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The directional mechanical properties of carbon fiber reinforced composite 

materials make them suitable for components of flywheel energy storage systems. 

Particularly the hub-rim interface is a component where fiber reinforced composite 

materials can be applied to reduce rotor mass to achieve high energy densities. However, 

these materials can introduce significant flexibility and damping into the system, that 

raise stability issues. This research work consisted of an investigation of the material 

damping of carbon fiber reinforced epoxy composites and a study of the effect of the 

material damping on the stability of composite high speed flywheel rotors. In order to 

characterize the damping of the composite material, a number of beam samples, cut from 

laminate plates in various configurations, were tested under several boundary conditions. 

Different methods were used for the extraction of the desired characteristics. The results 
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are presented, described and detailed in this dissertation. A prototype of a flywheel rotor 

was also examined to determine the amount of damping of its composite hub-rim 

interface and compare these results with the ones of the tests on laminate beams. In 

addition, a model that captures the main features of flywheel systems was developed, and 

different configurations were simulated to determine the main factors governing stable 

ranges of operation. It was observed that some inherent features of flywheel systems 

allow assumptions that greatly simplify the analysis of the model. Parameter variation 

studies are presented and discussed in detail. Substantial insight into factors that govern 

the stability of this kind of high speed rotor system was obtained. 
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CHAPTER 1 INTRODUCTION 

 

High-speed flywheel energy storage systems offer the potential for substantially 

improved energy storage densities as compared to conventional chemical batteries. In the 

past years, they have been seriously considered for advanced satellite and vehicle 

applications. A major concern for such components is the energy/weight ratio or energy 

storage density. The hub-rim interface, which connects the hub mounted on a shaft to a 

massive rim, is an attractive candidate for reducing rotor mass. The rim is intended to 

concentrate mass as far from the shaft axis as possible, but the hub-rim interface lies 

close to the shaft and contributes little to the overall energy storage capacity while adding 

to the system mass. Some candidate designs use composite materials that can be tailored 

to withstand the stresses although possessing low mass. In addition, fiber reinforced 

composite rotors are regarded as safer than metallic rotors, since their failure modes are 

normally less destructive [1]. However, composite materials allow significant flexibility 

and tend to have relatively high internal damping, which may produce stability problems. 

Material damping is, in general, a very complex phenomenon and it is difficult to 

characterize its properties for a broad range of conditions. There are a variety of methods 

that are available to evaluate the damping for small amplitude vibrations and relatively 

narrow frequency ranges. Some methods focus on the natural frequencies of vibration, 

such as the free damped vibration method and the resonance curve (or half-power 
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bandwidth) method. Other approaches involve the response characteristics at frequencies 

somewhat removed from resonance, such as the hysteresis method. The former methods 

provide information that is more directly applicable to assessing stability characteristics 

and are the methods of choice for this work. 

From measurements on a set of composite material samples obtained from the 

Polymer and Fiber Engineering Department, the magnitude of the vibration damping of 

the material under several conditions was determined and the dominant mechanisms on 

the dissipation of energy in these composite materials were identified as well. Further, the 

effects of potential factors affecting the dynamic characteristics of the material were 

ascertained within ranges determined by applications on which the use of the composite 

material would offer significant benefits. A tentative design of a flywheel energy storage 

system was considered as a baseline to establish these factors. 

In addition, a model for analysis of the dynamics and stability of a flywheel 

system was developed and a series of parameter variation studies are discussed here in 

detail. A number of useful conclusions and insights for design of such systems were 

obtained and are presented. 
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CHAPTER 2  BACKGROUND AND LITERATURE REVIEW

 

2.1  Vibration Damping 

Along with mass and stiffness, damping determines the essential dynamic 

characteristics of a structure. While mass and stiffness are associated with energy storage, 

damping relates to the conversion of mechanical energy into other forms of energy, such 

as heat or sound. Damping in general affects only vibrational motions around the 

resonance frequencies of a system. If a classical mass-spring-damper system is 

considered (See Figure 2.1), for excitation frequencies that are considerably lower than 

the natural frequency of the system, the motion is mainly determined by the spring force, 

and is known as stiffness controlled. If, on the other hand, the frequency of the excitation 

force is considerably above the natural frequency of the system the inertia of the mass 

will have a greater effect on the response. This region is usually called mass controlled. 

However if the excitation frequency matches the natural frequency, that is, at resonance, 

the spring and inertia effects cancel each other. The excitation force provides energy to 

the system. The energy increases until a steady state is reached, in which the energy 

supplied per cycle is equal to the energy lost per cycle due to damping [2]. 

As a result of an increase of vibration damping in a system one finds that 

unforced and transient vibrations decay faster, and amplitudes of vibration of structures at 

resonances are reduced. However, some damping mechanisms can be detrimental to the 
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performance of a system. Damping forces present in moving parts, or frictional forces 

produced between moving parts, can generate self excited vibrations. 

 

 

Figure 2.1. Mass-spring-damper system 

 

A considerable amount of literature is available on the subject of vibration 

damping and in particular on material damping. Almost every modern vibration book has 

a section dedicated to it. Linacre [3] [4] in his publications on Iron & Steel (1950) provides 

some of the earliest reviews on damping research to date. Crandall [5] investigated the 

nature of damping, pointing out some amplitude and frequency dependence of damping 

and the limitations of some idealized models. Some authors such as Lazan [6] investigated 

the characteristics of vibration damping in more depth. Lazan’s text contains not only a 

thorough description of the most common models for damping characterization, but also 

a comprehensive compendium of levels of damping for different materials, specifying in 

most cases the testing conditions used such as vibration modes used (torsion, axial, 

bending, etc.) and environmental conditions. Another important text dedicated to the 

c 

m 

k 
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topic, although centered on vibration control by means of viscoelastic materials, is the 

one by Nashif et al.[7]. 

 

2.1.1 Damping Models 

Damping is present in systems from several different disciplines, so there is a 

variety of damping mechanisms as well as approaches to interpret and describe them. 

Three major models are used to describe damping in mechanical vibrations: Coulomb, 

viscous and hysteretic damping. Each of these models describes a different phenomenon 

producing dissipation of vibration energy. Coulomb damping is caused by kinetic friction 

between sliding dry surfaces. Viscous damping is a form of fluid damping in which the 

damping force is proportional to velocity. Hysteretic damping, also referred to as solid 

damping, is caused by the internal friction or hysteresis when a solid is deformed [8]. 

Viscous damping is the most common of these three mechanisms. Strictly speaking, 

viscous damping only describes damping produced by laminar flow or by fluid passing 

through a slot, as in a shock absorber [8], but it is frequently used to describe other types 

of energy dissipation without incurring great errors, when the dissipative forces are small. 

For the specific case of internal friction, the theory of elastic hysteresis is the 

most widely accepted. This model is based on the fact that the relation between stress and 

strain is nonlinear and different for the loading and unloading. However, a few more 

detailed theories have been developed that provide other explanations of the phenomenon 

of vibration damping and more detailed or versatile models that in turn add complexity to 

the analysis. Of these, the most relevant ones are the theory of linear hereditary elasticity 

or viscoelasticity, based on integral relations between stresses and strains, the theory of 
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microplastic deformation where dissipation is attributed to motion of dislocations in 

micro volumes, and Zener’s thermodynamic theory, in which dissipation is considered to 

be a consequence of the heat fluxes between parts with different stresses [9]. 

 

2.1.2 Measurement of Vibration Damping 

The methods used for experimental investigation of energy dissipation response 

are classified into two groups. The first group consists of the so called direct methods, 

based on direct measurements of energy dissipation. The second group is the indirect 

methods, in which changes in other parameters such as amplitude and frequency are 

related to the amount of energy dissipation [9]. 

The energy method is a direct method in which the electrical or mechanical 

excitation required to maintain steady-state vibrations in a sample provide a direct 

measure of the energy being dissipated. The thermal method is a direct method that relies 

on the hypothesis that the majority of the energy dissipated is transformed into heat, and 

thus it uses a measure of the heat generated by the vibrational motion as a direct measure 

of the energy dissipated. It is apparent that the difficulties encountered when trying to 

accurately quantify the heat generated from the vibration process make this method hard 

to apply. Moreover, heat is not the only mechanism of energy dissipation, since 

irreversible changes in the structure of the material such as dislocation movements and 

cracks growth also take part of the effective vibrating energy [9]. 

The method of the hysteresis loop is perhaps the most popular among the direct 

methods. It uses the area of the hysteresis loop formed by the stress-strain curve during 

cyclic loading and unloading of the sample as a measure of the energy loss. Since the 
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relative energy dissipation for materials is very small, the area enclosed in the hysteresis 

curve is very small, so a high accuracy is required for the measurement of the strain [9]. 

Another difficulty found in the application of this method is that it needs a very precise 

tracking of the phase of each, the stress and strain measurements, a factor that becomes 

more significant as the excitation frequency is increased. 

The indirect methods include the method of free damped vibrations and the 

resonance curve or half-power bandwidth method. To explain the former let us consider 

the simple ideal linear mass-spring-damper system shown in Figure 2.1. The forces 

involved in the motion of this system are: -kx, produced by the spring; and - cx , produced 

by the damper and the equation of motion, when no external excitation is applied, is 

 0.mx cx kx+ + =  (2.1) 

If the system is released from a position X0 respect to its equilibrium position, the 

displacement in the following instants follows the expression 

  - 
0( )    cos(   )nt

dx t X e tζω ω φ= + ,    (2.2) 

for ζ < 1, where ζ is referred to as damping ratio [2], and is defined as 

  
c

c
c

ζ =  , (2.3) 

and cc is known as the critical damping coefficient and is defined by 

   2   2c nc km mω= = . (2.4) 

φ  is a phase angle that depends on the initial velocity, and ωn and ωd represent the 

undamped and damped radian natural frequencies of the system, respectively. They relate 

to the other parameters by 
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    2  n n
k f
m

ω π= =  , and (2.5) 

 2 1 -  d nω ω ζ= , (2.6) 

and fn is called the (undamped) natural frequency.  

The damping ratio ζ usually has a very small value for structural materials, which 

means that ωd and ωn are sufficiently close to each other to allow the approximation      

ωd = ωn.  

The right hand side of Eq. (2.2) contains a cosine function with amplitude           

X0 e-ζωnt  that decreases with a rate of ζ ωn as time t increases. The time trace representing 

this free decay of the oscillations of the system after an excitation has ceased, provides a 

clear graphical way of seeing the effect of damping, as shown in Figure 2.2. The method 

of free damped vibrations uses this trace to obtain a measure of the energy dissipation 

from the decay in the amplitude of the vibration on one or more cycles of vibration. 

A common measure used in this method is the logarithmic decrement, δ. For n 

cycles of the free vibration decay, it is defined as: 

 1   ln i

i n

X
n X

δ
+

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 , (2.7) 

where Xi and Xi+n represent the values of x at two peaks separated by n cycles. 

Under the assumption that a system is viscously damped and ζ <<1, it follows from Eq. 

(2.2) that  δ = 2 π ζ ,  or 

 1   ln
2  

i

i n

X
n X

ζ
π +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (2.8) 
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Figure 2.2. Decay of vibrations of a viscously damped single degree of freedom system 

 

The second indirect method to consider is the resonance curve or half-power 

bandwidth method. If a vertical sinusoidal force defined by F(t) = F0 cos(ωt) is applied to 

the mass of the system described above, then the motion of the mass after transients have 

vanished, is also sinusoidal. The ratio between the resulting displacement and the force 

applied is called the frequency response function, G, and for this system in particular it 

has the form: 

 2
0

( ) 1( )   
1 -   ( / )    2  /n n

X iG i
F i
ωω

ω ω ζ ω ω
= =

+
. (2.9) 

The magnitude of this complex expression is the real expression 

 
[ ]2 22

1( )   
1 -   ( / )   2  /n n

G iω
ω ω ζ ω ω

=
⎡ ⎤ +⎣ ⎦

. (2.10) 

It is possible to obtain experimentally a curve for the frequency response versus 

excitation frequency. Using Eq. (2.10) it can be shown that for ζ <<1, the damping ratio 

is given by 

D
is

pl
ac

em
en

t

Xi

Xi+4

X0

ωnt2π 4π 6π 8π 10π 12π 14π ωnt 

X0 
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 2 1

0

-    
2 

ω ωζ
ω

=  ,  (2.11) 

where ω0 is the frequency at which the peak of the curve is obtained and ω1 and ω2 are 

the two frequencies, one below and one above, for which the frequency response is 

( ) 1
2

−
 times the one at resonance. These frequencies are often called the half-power 

points because at these the energy stored in the system (and that dissipated by it), which 

is proportional to the square of the amplitude, is half of the maximum value. Figure 2.3 

shows the magnitude of the frequency response of a viscously damped system for several 

values of damping ratio ζ.  

Another expression can be used to identify the value of damping for a single degree 

of freedom system in a similar way. If on the mass-spring-system of Figure 2.1 the force 

is applied at the base instead, then the sinusoidal motion of the base produces a 

corresponding motion of the mass. The transmissibility of a system is a measure of how 

much the motion of the base or foundation influences the motion of the mass for a range 

of frequencies. For a system with viscous damping under sinusoidal excitation, the 

transmissibility, T, follows 

 [ ]
[ ]

2

2 22

1  2  /
 ( )    

1-  ( / )   2  /
nm

b n n

XT
X

ζ ω ω
ω

ω ω ζ ω ω

+
= =

⎡ ⎤ +⎣ ⎦
 ,  (2.12) 

where Xb represents the displacement of the base and Xm the displacement of the mass 
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Figure 2.3. Magnitude of frequency response function for a viscously damped system 

 

As can be seen, this expression is slightly different from that of Eq. (2.10). However for 

ζ<<1 neglecting the term [2 ζ ω/ωn ]2 on the top introduces little error on the estimation 

of the transmissibility, and thus the expression can be approximated as 
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From this expression the damping ratio can be related to the displacement of the 

mass and that of the point where the force is applied. The advantage of this expression 

over the one for the magnitude of the frequency response is that the displacement of the 

point where the force is applied can be tracked with non-contact techniques that don’t 

interfere with the system. 
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2.2  Fiber Reinforced Composite Polymers 

The search for lighter materials that allow further tailoring of the designs of 

structural components has found an answer in common materials such as iron, copper, 

nickel, carbon, and boron. To varying degrees, these materials have directionally 

dependent mechanical properties, with the directional dependence being due to the 

strength of the interatomic and intermolecular bonds [10]. Some directions exhibit stronger 

bonds than others and a material unit (which can range from the molecular to the 

macroscopic level) in which these bonds are aligned in certain directions is very stiff and 

considerably stronger in those directions. However, in the other directions usually the 

material is much softer and weaker.  

If a material is fabricated in bulk form, it will contain randomly oriented units of 

material, as shown in Figure 2.4, and the bulk material will have the same mechanical 

properties in all directions. These properties will reflect in general the properties of the 

weakest link of the unit. 

 

Figure 2.4. Randomly oriented units of material (From Hyer [10]) 
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If, on the other hand, a material is processed in a manner that permits the 

alignment of the strong and stiff directions of all the basic units, some of the high 

strength and stiffness properties of all the basic material units can be preserved, along 

selected directions. Long and thin elements of material referred to as whiskers where 

units are aligned can be formed. Their mechanical properties can be close to those of a 

single unit if enough care is taken in processing. 

However, the process of enlarging a whisker by adding more basic units 

inevitably causes imperfections that significantly affect the strength and stiffness of the 

whisker and become the weak link in the material. Nevertheless, the units formed by 

adding to the length of whiskers, called fibers, have significant lengths, so they can be 

easily aligned in one direction to provide directional reinforcement to a structure. At the 

same time fibers can be aligned and grouped in what is called a tow, which further 

improves the handling of the fibers, especially when their diameters are small as is the 

case of most forms of carbon fibers. Fiber tows are embedded and bonded to another 

material in order to make use of them. This material is often called the matrix, and is 

usually softer and weaker than the reinforcement material [10]. 

A fiber reinforced composite material is formed by the embedding of a parallel 

array of strong, stiff fibers or tows in a matrix. Loads applied along the direction of the 

fibers will be transmitted to the fibers, which will assume most of the resistance to the 

load, as in Figure 2.5. However, if the load is applied perpendicular to the alignment of 

the fibers as in Figure 2.5b-c, a great part of it will be entirely in the matrix material.  
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Figure 2.5. Poor transverse properties (From Hyer [10]) 

 

2.3  Damping in Fiber Reinforced Composite Materials 

Conventional metallic materials exhibit very low values of damping. It is 

customary to assume that most of the energy dissipation in metallic structures occurs at 

the joints or in added damping treatments. Polymer composites, on the other hand, exhibit 

large values of damping. This has often been regarded as a positive characteristic, since 

damping is desirable for many applications where persistent oscillations are detrimental 

to performance. However, there are applications where excessive damping can cause 

severe problems, and thus a proper characterization of their dynamic behavior becomes 

critical to generate optimal designs. 

A considerable amount of work has been done in the field of dynamic 

characterization of composite materials. A comprehensive review of the research in this 

area is given in two publications by Gibson [12] [13]. Bert [14] also reviewed the early 

contributions to the field of dynamic behavior of composite materials and structures, a 

(a) (b) (c) 

Fiber direction Transverse  directions 
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more experimental approach covering dynamic stiffness and damping, vibration of 

structural elements, and low-velocity transverse impact of laminated panels.  

The textbook by Zinoviev and Ermakov [9] covers the basics of damping analysis 

in composites and provides some measurement data. Bert [15] reviewed the theory of 

damping in fiber-reinforced composites for perfectly-bonded viscoelastic composites. 

Chaturvedi [16] provided an overview of the analytical and experimental characterization 

of damping in polymer composites for discontinuous and continuous fiber 

reinforcements. Suarez et. al. [17] investigated the influence of fiber length and fiber 

orientation on damping of polymer composite materials. Chia [18] published a review of 

the geometrical nonlinear static and dynamic behavior of composite laminates. Plunkett 

[19] reviewed the damping mechanisms believed to be present in fiber composite 

laminates. Yen and Cunningham [20] studied the effect of anisotropy in mode shapes and 

frequency distribution on graphite-epoxy plates, finding that the behavior is quite 

different to that of isotropic plates. 

Damping in composite materials is attributed to a number of sources, namely:  

a) The viscoelastic nature of the matrix and/or fiber materials. In composites with a 

polymeric matrix this effect is more pronounced [21]. 

b) Thermoelastic damping due to heat flow. It is assumed that the heat flows 

between areas at different stress states and consequently at different temperatures 

[9]. 

c) Coulomb friction generated from the slip in the matrix/fiber interface at unbonded 

regions. 
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d) Energy dissipation at cracks and delaminations, also related to Coulomb damping 

produced at damaged locations [21]. 

e) Viscoplastic damping, non-linear damping at large amplitudes of vibration, due to 

high levels of stress and strain. Adams and Maheri [22] have determined that the 

non-linearity in damping can be attributed to plastic deformation beyond certain 

critical stress level. Kenny and Marchetti achieved to correlate the load level, the 

high damping of plastic origin, and its thermal effects for carbon and graphite 

fiber reinforced polymers [23]. 

f) Hwang [24] concluded that the effects of transverse shear on the damping of 

laminated beams in flexural vibration and of interlaminar stresses on the damping 

of laminates under extensional vibration are most important in thick laminates.  

 

The data available for damping  in polymer composite materials is very  

dissimilar [6]. The types of matrix and fiber materials, fiber length, curing temperature, 

laminate configuration, etc. are all factors that can greatly affect the energy dissipation 

properties of the material. Values for damping are often found in literature with poor 

reference to the method used for measurement, the environmental conditions, and the 

characteristics of the material selected. This complicates the task of comparing and 

validating experimental results. 

 

2.4  Modeling of Rotor Systems 

The study of rotating structures is a field that has developed more as an 

experimental science than a theoretical one. The first analysis of a spinning shaft was 
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presented by W. J. Rankine in 1869. Rankine chose a model, shown in Figure 2.6, to 

examine the equilibrium conditions of a frictionless, uniform shaft disturbed from its 

initial position. In his analysis he neglected the Coriolis acceleration in the second 

equation of motion [25] and thus predicted incorrectly that rotating machines were not able 

to exceed their critical speed. 

 

 

Figure 2.6. Rankine’s model 

 

Rankine’s assertion was contradicted by contemporaries such as Foppl, whose 

demonstration of the existence of a stable supercritical running speed was not widely 

recognized, and De Laval, who in 1889 was able to run a single stage steam turbine at a 

supercritical speed. It was after almost 50 years that Henry H. Jeffcott performed the task 

of clarifying the issue and satisfactorily explained the phenomenon using a model that 

consists of a massive unbalanced disk mounted half way between rigid bearing supports 

on a flexible shaft of negligible mass, and where viscous damping opposes absolute 
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motions of the disk. He was able to explain how the rotor whirl amplitude is maximized 

at the critical speed, ω = ωc , but diminishes as ω > ωc 
[26]. Further details can found in 

the article by Nelson [27]. 

 

 

Figure 2.7 shows the Jeffcott rotor model in whirling motion. The shaded square 

M represents an unbalanced mass. The whirl speed,  ω φ= , is the time rate of change of 

the angle φ . If the angle β  remains constant relative to the rotating whirl vector v, the 

whirl speed and the shaft speed are the same, thus the whirl is called synchronous. If, on 

the other hand, the angle β  has a rate of change 0β ≠ , the whirling motion is referred to 

as non-synchronous. 

 

Figure 2.7. The Jeffcott rotor in whirling motion 
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2.4.1 Rotordynamic analysis 

Modern high speed rotating machines are encountered in several applications 

where extreme production or storage of energy is desired. Their ability to achieve high 

shaft speeds allows them to deliver high energy densities and flow rates. This comes at 

the expense of high inertial loads and potential problems like vibration, shaft whirl and 

rotordynamic instability [26]. 

Rotordynamic analysis deals with the planning, design and adjustments to the 

designs of rotating machinery. Some of its main objectives are [26]: 

• Predicting critical speeds, defined as the angular rates ω at which vibration due to 

imbalance of the rotor (the assembly of rotating parts) is a maximum. These 

speeds can be calculated from design data so that they are avoided when setting 

operational speeds. Rotordynamic analysis also offers methods to evaluate how 

modifications of the parameters will affect a design when critical speeds must be 

distanced from a given operational speed. 

• Calculate the locations and masses adequate to achieve balancing of rotors, in 

order to reduce the amplitude of synchronous vibration. 

• Predict threshold speeds at which dynamic instability occurs and determining 

suitable modifications in the design so as to suppress dynamic instabilities. This 

can be a challenging task, since destabilizing forces are hard to identify 

qualitatively and quantitatively, and thus it becomes difficult to represent them 

accurately in mathematical models. 
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2.5  Rotordynamic Instability 

Within the problems found in rotating machinery, synchronous whirl (produced 

by imbalance) is the most common. However, although nonsynchronous whirl is less 

frequent, it can severely damage a machine. Within these nonsynchronous phenomena is 

the rotor whirling that becomes unstable when a certain speed (called the threshold speed 

of instability) is reached, which has proven to have devastating effects on rotor systems. 

It is produced by tangential forces that act in the direction of the instantaneous motion. 

They are usually referred to as following or destabilizing forces and its magnitude can be 

proportional to the whirl velocity, in which case they are considered as negative damping, 

or proportional to rotor displacement, classified as a cross-coupled stiffness. 

Several mechanisms have been identified or at least are believed to produce 

rotordynamic instability. Oil whip is probably the most common source of instability in 

hydrodynamic bearings. It occurs when the shaft in the bearing is disturbed from 

equilibrium and the oil film starts to drive it in a whirling motion. This can occur until a 

point when the oil frequency matches a natural frequency of the system and remain 

unchanged as the running speed continues to increase. This is the phenomenon known as 

oil whip, which may cause destructive vibration [28]. 

Other less common sources of rotor instability are fluid ring seals, similar in 

nature to oil whip; internal friction in or between rotating parts; Alford’s forces, produced 

by irregular circumferential blade-tip clearances in an eccentric rotor [29]; trapped liquids 

inside a hollow shaft or rotor; and dry friction whip, produced by rubbing friction 

between the rotor and stator, which originates a backward whirl motion [26]. Of all these, 

rotor instability caused by internal friction is the central interest of this work. 
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2.6  Rotordynamic Instability caused by Internal Friction Damping 

As early as 1924, observations of rotor instability were reported by Newkirk [30], a 

phenomenon he referred to as ‘whip’. In order to determine if unbalance was the cause 

for the observed phenomenon, he conducted a study using a test rotor to simulate a 

compressor unit, and drew a series of important conclusions [32]: 

• Refinement in rotor balance does not affect the onset speed of whirling or whirl 

amplitude. 

• Whirling always occurrs above the first critical speed. 

• The whirl speed is constant regardless of the rotational speed. 

• Misalignment of the bearings increases stability. 

• Introducing damping into the foundation increases the whirl threshold speed. 

• In a well balanced rotor, a disturbance is sometimes required to initiate the whirl 

motion. 

Newkirk realized that this phenomenon could not be attributed to critical-speed 

resonance, since the high vibrations encountered always occurred super-critically, i.e. 

above the first critical speed, and refinement of balance had no effect upon diminishing 

the whirl amplitudes. It was Kimball [31] (1924) who suggested that internal shaft friction 

can be responsible for shaft whirling. He postulated that below the rotor critical speed the 

internal friction damps out the whirling motion, while above the critical speed the internal 

friction sustains the whirl [32]. He attributed this effect to the hysteresis of the metal 

undergoing alternate stress reversal cycles. This led Newkirk to extend the Jeffcott model 

by adding a force normal to the deflected rotor, with which he could demonstrate that the 

rotor is unstable above the first critical speed. However, since he did not include the 
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effect of the flexibility and damping of the supports, he could not explain theoretically 

several key points of his experimental observations. 

Research work in the area developed with the years and some landmark papers 

and texts were published that covered the topic of instability produced by internal friction 

damping and other mechanisms. Ehrich [33] (1964) was able to determine that the 

“consideration of the stabilizing effects of external friction leads to the more general 

conclusion that shaft whirl may occur at any natural mode”. He established that the 

rotational speed at which instability occurs is governed by the ratio of external friction to 

internal friction. 

By modeling a flexible rotor on elastic supports, Gunter [32] (1967) was able to 

come up with an analytical expression to predict the onset speed of instability and 

provided a theoretical explanation to Newkirk’s findings. He also proved that the 

threshold speed of whirl instability can be increased by decreasing the foundation 

stiffness. Then in 1969 he and Trumpler [34] showed that in the absence of bearing 

damping a symmetric flexible foundation reduces the rotor critical speed and also the 

whirl threshold speed. They also concluded that addition of internal damping greatly 

improves the threshold speed. They extended the investigation to consider an asymmetric 

foundation finding that, even with no damping added, the onset speed of instability is 

largely increased. 

Lund is widely recognized for his fundamental contributions to rotordynamic 

analysis, and this is also the case with internal friction instability. In his paper [35] (1974), 

he extended the Myklestad-Prohl method for calculating critical speeds, to calculate the 

damped natural frequencies of a general flexible rotor supported in fluid film journal 
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bearings. His method is significant because of its versatility to simulate virtually any 

practical shaft geometry and support configuration. 

Bently and Muszynska [36] (1982) determined that the effective rotor damping was 

reduced due to internal damping during sub-synchronous and backward precessional 

vibrations produced by other instability mechanisms, and verified that internal damping is 

indeed a source of rotor instability. 

Some authors have treated the topic of composite materials used for rotor 

systems. The work of Wettergren [37] (1998), dealt with the characterization of high-

modulus carbon fibers in an epoxy matrix, to be used in shafts. Previously, the work by 

Chen [38] (1978) consisted in modeling an overhung flywheel rotor system with a flexible 

shaft, in which the rim was attached to the hub by elastic bands of unidirectional Aramid-

Epoxy. This work was valuable in establishing some analytical tools for analyzing a 

flywheel with flexible hub-rim interface, but it did not address the characterization of the 

level of damping of the composite material used and its direct effect on the system’s 

stability. 

 

2.7  Flywheel as an energy storage system 

Flywheels as energy storage systems have a long history. However only in the 

past decades they have been considered for more serious applications, and thus further 

research has been put into developing more efficient designs [39]. It was in the early 70’s 

that the idea of using reinforced plastics as a way to increase the energy/weight ratio 

started to be developed. Recently, interest has been shown in incorporating composite 

flywheels in aerospace applications as energy storage and combined systems for energy 
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storage and attitude control. This has generated a series of research efforts by 

governmental agencies together with the academic community, to create safe and reliable 

flywheel systems. Gowayed et al. [41] (2002) established some criteria for the optimal 

design of composite flywheel rotors, using both closed nonlinear and finite element 

analysis optimization. They maximized the total energy of the rotor as a function of 

geometrical and physical characteristics of the composite rim and the rotational speed. 

They also analyzed the potential of using closed form analyses to give initial estimates of 

optimal designs, and finite element analysis for more accuracy and a better insight on 

manufacturing approaches. Jansen et al. [42] (2002) described some changes in the design 

of the flywheel module at NASA Glenn Research Center. They incorporated a composite 

rim and magnetic bearings, among other improvements. They were able to meet the 

safety margins at the certification speed of 66,000 RPM.  
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CHAPTER 3 DAMPING IN FIBER REINFORCED COMPOSITE MATERIALS

 

3.1  Experiments 

A set of carbon fiber reinforced composite polymer plates was prepared by the 

Polymer and Fiber Engineering Department at Auburn University, in order to 

characterize their damping characteristics. These plates were all fabricated using the 

prepreg method, in which several sheets containing aligned carbon fibers are bonded 

using an epoxy matrix in a high temperature press. Different numbers of layers and 

relative alignments of the sheets were used to span a variety of configurations. 

In order to determine the extent to which the mounting conditions interfere with 

the proper determination of the material damping, a series of experiments were conducted 

using different mounting conditions. Some of the configurations aimed at characterizing 

the material itself, and some were designed in order to include the boundary effects that 

would be present in a real application. This would allow separating the contributions of 

the material, the configuration, and the type of mounting to the damping, providing 

additional information useful for the application of the results in the design of more 

complex structures. 

The samples were prepared from Carbon-Epoxy prepreg sheets using high-

strength carbon fibers of the type TORAYCA® T300. This kind of fiber has 3000 
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monofilaments in a tow, where each filament has an approximate diameter of 7 μm. 

Some characteristics of this kind of material are given in Table 3.1. 

 

Tensile Strength Tensile Modulus Elongation Density 
Fiber Type 

ksi MPa Msi GPa % g/cm3 

T300 512 3530 33.4 230 1.5 1.76 

Table 3.1. Properties of TORAYCA T300 

 

Each sheet has a thickness of 0.12 mm and the volume fraction of the final plates 

is 62%. The fiber volume fraction, Vf , can be obtained using the equation 
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where 

Wf = weight fraction of fibers, 

Wm = weight fraction of matrix, 

ρf = density of fibers [g/cm3], and 

ρm = density of matrix [g/cm3]. 

 

3.2  Beam Supported on Bonded Stud with Random Excitation 

First, samples supported with a bonded stud were tested. For this test the plate of 

composite material that was used had an alignment configuration [0°,0°,0°,90°,0°,0°,0°] 

(seven layers), which is very close to a unidirectional laminate plate. It had a thickness of  

1.08 mm and an area of about 300 x 300 mm. The layers of the plate showed mismatched 
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edges, causing the epoxy bonding at the borders to be uneven. From borders in such 

condition, delamination can develop at the edges and spread towards the center of the 

plate. In order to prevent such delamination, stripes of about 25 mm wide were cut 

around the border of the plate. Special care was taken to maintain the alignment of the 

main axes of the plate with the fiber directions. Then the shapes of samples with different 

fiber alignments were drawn on the plate with some added margin for each sample, to 

allow polishing of the edges to get straight samples. The plate was cut using a ceramic 

tile saw and the edges of the beams were smoothed and polished using a file and sand 

paper. 

 

Figure 3.1. Composite beam with bonded stud for mounting on the shaker 

 

The dimensions of the beam samples were chosen to maximize the use of the area 

of the plate that was in good conditions and to have a width significantly smaller than the 

length, so that the assumptions of the Euler-Bernoulli beam theory could be satisfied for 

analysis. The test samples that were used consisted of beams with a width of 12 mm and 

lengths ranging from 120 to 250 mm. A threaded stud was bonded to one side of each 

12 mm 

1.08 mm 
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sample, close to the edge, and then this stud was fastened to the head of the shaker. This 

system provides the characteristics of a cantilever clamping, but the friction that is 

produced at the fixed end is significantly reduced. This allows a better isolation of the 

internal damping of the sample from the damping provided by the friction in the border. 

 

 

Figure 3.2. Measurement setup 

 

The damping value at the first natural frequency of each sample is quantified using an 

equivalent viscous damping ratio which is obtained from the transfer function magnitude 

plots using the half-power bandwidth method. Vibration signals were measured at the 

point where the sample is connected to the head of the shaker (as the input) and at a point 

near the end of the sample (as the output), where the highest amplitudes of the first mode 

of vibration are achieved. Samples were excited with a random noise signal of limited 

bandwidth around the center frequency of vibration of the first natural mode and the 

responses between the input and output were averaged over multiple frames. The first 

natural mode of vibration and the damping ratio were determined from each resulting 

Bode diagram. 
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The procedure was repeated using beams of different fiber alignment and 

different lengths to obtain the values of damping ratio for a range of natural frequencies. 

The fiber alignments tested were 0°, 90° and 45°, where each alignment represents the 

angle between the the 6 laminae with 0º and the longitudinal axis of the beam. The results 

of these measurements are shown in Figure 3.3. Examination of this figure provides some 

very interesting insights. First, it is very important to note that the damping ratios for 

each of the three sample fiber directions are approximately constant in the range of 

frequency studied. From a modeling perspective, this result indicates a linear (viscous 

type) characteristic over the frequency ranges tested, which serves to greatly simplify the 

basic analyses. Also, as expected, the damping levels change dramatically as a function 

of fiber alignment. The lowest values were observed for the 0º configuration (where all 

layers are aligned at 0° except the center one) at about 0.2%. Somewhat higher values 

were seen for the 90º configuration at about 0.25%. Substantially higher values were 

noted for the 45º configuration, at about 0.4%. This is in agreement with the results of 

similar studies that assessed the damping as a function of fiber alignment. Figure 3.4 

shows the result of a study by Suarez et al. [17] where damping (represented by the loss 

factor) is shown as a function of fiber alignment. Since flexible hub designs will probably 

be constructed by winding the prepreg material around a mold, the alignment angles will 

vary considerably, but damping values will certainly fall within the ranges obtained. 
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Figure 3.3. Damping ratio at first natural frequencies for three fiber alignments 

 

 

 

Figure 3.4. Loss factor as function of fiber alignment. (From Suarez et al. [17]) 
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3.3  Excitation at the Center of the Sample 

An attempt was made to use a configuration in which the excitation was applied at 

the center of the beam. This connection was again made with a threaded stud connected 

to the sample by means of high strength epoxy. The intention was to achieve a system 

that would behave as a free-free beam, at least for the odd modes of vibration, since the 

connection point would be located at a node of those vibration modes. 

 

 

Figure 3.5. Beam excited at center point 

 

The sample used for this set of measurements came from a plate with 22 layers in 

a [0°,90°,0°,90°,0°,90°,0°,90°,0°,90°,0°]S configuration (where S stands for symmetric) 

that better simulates the conditions found on a component for a real application, as 

compared to the samples used to obtain the dependence of damping on fiber alignment, in 

the previous section. This sample plate has a thickness of 3.16 mm and the sample beam 

has 281 mm of length and 15 mm of width. The sample was cut using the same 

provisions as described above to avoid the delaminated sections that are present on the 

edges of the plate. 

A broadband frequency transfer function was obtained between measurements of 

random noise using accelerometers mounted at the shaker’s head and at a point close to 
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the tip of one of the sides of the beam in bending, which resulted in the response shown 

in Figure 3.6. The accelerometers used were miniature accelerometers of approximately 1 

g of mass, including the effect of the attached cable. 

 

Figure 3.6. Transfer function of beam attached to the shaker at midpoint 

 

The natural frequencies for this system are identified to be at 

 f1 = 181 Hz,  

 f2 = 1078.75 = 5.959 (181) Hz, (3.2) 

 f3 = 2937.75 = 16.231 (181) Hz,  

 

3.3.1 Comparison with Analytical Model 

Let us consider the Euler-Bernoulli beam equation of motion 
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Y(x) is the deflection of the beam at x. The form for the solution of this kind of equation 

is known to be: 

 ( )   sin( )   cos( )   sinh( )   cosh( )Y x A x B x C x D xβ β β β= + + +  (3.5) 

The boundary conditions for a beam of length L in a free-free configuration are 
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If the second and third derivatives of the assumed solution are evaluated at the boundaries 

and the conditions given in (3.6) are applied, it is concluded that for a free-free 

configuration the following equation defines the natural frequencies of vibration: 

 cosh( ) cos( )  1L Lβ β = . (3.7) 

There are an infinite number of values of βL that satisfy this equation, the first ones 

being: 

 βL = (0, 4.73, 7.853, 10.996, 14.137, 17.279, …) (3.8) 

and from Eq. (3.4), the natural frequencies for a free-free beam are 

 4

   (0,  22.373,  61.67,  120.903,  199.86,  298.56,  ...) 
 n

E I
m L

ω =  , (3.9) 

 or  4

   (0,  1,  2.75,  5.404,  8.933,  13.34,  ...) 22.373
 n

E I
m L

ω = ⋅ ⋅ ,  (3.10) 

where ωn = 0 corresponds to a rigid body displacement. The remaining values of ωn are 

the predicted natural frequencies for a free-free beam. Since in this case the beam is 

excited in the center, the odd modes, in which the halves of the beam oscillate out of 
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phase, are not present (except ω0 = 0). This occurs because the center point is a node for 

these vibration modes. Thus, the spacing between the first three (even) natural 

frequencies for this situation should be given by the even indexed values in Eq. (3.10), 

i.e. 

 ω2 = 5.404 ω1 , (3.11) 

 ω3 = 13.34 ω1 , etc. 

This theoretical relation between the natural frequencies for the free-free beam 

does not match the results of the experiment very closely. A possible cause is the type of 

connection between the stud and the beam. Since the system was being mechanically 

excited, a solid connection between the stud and beam was necessary and, consequently, 

the area of contact could not be kept too small. This means that the connection was not on 

a “point” but rather a “small area” at the center of the beam, so points around the center 

of the beam were constrained and could not deflect freely. This would imply that the 

system would have features of a double cantilever beam instead. In order to investigate 

further, an analysis similar to that done above for a free-free beam was performed.  

The boundary conditions for a cantilever beam are 
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Evaluating the first, second, and third derivatives of (3.5) in the boundaries and using 

these conditions, the equation that defines the natural frequencies of vibration of a 

cantilever beam is obtained: 
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 cosh( ) cos( )  -1L Lβ β = . (3.13) 

The values of βL that satisfy this equation are 

 βL = (1.8751, 4.694, 7.85, 10.99, 14.137, 17.28, …), (3.14) 

where the rigid body mode of vibration, ω0 = 0 on Eq. (3.8), is not present as expected. 

Again, using Eq. (3.4) for a cantilever beam, the natural frequencies are 

 4  (3.5160,  22.0336,  61.6225,  120.7801,  199.8548,  298.5984,  ...) n
E I

m L
ω = , (3.15) 

 or  4

   (1,  6.27,  17.53,  34.35,  56.84,  84.93,  ...) 3.516
 n

E I
m L

ω = ⋅ ⋅ ,  (3.16) 

and the spacing between the first three natural frequencies for this situation is given by 

 ω2 = 6.27 ω1 , and (3.17) 

 ω3 = 17.53 ω1 . 

A comparison of these results can be observed in Table 3.2. 

 

 Experimental Free-Free B. C. Cantilever B. C. 

ω2 = ω1  × 5.959 5.404 6.27 

ω3 = ω1  × 16.231 13.34 17.53 

Table 3.2. Ratios between first three natural frequencies  

 

3.3.2 Modal Damping of Samples Mounted with Stud in the Center 

The same procedure applied in Section 3.2 was used in this case to extract the 

modal damping values of the beam mounted at the center for the first four natural 

frequencies by means of the half-power bandwidth method. The value of the damping 
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ratio is around 0.2% for all of the vibration modes. The values are shown in Table 3.3 and 

Figure 3.7. 

Frequency (Hz) Damping Ratio 

181 0.001409 

1078.75 0.002665 

2937.75 0.001612 

5560 0.002316 

Table 3.3. Modal damping at four first natural frequencies 

 

 

Figure 3.7. Modal damping at four first natural frequencies 

 

Results from this set of experiments show no clear functional relation of the 

values of damping with the modes of vibration. They all lie in the same range, which is 

also the range found for samples with 0° and 90° in the testing of beams taken from the 
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plate where the laminae are aligned. It can be concluded that the damping ratio obtained 

with this setup is basically a constant value around 0.2%. 

 

3.4  Cantilever Beams with Swept Sine Excitation of Base 

A series of experiments using beams in a cantilever configuration were conducted 

to compare the results with those from the measurements using bonded studs. It was 

hypothesized that the epoxy connection with the stud could be providing significant 

dissipation, so further investigation was required. Another concern was that for that 

experiment the frequency response measurement was being made between the head of the 

shaker and a point close to the tip of the beam, so any dissipation occurring: (a) in the 

connection of the stud and the shaker, (b) the stud itself, or (c) its connection to the beam, 

would be included in the measurement. 

 

 

Figure 3.8. Dog-bone shaped end of the sample 

 

For these experiments, the sample plate was the same as the one used previously 

for the measurement with a center attachment, with 22 layers in a 

[0,90,0,90,0,90,0,90,0,90,0]S configuration, a thickness of 3.16 mm, 240 mm of length 
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and 10 mm of width. An aluminum clamping base was used, in which special care was 

taken in matching the edges for an even boundary of the cantilever attachment of the 

beam. The section of the sample that connected to the base was shaped like the end of a 

dog-bone, in which the width of the beam was kept larger at the clamping end, as shown 

in Figure 3.8. This tended to place the point of maximum bending stress away from the 

connection to the base, in such a way that the damping in the connection would not 

substantially influence the measurement of the material damping. 

 

 

Figure 3.9. Measurement setup 

 

The base was mounted on an electromagnetic shaker, which provided a narrow 

band sine sweep transversal excitation of fixed acceleration passing through one of the 

three first natural frequencies of vibration. Miniature accelerometers were placed on the 

top of the base and at a point close to the tip of the beam, serving to measure the input for 

feedback control and the output response, respectively. Both accelerometers were 

LDS Dactron LASER 
Shaker Control System 

LDS V408 
Electromagnetic Shaker 

 Desktop computer

ENDEVCO 22 - Miniature 
Piezoelectric accelerometers

LDS PA 500L 
Power Amplifier 
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connected to a two channel charge conditioning amplifier, and the output signals were 

routed to a controller system to provide a measure of the vibration of the shaker for the 

feedback control of the excitation, and to obtain the transfer function between the two 

measurement points. The test setup is shown in Figure 3.9. The result was a series of 

curves of the form of that shown in Figure 3.10. From these curves the damping ratio 

could be calculated using the half power bandwidth Method, explained in Section 2.1.2. 

 

Figure 3.10. Experimental transfer function between base and tip of beam 

 

The results of the measurements are shown in Figure 3.11 as a function of the 

input acceleration. However, it proved of interest to examine the results as a function of 

the output displacement. This magnitude was not monitored directly, but it was obtained 

in the manner shown in Section 3.4.1. 
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Figure 3.11. Natural frequency and damping ratio vs. input amplitude acceleration for 

the three first natural frequencies 
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3.4.1 Relation between input acceleration and output displacement 

Taking the spans of the accelerations measured at the excitation (input) and 

response (output) points, the output accelerations can be represented as a linear function 

of the input accelerations as 

 aout = A ain + B (3.18) 

For the first mode of vibration of the carbon epoxy sample, the input and output 

accelerations went from 0.1 g to 0.57 g and 11.35 g to 40 g, respectively, where g is the 

gravitational acceleration, 9.81 m/s2. Replacing these values adequately in Eq. (3.18), it is 

obtained that, for this mode of vibration,  A = 60.957 and B = 5.25. Considering this 

result and the relation between acceleration and displacement for a pure sinusoidal 

motion, a = ω2 d, the displacements of the tip of the beam at the first natural frequency 

(output displacement  out Id ) can be obtained from the input accelerations using the 

expression 

  
 2 2

(  60.9574  5.25)  9.81  
4  50.5

in I
out I

ad
π

× +
= , (3.19) 

where f1 = 50.5 Hz and ain is in g’s (1 g = 9.81 m/s2). 

In the same way, the displacements of the tip of the beam at the second and third 

vibration modes can be obtained. These are given by 

  
 2 2

(  63.54  1.575)  9.81  
4  339.5

in II
out II

ad
π

× +
=  , (3.20) 

 and        
 2 2

(  77.72  3.74)  9.81  
4  938.5

in III
out III

ad
π

× +
= . (3.21) 

Using Eqs. (3.19), (3.20), and (3.21) another representation of the natural frequency and 

damping plots presented in Figure 3.11 as a function of the displacement of the tip of the 
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beam can be obtained, as shown in Figure 3.12. Another way of displaying the results is 

to place the plots of modal damping vs. beam end displacement alongside with a fixed 

scale for the y axis of damping ratio, in order to compare their magnitudes, as shown in 

Figure 3.13. 
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Figure 3.12. Natural frequency and damping ratio vs. displacement of the tip of the beam 
for the three first natural frequencies 
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Figure 3.13. Modal damping vs. displacement of the beam end 

 

3.4.2 Discussion of results 

The set of measurements gave as a result that for different amplitudes of 

vibration, the natural frequencies of vibration (strictly speaking, the damped natural 

frequency) had different values. Also, the damping ratio showed a clear dependence on 

the amplitude of vibration. 

The slight decrease of the natural frequency with the amplitude of vibration 

corresponds to a clear geometrical nonlinearity. The effective stiffness of the beam 

decreases as the amplitude of vibration increases, so it behaves like a spring with a 

softening effect. The increase in damping ratio with increasing amplitude of vibration can 

be attributed to the intensification of the friction between the layers of the composite 

beam. Shear friction appears to be one of the predominant mechanisms of energy 

dissipation in composite materials, as concluded before from the study of the dependence 

of damping on fiber alignment. 



 44

3.4.3 Finite Element Model of Cantilever Beam Configuration 

In order to verify the results obtained from the experiments in Section 3.4.1, in 

terms of the spacing between natural frequencies, a finite element model of the beam 

mounted in a cantilever configuration with base displacement was developed. The value 

for the Young’s Modulus was adjusted in such a way that the first natural frequency of 

the model closely matched the first natural frequency obtained experimentally. The value 

for the Young’s modulus that resulted in a satisfactory agreement between the model and 

the experiment is  E = 50.4 GPa, which is around 35% less than what is expected for an 

ideal plate, and is considered a reasonable deviation. The ratios between the natural 

frequencies of the three first modes of vibration closely match the analytical and 

experimental results. 

Another valuable result of this simulation is the series of plots shown in Figure 

3.14, where the mode shapes of vibration at the first three natural frequencies are shown. 

Figure 3.15 shows the magnitude of the frequency response obtained from the simulation. 
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Figure 3.14. Mode shapes of vibration at the three first natural frequencies, obtained 

from finite element model 
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Figure 3.15. Magnitude of the frequency response obtained from finite element model 

 

3.5  Axially Loaded Beams 

In order to apply the mechanical characteristics of the material in question to the 

modeling of flywheel systems, it was necessary that responses be observed for a variety 

of vibration amplitudes and natural frequencies. A wider range of frequencies than that 

considered in Section 3.2 had to be considered to approach the range of natural 

frequencies associated with a high speed flywheel system (on the order of 1 kHz). The 

shortest samples available could practically not have a natural frequency greater than 100 

Hz. Shorter beams that would achieve higher frequencies yielded unreliable damping 

measurements due to end clamping effects that are difficult to control. In order to extend 

the measurement range, the samples were subjected to a tensile load so as to increase the 

effective natural frequency and, at the same time, include the effect of preload and the 

high levels of stress present in flywheel components. Attempts were made to use a tensile 

Frequency (Hz) 

Magnitude 
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testing machine in this regard, but the clamps used to fasten the samples allowed some 

lateral displacement that complicated the measurement of vibration while the samples 

were stretched. A specially designed test rig was developed and constructed to allow 

stretching of the samples with a tight attachment of the clamps. 

A photograph of the test rig is shown in Figure 3.16. The left side is fixed to the 

base by two large bolts and the right side can slide smoothly within the limits of the 

clearance between the fastening bolt and the associated hole. The desired tension is set by 

means of the fine pitched stretch control bolt on the far right, which pulls the sliding 

clamp towards a fixed block. Once the desired natural frequency for measurement is 

obtained, the vertical bolt is fastened, fixing the right end of the sample in that position.  

The test samples are made of carbon-epoxy in a [0º,90º,0º,90º,0º,90º,0º] 

configuration. They have a thickness of 1.05 mm, a width of 10 mm, and an effective 

length of 110 mm, measured between the innermost sides of the clamp fillets. These 

fillets machined at each end (a dog-bone configuration), were added to minimize the 

effect of the friction between the sample ends and the clamps in the overall vibration 

decay. 

 

 

Figure 3.16. Test rig 

Stretch control bolt 

Fastening bolt 
Fixed attachment 
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A strain gage was placed on the surface of the sample, aligned with its 

longitudinal axis, to determine the strain in the sample. This allowed for the calculation 

of the applied load (given knowledge of the Young’s Modulus of the specimen) and to 

relate the load applied with the first natural frequency of bending vibration. A dummy 

strain gage was bonded to a slab of the same material as the sample, to complete a half 

bridge configuration, which accounts for any thermal stresses occurring in the strain gage 

mounted on the sample. 

The measurement procedure consisted of setting the tension of the sample, 

applying an initial displacement and measuring the free decay of the amplitude of 

vibration of the first natural frequency, using a laser vibrometer focused at the center of 

the sample. The measured signals were recorded by a computer equipped with a data 

acquisition system, where further signal filtering was performed to isolate the vibration at 

the first natural frequency from small effects coming from resonance frequencies of the 

rig and other natural frequencies of vibration of the beam. The test setup is shown in 

Figure 3.17. 

 For the analysis of the signal, the method of free damped vibrations was applied 

to blocks of data in the time domain. The length of each block was chosen to be of 30 

cycles, i.e., including 31 peaks, after studying the correlation of results at different block 

sizes. This matched the criterion used in a similar study, in which 20 was determined as 

the minimum number of cycles to be considered for each block [43]. Vibration signals 

were acquired using an NI-4552 computer based data acquisition system. This system has 

an excellent amplitude flatness and very low total harmonic distortion. The sampling 

frequency used to register the vibration decays was 132,300 Hz, in order to obtain 
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properly shaped discretized representations of the sinusoidal decays in which the 

amplitudes (peak points) were as close to the actual values as possible. Larger sampling 

frequencies could not be handled by the buffer of the computer system used. The 

sensitivity of the laser vibrometer was set to 80 μm/V, at which the full scale input limit 

is 1.3 mm and the resolution is 0.32 μm. 

 

 
 

Figure 3.17. Experimental setup 

 

3.5.1 Observed behavior 

Although the dependence of damping ratio on vibration displacement is widely 

recognized, there has been little work that has employed the method of free vibrations to 

assess such dependence [43]. Using the clamped-clamped configuration it has been 

observed that for vibration at significantly different amplitudes the damping ratio of the 

material greatly changes, as was observed in the measurement with a cantilever 

configuration as well, in Section 3.4 . This means that the vibration decay of a simulated 

simple degree of freedom mass-spring-viscous damper system does not adequately model 
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the actual shape of a vibration decay obtained experimentally. In Figure 3.18 the black 

curve is formed by connecting the local peaks of the displacement of the center of a 

clamped-clamped beam with negligible loading in free vibration decay. The blue line was 

generated using a value of damping ratio ζ = 0.00167, and it can be seen that it fits the 

decay rate observed at the beginning of the decay. However, as the displacement 

amplitude decreases, this line cannot follow the decay rate of the curve obtained 

experimentally. In the same way the red line, generated using a damping ratio value of    

ζ = 0.000966, provides a good fit for the low amplitude region, but cannot follow the 

graph at high amplitudes. Figure 3.19, which is just another representation of the data in 

Figure 3.18, where the vertical axis is represented by a logarithmic scale, further 

illustrates the dramatic differences between the damping ratios at low amplitudes. As the 

displacement amplitude of the vibration increases, the value of the damping ratio 

increases as well. In dynamic systems, where stability can be highly dependent on 

internal damping, such increase may shift the effective stability thresholds considerably 

for some designs.  
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Figure 3.18. Two fixed-exponential fittings of the top envelope of free vibration decay of 

the first natural frequency (593 Hz). Damping ratios differ by 72.8% 
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Figure 3.19. The same data as Figure 3.18 with y axis shown on a logarithmic scale 
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3.5.2 The Method of Free Damped Vibrations by Time Blocks 

The rate of reduction of free vibrations is typically quantified using the 

logarithmic decrement of vibration, δ, or the dissipation factor, ψ, the corresponding 

relative energy dissipation [9]. The logarithmic decrement can be related to the damping 

ratio, ζ, and also to the energy dissipation or damping capacity, ψ. It is determined over 

several (n) cycles of the decay of vibration of a single degree of freedom system from the 

displacement amplitudes, using 

 1  ln    2   
2

i

i n

A
n A

ψδ πζ
+

= = ≈ , (3.22) 

where Ai and Ai+n are the amplitudes corresponding to the ith and the (i+n)th cycles of the 

vibrations, respectively. The damping ratio describes the decay in the time response of a 

linear damped single-degree-of-freedom system subjected to an initial displacement, A, as 

shown in Eq. (3.23) 

 -2( )    cos(   )n
d

tx t A e tζω ω φ= + ,  (3.23) 

where ωd is the frequency of damped free vibration, ωn is the natural frequency and φ  is 

the phase. The value of the damping ratio is the averaged characteristic of the energy 

dissipation in “n” cycles of the vibration. 

For an amplitude-independent damping, the value of the damping ratio, ζ, is 

unique and the classical spring mass damper system shown in Eq. (3.23) can model the 

vibration decay. However if the damping is amplitude-dependent, the value changes, and 

the damping can be related to the average amplitude in the range considered, (Ai + Ai+n)/2 

[9]. For such cases, this amplitude dependency must be incorporated into the damping 

function if the dynamic behavior of the dynamic system being considered is to be 
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accurately modeled. One approach is to modify the damping function 2 n xζω  to directly 

account for amplitude dependence. This can be done by adding a linear dependence on 

instantaneous displacement, in the form 02( ) na x xζ ω+ . Thus, the original equation of 

motion 

 
2 2     0n nx x xζω ω+ + = , (3.24) 

becomes the modified equation 

 
2

0  2( )     0n nx a x x xζ ω ω+ + + = . (3.25) 

Please note that an assumption is made that the linear dependence on vibration 

displacement amplitude (described above and observed experimentally) will be preserved 

if a function of instantaneous displacement is used instead. This assumption allows 

generality and ease of implementation of our model. 

Figure 3.20 shows an example of the experimental decay of the vibration and the 

lines formed by the peaks of the decays of the two single degree of freedom models of 

Eqs. (3.24) and (3.25) (using a parametric ‘best’ fit to the experimental data). The model 

of Eq. (3.24) (using a constant damping ratio ζ of 0.0011) provides a good fit to the decay 

of vibrations but cannot follow it properly, particularly at higher amplitudes of vibration. 

However, the model from Eq. (3.25) that takes into account the dependence of the 

effective damping ratio on vibration displacement can be seen to follow the envelope 

much more precisely. 
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Figure 3.20. Experimental free decay of vibration and the envelopes of the fittings with 

constant damping ratio and linearly changing damping ratio 

 

3.5.3 Results 

Similar reference amplitudes were used to measure local damping ratios for all the 

time traces that were recorded. Four vibration decays were registered, at 593, 677, 735 

and 744 Hz. The vibration amplitudes selected were in a range between 40 and 75 μm, 

which was present in all of the measured signals. The results obtained for the damping 

ratio show clear trends with regard to dependence on frequency and vibration. Linear 

functions to describe the change in damping ratio, both with respect to frequency and 

with respect to displacement, are a logical first candidate. As seen in Figure 3.21, the 

linear functional form describes the dependence on sinusoidal vibration amplitude in a 

proper way, but the same cannot be said for the dependence on natural frequency in 

Figure 3.22. In these figures the dots represent the damping ratio values at some chosen 
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amplitudes of sinusoidal free vibration (in mm) and natural frequencies (in Hz) and the 

lines are the linear fits of the data. 
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Figure 3.21. Damping ratio vs. vibration amplitude for different 1st natural frequencies 
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Figure 3.22. Damping ratio vs. frequency for various amplitudes of                    

sinusoidal free vibration 
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The results shown in Figure 3.21 reflect what was observed before, that an 

increase in the amplitude of the sinusoidal vibration causes the damping to increase. 

Figure 3.22, indicates that an increase in the axial load applied, with the consequent 

increase in the natural frequency of vibration of the specimen, produces a decrease in the 

damping. It was not possible to separate the effect that changing the natural frequency 

had on damping from the effects on damping of the conditions causing the change of 

frequency, such as the load applied or contact with added masses, and thus the overall 

effect on damping of vibration frequency alone could not be asserted. 

 

3.6  Natural Frequencies and Damping of a Sample Rotor 

The experimental study described above was extended to consider the 

characteristics of a sample flywheel hub design developed at Auburn University. 

Measurements of damping at natural frequencies were performed over a 236 mm 

diameter carbon fiber hub-rim interface, built using an epoxy matrix, with the fibers 

woven in the shape of two side domes with a center ring and mounted on a steel shaft. 

Measurements were also conducted over a complete rotor, including the rim mounted on 

the interface. In order to mount the rim, an axial tensile load was applied at each end of 

the hub, which serves to stretch the hub axially and (correspondingly) compress the hub 

diameter. Then, the rim could be slid into position and the hub released. An epoxy 

adhesive was placed at the connection surface between the hub-rim interface and the rim 

and allowed to set before any testing of the complete system was performed. 
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3.6.1 Measurement Setup 

An aluminum structure was constructed to mount the specimen rigidly. It 

consisted of a base holding two massive towers to which the shaft was clamped. The base 

was fixed to a plate connected to a high power electromagnetic shaker. The shaker was 

driven by random noise in the bands of interest (explained in Section 3.6.2) using 

compatible software. The input vibration and the response of the specimen to this 

stimulus were measured using two laser vibrometers. These signals were routed to a 

computer through a PCI data acquisition card and recorded. A photograph of the 

experimental is shown in Figure 3.23. Special care was taken in measuring the response 

parallel to the direction of the excitation axis.  

 

 

Figure 3.23. Measurement setup 
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3.6.2 Data Acquisition and Analysis 

The frequency response of the hub-rim interface was measured at the hub center 

between 0 and 5000 Hz. Using this broadband frequency response the main natural 

frequencies were first identified. Then each mode was excited separately using a narrow 

band random excitation, and the frequency response functions averaged until discernible 

smooth response curves were obtained. The frequency response function at the natural 

frequencies was curve fitted using polynomials and the damping ratio, ζ, for each mode 

was then extracted from the resulting curve using the half-power bandwidth method. 

 

 Natural 
Frequency (Hz) Damping Ratio 

1589 0.0113 
Shaft- Interface

3816 0.0125 

Shaft-Interface-
Rim 100 0.0279 

Table 3.4. Natural frequencies and modal damping values 

 

Table 3.4 shows the values of damping obtained for each case (hub-rim interface 

with and without the rim mounted) and natural frequency. The hub-shaft system showed 

two relatively high natural frequencies (at 1589 Hz and 3816 Hz, respectively). The 

damping ratios were somewhat greater than 1%, dramatically higher than those observed 

for the coupon samples of similar material. Most likely, frictional interaction between the 

hub and the shaft accounts for this result. As expected, the fundamental radial natural 

frequency of the complete rotor (with the rim attached) was substantially lower, at       
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100 Hz, than for the hub-shaft alone. It also proved to have a damping level even higher 

than that of the shaft-hub system, at about 2.8%. So, it appears that a main source of 

internal damping for such systems is the internal friction between the various components 

of the rotor rather than the material damping associated with each individual component. 

This could become the dominant effect in the instability of a rotor, and thus special care 

must be taken in the mounting of the components. It is important to remark that after the 

rim was mounted, the hub-rim interface was in a state of compression, by the action of 

the rim. 
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CHAPTER 4 MODELING AND ANALYSIS OF FLYWHEEL SYSTEMS

 

Rotating machinery has opened a range of possibilities in applications like power 

generation and energy storage, and is one of the most widely used elements in advanced 

mechanical systems. However, characterizing the vibration and instability phenomena 

that are associated with the operation of such devices can be a challenging task. It 

becomes necessary, when performing such analyses, to make some assumptions, and thus 

it is critical to recognize the restrictions of a model and the suitability when trying to 

adapt it to other similar analyses. 

Typical rotordynamic studies consider a flexible shaft and rigid disks and/or 

blades attached to it, an analysis that has been very useful for the characterization of 

systems such as steam turbines. Some studies have considered effects of disk flexibility 

as well, but it is common practice to neglect them. However, the dynamics of a flywheel 

system for energy storage introduces further complexity to the problem and demands 

another approach for its analysis. The fact that the energy is more effectively 

accumulated farther from the center of rotation makes it desirable to concentrate as much 

of the mass of the system in that location and to reduce the mass of other components that 

lay closer to the shaft. 

The search for new materials and construction methods for flywheel energy 

storage systems is a continuous process of testing and development. An auspicious 
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opportunity has been found in fiber reinforced composite materials. Their strength to 

weight ratio and the ability to tailor designs by aligning the fibers in the directions where 

the maximum stresses are expected have originated several studies of the feasibility and 

problems that could arise from its use. The main problems observed have to do with the 

fact that light and thin structures built with fiber reinforced polymers can withstand the 

stresses, but introduce flexibility, which can be detrimental to the stability. Consequently, 

components built with composite materials may possess such a degree of flexibility that 

modeling them as rigid would yield erroneous conclusions from the analysis, and thus the 

flexibility must be accounted for in the modeling stage. Moreover, the high damping 

levels of polymeric materials and friction arising from the interaction of different 

components of a composite are usually desirable, but in rotordynamics they can have 

dramatically harmful effects.  

The interface element between the hub and the outer rim is an attractive 

component to optimize, with the objective of reducing mass in mind and being aware of 

the long studied problems arising from shaft flexibility. A feasible design consists of 

winded carbon fibers in a polymeric matrix. A prototype of a rotor including this 

characteristic was previously presented in Figure 3.23. An analysis of this kind of rotor 

system is provided below. 

 

4.1  Model of a Flywheel System 

In order to predict the critical speeds of a flywheel system with relatively flexible 

components that introduce damping forces acting between moving parts, a model is 

presented which takes into account translational as well as rotational degrees of freedom. 
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The model assumes a rigid shaft to which a hub disk is attached. This hub disk is 

connected to a rigid rim by means of a massless and flexible hub-rim interface, with 

associated stiffness and damping properties. The masses of the system are concentrated 

on the hub and on the rim, since their masses are significantly greater than those of the 

other components, as depicted in Figure 4.1. However, if desired, the shaft can be 

incorporated in this model as well, in the mass and inertia terms of the hub. A noteworthy 

observation is that this kind of system tends to have a short shaft span in between 

bearings, and thus the flexibility of the shaft becomes less of an issue as compared to the 

case of other kinds of turbomachinery, such as multi-stage centrifugal compressors or 

turbo-pumps. The illustration in Figure 4.1 solely shows a non-proportional 

representation of the parts involved for a clear understanding of their degrees of freedom 

and interaction. 

 

Figure 4.1. Eight degree of freedom model of a flywheel system 
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Motion of the system is described by using the 8 generalized coordinates αR, βR, 

αH, βH, xR, yR, xH, and yH, representing the angular and translational motions of the rim 

and the hub. Damping and stiffness parameters for the bearings and shaft-rim interface 

are considered to be symmetric. The spin speed ω is considered constant. 

The parameters involved in the analysis are: 

cθ : bending damping coefficient of shaft-rim interface 

kθ : bending stiffness of shaft-rim interface 

cx : extensional damping coefficient of shaft-rim interface 

kx : extensional stiffness of shaft-rim interface 

cBθ : equivalent bending damping coefficient of bearings 

kBθ : equivalent bending stiffness of bearings 

cBx : equivalent extensional damping coefficient of bearings 

kBx : equivalent extensional stiffness of bearings 

Rotations of the shaft-hub and rim, are considered to occur in the order: α about 

ŷ , β about x', and ϕ about z'', where ω φ= , as shown in Figure 4.2. The total angular 

velocities of the hub and the rim, have the form 

      ''    'z x yω β αΩ = + + . (4.1) 

Then, considering the relation between the coordinate systems of Figure 4.2, the angular 

velocity of each component can be expressed in terms of the body fixed coordinate 

system   x y z : 
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Figure 4.2. Relations between coordinate systems 
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Also, using a space fixed coordinate system, the linear velocity of each component can be 

expressed as: 
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The expression for the kinetic energy, T, of each component is: 

 { } [ ]{ }2 2 2 21 1 1 1  (   )      (   ) 
2 2 2 2

T
G G G G G GT m x y H m x y I= + + Ω × = + + Ω Ω  ,  (4.4) 

where 

 { }
 cos( )    cos( )sin( )

  cos( ) cos( ) -   sin( )
 -   sin( )

β φ α β φ
α β φ β φ

ω α β

⎧ ⎫+
⎪ ⎪Ω = ⎨ ⎬
⎪ ⎪
⎩ ⎭

,  and   [ ]
0 0

0 0
0 0

G

It
I It

Ip

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.5) 

Then Eq. (4.5) can be approximated as 

 2 2 2 2 21 1 1   (   )   (  )   ( - 2   )
2 2 2G GT m x y It Ipβ α ω ω β α= + + + + , (4.6) 

considering that the angular displacements are small. The total kinetic energy of the 

system is 

 

2 2 2 2 2

2 2 2 2 2

1 1 1    (   )   (   )    ( -  2  )  
2 2 2

1 1 1           (  )   ( -  2  )   (  ) .
2 2 2

R R R T H H R R R

R R R T H H T H H

T m x y m x y Ip

It Ip It

ω ω β α

β α ω ω β α β α

= + + + + +

+ + + + +

 (4.7) 

The potential energy, V, consists only of the elastic energy on the bearings and on 

the hub-rim interface, and can be written as 

 
2 2 2 2

2 2 2 2

1 1 1 1     ( -  )     ( -  )          
2 2 2 2

1 1 1 1            ( -  )     ( -  )          . 
2 2 2 2

x R H x R H Bx H Bx H

R H R H B H B H

V k x x k y y k x k y

k k k kθ θ θ θβ β α α β α

= + + + +

+ + + +

 (4.8) 

The dissipation forces acting on the hub-rim interface in the translational degrees of 

freedom, xF , expressed in the rotating (rot), body fixed reference frame   x y z  are 

 ( )  -  (  -   )    (  -   ) rot rot rot rot
x x R H R HF c x x x y y y= + . (4.9) 
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The velocity components must be transformed into the space fixed rotating frame. The 

components of position in the rotating frame, and rot rotx y , expressed in terms of the 

space fixed or stationary reference system, and st stx y , are 

 
cos( )  sin( ) ,   and

 cos( ) -  sin( ) .

rot st st

rot st st

x x t y t

y y t x t

ω ω

ω ω

= +

=
 (4.10) 

Eqs. (4.10) are differentiated with respect to time, arriving at:  

 
 cos( ) -   sin( )  sin( )   cos( ) ,   and

 cos( ) -   sin( ) -  sin( ) -   cos( ) .

rot st st st st

rot st st st st

x x t x t y t y t

y y t y t x t x t

ω ω ω ω ω ω

ω ω ω ω ω ω

= + +

=
 (4.11) 

The unit vectors  and x y of Figure 4.2 must also be expressed in terms of 

ˆ ˆ and x y , as 

 

( )

  ''cos( ) ''sin( ) 

    ''cos( ) sin( ) ( 'cos( ) 'sin( ))

ˆ ˆ ˆˆ ˆ   cos( )(  cos( ) - sin( )) sin( )  cos( ) sin( )( cos( ) sin( ))

x x t y t

x t t y z

t x z t y z x

ω ω

ω ω β β

ω α α ω β β α α

= +

= + +

= + + +

 (4.12) 

 

( )

 '' cos( ) - ''sin( ) 

   cos( )( 'cos( ) 'sin( )) -  '' sin( )

ˆ ˆ ˆˆ ˆ   cos( ) cos( ) sin( )( cos  sin( )) - sin( )( cos -  sin )( ) ( )

y y t x t

t y z x t

t y z x t x z

ω ω

ω β β ω

ω β β α α ω α α

=

= +

= + +

 (4.13) 

which, for small angles α and β become 

 
( ) ( )
( ) ( )

ˆ ˆ  cos   sin  ,  and
ˆ ˆ   cos  -  sin  .

t t
t t

x x y
y y x

ω ω

ω ω

= +
=

 (4.14) 

So the velocity components for each part, hub and rim, are 

 ( ) ( )ˆ ˆ           -   rot rot st st st stx x y y x y x y x yω ω+ = + + , (4.15) 

and the translational dissipation forces in the hub-rim interface have the form: 
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 ( ) ( )ˆ ˆ - ( -  )  ( -  )     ( -  ) -  ( -  )  x x R H R H R H R HF c x x y y x y y x x yω ω= + +⎡ ⎤⎣ ⎦ . (4.16) 

Analogously, the components of angular position in the rotating frame, 

 and rot rotα β , in terms of the space fixed reference system, and st stα β , are 

 
( ) ( )

( ) ( )

cos sin ,   and

 cos - sin ,

rot st st

rot st st

t t

t t

ω ω

ω ω

β β α

α α β

= +

=
 (4.17) 

which after differentiation provide: 

 
 cos ( ) -  sin( )  sin ( )   cos( ) ,   and

 cos ( ) -  sin ( ) - sin ( ) -  cos ( ) .

rot st st st st

rot st st st st

t t t t

t t t t

β β ω β ω ω α ω α ω ω

α α ω α ω ω β ω β ω ω

= + +

=
 (4.18) 

So the angular velocity components for each part, hub and rim, are 

 ( ) ( )ˆ ˆ           -   rot rot st st st stx y x yβ α β α ω α β ω+ = + + , (4.19) 

and the expression for the rotational dissipation forces, Fθ , in the hub-rim interface is 

 ( ) ( )ˆ ˆ- ( -  )   ( -  )   + ( -  ) -   ( -  )  .R H R H R H R HF c x yθ θ β β ω α α α α ω β β⎡ ⎤= +⎣ ⎦    (4.20) 

The translational dissipative forces due to the bearing flexibility, BxF , are 

 ( )ˆ ˆ-     Bx Bx H HF c x x y y= + , (4.21) 

and the rotational dissipative forces, BF θ , are: 

 ( )ˆ ˆ-     B B H HF c x yθ θ β α= + . (4.22) 

The virtual work done by these forces is the product of the forces by the virtual 

displacements in the corresponding directions: 

 
( ) ( ) ( )

( ) ( ) ( )
ˆ ˆ ˆ ˆ -    -         

ˆ ˆ ˆ ˆ            -    -         .
x R H R H Bx H H

R H R H B H H

W F x x x y y y F x x y y

F x y F x yθ θ

δ δ δ δ δ δ δ

δβ δβ δα δα δβ δα

= ⋅ + + ⋅ +⎡ ⎤⎣ ⎦
+ ⋅ + + ⋅ +⎡ ⎤⎣ ⎦

 (4.23) 
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By means of Lagrange’s equations, which state: 

 -    i
i i

d L L Q
dt q q
⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂⎝ ⎠
, (4.24) 

where L is the Lagrangian, L = T – V, and Qi represents the generalized force for the 

coordinate qi, a system of eight equations describing the dynamics of the model is 

obtained, which can be written as 
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0
m x  - c x + (c + c ) x  - k x - ω c y + (k + k ) x  + ω c y  = 0
m y  - c y + (c + c ) y  + ωc x - k y - ω c x + (k + k ) y  = 0.

 (4.25) 

Terms can be grouped to express the equations in the matrix form 

 [ ] [ ] [ ]           0M y C G y K y+ + + = ,  (4.26) 

where 

   

R

R

H

H

R

R

H

H

y
x
y
x
y

β
α
β
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

,      

R

R

H

H

R

R

H

H

y
x
y
x
y

β
α
β
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

, (4.27) 
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(4.30) 

Then, in order to express this system in the state space form 

 [ ]  x A x= , (4.31) 
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  , (4.33) 

 

are defined. 

 

4.1.1 Model parameters 

Suitable values for the parameters involved in the model of Eq. (4.31) were 

determined. Some of these parameters will be varied, with the goal of obtaining useful 

information for the optimization of designs. However, if not otherwise stated, the 

following values will be the ones used for analysis. 

The properties assigned to the rim are: 

roR = Outer radius of rim = 0.16 m, 

riR = Inner radius of rim = 0.08 m, 

ρcomp = Volumetric density of Carbon-Epoxy = 1400 kg/m3, 

wR = Width of rim = 0.06 m, and 

mR = Mass of rim = 2 2
  ( -  ) OR IR R Cr r wπ ρ  = 5.1 kg. 

 

From these physical properties the polar and transversal moments of inertia of the rim, 

IpR and ItR,  can be calculated using 

IpR = 2 21   (  )
2 R R Rm ro ri+  = 0.081 kg⋅m2. 

ItR = 2 2 21   (3(  ) )
12 R R R Rm ro ri w+ +  = 0.042 kg⋅m2, and 

Similarly, the properties for the hub are 
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roH = Outer radius of hub = 0.06 m, 

riH = Inner radius of hub = 0 m, 

wH = Width of hub = 0.07 m, 

ρAl = Volumetric density of aluminum = 2700 kg/m3
, 

mHub = Mass of hub = 2 2
  ( -  ) H H H Alro ri wπ ρ  = 2.14 kg, 

ItHub = Transversal moment of inertia of hub = 2 2 21  (3(  ) )
12 H H H Hm ro ri w+ +  = 0.0028 kg⋅m2, 

IpHub = Polar moment of inertia of hub = 2 2
H H H

1 m  (ro + ri )
2

 = 0.0038 kg⋅m2. 

Stiffness and damping parameters must be defined in the translational and 

rotational degrees of freedom for the hub-rim interface and for the bearings. The values 

chosen are 

kBθ = 12300 N/rad, 

kBx = 1.9e6 N/m, 

kθ = 37000 N/rad, 

kx = 6 x 106 N/m, 

ζBθ = Bearing rotational damping ratio = 0.02, 

ζBx = Bearing extensional damping ratio = 0.02, 

ζθ = Hub-rim interface rotational damping ratio = 0.0015, 

ζx = Hub-rim interface extensional damping ratio = 0.0015, 

cBθ = 2   B
B H

H

k ItIt
θ

θζ  = 0.23 N s /m, 

cBx = 2   Bx
Bx H

H

k mmζ  = 82.2 N s /m, 
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cθ = 2   R
R

k ItIt
θ

θζ  = 0.12 N s /m, and 

cx = 2   x
x R

R

k mmζ  = 16.4 N s /m. 

Extracting the eigenvalues of A for the parameters given above and the running 

speed, ω, varying from 0 to 80,000 RPM, plots of the imaginary and real parts of the 

eigenvalues of the state space system are obtained. These plots are shown in Figure 4.3 

and Figure 4.4. 

Examination of the results of the simulation using the model of the complete 

rotor, with consideration to the shape and structure of the hub rim interface, allow to 

argument that rotational modes of vibration have natural frequencies that are 

considerably larger than those of translational modes. The forward whirling modes that 

represent critical speeds, i.e., the ones that intersect with the line describing the 

frequencies equal to the running speeds in Figure 4.3 are all translational. The rotational 

modes do not intersect that line but in their backward directions (negative slopes). 

Moreover, since the hub-rim interface is built in a way that renders it relatively stiff in 

those directions and the ratio IpH/ItH is close to 2 (because the hub-interface-rim system 

is close to a thin disk), these natural frequencies increase rapidly with running speed and 

do not represent critical speeds, thus stability problems are not expected to occur in these 

modes. 
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Figure 4.3. Imaginary part of eigenvalues for a range of running speeds 

 

 

Figure 4.4. Real part of eigenvalues for a range of running speeds 

 

 

The advantages of having a rotor with a thin disk, in terms of stable regions, have 
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would change if the rim was enlarged in the axial direction. A rotor with the same 

characteristics as before has been modeled, with the difference that the mass of the rim 

has been distributed in a thinner but longer rim. The new rim is 40 cm long (compared to 

6 cm of the original). The radii are roR = 12.6 cm and  riR = 11.4 cm, maintaining in this 

way the center radius of 12 cm. In Figure 4.5 the imaginary parts of the eigenvalues of 

this rotor, for a range of running speeds, are shown.  

 

 

Figure 4.5. Imaginary parts of eigenvalues for a long symmetric rotor 
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2 (for a thin disk) to about 0.7 for this case. The main consequence of this occurrence is 

that this mode now intersects the line describing the frequencies equal to the running 

speeds and thus becomes a critical speed, with the potential of becoming an unstable 

mode for a certain running speed. 

An analysis of the eigenvectors, which describe the mode shapes of the vibrations 

at the frequencies corresponding to the eigenvalues in Figure 4.5, indicates that the 

rotational mode with a higher frequency corresponds to the out-of-phase mode, i.e. the 

mode in which the shaft and hub tilt to one side while the rim tilts to the other. The 

eigenvectors used for this analysis are shown in Table 4.1. It can be seen that for     

1983.4 Hz, the rotational mode with higher frequency, the real parts of the eigenvectors 

have β’s and α’s (of the rim and hub) with opposite signs, while for 751.7 Hz, their signs 

are equal. 

 

Imaginary part of 
eigenvalue (Hz) -1983.4 1983.4 -751.7 751.7 

βR 0.0000 + 0.0005i 0.0000 - 0.0005i 0.1337 - 0.0000 0.1337 + 0.0000i 

αR 0.0005 - 0.0000i 0.0005 + 0.0000i -0.0000 - 0.1337i -0.0000 + 0.1337i 

βH -0.0006 - 0.0567i -0.0006 + 0.0567i 0.0673 - 0.0009i 0.0673 + 0.0009i 
Eigenvectors 

αH -0.0567 + 0.0006i -0.0567 - 0.0006i -0.0009 - 0.0673i -0.0009 + 0.0673i 

Table 4.1. Imaginary parts of eigenvectors (x 10-3), rotational displacement components  

 

4.1.2 Translational Model of a Flywheel System 

The observation made in the previous section about the stability of the rotational 

modes and the fact that rotational and translational modes appear decoupled in the 
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previous analysis, allows us to further simplify our model to a purely translational model, 

in which rotational effects are neglected. So our original system now can be transformed 

into that shown in Figure 4.6, where the elastic bands with translational and rotational 

degrees of freedom have been replaced by springs and dampers in the x and y directions. 

This simplification greatly reduces computational time. 

 

 

Figure 4.6. Translational model for Flywheel with flexible hub-rim interface (Solid Edge 

drawing by Alex Matras [48]) 

 

The reduced model can be represented by the system of equations 

 

 -   (  )  -  -    (  )      0
 -   (  )   -  -    (  )   0

  -     -  -     0
 

H H x R x Bx H x R x R x Bx H x H

H H x R x Bx H x R x R x H x Bx H

R R x R x H x R x R x H x H

R R

m x c x c c x k x c y k k x c y
m y c y c c y c x k y c x k k y
m x c x c x k x c y k x c y
m y

ω ω
ω ω

ω ω

+ + + + + =
+ + + + + =

+ + + =

 -  -      -    0.x R x H x R x R x H x Hc y c y c x k y c x k yω ω+ + + =

(4.34) 
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Complex variable notation z = x + iy can be adopted to simplify the analysis, allowing us 

to express Eq. (4.34) as 

 
( - )  ( - ) ( - ) 0

( - ) ( - ) - ( - ) 0.
H H B H Bx H x H R x H R x R H

R R x R H x R H x R H

m z c z k z c z z k z z i c z z
m z c z z k z z i c z z

ω
ω

+ + + + + =

+ + =
 (4.35) 

The terms are reorganized and the parameters 

 T H Rm m m= + , (4.36) 
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are defined for expedite analysis. Then Eq. (4.35) can be expressed as 

  

22

2
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( - )  ( - ) -  ( - ) 0,
(1-  ) (1-  ) 

x x xB B
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a m a a a m a m

c icz z z z z z z
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 (4.40) 

in a way that is more comfortable for design purposes. Eq. (4.40) can then be expressed 

in the matrix form 

 [ ]{ } [ ]{ } [ ]{ }     0M z D z K z+ + =  (4.41) 

in order to introduce the equations of motion in a computer program and perform 

eigenvalue analyses, where 
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, (4.42) 
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In state space form, the equations are 
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The model parameters for the CFRC flywheel system are design variables that 

were chosen for convenience. The set of model parameters used for this part of the study, 

unless otherwise noted, are shown in Table 4.2. 
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Parameter Value 

mT 10.15 kg 

a 0.3 

ωx 628 rad/s 

ωB 53.7 rad/s 

cx 165.8 kg/s 

cB 84 kg/s 

Table 4.2. Model Parameters 

 

Variation studies were conducted to assess the influence of damping and stiffness 

of the hub and bearings, and running speed on rotor dynamic stability. Figure 4.7 shows a 

simultaneous variation of the stiffness value for the hub-rim interface and of its damping 

ratio. Each point on the lines (or surface) represents the threshold running speed above 

which the rotor becomes unstable for a certain parameter configuration. This means that 

there is a distinctive operating speed below which the system is always stable for a given 

parametric configuration.  

As the level of internal damping in the hub-rim interface is increased, this 

threshold speed steadily decreases. Also, it should be noted that there are two distinctive 

vibratory modes for this model, which are those one would expect for any two mass 

system connected by springs. One consists of an in-phase mode in which the rim and 

shaft-hub move essentially in the same direction, but at generally different amplitudes. 

The other is an out-of-phase mode in which the rim and shaft-hub move in opposition to 

each other.  
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As the hub stiffness increases, there is a breakpoint in each of the curves plotted 

in Figure 4.7. These breakpoints are associated with a transition from the dominant mode 

(destabilized at a lower rotor speed) being the mode where hub and rim move out-of-

phase to it being the one where they move in-phase. Figure 4.8 shows how a rotor of 

these characteristics and with a low stiffness will be destabilized by the out-of-phase 

mode, while a higher stiffness will yield the in-phase mode unstable at a lower running 

speed, as shown on Figure 4.9.  

 

Figure 4.7. Maximum stable running speed for hub damping ratio ζH = 0.002 to 0.02 and 

hub stiffness kH = 0 to 100000 kg/s2 
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Figure 4.8. Out-of-phase mode destabilizes first for kH = 20000 N/m (ζ = 0.02) 

 

 

 

Figure 4.9. In-phase mode destabilizes first for kH = 50000 N/m (ζ = 0.02) 
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Another simultaneous parameter variation was made for the parameters that 

characterize the bearings, keeping all the other parameters fixed. For this study the 

stiffness of the hub-rim interface was 2,760,688 N/m, equivalent to ωH = 628 rad/s, as 

specified above. The bearing damping ratio was varied from 0.015 to 0.1 (1.5 to 10 %) 

and the stiffness went from 0 to 100,000. The results of this study are shown in Figure 

4.10, where it can be seen that an increase in bearing stiffness is beneficial in the sense of 

increasing the maximum predicted running speed, effect that is more evident for higher 

damping ratio values. At the same time, it can be observed that a higher bearing damping 

ratio is in general beneficial, while this benefit gets more significant as the bearing 

stiffness increases. 

 

Figure 4.10. Maximum stable running speed for bearing damping ratio ζB = 0.015 to 0.1 

and bearing stiffness kB = 0 to 100000 kg/s2 
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4.1.3 Experiment of Rotor with Flexible Hub-Rim Interface 

In order to gain greater insight on the qualitative behavior of this kind of system 

where the hub-rim interface flexibility is significant, a rig was built to operate and exhibit 

instability at relatively low running speeds, for safety issues. This was achieved by fixing 

a rubber hub-rim interface between two aluminum rims and two aluminum hubs, and 

mounting the structure on an aluminum shaft, so that the flexibility of the rubber interface 

was much more significant than that of the shaft in bending.  The setup that was used is 

shown in Figure 4.11. 

 

Figure 4.11. Experimental Set-Up 

 

The mass of the rim was significant, but the deflection of the stretched rubber due 

to gravity was minor. The shaft was mounted on journal bearings and connected to a 

bolts 
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servo motor. Running speeds were monitored by use of a proximity probe positioned 

close to the shaft. 

In order to determine the system parameters before run-up a setup consisting of a 

proximity probe and a signal analyzer was used. The shaft was made as rigid as 

physically possible, by placing the bearings close to the center disc. Impulsive force was 

applied and the decay of vibrations was recorded for the shaft on the bearings and for the 

rim on the flexible interface. 

  

 Hub Shaft/Bearing 

Damping ratio (ζ) 0.0073 0.115 

Spring constant, k (N/m) 26994 129009 

Damping constant, c (N·s/m) 1.84 51.129 

Natural Frequency (rad/s) 221.8 742.3 

Table 4.3. Average values of experimental data 

 

The effective masses of the shaft and rim were measured to be mS = 0.238 kg and   

mR = 0.567.kg, respectively. The natural frequency of radial vibration was obtained 

assuming the damped frequency to be the same as the undamped natural frequency 

(which is a good assumption considering the low values of damping that were measured) 

and, from knowledge of the mass, the hub stiffness was calculated. By assuming the 

damping to be viscous, the damping ratio was determined using the ratio of amplitudes of 

Eq. (2.8). The same process was performed on the shaft alone, mounted on the bearings, 
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to determine its natural frequency and the damping provided by the contact with the 

bearings. Table 4.3 shows the calculated stiffness and damping values. 

Figure 4.12 shows frames from a video that was taken during the passage of the 

rotor (using a quasi static speed increase) through the critical speed. The first picture 

depicts the rotor while spinning at about 4200 rpm. Then at the critical speed (4980 rpm), 

the forward whirl amplitude increased abruptly, as shown in the two other pictures. As a 

result, the rubber was torn into pieces and the steel shaft bent to about 20 degrees. 

 

 

Figure 4.12. Rotor rig experiencing unstable behavior 

 

What was clear from the observation of the video can still be seen on the pictures: 

the whirl motion in the radial direction is significant compared to that on the transverse 

direction, i.e., rotation with respect to an axis perpendicular to the shaft. This reaffirms 

what was concluded in the eigenvalue analysis for a rotor with a thin rim. 
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CHAPTER 5 CONCLUSIONS 

 

A detailed study of damping in carbon-fiber epoxy composite structures has been 

conducted.  The work has consisted of a series of experimental and simulation studies 

aimed at assessing the magnitude of damping and the influence of vibration amplitude 

and frequency on damping amount. This work has particularly considered the effects of 

damping in carbon fiber epoxy composite materials for application to flywheel energy 

storage systems. In the modeling of such systems, this material acts as an interface 

between the shaft-hub and the rim of such a system. 

First, a number of different configurations of fiber reinforced epoxy composites 

were experimentally evaluated.  These were (1) sample beams mounted on a bonded stud 

attached to a shaker, on and off center, (2) beam samples supported in a cantilever 

configuration where the cantilever side was excited, (3) clamped-clamped beam samples 

with an axial load applied to the attachments, and (4) a prototype of a rotor with a steel 

shaft and hub, and fiber reinforced composite polymer hub-rim interface and rim. Results 

of all these experimental quantification of vibration damping studies have been 

documented and the results discussed in detail in this dissertation.   Some particularly 

interesting results are: 

• A vibration damping analysis of quasi-unidirectional composite material beam 

samples shows a clear dependence on the alignment of the fibers. The highest 
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values of vibration damping were registered for an alignment of the fibers of 45° 

with respect to the longitudinal axis of the beam. This effect has been observed in 

previous studies and it is attributed to the fact that at off-axis angles the shear 

stress is higher, having its maximum at an angle close to 45°. 

• The measured damping ratios are in the range of 0.1 to 0.4% for all beam sample 

experiments, and for cross ply composites, which are the ones of more interest for 

this study since they better simulate a real component, most results show values 

around 0.2% or less. 

• Experiments on beam samples mounted on bonded studs show slightly higher 

values of damping than those mounted in cantilever or clamped-clamped 

configurations. This suggests that the benefit of contacting the sample in only a 

small area with a stud comes with the disadvantage of exposing it to contact with 

the epoxy bonding, which appears to substantially increase (and undesirable) 

energy dissipation and the resulting damping ratios. 

• The dog-bone configuration utilized in some of the experimental studies is an 

excellent way to reduce the dissipative effect of contact with the experimental 

sample and the testing apparatus. The values for vibration damping from that 

configuration are noticeably lower than those obtained using the bonded stud 

configuration and the values obtained from the cantilever and clamped-clamped 

configurations are in good agreement.  

• The values of vibration damping obtained from the measurements of frequency 

response of the rotor prototype, with and without the rim mounted, are much 
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higher (about 10 times) than the values obtained from the measurements of the 

beam samples. This indicates that although material damping may play a 

significant role, friction between moving elements is the critical factor in the 

overall internal damping. 

• Nonlinear effects have been considered in the measurements using the cantilever 

configuration and the clamped-clamped configuration. An increase of the 

vibration damping with the amplitude of the vibrations is observed in all of the 

measurement results. However, the relative significance of this effect may be 

dependent on the sample configuration and be substantially different for 

configurations other than those that were tested. 

• The vibration damping does not depend on the frequency of vibrations in the 

experiments made with the quasi-unidirectional samples.  On the other hand, in 

the clamped-clamped experiment, some variations in damping with natural 

frequency (achieved by loading the samples) are observed.  However, it was not 

possible to isolate the influence of other parameters and establish a clear 

functional dependence on the frequency alone. 

In the modeling of flywheel systems in this work a design was considered in 

which the flexibility of the system is assigned entirely to the bearings and the hub-rim 

interface, including as well the associated damping effects. Some concluding remarks on 

this respect are given below: 

• The configuration of the prototype tested makes it considerably stiffer in the axial 

direction than the radial one. However, regardless of this consideration, the 

translational modes were shown with this study to be more susceptible to 
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instability problems than the rotational even for similar stiffness values. This is 

further exaggerated by the fact that the large ratio between the moments of inertia, 

Ip/It, for a thin disk (or short rotor) produces rotational modes of vibration at 

frequencies which do not constitute critical speeds. 

• It has been shown that for each practical configuration a safe range of operation 

below the threshold speed of instability can be determined. This threshold 

depends on the overall parametric configuration, but some clear observations can 

be made about the relative importance of certain parameters. 

o An increase in the amount of damping in the hub-rim interface causes the 

operation range to be reduced steadily. 

o For a hub-rim interface with very low stiffness, the mode that in general 

becomes unstable at a lower running speed is the in-phase one, in which 

the rim and shaft-hub move essentially as a whole. As the stiffness of the 

hub-rim interface is increased, there is a clear breakpoint after which the 

mode that becomes unstable at a lower running speed is the out-of-phase, 

which shows a motion characterized by the rim and hub moving in 

opposite directions. 

o A study involving the variation of the stiffness and damping of the 

bearings shows that an increase in the bearing stiffness is beneficial for the 

stable range of operation, especially if the value of damping is high. At the 

same time, a higher damping ratio is in general beneficial, while this 

benefit gets more significant as the stiffness increases. 

Some specific fundamental contributions of this work are: 
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• A clear nonlinear functional behavior of carbon fiber reinforced composite 

polymers has been identified. 

• The potential instability resulting from the flexibility of the hub-rim interface, for 

which there is scarce treatment in the literature on rotordynamic stability, has 

been examined in some detail. 

• A method of analysis for flywheel rotordynamic stability, considering the 

particular characteristics of this kind of systems and possible simplifications, has 

been developed and presented. 

• Key factors that determine stability of flywheel systems and their interactive roles 

have been identified and analyzed. 

 

There is certainly a great deal of fertile ground for further investigations on the 

topic of material damping in composite materials and structures. Some suggestions for 

future work in this area are:  

• Further analysis of the dependence of damping in fiber reinforced composites on 

natural frequency and their response to forced harmonic excitation out of 

resonance. 

• An investigation of the effects of voids and damage on damping and natural 

frequency of composite materials. 

• A detailed investigation of the influence of non-symmetrical and nonlinear 

damping effects on the dynamic behavior and stability of rotating composite 

structures. 
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• More detailed modeling and analysis of flywheel systems in which the flexibility 

of the hub-rim interface and the rotor shaft are both considered significant effects. 
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APPENDIX 

 

Computer Codes 

Computer codes used for this work are printed below. All of them were developed 

in Matlab 7.01. 

 

Code to generate Figure 3.18 and Figure 3.19 

% This program shows how the damping at high amplitudes is much higher 
than 
% that at low ones. In this case for d2, peaks of HP filtered d1, the 
% damping ratio at low frequencies is .241%, while at high frequencies 
it 
% is .335%. This represents an increase of 38.8%. 
  
clear i j pktime peak fs fn s pkt expfitdecay expfitdecay2 
  
% d2 is d1 hp filtered and restarted(from peak1) 
load ss2d593; 
sig=data593; 
sigl=length(sig); 
fs=132300; 
fn=593; 
  
frstpk=15; 
zh=.00167; 
zl=.000966; 
PkSCAL=.4; 
  
% High amplitude fit       
i=1; 
for j=4: sigl-2 
    if sig(j)>sig(j-1)&sig(j)>sig(j-
2)&sig(j)>sig(j+1)&sig(j)>sig(j+2)&sig(j)>sig(j-3)&sig(j)>sig(j-
4)&sig(j)>sig(j+3)&sig(j)>sig(j+4)... 
            sig(j)>sig(j-5)&sig(j)>sig(j-
6)&sig(j)>sig(j+5)&sig(j)>sig(j+6)&sig(j)>sig(j-7)&sig(j)>sig(j-
8)&sig(j)>sig(j+7)&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
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        peak(i)=sig(j); 
        i=i+1; 
    end 
end 
pktime=pktime-pktime(1); 
pkl=length(peak); 
  
  
expfitdecayH=[peak(frstpk)*exp(-zh*2*pi*fn.*(pktime-pktime(frstpk)))]; 
  
% Low amplitude fit     expfitdecay2=.69*peak1*exp(-.00242)... 
clear pktime peak i j 
i=1; 
for j=4: sigl-2 
    if sig(j)>sig(j-1)&sig(j)>sig(j-
2)&sig(j)>sig(j+1)&sig(j)>sig(j+2)&sig(j)>sig(j-3)&sig(j)>sig(j-
4)&sig(j)>sig(j+3)&sig(j)>sig(j+4)... 
            sig(j)>sig(j-5)&sig(j)>sig(j-
6)&sig(j)>sig(j+5)&sig(j)>sig(j+6)&sig(j)>sig(j-7)&sig(j)>sig(j-
8)&sig(j)>sig(j+7)&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        i=i+1; 
    end 
end 
pktime=pktime-pktime(frstpk); 
  
figure(67) 
expfitdecayL=[(peak(frstpk)*PkSCAL)*exp(-zl*2*pi*fn.*pktime)]; 
plot(pktime(frstpk:pkl),peak(frstpk:pkl),'k.-') 
hold on 
plot(pktime(frstpk:pkl),expfitdecayH(frstpk:pkl),'b') 
plot(pktime(frstpk:pkl),expfitdecayL(frstpk:pkl),'r','LineStyle','--') 
xlabel('time (s)','FontSize',12) 
ylabel('displacement (m)','FontSize',12) 
legend('experimental',strcat('\zeta =',num2str(zh)),strcat('\zeta = 
',num2str(zl))) 
  
hold off 
  
figure(68) 
semilogy(pktime(frstpk:pkl),peak(frstpk:pkl),'k.-') 
hold on 
semilogy(pktime(frstpk:pkl),expfitdecayH(frstpk:pkl),'b') 
semilogy(pktime(frstpk:pkl),expfitdecayL(frstpk:pkl),'r','LineStyle','-
-') 
% axis([0 1.4 7e-9 1.1e-2]) 
xlabel('time (s)','FontSize',12) 
ylabel('displacement (m)','FontSize',12) 
legend('experimental',strcat('\zeta =',num2str(zh)),strcat('\zeta = 
',num2str(zl)),3) 
hold off 
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Frequency and amplitude dependence of damping in samples loaded axially 

% Frequency and amplitude dependence of damping in samples loaded 
axially. 
clc 
clear p leg 
format long 
ii=1; 
figure(24) 
hold all 
range=30; 
  
  
for amp=(4:.4:6.4)*1e-5; 
  
load ss2d524 
sig=data524; 
fn=524; 
fs=132300; 
jump=floor(fs/fn); 
sigl=length(sig); 
  
sigtime=0:1/fs:(sigl-1)/fs'; 
i=1; 
j=8; 
while j<sigl-8 
    if sig(j)>sig(j-1)&&sig(j)>sig(j-
2)&&sig(j)>sig(j+1)&&sig(j)>sig(j+2)... 
       &&sig(j)>sig(j-3)&&sig(j)>sig(j-
4)&&sig(j)>sig(j+3)&&sig(j)>sig(j+4)... 
       &&sig(j)>sig(j-5)&&sig(j)>sig(j-
6)&&sig(j)>sig(j+5)&&sig(j)>sig(j+6)... 
       &&sig(j)>sig(j-7)&&sig(j)>sig(j-
8)&&sig(j)>sig(j+7)&&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        if abs(peak(i)-amp)<3e-7 
            ttt=i; 
        end 
        i=i+1; 
        j=j+jump-20; 
        continue 
    end 
    j=j+1; 
end 
  
pktime=pktime'; 
peak=peak'; 
pkl=length(peak); 
  
amp524(ii)=peak(ttt-10); 
zeta524(ii)=log(peak(ttt-range)/peak(ttt))/2/pi/fn/(pktime(ttt)-
pktime(ttt-range)); 
clear pktime peak ttt 
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load ss2d593 
sig=data593; 
fn=593; 
fs=132300; 
jump=floor(fs/fn); 
sigl=length(sig); 
  
sigtime=0:1/fs:(sigl-1)/fs'; 
i=1; 
j=8; 
while j<sigl-8 
    if sig(j)>sig(j-1)&&sig(j)>sig(j-
2)&&sig(j)>sig(j+1)&&sig(j)>sig(j+2)... 
       &&sig(j)>sig(j-3)&&sig(j)>sig(j-
4)&&sig(j)>sig(j+3)&&sig(j)>sig(j+4)... 
       &&sig(j)>sig(j-5)&&sig(j)>sig(j-
6)&&sig(j)>sig(j+5)&&sig(j)>sig(j+6)... 
       &&sig(j)>sig(j-7)&&sig(j)>sig(j-
8)&&sig(j)>sig(j+7)&&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        if abs(peak(i)-amp)<3e-7 
            ttt=i; 
        end 
        i=i+1; 
        j=j+jump-20; 
        continue 
    end 
    j=j+1; 
end 
  
pktime=pktime'; 
peak=peak'; 
pkl=length(peak); 
  
amp593(ii)=peak(ttt-10); 
zeta593(ii)=log(peak(ttt-range)/peak(ttt))/2/pi/fn/(pktime(ttt)-
pktime(ttt-range)); 
clear pktime peak ttt 
  
  
load ss2d677 
sig=data677; 
fn=677; 
fs=132300; 
jump=floor(fs/fn); 
sigl=length(sig); 
  
sigtime=0:1/fs:(sigl-1)/fs'; 
i=1; 
j=8; 
while j<sigl-8 
    if sig(j)>sig(j-1)&&sig(j)>sig(j-
2)&&sig(j)>sig(j+1)&&sig(j)>sig(j+2)... 
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       &&sig(j)>sig(j-3)&&sig(j)>sig(j-
4)&&sig(j)>sig(j+3)&&sig(j)>sig(j+4)... 
       &&sig(j)>sig(j-5)&&sig(j)>sig(j-
6)&&sig(j)>sig(j+5)&&sig(j)>sig(j+6)... 
       &&sig(j)>sig(j-7)&&sig(j)>sig(j-
8)&&sig(j)>sig(j+7)&&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        if abs(peak(i)-amp)<3e-7 
            ttt=i; 
        end 
        i=i+1; 
        j=j+jump-20; 
        continue 
    end 
    j=j+1; 
end 
  
pktime=pktime'; 
peak=peak'; 
pkl=length(peak); 
  
amp677(ii)=peak(ttt-floor(range/2)); 
zeta677(ii)=log(peak(ttt-range)/peak(ttt))/2/pi/fn/(pktime(ttt)-
pktime(ttt-range)); 
clear pktime peak ttt 
  
  
load ss2d735 
sig=data735; 
fn=735; 
fs=132300; 
jump=floor(fs/fn); 
sigl=length(sig); 
  
sigtime=0:1/fs:(sigl-1)/fs'; 
i=1; 
j=8; 
while j<sigl-8 
    if sig(j)>sig(j-1)&&sig(j)>sig(j-
2)&&sig(j)>sig(j+1)&&sig(j)>sig(j+2)... 
       &&sig(j)>sig(j-3)&&sig(j)>sig(j-
4)&&sig(j)>sig(j+3)&&sig(j)>sig(j+4)... 
       &&sig(j)>sig(j-5)&&sig(j)>sig(j-
6)&&sig(j)>sig(j+5)&&sig(j)>sig(j+6)... 
       &&sig(j)>sig(j-7)&&sig(j)>sig(j-
8)&&sig(j)>sig(j+7)&&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        if abs(peak(i)-amp)<3e-7 
            ttt=i; 
        end 
        i=i+1; 
        j=j+jump-20; 
        continue 
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    end 
    j=j+1; 
end 
  
pktime=pktime'; 
peak=peak'; 
pkl=length(peak); 
  
amp735(ii)=peak(ttt-floor(range/2)); 
zeta735(ii)=log(peak(ttt-range)/peak(ttt))/2/pi/fn/(pktime(ttt)-
pktime(ttt-range)); 
clear pktime peak ttt 
  
  
load ss2d774 
sig=data774; 
fn=774; 
fs=132300; 
jump=floor(fs/fn); 
sigl=length(sig); 
sigtime=0:1/fs:(sigl-1)/fs'; 
i=1; 
j=8; 
while j<sigl-8 
    if sig(j)>sig(j-1)&&sig(j)>sig(j-
2)&&sig(j)>sig(j+1)&&sig(j)>sig(j+2)... 
       &&sig(j)>sig(j-3)&&sig(j)>sig(j-
4)&&sig(j)>sig(j+3)&&sig(j)>sig(j+4)... 
       &&sig(j)>sig(j-5)&&sig(j)>sig(j-
6)&&sig(j)>sig(j+5)&&sig(j)>sig(j+6)... 
       &&sig(j)>sig(j-7)&&sig(j)>sig(j-
8)&&sig(j)>sig(j+7)&&sig(j)>sig(j+8); 
        pktime(i)=j/fs; 
        peak(i)=sig(j); 
        if abs(peak(i)-amp)<3e-7 
            ttt=i; 
        end 
        i=i+1; 
        j=j+jump-20; 
        continue 
    end 
    j=j+1; 
end 
  
pktime=pktime'; 
peak=peak'; 
pkl=length(peak); 
  
amp774(ii)=peak(ttt-floor(range/2)); 
zeta774(ii)=log(peak(ttt-range)/peak(ttt))/2/pi/fn/(pktime(ttt)-
pktime(ttt-range)); 
clear pktime peak ttt 
  
plot([593 677 735 
774],[zeta593(ii),zeta677(ii),zeta735(ii),zeta774(ii)],'.') 
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p(ii,:)=polyfit([593 677 735 
774],[zeta593(ii),zeta677(ii),zeta735(ii),zeta774(ii)],1); 
leg(ii)=amp*1e3; 
ii=ii+1; 
end 
pfreq=[sum(p(:,1))/7,sum(p(:,2))/7]; 
  
xlabel('Frequency (Hz)') 
ylabel('Damping ratio \zeta') 
title(strcat('Damping ratio \zeta(x,f) vs frequency for various 
amplitudes of vibration')) 
legend(strcat(num2str(leg(1)),' mm'),strcat(num2str(leg(2)),' 
mm'),strcat(num2str(leg(3)),' mm'),strcat(num2str(leg(4)),' 
mm'),strcat(num2str(leg(5)),' mm'),strcat(num2str(leg(6)),' 
mm'),strcat(num2str(leg(7)),' mm')) 
for ii=1:length(p) 
    plot((550:850),polyval(p(ii,:),(550:850))) 
end 
  
% AXIS([560 810 8e-4 1.05e-3]) 
hold off 
  
pamp593=polyfit(amp593,zeta593,1) 
pamp677=polyfit(amp677,zeta677,1) 
pamp735=polyfit(amp735,zeta735,1) 
pamp774=polyfit(amp774,zeta774,1) 
  
zeta=[zeta593' zeta677' zeta735' zeta774']; %experimental zetas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
pamp1fit=polyfit(2*pi*[593 677 735 774],[pamp593(1) pamp677(1) 
pamp735(1) pamp774(1)],1) 
pamp2fit=polyfit(2*pi*[593 677 735 774],[pamp593(2) pamp677(2) 
pamp735(2) pamp774(2)],1) 
  
figure(98) 
plot(amp593,zeta593,'.g')%,'Color',[.6 .6 .6]) 
hold on 
plot(amp677,zeta677,'.b')%,'Color',[.4 .4 .4]) 
plot(amp735,zeta735,'.r')%,'Color',[.2 .2 .2]) 
plot(amp774,zeta774,'.k')%,'Color',[0 0 0]) 
legend('593Hz','677Hz','735Hz','774Hz',4) 
plot(3e-5:.1e-6:7.9e-5,polyval(pamp593,3e-5:.1e-6:7.9e-
5),'g')%,'Color',[.5 .5 .5]) 
plot(3e-5:.1e-6:7.9e-5,polyval(pamp677,3e-5:.1e-6:7.9e-
5),'b')%,'Color',[.3 .3 .3]) 
plot(3e-5:.1e-6:7.9e-5,polyval(pamp735,3e-5:.1e-6:7.9e-
5),'r')%,'Color',[.2 .2 .2]) 
plot(3e-5:.1e-6:7.9e-5,polyval(pamp774,3e-5:.1e-6:7.9e-
5),'k')%,'Color',[0 0 0]) 
xlabel('Vibration amplitude (m)') 
ylabel('Damping ratio \zeta(x,f)') 
title('Damping ratio vs amplitude for different 1st natural 
frequencies') 
hold off 
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Eigenvalue analysis of matrix A from Eq. (4.33) 

In this Matlab code, the parameters for the flywheel model with 8 degrees of 

freedom (2 rotational and 2 translational for each, hub and rim) are specified and then the 

mass, stiffness, damping and gyroscopic matrices are formed. These are all expressed in 

the state space form in matrix A (AA in the program), for which an eigenvalue analysis is 

performed using a range of running speeds, to obtain the stable bounds of operation at 

each speed under steady state. The code allows the user to incorporate or not the physical 

characteristics of a rigid shaft, which add up to the ones of the hub. 

 

%BASIC FLYWHEEL MODEL WITH RIGID SHAFT (OR SIMPLE MASSLESS SHAFT) 
%THIS MODEL ASSUMES NO MASS IN THE INTERCONNECTION BETWEEN THE HUB 
%AND THE RIM 
%THIS MODEL ASSUMES LINEAR DAMPING 
  
clc 
  
tcpu=cputime; 
  
%--RIM PROPERTIES 
roR=.16; %m 
riR=.08; %m 
wR=.06; %m 
rhoC=1400; %kg/m^3  comp (6.8e-3/.01165/.0033/.12367) 
mR=pi*(roR^2-riR^2)*wR*rhoC; %kg 
  
ItR=1/12*mR*(3*(roR^2+riR^2)+wR^2); %kg m^2 
IpR=1/2*mR*(roR^2+riR^2); %kg m^2 
IRratio=IpR/ItR; 
  
%--HUB PROPERTIES 
roH=.06; %m 
riH=0; %m 
wH=.07; %m 
rhoAl=2700; %kg/m^3  Al at 20 deg C  
 
  
%wo/shaft 
mH=pi*(roH^2-riH^2)*wH*rhoAl; %kg mH=2.3 
ItH=1/12*mH*(3*(roH^2+riH^2)+wH^2); %kg m^2 
IpH=1/2*mH*(roH^2+riH^2); %kg m^2 
  
%w/shaft 
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%--SHAFT PROPERTIES 
% roS=.02; %m 
% riS=0; %m 
% wS=.4; %m 
% mS=pi*(roS^2)*wS*rhoAl; %kg mH=2.3 
% ItS=1/12*mS*(3*(roS^2)+wS^2); 
% IpS=1/2*mS*(roS^2); 
%  
% mH=pi*(roH^2-riH^2)*wH*rhoAl; %kg mH=2.3 
% ItH=1/12*mH*(3*(roH^2+riH^2)+wH^2)+ItS; %kg m^2 
% IpH=1/2*mH*(roH^2+riH^2)+IpS; %kg m^2 
% mH=mH+mS; 
  
  
IHratio=IpH/ItH; 
mT=mH+mR; 
ItT=ItH+ItR; 
%--BEARING SUPPORT STIFFNESS 
kBTHETA=ItT*(5000*2*pi/60)^2; %wBTHETA=523 Hz 
kBX=mT*(5000*2*pi/60)^2;  
  
%--INTERCONNECTION STIFFNESS 
kTHETA=3*kBTHETA; 
kX=3*kBX; 
  
%--BEARING SUPPORT DAMPING 
%----DAMPING RATIOS 
zBTHETA=0.02; 
zBX=0.02; 
%----DAMPING CONSTANTS 
cBTHETA=ItH*(2*zBTHETA*sqrt(kBTHETA/ItH));   
cBX=mH*(2*zBX*sqrt(kBX/mH));          
%--INTERCONNECTION DAMPING 
%----DAMPING RATIOS 
zTHETA=.0015; %55*1e-5; 
zX=.0015; %55*1e-5; 
%----DAMPING CONSTANTS 
cTHETA=ItR*(2*zTHETA*sqrt(kTHETA/ItR)); 
cX=2*zX*sqrt(kX/mR)*mR; 
  
%--FORM MASS, STIFFNESS, DAMPING, AND GYROSCOPIC MATRICES 
%----MASS 
MROT=[ItR,0,0,0;0,ItR,0,0;0,0,ItH,0;0,0,0,ItH]; 
MTRAN=[mR,0,0,0;0,mR,0,0;0,0,mH,0;0,0,0,mH]; 
%----DAMPING 
CROT=[cTHETA,0,-cTHETA,0;0,cTHETA,0,-cTHETA;-
cTHETA,0,cTHETA+cBTHETA,0;... 
    0,-cTHETA,0,cTHETA+cBTHETA]; 
CTRAN=[cX,0,-cX,0;0,cX,0,-cX;-cX,0,cX+cBX,0;0,-cX,0,cX+cBX]; 
%-----STIFFNESS 
KROT=[kTHETA,0,-kTHETA,0;0,kTHETA,0,-kTHETA;-
kTHETA,0,kTHETA+kBTHETA,0;... 
    0,-kTHETA,0,kTHETA+kBTHETA]; 
KTRAN=[kX,0,-kX,0;0,kX,0,-kX;-kX,0,kX+kBX,0;0,-kX,0,kX+kBX]; 
%----FORM SPEED DEPENDENT TERMS 
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GYRO=[0,IpR,0,0;-IpR,0,0,0;0,0,0,IpH;0,0,-IpH,0]; 
KRCROSS=[0,cTHETA,0,-cTHETA;-cTHETA,0,cTHETA,0;0,-cTHETA,0,cTHETA;... 
    cTHETA,0,-cTHETA,0]; 
KTCROSS=[0,cX,0,-cX;-cX,0,cX,0;0,-cX,0,cX;cX,0,-cX,0]; 
  
%--RUNNING SPEED 
w0=20000/60*2*pi;   %20000 RPM 
dw=200/60*2*pi; 
  
ww=zeros(1,2000); 
for i=1:4000 
   w=0+dw*(i-1); 
    
%--FORM TOTAL MASS, STIFFNESS, AND DAMPING MATRICES 
MTOT=[MROT,0*eye(4,4);0*eye(4,4),MTRAN]; 
CTOT=[CROT+w*GYRO,0*eye(4,4);0*eye(4,4),CTRAN]; 
KTOT=[KROT+w*KRCROSS,0*eye(4,4);0*eye(4,4),KTRAN+w*KTCROSS]; 
  
%--FORM STATE MATRIX 
MI=inv(MTOT); 
  
AA=[-MI*CTOT,-MI*KTOT;eye(8,8),0*eye(8,8)]; 
  
[v,d]=eig(AA); 
  
ww(i)=w; 
  
dr(i,1:16)=real(diag(d)'); 
di(i,1:16)=abs(imag(diag(d)')); 
  
end 
figure(1) 
plot(ww/2/pi*60,dr(:,:),'.') 
% axis([0 8e4 -10 10]); 
title('Real part') 
xlabel('Running speed (RPM)') 
  
figure(2) 
plot(ww/2/pi*60,di(:,:)/2/pi,'.') 
% axis([0 3e4 0 700]); 
hold on 
plot(ww/2/pi*60,ww/2/pi,'k.') 
hold off 
xlabel('Running speed (RPM)') 
ylabel('Frequency (Hz)') 
title('Imaginary part') 
tcpu=cputime-tcpu; 
Stable thresholds for ranges of values of kH and cH  

This code is the one used to vary the parameters kH and cH and generate Figure 

4.7: 
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%  Finds the running speed and hub stiffness at which 
%  the destabilizing eigenvalue changes for each  
%  damping ratio value 
  
 % zeta: damping ratio 
 % kh: hub stiffness 
 % Weigchange: w value at which eigenvalue change occurs 
 % Keigchange: kh value at which eigenvalue change occurs 
 % Change: (kk x 2) matrix containing the eigenvalue change 
  
%    |zsd |          |zs | 
%    |zsdd|  =  [A]  |zsd|      zs =  xs + i ys     z shaft 
%    |zrd |          |zr | 
%    |zrdd|          |zrd|      zr =  xr + i yr     z rim 
  
% mt=ms+mr;a=ms/mt;wb=sqrt(kb/mt); 
  
clc 
 clear 
 time=cputime; 
wb=53; mt=10;a=.3; ch=165.8; cb=84;  %rad/s ,  kg 
  
 %for kk=1:29 
 kk=19; 
     zeta(kk)=kk*.001+.001; 
     for jj=1:201 
     kh(jj)=1+500*(jj-1); 
     wh=sqrt(kh(jj)/((1-a)*mt)); 
     ch=2*zeta(kk)*((1-a)*mt)*wh; 
         for ii=1:80000; 
             w=ii/2; 
             W(jj,kk)=w*60/2/pi; 
             A=[0 1 0 0;-(wb^2+wh^2*(1-a)-i*w*ch/mt)/a -(cb+ch)/a/mt -
(-wh^2*(1-a)+i*w*ch/mt)/a  ch/a/mt; 
                     0 0 0 1;wh^2-i*w*ch/mt/(1-a) ch/(1-a)/mt -(wh^2-
i*w*ch/mt/(1-a)) -ch/(1-a)/mt]; 
             L(ii,1:4)=eig(A)'; 
                 if real(L(ii,1))>.0000001 
                     W1(jj,kk)=w*60/2/pi;     %RPM 
                 elseif real(L(ii,2))>0.0000001 
                     W2(jj,kk)=w*60/2/pi;     %RPM 
                 elseif real(L(ii,3))>0.0000001 
                     W3(jj,kk)=w*60/2/pi;     %RPM 
                 elseif real(L(ii,4))>0.0000001 
                     W4(jj,kk)=w*60/2/pi;     %RPM 
                 end 
         end 
     end 
  
         %end 
figure(1) 
%set(gcf,'DefaultAxesColorOrder',CO) 
hold on 
plot(kh,W1,'k') 
plot(kh,W4,'k') 
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plot(kh,W3,'k') 
plot(kh,W2,'k') 
  
title('max stable running speed for zeta: .002 -> .02') 
xlabel('k_h (Kg/s^2)') 
ylabel('running speed (RPM)') 
  
figure(3) 
mesh(kh,zeta,W') 
xlabel('k_h (kg/s^2)') 
ylabel('zeta') 
zlabel('running speed (RPM)') 
  
figure(2) 
plot(zeta,Weigchange,'k') 
title('Maximum stable running speed for each zeta') 
xlabel('\zeta') 
ylabel('running speed (RPM)') 
Weigchange=Weigchange'; 
Keigchange=Keigchange'; 
zeta=zeta'; 
 

 

Stable thresholds for ranges of values of kB and cB  

This code is the one used to vary the parameters kB and cB and generate Figure 

4.10: 

% cb changes \omega 
  
 % Finds the running speed and hub stiffness at which the destabilizing 
 % eigenvalue changes for each damping ratio value 
 % zeta: damping ratio 
 % kh: hub stiffness 
 % Weigchange: w value at which eigenvalue change occurs 
 % Keigchange: kh value at which eigenvalue change occurs 
 % Change: (kk x 2) matrix containing the eigenvalue change 
  
%    |zsd |          |zs | 
%    |zsdd|  =  [A]  |zsd|      zs =  xs + i ys     z shaft 
%    |zrd |          |zr | 
%    |zrdd|          |zrd|      zr =  xr + i yr     z rim 
  
% mt=ms+mr;a=ms/mt;wb=sqrt(kb/mt); 
clc 
 clear 
 tiempo=cputime; 
  
% cb= 2 zeta wb mt 
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% zeta= cb / (2 wb mt) 
% cb=84; 
% wb= 53;    
wh= 628;  ch= 165.8;  mt= 10;  a= .3;     %rad/s ,  kg 
zeta=zeros(1,18); 
W=zeros(100,18); 
 for kk=1:18 %18 
     zeta(kk)=kk*.005+.01;  %(.015 ---> .1) 
     kb=zeros(1,100); 
     for jj=1:100  %100 
        wb=jj; 
        kb(jj)=wb^2*mt; 
        cb=2*zeta(kk)*mt*wb; 
        for ii=1:80000;  %80000 
            w=ii/2; 
            W(jj,kk)=w*60/2/pi; 
            A=[0 1 0 0;-(wb^2+wh^2*(1-a)-i*w*ch/mt)/a -(cb+ch)/a/mt -(-
wh^2*(1-a)+i*w*ch/mt)/a  ch/a/mt; 
                0 0 0 1;wh^2-i*w*ch/mt/(1-a) ch/(1-a)/mt -(wh^2-
i*w*ch/mt/(1-a)) -ch/(1-a)/mt]; 
            L(ii,1:4)=eig(A)'; 
             
            if real(L(ii,1))>1e-8 
%                 W1(jj,kk)=w*60/2/pi;     %RPM 
                break 
            elseif real(L(ii,2))>1e-8 
%                 W2(jj,kk)=w*60/2/pi;     %RPM 
                break 
            elseif real(L(ii,3))>1e-8 
%                 W3(jj,kk)=w*60/2/pi;     %RPM 
                break 
            elseif real(L(ii,4))>1e-8 
%                 W4(jj,kk)=w*60/2/pi;     %RPM 
                break 
            end 
        end 
    end 
  
end 
% kh=wh^2*((1-a)*mt) 
% figure(1) 
% %set(gcf,'DefaultAxesColorOrder',CO) 
% hold on 
% plot(kh,W1,'k') 
% plot(kh,W4,'k') 
% plot(kh,W3,'k') 
% plot(kh,W2,'k') 
  
% title('max stable running speed for zeta: .002 -> .02') 
% xlabel('k_h (Kg/s^2)') 
% ylabel('running speed (RPM)') 
  
figure(3) 
mesh(kb,zeta,W') 
xlabel('bearing stiffness (Kg/s^2)') 
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ylabel('bearing damping ratio, \zeta_ _b') 
zlabel('running speed (RPM)') 
time=cputime-time; 
 

 

Derivation of Liénard-Chipart conditions 

For the derivation of the Liénard-Chipart conditions for the stability of a purely 

translational model with 4 degrees of freedom of the rotor with flexible hub-rim interface 

on rigid shaft mounted on flexible bearings, it was necessary to form the matrices, extract 

the determinant of the matrix ( )λI - A , and then select and group terms of equal degree in 

λ from the resulting polynomial into a0, a1, …, a8. Then it was simple to form the 

matrices required by the procedure to obtain the Liénard-Chipart criteria. These criteria 

are a simplification (which reduce computation time) of the probably more popular 

Routh-Hurwitz criteria. The expressions for the output conditions 1 to 8 alone use around 

70 pages, so they will not be listed here. Although they are so extensive, the calculations 

of these algebraic expressions for each run with a new set of parameters (or at least one 

or two parameters changing) is less demanding computationally than extracting 

eigenvalues each time. The only drawback is the lack of an output of eigenvectors, which 

give direct information about the modes being involved in the instability, but it is always 

possible to return to the eigenvalue analysis to study interesting phenomena that may 

appear to be occurring. The program to perform what has been described above is given 

below: 

 

% Form Liénard-Chipart criteria for stability of 4 
% translational degrees of freedom model of rotor 
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% with flexible hub-rim interface on rigid shaft  
% mounted on flexible bearings. 
clear 
 
 
clc 
syms mR mH cX cBX kX kBX w L 
  
%--FORM MASS, STIFFNESS, DAMPING, AND GYROSCOPIC MATRICES 
%----MASS 
MTRAN=[mR,0,0,0;0,mR,0,0;0,0,mH,0;0,0,0,mH]; 
%----DAMPING 
CTRAN=[cX,0,-cX,0;0,cX,0,-cX;-cX,0,cX+cBX,0;0,-cX,0,cX+cBX]; 
%-----STIFFNESS 
KTRAN=[kX,0,-kX,0;0,kX,0,-kX;-kX,0,kX+kBX,0;0,-kX,0,kX+kBX]; 
%----FORM SPEED DEPENDENT TERMS 
KTCROSS=[0,cX,0,-cX;-cX,0,cX,0;0,-cX,0,cX;cX,0,-cX,0]; 
  
%--FORM TOTAL MASS, STIFFNESS, AND DAMPING MATRICES 
MTOT=MTRAN; 
CTOT=CTRAN; 
KTOT=KTRAN+w*KTCROSS; 
  
%--FORM STATE MATRIX 
MI=inv(MTOT); 
  
AA=[-MI*CTOT,-MI*KTOT;eye(4,4),0*eye(4,4)]; 
pL=simplify(det(L*eye(8,8)-AA)) 
  
a0=1 
a1=simplify((2*mR*mH^2*cX+2*mR^2*mH*cBX+2*mR^2*mH*cX)/mR^2/mH^2) 
a2=simplify((2*mR*mH^2*kX+2*mR*cX^2*mH+4*mR*mH*cX*cBX+2*mR^2*cBX*cX+2*m
R^2*mH*kBX+2*mR^2*mH*kX+mR^2*cBX^2+mR^2*cX^2+cX^2*mH^2)/mR^2/mH^2) 
a3=simplify((2*mR*cX^2*cBX+2*mR*cBX^2*cX+4*mR*cX*mH*kX+4*mR*mH*cX*kBX+4
*mR*cBX*kX*mH+2*cX^2*mH*cBX+2*mH^2*kX*cX+2*mR^2*cX*kBX+2*mR^2*cX*kX+2*m
R^2*cBX*kBX+2*mR^2*cBX*kX)/mR^2/mH^2) 
a4=simplify((2*w^2*cX^2*mR*mH+2*mR*mH*kX^2+2*mR*cBX^2*kX+w^2*cX^2*mR^2+
2*mR*cX^2*kBX+cX^2*cBX^2+mR^2*kBX^2+mH^2*kX^2+4*mR*cX*cBX*kX+4*mR*cBX*c
X*kBX+4*mR*mH*kX*kBX+cX^2*mH^2*w^2+2*cX^2*mH*kBX+4*cBX*kX*cX*mH+2*mR^2*
kBX*kX+mR^2*kX^2)/mR^2/mH^2) 
a5=simplify((2*w^2*cX^2*mR*cBX+2*mR*kBX^2*cX+2*cX^2*cBX*kBX+4*mR*cX*kBX
*kX+4*mR*cBX*kX*kBX+2*mR*cBX*kX^2+2*mH*kX^2*cBX+2*cX^2*mH*cBX*w^2+4*mH*
kX*cX*kBX+2*cBX^2*kX*cX)/mR^2/mH^2) 
a6=simplify((2*w^2*cX^2*mR*kBX+cBX^2*kX^2+2*mR*kBX^2*kX+2*mR*kBX*kX^2+w
^2*cX^2*cBX^2+2*kBX*kX^2*mH+cX^2*kBX^2+2*w^2*cX^2*mH*kBX+4*cBX*kX*cX*kB
X)/mR^2/mH^2) 
a7=simplify((2*cX^2*cBX*kBX*w^2+2*kBX^2*kX*cX+2*kBX*kX^2*cBX)/mR^2/mH^2) 
a8=simplify((cX^2*kBX^2*w^2+kBX^2*kX^2)/mR^2/mH^2) 
  
%Lienard-Chipart Criteria 
  
Cond8=a8 %>0 
Cond7=simplify(det([a1 a3 a5 a7 0 0 0;a0 a2 a4 a6 0 0 0;0 a1 a3 a5 a7 0 
0;0 a0 a2 a4 a6 0 0;0 0 a1 a3 a5 a7 0;0 0 a0 a2 a4 a6 0;0 0 0 a1 a3 a5 
a7])) 
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Cond6=a6 %>0 
Cond5=simplify(det([a1 a3 a5 0 0;a0 a2 a4 0 0;0 a1 a3 a5 0;0 a0 a2 a4 
0;0 0 a1 a3 a5])) 
Cond4=a4 %>0 
Cond3=simplify(det([a1 a3 0;a0 a2 0;0 a1 a3])) 
Cond2=a2 %>0 
Cond1=a1 
clear mR mH cX cBX kX kBX w L a0 a1 a2 a3 a4 a5 a6 a7 a8 
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