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Abstract 
 
 

The high effectiveness of proteins in biological systems is a result of their mutational 

histories. A single amino acid substitution, the most frequent of changes in proteins, can alter 

their physiochemical properties and functions. Mutations impact protein folding and interactions, 

and thus their functions in a biological system. These mutations may be beneficial and 

identifying them can provide insights towards improving the engineering of proteins. Mutational 

analyses are extensively used to study protein structures and functions for different purposes. For 

therapeutic purposes, such analyses can lead to more efficient engineering of proteins: from 

identifying beneficial interactions for improving protein binding to identifying how point 

mutations in pathogens can impact immune responses in humans. Alternatively, the coronavirus 

pandemic has shown examples of how single point mutations in pathogens, like viruses, can lead 

to different variants with drastic consequences to human health; some variants may spread more 

easily in humans or show signs of resistance to existing treatment options. This has led to a belief 

that improved engineering of proteins towards therapeutic developments requires the study of 

protein interactions responsible for protein binding and functions. Both engineering native 

proteins and designing new proteins require computational techniques to overcome the 

perplexities of traditionally used experimental techniques. This dissertation is directed towards 

bridging the gap between computational protein structure and function by building a statistical 

understanding of various aspects of protein interactions and functions, thus contributing towards 

protein engineering techniques for therapeutic purposes. It is based on the hypothesis that 

knowledge about point mutations can then be directed towards developing an understanding of 

the structure to function relationship in proteins. Each chapter focuses on the effect of mutations 

on protein functions from a unique perspective. The chapters progress from characterizing the 
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binding interfaces of therapeutic proteins to quantifying the effects of point mutations on protein 

binding, making an in-depth analysis of the effects of antigenic mutations on therapeutic protein 

interactions, and identifying the impact of viral mutations on immune responses in humans. The 

findings in each chapter can contribute to the study of engineering proteins to meet specific 

therapeutic needs. 
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“Every living being is also a fossil. Within it, all the way down to the microscopic 

structure of its proteins, it bears the traces if not the stigmata of its ancestry.” 

Jacques Monod 

Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology (1972) [1] 

 

Proteins make up a diverse set of the most important and precisely structured 

macromolecules in living systems. In the ribosome of the cell, polypeptides are created by 

combining individual amino acids, which then fold and assemble into functioning proteins. Their 

functions range from enzymatic catalysis, transportation of ions and molecules, counteracting 

foreign substances, and the regulation of cellular and physiological activities [2]. Examples of 

the many functions of proteins in biological systems include receptors and transcription factors 

binding to extra and intracellular molecules that are integral to cellular signaling, antibodies 

binding to foreign objects to protect a host organism from disease or invasion, enzymes carrying 

out life-sustaining reactions to keep an organism functioning, and a vast selection of different 

proteins working to maintain the structural integrity of cells and the movement of molecules 

between compartments. 

The existence of such a diverse pool of proteins is a testament to the evolutionary forces 

that have shaped the complex biological systems [3], and unraveling these forces has been a 

challenge for evolutionary biologists. The high effectiveness of proteins is a result of their 

mutational histories driven by natural selection. Zuckerkandl and Pauling introduced the idea of 

the molecular clock that protein sequences change at an almost uniform rate over a long period, 

laying the foundations of molecular evolution [4]. It is largely believed that genotypic and 

phenotypic changes are driven by the selection of “favorable” mutations, though Kimura’s 
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“neutral theory” says that, at a molecular level, evolution is driven by random drift of neutral and 

nearly neutral changes [5]. It is understood that there are other factors to be considered, like 

population size and structure, ecological opportunities and changes, and much more, for natural 

selection of variations produced by genotypic changes to drive adaptive evolution. The more 

important the protein or parts of the protein, the less likely they are to change [6], leading to the 

belief that when changes are made to important proteins, they are not conservative. Amino acid 

substitutions may lead to relatively little change, whereas at certain times a single amino acid 

substitution may lead to a radical change in function. Yet, the functional effect of any given 

substitution may depend on the presence or absence of other substitutions. This has led to 

applying artificial selection to create new proteins, directed evolution [7], [8], which has become 

one of the most widespread tools used for engineering proteins for improved or novel functions.  

Biological engineers attempt to modify or design proteins for an assortment of 

applications. The engineered design of proteins has a wide variety of practical impacts, ranging 

from industrial applications such as catalytic activities for chemicals and biosensors to 

biomedical applications such as therapeutic medicine, the creation of gene switches, and signal 

transduction pathways. Engineered proteins are also used in agriculture and the food industry, 

environmental monitoring and bioremediation, detergents, biopolymer production and 

nanotechnology, and biofuel production [9]. Both engineering native proteins and designing new 

proteins require computational techniques to overcome the perplexities of traditionally used 

experimental techniques.  

Protein functions greatly depend on their three-dimensional structure, but accurately 

predicting the native structure of a protein from its amino acid sequence was a longstanding 

challenge in the field of computational molecular biology. However, with improvements in the 
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methods and expansion of computational resources, structure prediction has advanced to the 

level of reliably designing novel proteins “from scratch” (i.e., de novo design) [10]. More 

recently, after years of scientific research to answer the question of the “protein folding problem” 

[11], AlphaFold has shown success in highly accurate protein structure prediction using a deep 

learning algorithm [12]. The accurate modeling of the structure, thermodynamics, and protein 

interactions with other molecules are fundamental to successful de novo protein design [13]. 

There have been attempts to computationally design proteins with improved stability [14], [15], 

improved binding [15] – [17], and novel functions [17] – [19]; from the ratio of successful 

designs that have shown desired properties to the unsuccessful designs, it is evident that there is 

a need for improvements in protein design techniques. Accurate protein structure prediction and 

design necessitate understanding the properties and behavior of proteins from a theoretical 

perspective.  

Given the significant progress in computational techniques for de novo protein design, 

the leap from “static” protein structures to dynamic, functional proteins is not yet well 

understood [22]. The inability to accurately model electrostatic and hydrogen bonding 

interactions, to appropriately balance electrostatic and solvent effects, and to understand the 

necessity for quantum mechanical effects (e.g., the polarizability of electron clouds) to calibrate 

potentials are all ongoing challenges in designing protein binding interfaces [23] – [25]. Another 

important unsolved question is correctly balancing the energetics when replacing one type of 

residue with another and understanding the relationship of local interactions and backbone 

motions [22], [26].  

Although protein structures are usually robust to sequence changes in the natural 

selection process [27], minor sequence changes from a single point mutation can sometimes 
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cause disturbances to the protein structure. The static and dynamic properties of a protein are the 

results of its sequence, and mutations in the sequence can affect protein folding and stability 

[28], [29]. Most mutations in proteins either act as destabilizers or have relatively no effect on 

stability, yet a fraction of mutations can increase the stability over the wild type [27]. 

Protein-protein interactions (PPIs) are crucial for biological systems to function 

effectively [25] – [28]. Mutations can alter the kinetics and thermodynamics of PPIs [34], [35], 

thus affecting the functions of proteins. Identifying mutations that are beneficial in known 

proteins and understanding the mode of their impact can provide insight into the engineering of 

proteins for desired applications. To understand PPIs, identification of the interaction sites is 

required before using analyses to study the impact of point mutations on protein-protein 

affinities. Such understanding can be related to the function [32] – [34] of proteins and used in 

therapeutic developments such as targeting interaction mutants [39] and in catalytic reactions 

such as developing biological catalysts. 

PPIs are complex and factored by large sets of variations. Deciphering the complicated 

details of PPIs requires the use of both physical chemistry analysis of and observed interaction 

potentials from already known structures of protein complexes [40], [41]. Protein interfaces have 

been studied extensively to develop a clear perception of the forces and the recognition processes 

at a molecular level guiding these interactions. Comprehending the specific types of residues that 

have more involvement in the level of affinity and specificity of PPIs is paramount to 

understanding these interactions and designing proteins. Understanding the interaction-function 

relationships for proteins in general and attempting to improve design techniques entails making 

improvements in the models and force fields used. 
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The introduction of mutations into the native protein structures can be used to modulate 

their physical activities and understand how they affect the different aspects of protein 

interactions and thermodynamics. This would also help provide a detailed understanding of the 

conformational and dynamic formations of the secondary structures (i.e., α-helices, β-sheets, and 

loops) of proteins and their folding mechanisms, which is crucial to solving any problem related 

to function. Identification of the favorable and unfavorable mutations in protein binding can also 

help improve experimental studies like mutagenesis and be used in evaluating predicted 

interfaces [42]. Attempted modifications of the specificity and affinity of PPIs can present 

interesting results that can impact both industrial and therapeutic fields [39] – [41]. 

Various experimental and computational techniques have been used to build a broader 

and more thorough understanding of protein interactions. Both experimental and computational 

Alanine-scanning mutagenesis of interfacial residues [42] – [47], analysis of crystallographic 

structures of protein interactions [48] – [50], studies focusing on the physical and chemical 

properties of protein interfaces [55], [56], evolutionary trace method based on conservation of 

important residues [57], and structural and thermodynamic studies of protein interfaces [54] – 

[59] are examples of some of the techniques used. Computational tools [64] have been developed 

to investigate the role of electrostatics in PPIs and analyze the effects of disturbances in protein 

structure and protein-protein complexes. 

Statistical analysis has played a crucial role in the study of PPIs. A large non-redundant 

set of known structures [40] has been used to derive protein-protein interface residue 

composition and residue-residue contact preferences. A statistical analysis of structurally non-

redundant protein-protein interfaces and symmetry-related oligomeric interfaces was conducted 
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to understand the role of the hydrophobic effect in PPIs [65]. Atom-based statistical pair 

potentials [66] were developed to evaluate the strength of PPIs.  

Mutations in proteins can cause them to assume different conformational states than their 

native state, and thus improve, or even evolve their function [67]. Therefore, understanding the 

intricate details of PPIs entails focusing on mutations in native protein sequences and analyzing 

the impact of these mutations on protein binding and folding. Besides gaining structural insights, 

the thermodynamics of protein interactions is crucial to understanding these details of PPIs, 

understanding the effects of mutations on them, and using them to meet specific needs.  

The binding affinity change upon mutation is a key indicator of the effects of the 

mutation on the interactions, functions, and stability of the protein. Binding affinity can be 

determined experimentally, which can be expensive and laborious, or predicted computationally, 

which requires accurate descriptive parameters. There are available databases [68], [69] of the 

binding free energy changes upon mutation, measured experimentally. Different methods have 

been evaluated for the prediction of the effects on mutation using experimentally derived data. 

Web tools and algorithms [70], [71] have also been created to predict the effects of point 

mutations on protein stability. Different methods have concentrated on the effects of single point 

mutations on protein stability and interactions [73] – [77]. A detailed review [77] of the different 

experimental and computational methods used for predicting the effects of mutations on protein-

protein binding interactions is available. 

The first two projects in this dissertation are based on studying protein-protein interfaces 

and understanding the effects of mutations on protein binding. In the first project, the antibody-

antigen interface features are identified, e.g., the number of residues important to binding in 

terms of energetics and the types of residues for binding compared to those found in the core 
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structure. Antibody-antigen interfaces are different from other binding interfaces [62], and 

studying mutations on antibody-antigen interfaces requires knowledge of their specific features. 

Identifying the features of the interface provided information for building the second project. In 

the second project, the effects of mutations on antibody-antigen interface binding are studied. 

The most important residues to binding in terms of energetics identified in the first project are 

used for the mutational analysis in this project. The mutational analysis was conducted for both 

the antibody and antigen residues. This also revealed the relative importance of amino acids in 

binding in the antibodies and protein antigens. 

Starting in late 2019, the novel Coronavirus Disease 2019 (COVID-19), caused by the 

virus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly spread to 

become a global pandemic. As the pandemic progressed, all known facts about viral antigens and 

protein engineering techniques became important resources against combating the virus. SARS-

CoV-2 proved to be a fast-mutating virus. After the initial surge of infection, variants of the virus 

were documented with increased severity in transmissibility and infectivity in humans. Until 

early 2021, four Variants of Concern (VOCs) were identified by WHO, Alpha (B.1.1.7), Beta 

(B.1.351), Gamma (P.1 or B.1.1.28), and Delta (B.1.617.2). Of these, the Beta and Gamma 

variants have not spread to the same extent as the Alpha and Delta variants. In mid-2021, there 

was a new VOC, Omicron (B.1.1.529) with 30 mutations in the Spike protein alone compared to 

the 15 Spike mutations of the Delta variant.  

The virus enters the host cell by binding to a cell receptor, Angiotensin-Converting 

Enzyme 2 (ACE-2) on the cell membrane. Mutations in the Spike protein of SARS-CoV-2 alter 

the protein function in two ways: affecting the stability of the Spike protein and altering the 

binding properties of the receptor-binding domain (RBD) to ACE-2 receptors[78]. The binding 
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properties of the Spike protein to the ACE-2 receptor change the infectivity and transmissibility 

of the virus variants. More importantly, mutations can aid the spread of viruses in the human 

body by immune evasion. The evasion of neutralization by antibodies can be possible due to the 

mutated residues in the Spike protein altering the targeted epitopes. Studies have found that the 

variants of SARS-CoV-2 with RBD mutations, including K417N, E484K, and N501Y, were 

highly resistant to neutralization by antibodies in vaccinated individuals by increased RBD 

binding to the ACE-2 receptor[79], [80].  

The pandemic taught an important lesson that led to studies included in the successive 

chapters: understanding how mutations in antigenic proteins affect binding could potentially be 

our way of “getting ahead of the game”. When the first publication of the structure of the SARS-

CoV-2 Spike protein[81] reported that three anti-SARS antibodies, M396[82], S230[83], and 

80R[84], showed no appreciable binding to SARS-CoV-2, despite the high structural homology 

of the Spike proteins of the viruses, an analysis of why this happened was made. The findings 

from that analysis led to the third project in this dissertation. A detailed study of how antigenic 

mutations disrupt hotspot interactions was necessary. An understanding of the different 

phenomena that disrupt antibody binding when antigen interfaces mutate is important for the 

development of therapeutics against possible future pandemics.  

The development of vaccines to combat the novel virus was imminent, with the first 

mRNA vaccine developed in 2020. Currently the vaccines available use four different 

technologies: whole virus vaccine (Sinopharm and Sinovac[85]), RNA or mRNA vaccine 

(Pfizer-BioNTech[86], Moderna[87]), non-replicating viral vector (Johnson & Johnson[88], 

Oxford-AstraZeneca[89], Sputnik V[90]), and protein subunit (Novavax[91]). The most effective 

vaccines against SARS-CoV-2[92] use mRNA to encode for the Spike protein building on the 
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adaptive immunity in humans[93]. Many effective neutralizing anti-SARS-CoV-2 antibodies that 

target the RBD to prevent binding to the ACE-2 receptors can be potentially used as antibody 

therapeutics[94]. Neutralizing antibodies have been studied as a potential treatment for 

SARS[95] due to their ability to block the biological effects of viral particles[96]. Different 

antibodies have been reported to have neutralizing activity against the SARS-CoV-2 infection 

including monoclonal antibodies[94] – [98], synthetic nanobodies[103] – [107], and a variety of 

antibody cocktails[108] – [111].  

Eventually, with newer variants infecting humans at different rates and causing re-

infection in vaccinated people led to the fourth project in this dissertation. A detailed analysis to 

understand how the Spike protein mutations affect the immune systems of people with different 

ethnic backgrounds was designed. Predictions on the effect of Spike protein mutations on the B-

cell and T-cell epitopes were used to identify which mutations are notorious for evading the 

immune systems in humans. The findings from this study will help identify future mutations to 

“look out for” and, also, identify the ethnicities that would likely be most impacted by the next 

variant and would require more targeted therapeutics than others. 

Therapeutic proteins, or protein-based therapeutics, have proved to be successful 

treatments against diseases such as diabetes, cancer, infectious diseases, hemophilia, and anemia. 

It is expected that the global therapeutic proteins market will become $112.17 billion in 2022, 

according to the Therapeutic Proteins Global Market Report 2022. Based on their molecular 

types, therapeutic proteins can be grouped into different: antibody-based drugs, Fc fusion 

proteins, engineered protein scaffolds, enzymes, growth factors, hormones, anticoagulants, blood 

factors, bone morphogenetic proteins, interferons, interleukins, and thrombolytics [111]. 
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The protein-engineering platform is the “enabling discipline” [111] for protein 

therapeutics, helping to develop better functionality and targeting, to reduce immunogenicity, 

and to improve the delivery of therapeutic protein drugs. Since the early 1980s, the development 

and continued improvement of protein engineering tools have revolutionized the use of 

therapeutic protein drugs, by modifying existing proteins or creating novel proteins for specific 

purposes. Though therapeutic monoclonal antibodies (mAbs) are the reigning proteins in the 

market [112], other therapeutic proteins are proving to be more efficient treatments against 

several diseases. Working on improving the engineering of proteins for therapeutic applications 

requires the study of the naturally occurring components in the human immune system to gather 

knowledge on the structure-to-function relationship of proteins.  

The immune system is divided into two parts based on its functionality: innate and 

adaptive. Both the systems are closely related and work together to protect against pathogens. 

The adaptive immune system is of major interest for therapeutic applications, given its ability to 

recognize and remember specific pathogens to generate immunity. The adaptive immune system 

has two major components, antibodies and the lymphocytes (B and T type lymphocytes). Some 

potential uses of computational techniques in protein therapeutic design are affinity maturation 

improving antibody-antigen binding, specificity engineering optimizing protein-protein 

interactions, and identification of immunologic peptides studying MHC II–antigen interactions 

[113], among many others. Figure 1 shows the flow of the dissertation and the relationship 

between the different projects. 
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Figure 1: Flowchart to show the arrangement of the projects and their relationship to the 
development of therapeutic proteins. 
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Introduction  

To develop an understanding of the structure to function relationship of proteins, 

gathering knowledge about both the physical and chemical properties of the binding site is 

needed [1]. The properties to be studied are the number of residues required to describe 

interactions efficiently, the location of the interaction sites, the types of residues present at the 

interaction sites, and the linearity of the epitopes. This study is focused on antibody-protein 

interactions, given that antibodies bind with high affinity and specificity, and they are a class of 

binding proteins that have been extensively studied previously. This gives us more data to 

validate our results and ensure the usability of the workflow for other protein classes. Antigenic 

epitopes can be either linear (or sequential), made from a single length of continuous residues of 

the polypeptide chain, or conformational (or structural), made from several discrete residues that 

are widely spread in the primary sequence coming together on the surface during protein folding. 

Structural epitopes are known to be more common than linear epitopes [2], [3]. Here, the 

CHARMM22 [4], [5], Amber [6], and Rosetta [7], [8] molecular mechanics force fields were 

used to quantify the percent contribution to binding of every residue and identify the amino acid 

composition of the residues in the exposed parts of the antigen surface (the epitope) based on 

their binding contributions in a database of 384 antibody-protein complexes.  

Methods 

Selection of Complexes for the Database 

 For the creation of a non-redundant database, initially, 2498 antibody-antigen 

experimentally determined structures were collected from the International Immunogenetics 

(IMGT) Information System 3D Structure Database [9]. Of these, 1344 structures were selected 

based on having at least five mutations from one another in the complementary determining 
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regions of the antibodies, making the list a non-redundant one based on antibody structures. Out 

of the 1344 non-redundant structures, 492 structures were identified to have protein antigens. To 

remove the effects of small antigens biasing results in the calculations, only protein antigens of 

50 or more amino acids were considered. Eventually, a non-redundant list consisting of 384 

structures of antibody-protein complexes was made. 

Analysis of the Interfaces in the Database  

In each force field used, missing atoms were added to the structures and the overall 

energies of each of these complexes were minimized. The energy of interactions between every 

antibody residue and every antigen residue was calculated using pairwise additive energy 

functions, and the total interaction energy for each antigenic residue was summed. The total 

binding energy varied significantly between complexes and depended on the total number of 

amino acids residues. To better facilitate the analysis of the different complexes, the energies of 

each residue in a complex were converted to the percentage of the total energy of the complex.  

Using the percentage of total binding energy contributed by each antigenic residue, they 

were ranked in descending order and the top seven residues were chosen as the most significant. 

It was analyzed and estimated that seven residues contributed around 70% of the total binding 

energy in all the force fields. The top seven residues were treated as the epitope of the antigen 

and further analyses were conducted accordingly. The amino acid distribution was analyzed for 

the epitope residues versus the distribution for all antigenic residues. In addition, the linearity of 

the epitopes was analyzed by fitting the epitope residues into a twelve-residue frame and 

calculating the percentage of binding energy that could be contributed by each frame. 
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Results and Discussions 

Experimental studies have found that in most complexes only a few antigen residues (on 

average five) are sufficient for specific and high-affinity binding [10], [11]. The analyses reflect 

the same for the non-redundant database. The seven most attractive antigenic residues contribute 

an average of 66.2%, 67.9%, and 73.5% of the total CHARMM, Amber, and Rosetta binding 

energies, respectively. The seven most attractive antibody residues contribute an average of 

72.5%, 68.7%, and 85.5% of the total CHARMM, Amber, and Rosetta binding energies, 

respectively. That means only seven residues were enough to describe around 70% of the total 

binding energy for both antigens and antibodies, making the remainder of the peptide sequence 

in both cases almost insignificant to the binding. Figures 1 and 2 show the logarithmic 

progression in the cumulative percentage contribution to binding energy for the antigenic and 

antibody residues respectively. The trend may be described as an exponential decrease in the 

contribution to binding energy by consecutive residues. The sequential analyses made for the 

database used the top seven residues in each antigen and in each antibody. Confirming that seven 

residues were enough to represent the epitope, the amino acid distribution for the top seven 

residues versus the antigen as a whole was explored.  

Figures 3 and 4 show the probabilities of the amino acids as they are found in the protein 

antigens and antibodies, respectively. The probabilities for Cysteine and Methionine are lower 

than the rest, as expected; sulfur-containing amino acids are specific to their functions in 

proteins. Methionine is one of the most hydrophobic residues and its primary function is the 

initiation of translation of proteins rather than protein structure [12]. Cysteine is critical in 

protein structure with its ability to form disulfide bonds with other Cysteine residues and is 

found mostly in the hydrophobic core of the protein structure. A similar distribution analysis was 
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conducted for the epitopes, considering the seven top binding residues for the protein complex. 

The trends show charged and acidic residues have much higher probabilities to be present on the 

interface than most other residues. Analysis of PPIs provides strong evidence of a distinctive 

composition of residues [13], [14]. Figures 5 and 6 depicts the Log2 change in the relative usage 

preferences of amino acids in the significant residues versus the protein as a whole. The trends 

are mostly consistent for all the force fields used: charged and acidic residues are 

overrepresented in the significant residues while hydrophobic residues are underrepresented, and 

most of the polar residues are significant based on their usage in antigens. Arginine is significant 

to protein binding, and this has been depicted well in the figure, as Arginine is one of the top 

three most used residues according to all three force fields. Previous analyses [13], [15] of 

protein interfaces have found a higher prevalence of Arginine, owing to their capability of 

forming multiple hydrogen bonds. Studies [16] – [18] have found hydrophobic residues are 

preferred in the hydrophobic core while hydrophilic residues are preferred in the exterior of the 

proteins, corresponding to Figure 6. Protein folding is mainly driven by the “hydrophobic 

collapse” brings the hydrophobic side chains compacted into the core structure to make the 

process as energetically favorable as possible: maximizing van der Waals (VDWs) forces, 

avoiding unfavorable atomic overlaps, and minimizing the overall size occupied by the protein 

structure [19]. The balance between the interactions of the hydrophobic residues in the packed 

core, also known as the hydrophobic effect, and exterior interactions of the polar residues that 

provide structural specificity and solvation maintains the folded structure of the protein in design 

[20]. Single aromatic residues were preferred in some protein interactions[16], [21], [22], which 

means residues capable of multiple favorable interactions were preferred. Tryptophan is capable 

of aromatic p-interactions, hydrogen bonding, and hydrophobic effect contributions. Similarly, 
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tyrosine can contribute with a hydrophobic surface, aromatic p-interactions, and hydrogen 

bonding. 

Understanding the degree of linearity of the epitopes is an important part of 

understanding how sequence and structure contribute to interactions. Instead of using binary 

definitions of linear and structural, it is preferable to quantify the degree of linearity of epitopes 

accepting that all structural epitopes are linear to varying extents. Figure 7 shows the fraction of 

the threshold binding energy reached by the best consecutive 12 amino acid sequence in the 

antigens. 72 % of epitopes were at least 50 % linear, 23 % were at least 80 % linear and 5 % 

were at least 100 % linear in the Amber results. The corresponding CHARMM values were 67 

%, 27 % and 6 %, respectively, while the corresponding Rosetta values were 67 %, 26 % and 7 

% respectively. The linearity study of antigen epitopes has the potential to extend into future 

projects. One such project could be the creation of mimitopes to replace the usage of antigen 

proteins for therapeutic purposes. Understanding the linearity of epitopes is specifically needed 

for biomarker detection through peptide display systems.  

This study was a step towards identifying the features of the binding interfaces of 

antibody-antigen complexes. Identifying the features is a necessary step in deciding how 

traditional approaches towards modifications of these interfaces can be more effective. The 

findings from this study are used in the consecutive chapters of this dissertation. This chapter has 

been published as Chauhan et al. [23]. 
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Figure 2:Cumulative percentage binding energies of the antigen residues. 

Figure 3:Cumulative percentage binding energies of the antibody residues. 
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Figure 5: Distribution of amino acids in the epitopes of the antigens. As seen in the plot, Aspartic 

Acid, Glutamic Acid, Lysine, and Arginine are most preferred on the epitopes. 

Figure 4: Distribution of amino acids in the paratopes of the antibodies. As seen in the plot, 

Aspartic Acid, Arginine, Serine, and Tyrosine are most preferred on the paratopes. 
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Figure 7: Log2 change in amino acid usage in the significant residues versus the antigen as a 

whole. This plot shows the residues that are preferred for intermolecular binding in contrast to 

the ones that are preferred for intramolecular binding. 

Figure 6: Log2 change in amino acid usage in the significant residues versus the antibody as a 

whole. This plot shows the residues that are preferred for intermolecular binding in contrast to 

the ones that are preferred for intramolecular binding. 

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000
ALA CYS ASP GLU PHE GLY HIS ILE LYS LEUMETASN PRO GLNARG SER THRVAL TRP TYR

P
re

fe
re

nc
e 

of
 A

m
in

o 
A

ci
ds

 in
 P

ar
at

op
es

 v
s.

 
A

nt
ib

od
y 

st
ru

ct
ur

e

Charmm Amber Rosetta

  



 

52 
 

Figure 8: Percentage of binding threshold in the best 12 consecutive antigen amino acid 
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Introduction 

In search of a tool to quantify the effect of a point mutation of protein binding, it was 

found that existing matrices such as Point Accepted Mutation (PAM) and Blocks Substitution 

Matrix (BLOSUM) were not appropriate for scoring protein sequences based on their binding 

affinities. These matrices were created based on accumulated statistical data of how tolerated 

evolutionary amino acid mutations are in multiple sequence alignments in proteins. Thus, a 

scoring matrix for protein binding was a necessity for protein engineering in general. A single 

mutation of the interface residues can influence binding affinity by changing the chemical 

properties and the conformation of the interface [1]. Comprehending the specific types of 

residues having more involvement in the level of affinity and specificity of PPIs is paramount to 

understanding these interactions and designing proteins. Studying the effects of point mutations 

on protein binding can give us a clear perception of the forces and the recognition processes at a 

molecular level guiding these interactions [2] – [9]. Antibodies interfaces show preference for 

different amino acids like Arginine, Aspartic Acid, Tyrosine, and Serine [10] – [13]. Antigens 

are not known to show the same preference for amino acids. This may be attributed to the 

evolutionary history of antibodies, i.e., they show preferences to increase their binding affinity to 

antigens. Antigens do not have high specificity requirements to bind to antibodies and are 

continuously evolving, thus they do not show any preference to any specific amino acids. 

Computational techniques used for affinity maturation require force fields that can be 

used to predict the accurate mutated structure of the protein. Different molecular mechanics 

force fields use different approaches to calculate the energy for a protein complex and using 

different force fields will help to identify the limitations of each force field. Additive force fields 

like CHARMM and Amber are initially based on the first principle and use calculated and 
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observed potentials to describe the structure of the proteins [17]. Force fields like Rosetta use 

observed potentials to describe individual residue environments and residue interactions [18].  

In this project, statistical analyses are used to quantitatively study the effects of point 

mutations on protein binding interfaces and present the data as a grid to be used as a similarity 

matrix based on protein binding. Analyses from the non-redundant database in the previous 

chapter lead to the fact that around seven residues are enough to describe binding energy 

efficiently. To generate such a matrix, CHARMM [14], Amber [15], and Rosetta [16], [17] 

molecular mechanics force fields were used to calculate predicted changes in binding energy 

from mutations to the most important antibody and antigen amino acids. The similarity matrices 

for the different force fields were constructed from numerical data describing the effects on 

binding due to mutations of the significant residues in protein interfaces, thus, providing 

numerical scores to these effects of amino acid mutations on binding interactions. Binding 

energy is calculated as ∆𝐺 =  GBA, min- GDMs- GTMs [18], where a binding assembly (BA) is the 

entire complex of all the participating molecules, design molecules (DMs) are the mutated 

molecules, and target molecules (TMs) are the molecules binding to the DMs. The change in 

binding free energy (ΔΔGbind) is quantified using ΔΔGbind= ΔGMTbind
- ΔGWTbind

 [19], where MT 

is the mutated-type complex and WT is the wild-type complex. 

Methods 

The following steps were taken for the selected antigen residues for each force field and 

then for the selected antibody residues for each force field.  

Mutational Analysis of the Selected Residues 
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The algorithm in Figure 8 was developed and executed to create mutations and analyze 

the data. 

Step 1: The wild-type complex is minimized, and the interaction energy of the wild-type 

complex was calculated (ΔGWT).  

Step 2: Using the database analysis results, the seven important residues, based on their 

contribution to binding energies, were selected. 

Since each of the three force fields predicts the total energy of the system using a different 

method, the residues included in the seven significant residues (paratopes for antibodies and 

epitopes for antigens) are different for the three force fields. For each of the selected residues,  

Step 3A: 19 different mutations were made using a complete rotamer library of all the different 

amino acids. The rotamer library has the collection of all possible rotational isomers of each 

amino acid.  

Step 3B: For each of the 19 mutations, the structure was minimized, and the interaction energy 

of the mutated-type complex was calculated (ΔGMT).  

Step 3C: The change in binding energy (ΔΔGbind) is calculated for that mutation. The percentage 

change in binding energy (ΔΔGୠ୧୬ୢ ∗ 100 ΔG୛୘⁄ ) was added to the dataset for that type of 

mutation.  

The database created in Chapter 2 contains 384 structures of antibody-antigen complexes 

and each of these complexes are of different sizes and, their interface characteristics are also 

different. This makes their wild-type binding energy different from one another. Comparing the 

exact numerical values of the change in binding energy for each type of mutation would distort 

the spread of the dataset, thus it is important to scale the data based on the wildtype binding 
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energy for each complex. Scaling ensures that the values for change in binding energy for each 

complex is comparable to one another 

Statistical Analysis of the Changes upon Mutation 

Statistical procedures based on the assumption that the data follow a Gaussian 

distribution can make drawing accurate and reliable conclusions difficult [20]. The results for the 

mutational analysis are sets of data of 380 types of mutations for each force field. For each type 

of mutation, the outliers were removed for each category of data using the Inter-Quartile Range 

method. The Shapiro Wilk’s test was applied to the data for each type of mutation. The test was 

conducted before and after removing the outliers. The percentage of datasets that displayed a 

normal behavior increased from 30% to 77% upon refining the data. The Shapiro Wilk’s test was 

necessary to determine the normality of each type of mutation and how best to incorporate the 

means and standard deviations into the similarity matrix. It was expected that the data for each 

mutation will follow the same pattern, that is, a certain mutation should have a similar effect on 

the binding interactions of an antigen-antibody complex regardless of the structure of the 

complex.  

Building the Matrices for Protein Binding 

The mean may be used to describe the numerical value given to each mutation to describe 

the effects on binding due to that mutation of the significant residues in the 384 protein antigen 

sequences. The variance for each type of mutation describes the spread of the data set in 

comparison to the mean; the nature of the spread depends on several factors (such as, the 

frequency of usage of the wild-type amino acid and the size of the complexes involved). The 
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purpose of creating the matrices was for their usability as protein design tools in similar ways to 

similarity matrices. 

The PAM and BLOSSUM similarity matrices for protein structures were developed 

through different methods, but share several critical similarities: they are symmetrical, their 

values are integers, and they have values for all entries in the matrices, including conserving the 

current amino acid rather than changing it. The reason the PAM and BLOSSUM matrices are 

symmetrical arises from their comparison of known protein sequences. If protein A has amino 

acid X1 and protein B has amino acid X2 at equivalent positions, then it is equally valid to say 

that the mutation is X1 → X2 as it is to say that the mutation is X2 → X1. Thus, the number of 

times X1 mutates to X2 in a set of protein sequences is identical to the number of times X2 

mutates to X1. For the interface mutations being studied here, that is not the case. These 

mutations have an evolutionary direction: from an existing complex to a putative complex.  

A consequence of this is that the effects of mutating X1 → X2 may be very different than 

mutating X2 → X1. An example of this from Table 1 is that on average mutating ALA → ARG 

improved the predicted binding energy by 4.304% while mutating ARG → ALA worsened the 

predicted binding energy by 10.265%. This is to be expected: when ARG is important in a 

binding interface it is likely to be part of a salt bridge while ALA’s contributions are likely to 

come from its backbone. Mutating ALA to ARG at that position could still contribute the 

backbone interactions while creating the potential for a salt bridge whereas mutating ARG to 

ALA is much more likely to remove a beneficial interaction. As these effects and magnitudes are 

not equal and similarity matrices for interface mutations should not be symmetrical. 

While similarity matrices for interface mutations should not be symmetrical, it is possible 

to generate versions that share the other features of PAM and BLOSSUM. The first step in doing 
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so is to determine appropriate numerical scores for retaining a given amino acid rather than 

mutating it. In PAM and BLOSSUM, the scores were the percentage occurrence of each amino 

acid and as a result each row summed to one. Here, we chose to have the percentage change in 

binding energy for each amino acid sum to zero. In other words, the percentage change for 

retaining a given amino acid was equal to the negative of the sum of all the percentage changes 

for mutating it (e.g., the score for retaining CYS in Table 1 was 29.708). With those values 

calculated, the scores for each mutation were calculated using Equation 1. 

  𝑆௜,௝ =
௉೔,ೕ

ห௉೔,ೕห
logଶ൫ห𝑃௜,௝ห + 1൯      (1) 

where Si,j is the score for mutating amino acid i to amino acid j (e.g., a value in Table 3) and Pi,j 

is the percentage change for mutating amino acid i to amino acid j (e.g., a value in Table 1), with 

the scores rounded to the nearest integer. The magnitude of each score is determined by the log2 

of the absolute value of its percentage change plus one, where the one is added so that all 

logarithmic values are positive. The use of logarithmic scaling of the scores was based on its use 

in the PAM and BLOSSUM matrices. The fraction multiplied by the logarithmic value ensures 

that the scores have the same signs as the percentage changes (i.e., a percentage change that 

indicates a worsening of binding energy will have a negative score and one that indicates an 

improved binding energy will have a positive score).  

Results and Discussions 

The results for the mutational analysis are sets of data of 380 types of mutations for each 

force field. Tables 1, 2, and 3 are the matrices for the mutational analyses of the protein antigens 

residues using the CHARMM force field; Table 1 is the matrix created with the mean values for 

the data sets for each type of mutation, Table 2 is the matrix of the variance for each type of 



 

64 
 

mutation, and Table 3 is the matrix created by converting the mean values to integer values. 

Tables 4, 5, and 6 and Tables 7, 8, and 9 are the corresponding tables for the mutational analyses 

of protein antigen residues using the Amber, and Rosetta force fields, respectively. As mentioned 

earlier, the analyses were made for both antigen and antibody residues. Tables 10, 11, and 12, 

Tables 13, 14, and 15, and Tables 16, 17, and 18 are the corresponding tables for the mutational 

analyses of antibody residues using the CHARMM, Amber, and Rosetta force fields, 

respectively. Tables 1, 4, 7, 10, 13, and 16 are made of the percentage change in binding energy.  

There were 384 complexes used for this study, thus, the nature of the distribution of 

individual values of the changes is dependent on the total count of each residue. Table 19 shows 

the total count for each type of residue in the paratopes and the epitopes, as predicted by the 

different force fields. Given each set for each type of mutation was refined to remove outliers, 

79.75%, 79.5%, and 86.5% of the sets showed Gaussian behavior for the mutations in the antigen 

epitopes using the CHARMM, Amber and Rosetta force fields respectively. Similarly, 74%, 

86.5%, and 93% of the sets showed Gaussian behavior for the mutations in the antibody 

paratopes using the CHARMM, Amber and Rosetta force fields respectively. 

Tables 3, 6, 9, 12, 15, and 18 were all converted from the mean values of percentage 

changes in binding energy for each type of mutation, as observed in Tables 1, 4, 7, 11, 14 and 16 

respectively. In the tables with the mean values, the diagonal values are zero, in fact, that 

mutation was not performed. It is assumed that mutation of the same residue would show no 

change in binding energy for the complex. In the latter tables with the integer values, the 

diagonal values are non-zero. The calculations were made to give numerical values to the general 

trend of mutating the amino acid in question. In these tables, the negative numbers in the 

diagonals mean it is more preferrable to change the amino acid while the positive numbers mean 
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it is not preferred to change the amino acid. Higher the number in either direction, the more 

preferrable or not preferrable the mutation of that residue is. For the rest of the numbers in the 

matrices, the negative numbers mean a loss of binding energy and the positive numbers mean a 

gain of binding energy, similar to the matrices with the mean values. 

The pattern in how the binding energy changed with different mutations could be 

classified into trends. Comparing Tables 1 and 3, a difference in amino acid preference can be 

observed when only means are taken into consideration than when the means are converted to 

integer numbers. When Table 1 is observed, there is a trend for favorable mutations of Alanine, 

Glycine and Valine to other amino acids. Favorable changes in energy are observed for Alanine 

mutating to Cysteine, Phenylalanine, Histidine, Isoleucine, Asparagine, Glutamine, Arginine, 

Serine, Threonine, Valine, Tryptophan, and Tyrosine. In Table 3, The diagonal numbers are 

indicative of the general trend to mutate the residues. Mutations of Alanine and Valine are 

favored, but the mutations of Glycine are not. For Tables 4 and 6, the number show that there is 

no trend of favoring any mutation, as may be misinterpreted by observing the means only. For 

Tables 7 and 9, the trends observed in favoring the mutations of Glycine and Serine from the 

means cannot be observed in the integer values. For Tables 10 and 12, the mutations of Glycine 

show an interesting trend, where a value of zero would mean that the effect can be unpredictable. 

Similar changes in trends can be observed for Tables 13 and 15 and Tables 16 and 18. 

The force fields currently available do not come without limitations, the observations are 

evidence of the limitations and biases that exist in force fields. The use of three different force 

fields helps to identify the different biases that exist in the different potentials used. Comparing 

Tables 1, 4, and 7, high penalties for mutations of Aspartic Acid, Glutamic Acid, Lysine, and 

Arginine are observed in the diagonals of the CHARMM and Amber force field results, while 
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high penalties for mutations of Phenylalanine, Methionine, and Tryptophan are observed in the 

Rosetta results. The mutation of Tyrosine is very similarly penalized across all the force fields. 

Tyrosine has both charged and hydrophobic properties and is a dominant amino acid in antibody 

recognition [21]. The additive force fields are biased towards charged residues, compared to 

statistical force fields; while the statistical force field is presumably biased towards hydrophobic 

residues, the high significance of the polar residues in antibody interactions minimizes the bias in 

the calculations. 

The type of force field and the different methods used to predict the energy is reflected in 

the total count of the type of residues included in the significant residues. For the antigen 

epitopes, the CHARMM and Amber force fields show significantly higher counts of the polar 

residues, Aspartic Acid, Glutamic Acid, Lysine, and Arginine, compared to all the other 

residues, while the Rosetta force field shows higher counts for the polar residues, yet the count is 

more distributed among all the types of residues. For the antibody paratopes, all the three force 

fields show the highest count for Tyrosine than any of the other residues. The force fields show 

higher counts for Aspartic Acid and Arginine, and significant counts for Serine. The total counts 

for each type of residue can reflect their significance to binding interactions as predicted by each 

force field, this significance is also reflected in the matrices. 

The results show that the trends of mutating the residues follow similar trends whether 

the residues are in the epitope or the paratope. This directs to the importance of interactions 

rather than specific residues in antibody binding mechanisms. Thus, the residues that contribute 

most to certain interactions have eventually become more abundant on the protein surfaces. 

The most important feature of antibodies is their ability to bind to their targets with high 

affinity and high specificity. Antibody affinity maturation is one of the fundamental processes in 
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the immune defense against pathogens and is extensively studied as a part of antibody design and 

engineering. Antibodies that are found in this database are assumed to have already undergone 

extensive affinity maturation. Antigen are assumed to be always evolving. The affinity 

maturation of antibodies can be observed in the results when antibody mutations are observed to 

show a general trend of disfavoring any mutation in the important residues. 

Knowledge of the antibody-antigen complex structure can provide good insights into the 

antibody-antigen binding mechanism, yet structure alone is not sufficient. An essential part of 

designing antibodies is developing a thorough understanding of the interactions between the 

antibodies and their targets and understanding the role of specific residues in these interactions. 

Protein design tools can now predict structure with high accuracy, though the functional 

properties of a protein are yet to be successfully designed. The protein interactions take place at 

the atomic levels and characterizing the properties of the binding site is important to the process 

of a successfully working protein design. Statistical understanding of the structural features of 

proteins can help to bring this success in accuracy of structure prediction of proteins. In a similar 

manner, the statistical understanding of protein interactions can help build an understanding 

about interface PPIs and help towards better design of interactions. 

Experimental techniques were used for studying structures, but these techniques may not 

be the most feasible to study the mutational changes of antibodies. Experimental techniques do 

not have the same evolutionary ability as computational techniques, to be able to create these 

mutations and minimize the structures and calculate the binding affinity at a much shorter time. 

The results have been converted into matrices to mirror the idea of studying the evolutionary 

changes in protein structure. It must be noted that the matrices are not symmetrical as other 

similarity matrices. When studying structure, it is assumed that mutation from one amino acid to 
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another or vice versa is occurring at the same rate in either direction. The same assumption 

cannot be made here since different amino acids interact in different ways. It is assumed that the 

effects of mutation of one amino acid to another will be different vice versa.  

The idea of building these matrices was for building knowledge and using this knowledge 

in designing PPIs. Improving the affinity of protein-protein interactions has always been a 

challenging problem that has practical applications in the development of therapeutic proteins for 

diagnostics. Improvement in antigen binding affinity boosts the biological activity of the 

antibody and can reduce the therapeutic dose of antibody, lowering toxicity and cost [22] – [24]. 
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Figure 9: Algorithm for the calculations required to make the matrix. The steps are divided into 
two sections. Parts of the algorithm were made to generate data for the mutations made on the 
individual residues of the individual complexes. The latter part of the algorithm was for 
analyzing the data and constructing the matrix. 
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 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 1.936 -5.109 -1.521 1.250 -1.054 1.640 0.841 -0.096 1.016 -0.025 0.640 -0.133 1.977 4.304 0.336 0.528 0.769 2.509 1.873 

CYS -0.407 0.000 -4.614 -4.340 -1.717 -0.912 -1.463 -0.805 -2.567 -1.244 -0.453 -0.451 -1.676 -0.425 -3.497 -0.744 -0.645 -1.357 -1.807 -0.584 

ASP -6.922 -6.019 0.000 -2.999 -5.524 -7.118 -5.884 -6.235 -7.573 -6.515 -5.657 -5.951 -6.395 -4.814 -6.847 -6.240 -6.281 -6.249 -5.508 -5.014 

GLU -8.142 -7.406 -4.830 0.000 -7.076 -8.428 -6.435 -7.525 -8.631 -7.543 -6.901 -6.819 -7.736 -6.010 -7.274 -7.736 -7.420 -7.882 -7.066 -6.404 

PHE -5.225 -3.024 -11.354 -8.470 0.000 -6.143 -3.921 -3.108 -7.057 -3.256 -2.497 -4.474 -4.829 -3.448 -4.306 -4.870 -4.182 -4.024 -1.854 -2.133 

GLY -0.534 0.999 -4.599 -3.183 0.463 0.000 -0.690 -0.396 -1.276 0.205 1.429 -0.193 -0.880 0.339 1.945 -0.105 0.290 -0.853 1.188 0.723 

HIS -4.125 -2.020 -6.560 -4.508 -1.837 -4.448 0.000 -3.145 -2.912 -3.077 -1.783 -3.513 -2.600 -2.078 -2.068 -3.728 -3.253 -3.607 -2.507 -2.008 

ILE -3.845 -1.113 -8.104 -9.321 -0.971 -4.662 -3.208 0.000 -5.155 -1.118 -0.493 -2.659 -3.426 -0.363 -0.777 -2.894 -2.691 -1.772 -0.354 -1.777 

LYS -6.220 -5.078 -8.844 -8.344 -5.448 -6.407 -5.742 -5.667 0.000 -5.871 -5.221 -5.683 -5.904 -5.028 -1.243 -6.022 -5.827 -6.046 -5.359 -4.899 

LEU -2.474 -1.317 -7.023 -6.119 -0.495 -3.055 -1.322 -1.047 -2.768 0.000 0.068 -2.034 -3.395 -1.005 -0.655 -1.883 -1.678 -1.489 -0.272 -1.190 

MET -4.482 -3.128 -6.796 -4.345 -2.466 -5.174 -4.225 -2.827 -2.949 -2.361 0.000 -4.824 -4.724 -4.644 -1.223 -4.044 -4.037 -3.461 -1.951 -2.625 

ASN -4.143 -2.293 -6.138 -4.936 -2.389 -4.825 -2.555 -2.922 -3.721 -2.845 -1.936 0.000 -3.526 -1.815 -0.780 -3.028 -3.062 -3.287 -1.704 -2.113 

PRO -1.463 -0.718 -5.384 -3.400 -0.556 -2.679 -0.935 -0.465 -2.511 -0.787 0.109 -1.885 0.000 -0.221 -0.221 -1.307 -1.235 -0.735 1.749 0.955 

GLN -5.070 -3.767 -7.353 -6.518 -3.756 -5.489 -2.957 -4.098 -5.508 -3.712 -2.958 -3.335 -4.571 0.000 -2.812 -4.674 -4.108 -4.392 -3.580 -3.665 

ARG -10.265 -9.398 -13.330 -12.857 -9.401 -10.602 -9.629 -9.987 -8.528 -10.019 -9.043 -9.760 -10.394 -9.547 0.000 -10.027 -10.129 -10.318 -9.435 -8.554 

SER -3.767 -1.391 -6.093 -4.542 -2.303 -4.829 -2.017 -2.855 -4.690 -3.486 -1.964 -2.151 -3.546 -2.101 -0.505 0.000 -1.032 -3.307 -2.044 -2.112 

THR -3.621 -1.185 -8.602 -6.681 -1.522 -4.462 -2.038 -2.830 -4.708 -2.656 -1.414 -1.990 -3.113 -1.366 -0.550 -1.569 0.000 -3.121 -0.892 -0.461 

VAL -0.169 0.950 -2.828 -0.986 0.965 -1.523 0.631 1.106 1.309 0.752 0.816 0.431 -0.751 0.964 1.483 0.414 0.715 0.000 2.141 2.587 

TRP -6.229 -5.331 -11.480 -11.032 -3.281 -7.690 -4.145 -4.614 -8.968 -4.215 -3.833 -5.025 -5.451 -4.543 -4.205 -5.745 -6.123 -5.313 0.000 -3.084 

TYR -6.218 -5.156 -9.096 -7.876 -4.644 -6.493 -5.625 -5.977 -6.973 -5.681 -5.084 -6.126 -6.310 -5.101 -5.222 -6.294 -6.419 -6.029 -4.435 0.000 

Table 1: Matrix showing the means of percentage of changes in binding energy due to point mutations in protein antigens using the CHARMM force 

field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the 

positive (beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 8.558 44.232 25.635 15.772 1.483 20.022 2.184 24.409 6.201 9.987 10.870 3.658 22.215 34.203 5.320 9.806 2.266 13.567 20.632 

CYS 6.211 0 83.570 22.644 11.976 9.206 4.271 9.659 7.463 10.974 4.613 10.509 6.453 7.027 10.945 9.300 9.542 7.515 20.828 16.234 

ASP 26.614 26.453 0 33.691 33.633 25.749 28.502 30.095 40.266 29.994 29.059 25.212 30.369 28.617 43.484 24.852 28.336 27.095 35.214 34.299 

GLU 35.338 30.993 30.814 0 33.708 36.204 32.086 34.210 46.963 37.384 35.541 34.496 35.964 29.338 52.561 32.529 33.231 35.159 40.908 35.898 

PHE 16.659 19.259 80.936 43.861 0 20.784 21.736 13.222 54.350 15.018 23.315 27.043 19.254 28.921 58.497 21.123 19.384 16.666 22.338 17.108 

GLY 4.897 8.090 47.191 53.986 20.510 0 13.000 13.850 18.366 11.201 19.885 17.077 20.809 15.108 35.844 8.784 11.955 11.001 25.349 26.823 

HIS 14.670 19.726 58.188 50.790 17.033 14.484 0 20.419 34.537 17.936 18.130 16.189 13.222 28.663 51.156 16.079 19.949 18.285 25.625 28.618 

ILE 4.610 7.216 93.046 134.324 9.291 7.787 12.539 0 35.026 1.498 5.427 17.203 9.457 13.374 24.090 7.844 9.950 3.406 31.350 6.832 

LYS 25.301 25.132 44.418 46.669 33.608 27.344 30.468 29.590 0 30.839 29.855 28.972 28.503 29.759 44.079 27.570 27.110 29.462 33.638 34.993 

LEU 7.463 6.396 52.400 47.170 6.955 11.102 10.857 4.867 19.399 0 6.140 11.623 11.333 11.642 29.906 14.207 8.296 5.815 21.418 16.885 

MET 11.976 8.817 63.631 59.795 2.034 15.892 18.509 8.338 22.571 13.739 0 9.132 11.642 9.801 20.177 13.170 8.605 11.277 9.453 11.296 

ASN 9.558 11.564 38.366 33.609 17.793 12.574 18.713 12.206 24.295 14.468 13.578 0 14.444 14.418 24.312 12.757 13.272 11.642 24.183 22.606 

PRO 3.544 5.145 88.357 38.530 7.731 8.789 8.466 3.432 13.439 7.129 7.185 8.581 0 7.190 21.505 6.741 6.643 2.232 16.894 32.671 

GLN 12.379 10.624 68.962 55.833 18.367 13.628 13.642 12.632 37.773 11.440 10.336 13.419 12.171 0 35.947 16.368 13.967 14.186 21.048 21.384 

ARG 47.773 46.882 76.562 73.681 52.922 50.490 52.931 52.793 43.734 57.085 46.475 47.938 52.909 51.719 0 48.613 48.689 53.095 59.814 45.091 

SER 15.204 17.047 60.363 59.435 22.317 14.080 17.644 23.662 33.625 21.392 19.610 20.290 26.680 24.083 48.598 0 13.481 19.180 38.909 26.321 

THR 16.652 12.435 71.286 78.439 27.281 20.633 24.637 16.354 48.132 14.680 18.095 22.764 22.687 21.035 46.161 16.648 0 18.888 38.579 36.467 

VAL 7.924 6.294 123.118 44.676 15.960 16.573 19.020 4.977 11.320 3.310 6.004 15.518 9.074 16.702 14.316 12.851 12.728 0 20.440 18.079 

TRP 21.470 23.630 72.074 89.880 20.602 12.467 30.452 22.901 74.667 22.523 16.212 27.240 26.954 25.804 28.895 25.137 19.781 26.195 0 24.009 

TYR 12.223 16.106 29.507 34.074 28.639 13.145 19.645 11.828 22.383 12.779 13.842 15.449 13.426 20.590 30.077 16.749 15.171 10.841 24.358 0 

Table 2: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antigens using the CHARMM 

force field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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  A C D E F G H I K L M N P Q R S T V W Y 

A -4 2 -3 -1 1 -1 2 1 -1 1 0 1 0 2 2 0 1 1 2 2 
C -1 5 -3 -3 -1 -1 -1 -1 -2 -1 0 -1 -2 -1 -2 -1 -1 -1 -1 0 
D -3 -3 7 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
E -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
F -3 -2 -4 -3 6 -3 -2 -2 -3 -2 -2 -2 -3 -2 -2 -3 -2 -2 -2 -2 
G -1 1 -2 -2 1 3 -1 0 -1 0 1 0 -1 0 2 0 0 -1 1 1 
H -2 -2 -3 -3 -1 -2 6 -2 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 
I -2 -1 -3 -3 -1 -2 -2 6 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -2 -2 
K -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -1 -3 -3 -3 -3 -3 
L -2 -1 -3 -3 0 -2 -1 -1 -2 5 0 -2 -2 -1 -1 -2 -1 -1 0 -1 
M -2 -2 -3 -2 -1 -3 -2 -2 -2 -2 6 -3 -2 -3 -1 -2 -2 -2 -1 -2 
N -2 -2 -3 -3 -2 -3 -2 -2 -2 -2 -2 6 -2 -2 -1 -2 -2 -2 -1 -2 
P -1 -1 -3 -2 -1 -2 -1 -1 -2 -1 0 -2 4 0 0 -1 -1 -1 2 1 
Q -3 -2 -3 -3 -2 -3 -2 -2 -3 -2 -2 -2 -2 6 -2 -3 -2 -2 -2 -2 
R -3 -3 -4 -4 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 8 -3 -3 -3 -3 -3 
S -2 -1 -3 -3 -2 -3 -2 -2 -3 -2 -2 -2 -2 -2 -1 6 -1 -2 -2 -2 
T -2 -1 -3 -3 -1 -2 -2 -2 -3 -2 -1 -2 -2 -1 -1 -1 6 -2 -1 -1 
V 0 1 -2 -2 1 -1 1 1 1 1 1 0 -1 1 1 0 1 -3 2 2 
W -3 -3 -4 -4 -2 -3 -2 -2 -3 -2 -2 -3 -3 -2 -2 -3 -3 -3 7 -2 
Y -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 7 

Table 3: Matrix showing the effects of the changes in binding energy due to point mutations in protein 

antigens using the CHARMM force field. The rows indicate the native residue in the structure and the 

columns indicate the mutated residue. 
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 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 -3.171 -3.598 -1.597 -2.378 -4.641 -2.178 -4.039 -1.004 -4.471 -3.712 -2.130 -4.603 -2.076 1.616 -3.085 -1.953 -3.401 -1.737 -2.376 

CYS -3.747 0.000 -3.076 -1.852 -2.968 -5.077 -2.409 -2.613 -1.724 -3.144 -2.469 -1.866 -4.026 -2.260 -2.674 -4.195 -3.523 -4.391 -2.974 -3.878 

ASP -12.290 -11.945 0.000 -8.003 -11.708 -12.659 -11.695 -11.836 -12.100 -12.119 -12.092 -10.784 -12.391 -10.783 -11.159 -11.991 -11.613 -12.016 -11.708 -11.558 

GLU -14.140 -13.526 -9.396 0.000 -12.755 -14.324 -12.574 -13.283 -13.150 -13.378 -12.690 -12.525 -13.558 -11.789 -11.697 -13.333 -13.278 -13.468 -12.261 -12.436 

PHE -9.677 -9.331 -8.391 -8.395 0.000 -10.713 -8.432 -9.210 -7.512 -9.653 -8.693 -8.165 -9.973 -7.193 -6.690 -8.682 -9.060 -9.905 -8.382 -8.489 

GLY -6.864 -5.701 -5.295 -3.503 -6.249 0.000 -5.491 -7.445 -2.978 -6.232 -5.421 -4.572 -8.336 -2.959 -0.085 -5.293 -5.780 -6.231 -4.830 -5.132 

HIS -3.281 -2.537 -1.450 -1.570 -1.798 -3.360 0.000 -2.294 -1.275 -2.261 -1.647 -2.365 -3.406 -2.018 -0.007 -2.266 -2.165 -2.865 -0.971 -1.869 

ILE -5.945 -5.424 -5.188 -4.198 -5.434 -6.240 -5.189 0.000 -2.433 -5.451 -4.506 -4.487 -5.989 -2.712 -0.198 -4.567 -4.944 -4.218 -5.330 -4.792 

LYS -13.642 -13.332 -13.855 -13.020 -12.959 -13.930 -12.991 -13.023 0.000 -13.231 -12.628 -12.512 -13.758 -11.720 -9.000 -13.211 -12.931 -13.392 -12.615 -12.544 

LEU -6.680 -6.143 -5.491 -3.070 -5.957 -7.540 -5.005 -5.686 -3.498 0.000 -5.345 -3.975 -7.569 -4.094 -2.805 -6.437 -5.505 -6.191 -6.680 -4.707 

MET -8.231 -8.016 -8.338 -6.254 -4.988 -9.384 -6.794 -6.966 -2.723 -6.386 0.000 -6.268 -7.669 -5.566 -3.687 -7.376 -6.839 -6.617 -6.420 -5.150 

ASN -8.173 -7.329 -6.471 -5.744 -7.396 -8.577 -7.098 -7.650 -5.023 -7.710 -7.575 0.000 -8.031 -5.513 -3.011 -6.815 -6.702 -7.874 -7.415 -7.403 

PRO -4.888 -3.561 -2.633 -3.790 -2.713 -5.395 -3.350 -4.258 0.575 -3.300 -3.530 -0.958 0.000 -1.473 1.861 -2.039 -3.096 -4.169 -2.010 -2.859 

GLN -9.177 -8.926 -6.993 -5.700 -8.372 -9.692 -8.110 -7.958 -5.277 -8.588 -7.765 -6.976 -9.428 0.000 -5.249 -8.567 -8.125 -8.739 -8.240 -7.952 

ARG -15.296 -14.650 -15.187 -14.214 -14.352 -15.473 -14.675 -14.719 -11.136 -14.522 -14.322 -14.054 -15.260 -13.740 0.000 -14.493 -14.283 -15.086 -14.163 -14.052 

SER -6.566 -6.095 -4.183 -3.819 -6.554 -6.940 -5.640 -6.851 -2.897 -6.776 -5.552 -3.443 -7.435 -4.675 -1.595 0.000 -4.245 -6.463 -5.062 -6.056 

THR -8.613 -7.414 -7.048 -4.930 -7.003 -9.449 -6.865 -7.591 -4.808 -7.599 -6.537 -6.067 -8.270 -5.540 -2.853 -6.127 0.000 -8.174 -7.104 -6.553 

VAL -3.681 -3.306 -1.916 -3.366 -3.959 -4.458 -3.372 -2.997 -1.643 -3.959 -2.764 -2.586 -3.947 -1.308 -1.680 -2.690 -3.039 0.000 -2.661 -3.978 

TRP -8.966 -8.571 -8.728 -6.542 -6.926 -8.987 -7.002 -8.257 -5.892 -7.599 -7.317 -6.999 -9.302 -6.766 -4.840 -8.653 -8.054 -8.959 0.000 -6.547 

TYR -7.094 -6.993 -7.156 -5.699 -6.444 -7.725 -6.688 -6.724 -4.969 -6.968 -5.997 -6.286 -7.440 -6.345 -3.933 -6.112 -6.163 -6.890 -5.662 0.000 

Table 4: Matrix showing the percentage of changes in binding energy due to point mutations in protein antigens using the Amber force field. The 

rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the positive 

(beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 18.897 49.253 58.528 41.601 36.994 24.750 26.272 39.297 28.224 41.512 37.420 31.196 21.579 51.259 33.466 20.385 27.977 59.568 35.888 

CYS 5.149 0 5.800 41.599 8.205 3.636 3.719 3.780 26.958 6.216 3.306 1.980 5.126 4.745 59.834 1.801 5.584 7.248 4.504 6.353 

ASP 37.931 38.966 0 36.867 41.976 35.149 41.198 36.463 46.712 34.671 38.176 32.686 40.184 37.286 52.217 38.595 39.082 40.623 42.118 44.102 

GLU 44.921 42.613 45.669 0 43.142 47.274 42.955 41.827 49.664 46.499 39.480 43.602 45.002 37.058 53.595 44.070 45.496 43.350 42.014 42.481 

PHE 32.011 21.670 38.262 38.868 0 28.894 22.009 19.284 40.519 17.704 32.158 23.317 24.069 29.162 55.223 26.556 20.980 19.023 35.497 39.357 

GLY 26.185 23.759 41.479 38.126 28.739 0 20.785 23.706 44.601 36.071 31.288 38.139 29.925 31.482 86.804 24.098 32.777 17.900 14.933 25.905 

HIS 26.964 21.268 11.373 11.759 11.735 24.874 32.577 15.648 10.081 16.250 13.371 15.330 24.515 14.712 0.651 15.347 13.375 21.221 5.488 13.015 

ILE 30.222 27.876 31.445 32.902 52.418 15.449 32.452 0 77.837 30.472 22.313 35.896 34.770 34.195 52.738 40.315 34.671 14.921 32.366 48.148 

LYS 42.481 38.829 45.052 43.415 46.007 39.295 41.136 41.994 0 40.334 40.283 37.357 43.151 38.649 47.387 40.405 38.636 41.972 41.874 44.068 

LEU 35.969 46.568 73.390 81.250 57.677 38.737 39.149 38.910 61.677 0 37.996 36.036 48.018 36.391 54.740 40.765 36.915 31.936 52.964 69.001 

MET 23.574 18.923 13.716 24.087 26.101 26.863 42.019 17.875 51.911 17.753 0 15.274 20.858 21.814 49.070 38.973 40.984 14.640 59.594 30.206 

ASN 34.104 37.159 48.697 52.818 38.511 37.579 41.571 38.490 50.098 35.123 37.478 0 33.630 33.113 63.485 36.683 35.777 36.817 44.359 46.259 

PRO 32.592 34.072 63.941 28.911 52.700 31.512 54.217 41.864 73.915 46.519 35.568 37.544 0 39.621 90.085 42.209 32.401 31.282 59.786 43.425 

GLN 36.435 39.031 53.905 56.118 41.256 36.850 39.317 33.377 48.738 30.999 32.745 37.289 35.067 0 44.682 33.472 39.228 29.147 37.641 39.221 

ARG 54.326 51.059 59.022 49.453 59.263 53.001 62.057 59.393 48.561 54.380 56.066 54.376 61.198 55.763 0 45.182 51.628 56.046 63.254 58.571 

SER 32.861 32.182 54.447 64.136 41.888 32.560 41.451 40.951 56.757 37.146 33.683 33.337 48.695 41.549 65.673 0 32.457 32.767 42.345 50.802 

THR 31.564 32.219 45.210 47.900 40.858 35.819 35.370 37.527 62.568 40.039 40.350 32.449 31.594 30.459 69.349 24.165 0 33.981 58.334 51.908 

VAL 18.102 18.503 39.808 26.207 32.206 24.405 31.312 27.739 20.088 31.920 26.436 20.869 21.839 36.618 28.361 17.934 20.958 0 26.347 27.861 

TRP 35.446 33.330 32.340 45.531 33.218 33.321 28.546 36.790 55.086 28.473 34.742 33.876 31.589 32.701 46.706 33.971 35.199 37.716 0 33.949 

TYR 40.389 35.458 39.302 55.225 36.027 34.886 40.529 31.924 69.398 41.853 41.778 42.728 40.132 45.360 52.642 43.006 37.040 36.770 50.067 0 

Table 5: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antigens using the Amber force 

field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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  A C D E F G H I K L M N P Q R S T V W Y 

A 6 -2 -2 -1 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 1 -2 -2 -2 -1 -2 
C -2 6 -2 -2 -2 -3 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 
D -4 -4 8 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 
E -4 -4 -3 8 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 
F -3 -3 -3 -3 7 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
G -3 -3 -3 -2 -3 7 -3 -3 -2 -3 -3 -2 -3 -2 0 -3 -3 -3 -3 -3 
H -2 -2 -1 -1 -1 -2 5 -2 -1 -2 -1 -2 -2 -2 0 -2 -2 -2 -1 -2 
I -3 -3 -3 -2 -3 -3 -3 6 -2 -3 -2 -2 -3 -2 0 -2 -3 -2 -3 -3 
K -4 -4 -4 -4 -4 -4 -4 -4 8 -4 -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 
L -3 -3 -3 -2 -3 -3 -3 -3 -2 7 -3 -2 -3 -2 -2 -3 -3 -3 -3 -3 
M -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 7 -3 -3 -3 -2 -3 -3 -3 -3 -3 
N -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -2 -3 -3 -3 -3 -3 
P -3 -2 -2 -2 -2 -3 -2 -2 1 -2 -2 -1 6 -1 2 -2 -2 -2 -2 -2 
Q -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 
R -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 8 -4 -4 -4 -4 -4 
S -3 -3 -2 -2 -3 -3 -3 -3 -2 -3 -3 -2 -3 -3 -1 7 -2 -3 -3 -3 
T -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 7 -3 -3 -3 
V -2 -2 -2 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -1 -1 -2 -2 6 -2 -2 
W -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 
Y -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 -3 -3 -3 7 

Table 6: Matrix showing the effects of the changes in binding energy due to point mutations in protein antigens 

using the Amber force field. The rows indicate the native residue in the structure and the columns indicate the 

mutated residue. 
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 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 -0.191 -6.265 -5.863 -1.854 -4.994 -7.132 -0.342 -7.767 -0.612 -0.842 -4.358 -6.393 -3.084 -5.678 -6.095 -3.769 -0.807 0.841 -1.401 

CYS -6.612 0.000 -11.249 -10.504 -3.554 -9.780 -6.551 -6.179 -12.263 -4.465 -8.554 -6.403 -11.367 -12.237 -12.301 -9.579 -7.219 -5.377 -10.872 -8.919 

ASP -6.892 -6.590 0.000 -6.937 -6.560 -8.575 -9.849 -7.294 -10.284 -6.468 -7.371 -8.063 -9.088 -7.976 -8.819 -8.175 -6.747 -6.356 -7.564 -7.298 

GLU -7.580 -6.825 -5.857 0.000 -5.662 -8.983 -7.945 -5.630 -10.054 -5.439 -5.336 -7.926 -9.173 -6.793 -10.430 -9.915 -8.295 -6.322 -5.330 -6.983 

PHE -9.122 -9.916 -11.937 -12.793 0.000 -10.585 -10.229 -7.769 -11.522 -6.981 -8.001 -10.792 -12.764 -10.700 -11.617 -12.498 -10.198 -8.964 -8.446 -9.044 

GLY 1.578 1.397 -5.429 -2.097 2.244 0.000 -2.147 0.977 -2.441 1.394 2.427 -1.413 -6.221 -0.841 -1.696 -4.059 -1.947 1.742 2.143 -0.714 

HIS -0.355 -0.322 -0.812 -1.427 -0.078 -0.833 0.000 -0.055 -0.310 -0.289 -0.084 -0.990 -0.744 -1.324 -0.049 -1.205 -1.175 -0.220 0.003 -0.128 

ILE -6.900 -6.136 -10.744 -10.114 -4.129 -8.838 -7.668 0.000 -9.007 -3.336 -5.275 -8.572 -8.040 -7.683 -7.443 -9.428 -8.410 -5.015 -5.533 -5.994 

LYS -7.571 -7.358 -10.340 -10.359 -6.325 -8.532 -9.103 -6.787 0.000 -6.377 -6.289 -8.826 -9.061 -8.678 -5.990 -9.557 -8.257 -6.190 -7.303 -8.109 

LEU -6.082 -5.765 -8.348 -8.841 -3.582 -9.776 -6.852 -4.025 -10.640 0.000 -3.563 -7.118 -8.607 -7.461 -9.122 -10.195 -7.593 -4.871 -7.900 -5.083 

MET -10.432 -10.262 -11.961 -10.246 -8.023 -12.612 -10.953 -9.400 -13.442 -5.751 0.000 -10.780 -12.803 -9.783 -12.590 -13.356 -10.590 -10.324 -8.625 -10.591 

ASN -3.465 -2.374 -5.686 -5.965 -0.997 -4.740 -5.760 -1.292 -5.350 -1.360 -2.291 0.000 -5.616 -3.519 -4.770 -6.716 -4.249 -2.011 -1.432 -3.468 

PRO -2.690 -1.725 -7.155 -8.667 -2.428 -6.329 -6.068 -0.984 -8.152 -0.900 -1.305 -6.555 0.000 -5.108 -5.391 -7.863 -5.166 -0.002 0.915 -4.740 

GLN -6.905 -6.548 -8.285 -8.747 -3.855 -8.869 -9.160 -5.507 -10.641 -4.658 -3.829 -7.312 -10.389 0.000 -7.676 -9.709 -9.101 -6.495 -6.172 -7.039 

ARG -7.075 -6.178 -9.800 -9.189 -5.561 -8.329 -7.363 -5.510 -6.253 -6.010 -4.798 -7.611 -9.196 -6.739 0.000 -9.273 -8.195 -6.445 -5.166 -6.061 

SER -1.478 0.872 -3.448 -4.876 1.289 -1.966 -3.960 0.083 -6.292 -0.208 0.148 -3.486 -5.497 -3.237 -4.274 0.000 -2.440 0.790 0.648 1.062 

THR -4.200 -4.408 -7.494 -9.235 -2.214 -7.258 -8.184 -3.640 -9.884 -3.511 -2.868 -8.646 -8.349 -5.837 -7.924 -8.661 0.000 -3.349 -1.814 -4.288 

VAL -4.696 -4.350 -7.153 -8.848 -2.986 -7.698 -7.268 -1.526 -8.624 -3.143 -1.861 -6.982 -7.845 -5.996 -6.302 -8.657 -6.141 0.000 -4.647 -4.966 

TRP -13.163 -13.392 -13.398 -13.437 -9.749 -13.117 -10.954 -11.554 -13.252 -11.893 -10.156 -12.880 -12.585 -11.890 -15.060 -13.247 -12.083 -11.132 0.000 -11.056 

TYR -8.006 -6.724 -9.686 -8.191 -5.402 -9.722 -8.887 -6.018 -9.946 -6.892 -5.535 -8.176 -9.200 -8.925 -8.713 -9.031 -7.570 -7.652 -5.483 0.000 

Table 7: Matrix showing the percentage of changes in binding energy due to point mutations in protein antigens using the Rosetta force field. The 

rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the positive 

(beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 143.932 159.943 185.269 153.463 125.736 175.707 141.007 167.381 142.302 175.909 137.444 125.170 130.741 149.752 112.863 118.263 132.690 177.103 175.368 

CYS 183.129 0 182.750 139.158 64.266 148.521 67.290 115.521 124.368 90.041 136.377 148.094 112.931 95.180 53.133 166.174 217.186 147.180 139.097 128.218 

ASP 141.084 155.561 0 124.558 176.046 142.202 140.966 130.475 157.430 155.586 151.397 153.162 144.005 154.580 145.505 156.860 171.269 146.552 163.198 172.449 

GLU 108.884 123.794 156.703 0 124.266 102.623 115.677 121.776 144.824 117.954 115.646 131.056 113.569 135.443 123.044 112.441 117.273 108.552 134.777 145.925 

PHE 106.299 96.168 76.499 99.637 0 111.708 105.171 101.950 133.747 80.933 92.008 116.433 123.534 97.660 122.481 102.728 106.033 124.839 134.593 91.876 

GLY 92.665 103.321 124.718 124.883 121.505 0 93.663 101.731 93.326 104.422 120.099 103.405 113.796 106.689 101.552 84.608 100.777 118.377 149.849 144.392 

HIS 1.846 1.818 8.182 14.529 0.125 4.964 107.641 0.236 3.725 0.814 0.114 8.560 6.873 8.384 1.405 8.936 6.292 0.898 0.012 0.314 

ILE 109.077 106.585 91.670 107.452 83.014 106.687 123.226 0 112.129 94.226 78.777 99.202 112.770 113.547 139.093 96.903 99.589 93.044 100.664 89.274 

LYS 93.137 72.712 88.799 128.426 105.747 98.198 85.200 87.849 0 82.454 90.414 87.902 90.094 83.201 128.273 87.874 99.235 82.717 105.839 111.336 

LEU 156.197 136.021 206.578 189.112 159.798 145.083 158.080 141.329 151.613 0 121.166 137.116 170.417 156.351 163.712 150.355 133.656 135.756 166.544 181.739 

MET 143.224 83.932 107.590 130.225 179.806 143.021 137.433 145.624 180.688 157.636 0 116.350 155.242 160.783 136.772 129.653 130.390 98.519 174.358 154.759 

ASN 78.793 73.918 80.964 84.111 97.123 85.011 96.181 66.242 127.042 102.043 82.168 0 92.562 93.005 145.103 64.296 87.547 68.104 122.048 93.840 

PRO 78.959 108.316 112.924 145.850 135.211 77.194 176.943 132.206 126.302 105.834 123.141 111.944 0 130.008 110.557 99.954 87.140 84.416 168.098 161.546 

GLN 114.696 112.057 110.813 134.899 115.471 103.760 131.876 144.954 135.200 135.887 101.540 158.825 122.105 0 141.528 87.152 131.870 122.997 161.865 131.690 

ARG 106.662 117.021 123.790 124.006 123.796 118.923 112.311 122.489 132.149 103.015 99.663 108.740 108.517 141.165 0 121.602 112.971 109.893 156.390 120.773 

SER 113.563 112.134 222.926 246.236 144.651 108.919 91.713 131.618 244.229 177.734 127.448 203.642 117.680 128.168 123.509 0 141.473 187.527 136.023 146.211 

THR 118.457 132.786 104.092 104.759 176.146 94.162 138.753 134.577 172.461 121.773 131.924 112.893 112.346 144.215 122.576 129.322 0 125.586 245.594 147.420 

VAL 120.679 122.791 137.557 150.613 168.735 121.051 144.102 147.871 199.957 146.193 158.282 166.832 111.377 144.002 219.722 111.469 131.042 0 158.503 131.512 

TRP 135.827 135.470 132.914 122.491 154.821 189.800 180.038 110.828 191.971 117.600 113.083 120.608 154.028 148.346 122.555 136.057 172.120 173.856 0 194.358 

TYR 118.482 161.656 114.104 146.084 128.968 123.221 126.648 126.455 161.936 114.010 149.282 169.330 154.340 119.670 155.649 155.304 148.572 127.643 151.447 0 

Table 8: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antigens using the Rosetta force 

field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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  A C D E F G H I K L M N P Q R S T V W Y 

A 6 0 -3 -3 -2 -3 -3 0 -3 -1 -1 -2 -3 -2 -3 -3 -2 -1 1 -1 
C -3 7 -4 -4 -2 -3 -3 -3 -4 -2 -3 -3 -4 -4 -4 -3 -3 -3 -4 -3 
D -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
E -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -3 -3 -3 -3 -3 
F -3 -3 -4 -4 8 -4 -3 -3 -4 -3 -3 -4 -4 -4 -4 -4 -3 -3 -3 -3 
G 1 1 -3 -2 2 4 -2 1 -2 1 2 -1 -3 -1 -1 -2 -2 1 2 -1 
H 0 0 -1 -1 0 -1 4 0 0 0 0 -1 -1 -1 0 -1 -1 0 0 0 
I -3 -3 -4 -3 -2 -3 -3 7 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
K -3 -3 -4 -4 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
L -3 -3 -3 -3 -2 -3 -3 -2 -4 7 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 
M -4 -3 -4 -3 -3 -4 -4 -3 -4 -3 8 -4 -4 -3 -4 -4 -4 -4 -3 -4 
N -2 -2 -3 -3 -1 -3 -3 -1 -3 -1 -2 6 -3 -2 -3 -3 -2 -2 -1 -2 
P -2 -1 -3 -3 -2 -3 -3 -1 -3 -1 -1 -3 6 -3 -3 -3 -3 0 1 -3 
Q -3 -3 -3 -3 -2 -3 -3 -3 -4 -3 -2 -3 -4 7 -3 -3 -3 -3 -3 -3 
R -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 
S -1 1 -2 -3 1 -2 -2 0 -3 0 0 -2 -3 -2 -2 5 -2 1 1 1 
T -2 -2 -3 -3 -2 -3 -3 -2 -3 -2 -2 -3 -3 -3 -3 -3 7 -2 -1 -2 
V -3 -2 -3 -3 -2 -3 -3 -1 -3 -2 -2 -3 -3 -3 -3 -3 -3 7 -2 -3 
W -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 8 -4 
Y -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 

Table 9: Matrix showing the effects of the changes in binding energy due to point mutations in 

protein antigens using the Rosetta force field. The rows indicate the native residue in the structure 

and the columns indicate the mutated residue. 
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 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 2.954 -6.755 -2.340 1.780 0.045 1.528 0.478 -1.092 0.073 1.214 0.457 -0.709 0.350 -1.339 2.139 0.889 0.723 1.621 2.739 

CYS -2.442 0.000 -12.689 -5.938 -2.464 -3.512 0.499 -5.986 -2.697 -6.521 -6.452 -4.193 -4.095 -4.614 -2.478 1.442 -4.096 -2.127 1.584 -1.192 

ASP -7.834 -7.541 0.000 -2.466 -7.011 -7.920 -6.851 -7.311 -8.708 -7.425 -7.274 -6.488 -7.773 -6.275 -8.009 -7.305 -7.220 -7.353 -7.108 -6.891 

GLU -6.995 -7.065 -3.509 0.000 -6.586 -7.226 -6.546 -7.387 -8.653 -6.891 -6.422 -6.446 -7.132 -6.044 -7.701 -7.194 -7.092 -6.839 -6.912 -6.484 

PHE -5.649 -3.767 -13.328 -10.934 0.000 -6.270 -4.318 -3.369 -7.649 -3.900 -3.146 -4.626 -5.985 -4.259 -4.493 -5.150 -4.641 -4.097 -3.969 -5.315 

GLY -0.600 0.476 -1.879 -2.128 0.514 0.000 0.412 -0.536 -0.533 -1.013 1.812 0.076 -2.455 0.650 2.264 -0.279 -0.088 -1.100 1.983 1.964 

HIS -5.820 -4.507 -7.812 -5.690 -4.681 -6.534 0.000 -4.923 -3.709 -5.437 -4.331 -4.898 -6.587 -5.484 -5.147 -5.588 -5.243 -5.014 -3.953 -3.751 

ILE -1.310 -0.577 -9.842 -9.989 0.264 -3.140 -1.125 0.000 -3.103 0.499 0.504 -1.855 -1.928 0.347 -0.878 -1.019 -1.822 -0.307 -0.514 1.651 

LYS -4.568 -3.893 -6.348 -5.924 -4.103 -4.501 -4.298 -4.583 0.000 -4.694 -4.160 -4.184 -4.845 -4.054 -1.510 -4.329 -4.207 -4.767 -4.143 -3.783 

LEU -2.127 -0.764 -9.661 -6.589 0.211 -2.917 -0.824 -0.604 -2.444 0.000 0.872 -2.188 -1.932 -0.490 -0.533 -2.980 -2.548 -1.024 0.311 0.865 

MET -5.236 -2.797 -8.004 -9.965 -1.834 -5.697 -2.429 -2.286 -3.091 -2.878 0.000 -4.653 -3.936 -2.793 -3.902 -3.830 -2.668 -1.174 -2.376 1.748 

ASN -4.154 -2.359 -5.226 -5.057 -2.684 -4.763 -2.588 -2.579 -3.275 -3.026 -2.282 0.000 -2.973 -2.542 -2.213 -2.788 -3.193 -3.199 -2.745 -1.991 

PRO -2.520 -0.665 -9.116 -3.128 -0.746 -3.366 -2.503 -1.686 -6.430 -1.510 -1.931 -2.254 0.000 -4.263 -3.464 -1.932 -2.859 -1.516 -1.189 -1.885 

GLN -4.050 -3.087 -5.359 -5.242 -3.356 -4.044 -3.010 -3.876 -3.703 -3.914 -2.845 -3.488 -3.701 0.000 -2.923 -3.900 -3.623 -4.429 -3.008 -3.276 

ARG -10.072 -9.138 -12.304 -12.272 -9.266 -10.014 -9.781 -9.780 -8.400 -10.137 -9.364 -9.286 -10.001 -9.318 0.000 -9.638 -9.595 -9.866 -9.380 -8.884 

SER -4.390 -2.165 -6.894 -6.342 -3.374 -4.992 -2.727 -3.746 -3.852 -3.862 -3.399 -2.492 -4.785 -3.052 -1.488 0.000 -1.868 -3.639 -3.102 -3.052 

THR -3.790 -2.017 -5.755 -5.568 -2.231 -4.908 -2.584 -3.382 -3.701 -3.425 -2.649 -2.481 -4.121 -2.731 -2.123 -1.549 0.000 -3.212 -2.888 -2.179 

VAL -2.872 -0.786 -7.934 -2.280 0.087 -4.345 -2.072 0.229 -1.091 -0.986 0.562 -2.644 -2.153 -1.049 -1.869 -3.013 -1.474 0.000 0.864 -0.023 

TRP -6.881 -6.183 -11.034 -10.139 -4.835 -7.361 -6.300 -5.787 -7.993 -5.853 -5.158 -6.938 -7.388 -5.838 -6.394 -6.913 -6.506 -6.519 0.000 -6.022 

TYR -7.409 -6.566 -11.254 -10.247 -5.854 -7.911 -6.877 -6.543 -8.373 -6.525 -6.168 -7.336 -7.297 -6.579 -5.933 -7.450 -7.291 -6.949 -6.296 0.000 

Table 10: Matrix showing the percentage of changes in binding energy due to point mutations in protein antibodies using the CHARMM force field. 

The rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the positive 

(beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 8.661 55.818 58.436 8.462 4.831 13.817 4.388 12.591 6.290 7.999 14.224 11.240 20.746 15.266 11.533 11.668 4.492 31.619 28.987 

CYS 1.439 0 197.585 48.421 0.000 4.347 28.212 11.259 11.834 11.55 17.961 0.582 1.066 5.956 0.000 0.396 3.314 1.209 0.000 23.8 

ASP 40.597 39.843 0 27.614 42.342 36.691 36.688 43.443 45.504 40.859 42.648 34.867 38.989 34.967 53.263 36.834 41.030 40.757 46.901 45.132 

GLU 37.812 38.116 29.757 0 45.127 34.773 32.973 40.018 55.429 38.948 37.303 36.149 42.577 30.933 53.238 39.298 38.951 34.882 45.258 41.386 

PHE 7.821 11.196 35.070 28.387 0 9.551 22.864 7.994 34.983 9.839 9.065 14.405 7.125 11.205 55.380 9.506 8.694 8.752 25.268 23.456 

GLY 6.660 11.781 56.662 68.069 29.423 0 14.727 20.885 41.810 16.146 22.779 18.378 24.770 23.502 27.960 6.105 10.831 19.212 20.254 28.391 

HIS 8.171 8.725 28.425 28.844 13.021 9.178 0 10.599 10.521 13.072 14.418 13.705 12.661 14.641 24.681 10.430 10.673 10.803 14.522 30.080 

ILE 22.999 18.278 65.258 90.655 22.896 26.387 17.061 0 69.733 17.350 21.439 21.641 8.318 31.461 31.674 16.068 9.210 14.374 30.001 52.590 

LYS 16.518 16.375 19.814 21.104 19.311 16.544 15.966 18.432 0 17.806 19.382 16.816 18.262 17.557 35.046 14.940 15.550 20.530 21.320 26.765 

LEU 7.012 6.858 121.469 62.874 9.234 11.032 10.543 5.626 10.553 0 5.952 3.524 14.392 13.107 25.075 14.788 7.419 6.065 17.055 12.862 

MET 13.312 10.725 45.240 79.953 3.933 15.040 33.102 5.428 55.794 3.006 0 5.131 6.952 7.639 31.275 7.577 7.272 7.718 41.140 10.517 

ASN 12.081 12.673 43.699 43.343 21.761 11.210 21.753 15.142 36.132 17.610 18.259 0 14.526 18.442 33.932 16.432 14.045 14.405 26.292 28.556 

PRO 6.037 2.777 119.178 16.459 8.363 12.002 7.212 12.379 47.228 7.073 16.265 1.388 0 11.127 10.102 0.821 11.710 9.011 32.606 4.524 

GLN 12.900 8.746 31.052 23.858 12.987 13.933 9.288 9.005 23.090 10.528 9.387 9.375 8.565 0 15.629 14.516 14.019 11.486 10.247 11.879 

ARG 38.888 35.106 45.750 48.215 40.295 37.765 38.248 38.523 33.064 39.257 38.056 37.004 36.619 34.149 0 36.818 38.065 38.740 38.654 44.546 

SER 11.338 8.949 41.698 43.015 24.153 12.511 17.353 15.536 35.395 16.666 18.910 14.383 17.104 17.459 38.198 0 11.705 14.720 30.215 29.249 

THR 10.242 10.705 42.952 49.483 20.792 11.239 18.511 12.246 30.043 11.615 12.180 11.507 17.603 16.071 43.217 11.041 0 11.541 30.084 21.804 

VAL 3.037 1.981 70.432 17.286 7.983 8.165 6.182 3.280 2.129 1.487 2.179 4.035 2.448 4.551 6.731 5.503 5.004 0 8.422 8.404 

TRP 13.170 10.659 49.737 40.966 14.530 12.620 14.033 11.091 36.691 13.510 14.194 12.759 14.844 12.139 27.865 14.347 13.473 13.331 0 28.123 

TYR 15.776 16.008 36.461 35.693 21.453 16.232 20.700 16.435 31.161 16.440 18.728 19.154 16.573 17.658 34.926 20.308 18.870 17.073 31.621 0 

Table 11: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antibodies using the CHARMM 

force field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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  A C D E F G H I K L M N P Q R S T V W Y 

A -2 2 -3 -2 2 0 1 0 -2 0 1 1 -1 1 -1 2 1 1 2 2 
C -2 6 -4 -3 -2 -2 1 -3 -2 -3 -3 -2 -2 -2 -2 1 -2 -2 1 -1 
D -3 -3 7 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
E -3 -3 -2 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
F -3 -2 -4 -4 7 -3 -3 -2 -3 -2 -2 -3 -3 -3 -3 -3 -3 -2 -2 -3 
G -1 0 -2 -2 1 0 1 -1 0 -1 1 0 -2 1 2 0 0 -1 2 2 
H -3 -2 -3 -3 -2 -3 7 -2 -2 -2 -2 -2 -3 -3 -2 -3 -3 -2 -2 -2 
I -1 -1 -4 -3 0 -2 -1 5 -2 0 1 -2 -2 0 -1 -1 -2 -1 0 2 
K -3 -2 -3 -3 -2 -3 -2 -3 6 -3 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 
L -2 -1 -3 -3 0 -2 -1 -1 -2 5 1 -2 -2 0 -1 -2 -2 -1 0 1 
M -3 -2 -3 -4 -1 -3 -3 -2 -2 -2 6 -2 -2 -2 -2 -2 -2 -2 -2 1 
N -2 -2 -3 -3 -2 -3 -2 -2 -2 -2 -2 6 -2 -2 -2 -2 -2 -2 -2 -2 
P -1 0 -3 -2 0 -2 -1 -1 -3 -1 0 -2 5 0 -2 -1 -1 -1 1 -1 
Q -2 -2 -3 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 6 -2 -2 -2 -2 -2 -2 
R -3 -3 -4 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 8 -3 -3 -3 -3 -3 
S -2 -2 -3 -3 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -1 6 -2 -2 -2 -2 
T -2 -2 -3 -3 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 6 -2 -2 -2 
V -2 -1 -3 -2 0 -2 -2 0 -1 -1 1 -2 -2 -1 -1 -2 -1 5 0 0 
W -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 
Y -3 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 

Table 12: Matrix showing the effects of the changes in binding energy due to point mutations in 

protein antibodies using the CHARMM force field. The rows indicate the native residue in the 

structure and the columns indicate the mutated residue. 
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 ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 -1.699 -5.272 -4.644 -3.284 -4.678 -4.234 -4.507 -1.868 -4.574 -5.794 -1.798 -6.194 -4.073 0.768 -3.361 -1.344 -2.656 -4.522 -6.816 

CYS -5.043 0.000 -8.137 -5.238 -8.751 -4.394 -4.164 -6.825 -7.985 -4.856 -7.106 -5.026 -4.996 -6.628 -3.169 -4.272 -5.588 -4.397 -7.329 -12.145 

ASP -13.545 -13.453 0.000 -7.546 -12.956 -13.309 -12.740 -13.450 -13.545 -13.253 -13.085 -11.991 -13.908 -11.983 -13.152 -12.812 -13.009 -13.480 -12.545 -13.045 

GLU -12.843 -12.334 -8.110 0.000 -12.498 -13.427 -12.341 -12.490 -12.982 -12.560 -12.934 -11.683 -12.955 -11.647 -12.014 -12.340 -12.885 -13.393 -12.643 -12.479 

PHE -6.777 -6.309 -5.775 -5.137 0.000 -7.211 -4.726 -5.700 -4.934 -6.669 -4.766 -5.640 -6.967 -5.169 -5.417 -6.217 -5.749 -5.554 -6.537 -3.938 

GLY -4.762 -5.183 -3.928 -3.195 -3.179 0.000 -3.478 -3.714 -1.323 -5.052 -3.864 -2.968 -7.622 -0.830 1.672 -3.133 -4.704 -6.371 -2.595 -3.807 

HIS -2.486 -2.299 -0.152 -0.794 -0.827 -2.845 0.000 -2.022 0.096 -1.767 -1.475 -0.120 -2.789 -0.003 -0.162 -1.055 -1.838 -2.489 -1.579 -6.727 

ILE -3.429 -3.130 0.581 1.352 -1.299 -4.054 -1.211 0.000 1.577 -3.495 -1.529 -1.347 -2.892 1.686 3.254 -0.530 -1.576 -2.392 -3.822 -2.320 

LYS -13.125 -12.797 -13.637 -13.848 -13.147 -12.737 -12.752 -13.342 0.000 -13.041 -12.817 -12.747 -12.836 -12.298 -9.242 -11.946 -12.390 -12.694 -12.838 -12.732 

LEU -3.834 -4.435 -3.488 -2.674 -3.915 -4.620 -3.028 -3.996 0.722 0.000 -3.658 -2.213 -4.822 -1.839 -0.451 -3.575 -3.663 -3.436 -3.203 -4.071 

MET -6.329 -4.197 -5.421 -2.545 -3.633 -6.426 -3.890 -2.675 -4.991 -3.808 0.000 -5.476 -4.904 -4.696 -1.487 -3.906 -4.237 -3.632 -3.175 -2.916 

ASN -9.130 -8.419 -8.548 -8.046 -8.465 -9.673 -7.838 -8.832 -6.111 -8.693 -7.991 0.000 -8.702 -6.965 -7.079 -7.377 -7.916 -8.654 -7.795 -8.516 

PRO -6.486 -5.178 -2.653 -1.643 -7.688 -6.398 -9.598 -5.820 -0.974 -5.741 -6.179 -5.273 0.000 -1.760 -3.648 -3.382 -4.228 -5.065 -4.463 -8.062 

GLN -7.131 -6.401 -5.858 -5.137 -5.084 -8.212 -6.269 -6.277 -4.304 -6.761 -5.524 -5.461 -7.177 0.000 -3.857 -5.743 -5.666 -6.262 -4.559 -5.361 

ARG -15.181 -14.209 -15.314 -14.528 -14.107 -15.373 -14.341 -14.639 -11.530 -14.912 -14.367 -14.215 -15.197 -14.009 0.000 -14.488 -14.219 -14.802 -14.272 -14.307 

SER -7.129 -6.070 -6.079 -5.477 -7.277 -7.347 -6.879 -6.952 -4.647 -7.226 -7.081 -4.636 -7.497 -5.232 -3.140 0.000 -4.163 -7.195 -6.543 -7.248 

THR -7.329 -6.201 -5.730 -6.346 -7.232 -8.139 -5.957 -7.021 -3.995 -6.813 -7.189 -4.628 -7.285 -4.785 -3.034 -4.556 0.000 -6.894 -6.774 -6.462 

VAL -5.327 -4.321 -1.187 -4.609 -5.220 -7.109 -4.526 -4.852 0.590 -5.040 -1.698 -2.413 -5.001 -1.810 -0.076 -2.936 -4.022 0.000 -1.581 -3.923 

TRP -9.543 -8.649 -9.015 -8.227 -8.259 -9.831 -8.650 -8.717 -8.191 -9.077 -8.316 -8.226 -9.811 -7.391 -7.289 -9.060 -8.958 -8.929 0.000 -8.664 

TYR -8.943 -8.486 -7.843 -7.245 -7.750 -9.440 -7.281 -8.152 -6.564 -8.262 -7.868 -8.132 -8.907 -7.663 -5.963 -8.466 -8.396 -8.487 -7.356 0.000 

Table 13:Matrix showing the percentage of changes in binding energy due to point mutations in protein antibodies using the Amber force field. The 
rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the positive 
(beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 21.601 75.981 79.171 47.341 22.888 52.763 23.455 25.066 42.155 38.004 42.445 48.050 44.047 72.007 41.877 38.815 17.510 92.921 23.757 

CYS 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

ASP 52.555 55.056 0 44.661 47.910 45.969 45.780 50.035 61.910 48.127 53.736 53.335 51.893 48.255 58.327 46.740 54.277 52.869 50.959 55.980 

GLU 39.079 37.788 32.756 0 37.105 37.762 42.873 42.468 46.122 39.163 46.365 34.790 37.168 39.343 53.327 34.222 38.332 48.512 52.522 44.408 

PHE 17.348 25.876 20.242 28.964 0 17.808 22.641 24.376 52.036 18.315 33.244 11.156 28.270 15.262 43.235 9.862 27.985 23.845 24.782 31.801 

GLY 45.384 40.343 115.861 134.194 49.876 0 64.288 45.891 80.222 46.171 56.749 56.431 57.383 47.324 108.494 55.077 56.597 59.631 64.805 59.922 

HIS 54.058 30.331 35.270 56.501 34.676 60.676 0 43.998 106.624 39.065 67.109 28.997 45.155 35.262 43.329 44.190 51.857 44.453 11.321 83.725 

ILE 12.248 20.935 65.152 31.604 18.195 13.053 31.039 0 47.037 20.425 25.163 10.145 12.845 19.255 40.133 5.622 17.500 16.133 106.481 86.023 

LYS 34.798 35.767 43.641 36.377 34.303 45.789 45.317 31.495 0 37.114 34.741 35.229 44.158 40.726 27.943 41.536 42.012 37.588 44.589 44.955 

LEU 39.577 22.116 50.766 26.095 33.988 43.805 12.526 31.154 78.010 0 33.055 41.042 37.903 58.514 99.578 46.072 38.584 28.115 40.677 30.008 

MET 29.191 27.098 17.802 10.511 14.860 29.439 27.369 17.179 39.307 29.850 0 13.613 34.799 3.782 18.753 9.962 18.981 18.859 15.585 17.637 

ASN 32.937 35.238 48.769 50.269 42.913 36.415 42.506 33.525 48.715 37.956 33.291 0 41.879 37.360 52.415 44.247 43.701 30.630 48.381 40.868 

PRO 31.919 35.307 15.292 35.673 26.105 39.552 44.003 21.983 100.083 29.409 43.096 21.457 0 45.359 72.976 25.955 26.098 22.148 19.030 15.163 

GLN 33.583 38.437 39.103 33.886 22.640 38.521 30.321 33.355 26.049 29.330 24.697 34.150 33.098 0 31.719 23.815 15.438 31.970 36.703 29.949 

ARG 42.253 49.224 44.352 55.458 43.636 41.434 39.677 38.170 41.320 42.225 46.567 43.083 41.702 41.312 0 54.321 46.169 44.524 38.666 41.789 

SER 24.333 19.716 51.171 40.203 29.330 29.077 34.135 36.772 47.588 30.335 29.219 33.830 32.694 38.668 61.374 0 21.811 22.662 46.336 44.146 

THR 43.603 42.135 59.368 62.506 49.391 46.104 44.865 43.567 54.529 34.964 48.892 41.210 44.232 43.261 52.404 37.437 0 36.455 51.988 45.156 

VAL 5.283 30.130 33.469 43.132 50.586 6.228 46.854 52.505 79.215 40.437 21.348 27.018 44.302 31.336 69.414 22.248 29.303 0 13.846 33.793 

TRP 30.426 29.357 38.049 42.979 40.449 28.495 36.518 28.797 51.323 34.901 31.616 23.656 30.752 39.897 47.440 32.132 33.894 36.765 0 52.894 

TYR 35.226 30.127 54.600 49.387 37.652 34.530 40.879 37.151 49.046 34.631 37.014 33.483 30.793 38.635 64.345 35.992 35.552 31.660 45.734 0 

Table 14: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antibodies using the Amber 

force field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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  A C D E F G H I K L M N P Q R S T V W Y 

A 6 -1 -3 -2 -2 -3 -2 -2 -2 -2 -3 -1 -3 -2 1 -2 -1 -2 -2 -3 
C -3 7 -3 -3 -3 -2 -2 -3 -3 -3 -3 -3 -3 -3 -2 -2 -3 -2 -3 -4 
D -4 -4 8 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 
E -4 -4 -3 8 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 
F -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 
G -3 -3 -2 -2 -2 6 -2 -2 -1 -3 -2 -2 -3 -1 1 -2 -3 -3 -2 -2 
H -2 -2 -1 -1 -2 -2 6 -2 1 -2 -1 -2 -3 -2 -2 -2 -2 -2 -2 -3 
I -2 -2 1 1 -1 -2 -1 5 1 -2 -1 -1 -2 1 2 -1 -1 -2 -2 -2 
K -4 -4 -4 -4 -4 -4 -4 -4 8 -4 -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 
L -2 -2 -2 -2 -2 -2 -2 -2 1 6 -2 -2 -3 -2 -1 -2 -2 -2 -2 -2 
M -3 -2 -3 -2 -2 -3 -2 -2 -3 -2 6 -3 -3 -3 -1 -2 -2 -2 -2 -2 
N -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 
P -3 -3 -2 -1 -3 -3 -3 -3 -1 -3 -3 -3 7 -1 -2 -2 -2 -3 -2 -3 
Q -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 -3 -3 -3 7 -2 -3 -3 -3 -2 -3 
R -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 8 -4 -4 -4 -4 -4 
S -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 -3 -2 -3 -3 -2 7 -2 -3 -3 -3 
T -3 -3 -3 -3 -3 -3 -3 -3 -2 -3 -3 -2 -3 -3 -2 -2 7 -3 -3 -3 
V -3 -2 -1 -2 -3 -3 -2 -3 1 -3 -1 -2 -3 -1 0 -2 -2 6 -1 -2 
W -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 
Y -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 

Table 15: Matrix showing the effects of the changes in binding energy due to point mutations in 

protein antibodies using the Amber force field. The rows indicate the native residue in the 

structure and the columns indicate the mutated residue. 
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  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0.000 -0.635 -4.901 -3.539 -1.255 -2.957 -4.082 0.042 -4.354 -1.187 -0.807 -3.273 -4.919 -2.161 -4.624 -3.626 -1.006 0.767 -1.713 -2.062 

CYS -6.324 0.000 -8.977 -5.060 -10.850 -4.087 -10.613 -9.347 -9.415 -9.633 -3.640 -8.600 -8.819 -6.445 -12.369 -8.848 -6.694 -12.200 -9.358 -9.176 

ASP -8.174 -8.279 0.000 -6.407 -7.084 -8.620 -9.168 -7.980 -10.590 -7.854 -7.971 -8.742 -9.232 -7.293 -10.418 -8.654 -8.163 -7.332 -8.023 -8.593 

GLU -8.121 -7.373 -4.657 0.000 -7.276 -9.006 -9.647 -7.076 -10.230 -7.807 -6.894 -7.552 -8.340 -6.639 -9.363 -8.298 -8.792 -7.117 -7.179 -8.343 

PHE -6.652 -6.641 -9.447 -8.061 0.000 -8.315 -7.850 -5.252 -7.831 -5.153 -5.298 -8.038 -8.503 -7.278 -8.258 -8.468 -7.348 -5.309 -6.174 -6.520 

GLY -1.048 -1.063 -4.345 -4.266 -0.858 0.000 -3.331 -2.508 -3.980 -0.374 -0.602 -2.320 -8.729 -2.984 -2.592 -4.085 -3.552 -2.583 0.322 -1.379 

HIS -3.575 -4.394 -8.890 -9.103 -7.385 -7.285 0.000 -2.389 -4.606 -4.736 -6.213 -3.599 -8.066 -3.185 -7.426 -6.013 -6.534 -4.800 -6.019 -4.612 

ILE -6.235 -5.487 -10.292 -10.501 -4.571 -8.029 -8.792 0.000 -9.767 -5.378 -5.261 -8.935 -9.562 -5.109 -10.582 -9.164 -6.525 -4.769 -5.167 -7.301 

LYS -8.532 -8.863 -8.586 -8.901 -8.918 -8.448 -9.228 -7.579 0.000 -7.559 -8.369 -9.463 -8.927 -8.875 -7.262 -9.416 -8.760 -6.079 -8.178 -9.048 

LEU -4.520 -3.880 -7.036 -7.186 -2.796 -6.134 -5.074 -3.043 -7.257 0.000 -3.543 -7.113 -6.920 -5.403 -5.815 -6.784 -5.545 -3.551 -4.527 -4.031 

MET -8.170 -6.984 -14.214 -11.947 -7.872 -12.289 -7.104 -4.999 -8.833 -4.472 0.000 -9.968 -8.692 -8.202 -8.537 -11.172 -7.254 -5.154 -6.642 -9.572 

ASN -5.102 -5.760 -5.980 -7.003 -6.599 -5.289 -6.810 -5.097 -7.750 -5.139 -4.760 0.000 -7.275 -4.955 -6.865 -7.996 -6.020 -6.014 -4.764 -6.531 

PRO -1.642 -0.760 -8.283 -7.866 -2.282 -5.134 -8.248 -4.730 -7.594 -0.093 -2.145 -6.295 0.000 -6.098 -7.122 -6.802 -2.691 -0.366 3.397 0.051 

GLN -6.465 -8.125 -7.707 -6.410 -4.367 -7.255 -6.277 -5.450 -6.709 -4.184 -5.083 -7.040 -8.331 0.000 -5.120 -7.186 -7.324 -5.363 -4.532 -4.008 

ARG -8.540 -8.590 -11.099 -10.660 -7.377 -9.315 -9.275 -8.039 -7.055 -7.912 -7.291 -8.669 -9.572 -8.083 0.000 -9.560 -9.562 -8.192 -7.671 -8.474 

SER -0.435 0.159 -1.664 -2.260 -0.041 -2.064 -2.909 0.740 -2.068 0.670 -0.151 -1.327 -2.781 -0.632 -2.426 0.000 -2.491 -0.051 -0.589 -1.156 

THR -3.810 -3.050 -6.149 -6.440 -2.429 -4.749 -5.613 -2.497 -4.323 -1.909 -2.272 -5.681 -5.490 -4.000 -4.609 -6.405 0.000 -2.994 -4.278 -3.288 

VAL -4.426 -3.881 -7.253 -7.407 -4.131 -6.027 -7.758 -4.187 -10.265 -3.424 -3.646 -6.812 -7.730 -6.158 -7.416 -6.436 -5.541 0.000 -5.016 -6.703 

TRP -9.884 -9.925 -11.438 -11.474 -8.508 -10.289 -11.579 -8.217 -12.676 -9.563 -9.109 -10.795 -11.128 -11.139 -12.451 -11.059 -10.002 -9.248 0.000 -10.096 

TYR -7.246 -6.855 -9.301 -8.721 -5.529 -8.604 -8.091 -5.294 -9.023 -5.919 -6.209 -8.425 -8.929 -7.950 -8.411 -8.733 -8.007 -6.142 -6.737 0.000 

Table 16: Matrix showing the percentage of changes in binding energy due to point mutations in protein antibodies using the Rosetta force field. The 
rows indicate the native residue in the structure and the columns indicate the mutated residue. The pigmentation of the cell indicates the positive 
(beneficial), neutral or negative (detrimental) nature of the mutation ranging from green, yellow to red respectively 



 

86 
 

 

  ALA CYS ASP GLU PHE GLY HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR 

ALA 0 120.211 134.321 115.984 127.362 172.431 95.731 95.254 145.858 121.528 137.948 115.124 142.781 117.299 130.832 138.240 142.335 98.741 143.962 114.844 

CYS 129.039 0 110.972 141.549 73.664 26.663 163.548 169.615 288.114 214.918 113.395 120.040 147.221 83.351 106.637 188.638 190.980 31.405 168.368 91.745 

ASP 118.106 119.586 0 89.982 108.264 119.743 114.455 102.958 109.956 104.725 112.378 114.155 118.115 110.993 106.520 110.585 109.125 117.950 127.680 117.424 

GLU 113.253 120.113 97.306 0 111.278 100.024 122.014 119.884 89.321 105.997 127.288 109.963 103.235 121.143 110.446 110.710 128.243 125.470 145.965 106.116 

PHE 104.724 110.535 119.190 84.793 0 108.765 111.173 93.204 109.093 100.690 90.975 90.188 122.500 104.016 102.842 101.828 107.693 91.477 133.809 119.418 

GLY 79.946 92.810 71.648 82.483 115.055 0 71.751 122.182 142.782 128.495 121.570 103.176 115.467 107.299 142.440 85.769 105.881 117.560 129.699 105.389 

HIS 42.954 143.227 127.656 103.068 141.881 83.047 0 123.000 99.787 162.156 108.930 77.168 214.350 186.592 104.859 77.642 130.971 113.011 126.389 122.613 

ILE 150.784 139.924 125.047 180.994 144.546 170.500 92.995 0 170.772 144.425 141.473 168.546 122.821 188.169 122.179 165.124 146.495 140.627 147.340 175.199 

LYS 83.283 105.475 62.120 83.865 99.317 96.158 81.776 89.361 0 73.096 96.303 88.563 56.103 111.294 86.533 97.752 74.449 82.858 96.896 90.413 

LEU 102.957 127.365 116.252 136.559 112.869 104.810 107.978 128.343 161.019 0 120.603 130.331 125.832 108.569 145.470 143.537 102.361 118.889 109.133 134.923 

MET 61.923 55.645 90.411 183.642 111.651 168.822 51.153 83.467 63.201 36.644 0 136.019 50.401 77.623 45.350 136.561 76.068 50.700 135.284 117.961 

ASN 86.998 92.407 146.882 146.100 162.231 123.477 84.240 122.242 103.249 123.800 128.113 0 135.814 177.475 111.883 78.859 117.498 104.785 171.177 135.466 

PRO 172.707 140.037 300.348 223.668 185.042 190.142 268.718 95.804 154.275 161.216 256.184 178.772 0 206.642 188.492 156.932 191.348 129.211 99.394 56.415 

GLN 60.790 88.731 118.973 133.290 119.876 92.436 110.629 118.586 112.270 77.968 110.982 114.797 89.548 0 65.868 77.883 109.488 65.408 128.772 93.718 

ARG 100.883 101.791 119.739 116.142 106.428 104.212 108.525 114.808 111.691 116.042 126.346 111.771 111.647 102.803 0 104.234 113.314 104.928 113.977 104.175 

SER 106.933 114.858 171.332 189.699 140.882 95.614 114.207 152.285 148.716 140.555 148.312 132.386 123.733 174.079 128.880 0 105.435 124.265 168.389 139.476 

THR 88.780 84.965 95.009 110.344 99.949 82.062 101.718 92.549 96.143 120.853 88.102 99.519 62.243 75.410 105.437 86.381 0 124.797 143.079 95.267 

VAL 94.656 79.025 146.746 143.643 165.546 97.858 109.119 110.409 109.814 71.910 102.775 80.663 123.522 104.922 132.633 79.746 85.602 0 129.154 139.583 

TRP 109.859 99.879 108.449 103.575 136.373 118.218 132.583 123.248 127.445 113.767 108.090 102.816 110.806 112.355 114.458 118.680 100.402 103.343 0 129.538 

TYR 104.129 114.413 134.493 120.435 124.726 118.441 115.994 121.366 122.685 115.520 112.274 109.930 116.135 111.095 129.142 111.469 117.358 115.012 130.798 0 

Table 17: Matrix showing the variances in percentage of changes in binding energy due to point mutations in protein antibodies using the Rosetta 

force field. The rows indicate the native residue in the structure and the columns indicate the mutated residue. 
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 A C D E F G H I K L M N P Q R S T V W Y 

A 6 -1 -3 -2 -1 -2 -2 0 -2 -1 -1 -2 -3 -2 -2 -2 -1 1 -1 -2 
C -3 7 -3 -3 -4 -2 -4 -3 -3 -3 -2 -3 -3 -3 -4 -3 -3 -4 -3 -3 
D -3 -3 7 -3 -3 -3 -3 -3 -4 -3 -3 -3 -3 -3 -4 -3 -3 -3 -3 -3 
E -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
F -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
G -1 -1 -2 -2 -1 6 -2 -2 -2 0 -1 -2 -3 -2 -2 -2 -2 -2 0 -1 
H -2 -2 -3 -3 -3 -3 7 -2 -2 -3 -3 -2 -3 -2 -3 -3 -3 -3 -3 -2 
I -3 -3 -3 -4 -2 -3 -3 7 -3 -3 -3 -3 -3 -3 -4 -3 -3 -3 -3 -3 
K -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 
L -2 -2 -3 -3 -2 -3 -3 -2 -3 7 -2 -3 -3 -3 -3 -3 -3 -2 -2 -2 
M -3 -3 -4 -4 -3 -4 -3 -3 -3 -2 7 -3 -3 -3 -3 -4 -3 -3 -3 -3 
N -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 -3 -3 -3 
P -1 -1 -3 -3 -2 -3 -3 -3 -3 0 -2 -3 6 -3 -3 -3 -2 0 2 0 
Q -3 -3 -3 -3 -2 -3 -3 -3 -3 -2 -3 -3 -3 7 -3 -3 -3 -3 -2 -2 
R -3 -3 -4 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 -3 -3 -3 -3 -3 
S -1 0 -1 -2 0 -2 -2 1 -2 1 0 -1 -2 -1 -2 4 -2 0 -1 -1 
T -2 -2 -3 -3 -2 -3 -3 -2 -2 -2 -2 -3 -3 -2 -2 -3 6 -2 -2 -2 
V -2 -2 -3 -3 -2 -3 -3 -2 -3 -2 -2 -3 -3 -3 -3 -3 -3 7 -3 -3 
W -3 -3 -4 -4 -3 -3 -4 -3 -4 -3 -3 -4 -4 -4 -4 -4 -3 -3 8 -3 
Y -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 7 

Table 18: Matrix showing the effects of the changes in binding energy due to point mutations in 

protein antibodies using the Rosetta force field. The rows indicate the native residue in the structure 

and the columns indicate the mutated residue. 
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 Antigens  Antibodies 
 CHARMM Amber Rosetta  CHARMM Amber Rosetta 

ALA  34 31 70  24 16 45 
CYS  13 12 12  2 1 4 
ASP  380 324 163  346 208 257 
GLU  399 341 173  176 102 108 
PHE  46 49 68  37 34 112 
GLY  66 62 82  59 38 108 
HIS  75 104 98  27 9 23 
ILE  32 34 72  23 16 69 
LYS  371 345 195  111 58 70 
LEU  58 63 108  28 21 73 
MET  19 18 29  10 8 11 
ASN  191 193 88  119 89 108 
PRO  43 53 57  10 7 19 
GLN  134 138 87  42 27 52 
ARG  338 314 171  310 171 213 
SER  152 126 57  228 143 145 
THR  112 103 88  102 61 90 
VAL  32 38 70  11 15 49 
TRP  47 49 48  82 94 182 
TYR  89 71 60  402 264 482 

Table 19: Total count of each type of residue in the epitopes of the antigens and the paratopes of 

the antibodies, for each force fields. 
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Introduction 

Early during the COVID-19 pandemic, it was experimentally observed that the anti-

SARS antibodies, M396[1], S230[2], and 80R[3] failed to bind to the receptor-binding domain 

(RBD) of SARS-CoV-2 [4], despite its high degree of similarity to that of SARS-CoV. A study 

was conducted using computational calculations to understand why this was the case. There were 

two plausible hypotheses for why the mutations from the SARS-CoV RBD to that of SARS-

CoV-2 would disrupt binding: introduction of detrimental interactions or disruption of hotspot 

interactions, where a hotspot is a residue that is essential to antibody-antigen binding [1], [5] – 

[8]. It was revealed that disruption of two or three significant interactions at the interface leads to 

the loss of binding for all three antibodies, i.e., loss of binding was caused by the disruption of 

hotspot interactions rather than the introduction of detrimental contacts. Although these 

hypotheses are not exclusive to one another and it was a priori anticipated that loss of binding 

would occur for both reasons, it was somewhat surprising that the calculations revealed that 

binding was disrupted strictly due to the loss of hotspot interactions for all three antibodies. 

Collectively, the antibodies lost a total of seven hotspot interactions: two each in M396 and S230 

and three in 80R. The disrupted hotspots in M396 are shown in Figure 9, S230 and 80R are 

shown in Figures 10 and 11, respectively. This part of the analysis was done in collaboration 

with colleague, Varun Chauhan. 

This revelation motivated the study of the deleterious effects of antigen point mutations 

in antibody-antigen interactions in general. With protein antigens repeatedly evolving to evade 

antibodies in the immune system, it is important to know how antibody binding is affected by 

antigen mutations. A selected set of antibody-protein complexes was used for this mutational 

analysis study. This study was different from the previous mutational analyses taking a more in-
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depth look into the interactions of all contact residues in the antigenic interfaces. The findings 

from this study can help understand which phenomena contribute towards the loss of binding for 

antibodies with mutated antigens and be directed towards developing strategies to prepare in 

advance for and respond rapidly to future emerging pandemics. 

Methods 

Selecting the Complexes 

A set of complexes were selected from the non-redundant antibody-antigen database [8], 

described in the previous chapters using a proportional stratified probabilistic strategy [9], where 

different metrics that describe the protein-protein interfaces are divided into strata and complexes 

are selected within each stratum, proportional to the size of the stratum. The study is extensive in 

regard to the number of residues selected for mutation. Running mutational analyses for the 

interface residues of all the complexes in the database would take years of computational time. 

Simultaneously, this study is built on understanding interactions on interfaces, thus metrics 

particularly describing the interfaces were used to select complexes for this study. The four 

metrics used were antibody contact residues, antigen contact residues, shape complementarity, 

and buried surface area. 

Contact Residues (CRs) were defined as antibody amino acids with at least one heavy 

atom (i.e., non-hydrogen) within 4.5Å of an antigen heavy atom, as used in previous studies [10], 

[11]. For antibodies, it is important to identify the specific residue positions that create contact 

with the antigen structure, given that they do not necessarily coincide with the residues that 

participate in binding [12]. When using a threshold of 4Å, the frequency distribution of the 

number of CR ranges ~ 18 to 19 for both antibodies and antigens [12]. Different threshold 
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definitions have been used for identifying CRs like 4Å [9] – [13] and 6Å [18], [19]. For this 

study, a threshold of 4.5Å was used to identify the CRs for both the antibodies and the antigens. 

Shape Complementarity (SC) plays a role in complex formation and the intensity of 

binding and is a key factor in protein interactions [20]. SC is a statistical measure of the 

“geometric surface complementarity” of protein-protein interfaces. The two factors that affect 

the measurement are the relative shape of the surfaces with respect to each other and the 

interactions bringing individual elements of the contrasting surfaces into proximity [21]. 

Previous studies on protein-protein interfaces show different classes of proteins have different 

ranges for SC [22], with antibody-antigen interfaces showing poorer shape complementarity than 

any other type of protein-protein interfaces [21]. 

Buried Surface Area (BSA) is an estimated measure of the size of the interface between 

two molecules[23] using the coordinates of the complex, given that areas of the protein surfaces 

are buried upon association[24]. There is also no correlation between BSA and Gibbs free energy 

of dissociation [24], as understood from the study of protein-protein interfaces. Yet, BSA has 

been demonstrated to show correlations to the overall flexibility of the proteins [25]. 

Figures 1 to 4 show the distribution of the antibody CRs, antigen CRs, SC, and BSA for 

the 384 antibody-antigen complexes in the database. The set of complexes used for this study is 

only a subset of the complexes used in the previous study. The vast extent of residues selected 

for each complex for the mutational analysis makes it not feasible to run the mutations for all the 

contact residues in all the 384 complexes; thus, 70 complexes were selected for this study. 

Assessing the Protein-Protein Interactions 
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For the selected complexes, the frequency distribution of the types of amino acids 

interacting at the interfaces was visualized with heat maps. Further, the frequency distributions 

of the amino acids for the best five interactions and the worst three interactions were visualized. 

The study of the antibody-antigen interfaces in Chapter 2 revealed that the best five interactions 

are enough to describe around 50% of the interaction energy and the worst three interactions are 

enough to describe the largest detrimental interactions on the binding interface. Since this work 

is based on the same database, the best five and worst three interactions were observed. 

Mutational Analysis of the Antigen Residues 

The following calculations were independently repeated for the antigen contact residues 

of the selected complexes using three molecular mechanics force fields: CHARMM[26], 

Amber[27], and Rosetta[28], each. For each residue, a mutation of the native amino acid to each 

of the other 19 common amino acids was created, the energy of the mutated complex was 

minimized, and the pairwise interaction energies for the contact residues were calculated. The 

mutations were made using a rotamer library used in previous mutational analysis studies. The 

energies of the interaction of the top five and worst three residues in each complex were 

calculated and compared to the antibody database average. The means of the top five interactions 

of the mutated complexes were compared to the corresponding means in the antibody database 

complexes. The comparisons were done using unpaired t-test analyses. Similar comparisons 

were made for the worst three interactions. 

Results and Discussions 

The question of how antibody interactions are affected by the introduction of mutated 

antigens is the focal point of this project. The 70 complexes selected for this project were 1A14, 

1ADQ, 1AFV, 1DQJ, 1FBI, 1FSK, 1G9M, 1HYS, 1OP9, 1OTS, 1UJ3, 2ADF, 2OZ4, 2P4A, 
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2Q8A, 2YBR, 2YPV, 2ZCH, 3AB0, 3DVG, 3EFF, 3EZJ, 3G04, 3J70, 3J8Z, 3JBQ, 3LD8, 

3NH7, 3NPS, 3SQO, 3V0A, 3W14, 3WKM, 4EDW, 4FFY, 4GRW, 4HGK, 4I18, 4IDJ, 4K4M, 

4K94, 4KRP, 4KUC, 4LEO, 4LSU, 4QNP, 4RWY, 4UV7, 4V1D, 4WEM, 4XMM, 4XMN, 

4XNY, 4YDL, 4YJZ, 4ZS6, 5BV7, 5C6T, 5C7X, 5D72, 5D8J, 5D93, 5DUM, 5F45, 5FV2, 

5HVG, 5IKC, 5K59, 5KVD, and 5KVF.  

Tables 20 and 21 are heat maps of the frequency of the antigen residues interacting with 

antibody residues. The mutational analysis results provide residue-residue interaction 

information. This map was created with the frequency of each interaction of one type of amino 

acid with another. It is to be noted that the size (thus, significance) of the interaction was not a 

factor in this frequency distribution, if there was an interaction, however small, it was counted. 

The frequency of use for the different amino acids in the antigen residues is distributed, but the 

antibody residues show more preferred use of certain amino acids. Similar trends were noticed in 

the analysis of the interfaces in Chapter 2. Antibody interfaces have preferences for Tyrosine, 

Arginine, Serine [29] – [32] , with more polar residues at the interface[33]. 

Tables 3 and 4 are heat maps of the best five interactions at the interfaces. It can be 

observed that interactions between specific types of amino acids being more prevalent in the 

hotspot residues. The most frequent interactions are between Aspartic Acid, Lysine, Arginine, 

Glutamic Acid, Serine, Tyrosine. This demonstrates that specific types of residues are more 

important to binding and contribute the most to binding energy [32]. Indeed, hotspot residues are 

known to rely on certain defined geometric and chemical complementary properties [29]. The 

results from the tables show the relative importance of electrostatic interactions [35], 

hydrophobic interactions [36], hydrogen bonds, and salt bridges [37] at the interfaces.  
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Tables 24 and 25 are heat maps of the worst three interactions at the interfaces. It can be 

observed that specific amino acids are more prone to clashes with each other. This distribution in 

frequency may be more contributed to the non-complementarity of the geometric and chemical 

properties of amino acids at the interfaces. It is observed that similar types of polar residues are 

clashing with each other and residues with larger surface areas are clashing more with each other 

and with other residues. The frequency of these types of residues appearing more on the interface 

may play a role in the distributions seen for both the best and worst interactions. The more they 

appear, the more they are going to interact, in both beneficial or detrimental ways. 

Table 26, 27, and 28 compares the best five interaction energies and the worst three 

interaction energies from the mutational analysis to those of the database. The means of all the 

five best energies in the mutated complexes were compared to the corresponding means in the 

antibody database used in Chapter 2. The unpaired t-test did not show any pattern for the 

comparison of the means. The null hypothesis was that there was no significant difference in the 

means, the hypothesis was accepted and rejected at different levels of interactions. This can be 

interpreted as no one phenomena that works in disrupting binding when the antigen residues 

mutate at the interface. The case of the anti-SARS-CoV antibodies losing binding to the SARS-

CoV-2 RBD was a coincidence. 

This project was built to study the changes in PPIs at the antibody-antigen interfaces with 

point mutations. PPIs are important for all fundamental biological processes and are of much 

higher concern at the mutation enriched pathogen interfaces. Pre-pandemic, our understanding of 

antibody-antigen interactions was that when an antigen mutates, the binding to the antibody was 

lost either due to the loss of hotspot interactions or to the introduction of detrimental interactions. 

When the anti-SARS-CoV antibodies could not bind to the SARS-CoV-2 RBD, the expectation 
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was that both phenomena would be observed at the interface. Yet, the computational study 

revealed that binding was lost solely due to the loss of hotspot interactions. As unexpected as this 

was, it was also reason enough to question whether there is a single phenomenon that occurs 

more often in antibody binding when antigens mutate. 

 The results were consistent with what was understood about antibodies binding to 

mutated antigens, that there is no consistent pattern that is followed in general. The conclusion 

interpreted from the results was that both phenomena worked at different degrees in all cases. 

More precisely, when a specific antigen mutates, the loss of binding to antibodies will need to be 

studied individually, instead of making a bulk assumption. While the conclusions were consistent 

with what was understood pre-pandemic, this project added to deepen our understanding of the 

effect of mutations on binding interfaces and gives more aspects of the interfaces that may need 

to be studied.  

The heat maps that were built from residue-residue interactions show consistency with 

the results from Chapter 2. This was expected as the same force fields and parameters were used, 

and the complexes selected were a subset of the complexes in the same database. Yet, the heat 

maps also give additional ideas to where this project could be further developed. One such idea 

would be to study specific interactions on interfaces and observe their changes with mutations. 

The binding mechanisms of PPIs has more avenues to be studied in terms of therapeutic 

developments. Studying the relationship between the structures and binding mechanisms of PPIs 

is crucial to understanding how mutations can lead to novel pathogens that can evade the 

immune systems.  
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Figure 10: Disrupted Hotspot Interactions in Antibody M396 with the SARS-CoV-2 RBD. 

Calculations revealed that M396 losses binding to the RBD of SARS-CoV-2 due to the 

disruption of two hotspot interactions. In all panels, the SARS-CoV RBD is shown in green, the 

SARS-CoV-2 RBD is shown in orange, and the M396 antibody is shown in cyan. Antibody 

residues are numbered according to the International Immunogenetics Information System 

(IMGT®) numbering scheme. A shows how mutation K403R orients the oxygen atoms of D405 

away from R408, causing R408 to make multiple hydrogen bonds with Q414 and leading to the 

loss of a salt bridge with light chain. In addition, B illustrates how mutation I503V weakens the 

strong hydrophobic interaction with the light chain W107. 
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Figure 11: Disrupted Hotspot Interactions in Antibody S230 with the SARS-CoV-2 RBD. 

Calculations revealed that S230 losses binding to the RBD of SARS-CoV-2 due to the disruption 

of two hotspot interactions. In all panels, the SARS-CoV RBD is shown in green, the SARS-

CoV-2 RBD is shown in orange, and the S230 antibody is shown in cyan. Antibody residues are 

numbered according to the International Immunogenetics Information System (IMGT®) 

numbering scheme. In A, mutation K478T breaks the salt bridge with H: 69D. In addition, B 

illustrates how mutation K397N leads to the loss of a salt bridge with light chain D34. 
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Figure 12: Disrupted Hotspot Interactions in Antibody 80R with the SARS-CoV-2 RBD. 

Calculations revealed that 80R loses binding to the SARS-CoV-2 RBD due to the disruption of 

three hotspot interactions. In all panels, the SARS-CoV RBD is shown in green, the SARS-CoV-

2 RBD is shown in orange, and the 80R antibody is shown in cyan. In A, mutation D494S breaks 

the salt bridge with L: R36. B shows how mutation Y498Q removes the strong π-π interaction 

with H: Y113. Finally, C illustrates how mutation R439N leads to the loss of a salt bridge with 
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Figure 13: Distribution of the antibody contact residues in all the structures. The mean was 31.26 

with a standard deviation of 7.91 

Figure 14: Distribution of the antigen contact residues in all the structures. The mean was 30.24 

with a standard deviation of 9.42. 
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Figure 16: Distribution of the Buried Surface Area in all the structures. The mean was 1859.44 

with a standard deviation of 495.25 

Figure 15: Distribution of the shape complementarity in all the structures. The mean was 0.672 

with a standard deviation of 0.07. 
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Table 20: Heat Map showing all interactions of antibody-antigen interfaces in the selected complexes with the CHARMM force field. 

The rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no interactions to a 

high number of interactions from white to navy blue. The amino acids most frequently interacting for antibody residues are Tyrosine, 

Serine, Arginine, Aspartic Acid, and Glycine. There are no distinct amino acids that are frequently interacting in the antigen residues. 
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Table 21: Heat Map showing all interactions of antibody-antigen interfaces in the selected complexes with Rosetta force field. The 

rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no interactions to a high 

number of interactions from white to navy blue. The amino acids most frequently interacting for antibody residues are Tyrosine, 

Serine, Arginine, Asparagine, and Glycine. There are no distinct amino acids that are frequently interacting in the antigen residues. 
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Table 22: Heat Map showing the best five interactions of antibody-antigen interfaces in the selected complexes with a CHARMM 

force field. The rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no 

interactions to a high number of interactions from white to navy blue. The most prominent interactions are between Aspartic Acid, 

Glutamic Acid, Lysine, Arginine, Serine, and Tyrosine. 
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Table 23: Heat Map showing the best five interactions of antibody-antigen interfaces in the selected complexes with Rosetta force 

field. The rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no interactions 

to a high number of interactions from white to navy blue. The most prominent interactions are between Aspartic Acid, Glutamic Acid, 

Lysine, Arginine, and Tyrosine. 
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Table 24: Heat Map showing the worst three interactions of antibody-antigen interfaces in the selected complexes with the CHARMM 

force field. The rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no 

interactions to a high number of interactions from white to navy blue. The worst clashes are between Aspartic Acid, Glutamic Acid, 

Lysine, Arginine, and Tyrosine. 
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Table 25: Heat Map showing the worst three interactions of antibody-antigen interfaces in the selected complexes with Rosetta force 

field. The rows are the antigen residues and the columns are antibody residues. The pigmentation of the cell indicates no interactions 

to high number of interactions from white to navy blue. The worst clashes are between Aspartic Acid, Glutamic Acid, Lysine, 

Arginine, Serine, and Tyrosine. 
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Table 26: Mutational analysis results compared to the corresponding values in the antibody-antigen database for the CHARMM force 

field. The top five interaction energies and the worst three interactions are compared using unpaired t-test analysis. The value of 

significance (α) is 0.05 for the test and the null hypothesis (H0) is that there is no significant difference in the means. The sample size 

for the antibody database is 384 and for the mutational average is 42,200. 

 

  

   t-Test Analysis 

 Antibody Database 
Average 

Mutational Analysis 
Average 

t-Statistic t-Critical p-value 

Top five 
interaction 

energies 
(kcal/mol) 

-41.75 ± 13.63 -42.41 ± 13.08 -0.956 1.966 0.340 (H0 is not rejected) 

-30.81 ± 12.60 -32.41 ± 12.59 -2.468 1.966 0.014 (H0 is rejected) 

-24.12 ± 10.50 -26.03 ± 11.64 -3.533 1.966 4.600E-04 (H0 is rejected) 

-20.28 ± 9.41 -21.70 ± 10.40 -2.933 1.966 0.004 (H0 is rejected) 

-16.97 ± 7.80 -18.30 ± 8.94 -3.313 1.966 0.001 (H0 is rejected) 

Worst 
three 

interaction 
energies 

(kcal/mol) 

5.34 ± 4.64 4.38 ± 3.50 -1.436 1.966 0.152 (H0 is not rejected) 

3.12 ± 2.68 2.45 ± 2.78 -2.766 1.966 0.006 (H0 is rejected) 

2.18 ± 1.91 1.48 ± 1.80 -1.337 1.966 0.182 (H0 is not rejected) 
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Table 27: Mutational analysis results compared to the corresponding values in the antibody-antigen database for the Amber force 

field. The top five interaction energies and the worst three interactions are compared using unpaired t-test analysis. The value of 

significance (α) is 0.05 for the test and the null hypothesis (H0) is that there is no significant difference between the two means. The 

sample size for the antibody database is 384 and for the mutational average is 42,200. 

  

   t-Test Analysis 

 Antibody Database 
Average 

Mutational Analysis 
Average 

t-Statistic t-Critical p-value 

Top five 
interaction 

energies 
(kcal/mol) 

-13.99 ± 4.27 -14.24 ± 4.51 -1.118 1.966 0.264 (H0 is not rejected) 

-10.62 ± 3.79 -10.50 ± 3.88 0.646 1.966 0.519 (H0 is not rejected) 

-8.50 ± 3.20 -8.73 ± 3.54 -1.404 1.966 0.161 (H0 is not rejected) 

-7.24 ± 2.82 -7.62 ± 3.29 -2.644 1.966 0.009 (H0 is rejected) 

-6.17 ± 2.40 -6.35 ± 2.64 -1.446 1.966 0.149 (H0 is not rejected) 

Worst 
three 

interaction 
energies 

(kcal/mol) 

1.41 ± 1.33 1.73 ± 1.66 4.420 1.966 1.281E-05 (H0 is rejected) 

0.83 ± 0.78 1.03 ± 1.25 4.473 1.966 1.012E-05 (H0 is rejected) 

0.58 ± 0.51 0.70 ± 0.95 3.627 1.966 3.243E-04 (H0 is rejected) 
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Table 28 Mutational analysis results compared to the corresponding values in the antibody-antigen database for the Rosetta force field. 

The top five interaction energies and the worst three interactions are compared using unpaired t-test analysis. The value of significance 

(α) is 0.05 for the test and the null hypothesis (H0) is that there is no significant difference between the two means. The sample size for 

the antibody database is 384 and for the mutational average is 42,200. 

  

   t-Test Analysis 

 Antibody Database 
Average 

Mutational Analysis 
Average 

t-Statistic t-Critical p-value 

Top five 
interaction 

energies 
(kcal/mol) 

-4.45 ± 0.83 -4.35 ± 0.96 2.211 1.966 0.028 (H0 is rejected) 

-3.77 ± 0.71 -3.68 ± 0.81 2.513 1.966 0.012 (H0 is rejected) 

-2.91 ± 0.61 -3.26 ± 0.71 1.562 1.966 0.119 (H0 is not rejected) 

-2.98 ± 0.56 -2.91 ± 0.61 2.512 1.966 0.012 (H0 is rejected) 

-2.73 ± 0.52 -2.66 ± 0.58 2.562 1.966 0.010 (H0 is rejected) 

Worst 
three 

interaction 
energies 

(kcal/mol) 

0.91 ± 0.54 1.15 ± 0.64 2.420 1.966 0.128 (H0 is not rejected) 

0.60 ± 0.32 0.87 ± 0.56 2.473 1.966 0.015 (H0 is rejected) 

0.45 ± 0.25 0.26 ± 0.23 3.270 1.966 0.243 (H0 is not rejected) 
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Chapter 5 The Effects of SARS-CoV-2 Spike Protein Mutations on the Immune System 
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Introduction 

SARS-CoV-2 has proved to be a fast-mutating virus and further changes to its proteins 

are likely. Predicting how the immune system would be able to protect the human body when 

newer variants evolve is a key step to “getting ourselves ahead of the game”. In the previous 

three chapters, the effects of mutations on protein binding and interactions for antibodies have 

been studied. Mutations in antigens affect other proteins in the immune system beyond 

antibodies. This chapter studies the effects of viral mutations on the binding for other therapeutic 

proteins in the immune system.  

Antigens that are circulating in the bloodstream are processed by antigen presenting cells 

(APCs) into short peptides and presented to the appropriate receptors. APCs have specific Major 

histocompatibility complex (MHC) molecules that interact with T cells [1]. MHC proteins, also 

known as human leukocyte antigens (HLA), are glycoproteins that bind with peptides (epitopes) 

derived from pathogen proteins and present them for inspection by T-cells. Epitope recognition 

by T cells is fundamental to the adaptive immune system for the host to identify and respond to 

antigens [2]. There are two classes of MHC proteins: Class I and Class II. MHC Class I 

molecules bind to CD8+ cytotoxic T cells and MHC Class II bind to CD4+ helper T cells. MHC 

molecules are known to be polymorphic thus binding to different connectors. MHC Class I 

proteins are encoded by three loci: HLA-A, HLA-B, and HLA-C. MHC Class II proteins also are 

encoded by three loci: HLA-DR, HLA-DQ, and HLA-DP. The peptide binding site of Class I 

proteins has a closed cleft allowing only short peptides (8 to 11 residues) to bind in an extended 

conformation. In contrast, the cleft of Class II proteins is open-ended, allowing much longer 

peptides to bind, with the caveat that only 9 residues can occupy the site. The SARS-CoV-2 viral 
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peptides show more interaction with helper T cells than cytotoxic T cells [3], making MHC Class 

II proteins an object of interest in the therapeutic developments against the virus. 

Apart from T-cells, another important part of the immune system is B-cells. Similar to T-

cells, B-cells have receptors that will connect to an antigen shape and each B cell produces a 

single species of antibody with a unique antigen-binding site. B-cells can connect to antigens 

right on the surface of the invading virus or bacteria. The B-cell epitopes are generally 

discontinuous, and any residue capable of being in contact with an antibody can be a part of a B-

cell epitope. The types of B cells in COVID patients are naive non-isotype-switch, memory, and 

antibody-secreting [3].  

The structure of the Spike protein is vital for understanding the interaction between the 

host cell and SARS-CoV-2. The Spike protein is made up of two subunits, S1 and S2, that 

control the binding to and fusion into the cell, respectively[4]. The S1 subunit, shown in Figure 

16, controls the binding to the host cell receptors. This portion of the Spike protein has been 

targeted for vaccine and targeted drug design[5]. The S1 subunit is split into three main parts: 

signal peptide (SP), N terminal domain (NTD), and the receptor-binding domain (RBD). The SP 

is a short hydrophobic peptide that transport the protein to the membrane destination[6]. The 

RBD binds to ACE2 receptor on the host cells; this binding triggers the viral fusion event in the 

S2 subunit. The S2 subunit contains the fusion peptides (FP), heptapeptide repeat domains (HR-1 

and HR-2), transmembrane (TM) domain, and cytoplasmic tail (CT)[6]. Entry into the cell is 

initiated by three cleavage events. The multiple cleavage points increase infectability due to the 

increased probability of being cleaved. The two primary cleavage events are splitting the S1 and 

S2 subunit and cleaving S2 into Fusion Peptide (FP) and S2’[7]. The cleaving of S1 and S2 is 
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necessary for viral fusion to occur. The cleavage point that is unique to SARS-CoV-2 is an 

additional point between the S1 and S2 subunit[5]. 

Understanding the effect of mutations on the B-cell and T-cell epitopes can provide 

knowledge on how the different variants of the virus evade the immune system. In this chapter, a 

mutational analysis is made on the changes in binding of peptides in the MHC Class II binding 

grooves. Simultaneously, a relationship between the HLA allele distribution in ethnicities to the 

binding property changes of the MHC Class II proteins to the mutated Spike protein is built. To 

study the B-cell epitopes, the Solvent Accessible Surface Area (SASA) of the residues in the 

Spike protein is used. Residues most capable of disrupting B-cell binding can be identified using 

their SASA, with the assumption that any residue with an exposed surface can be part of a B-cell 

epitope. This project is unique in relating the existing variant mutations with immune system 

evasion in different ethnicities predicting how further mutations will affect different ethnicities. 

Methods 

RBD Structure Prediction 

The computational approaches utilized here require atomic level models of the SARS-

CoV-2 Spike protein. The structure of the spike protein was obtained from PDB 6XEY [8]. The 

FASTA sequence was complete and was used for the MHC Class II binding peptide prediction in 

the next step. In contrast, the protein structure was not complete, with residues 1-26, 177-186, 

621-639, 677-689, 829-853, and 1147-1288 missing. The protein structure prediction software i-

Tasser [9] was used to complete the structure of the Spike protein. The complete structure of the 

single strand of the Spike protein was converted to a trimer using UCSF Chimera [10]. 

MHC Class II Binding Peptide Prediction 
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Numerous bioinformatics tools are available to generate T-cell peptide binding 

predictions, including aRB [11], SMM-align [12], ProPred [13], MHCPred [14], SVRMHC [15], 

and others. A prior study [16] compared the performance of these tools and identified ProPred as 

the best overall tool. Therefore, it was used in this study. ProPred is a web tool for predicting the 

promiscuous MHC class II binding regions for several HLA-DR alleles. ProPred is based on 

TEPITOPE’s pocket profile [17] and has one of the broadest coverages with 51 types of alleles. 

The TEPITOPE matrices are well-reputed for their predictive power . In contrast, ProPred only 

returns the top 10% of the predicted binders [18]. 

ProPred uses FASTA sequences as the input, so the mutations were made to the FASTA 

sequence of the Spike protein. Every residue in the protein was mutated to the 19 other common 

amino acids and each of the mutated protein sequences was evaluated with ProPred to identify 

the predicted binding proteins for each allele. The Docker container, GPSRdocker 

(http://webs.iiitd.edu.in/gpsrdocker/), was used to run the predictions in parallel. The binding 

prediction calculations generate scores for each nonamer in the input sequence and rank the 

peptides based on the binding scores. There is a maximum possible binding score for each of the 

51 alleles, ranging from 11.6 to 6. 

HLA Allele Distribution Analysis 

HLA allele frequency was determined using the Allele Frequency Net Database [19]. The 

database has information, like allele frequency and sample size, for different alleles in different 

populations around the world. The database is built from literature, proceedings of International 

Histocompatibility Workshop (IHW), and unpublished data. The data was collected for 50 of the 

51 alleles in the ProPred predictions, because there was not enough information regarding the 

allele DRB5*01:05 in the database for the required calculations. The allele frequency (AF) and 
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sample size (n) for a population in the database was used to calculate the number of copies of the 

allele for that data set, shown in Equation 1. When data was not available for allele frequency, 

Hardy-Weinberg proportions was able to calculate the allele frequency using the phenotype 

frequency (PF), i.e., percent of individuals that carry the allele, shown in Equation 2. These 

calculations were provided from the Allele Frequency Net Database. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙𝑒𝑙𝑒𝑠 = 2 ∗ 𝑛 ∗ 𝐴𝐹             [1] 

𝐴𝐹 = 1 − √1 − 𝑃𝐹                                                      [2] 

Ethnicity was determined using population data given from the source, by comparing 

original data against the population to ethnicity data. The number of copies of the allele was 

determined for each population data point was determine to distribution of the ethnicities and 

alleles in different populations. It must be noted that ethnicities and alleles have separate 

distribution data for the populations. To understand the overall distribution of HLA alleles with 

respect to the ethnicities, the percentage of an ethnicity in a specific allele and the percentage of 

an allele in a specific ethnicity were both determined. This section of the project was done in 

collaboration with a colleague, Mercedes Haley. 

Binding Peptide Mutational Analysis 

For each of the mutated protein sequences, the predicted binding peptides were compared 

to that of the wild type Spike protein. When a FASTA sequence is used as an input in ProPred, 

the prediction calculations are returned as sets of nonamers with binding scores comparative to 

the highest score for the alleles. These nonamers are referred as the binders or binging peptides, 

as these nine amino acids are referred as the core of the peptides that fit in the binding pockets. 

The addition or removal of possible binders and their possible effect is calculated as a percentage 
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of the highest possible score of any binder to the allele. Using the percentage of the highest 

possible score for each allele to define the binding capacity of the peptide for that allele, the 

overall effect of that single mutation on the binding capacity of the MHC Class II proteins from 

that allele was determined. For example, loss of a binder with a very high prediction score with 

simultaneous addition of a binder with a very low prediction score would be considered an 

overall loss in the binding capacity of the MHC Class II proteins from that allele. 

Analysis of Mutations in the Spike Protein 

Following the identification of the mutations that were predicted to change the binding 

capacity of the MHC Class II proteins, the Spike mutations that appear in the current variants 

were identified. The information on the distribution of each variant in the different countries was 

derived from the COV Lineage website (at https://cov-

lineages.org/lineage.html?lineage=B.1.1.7) and their references[14] – [16]. In addition, the 

distribution of ethnicity for each allele and the distribution of alleles for each ethnicity was 

assorted. The two sets of data were compared to understand how the current variants may have 

evaded the immune system in specific ethnicities affecting the rate of infection of the virus. The 

percentage change in binding may be the summation of the percentage binding score of two or 

more peptides that were lost due to the mutation. The mutations that were predicted to cause a 

loss of binding were categorized based on the percentage of the binding score of the lost peptide 

to the highest possible score for each allele. 

Solvent Accessible Surface Area (SASA) Calculation 

SASA is a geometric measure to determine the exposure of the residues in a protein 

structure to the solvent. This measure can be an indicator of the capability of individual residues 
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in the Spike protein to interact with antibodies. The SASA of the residues of the Spike protein 

must be determined with the protein trimer, instead of a single chain. The Spike protein is a 

trimer in the viral structure and the interactions of the residues in each chain affect the exposed 

surface area for each residue in each chain. The SASA calculation was carried out using the 

previously developed principles (https://www.ccp4.ac.uk/html/areaimol.html) [23], [24].  

Results and Discussions 

An important consideration is that while a single mutation may have minimal impact on 

protein function, accumulated mutations are likely to have significant impact on the function of 

the protein. Understanding the effects of SARS-CoV-2 mutations on the efficacy of vaccines and 

immune responses is imperative to the development of therapeutic measures against the fast-

evolving virus. The most recent variant of concern (VOC) detected in November 2021, Omicron, 

has more mutations in the Spike protein of the virus than any of the previous VOCs. Identifying 

structural and functional impacts of the different mutations in the variants are vital aspects to 

exploring how these mutations affect the pathogen’s ability to evade the immune system, infect 

host cells, and transfer between cells. Tables 32 to 36 show the results from the different 

analyses carried out for each VOCs. Each table shows the percentages of the changes in binding 

predicted for the mutations in each variant for each allele, and the distribution of the alleles in the 

different ethnicities. Each of these tables also show the domain position of the mutation on the 

Spike protein. 

Starting from early 2021, the Delta variant was able to spread in 98 countries in a few 

months, with a high rate of infectivity, becoming the dominant variant in 12 countries for the 

year. The Delta variant has 15 mutations in the Spike protein while the Alpha variant has 13 

mutations in the Spike protein. The Delta variant also showed high rates of re-infection in 
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convalescent patients and infection in vaccinated individuals [25]. Tables 32 and 35 show that 

the position of the mutations in the Delta variant were more distributed in the NTD than in the 

RBD as compared to the Alpha variant. The spread of the Delta variant is claimed to be 

associated with antibody evasion for both non-RBD (e.g., NTD) and RBD epitopes of the Spike 

protein [26]. The role of the NTD is not completely understood, yet there has been evidence that 

shows the NTD and RBD have a critical role due to the appearance of neutralizing antibodies 

binding to both the NTD and RBD [27] – [29], thereby making NTD an important target in 

therapeutic techniques [30]. The latest VOC of 2021, Omicron, has 30 mutations in the Spike 

protein and Table 36 shows the mutations distributed in parts of both the S1 and S2 subunits.  

The binding of the RBD to the ACE-2 receptor triggers the viral fusion event in the S2 

subunit. HR-1 and HR-2 in the S2 subunit interact to create a viral envelope that allows the virus 

to enter the host cell and the cysteine-rich portion and N-terminal of S2 creates an anchor to the 

target cell when cell-to-cell infection occurs [6]. There is potential for drug target treatments 

aimed at HR-1 and HR-2 to prevent viral fusion into the cell [31]. Figure 17 shows the 

distribution of the mutations in the Spike protein between Alpha, Delta, and Omicron variants. In 

the figure, a change in distribution of the mutations on the Spike protein is observed from the 

Alpha, Delta, to the Omicron variant. With change in the distribution of the mutations in the 

Spike protein between the variants, more mutations are observed in the S2 subunit aiding in viral 

transmissibility in Omicron than the previous variants. This fact is concerning as Omicron 

variant may presumably be more transmissible than the previous variants. 

Table 29 shows the distribution of alleles in each ethnicity, while Table 30 shows the 

distribution of the ethnicities for each allele. The most prevalent ethnicities throughout all the 

alleles are Asian, Black, Caucasoid, Hispanic, and Oriental. The Arab ethnicity is most prevalent 
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in alleles DRB1*03:01 and DRB1*13:21, while the Amerindian group is most prevalent in the 

DRB1*04:21 allele. The most prominent (or top) alleles, defined by their prevalence in the top 

50% of each ethnicity, as shown in Table 3, are DRB1*07:01 and DRB1*15:01. Some alleles 

appear in only one ethnicity, for example, DRB1*01:02 in Berber and DRB1*04:02 in Jew. 

The Alpha variant (B.1.1.7) first appeared in the United Kingdom, where the more 

widely found ethnicities with DRB alleles are Caucasoid and Mixed [19]. The Caucasoid and 

Mixed groups have the top alleles of DRB1*03:01, DRB1*07:01, and DRB1*15:01. Jews are 

also a commonly found ethnicity in United Kingdom and their top alleles are DRB1*04:02, 

DRB1*07:01, and DRB1*11:04. The mutation D1118H show detrimental changes in the binding 

capacity against the DRB1*03:01 allele. However, the mutation, D1118H, shows favorable 

changes towards the DRB1*04:02, DRB1*04:05, DRB1*13:01, and DRB1*13:02 alleles. The 

mutation S494P shows detrimental changes against the DRB1*07:01 and DRB1*15:01 alleles 

and the mutation A570D for the DRB1*15:02 allele. The countries with the highest number of 

cases of the Alpha variant besides the United Kingdom were United States, Germany, Sweden, 

and Denmark. These countries are predominantly Caucasoids and their alleles show detrimental 

changes in binding against the mutations in the Alpha variant. The DRB5*01:01 allele was the 

only allele in the Caucasoid group that had no detrimental effects in binding. The other alleles 

did have beneficial changes on some mutation points.  

The Beta variant originated in South Africa, where the commonly found ethnicities with 

DRB alleles are Black and Caucasoid. None of these ethnicities showed adverse changes in 

binding for the top alleles. The countries that were most affected besides South Africa were 

Philippines, United States, Sweden, and Germany. The ethnicities commonly found in these 

countries are Austronesian, Caucasoid, and Oriental ethnicities. Only Austronesian group could 
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have suffered from an adverse change from the mutation A570D against the DRB1*15:02 allele. 

The Beta variant was less severe than other variants, likely due to the lack of immune-evading 

mutations. 

 The Gamma variant first appeared in Japan and Brazil. The most common ethnic groups 

in Japan are Oriental and Caucasoid, while in Brazil, the common groups are Amerindian, 

Caucasoid, Mixed and Mestizo. The most adverse changes possible from the mutation R190S 

against the DRB1*15:01 allele in the ethnic groups from the two locations. The Mestizo ethnic 

group may have possibly been affected by the mutation N501Y against the DRB1*04:04 allele. 

The other countries affected by this variant had the same ethnicities as the countries of origin.  

The Delta variant showed the most adverse changes among the ethnicity groups in the 

region of origin, India, where Asian and Caucasoid ethnicities are more commonly found with 

DRB alleles. The top alleles for these ethnic groups are DRB1*15:01, DRB1*07:01, 

DRB1*15:02, DRB1*3:01, and DRB1*01:01. The top alleles for each of these ethnicities had the 

most adverse changes from the mutations. Significant detrimental changes were observed by 

several mutations in this variant, the mutation L452R against DRB1*11:04, the mutation R158G 

against both the DRB1*15:01 and the DRB1*15:02 alleles, the mutations T19R and T95I against 

the DRB1*07:01 allele, and the mutation T95I against the DRB1*04:04 allele. The countries 

most effected besides the India were United States, United Kingdom, Denmark, and Germany. 

The most common ethnicities in all the countries are Caucasoid, Oriental, Asian, and Mixed 

listed, all of whom are affected by these mutations to some scale. Apart from these countries, the 

Delta variant affected Middle Eastern countries and the Southeast Asian countries. Arab, Kurd, 

and Oriental ethnic groups were all affected by the mutations in the Delta variant. 
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Omicron (B.1.1.529) is the most recent VOC that originated in South Africa. The Black 

and Caucasoid ethnic groups appear in South Africa, with the Black ethnic group appearing more 

frequently. The top alleles for this ethnic group are DRB5*01:01, DRB1*07:01, DRB1*11:01, 

and DRB1*13:02. The Black ethnic group is the only group where the DRB1*13:02 appears as a 

prominent allele, for which the mutations on the RBD show adverse changes while the mutations 

on the S2 subunit show favorable changes. The DRB1*07:01 and DRB5*01:01 alleles appear in 

both the Black and Caucasoid groups. The mutation Y505H shows extreme detrimental effects 

against the DRB1*07:01 allele, with the loss of two prominent binders; such extreme effects 

have not been seen in any of the previous variants. The countries most affected by Omicron, 

besides South Africa, were Botswana, United States, Nepal, and Mexico. These countries 

predominantly have Black, Caucasoid, and Amerindian ethnicities, with the DRB1*07:01 and 

DRB5*01:05 alleles commonly present in these ethnicities. The mutations in the Omicron 

variant show adverse changes against the DRB1*03:01, DRB1*04:01, DRB1*04:04, 

DRB1*04:05, DRB1*13:02, DRB1*07:01, DRB1*15:01, DRB1*15:02, and DRB5*01:01 

alleles. This could mean that there are more vulnerable ethnicities against this new variant, 

specifically groups that do not share a diverse range of alleles, like the Mestizo and Oriental 

ethnicities.  

Apart from looking at the previous and current VOCs, mutations that are predicted to 

cause adverse interactions in the binding pockets were identified. Table 37 shows the mutations 

causing extreme changes in binding for almost all the alleles. For all the positions shown in the 

table, the mutation of either an aliphatic or a basic residue to aspartic acid are observed. 

Introducing a large negative charge in the place of a relatively uncharged or positively charged 

sidechain would be disruptive to any protein binding, and these mutations could be disruptive for 
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the activities of the Spike protein as well. One of the important Spike protein mutations in the 

Omicron variant is Y505H, one of the 12 mutations in the 505 position that were predicted to 

cause adverse effects on MHC Class II protein binding. The mutation Y505H shows extreme 

adverse changes in binding for some alleles with the loss of two binding peptides. This position 

was known to be one of the hotspot residues for the spike protein [32], [33], and not expected to 

mutate with regards to protein stability and binding to ACE-2. The mutation Y505H was 

previously proven to increase stability but decrease binding capacity to ACE-2 [34], [35]. Thus, 

the predicted changes of mutation Y505H and the previous studies are evidence that the viral 

evolution may be directed by the virus’s ability to evade the immune system. Beyond the 

benefits of immune evasion, there were mutations observed that proved other evolutionary 

benefits such as the mutation D614G, which was observed in all the previous and current VOCs, 

is known to enhance viral replication in airway tissue [36].  

The predictions emphasize the importance of understanding the impact of future 

mutations on the human immune. The mutations that are predicted to have extreme adverse 

effects on binding in the same positions may need to be scrutinized further to assume 

consequences of their appearance in future mutants. Table 37 shows the mutations causing 

extreme changes in binding for almost all the alleles. The mutations showing such extreme 

changes are all in the S1 subunit, with only two of them in the RBD. Table 38 shows the 

predicted changes from the mutations in the position Y505 compared to the predicted changes 

from the mutations in the position L455.  

Figure 18 shows the surface exposed residues based on their SASA. The hypothesis is 

that any residue that is exposed to the surface, however small that exposure may be, can make an 

interaction with other proteins, thus, can contribute to binding to antibodies. This hypothesis was 
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made from examples of antibody-antigen structures found in nature and is a conservative 

assumption to err on the side of identifying escape mutations. Figure 19 shows an example of 

PDB 1BZQ, where a Tyrosine in the antigen makes a hydrogen bond with another Tyrosine in 

the antibody despite the low exposed surface area of the Tyrosine in the antigen. Mutation of any 

of the exposed residues can influence B-cell epitopes, thus making them more capable of 

evading antibodies. Furthermore, upon observation of Figure 3, more intermediately exposed 

residues can be identified, which can mean that they have a higher probability of being part of 

the B-cell epitopes in the Spike protein. Comparing Figure 17 and Figure 18, the distribution of 

the mutations in the variants is evidence that natural selection is directed towards changing B-

cell and T-cell epitopes, and thus evading the immune system. The mutations in the position 454 

and 455 show adverse changes in binding peptides for the MHC Class II peptides as mentioned 

in the results, while they are also included in the larger set of residues that have a solvent 

exposure below 50 squared Å. This information is enough to require the monitoring of any 

mutations observed in these two positions in future variants. 

To validate the ProPred predictions, results from other prediction tools that have worked 

on the mutations observed in the variants. T-CoV is a comprehensive tool to predict binding for 

different epitopes to the mutations of SARS-CoV-2[37]. This tool uses NetMHCpan-4.1 

(available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/) and NetMHCIIpan-4.0 (available 

at http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/) to predict binding affinity. T-CoV also 

found that the mutation D1118H in the Alpha variant reduced the T cell response for HLA-

DRB1*03:01 allele. One of the most severe mutations for the Omicron variant is Y505H. Our 

results showed that there was loss of binding peptides at positions 496 and 504. The binder 

sequence that includes both positions is SFRPTYGVGHQPYRVVV, the same binder for which 
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T-CoV showed weak binding to epitopes in the Omicron variant. T-CoV only identifies the 

binders using the prediction method, it does not work on relating the binding changes to the 

ethnic distribution in regions. 

Analysis of the T cell epitopes from convalescent Covid-19 patients have shown that 

around 30% of the epitopes target the Spike protein, the rest of them target different regions of 

the virus [38], making Spike protein the main target of neutralizing antibodies. Immune evasion 

is a major factor for viral mutations. Attempting to evade the immune system, the virus will 

mutate the outer-most region, the Spike protein, more than the other proteins in the structure. 

Therefore, the Spike protein mutations were the focus of this study. The Omicron variant shows 

multiple mutations in the other proteins of the virus and one further path for this project may be 

to study the mutations on the other outer proteins of the virus.  

The SARS-CoV-2 virus has caused devastating effects to millions of lives in a span of a 

few years. Since early 2020, countries with less developed healthcare sectors like India, Brazil, 

Peru, and Mexico have seen thousands of deaths each day. Countries with more developed 

healthcare sectors, like the USA, the UK, Italy, did not suffer any less. Even with a worldwide 

vaccination regime, the virus just mutated to better evade the immune system. A question to be 

asked is if the vaccines can generate the same level of protection for everyone around the world. 

It is understood that the HLA allele distribution is not the same for people of different ethnic 

backgrounds. One goal of this project was to bring this information forward, that different 

mutations in the Spike protein do not affect different people in the same way. There are more 

vulnerable ethnicities that may require targeted or specified vaccines than others.  

There is a change in the distribution of the mutations in the Spike protein between the 

variants from Alpha to Delta to Omicron, there are more mutations in the S2 subunit in Omicron 
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than before. The S2 subunit works with host cell transmissions, leading to assumption that the 

Omicron variant will be more transmissible than the previous variants, showing higher rates of 

infectivity. The mutations also indicate less severity of infection in the Omicron variant than 

Delta. After the severity of the Delta variant, the Omicron variant is under closer observations 

from scientists. It is true that not enough is known about the effects of the Omicron variant to 

make proper conclusions.  

When Omicron variant was first observed, 30 mutations in the Spike protein was not 

completely surprising. Viral evolution is driven by its ability to survive and spread through the 

host cells. The mutations were more clustered in the RBD, which is the part of the structure that 

comes in first contact with the antibodies. The virus will evolve towards mutating the B-cell 

epitopes to disrupt binding to the B-cell antibodies. The other goal of this project was to be 

prepared for further mutations in the virus. More than two mutation sites were identified as 

severe consequence mutation site in this project. It may be possible that these specific sites do 

not mutate anytime soon, but this project has more future paths in predicting the effects of 

mutations. One such path may be to conduct a similar study for MHC Class I protein binding 

predictions. If the mutations predicted for both MHC proteins are the same, the mutations can be 

examined further experimentally. 

This project can be built further beyond just SARS-CoV-2, working on other viruses. 

There are other fast-mutating viruses that need to be observed and their mutations require 

studying. This workflow can be used for building more targeted therapeutic treatments against 

COVID-19 and other viral pathogens.  
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Figure 17: Structure details of the SARS-CoV-2 Spike protein.  

A. Sequence of primary structure of SARS-CoV-2 showing the S1 subunit, S2 subunit, and 

cleavage points. 

B.  The different colors (blue, red, and green) represent each monomer that creates the trimer 

structure of SARS-CoV-2 Spike protein.  

C. One monomer that is part of the Spike protein vital domains on the Spike protein are marked 

by colors. The RBD and NTD are on the outside of the protein to allow binding to host while 

the S2 subunit is located closer to the SARS-CoV-2 membrane. 
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Table 29: The distribution of the alleles for the ethnicities. The pigmentation of the cell indicates no interactions to a high number of 

interactions from white to navy blue. DRB1*03:01, DRB1*07:01, and DRB1*15:01 appears in most ethnicities. Using the allele 

information for each ethnicity, specific alleles that can greatly affect each ethnicity can be determined. 
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Persian                                                   

Polynesian                                                   

Siberian                                                   

Unspecified                                                   
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Table 30: The distribution of the ethnicities for the alleles. The pigmentation of the cell indicates no interactions to a high number of 

interactions from white to navy blue. Most of the alleles are observed in the Caucasoid group. A large set of the alleles are observed in 

the Asian, Black, Caucasoid, Hispanic, and Oriental groups. 
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DRB1*01:01                     

DRB1*01:02                     

DRB1*03:01                     

DRB1*03:05                     

DRB1*03:06                     

DRB1*03:07                     

DRB1*03:08                     

DRB1*03:09                     

DRB1*03:11                     

DRB1*04:01                     

DRB1*04:02                     

DRB1*04:04                     

DRB1*04:05                     

DRB1*04:08                     

DRB1*04:10                     

DRB1*04:21                     

DRB1*04:23                     

DRB1*04:26                     

DRB1*07:01                     

DRB1*07:03                     

DRB1*08:01                     

DRB1*08:02                     

DRB1*08:04                     

DRB1*08:06                     

DRB1*08:13                     
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DRB1*08:17                     

DRB1*11:01                     

DRB1*11:02                     

DRB1*11:04                     

DRB1*11:06                     

DRB1*11:07                     

DRB1*11:14                     

DRB1*11:20                     

DRB1*11:21                     

DRB1*11:28                     

DRB1*13:01                     

DRB1*13:02                     

DRB1*13:04                     

DRB1*13:05                     

DRB1*13:07                     

DRB1*13:11                     

DRB1*13:21                     

DRB1*13:22                     

DRB1*13:23                     

DRB1*13:27                     

DRB1*13:28                     

DRB1*15:01                     

DRB1*15:02                     

DRB1*15:06                     

DRB5*01:01                     
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Table 31: Top (50%) alleles for ethnicities. DRB1*07:01 and DRB1*15:01 appear in the top percentage of alleles for most ethnicity. 

There are a couple of alleles that are only in one ethnicity including DRB1*01:02, DRB1*04:02, and DRB1*13:02. These are just a 

few examples of this occurring. 

Ethnicity 1st allele 2nd allele 3rd allele 4th allele 5th allele 6th allele 
Amerindian DRB1*07:01 DRB1*15:01 DRB1*03:01 DRB5*01:01 DRB1*01:01  

Arab DRB1*07:01 DRB1*11:04 DRB1*03:01 DRB1*11:01 DRB1*15:01  

Asian DRB1*07:01 DRB1*15:01 DRB1*15:02 DRB1*03:01   

Aust. Aboriginal DRB1*15:02 DRB5*01:01     

Austronesian DRB1*15:02 DRB5*01:01     

Berber DRB1*07:01 DRB1*15:01 DRB1*01:02 DRB1*13:01   

Black DRB5*01:01 DRB1*07:01 DRB1*11:01 DRB1*13:02   

Caucasoid DRB1*15:01 DRB1*07:01 DRB1*03:01 DRB5*01:01   

Hispanic DRB1*07:01 DRB1*03:01 DRB1*08:02 DRB1*15:01 DRB5*01:01 DRB1*13:01 
Jew DRB1*11:04 DRB1*07:01 DRB1*04:02    

Kurd DRB1*11:01 DRB1*03:01 DRB1*07:01 DRB1*15:01   

Melanesian DRB1*15:02 DRB1*15:01     

Mestizo DRB1*08:02 DRB1*07:01 DRB1*03:01 DRB1*15:01 DRB1*04:04  

Micronesian DRB1*15:02      

Mixed DRB1*03:01 DRB1*07:01 DRB1*15:01    

Oriental DRB1*15:01 DRB1*04:05 DRB5*01:01 DRB1*07:01   

Persian DRB1*03:01 DRB1*07:01 DRB1*11:01 DRB1*01:01   

Polynesian DRB1*11:01 DRB1*15:02 DRB1*15:01 DRB1*07:01   

Siberian DRB1*04:01 DRB1*15:01 DRB1*07:01 DRB1*11:01   

Unspecified DRB1*07:01 DRB1*15:01 DRB1*01:01 DRB1*03:01   
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Table 32: Effects of the Alpha Variant Mutations on Various Ethnic Groups. The mutations 

S494P and D1118H have detrimental effects on alleles that are more abundant in a large set of 

ethnic groups. Many of the mutations are located at the RBD and S2 subunits. 
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DRB1*01:01 

S494P RBD 6.67 1                1   1 

N501Y RBD 6.67 1                1   1 

D614G S1 25.00 1                1   1 

S982A HR1 5.00 1                1   1 

DRB1*01:02 

E484K RBD 13.00      1               

S494P RBD 15.00      1               

D614G S1 12.33      1               

T716I S2 12.33      1               

S982A HR1 5.00      1               

DRB1*03:01 
S982A HR1 -0.74 1 1 1     1 1  1  1  1  1   1 

D1118H S2 -49.47 1 1 1     1 1  1  1  1  1   1 

DRB1*04:01 

N501Y RBD -20.93                   1  

T716I S2 25.35                   1  

D1118H S2 -3.49                   1  

DRB1*04:02 

N501Y RBD 20.83          1           

T716I S2 23.96          1           

D1118H S2 44.79          1           

DRB1*04:04 N501Y RBD -25.00             1        

DRB1*04:05 

S494P RBD -29.79                1     

N501Y RBD -9.57                1     

D1118H S2 21.28                1     

DRB1*07:01 

S494P RBD -40.52 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

D614G S1 44.83 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

T716I S2 39.66 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

DRB1*08:02 S494P RBD -25.00         1    1        

DRB1*11:01 
S494P RBD -18.08  1     1    1      1 1 1  

S982A HR1 15.06  1     1    1      1 1 1  

DRB1*11:04 S982A HR1 27.11  1        1           

DRB1*13:01 D1118H S2 45.46      1   1           1 

DRB1*13:02 

S494P RBD -29.55       1              

N501Y RBD -3.41       1              

D1118H S2 34.09       1              

DRB1*15:01 
E484K RBD 33.67 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

S494P RBD -37.76 1 1 1   1  1 1  1 1 1  1 1  1 1 1 
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DRB1*15:02 
S494P RBD -8.16   1 1 1       1  1    1   

A570D S1 -39.80   1 1 1       1  1    1   

DRB5*01:01 
S494P RBD 7.14 1   1 1  1 1 1       1     

D614G S1 26.53 1   1 1  1 1 1       1     
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Table 33: Effects of the Beta Variant Mutations on Various Ethnic Groups. The mutations 

D215G, N501Y, A701V, and A570D are predicted to have detrimental changes. Most of the 

mutations are found on the S1 subunit. One detrimental change on S2 occurred for the allele 

DRB1*04:02, most commonly in the Jewish ethnicity. 
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DRB1*01:01 

D215G NTD 11.67 1                1   1 

N501Y RBD 6.67 1                1   1 

D614G S1 25.00 1                1   1 

DRB1*01:02 

D215G NTD 28.33      1               

E484K RBD 13.00      1               

D614G S1 12.33      1               

DRB1*03:01 D215G NTD 15.79 1 1 1     1 1  1  1  1  1   1 

DRB1*04:01 

D215G NTD -25.58                   1  

N501Y RBD -20.93                   1  

A701V S2 10.23                   1  

DRB1*04:02 

D215G NTD 22.92          1           

N501Y RBD 20.83          1           

A701V S2 -23.96          1           

DRB1*04:04 
D215G NTD -22.73             1        

N501Y RBD -25.00             1        

DRB1*04:05 N501Y RBD -9.57                1     

DRB1*07:01 
D614G S1 44.83 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

A701V S2 51.72 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

DRB1*08:02 D215G NTD 25.00         1    1        

DRB1*11:01 D215G NTD 60.24  1     1    1      1 1 1  

DRB1*11:04 D215G NTD 60.24  1        1           

DRB1*13:01 
                       

                       

DRB1*13:02 N501Y RBD -3.41       1              

DRB1*15:01 
E484K RBD 33.67 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

A701V S2 33.67 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

DRB1*15:02 A570D S1 -39.80   1 1 1       1  1    1   

DRB5*01:01 
D215G NTD 53.06 1   1 1  1 1 1       1     

D614G S1 26.53 1   1 1  1 1 1       1     
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Table 34: Effects of the Gamma Variant Mutations on Various Ethnic Groups. The affected 

alleles are DRB1*01:01, DRB1*04:01, DRB1*04:04, and DRB1*15:01, more particularly 

affecting the Mestizo and Siberian ethnicities. Two alleles not affected by any mutations are 

DRB1*11:04 and DRB1*13:01. 
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DRB1*01:01 

L18F NTD -15.00 1                1   1 

D138Y NTD 9.50 1                1   1 

N501Y RBD 6.67 1                1   1 

D614G S1 25.00 1                1   1 

T1027I S2 11.67 1                1   1 

DRB1*01:02 

L18F NTD 9.90      1               

E484K RBD 13.00      1               

D614G S1 12.33      1               

T1027I S2 28.33      1               

DRB1*03:01 
L18F NTD 9.90 1 1 1     1 1  1  1  1  1   1 

T1027I S2 40.00 1 1 1     1 1  1  1  1  1   1 

DRB1*04:01 N501Y RBD -20.93                   1  

DRB1*04:02 N501Y RBD 20.83          1           

DRB1*04:04 N501Y RBD -25.00             1        

DRB1*04:05 
D138Y NTD 35.64                1     

N501Y RBD -9.57                1     

DRB1*07:01 

L18F NTD -12.93 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

D138Y NTD 36.21 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

D614G S1 44.83 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

DRB1*08:02 
P26S NTD 17.50         1    1        

D138Y NTD 14.75         1    1        

DRB1*11:01 D138Y NTD 27.47  1     1    1      1 1 1  

DRB1*11:04                        

DRB1*13:01                        

DRB1*13:02 N501Y RBD -3.41       1              

DRB1*15:01 

D138Y NTD 39.80 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

R190S NTD -35.71 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

E484K RBD 33.67 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

DRB1*15:02 D138Y NTD 50.00   1 1 1       1  1    1   

DRB5*01:01 D614G S1 26.53 1   1 1  1 1 1       1     
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 Table 35: Effects of the Delta Variant Mutations on Various Ethnic Groups. Mutations on the 

Spike protein for Delta variant are located mostly on the NTD of the S1 subunit. The mutations 

show a decrease in immunogenicity for this allele DRB1*07:01, affecting almost all ethnicities. 

The Jewish and Arab groups are affected by the detrimental changes in allele DRB1*11:04. 
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DRB1*01:01 D614G S1 25.00 1                1   1 

DRB1*01:02 
V70F NTD -16.33      1               

D614G S1 12.33      1               

D950N HR1 12.50      1               

DRB1*03:01 T95I NTD -1.05 1 1 1     1 1  1  1  1  1   1 

DRB1*04:01 
V70F NTD 3.49                   1  

T95I NTD -23.26                   1  

DRB1*04:02 

V70F NTD 19.79          1           

T95I NTD -32.29          1           

L452R RBD 12.50          1           

D950N HR1 35.42          1           

T478K RBD -1.04          1           

DRB1*04:04 

V70F NTD 3.41             1        

T95I NTD -40.91             1        

T478K RBD -26.14             1        

D950N HR1 37.50             1        

DRB1*04:05 

V70F NTD -8.51                1     

T95I NTD -27.66                1     

R158G NTD -18.09                1     

A222V NTD 5.32                1     

D950N HR1 48.94                1     

DRB1*07:01 
T19R NTD -46.55 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
T95I NTD -37.07 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

D614G S1 44.83 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

DRB1*08:02 
T19R NTD 20.00         1    1        

R158G NTD -21.25         1    1        

L452R RBD 35.00         1    1        

DRB1*11:01 
A222V NTD 6.02  1     1    1      1 1 1  

L452R RBD -20.48  1     1    1      1 1 1  

DRB1*11:04 L452R RBD -63.86  1        1           

DRB1*13:01 
T95I NTD -29.55      1   1            

L452R RBD 32.95      1   1            

DRB1*13:02 
R158G NTD -27.27       1              

L452R RBD 11.36       1              

DRB1*15:01 
T19R NTD 37.76 1 1 1   1  1 1  1 1 1  1 1  1 1 1 
V70F NTD -7.14 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

R158G NTD -36.74 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

DRB1*15:02 
R158G NTD -46.94   1 1 1       1  1    1   

L452R RBD -3.06   1 1 1       1  1    1   

DRB5*01:01 
V70F NTD 27.55 1   1 1  1 1 1       1     

L452R RBD -40.82 1   1 1  1 1 1       1     

D614G S1 26.53 1   1 1  1 1 1       1     
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Table 36: Effects of the Omicron Variant Mutations on Various Ethnic Groups. The mutations 

are distributed across both the S1 and S2 subunits. The Black ethnicity is highly affected by the 

changes in alleles DRB1*07:01, DRB1*11:01, DRB1*13:02, and DRB5*01:01 alleles. The 

mutations Y505H, located on the RBD, has severe negative effects in most of the mentioned 

alleles. 
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DRB1*01:01 

A67V NTD 5.00 1                1   1 
S371L RBD 13.33 1                1   1 
S373P RBD 4.50 1                1   1 
S375F RBD 16.66 1                1   1 
N501Y RBD 6.67 1                1   1 
Y505H RBD -8.33 1                1   1 
D614G S1 25.00 1                1   1 
N856K S2 5.00 1                1   1 
Q954H HR1 -13.33 1                1   1 
L981F HR1 16.67 1                1   1 

DRB1*01:02 

A67V NTD 16.33      1               

S371L RBD 30.00      1               

S373P RBD 4.50      1               

S375F RBD 26.33      1               

G496S RBD -10.00      1               

Q498R RBD 6.67      1               

D614G S1 12.33      1               

Q954H HR1 -13.33      1               

N969K HR1 -11.67      1               

DRB1*03:01 

T95I NTD -1.05 1 1 1     1 1  1  1  1  1   1 
S373P RBD 6.63 1 1 1     1 1  1  1  1  1   1 
S375F RBD -2.11 1 1 1     1 1  1  1  1  1   1 
Q498R RBD 16.67 1 1 1     1 1  1  1  1  1   1 
L981F HR1 -42.42 1 1 1     1 1  1  1  1  1   1 

DRB1*04:01 

A67V NTD 18.61                   1  

T95I NTD -23.26                   1  

S371L RBD 10.47                   1  

S373P RBD -38.37                   1  

S375F RBD -25.58                   1  

G496S RBD -9.30                   1  

Q498R RBD -45.35                   1  

N501Y RBD -20.93                   1  

N679K S1 -24.42                   1  

N856K S2 3.49                   1  

Q954H HR1 19.77                   1  

N969K HR1 -17.44                   1  
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DRB1*04:02 

T95I NTD -32.29          1           

L212I NTD 20.83          1           

S371L RBD 30.21          1           

S477N RBD 3.13          1           

T478K RBD -1.04          1           

Q498R RBD 32.29          1           

N501Y RBD 20.83          1           

N764K S2 28.13          1           

Q954H HR1 16.67          1           

DRB1*04:04 

T95I NTD -40.91             1        

L212I NTD 5.68             1        

S371L RBD 56.82             1        

S373P RBD -56.82             1        

S375F RBD -26.14             1        

S477N RBD 3.41             1        

T478K RBD -26.14             1        

G496S RBD -25.00             1        

Q498R RBD -25.00             1        

N501Y RBD -25.00             1        

N764K S2 27.27             1        

N969K HR1 -31.82             1        

DRB1*04:05 

A67V NTD 5.32                1     

T95I NTD -27.66                1     

L212I NTD 24.47                1     

S371L RBD 41.49                1     

S373P RBD -17.02                1     

G496S RBD -8.51                1     

Q498R RBD -37.23                1     

N501Y RBD -9.57                1     

N679K S1 -35.11                1     

N764K S2 -17.02                1     

N856K S2 3.19                1     

N969K HR1 -32.98                1     

DRB1*07:01 

A67V NTD 37.07 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
T95I NTD -37.07 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

S371L RBD -43.10 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
S373P RBD -43.10 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
S375F RBD 78.45 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
Q498R RBD 8.62 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
Y505H RBD -92.24 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
D614G S1 44.83 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 
Q954H HR1 13.79 1 1 1   1 1 1 1 1 1  1  1 1 1 1 1 1 

DRB1*08:02 

S375F RBD 23.75         1    1        

Q493K RBD 17.50         1    1        

Q498R RBD 30.00         1    1        

Y505H RBD -35.00         1    1        

N764K S2 13.75         1    1        

N856K S2 3.75         1    1        

N969K HR1 15.00         1    1        

DRB1*11:01 

L212I NTD 15.66  1     1    1      1 1 1  

S371L RBD 34.94  1     1    1      1 1 1  

S373P RBD 17.47  1     1    1      1 1 1  

N764K S2 14.46  1     1    1      1 1 1  

N856K S2 3.61  1     1    1      1 1 1  

L981F HR1 23.49  1     1    1      1 1 1  

DRB1*11:04 

L212I NTD 27.71  1        1           

S373P RBD 29.52  1        1           

N764K S2 26.51  1        1           

N856K S2 3.62  1        1           
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DRB1*13:01 
T95I NTD -29.55      1   1            

Q954H HR1 10.23      1   1            

DRB1*13:02 

G496S RBD -9.09       1              

Q498R RBD -4.55       1              

N501Y RBD -3.41       1              

Y505H RBD -33.64       1              

N679K S1 29.55       1              

N764K S2 34.77       1              

N856K S2 3.41       1              

Q954H HR1 30.23       1              

DRB1*15:01 
S371L RBD 78.16 1 1 1   1  1 1  1 1 1  1 1  1 1 1 
Y505H RBD -35.71 1 1 1   1  1 1  1 1 1  1 1  1 1 1 
Q954H HR1 39.80 1 1 1   1  1 1  1 1 1  1 1  1 1 1 

DRB1*15:02 
S375F RBD 42.86   1 1 1       1  1    1   

Y505H RBD -45.92   1 1 1       1  1    1   

DRB5*01:01 

A67V NTD -3.06 1   1 1  1 1 1       1     

G142D NTD -25.51 1   1 1  1 1 1       1     

Q498R RBD 10.20 1   1 1  1 1 1       1     

Y505H RBD -25.51 1   1 1  1 1 1       1     

D614G S1 26.53 1   1 1  1 1 1       1     

N764K S2 27.55 1   1 1  1 1 1       1     

Q954H HR1 -29.59 1   1 1  1 1 1       1     
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 Table 37: Mutations Predicted to have Extremely Adverse Effects on T-Cell Epitopes. The 

mutations in the RBD (Positions 454 and 455) are of interest, since mutations in the RBD effect 

both infectivity and immune evasion and are more likely to be naturally selected in the 

evolutionary process. 

F2D V6A L8D S12G R454A 

F2P V6C L8P S12K R454C 

F2S V6T L10D V16D R454D 

F4D V6W L10E L18D R454E 

F4E V6D L10H V42D R454P 

F4G V6E L10K V42E R454S 

F4H V6G L10Q L48D R454T 

F4P V6H L10A L48E R454W 

F4S V6P L10C V120D R454G 

F4T L7D L10G V120P R454H 

L5D L7E L10N V120S R454N 

L5P L7K L10P V120T R454Q 

L5T L7G L10R I203D L455A 

L5A L7H L10S I203E L455C 

L5C L7P L10T A243D L455D 

L5E L7Q S12D V320D L455E 

L5S L7W S12E V320E L455Q 

L5G L7S   L455T 
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Table 38: Predicted Mutation Effects for Position 505 and for Position 455 on the Spike protein. Y505 was a hotspot residue in 

binding to the ACE-2 receptor. The Omicron variant has the mutation Y505H, which is predicted to detrimental effects across the 

alleles, specifically affecting DRB1*07:01 and DRB1*07:03. 

Y505 
  Possible Mutations 
  A V L I F W M P G S T C Y N Q K R H D E 

A
ll

el
es

 

DRB1*07:01 -92.2 -0.9 11.2 11.2 8.6 -2.6 -0.9 -92.2 -92.2 -92.2 -55.2 -92.2  -92.2 -92.2 -92.2 -92.2 -92.2 -92.2 -92.2 
DRB1*07:03 -92.2 -0.9 11.2 11.2 8.6 -2.6 -0.9 -92.2 -92.2 -92.2 -55.2 -92.2  -92.2 -92.2 -92.2 -92.2 -92.2 -92.2 -92.2 
DRB1*08:01 -44.2 -11.6 -11.6 -11.6   -11.6 -44.2 -44.2 -44.2 -44.2 -44.2  -44.2 -44.2 -44.2 -44.2 -44.2 -44.2 -44.2 
DRB1*08:13 -43.7 -11.5 -11.5 -11.5   -11.5 -43.7 -43.7 -43.7 -43.7 -43.7  -43.7 -43.7 -43.7 -43.7 -43.7 -43.7 -43.7 
DRB1*08:17 -42.6 -9.9 -9.9 -9.9   -9.9 -42.6 -42.6 -42.6 -42.6 -42.6  -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 
DRB1*15:02 -45.9 -10.2 -10.2 -10.2   10.2 -45.9 -45.9 -45.9 -45.9 -45.9  -45.9 -45.9 -45.9 -45.9 -45.9 -45.9 -45.9 

 
L455 

A
ll

el
es

 

 Possible Mutations 
 A V L I F W M P G S T C Y N Q K R H D E 

DRB1*08:01 -32.6 -53.5  -41.9 -4.7 -36.0 12.8 -55.8 -36.0 -57.0 -59.3 -32.6 15.1 -53.5 -59.3 -16.3 -8.1 -57.0 -90.7 -90.7 
DRB1*08:17 -102.0 -42.6  -2.0 -29.7 -64.4 35.6 -72.3 -73.3 -73.3 -102.0 -102.0 11.9 -70.3 -102.0 -59.4 -25.7 -73.3 -102.0 -102.0 
DRB1*11:01 -43.4 -44.6  -15.7 -38.6 -48.2 -10.8 -40.4 -45.8 -56.6 -59.0 -43.4 -38.6 -49.4 -56.6 -45.8 -39.8 -43.4 -95.2 -78.3 
DRB1*11:04 -63.9 -63.9  -8.4 -63.9 -63.9 20.5 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 
DRB1*11:06 -63.9 -63.9  -8.4 -63.9 -63.9 20.5 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 
DRB1*11:28 -28.7 -29.9  -2.3 -24.1 -33.3 2.3 -25.9 -31.0 -41.4 -43.7 -28.7 -24.1 -34.5 -41.4 -31.0 -25.9 -28.7 -106.4 -73.1 
DRB1*13:04 -42.2 -45.6  -5.6 2.2 -34.4 8.9 -47.8 -48.9 -20.0 -77.8 -42.2 2.2 -8.9 -35.6 -33.3 -5.6 3.3 -77.8 -77.8 
DRB1*13:05 -28.7 -29.9  -2.3 -24.1 -33.3 2.3 -25.9 -31.0 -41.4 -43.7 -28.7 -24.1 -34.5 -41.4 -31.0 -25.3 -28.7 -106.4 -73.1 
DRB1*13:11 -63.9 -63.9  -8.4 -63.9 -63.9 20.5 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 
DRB1*13:21 -62.9 -60.7  -4.5 -31.5 -67.4 1.1 -60.1 -65.2 -91.0 -93.3 -62.9 -58.4 -87.6 -93.3 -65.2 -59.5 -62.9 -122.5 -122.5 
DRB1*15:02 -51.0 -45.9  1.0 -7.1 -51.0 2.0 -48.0 -49.0 -49.0 -51.0 -51.0 -42.9 -45.9 -51.0 -51.0 -43.9 -49.0 -64.3 -63.3 
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Figure 18: Distribution of the Mutations across the Spike protein in the different variants. The Spike protein of the SARS-CoV-2 
shown with mutations found in the Alpha, Delta, and Omicron variants. 

Alpha: 69del, 70del, 144del, E484K, S494P, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H, K1191N 

Delta: T19R, V70F, T95I, G142D, 156del, 157del, R158G, A222V, W258L, K417N, L452R, T478K, D614G, P681R, D950N 

Omicron: A67V, 69del,70del, T95I, 142-144del, Y145D, 211del, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, 
N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, 
N764K, D796Y, N856K, Q954H, N969K, L981F 
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Figure 19: Distribution of the Surface Exposed Residues. This is image was created based on the numerical values of the Surface 
Accessible Surface Area (SASA) of each residue. It can be observed that only a few residues (0.46%) have very high exposure to the 
solvent, some residues (12.66%) have medium exposure, while a larger set of residues (70.13%) have a lower exposure of between 0 
to 50 squared A°, and 16.71% of the residues have zero exposure. 
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Figure 20: Residues with small solvent exposed surface area can contribute to binding. The Tyrosine residue in PDB 1BZQ has only the 

-OH group exposed, meaning a small SASA for the residue, yet Y73.A makes a strong hydrogen bond with Y36.L in the antibody. 
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The use of proteins in therapeutic developments is well-established. They are a clinically 

and commercially important class of treatment. Protein engineering and protein therapeutics have 

come a long way since the 1980s. There are several groups of therapeutic treatments that require 

proteins, e.g., hormones, blood factors, growth factors, antibody-based drugs, anticoagulants, 

enzymes, bone morphogenetic proteins, interferons, interleukins, and thrombolytics. Protein 

engineering provides the tools to customize existing proteins or to create novel proteins for all 

specific therapeutic needs. Both rational design and molecular evolution have provided scientists 

with knowledge about the structure-function relationships of proteins and the means to generate 

novel proteins with enhanced new properties.  

The rapid growth of antibody therapeutics has created opportunities for antibody 

modification and antigen targeting against existing and novel diseases. Antibodies have high 

specificity and high affinity, making them highly efficient when designed for any targeted 

antigen. There are limitations to what is known about antibody binding and understanding 

antibody interfaces are crucial to designing new antibodies or modifying existing ones. Studying 

the relationship between the structures and binding mechanisms of PPIs is crucial to 

understanding how mutations can lead to novel pathogens that can evade the immune systems. 

This dissertation was built with projects directed toward generating data and knowledge that may 

be used in therapeutic design.  

To be able to build tools that can better design protein interfaces, it was important to 

study their features and understand the possible paths to create change. The first project was 

based on studying the antibody-protein interfaces. A non-redundant database of 384 known 

antibody-protein structures was built and the interface properties of the structures were studied 

collectively. The analysis revealed that, on average, the seven most important residues contribute 
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almost 70% of the total binding energy, where the binding energy contributions follow an 

exponential decay. Charged and acidic amino acids were overrepresented in the significant 

residues. This dataset and the information about the interfaces were utilized to build the 

consecutive projects on this dissertation to better understand PPIs. 

Protein structures have been studied extensively, with both current data (e.g., how 

particular sequences are shaped) and evolutionary data (e.g., how tolerated evolutionary amino 

acid mutations are in protein sequences). PPIs have not been studied to the same extent. It is also 

true that the relative importance of amino acids for stabilizing PPIs is likely different than for 

stabilizing protein structures. Therefore, the second project on this dissertation was based on 

understanding the effects of interface mutations on the binding function of antibodies. Protein 

structural mutation data is represented by similarity matrices, like PAM and BLOSUM, that was 

developed based on the rates of amino acid mutations in homologous protein sequences. The 

purpose of this project was to build similarity matrices for protein interactions using a systemic 

mutation analysis of the important amino acids to all the alternatives to calculate the 

corresponding changes in predicted binding energies. The goal was to gather knowledge about 

the mutational effects on antibody binding in a format that could be easily accessible for other 

studies regarding PPIs. 

Early in the pandemic, a study led to an observation that SARS-CoV-2 evaded 

neutralizing SARS-CoV antibodies solely through the loss of favorable interactions. 

Theoretically, it was reasonable to hypothesize that loss of binding could occur due to either the 

loss of favorable interactions or the introduction of detrimental interactions. This observation 

motivated the third project on this dissertation, to examine how antigen mutations affect antibody 

binding in general. This project was also using a systemic mutational analysis, but it was more 
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specific to the binding interaction than the binding affinity, the residues selected for the 

mutational analysis were all the contact residues instead of just the important residues, and the 

mutational analysis was conducted for the antigenic residues only. Overall, the results show that 

antigen mutations can both introduce detrimental interactions and eliminate beneficial 

interactions, suggesting that the SARS-CoV-2 results of only eliminating beneficial interactions 

may be happenstance. Mutations in antigens resulting in new variants with reduced 

immunogenicity impact the efficacy of vaccines. Understanding how mutations in antigens affect 

antibody-antigen binding on specific interactions is an important path to creating vaccines and 

other therapeutic treatments which can provide enough protection against emerging variants. 

As the pandemic progressed and new variants of the virus with different severity of 

infections in different countries were observed, the question of the efficacy of the vaccines 

developed against the new variants and whether people with different ethnic backgrounds was 

more vulnerable to the new variants arose. The final project of this dissertation was built on 

answering these questions. Immune responses to SARS-CoV-2 are mediated by the MHC Class 

II HLA genes. These genes vary from person to person and occur with different frequencies 

among ethnic groups. Of the four SARS-CoV-2 VOCs, the Beta and Gamma variants have not 

spread to the same extent as the Alpha, Delta, and Omicron variants. The calculations predicted 

they had fewer immune-evading mutations than Alpha, Delta, and Omicron. The analysis also 

shows a change in the distribution of the mutations in the variants, e.g., the Delta variant has 

more negative mutations than the Alpha variant and the majority are in the “tip” of the Spike 

protein (i.e., NTD and RBD), while the Omicron has more mutations in the RBD and NTD and 

in the S2 subunit than the Delta variant. This may explain why the Delta variant caused more 

severe infectivity than Alpha, and why, presumably, Omicron will cause increased infectivity but 
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less severity than Delta. There is not enough data about the Omicron variant in literature yet, but 

this is a reasonable conclusion to be made. The analysis also revealed mutations in the existing 

variants that are predicted to increase the immune response, they may possibly occur because 

they provide other evolutionary benefits. At the same time, the analysis was able to identify 1) 

mutation sites that can be a cause of concern for scientists regarding future variants of the virus 

and 2) ethnic groups that may be more vulnerable to current variants and future variants, 

requiring more targeted therapeutic treatments. 

The high effectiveness of proteins in biological systems is a result of their mutational 

histories. Understanding the details of how mutations impact protein folding and interactions, 

and thus their functions in a biological system can provide insights towards improving the 

engineering of proteins. Mutational analyses are extensively used to study protein structures and 

functions for different purposes. For therapeutic purposes, such analyses can lead to more 

efficient engineering of proteins: from identifying beneficial interactions for improving protein 

binding to identifying how point mutations in pathogens can impact immune responses in 

humans. Each of the projects described here focuses on the effect of mutations on protein 

functions from a unique perspective, and each can contribute to the study of engineering proteins 

to meet different therapeutic needs. Identifying the features of the protein interfaces provided 

different perspectives of the interfaces that could be further studied. Quantifying the effects of 

point mutations on binding affinity and presenting that knowledge in a comprehensible format 

can contribute to the development of tools for improving the engineering of proteins. Studying 

the effects of mutations on the interface interactions provided an in-depth understanding of the 

antibody binding mechanisms to pathogens. Studying the effects of the mutations of a fast-

mutating virus on people of different ethnic backgrounds has added novel directions to possible 
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therapeutic developments. This final study may also support possible directions to combating 

future pandemics more effectively.  

The 2019 pandemic has proven that advances in therapeutic research are imminent to 

combat novel viruses. Mutant variants have caused unimaginable harm to humans and proved 

that one novel virus is not the only concern. The future holds scope for extensively engineering 

protein drugs to improve performance from a protein engineering perspective. The key pursuit 

for protein therapeutics is the development of better next-generation drugs, like enhanced 

antibodies and other proteins, with greater efficiency, more safety, or improved delivery. 

Tailoring antibodies for therapeutic applications is more established [1], given their high success 

rates [2]. Some antibody strengths and their limitations are broadly applicable to other protein 

therapeutics. One of the greatest strengths of antibodies in therapeutics is their ease in generating 

high affinity and high specificity to the desired target [3], yet their relatively large sizes limit 

their potential to penetrate tissue and localize to their targets.  

Computational protein engineering tools have advanced to a point where they can guide 

protein therapeutic designs for optimizing favorable properties of proteins and creating novel 

activities. Understanding the strengths and limitations of protein therapeutics can pave how they 

may be improved. Structure-based, computational protein design can be potentially applied to 

antibody affinity maturation, stability improvement modification of PPIs, and minimization of 

protein aggregation [4]. Computational techniques have the advantage of their ability to work 

with more variables than experimental techniques. There is enough clinical and commercial 

success in protein therapeutics to motivate the use of computational techniques in their continued 

development into better drugs. 
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