coefficient 

value for mean temperature ranged from -2.09 at the zip code level to -1.37 for level two 

ecoregions (Table 3) which were nearly identical to the simple regressions (Table 2). The effect of 

mean temperature on winter colony loss was significant at all levels of analysis. The coefficient 

for mean precipitation ranged from -0.00054 at the zip code level to 0.0061 for level two 

ecoregions within the multiple linear regressions (Table 3). Within the multiple regressions, the 

effect of mean precipitation on winter loss was only significant for level two ecoregions (Table 3). 

The standard errors of the coefficients for both variables and both model types increased in size at 

broader levels of analysis and smaller degrees of freedom (Tables 2,3).  
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Table 3.1. Winter honey bee colony loss rates per 100 colonies within each ecoregion of the 
continental United States (U.S.) from the winter of 2011-2012 to the winter of 2019-2020. 
Columns represent progressively finer ecoregion scales, with ecoregions nested within the larger 
ecoregion of the previous column. Level four ecoregions are excluded.  

Level 1 ecoregions 
Percent 
lost Level 2 ecoregions 

Percent 
lost Level 3 ecoregions 

Percent 
lost 

NORTHERN FORESTS 46 
MIXED WOOD 
SHIELD 56 

NORTHERN LAKES AND 
FORESTS 56 

     
NORTHERN MINNESOTA 
WETLANDS 43 

  
ATLANTIC 
HIGHLANDS 43 

NORTHERN 
APPALACHIAN AND 
ATLANTIC MARATIME 
HIGHLANDS 42 

        
NORTH CENTRAL 
APPALACHIANS 49 

NORTHWESTERN 
FORESTED 
MOUNTAINS 41 

WESTERN 
CORDILLERA 41 CANADIAN ROCKIES 38 

     CASCADES 38 

     
EASTERN CASCADES 
SLOPES AND FOOTHILLS 45 

     MIDDLE ROCKIES 32 
     KLAMATH MOUNTAINS 39 
     SIERRA NEVADA 40 

     
WASATCH AND UINTA 
MOUNTAINS 46 

     SOUTHERN ROCKIES 40 
     IDAHO BATHOLITH 40 

     

COLUMBIA 
MOUNTAINS/NORTHERN 
ROCKIES 52 

     NORTH CASCADES 31 
        BLUE MOUNTAINS 32 

MARINE WEST 
COAST FOREST 41 

MARINE WEST 
COAST FOREST 41 

STRAIT OF 
GEORGIA/PUGET 
LOWLAND 45 

     COAST RANGE 36 
        WILLAMETTE VALLEY 39 
EASTERN 
TEMPERATE 
FORESTS 39 

MIXED WOOD 
PLAINS 46 

EASTERN GREAT LAKES 
LOWLANDS 41 

     ERIE DRIFT PLAIN 46 

     
NORTHERN 
ALLEGHENY PLATEAU 37 

     
NORTH CENTRAL 
HARDWOOD FORESTS 61 

     DRIFTLESS AREA 55 

     

SOUTHERN 
MICHIGAN/NORTHERN 
INDIANA DRIFT PLAINS 53 

     
NORTHEASTERN 
COASTAL ZONE 41 
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ACADIAN PLAINS AND 
HILLS 33 

  
CENTRAL USA 
PLAINS 45 

CENTRAL CORN BELT 
PLAINS 48 

     
HURON/ERIE LAKE 
PLAINS 50 

     
EASTERN CORN BELT 
PLAINS 40 

      
SOUTHEASTERN 
WISCONSIN TILL PLAINS 53 

  
SOUTHEASTERN 
USA PLAINS 35 NORTHERN PIEDMONT 42 

     
INTERIOR RIVER 
VALLEYS AND HILLS 31 

     INTERIOR PLATEAU 31 
     PIEDMONT 35 
     SOUTHEASTERN PLAINS 31 

     
MISSISSIPPI VALLEY 
LOESS PLAINS 24 

     
SOUTH CENTRAL 
PLAINS 20 

      
EAST CENTRAL TEXAS 
PLAINS 18 

  

OZARK/OUACHITA-
APPALACHIAN 
FORESTS 38 RIDGE AND VALLEY 43 

     
CENTRAL 
APPALACHIANS 41 

     
WESTERN ALLEGHENY 
PLATEAU 35 

     BLUE RIDGE 40 
     OZARK HIGHLANDS 26 
     BOSTON MOUNTAINS 23 
     ARKANSAS VALLEY 23 
     OUACHITA MOUNTAINS 20 

      
SOUTHWESTERN 
APPALACHIANS 27 

  

MISSISSIPPI 
ALLUVIAL AND 
SOUTHEAST USA 
COASTAL PLAINS 30 

MIDDLE ATLANTIC 
COASTAL PLAIN 34 

     
MISSISSIPPI ALLUVIAL 
PLAIN 26 

     
SOUTHERN COASTAL 
PLAIN 23 

        
ATLANTIC COASTAL 
PINE BARRENS 32 

GREAT PLAINS 35 
TEMPERATE 
PRAIRIES 39 

ASPEN 
PARKLAND/NORTHERN 
GLACIATED PLAINS 51 

     
LAKE MANITOBA AND 
LAKE AGASSIZ PLAIN 69 

     
WESTERN CORN BELT 
PLAINS 44 

     
CENTRAL IRREGULAR 
PLAINS 28 



54 
 

  

WEST-CENTRAL 
SEMIARID 
PRAIRIES 36 

NORTHWESTERN 
GLACIATED PLAINS 32 

     
NORTHWESTERN 
GREAT PLAINS 36 

      NEBRASKA SAND HILLS 71 

  

SOUTH CENTRAL 
SEMIARID 
PRAIRIES 33 HIGH PLAINS 42 

     
CENTRAL GREAT 
PLAINS 32 

     
SOUTHWESTERN 
TABLELANDS 32 

     FLINT HILLS 31 
     CROSS TIMBERS 25 
     EDWARDS PLATEAU 18 

      
TEXAS BLACKLAND 
PRAIRIES 20 

  
TEXAS-LOUISIANA 
COASTAL PLAIN 30 

WESTERN GULF 
COASTAL PLAIN 30 

    

TAMAULIPAS-
TEXAS SEMIARID 
PLAIN 25 

SOUTHERN TEXAS 
PLAINS/INTERIOR 
PLAINS AND HILLS 
WITH XEROPHYTIC 
SHRUB AND OAK 
FOREST 25 

NORTH AMERICAN 
DESERTS 40 COLD DESERTS 43 COLUMBIA PLATEAU 39 

     
NORTHERN BASIN AND 
RANGE 37 

     WYOMIN BASIN 23 

     
CENTRAL BASIN AND 
RANGE 50 

     COLORADO PLATEAUS 39 

     
ARIZONA/NEW MEXICO 
PLATEAU 43 

      SNAKE RIVER PLAIN 38 

  WARM DESERTS 22 
MOJAVE BASIN AND 
RANGE 28 

     SONORAN DESERT 22 
        CHIHUAHUAN DESERT 16 

MEDITERRANEAN 
CALIFORNIA 36 

MEDITERRANEAN 
CALIFORNIA 36 

CALIFORNIA COASTAL 
SAGE, CHAPARRAL, 
AND OAK WOODLANDS 35 

     
CENTRAL CALIFORNIA 
VALLEY 44 

        

SOUTHERN AND BAJA 
CALIFORNIA PINE-OAK 
MOUNTAINS 31 

SOUTHERN SEMI-
ARID HIGHLANDS 13 

WESTERN SIERRA 
MADRE PIEDMONT 13 

MADREAN 
ARCHIPELAGO  13 

TEMPERATE 
SIERRAS 30 

UPPER GILA 
MOUNTAINS 31 

ARIZONA/NEW MEXICO 
MOUNTAINS 31 

TROPICAL WET 
FORESTS 21 EVERGLADES 21 

SOUTHERN FLORIDA 
COASTAL PLAIN 21 
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Figure 3.1. Average honey bee colony loss rates as a percentage of colonies owned between the 
winters of 2011-2012 and 2019-2020 across six different aggregation methods: zip codes (A), 
counties (B), states (C), level one ecoregions (D), level two ecoregions (E), and level three 
ecoregions (F). 
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Table 3.2. Model results from all single-variable models, including coefficient values, standard 
error (SE), p-value (p), R-squared (R2), and degrees of freedom (df). Significant p-values are 
bolded (p<0.05).  

Model Coefficient SE p R2 df 
Level 1 ecoregion mean temperature -1.11 0.26 0.0038 0.72 7 
Level 1 ecoregion mean precipitation -0.00041 0.0053 0.94 0.00083 7 
Level 2 ecoregion mean temperature -1.24 0.19 <0.00001 0.73 16 
Level 2 ecoregion mean precipitation 0.00089 0.0047 0.85 0.0022 16 
Level 3 ecoregion mean temperature -1.46 0.18 <0.00001 0.47 74 
Level 3 ecoregion mean precipitation -0.0028 0.0026 0.28 0.016 74 
State mean temperature -1.57 0.25 <0.00001 0.47 47 
State mean precipitation -0.0084 0.0036 0.025 0.1 47 
County mean temperature -1.88 0.095 <0.00001 0.21 1505 
County mean precipitation -0.009 0.0013 <0.00001 0.033 1505 
Zip code mean temperature -2.06 0.074 <0.00001 0.12 5804 
Zip code mean precipitation -0.01 0.00095 <0.00001 0.02 5804 

 

Table 3.3. Model results from all multi-variable models for each analysis unit. Each model 
included mean temperature and mean precipitation as predictor variables. Coefficient, standard 
errors, and p-values are given for mean temperature and mean precipitation (denoted as MTC, 
MTSE, and MTP for temperature and MPC, MPSE, and MPP for precipitation) whereas R-squared 
(R2) and degrees of freedom (df) are given for the entire model. Significant p-values are bolded 
(p<0.05). 

Model MTC MTSE MTP MPC MPSE MPP R2 df 
Level 1 ecoregion  -1.42 0.42       0.01 0.0055 0.0045 0.26 0.64 7 
Level 2 ecoregion  -1.37 0.21 <0.00001 0.0061 0.0027 0.04 0.73 17 
Level 3 ecoregion  -1.52 0.2 <0.00001 -0.00021 0.0022 0.92 0.43 81 
State  -1.55 0.28 <0.00001 -0.00052 0.0032 0.87 0.47 46 
County  -1.95 0.12 <0.00001 0.0022 0.0014 0.12 0.15 1762 
Zip code  -2.09 0.076 <0.00001 -0.00054 0.00093 0.56 0.08 9715 

 

3.4 Discussion 

The goal of this study was firstly to showcase how MAUP can affect honey bee colony 

loss analysis results, using temperature and precipitation as predictors, and secondly to quantify 

loss rates in the U.S. at the ecoregion level. This is the first honey bee study to analyze how 

different colony loss aggregation methods can produce different model results, both in terms of 

the coefficient values and R-squared values and also the first study to show how winter colony 

loss rates differ between ecoregions within the continental U.S. 
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3.4.1 Loss Rates and Model Results 

 The differences in loss rate ranges between level one, two, and three ecoregions and the 

other units of analysis suggests, unsurprisingly, that larger aggregations have a moderating effect 

on the loss rates. The larger analysis units, such as ecoregions and states, had a smaller range of 

loss rates than smaller units, such as zip codes. As described by Jelinski and Wu (1996), larger 

aggregations tend to “smooth” data, reducing the effect of high or low values that would be evident 

at smaller aggregation levels. Essentially, the mean of the data remains the same, but variance 

decreases. This phenomenon has been widely recognized in previous works (Fotheringham and 

Wong 1991; Jelinski and Wu 1996; Dark and Bram 2007).  

The R-squared value for the models differed between the units of analysis. For the multiple 

regressions, level two ecoregions had the highest value at 0.73 and zip codes had the lowest value 

at 0.08 (Table 3) Smaller units such as zip codes and counties produced lower R-squared values, 

while larger units, such as the level one and two ecoregions, produced larger R-squared values. 

The differences in R-squared values may be explained by the scale of analysis. Larger units of 

analysis have fewer and coarser datapoints which hide the large amounts of variation present at 

smaller units of analysis (Jelinski and Wu 1996). This reduction in variance increases the R-

squared value for larger units of analysis. These results suggest that when looking at factors behind 

winter colony loss, weather, specifically temperature, is a good predictor when analyzed at broad 

scales. However, the effect of weather becomes less certain at smaller scales. This has implications 

for colony management as it suggests that other factors, potentially parasites, management 

practices, or nutrition could explain loss better than weather at local scales, although weather, and 

specifically, temperature, explain most of the variation in loss rates at a broad scale.  
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In contrast to the R-squared values, the estimates of effect for temperature and precipitation 

tended to be larger with smaller standard errors when analyzed with smaller units. This is likely 

because the smaller units of analysis have many more samples than larger ones (range of 10 to 

9718 datapoints between level 1 ecoregions and zip codes, respectively), providing a more precise 

estimate as a result. The coefficient values indicate that an increase in mean temperature is 

correlated to a decrease in winter colony loss rate. This is in contrast to the findings of Switanek 

et al. (2017) in Austria and Beyer et al. (2018) in Luxembourg, which both found that warmer 

temperatures for most months were linked to higher colony losses. The coefficients for mean 

precipitation within the multiple regression models were both positive and negative, depending on 

the unit of analysis, and significant only when analyzed for level two ecoregions (Table 3). This 

suggests that annual precipitation levels do not play a significant role in colony loss rates across 

the continental U.S.  

These results showcase how one aspect of MAUP, specifically the scale effect, can affect 

the takeaways of a colony loss study. For example, an analysis run with ecoregions or states as 

the analysis unit would find that temperature explains most of the variation in colony loss rate 

but would produce an estimate of effect with a large standard error due to the lower sample size, 

resulting in more uncertainty about the true effect of temperature. A study only conducted at the 

zip code level would find that temperature does not explain much of the observed variation in 

loss rate but would get a more precise estimate of effect. This tradeoff should be considered 

when analyzing aggregated loss data. For the purposes of estimating effect sizes, analyzing data 

with smaller units of aggregation seems preferable as it will result in a more precise coefficient. 

When possible, analyzing data at different scales may be beneficial for gaining an understanding 

of how scale changes the results of the analysis.  
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