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Abstract 

 

 

The increasing global population is expected to increase pressure on water and food demands, 

which means intensification and improvements in irrigated agriculture are required to satisfy future 

needs. More than 70% of freshwater is destined for irrigation water withdrawal from streams, 

lakes, and groundwater. Managing irrigation based on crop demand using soil moisture variability 

can help improve agricultural water management. The distribution of precipitation over the 

growing season plays a very important role in scheduling irrigation. To improve agricultural 

systems, site-specific management of irrigation and nutrients are critical components of precision 

agriculture. To better understand irrigation and nutrient management in cropland fields, this 

research was conducted in the Tennessee Valley Region of Alabama. 

Understanding the spatial and temporal variability in soil moisture (or soil water [L3L-3]) 

(Dissertation Objective 1) in different croplands can help improve the need for site-specific 

irrigation. We will be using soil moisture, soil moisture content, soil water, or soil water content 

synonymously, and all these terminologies represent volumetric soil water or moisture content in 

vol/vol. Estimating the mean soil water status within a field is crucial for effective irrigation water 

management. Various problems may arise with determining field mean soil moisture. These 

problems include soil physical properties, field attributes, and meteorological factors. Spatial and 

temporal variability in soil moisture showed maximum variability in deep and topsoil layers of the 

corn and cotton fields, respectively. Average soil moisture content had different patterns of 

variability depending on the soil depth in both corn and cotton fields. The topography of the 

cornfield and soil properties of the cotton field were found to be important in finding a 

representative location for average soil moisture content. We determined that to capture maximum 
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spatial and temporal variability within a field, the number of soil moisture sensors to be installed 

can be reduced relative to the sensors installed at the beginning of crop growing season and a 

temporally stable location can be identified to represent average soil moisture content within a 

field to schedule uniform irrigation. 

Within-field variability in soil nutrients (phosphorus-P and nitrogen-N) has an effect on nutrient 

uptake by plants (Dissertation Objective 2). A cornfield divided into three irrigation management 

zones showed that uniform application of nutrients across the field resulted in inadequate nutrients 

in one zone and adequate nutrients in others, which had an impact on plant growth. The high P and 

N concentration zone had higher plant growth and higher corn grain yield during the 2019 growing 

season. However, lower P and N zone had reduced plant growth and lower corn grain yield. Plants 

in the high yield zone had greater nutrient uptake than plants in the low yield zone. Incorporating 

nutrient variability for site-specific management in management zone delineation can improve 

nutrient use efficiency and reduce nutrient loss during the growing season. The field hydrologic 

properties are important factors to be considered for irrigation and nutrient management in a field. 

The site-specific irrigation and nutrient management are highly dependent on site-specific 

properties. Soil water dynamics are controlled by soil hydraulic properties (SHPs), which can vary 

greatly from one zone to another. Nutrient movement within the soil profile also depends on water 

movement within the soil profile. For better irrigation management, knowledge about SHPs is the 

most critical information in determining irrigation amount (Dissertation Objective 3). Optimizing 

SHPs using the HYDRUS modeling of zone-specific soil matric potentials (h) can determine 

accurate irrigation thresholds. The SHPs had differences between the irrigation management zones 

(zone 1 and zone 2). Determined irrigation thresholds and amounts using optimized SHPs were 

reduced as compared to laboratory-drawn (raw or observed) SHPs. Also, optimized irrigation 
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thresholds were not uniform between two zones of a cornfield. The optimizing SHPs address the 

discrepancies associated with laboratory and field observations since they account for 

measurements recorded for soil matric potential or soil water pressure heads to optimize the SHPs. 

However, raw SHPs cannot consider field measurements in determining accurate irrigation 

thresholds. Using the HYDRUS-1D model for irrigation scheduling can increase the actual root 

water uptake to meet the potential water demands for a crop during the growing season. Different 

irrigation thresholds and amounts were used to trigger the irrigation within the zones. Accurate 

and efficient irrigation adoption due to precipitation distribution over the growing season is 

important to meet crop water demands on time. Results show that farmers may delay irrigation for 

a few days after reaching at the irrigation threshold of ℎ, and irrigation can be scheduled at different 

times in different zones. Installing soil moisture sensors at 15 cm and 30 cm depths can improve 

the actual to potential root water uptake ratios, which defines the water stress in the crop. 

The accuracy in irrigation thresholds and depths is highly dependent on accurate field capacity 

(FC). The determination of FC, irrigation thresholds, and irrigation depths is characterized using 

site-specific SHPs (Dissertation Objective 4). Determination of FC within the field conditions is 

onerous and time-consuming. Therefore, FC was optimized using a negligible drainage-flux 

criterion at 0.01 cm/day for each zone within the field. Optimized FC was different from the FC 

obtained from raw SHPs and benchmark FC (33 kPa) for fine-textured soils. The differences in 

the determination of FC and irrigation thresholds using optimized SHPs considered soil water 

dynamics discrepancies associated with h measurements within the zones. The relationship 

between accumulated crop evapotranspiration and required irrigation amount showed a strong 

correlation for optimized SHPs and FC. The FC based on raw SHPs and benchmarks can be a 
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flawed irrigation strategy to determine irrigation threshold and depths during the growing season. 

Therefore, optimizing FC and the irrigation thresholds can improve irrigation water management. 

Overall, this dissertation helps improve precision management of irrigation and nutrients during 

the growing seasons. This study can help provide a better understanding of the site-specific 

problems and can provide solutions for farmers to plan future growing seasons.  
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Chapter 1 

Introduction 

1.1 Background and problem statement 

Increasing food and freshwater demands are the main challenges faced by agriculture due to 

projected population increment from 8.27 billion in 2030 to 9.322 billion in 2050 (FAO, 2012). 

More than 40% of the earth’s population is already experiencing water security problems (Kummu 

et al., 2016). Thus, any improvements in the current irrigation practices can help conserve limited 

water resources and promote sustainable agriculture (Himanshu et al., 2021). The advancements 

in precision agriculture such as improvements in irrigation scheduling and nutrient management 

can play an important role in reducing water and nutrient losses from agricultural landscapes and 

help increase the crop yield. Therefore, it is important to understand soil water and nutrient 

variability at the field scale and develop appropriate management strategies that would contribute 

to food security and reduce stress on natural water resources. 

The vadose zone or unsaturated or partially saturated soil media consists of the soil profile below 

the earth surface and above the groundwater table (Radcliffe and Simunek, 2018), which is 

comprised of three phases, i.e., solid, liquid, and gas. The soil water and nutrient dynamics within 

the soil profiles are very complicated to understand and they depend on soil type, texture, structure, 

and other soil properties. Therefore, it is important to have knowledge of the soil water retention 

curve (SWRC), which defines the soil matric potential (ℎ) and soil water content (𝜃) relation is 

very critical in soil water dynamics. The hydraulic conductivity (K) of a soil profile defines the 𝐾-

ℎ-𝜃 relationship, which helps understand the soil water movement within the soil profile. The 

accurate and effective relationship is important in irrigation scheduling and soil water status in the 

soil profile. 
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Irrigation is an essential and influencing component of the hydrological cycle and food production 

(Filippucci et al., 2020). Better understanding of spatial and temporal soil moisture variability 

within a field is of utmost importance for irrigation scheduling and for understanding transport of 

water, nutrients, and contaminants (Kumar et el., 2021b). Due to a lack of knowledge about soil 

moisture variation within a field, farmers can over-and under-irrigate the field. Over-irrigation can 

result in nitrate leaching, crop disease, and loss of water as runoff, which can erode soil and the 

nutrients contained therein, from the field (Irmak and Rathje, 2008). Under-irrigation can result in 

a lack of water available for plants to meet the crop water demands. In both situations, crop 

productivity is negatively affected. Therefore, knowing spatial and temporal variability in soil 

water can help identify the need for irrigation and adoption of best irrigation management 

practices. Like soil water variability, soil nutrients including phosphorus (P) and nitrogen (N), also 

vary within the fields, and this affects the crop productivity during the growing season (Kumar et 

al., 2021a). The excess application of water and nutrients in agricultural fields leads to 

contamination of surface waters by runoff, or groundwater by leaching (Hanrahan et al., 2019). 

Precision agriculture aims to improve the crop productivity and optimize the agricultural system 

by adopting best irrigation and nutrient management practices to achieve the increasing food and 

water demands. A uniform application of water and nutrients leads to excessive amounts in some 

areas and inadequate amounts in others due to within-field variability (Chen et al., 2020). 

Therefore, it is very important to understand within-field variation at different soil depths and 

different times during a growing season. This can help with enhancing site-specific 

recommendations in farming practices and environmental protection, improving yield 

management, delineating management zones, and contributing to the refinement of existing 

decision support tools. 
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Soil moisture variability causes variability in irrigation water demands in the field. The future 

forecast of precipitation data showed the 14% increment in the annual average of precipitation by 

2059, which would alter the time, erosivity characteristics, and distribution of the precipitation 

events (Takhellambam et al., 2021, 2022). Depending on climate conditions, irrigation water 

demands vary greatly from arid to humid climate regions (O’Shaughnessy et al., 2018; Rolle et 

al., 2021). In humid climate regions, irrigation is needed due to non-uniform rainfall distribution 

(Sangha et al., 2020), distribution of precipitation over the growing season (Filho et al., 2020), and 

soil moisture variation within a crop field during a growing season (Kumar et al., 2020, 2021b). 

Uniform irrigation does not account for within-field variability in soil moisture; therefore, site-

specific irrigation can be a solution to address soil moisture variability within a field. To adopt 

site-specific irrigation, such as variable-rate irrigation (VRI), a field can be delineated in different 

management zones (Filho et al., 2020). Applying zone-specific irrigation can help increase in 

water use efficiency, reduce crop water stress, and increase crop productivity. Sensor-based 

irrigation has received much attention in the past decade since it provides real-time soil moisture 

status by monitoring ℎ or 𝜃 during the growing season (Irmak, 2012). In sensor-based irrigations, 

knowledge about soil hydraulic properties (SHPs) is critical for scheduling irrigation, root water 

uptake, and determining the irrigation threshold, which is defines as a point of ℎ to start irrigation 

(Lena et al., 2022). A single rate of irrigation throughout a field can result in over-irrigation in 

some areas and under-irrigation in others. Therefore, determining a correct irrigation amount is 

critical in irrigation scheduling. Since the determination of irrigation amount is decided with field 

capacity (FC) as an upper limit on the soil moisture content, it is difficult to measure FC within 

the field conditions. Therefore, estimation of accurate FC is important to determine effective 

irrigation thresholds and amounts.   
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1.2 Dissertation Objectives 

The overarching goal of this dissertation is to help improve the precision agricultural system by 

developing a better understanding of the site-specific need and refinements in irrigation and 

nutrient management. This dissertation includes these specific objectives: 

Chapter Objectives 

2 Characterize the Field-Scale Spatial and Temporal Soil Water Variability in 

Irrigated Croplands (published in Transactions of ASABE) 

3 Understand Within-Field Variability in Soil Nutrients for Site-Specific Agricultural 

Management in an Irrigated Cornfield (published in Journal of ASABE) 

4 Scheduling Site-Specific Irrigation Using One-Layer Zone-Specific Soil Hydraulic 

Properties and Inverse Modeling 

5 Optimizing Zone-Specific Field Capacity and Irrigation Thresholds Using A 

Numerical Modeling Approach 

1.3 Dissertation Organization 

Chapter 1 discussed the background and problem statement of the dissertation. It covered 

important issues in site-specific precision agricultural management for irrigation and nutrient 

management. 

Chapter 6 presents spatial and temporal variability in soil moisture in the uniformly irrigated 

corn (Zea mays L.) and cotton (Gossypium hirsutum L.) fields during a growing 

season. This chapter also discusses different hydrological and meteorological 

factors affecting the spatial and temporal variability in soil moisture. Finally, this 

chapter optimizes the number of samples required to determine average soil 
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moisture content to represent the field. In this chapter, we will use “soil water” 

instead of soil water content or soil moisture content as recommended by the 

Transactions of ASABE. 

Chapter 6 comprises the within-field variability of soil nutrients during a growing season in 

an irrigated cornfield. This chapter discusses variability in soil phosphorus and 

nitrogen within the field and the impact on crop growth. The spatial and temporal 

variability in soil nutrients causes spatial variability in crop yield.  

Chapter 4 includes the site-specific irrigation management utilizing the soil hydraulic properties 

(SHPs) with numerical modeling. This chapter discusses the importance of optimizing site-specific 

SHPs to schedule the irrigation and avoid discrepancies between raw or observed SHPs (lab) and 

soil water dynamic measured within the field. 

Chapter 5 includes the determination of site-specific field capacity using the optimized SHPs with 

numerical modeling for site-specific irrigation management. This chapter discusses the importance 

of accurate FC determination in determining the correct irrigation thresholds and amounts needed 

for scheduling site-specific irrigation. 

Chapter 6 provides the overall summary and major findings of this dissertation. This chapter also 

discusses the in-field implications of the research and future recommendations to improve site-

specific irrigation management. 
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Chapter 2 

Characterize the Field-Scale Spatial and Temporal Soil Water Variability in Irrigated 

Croplands 

(Transactions of ASABE) 

2.1 Abstract 

This study investigated the spatiotemporal variability and temporal stability of soil water at various 

depths in two croplands sown in corn and cotton during the 2018 growing season in the Tennessee 

Valley Region (TVR) of northern Alabama. We use soil water instead of soil water content 

(vol/vol) in this paper. Classical statistics and relative difference approaches were used to analyze 

soil water data in this study. In the cornfield, the 30-60 cm depth showed the greatest variability, 

while the cotton field showed the greatest variability at 0-15 cm depth. An exponentially 

decreasing trend was noticed between mean soil water and coefficient of variation for all depths 

in the cotton field and at 30-60 cm depth in the cornfield. However, convex upward, exponentially 

decreasing, or no trends were found between mean soil water and standard deviation at different 

depths in both fields. The temporal stability analysis showed one representative soil moisture 

sensor (S8 in corn and S1 in cotton) for the entire soil profile in both fields. Different statistical 

tests, i.e., Spearman’s correlation (𝑟𝑠), Nash-Sutcliffe efficiency (NSE), coefficient of 

determination (R2), etc., were used to reduce uncertainty or increase confidence in the performance 

of representative sensors. Among various field attributes, topography in corn and soil properties 

in cotton were determined as significant factors responsible for soil water variability. Crop 

evapotranspiration (ETc) showed significant negative weak and moderate correlations with soil 

water in the corn and cotton fields, respectively. However, the mean air temperature showed a 

significant positive correlation with soil water in the cornfield and a significant negative 
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correlation in the cotton field. Solar radiation had a significant negative correlation with soil water 

in the cotton field and a non-significant correlation in the cornfield. Accumulated growing degree 

days (accGDD) showed a significant negative correlation with soil water in the cornfield and a 

positive correlation in the cotton field. This study gives insights into soil water variability, provides 

useful information about temporal stability, and identifies significant factors for precision uniform 

irrigation scheduling. 

2.2 Introduction 

Understanding spatial and temporal soil water dynamics in croplands is of utmost importance for 

irrigation scheduling and for understanding surface and subsurface transport of water, nutrients, 

and contaminants (Filippucci et al., 2020; Gao et al., 2020; Su et al., 2018). The spatial and 

temporal variations in soil water have been studied for decades around the globe at plot to 

watershed scales in different natural landscapes (Brocca et al., 2009; Hao et al., 2020; Shen et al., 

2016). In many hydrological studies, the temporal stability concept has been used extensively to 

calibrate hydrological models, for flood forecasting, and for validating remote sensing data in 

natural landscapes (Brocca et al., 2018; Hao et al., 2020; Yetbarek and Ojha, 2020; Zaussinger et 

al., 2019). Knowledge of soil water variability can be helpful in erosion control and irrigation 

water management in crop fields during a growing season (Yetbarek and Ojha, 2020). However, 

plot-scale studies always have a limitation of uncertainty with upscaling to field scale (Kornelsen 

and Coulibaly, 2013), and studies at large scale (watershed) and small scale (plot) are of limited 

use to farmers. Hupet and Vanclooster (2002) suggested a need for more research at the field scale 

in different crop fields. 

Researchers have investigated the relationship between average soil water (we use soil water 

instead of soil water content in vol/vol throughout chapter 1) and standard deviations to understand 
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spatial variability across time at various depths. However, relatively few studies are available for 

deeper soil profiles, as compared to those that have studied surface soil water, especially in 

croplands (Bauer-Marschallinger et al., 2019; Gao and Shao, 2012; She et al., 2012, 2015). There 

is no perfect way to explain soil water variability, and studies have shown positive, negative, and 

neutral correlations between average soil water and standard deviations in natural agricultural 

vegetation (Guber et al., 2008; Shen et al., 2016; Vereecken et al., 2014). Due to the lack of 

accuracy and precision in satellite data at the field scale, in situ soil water measurements and 

irrigation observations are necessary to understand soil water variability within the soil profile of 

croplands during the growing season (Filippucci et al., 2020). Rainfed agricultural practices are 

common in southeastern U.S. states such as Alabama and Tennessee. However, irrigation adoption 

is increasing, especially in Alabama, where irrigation has increased by 25% from 2012 to 2017 

(NASS, 2017). Farmers are adopting irrigation to increase crop yields, avoid water stress, and 

increase water use efficiency during the growing season (FAO, 2018). Climatic variations directly 

influence the spatial and temporal distribution of precipitation, which challenges farmers to 

schedule precise and accurate irrigation. A better understanding of soil water variability in crop 

fields is needed to schedule precise irrigation. 

Although irrigation adoption is increasing in the U.S., the main challenges to irrigation adoption 

are financial (NASS, 2013). Therefore, farmers schedule irrigation based on the feel of the soil 

and by looking at the crop at different times during the growing season (NASS, 2013, and 

according to a farmer survey in the TVR). Irrigation is an essential part of the hydrological cycle 

and food production. It accounts for 70% or more of freshwater withdrawals globally (Filippucci 

et al., 2020). Water withdrawals for irrigation are a concern for water availability in areas where 

water resources are limited. Improvements in irrigation efficiency would not reduce costs enough 
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to cover the soil moisture sensor installation costs and reduce uncertainty about the future 

availability of water (NASS, 2013), which motivated us to identify representative locations of soil 

water variability to install sensors in croplands. 

Accurate estimation of spatial mean soil water (defined in “Methods for soil water variability 

analysis” section) is essential in crop fields because irrigation scheduling is often based on soil 

water measured at a single point or just a few points (Hao et al., 2020). Therefore, it is necessary 

to study soil water variability in crop fields to help farmers identify water stress, water excess, and 

temporally stable locations to estimate irrigation amounts and schedule precision irrigation during 

the growing season (Hao et al., 2020; Yetbarek and Ojha, 2020). Soil water products, such as 

ASCAT (Advanced Scatterometer, instruments carried on MetOp satellites, to determine 

information about the wind, for weather forecasting and climate research) and SMAP (Soil 

Moisture Active Passive, an orbiting observatory that measures the amount of water in the surface 

soil on Earth), have been used to produce soil water data, but they cannot be used in crop fields 

due to low resolution (Palombo et al., 2019). Therefore, it is important to determine soil water 

variability in crop fields to help farmers improve their water use efficiency and understand the 

significant factors for irrigation scheduling during the growing season. 

Additionally, it is important to collect in situ soil water measurements in deeper layers to assist in 

hydrological modeling and validation of climate models, especially in croplands (Brocca et al., 

2010; Heathman et al., 2009; Loew et al., 2013). Although in situ soil water measurements are 

expensive, time-consuming, and laborious, there is a great need in scientific and farming 

communities to understand the depth-dependent spatial and temporal variability of soil water in 

croplands, especially during growing seasons (Majdar et al., 2018). Certain locations might be 

temporally stable for soil water and can be used as representative locations (Vachaud et al., 1985) 
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for irrigation scheduling decisions. Many studies have been carried out to understand temporal 

stability in soil water using in situ measurements, remote sensing, or a combination of both 

methods at various depths and scales to find representative locations for hydrologic modeling 

purposes (Dari et al., 2019; She et al., 2015; Shen et al., 2016). According to temporal stability 

investigations, if a location is wet at one time, it will remain wet another time if the spatial pattern 

of temporal variation does not vary with time (Vachaud et al., 1985). However, a significant 

challenge for irrigation scheduling is the spatial variation in soil water and the difficulty in 

obtaining representative locations for prescribing irrigation. Efficient site-specific management of 

soil water with adequate irrigation requires temporal stability analysis of soil water (Yetbarek and 

Ojha, 2020). Irrigation scheduling using a single, temporally stable sensor that represents the field 

soil water can be useful and cost-effective to prescribe uniform irrigation. 

Various crucial factors, including terrain attributes, soil properties, vegetation cover, and 

meteorological parameters, affect soil water variability (Beven and Kirkby, 1979; Mei et al., 2018; 

Takagi and Lin, 2012). Topographic factors have been studied more extensively than vegetation 

and meteorological factors. Limited research has been done at the field scale under different types 

of vegetation, especially in croplands (Fry and Guber, 2020; Guber et al., 2008; Rossato et al., 

2017; Yetbarek and Ojha, 2020), due to the extensive work required in crop fields during a growing 

season. Different soil textures have shown varying degrees of temporal stability and variability of 

soil water. Temporal stability in soil water is defined as average soil water within a field, plot, or 

watershed that can be represented by a certain location. According to Mohanty and Skaggs (2001), 

silt loam soil has less temporal stability than sandy loam, and Choi and Jacobs (2011) found that 

temporal stability decreased with increasing sand content. However, it is still not clear what factors 

dominate soil water variability in crop fields, especially during a growing season. 
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The findings of this study can be useful in field-scale hydrological modeling (e.g., Soil Water 

Assessment Tool (SWAT) and Agricultural Policy/Environmental eXtender (APEX)), for 

validating remote sensing data, and for calibrating subsurface hydrology models (HYDRUS, a 

model to simulate soil water and solute dynamics in unsaturated soil media (PC-Progress, 2022)) 

in different types of vegetation (Filippucci et al., 2020; Parinussa et al., 2014; Zaussinger et al., 

2019). However, many questions still need to be answered, such as: How are spatial and temporal 

variability affected by uniform irrigation in different croplands? What are the main factors 

involved in the spatial variability and temporal stability of soil water in croplands during the 

growing season under uniform irrigation? How can farmers adopt water use efficient uniform 

irrigation in crop fields during the growing season? 

Different approaches, such as geostatistical analysis, have been used in many studies to understand 

soil water variability (Gia Pham et al., 2019; Pandey and Pandey, 2010; Vasu et al., 2017). 

However, a simple approach of exploratory data analysis can be useful to establish the relationship 

between spatial mean soil water and its variability. In this study, two crop fields (corn (Zea mays 

L.) and cotton (Gossypium hirsutum L.)) were studied for soil water variability using in situ soil 

water measurements to a soil depth of 60 cm under uniform irrigation management. The objectives 

of this study were to (1) determine the spatiotemporal variability of soil water in both croplands at 

different depths, (2) identify representative locations of soil water measurement for scheduling 

irrigation in the croplands during the growing season, and (3) identify the factors affecting the 

spatiotemporal variability of soil water in the croplands during the growing season.  
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2.3 Materials and Methods 

2.3.1 Study Site Description 

The study areas, which belonged to farmers, were located in the Tennessee Valley Region (TVR) 

of northern Alabama (fig. 2.1). The cornfield was approximately 120 ha (a 60 ha area in the middle 

of the field was used in this study with a slope variation of 0% to 10%), and the cotton field was 

12 ha with a slope variation of 0% to 3%. The cornfield (34° 43 7.15 N, 87° 23 9.36 W), with 

minimum and maximum elevations of 168 and 178 m, respectively, above mean sea level, was 

located in Lawrence County, Alabama, and the cotton field (34° 43 18.10 N, 87° 1 16.14 W), 

with a minimum and maximum elevations of 181 and 185 m, respectively, above mean sea level, 

was located in Limestone County, Alabama. The average annual precipitation in the region (1895 

to 2019) is about 1400 mm (Sangha et al., 2020a; 

https://sercc.com/climateinfo/monthly_seasonal). The average annual precipitation during the 

growing season (April to October) is 759 mm. The average annual temperature (1895 to 2019) is 

17.3 °C, with a maximum temperature of 29.1 °C in August and a minimum temperature of 13.8 

°C in December. The major crops grown in the TVR are corn, cotton, soybean (Glycine max (L.) 

Merr.), and winter wheat (Triticum aestivum L.) (Sangha et al., 2020b). 

The cornfield was seeded on 10 April 2018 and harvested on 3 September 2018. The cotton field 

was seeded on 2 May 2018 and harvested on 24 October 2018. Both fields were under no-till 

management. The cotton field was planted with a cover crop (rye in previous fall) before the 

cotton; however, no cover crop was used in the cornfield. According to SSURGO (2020), the 

dominant soil types in the cornfield were Abernathy-Emory silt loams (38%), Decatur silt loam 

(29%), Decatur silty clay loam (20%), and Decatur silty clay (8%). In the cotton field, the dominant 

soil types were Guthrie silt loam (25%), Decatur silt loam (24%), Lawrence silt loam (21%), Sango 
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silt loam (14%), and Dickson silt loam (11%). Soil samples were collected in both fields to 

determine soil texture using the hydrometer method (Bouyoucos, 1962). In the cornfield, the soil 

texture was classified as clay loam for the upper two soil layers (0-15 cm and 15-30 cm) and clay 

for the deepest (30-60 cm) soil layer. Silty clay loam was the soil texture in the entire soil profile 

of the cotton field. 

2.3.2 Field measurements 

Both fields were instrumented with Watermark soil moisture sensors (Irrometer Co., Riverside, 

Cal.), combined into a wireless soil sensor probe, to measure soil matric potential (ℎ) vertically at 

0-15 cm, 15-30 cm, and 30-60 cm depths. Watermark sensors are electrical resistance devices that 

measure soil water matric potential. Watermark sensors with a similar array have been used in 

corn and cotton crops for irrigation scheduling at 60 cm depth in the southeastern U.S. (Lena et 

al., 2020; Liang et al., 2016; Vellidis et al., 2008). Therefore, we adopted a similar array in this 

study. In typical cornfields, greater than 50% of total roots have been found within the top 60 cm 

depth (Anderson, 1987; Fan et al., 2016), and the maximum root length density in a typical cotton 

field has been found in the top 60 cm of the soil profile (Aggarwal et al., 2017). The sensors were 

controlled remotely to collect data and to monitor their performance. 

Sensor locations were selected based on the farmers’ experience, visual conditions in the fields, 

soil texture, topography, and ten years of historical yield data, to capture soil water variability in 

crop fields and to find temporal stability in soil water measurements to determine an irrigation 

strategy during the growing season. Initially, 28 and 23 sensors, respectively, were installed in the 

corn and cotton fields. However, due to errors in measurement, bursting of sensors, and other 

problems, only 17 and 18 sensors, respectively, in the corn and cotton fields were considered in 

good condition for this study. Hourly soil water matric potential was measured from 16 May to 12 
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August 2018 in the cornfield and from 4 June to 18 October 2018 in the cotton field. These hourly 

measurements were converted to daily average data at each location for the respective depths 

(Kumar et al., 2020; Li et al., 2019). 

The soil matric potential data were converted into soil water data using the van Genuchten model 

(van Genuchten, 1980). To use the van Genuchten model (eq. 1), soil water retention curves were 

developed for each depth (0-15 cm, 15-30 cm, and 30-60 cm) for both fields: 

 𝜃(ℎ) =  𝜃𝑟 +
𝜃𝑠 − 𝜃𝑟

[1 + (𝛼|ℎ|)𝑛]1−1 𝑛⁄
 (2.1) 

where 𝜃(ℎ) is soil water (cm3cm-3), i.e., volumetric soil water content, ℎ is soil matric potential 

(cm), 𝜃𝑟 is residual soil water content (cm3cm-3), 𝜃𝑠 is saturated soil water content (cm3cm-3), 𝛼 

and 𝑛 are shape parameters estimated from the soil water retention curve. 

Undisturbed soil samples were collected at each depth to develop soil water retention curves using 

a hydraulic property analyzer (HYPROP 2, Meter Group, Pullman, Wash.). The intact soil cores 

were saturated for at least 24 h before running the experiment. Disturbed soil samples were 

collected to measure permanent wilting point using a dew point hygrometer (WP4C PotentiaMeter, 

Meter Group) (Lena et al., 2020). 

The fields were equipped with remotely controlled center-pivot irrigation systems. The cornfield 

was equipped with a 625 m Reinke center-pivot irrigation system (Reinke Manufacturing Co., Inc., 

Deshler, Neb.), and the cotton field was equipped with a 195 m Valley center-pivot irrigation 

system (Valmont Irrigation, Valley, Neb.). Both irrigation systems had mid-elevation spray 

application (MESA) sprinklers equipped with pressure regulators. The center-pivots were operated 

by the farmers to schedule irrigation during the growing season. Although the sensors and center-
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pivots were controlled remotely, the research team often visited the fields to verify the irrigation 

operations and to repair the sensors. 

 

Figure 2.1 Study sites (corn and cotton fields) showing Watermark sensor locations and center-

pivot irrigation boundaries during the growing season. 

2.3.3 Weather Data 

Due to spatial and temporal variation in precipitation (Kumar, 2016; Ridolfi et al., 2020), an 

automatic weather station (Vantage Pro2 Plus, Davis Instruments, Hayward, Cal.) was installed 

near each field to record meteorological parameters. Precipitation, temperature, and solar radiation 

were recorded at 15 min intervals and converted to a daily time step. Evapotranspiration (𝐸𝑇𝑜) 

(FAO-56 Penman-Monteith equation, Allen et al., 1998) was measured at hourly intervals and 
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converted to a daily time step. The annual precipitation recorded in the cornfield in 2018 was 1622 

mm, with a maximum monthly precipitation of 285 mm in February and a minimum of 22 mm in 

July. The total precipitation recorded in the cornfield was 582 mm during the 2018 growing season 

(April to October). The annual precipitation recorded in the cotton field in 2018 was 1679 mm, 

with a maximum monthly precipitation of 249 mm in February and a minimum of 48 mm in 

January. The total precipitation recorded in the cotton field was 617 mm during the 2018 growing 

season. According to historical records (2006 to 2018) of average precipitation, the 2018 growing 

season was considered a wet season. 

Crop evapotranspiration (𝐸𝑇𝑐) was determined using the FAO-56 method for both fields (eq. 2) 

(Allen et al. 1998): 

 𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜 (2.2) 

The growing degree days (GDD)-determined growth stages and associated crop coefficients (𝐾𝑐) 

estimated using a smart irrigation application for cotton were used to calculate 𝐸𝑇𝑐 (Vellidis et al., 

2016). The growth stages were assessed for corn during field visits to determine the associated 𝐾𝑐 

used to calculate 𝐸𝑇𝑐 (Irmak, 2017). The GDD was estimated using temperature measurements 

(Anandhi, 2016). Figure 2.2 shows precipitation and irrigation with 𝐸𝑇𝑐 data in both fields. Figure 

2.3 shows cumulative water input (sum of precipitation and irrigation) and loss (𝐸𝑇𝑐) in both fields 

during the growing season. The total amount of irrigation applied was 66.5 mm (five irrigations) 

in corn and 30.5 mm (two irrigations) in cotton during the growing season. 
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Figure 2.2 Water input (precipitation and irrigation) and loss (crop evapotranspiration) in corn 

and cotton fields during the growing season. 
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Figure 2.3 Cumulative water input (precipitation and irrigation) and cumulative crop 

evapotranspiration in corn and cotton fields during the growing season. Irrigations are indicated 

by the red arrows. 

2.3.4 Methods for soil water variability analysis 

2.3.4.1 Statistical Analysis 

The soil water (𝜃) measured at each location 𝑖 (𝑖 = 1, ,2, …𝑀) and on each day 𝑗 (𝑗 = 1, 2, …𝑁) 

was was used to determine various statistics for this study, where 𝑀 = 17 and 𝑁 = 26 for 

cornfield, and 𝑀 = 18 and 𝑁 = 56 for the cotton field. Various statistics were adopted to 
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minimize the uncertainty and increase confidence in the results. The spatial mean (�̅�𝑗) for each day 

is given by: 

 �̅�𝑗 = 
∑ 𝜃𝑖𝑗
𝑀
𝑖=1

𝑀
 (2.3) 

The temporal mean (�̅�𝑖) for each location is given by: 

 �̅�𝑖 = 
∑ 𝜃𝑖𝑗
𝑁
𝑗=1

𝑁
 (2.4) 

 

The spatial standard deviation (𝜎(𝜃𝑗)) and coefficient of variation (CV(𝜃𝑗)) of soil water for each 

sampling day are given by: 

 𝜎(𝜃𝑗) =  √
1

𝑀 − 1
∑(𝜃𝑖𝑗 − �̅�𝑗)2
𝑀

𝑖=1

 (2.5) 

 𝐶𝑉(𝜃𝑗) =  
𝜎(𝜃𝑗)

�̅�𝑗
 (2.6) 

In the same way, the temporal standard deviation (𝜎(𝜃𝑖)) and coefficient of variation (CV(𝜃𝑖)) can 

be found for each location. 

2.3.4.2 Temporal Stability Statistics 

Vachaud et al. (1985) introduced a relative difference statistic (𝛿(𝜃𝑖𝑗)) to understand the temporal 

stability of measurement locations. This approach identifies representative locations for a study 

area based on observed soil water values. All computations are done separately for individual 

depths. 

The relative difference 𝛿(𝜃𝑖𝑗) for each location 𝑖 and each day 𝑗 can be defined as: 
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 𝛿(𝜃𝑖𝑗) =  
(𝜃𝑖𝑗 − �̅�𝑗)

�̅�𝑗
 (2.7) 

Based on the relative difference, the mean relative difference (𝛿�̅�) and standard deviation of relative 

difference (𝜎(𝛿�̅�)) for each location 𝑖 can be given by: 

 𝛿�̅� = 
∑ 𝛿(𝜃𝑖𝑗)
𝑁
𝑗=1

𝑁
 (2.8) 

 𝜎(𝛿𝑖) =  √
1

𝑁 − 1
∑(𝛿𝑖𝑗 − 𝛿�̅�)

2
𝑁

𝑗=1

 (2.9) 

The mean relative difference (𝛿�̅�) quantifies the departure of soil water at a specific location from 

the field mean soil water and distinguishes whether the location is drier or wetter than the field 

mean during a growing period. A representative location shows a mean relative difference of zero 

and a small standard deviation (𝜎(𝛿𝑖)). Values of (𝛿�̅�) greater or less than zero indicate over- or 

under-estimation of field mean soil water and indicate wetter and drier conditions, respectively 

(Jacobs et al., 2004). A location with a small value of |𝛿�̅�| and 𝜎(𝛿𝑖) is considered representative, 

or temporally stable. The mean relative difference is also defined as an index of the temporal 

variability of soil water. 

A single statistic introduced by Jacobs et al. (2004), called the index of time stability (ITS), was 

used to identify the best sampling location during a growing season. A low ITS value indicates a 

representative, or temporally stable, location for soil water in a field during the growing season. 

The ITS for each location is given by: 

 𝐼𝑇𝑆𝑖 = √(𝛿�̅�
2
+ 𝜎(𝛿𝑖)2) (2.10) 
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Spearman’s rank correlation (𝑟𝑠) has also been widely used to explain the temporal stability of soil 

water in croplands. Spearman’s rank correlation was computed between the soil water at each 

location 𝑖 and the spatial mean soil water on day 𝑗 during the growing season: 

 𝑟𝑠,𝑗 =  1 +
6∑ (𝑅(𝜃𝑖𝑗) − 𝑅(�̅�𝑗))

2
𝑁
𝑗=1

𝑛(𝑛2 − 1)
 (2.11) 

where 𝑅(𝜃𝑖𝑗) is the rank of soil water at location 𝑖 varying in time 𝑗, and 𝑅(�̅�𝑗) is the rank of mean 

spatial soil water during time 𝑗. 

The index of agreement (IA) is a standardized measurement index that was developed by Willmott 

et al. (1985), also known as the Willmott index, to measure the degree of performance of any 

statistical analysis used here for temporal stability representation. It varies from 0 to 1, where 0 

indicates no agreement, and 1 indicates perfect agreement with the data: 

 𝐼𝐴𝑖 =  1 −
∑ (�̅�𝑗 − 𝜃𝑖𝑗)

2𝑁
𝑗=1

∑ (|𝜃𝑖𝑗 −𝑚𝑒𝑎𝑛(�̅�𝑗)| + |�̅�𝑗 −𝑚𝑒𝑎𝑛(�̅�𝑗)|)
2𝑁

𝑗=1

 (2.12) 

Additional criteria widely used in hydrologic simulations were also adopted to test the temporal 

stability of soil water and to test if the spatial mean soil water can be represented by one sensor. 

The goal was to see if these adopted statistics could also provide similar conclusions using 

coefficient of determination (R2), root mean square error (RMSE), Kling-Gupta efficiency (KGE) 

(Gupta et al., 2009; Knoben et al., 2019), and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 

1970): 

 𝑁𝑆𝐸 =  1 −
∑ (�̅�𝑗 − 𝜃𝑖𝑗)

2𝑁
𝑗=1

∑ (�̅�𝑗 −𝑚𝑒𝑎𝑛(�̅�𝑗))
2

𝑁
𝑗=1

 (2.13) 

 𝐾𝐺𝐸 =  1 − √(𝑟 − 1) + (𝛼 − 1) + (𝛽 − 1) (2.14) 
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 𝛼 =
𝜎𝜃𝑖
𝜎�̅�𝑗

, 𝛼 =
𝜇𝜃𝑖
𝜇�̅�𝑗

 

where 𝑟 is the correlation coefficient between the temporally stable sensor and field mean soil 

water, 𝛼 is the variability ratio between the standard deviation of each location (𝜎𝜃𝑖) and the 

standard deviation of spatial mean soil water (𝜎�̅�𝑗), and 𝛽 is the ratio between average soil water 

at each location (𝜇𝜃𝑖) and the average of spatial mean soil water (𝜇�̅�𝑗). The values of KGE and 

NSE range from -∞ to 1. A value close to 1 indicates a perfect association between the data. 

Coefficient of determination, R2, and RMSE, are common and widely used statistics in hydrology; 

therefore, the equations are not shown here. The statistics were evaluated between the soil water 

at each location i and the spatial mean soil water on day j in both crop fields during the growing 

season. This provided another method to verify the temporal stability of the sensor used to 

represent the field mean soil water in each field. The closer 𝑟𝑠, R
2, KGE, and NSE are to 1 and the 

closer RMSE is to zero, the greater the accuracy of the representative sensor for estimating field 

mean soil water. 

The number of sensors required to estimate average soil water within a certain absolute error limit 

can be determined for the maximum soil water variability through implicit relationships developed 

by Wang et al. (2008): 

 𝑁𝑅𝑆 = 𝑡1−𝛼 2⁄ ,𝑁𝑅𝑆−1
2 × (

𝜎(𝛿𝑗)
2

𝐴𝐸2
) (2.15) 

where 𝑡1−𝛼 2⁄ ,𝑁𝑅𝑆−1
2  is value of t-distribution of 𝛼 significance and AE is absolute error. 

2.3.4.3 Factors Responsible for Soil Water Variability 
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Meteorological parameters were used in this study to find correlations with field mean soil water 

during the growing season. These meteorological parameters were recorded for both fields. 

Topographic and soil parameters, including elevation, slope, electrical conductivity (EC, measured 

with a V3100 meter, Veris Technologies, Salina, Kans.) at shallow (0-30 cm) and deep (0-90 cm) 

depths in the soil profile, and sand, silt, and clay percentages were also used to investigate 

correlations with mean soil water. The elevation data were collected using a John Deere StarFire 

6000 system (Deere and Company, Moline, IL, USA) (a real-time kinematic GPS with horizontal) 

installed on the harvesters. The slopes of both fields were estimated using ArcGIS (ver. 10.3.1) 

(Esri, Redlands, Cal.). Spearman’s rank correlation was used to find significant correlations 

between the parameters and mean soil water in both fields (Majdar et al., 2018) to evaluate the 

significant factors that need to be considered in irrigation scheduling. 

 

2.4 Results and Discussion 

2.4.1 Spatial Variability in Soil Water 

Figure 2.4 shows the soil water in both fields at different depths at various locations during the 

growing season. The box and whisker plots show variations in soil water at each sensor location 

with maximum, minimum, median, and upper and lower quartiles. Soil water varied from location 

to location within each field, and sensor 30 (S30) indicated the minimum average soil water in the 

entire soil profile in the cornfield (fig. 2.4a to 2.4c). This variation in soil water from one location 

to another could be due to differences in soil properties, such as hydraulic conductivity (Heathman 

et al., 2012). However, due to precipitation and irrigation (Heathman et al., 2012; Shen et al., 

2016), the deepest soil layer (30-60 cm) held greater mean soil water, followed by the 15-30 cm 

and 0-15 cm soil depths in the cornfield (fig. 4a to 4c and 5a). In the cotton field, sensor 3 (S3) 

indicated the minimum average soil water at the 0-15 cm and 30-60 cm depths (fig. 2.4d to 2.4f). 
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Sensor 18 (S18) indicated the maximum average soil water at the 0-15 cm and 15-30 cm depths 

(fig. 2.4d to 2.4f). The variation in soil water with location might be due to differences in soil 

properties and cover crops in the cotton field (Yetbarek and Ojha, 2020). The least variation in soil 

water (fig. 2.4b and 2.4e) was observed at the 15-30 cm depth in both fields. 

 

Figure 2.4 Box plots of soil water variability in the (a-c) cornfield and (d-f) cotton field during 

the 2018 growing season. 

The variation in spatial mean soil water (fig. 2.5) at different depths could be linked to the changes 

in daily precipitation, irrigation, and (𝐸𝑇𝑐) in both fields during the growing season. The 

fluctuations in standard deviation (fig. 2.6) at different depths were due to variation in soil water 

caused by water input and losses. For example, in the cornfield on June 15, an increase in soil 

water (fig. 2.5a) at the 0-15 cm and 15-30 cm depths can be observed due to rainfall events (fig. 

2.2a, 12 to 14 June), but a decrease occurred at the 30-60 cm depth. The change in standard 

deviation (fig. 2.6a) can be seen at the 30-60 cm depth, but not in the other two soil depths. 

Likewise, the effects of rainfall or irrigation on soil water and standard deviation were noticed in 
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both fields during the growing season. It is somewhat complicated to understand the trends in soil 

water and standard deviation separately (fig. 2.5 and 2.6). Therefore, we developed relationships 

between soil water and standard deviation in soil water at separate depths (fig. 2.7). 

 

Figure 2.5 Spatial mean soil water distribution in the (a) cornfield and (b) cotton field during the 

2018 growing season. 
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In the cornfield, a convex upward trend with a threshold of 0.345 (vol/vol) was detected between 

𝜎(𝜃𝑗) and �̅�𝑗  at the 30-60 cm depth. An exponentially decreasing trend between CV(𝜃𝑗) and �̅�𝑗  at 

the same depth (fig. 2.7c for CV(𝜃𝑗) vs �̅�𝑗) showed consistency with previous studies at 0-15 cm 

depth with different land uses (Brocca et al., 2012; Dari et al., 2019). A convex trend explains that 

the variability in soil water increases and decreases, respectively, before and after a threshold value 

of soil water. An exponential relationship explains that the variability parameters decrease with 

increasing soil water. However, no trends in CV(𝜃𝑗) and 𝜎(𝜃𝑗) with soil water (�̅�𝑗) were detected 

at the 0-15 cm and 15-30 cm depths in the cornfield (fig. 2.7a and 2.7b for CV(𝜃𝑗) vs �̅�𝑗). Similar 

trends were observed by Brocca et al. (2010). These patterns have not been reported in previous 

studies for any croplands. 
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Figure 2.6 Distribution of standard deviation in the (a) cornfield and (b) cotton field at different 

depths during the 2018 growing season. 

In the cotton field, a convex upward pattern with a threshold of 0.357 (vol/vol) was detected 

between 𝜎(𝜃𝑗) and �̅�𝑗 at the 0-15 cm depth, while an exponentially decreasing trend was detected 

between CV(𝜃𝑗) and �̅�𝑗 (fig. 2.7). For the 15-30 cm and 30-60 cm depths, an exponentially 

decreasing trend of CV(𝜃𝑗) and 𝜎(𝜃𝑗) with soil water (�̅�𝑗) was detected. Similar results regarding 
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the trends in of CV(𝜃𝑗) and 𝜎(𝜃𝑗) with �̅�𝑗 were obtained in previous studies with various land uses 

in the watershed (Brocca et al., 2010; Dari et al., 2019) but not in croplands.  

 

Figure 2.7 Trendline (red lines) between coefficient of variation of soil water and spatial mean 

soil water in the cornfield at (a) 0-15 cm, (b) 15-30 cm, and (c) 30-60 cm (exponential) depths 

and in the cotton field (exponential) at (d) 0-15 cm, (e) 15-30 cm, and (f) 30-60 cm depths during 

the 2018 growing season. These trend lines are the regression lines. 

However, some of the trends in this study did not follow previous studies. For example, a convex 

trend between CV(𝜃𝑗) and �̅�𝑗  in the cornfield and an exponential trend between 𝜎(𝜃𝑗) and �̅�𝑗  in 

the cotton field were detected during the growing season. The relationships detected between 𝜎(𝜃𝑗) 

and �̅�𝑗 in this study did not align with Shen et al. (2016), who showed an increasing trend at 

different depths in cropland in an arid watershed-scale study with a shallow groundwater table 

during the growing season. This contradiction in the relationship between watershed and field-

scale studies has been noted by others (Brocca et al., 2007, 2010). We found that the cotton field 

showed a higher standard deviation in soil water than the cornfield at the 0-15 cm depth during the 
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growing season. We also found that the maximum standard deviation was in the top layer (0-15 

cm) in the cotton field and in the deepest layer (30-60 cm) in the cornfield (fig. 2.6). This might 

be a result of different factors, including differences in precipitation and irrigation, topographic 

and climatic factors, root distribution, water uptake, management practices, and soil hydraulic 

properties in the fields (Heathman et al., 2012; Liu et al., 2018; Shen et al., 2016). 

The variation in soil water between the two fields could be due to differences in soil hydraulic 

properties (Heathman et al., 2012), topography, climate, root distribution, and water uptake within 

the soil profiles (Wang et al., 2010). For example, topography significantly affected soil water in 

the cornfield, but not in the cotton field (table 2.1). The silt percentage, however, significantly 

affected soil water in the cotton field, but not in the cornfield. 

Table 2.1 Spearman’s rank correlation of temporal mean soil water with topographic attributes 

and soil parameters.[a] 

Factor 
Cornfield 

 
Cotton Field 

0-15 cm 15-30 cm 30-60 cm 0-15 cm 15-30 cm 30-60 cm 

Elevation (m) -0.39 -0.31 -0.45*  0.18 -0.15 -0.23 

Slope (%) -0.20 -0.25 -0.32  0.32 -0.04 -0.10 

Sand (%) 0.23 -0.13 -0.25  -0.27 -0.35 -0.08 

Silt (%) -0.06 0.03 0.32  0.50* 0.27 -0.18 

Clay (%) -0.30 0.10 -0.25  -0.01 -0.06 0.16 

EC NA NA NA  NA -0.54* -0.47* 
[a] Asterisks (*) indicate significance at the 0.1 level, NA = not available. 

The corn and cotton fields exhibited maximum spatial variation at the 30-60 cm and 0-15 cm 

depths, respectively, during the growing season. This might be due to topographic differences in 

the cornfield and the cover crop in the cotton field. Cover crops help to retain water in the surface 

soil layer while minimizing soil evaporation (Heathman et al., 2012). Furthermore, topography 

had a significant effect on soil water at the 30-60 cm depth in the cornfield (table 2.1) but no 

significant effect in the cotton field. Likewise, silt percentage in the cotton field had a significant 
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effect on soil water at the 0-15 cm depth. Silt holds more water than sand due to its finer texture. 

Hence, it can be concluded that the standard deviation was substantially dependent on soil water 

rather than soil depth during the growing season. 

Furthermore, the impacts of different canopy structures, crop types, root water uptake, and 

atmospheric exposure of the surface, as well as precipitation and irrigation, help to strengthen the 

spatial homogeneity and reduce the standard deviation (Liu and Shao, 2014; Vereecken et al., 

2014; Wang et al., 2015; Zucco et al., 2014). One of the reasons for the spatial variability in both 

fields could be the no-tillage management in both fields, and the cover crop in the cotton field 

(Heathman et al., 2012). This is discussed in more detail later. 

2.4.2 Temporal Stability of Soil Water 

A representative of the mean soil water is required to understand the temporal stability of soil 

water in the two crop fields during the growing season. A relative difference approach was used 

to study the temporal stability. Therefore, statistics including 𝛿�̅�, 𝜎(𝛿𝑖), and 𝐼𝑇𝑆𝑖 were evaluated 

and compared for all sensor locations in both fields. The 𝛿�̅� and 𝜎(𝛿𝑖) values for each sensor 

location were ranked in ascending order with their respective depths (fig. 2.8). The |𝛿�̅�| value 

ranged from 0.001 to 0.155 in the cornfield and from 0 to 0.164 in the cotton field. The 𝜎(𝛿𝑖) value 

ranged from 0.015 to 0.128 in the cornfield and from 0.009 to 0.083 in the cotton field. The 𝐼𝑇𝑆𝑖 

value ranged from 0.018 to 0.180 in the cornfield and from 0.010 to 0.165 in the cotton field. The 

𝛿�̅� and 𝐼𝑇𝑆𝑖 value agree in identifying the most representative sensor in both the fields. 
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Figure 2.8 Rank ordered mean relative difference and index of temporal stability of soil water in 

the (a-c) cornfield and (d-f) cotton field. Error bars show standard deviations in relative 

difference. 

Tables 2.2 and 2.3 list the Spearman’s rank correlation (𝑟𝑠) values between different soil depths to 

evaluate the spatial correlations for 𝛿�̅�, 𝜎(𝛿𝑖), and 𝐼𝑇𝑆𝑖. Table 2.2 shows that 𝑟𝑠 was significant 

between all soil depths at a significance level of 0.05 in the cornfield. It showed that the spatial 

pattern in soil water was correlated between among all soil layers. However, in the cotton field, 𝑟𝑠 

was not significant between the 0-15 cm and 30-60 cm depths for 𝛿�̅� and between all soil depths 

for 𝐼𝑇𝑆𝑖. All the significant correlations were positive for all soil depths. Although the spatial 

patterns were not consistent with soil depth in both fields, the 0-15 cm and 15-30 cm depths showed 

stronger correlations compared to other depths in the cornfield. 

Table 2.2 Matrix of Spearman’s rank correlation coefficients between soil depths in cornfield. 

All correlations are significant at the 0.05 level. 

 Soil Depth (cm) 

Statistics  15-30 30-60 

𝛿�̅� 0-15 0.87 0.82 
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15-30 - 0.81 

𝜎(𝛿𝑖) 
0-15 0.68 0.65 

15-30 - 0.61 

𝐼𝑇𝑆𝑖  
0-15 0.65 0.58 

15-30 - 0.72 

Table 2.3 Matrix of Spearman’s rank correlation coefficients between soil depths in cotton field. 

Asterisks (*) indicate significance at the 0.05 level. 

 Soil Depth (cm) 

Statistics  15-30 30-60 

𝛿�̅� 
0-15 0.66* 0.17 

15-30 - 0.50* 

𝜎(𝛿𝑖) 
0-15 0.70* 0.60* 

15-30 - 0.69* 

𝐼𝑇𝑆𝑖  
0-15 0.23 -0.19 

15-30 - 0.26 

Values of 𝛿�̅� that are close to zero and relatively small values of 𝜎(𝛿𝑖) and 𝐼𝑇𝑆𝑖 indicate temporal 

stability of soil water. These ranges sometimes mislead the results to define a location as 

temporally stable that could represent the spatial mean soil water (Dari et al., 2019). Therefore, to 

verify if a representative location was temporally stable, additional statistical criteria were adopted, 

including 𝑟𝑠, R
2, RMSE, IA, KGE, and NSE, between a representative location and the spatial 

mean soil water (table 2.4). In the cornfield, sensor 8 (S8) was found to be temporally stable at all 

soil depths (fig. 2.8a to 2.8c) and can therefore be used as a representative sensor location to 

estimate mean soil water in the cornfield during the growing season (fig. 2.9a to 2.9c). This may 

be due to soil hydraulic properties at S8 that are similar to the mean soil hydraulic properties, 

combined with soil homogeneity and soil water in the field (Yetbarek and Ojha, 2020). The 

adopted statistics verify that S8 is the best representative sensor and also support the relative 

difference approach (table 2.4). Sensors S7, S9, S18, S22, S23, and S30 were always dry, while 

sensors S4, S5, S10, S12, S13, S21, and S24 were always wet for the entire soil profile. This 

variation in dryness and wetness indicated soil heterogeneity from location to location and 
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homogeneity within the entire soil profile at particular locations. Topographic differences can also 

cause such variations in the dryness and wetness of sensors. However, the rest of the sensors were 

in a transitioning phase of dry and wet at different depths. Sensor S30 was the driest at all soil 

depths, while sensor S13 was the wettest in the upper two soil layers during the growing season. 

Table 2.4 Summary of temporal stability statistics between field mean soil water and 

representative sensor. 

Statistics 
Cornfield (S8) Cotton Field (S1) 

0-15 cm 15-30 cm 30-60 cm 0-15 cm 15-30 cm 30-60 cm 

𝑟𝑠 0.84 0.75 0.95 0.95 0.98 0.96 

R2 0.76 0.85 0.97 0.9 0.97 0.94 

RMSE 0.007 0.009 0.007 0.053 0.011 0.004 

IA 0.9 0.93 0.99 0.42 0.96 0.98 

KGE 0.76 0.68 0.94 0.84 0.8 0.89 

NSE 0.7 0.79 0.95 -9.07 0.85 0.93 

In the cotton field, sensor S1 was temporally stable at all depths during the growing season (fig. 

2.8d to 2.8f), and it can be used as a representative sensor location to estimate the mean soil water 

in the cotton field (fig. 2.9d to 2.9f). Although S1 had 𝛿�̅� and 𝐼𝑇𝑆𝑖 values of 0.14 at the 0-15 cm 

depth (fig 2.8d), it provided the most accurate spatial mean soil water at all depths. Sensor S1 

showed temporal stability at deeper soil layers in the cotton field (table 2.4). However, according 

to the relative difference approach, no sensor showed a perfect zero value for 𝛿�̅� in the top soil 

layer (fig. 2.8d), which suggests that no sensor was temporally stable at the 0-15 cm depth. The 

IA and NSE values confirmed this lack of temporal stability at the 0-15 cm depth (table 2.4). 

However, 𝑟𝑠, R
2, RMSE, and KGE presented convincing evidence to consider S1 a representative 

sensor at the 0-15 cm depth. Therefore, S1 can be considered a temporally stable location at all 

soil depths, and it can be used as a representative sensor location to estimate mean soil water in 

the cotton field during the growing season. Sensors S3, S19, and S22 were always dry, while sensor 

S18 was always wet for the entire soil profile during the growing season. Sensor S3 was the driest 
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at the 0-15 and 30-60 cm depths, while sensor S18 was the wettest in the upper two soil depths in 

the cotton field during the growing season (fig. 2.8d to 2.8f). Other sensors similar to S1 were also 

able to produce the mean soil water (fig. 2.9d to 2.9f), but the statistical parameters were not as 

good as for S1. 

Table 2.5 Soil silt content and soil electrical conductivity (EC) at a representative sensors (S1) in 

cotton field with respect to field average. 

Soil Depth Sensor S1 Field 

(cm) Silt (%) EC Silt (%) EC 

0-15 53.8 NA 54.4 NA 

15-30 52.65 18 47.55 16 

30-60 49.48 44.54 54 51 

 

Figure 2.9 Relation between spatial mean soil water and representative sensors in the cornfield 

(sensor S8) at (a) 0-15 cm, (b) 15-30 cm, (c) 30-60 cm depths, and in the cotton field (sensor S1) 

at (d) 0-15 cm, (e) 15-30 cm, and (f) 30-60 cm depths during the growing season. The red lines 

are regression lines. 

Any sensor that has statistics similar to S8 in the cornfield and similar to S1 in the cotton field, or 

a sensor that can estimate mean soil water, can be used to represent mean soil water using an offset 
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correction to serve as a temporally stable sensor (Heathman et al., 2012; Martínez-Fernández and 

Ceballos, 2005; She et al., 2012, 2015). Therefore, according to the 𝛿�̅�, 𝜎(𝛿𝑖), 𝐼𝑇𝑆𝑖, 𝑟𝑠, R
2, RMSE, 

IA, KGE, and NSE values, because the goal was to find the best representative sensor location to 

estimate mean soil water in crop fields, S8 in the cornfield and S1 in the cotton field were selected 

as temporally stable sensors during the growing season. This decision might help the farmers in 

making decisions to reduce costs and labor during the growing season. The temporal stability 

increased with soil depth in the crop fields (table 2.4), therefore, an intermediate soil layer can play 

significant role for farmers to track soil water during the growing season due to irrigation from the 

upper layer and suction from bottom layer. Sensor S8 in the cornfield was located at an elevation 

of 173 m. The properties of the representative locations (S8 in corn and S1 in cotton) are shown in 

fig. 2.10 and table 2.5.  
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Figure 2.10 Location of representative sensor (S8) in cornfield with respect to slope and other 

sensors in the field. 

2.4.3 Factors Responsible for Soil Water Variability 

The mean soil water was affected differently in the two crop fields. Spearman’s rank correlation 

was estimated between soil water and the parameters considered responsible for the soil water 

variability. The topographic variation in a crop field can be a factor responsible for soil water 

variability, especially in deep soil layers. A high slope causes flow in a lateral direction, as surface 

or subsurface runoff, and reduces infiltration (Huat et al., 2006). The topographic attributes in the 

cornfield showed an impact on soil water variation during the growing season. Sensor S30 was 
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located on a high slope that could have led to surface or subsurface runoff and reduced infiltration, 

resulting in a relatively dry 30-60 cm soil layer. However, sensor S5 was located on a low slope, 

which could have resulted in the wettest 30-60 soil layer in the cornfield. Most of the weather 

variables (ETc, Mean air temperature, etc..) showed a significant positive correlation with soil 

water in the cornfield but a significant negative correlation with soil water in the cotton field. This 

difference might be due to differences in the plant canopies during the growing season, in addition 

to variation in topography, climate, root system, soil properties, and size of the fields. 

The ETc was significantly poorly correlated (-0.33) with soil water at the 15-30 cm depth in the 

cornfield (table 2.6). However, ETc showed a significant moderate correlation (-0.60 to -0.67) with 

soil water at all soil depths in the cotton field. The ETc showed a significantly higher correlation 

with soil water at the 15-30 cm depth in both fields, which suggests a great influence of ETc on 

soil water at the 15-30 cm depth as compared to the other soil depths. This could be because cotton 

has a deeper root system (>90 cm) for water uptake as compared to corn (50 cm) (Wang et al., 

2010). Studies have shown that corn and cotton have shallow and deep root systems, respectively, 

for water uptake (Wang et al., 2010). Root water uptake can be described using the root depths for 

both crops during the growing season, which affects the soil water variation. It has been determined 

that root water uptake increases with root depths greater than 90 cm during the growth stages in 

cotton. However, in corn, the depth of root water uptake increases to 50 cm from the jointing stage 

to flowering but decreases in the full maturity stage. Therefore, the soil water variation between 

the two crops could be due to different root water uptake in the fields during the growing season. 

In addition to the root system, cotton has a small and light canopy during the growing stages as 

compared to corn, which has a long and dense canopy during the growing stages. 
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Table 2.6 Spearman’s rank correlation between spatial mean soil water and meteorological 

parameters.[a] 

Factor 
Cornfield Cotton Field 

0-15 cm 15-30 cm 30-60 cm 0-15 cm 15-30 cm 30-60 cm 

ET (cm) -0.08 -0.33* -0.31 -0.63* -0.67* -0.60* 

Mean air temperature (°C) 0.35* 0.41* 0.42* -0.46* -0.55* -0.53* 

Solar radiation (W m-2) 0.03 0.24 0.29 -0.37* -0.42* -0.39* 

accGDD (°C) -0.19 -0.67* -0.95* 0.39* 0.31* 0.27* 
[a] Asterisks (*) indicate significance at the 0.1 level 

It has also been observed that no-till and cover crops help restore soil water in the soil (Heathman 

et al., 2012). Both fields were under no-till management before seeding. However, the cotton field 

was planted with a cover crop before the growing season, and no cover crop was planted in the 

cornfield. Therefore, the variation in soil water in the fields can also be due to cover crop 

management practices (Heathman et al., 2012). The mean air temperature and solar radiation 

showed stronger correlations in deeper soil layers in both fields. The accumulated growing degree 

days (accGDD) showed an increasing negative correlation with increasing depth in the cornfield 

and a decreasing positive correlation in the cotton field. This was due to the different root 

distributions of the crops, as mentioned previously. 

Different topographic attributes, such as elevation and slope, were considered to evaluate the 

effects of these parameters on soil water variations in both fields during the growing season. The 

sand, silt, and clay percentages and the soil EC were also considered for their effect on soil water. 

In the cornfield, elevation was significantly correlated with soil water at the 30-60 cm depth (table 

2.1), which shows the impact of topography on soil water variation in the deepest soil layer. No 

other field attributes (slope and sand, silt, and clay percentages) were significantly correlated with 

soil water at any soil depth in the cornfield. However, the silt percentage at 0-15 cm, EC at 15-30 

cm, and EC at 30-60 cm showed significant correlations with soil water in the cotton field. This 

might be due to the cover crop in the cotton field, which held water at the surface, along with the 
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silt. No other field attributes (elevation, slope, sand, and clay) were significant in the cotton field. 

The variation in 𝑟𝑠 was found to be due to difference in elevation in the cornfield and to soil 

properties in the cotton field (table 2.1). 

2.5 Summary and Conclusions 

This study of spatiotemporal variability in soil water at three depths (0-15 cm, 15-30 cm, and 30-

60 cm) was performed in two crop fields (corn and cotton) during the 2018 growing season in the 

TVR in northern Alabama. It can be concluded that soil water can be a key variable for determining 

uniform rate irrigation in different croplands. Soil water can be used to optimize the amount, time, 

and rate of irrigation in crop fields during the growing season. The standard deviation did not 

increase with increasing soil water, and same was found by Shen et al. (2016) for all soil depths in 

croplands in their research. The soil water variability in the two fields was substantially dependent 

on soil water in the different soil layers. Therefore, soil water in the intermediate soil layer can 

play a vital role in soil water variability in crop fields due to irrigation from the upper soil layer 

and suction from the bottom soil layer. 

Farmers can reduce the number of sensors installed in their fields to save time, cost, and labor 

during the growing season, and farmers can schedule precise uniform irrigation (right amount and 

right time) considering the entire soil profile. The temporal stability increased with soil depth in 

the crop fields irrespective of the irrigation application and the factors affecting soil water variation 

during the growing season. However, dry, wet, and temporally stable locations need to be 

monitored to understand the spatial variation in soil water in the entire field. After knowing the 

soil water variability, farmers need to decide the number of sensors based on their budget. The 

number of sensors can also be determined based on statistical criteria. Statistical techniques can 
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reduce the number of sensors, but the cost has to be paid by the farmer for sensors. Therefore, we 

suggest that farmers decide the number of sensors based on their budget. 

Using the standard deviation through implicit relationships at absolute errors of 5% and 10%, the 

number of sensors was estimated for both crop fields. Figure 2.11 shows that a maximum of ten 

sensors in the cornfield and six sensors in the cotton field would be required to determine the mean 

soil water with 5% absolute error. Topography can be an influential factor in a field similar to the 

cornfield (topographic variations), which needs to be considered, but not in a field similar to the 

cotton field which was almost level. The number of sensors can also be related to crop types with 

similar root distributions and canopy structures. 

 

Figure 2.11 Number of sensors required in the (a) corn and (b) cotton fields. 

This study was conducted at various depths in two crop fields during a wet season, based on the 

historical average precipitation. Irrigation is expensive. Therefore, we need to investigate the 

spatiotemporal variability of soil water in different growing seasons and in different crops over 

multiple years to help farmers adopt irrigation while reducing the associated cost. We focused on 

60 cm of soil depth in this study. However, to determine the full soil water balance based on the 

entire root depth of a crop, sensors should be installed in soil layers deeper than 60 cm to determine 
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if the measurement of soil water in deeper soil layers (below 60 cm) can improve water use 

efficiency. 
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Chapter 3 

Understand Within-Field Variability in Soil Nutrients for Site-Specific Agricultural 

Management in an Irrigated Cornfield 

(Journal of ASABE) 

3.1 Abstract 

The adoption of precision agricultural practices in Alabama has been increasing in recent years. 

Although challenging, understanding nutrient variability in agricultural fields is important for site-

specific management. This study investigated soil phosphorus (P) and nitrogen (N) variability in 

an irrigated cornfield located in the Town Creek Watershed of the Tennessee Valley Region of 

Alabama, USA during the 2019 growing season. Three different irrigation management zones 

(high yield-HY, moderate yield-MY, and low yield-LY) were delineated based on ten years of 

historical records of corn grain yield, soil texture, and measured topography using the Management 

Zone Analyst (MZA) software. The soil samples at 0-15 cm, 15-30 cm, and 30-60 cm depths were 

collected five different times during the 2019 growing season. Both manure and inorganic fertilizer 

were uniformly applied during the growing season. At all soil depths, the HY and MY zones had 

higher soil nutrient concentrations than the field average nutrient concentration. However, the LY 

zone had below field average soil nutrient concentration in the entire soil profile. The whole above-

ground plants without grain in HY and MY zones had higher than average and the plants in the 

LY zone had lower than average nutrient concentrations throughout the cornfield. This site-

specific nutrient variation in these zones was due to within-field terrain attributes, differences in 

soil properties, and surface runoff losses. A significant difference was recorded in the corn grain 

yield in the HY and LY zones of the field. Two extreme groups of nutrients were found in the 

cornfield similar to irrigation management zones (HY and LY). A zone with a higher yield also 
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had higher soil and plant nutrients in the zone (HY), and a zone with a lower yield had lower soil 

and plant nutrients in the zone (LY). Incorporating soil nutrient variability for site-specific 

management in management zone delineation can help with reducing nutrient application and 

nutrient loss, and improving yield. This study supports adoption of precision agricultural 

management practices based on in-field nutrient variability across the cornfield during the growing 

season. 

3.2 Introduction 

The world population is approximately 7.9 billion in 2022 with an average population growth rate 

of 0.9% annually (United States Census Bureau, 2022). Increasing population necessitates 

increasing crop grain yield. Precision management of agricultural practices, importantly nutrient 

and water management, during a growing season can help increase crop yield. Site-specific crop 

management is an important element of precision agriculture, which aims to manage within-field 

variability, increase crop productivity, reduce average production costs while optimizing 

resources, and foster environmental sustainability, thus improving land-use efficiency (Serrano et 

al., 2011). Farmers have been conventionally adopting a single rate for fertilizer or manure and 

irrigation application within a field. However, this uniform application leads to excessive nutrients 

or water in some areas and inadequate nutrients and water in others due to variability within the 

field (Mallarino and Wittry, 2004). Although farmers have been adopting uniform applications for 

irrigation and nutrients, they have been facing the issue of crop yield variability across the field 

and inadequate productivity in some parts compared to others. Such agricultural systems are 

inefficient and need to be improved with the aim of precision agricultural management. The 

irrigated land area has expanded by 5% in the last 15 years in the United States (USDA-NASS, 

2019). However, the southeastern USA represents only 10% of the total irrigated land in the United 
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States. Although Alabama has a relatively small amount of irrigated land, irrigation adoption has 

increased by 25% from 2012 to 2017 (USDA-NASS, 2019). The future forecast of precipitation 

data showed the 14% increment in the annual average of precipitation by 2059, which would alter 

the time, erosivity characteristics, and distribution of the precipitation events (Takhellambam et 

al., 2021, 2022). The distribution of precipitation over the growing season is important to avoid 

water stress and meet crop water demand (Kumar et al., 2020, 2021b). Therefore, irrigation 

adoption has been increasing to help farmers to improve water use efficiency, avoid water stress, 

maintain adequate soil moisture, and reduce nutrient loss. Thus, knowing the within-field 

variability in soil nutrients, the adopting nutrient management practices (Serrano et al., 2011), and 

appropriate irrigation practices can help with improving nutrient availability to plants, reducing 

contamination of surface water due to surface runoff, and reducing pressure on freshwater 

availability during the growing season (Yost et al., 2019). 

Soil nutrients are significant elements that support plant growth and crop productivity. 

Macronutrients (P, N, and K) are required in large quantities and are the focus of many 

interventions, unlike micronutrients (Fe, Mn, and Zn, etc.) that are required in small quantities. 

The deficiency of micronutrients can result in severe crop failure, while excess levels can lead to 

health hazards (Mathew et al., 2016). Inadequate management of macronutrients limits crop yield 

and causes loss of soil productivity. Proper and effective management of macronutrients and 

assessment of their effects on crop yield and environmental quality requires an understanding of 

their variability in concentration across the field (Morales et al., 2014). Phosphorus (P) and 

nitrogen (N) are essential macronutrients for plant growth, which affect crop yield. However, 

excess application of these nutrients in agricultural fields leads to contamination of surface and 

groundwater (Hanrahan et al., 2019) locally, regionally, and globally. Several factors are 
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responsible for nutrient loss from agricultural fields, including fertilizer application method, rate, 

and timing; irrigation rate; field topography; and soil properties (Hanrahan et al., 2019; Umali et 

al., 2012; Williams et al., 2018). To reduce nutrient loss in surface runoff, it is recommended not 

to irrigate soon after fertilizer application, and not to apply fertilizer or manure in any form before 

an impending rain event (Schröder et al., 2004; Sharpley, 1997; Smith et al., 2007). For surface 

application of manure, however, it is important to move these nutrients further into the soil where, 

for example, ammonia volatilization would be minimized. The longer the time between fertilizer 

or manure application and rainfall or irrigation, the smaller the nutrient loss in surface runoff 

(Schroeder et al., 2004). Therefore, understanding nutrient variability is key for site-specific 

management to help minimize nutrient input, and discourage constant rate application throughout 

the field without considering variability in crop yield, which can benefit farmers by decreasing 

production costs with the added advantage of environmental protection.   

The levels of P and N vary temporally and spatially within a field (Bogunovic et al. 2014; Gao et 

al., 2019; Su et al. 2018; Umali et al. 2012). Many studies have investigated spatial variation in 

nutrient levels in cropland, but few studies have focused on spatiotemporal variations within the 

same cropland during a growing season (Su et al., 2018). Therefore, more studies on variability in 

soil nutrients in cropland at various growth stages during a growing season are needed to help 

farmers to increase crop yield and reduce nutrient losses. Nutrient uptake for plant growth depends 

on nutrient availability in soil across the field (Gallardo and Paramá, 2007; Su et al., 2018). The 

accumulation of nutrient proportion in the plants depends on their availability in the soil (Razaq et 

al., 2017; Tewolde et al., 2019). If fertilizer application is not managed properly, the plant’s ability 

to take other nutrients from soils is reduced, and water quality is degraded due to surface runoff 

loss (Harmel et al., 2009). Also, inadequate P and N concentration in the plants negatively affects 
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the plant and root growth development, and consequently crop yield (Malhotra et al., 2018; Razaq 

et al., 2017). The leaching of nutrients in agricultural fields depends on soil physical 

characteristics, (Chakraborty et al., 2020) and the strength of binding forces between nutrients and 

soil (King et al., 2015). Understanding site-specific management of soil nutrients in agricultural 

fields has been a hot topic but challenging to study around the globe (Su et al., 2018) for adopting 

precision management practices. Various experiments have been performed to study nutrient 

variability from plot to watershed scales to compare nutrient levels between plots, fields, and 

watersheds. However, studies on temporal variability with implications on crop yield variability 

are still scarce, and the results from controlled experiments have limited applicability to the actual 

field. It is important to understand the within-field variation of nutrients at different depths and at 

different times and stages during a growing season (Bogunovic et al., 2014; Su et al., 2018). The 

nutrient uptake in plants varies according to the growth stage of a crop during the growing season 

(Su et al., 2018). The tasseling and silking stages in the corn, for example, are high nutrient 

demanding periods during a growing season. Knowing the nutrient level in the soil at different 

times can help to reduce yield loss or improve yield management. Therefore, it is important to 

investigate temporal variations in soil nutrients in crop fields during the growing season. Due to 

spatial variability in crop yield, it is important to optimize the agricultural systems to achieve the 

food demands by reducing the yield losses or improving yield management. Precision agriculture 

aims to improve site-specific yield management and identify the factors responsible for within-

field variability that reduce the crop yield across the field (Jiang et al., 2021; McEntee et al., 2019). 

Therefore, studies need to investigate the significance of prevailing factors (field attributes, soil 

properties) influencing the nutrient variability, which is necessary for enhancing site-specific 

recommendations in farming practices, improving yield management, delineating management 
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zones, and contributing to the refinement of existing decision support tools. Precision farming 

studies need to fill the gap of inefficient yield productivity in some areas within the field due to 

poorly or uniformly managed agricultural systems. 

Previous studies have focused on nutrient budgeting (quantification of nutrients before and after 

the crop) and variation in different agricultural fields (Bundy and Sturgul, 2001; Hanrahan et al., 

2019). However, less is known about the nutrient variation during the growing season (at various 

stages of the crops) within the same cropland (Su et al., 2018). Therefore, this study investigated 

within-field nutrient (P and N) variability at different soil depths and its impact on crop yield in a 

120 ha cornfield located in Alabama, USA during the 2019 growing season. We quantified levels 

of soil P and N at various times during the growing season to understand spatiotemporal variability 

across the field. The first objective of this study was to determine within-field soil nutrient 

variability at different times and depths in a crop growing period. We hypothesized that soil P and 

N vary greatly within a field even after adopting the same best management practice (BMP) 

throughout the field. The second objective was to identify the factors significantly affecting 

nutrient and crop yield variability. We hypothesized that crop yield is significantly correlated with 

nutrient variability during a growing season. 

3.3 Materials and Methods 

3.3.1 Study Area Description 

This research was conducted in Town Creek (34°43'7.15"N, 87°23'9.36"W) Watershed of 

Lawrence County in the Tennessee Valley Region (TVR) of North Alabama, USA (fig. 3.1). The 

study region is classified as subtropical humid with average annual precipitation of 140 cm 

(“Monthly and Seasonal Climate Information | Southeast Regional Climate Center,” 2020; Kumar 

et al., 2021b). The study was conducted in a 120 ha area of a cornfield during the 2019 growing 
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season. The growing season usually occurs from April to October and the distribution of total 

monthly precipitation over the 2019 growing season is shown in fig. 3.2.  Dekalb® DKC 66-97, 

corn hybrid (Dekalb Genetics Corporation, DeKalb, IL, USA) was seeded with a seeding rate of 

84,000 seeds per ha. The plant and row spacing in the field were 15 cm and 76 cm, respectively. 

Both manure and inorganic fertilizers were uniformly applied in the field during the growing 

season. Poultry litter was broadcasted uniformly on the soil surface at a rate of 4.5 Mg ha-1 using 

a mechanical spreader before the seeding and inorganic fertilizer was applied uniformly two times 

during the crop growing period (table 3.1). The application rate of nitrogen and phosphorus in the 

poultry litter was 105 kg ha-1 and 116 kg ha-1, respectively. The first inorganic fertilizer application 

was applied at the rate of 67 kg ha-1 for nitrogen and 45 kg ha-1 for phosphorus and potassium at 

the time of seeding (table 3.1). The side-dress application was conducted at the rate of 201 kg ha-

1 for nitrogen. The study area was equipped with a remotely controlled 625 m long Reinke center 

pivot irrigation system (Reinke Manufacturing Co., Inc., Deshler, NE, USA) with a mid-elevation 

spray application (MESA) sprinklers fitted with pressure regulators. With the uniform irrigation 

system, Kumar et al. (2020, 2021b) found soil moisture variability in the study field during the 

2018 growing season. Therefore, the center pivot was retrofitted with variable-rate irrigation (VRI) 

technology with solenoid valves to control water application during the 2019 growing season. 

Uniformity testing of the center pivot irrigation system was performed before the growing season 

with the catch can test (Dukes and Perry, 2006; Irmak et al., 2011; Ortiz et al., 2021). Readers can 

follow Ortiz et al. (2021) for detailed and stepwise information. The field was under no-till 

management practices. 
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Figure 3.1 Cornfield with soil sampling locations for nutrient analysis during the growing 

season. HY is high yield zone, LY is low yield, and MY is moderate yield zone. 

3.3.2 Field Measurements and Data Collection 

Due to spatial and temporal variation in precipitation (Ridolfi et al., 2020), a weather station was 

installed near the field to measure precipitation locally during the growing season. Before soil 

sampling for nutrient analysis during the 2019 growing season, the field was delineated in different 

irrigation management zones based on topography, historical yield data, and soil texture (Kumar 

et al., 2021a) (fig. 3.1) using the Management Zone Analyst software (MZA, USDA-ARS, 

Columbia, MO, USA). A similar approach to delineating management zones was adopted by 

Jiménez et al. (2020) in South Alabama and Filho et al. (2020) in Central Alabama. This software 

uses unsupervised fuzzy classification to find homogenous areas with similar attributes using the 

input provided and creates boundaries at transitory areas between the zones (Fridgen et al., 2004). 

After processing the data through MZA software, three zones (namely, high yield-HY, moderate 

yield-MY, and low yield-LY) were identified. The areas covered by HY, MY, and LY zones were 

34 ha, 30 ha, and 50 ha, respectively. To provide the information in the MZA software, elevation 
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data were collected using a John Deere StarFireTM 6000 real-time kinematic GPS receiver (Deere 

and Company, Moline, IL, USA) mounted to the farmer’s grain combine. The field varied in 

elevation from 168 m to 178 m above the mean sea level. The corn grain yield was collected using 

a yield monitor mounted on a combine with a differentially corrected real-time kinematic (RTK) 

GPS system. Based on historical yield data collected by the farmers, we found substantial yield 

variability across the field. Also, the corn grain yield for the 2019 growing season varied from 

10125 kg ha-1 to 18829 kg ha-1 with an average (corresponding to each GPS point value) of 14258 

kg ha-1 in the HY zone, from 9450 kg ha-1 to 17317 kg ha-1 with an average of 13941 kg ha-1 in the 

MY zone, and from 3139 kg ha-1 to 14301 kg ha-1 with an average of 10575 kg ha-1 in the LY zone. 

This corn grain yield was adjusted to 15.5 % moisture. Soil samples from several locations at 0-

15 cm, 15-30 cm, and 30-60 cm soil depths were collected in the field to determine soil texture 

using the hydrometer method (Bouyoucos, 1962). The soil properties were determined for each 

depth. Average soil properties for each zone are summarized in table 3.2. 

Table 3.1 Timeline of the 2019 corn growing season in the crop field. 

SN Task Date Remarks 

1 1st soil sampling March 21, 2019 Pre-plant soil sampling 

2 Poultry litter application March 21, 2019 4.5 Mg ha-1 

3 NPK application March 28, 2019 
67 kg ha-1 N, 45 kg ha-1 P2O5, 

and 45 kg ha-1 K2O 

4 Corn sowing March 28, 2019  

5 2nd soil sampling April 28, 2019 Post-plant soil sampling 

6 Side dressing May 5, 2019 201 kg ha-1 a N 

7 3rd soil sampling June 22, 2019 Silking stage soil sampling 

8 4th soil sampling August 1, 2019 Pre-harvest soil sampling 

9 Corn harvesting August 30, 2019  

10 5th soil sampling September 11, 2019 Post-harvest soil sampling 
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Figure 3.2 Total monthly precipitation received over the 2019 growing season. 

Watermark soil moisture sensors (Irrometer Co., Riverside, CA, USA) were installed to monitor 

soil matric potential at 0-15 cm, 15-30 cm, and 30-60 cm depths. Site-specific deficit irrigation 

was prescribed within the field during the growing season. Irrigation was triggered when there was 

a deficit of about 2.54 cm (as the upper limit) of irrigation depth in the root zone as compared to 

field capacity in any zone within the field. Each zone received a deficit irrigation amount indicated 

by the sensor data in each zone. The reason to use 2.54 cm as the upper limit is that this was the 

maximum capacity of the center pivot irrigation system for applying irrigation in the field. The 

variability in precipitation and irrigation amount received in each zone was captured in soil matric 

potential data, which were used to determine irrigation depth to schedule irrigation. The field 

capacity and permanent wilting point were assumed at soil matric potentials of 33 kPa and 1500 

kPa, respectively, as these are characteristic of  the texture category of the soils. A total of four 

irrigations were scheduled on the cropland during the growing season. Although the total water 
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requirement for corn in Alabama is about 64 cm (Butler and Srivastava, 2007), the total amount 

of water received in the HY, MY, and LY zones was 69.72 cm, 70.10 cm, and 68.78 cm, 

respectively. The distribution of precipitation is very important over the growing season and has 

an impact on irrigation frequency and consequently on crop yield. Therefore, if the precipitation 

is received during a high water demand period, irrigation amount and frequency will be decreased, 

but if the precipitation is received at the beginning or near the end of the growing season, it does 

not have much impact on irrigation. According to Lee (2019), tasseling and silking are the highest 

daily water demand periods for corn during a growing season. In our field, the high water demand 

period (tasseling and silking) occurred from mid-May to mid-June during the 2019 growing 

season, and only 3 cm of precipitation was received during this interval of high water demand. The 

maximum precipitation was received at the beginning (April) and towards the end (July) of the 

growing season. Therefore, irrigation was required to meet the crop water demands. All irrigation 

events happened from May through June in the cornfield. However, no substantial differences 

were observed in the total water received by the HY, MY, and LY zones. Similar conditions have 

been observed by Filho et al. (2020) in Alabama and Irmak et al. (2012) in Nebraska, USA, and 

they triggered irrigation during such periods too. 

After delineating the zones, soil samples were collected in the proximity of the Watermark sensors 

for nutrient analysis (fig. 3.1). A total of 540 soil samples (3 depths x 3 replicates x 3 zones x 4 

locations x 5 sampling times) was collected for analysis before sowing to after harvesting the corn. 

The rationale behind the multiple locations was to capture maximum variability and reduce the 

uncertainty in soil nutrient data. Three replicates of collected soil samples were composited to 

attain a relatively homogenous sample for each individual depth at each location. Above ground 

plant samples (above-ground) were also collected at different corn growth stages in each 
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management zone for nutrient analysis of the plants (Geisseler et al., 2017; Jones and Case, 2018). 

A grid of 1 m x 1 m, which covered two rows, was used in each zone for plant sampling for nutrient 

analysis. According to the guidelines recommended by Geisseler et al. (2017) and Jones and Case 

(2018) for nutrient analysis in corn plant samples, the whole plants in the grid at the V4 stage were 

collected as the first plant sampling. For second and third plant sampling at the tasseling and silking 

stages, leaves opposite and below primary ears were collected. The plant heights and leaf area 

index (LAI) were also recorded in both zones at the silking stage of corn during the growing 

season. The LAI was measured using an LAI-2200 Plant Canopy Analyzer (LI-COR 

Environmental, Lincoln, NE, USA). Undisturbed soil samples were collected in each zone to 

develop soil water retention curves using an HYPROP measurement system (Meter Group Inc., 

Pullman, WA, USA) (Peters et al., 2015). These undisturbed soil samples were collected using 5 

cm deep and 8 cm diameter stainless-steel rings. A detailed procedure for developing soil water 

retention curves is shown in Lena et al. (2021, 2022). 

Table 3.2 Soil properties, sand (%), silt (%), clay (%), soil organic matter (SOM, %), bulk 

density (g cm-3), and pH in each zone. Within each zone, mean values (± standard deviation) of 

various soil properties followed by the identical letter are not significantly different at the 0.05 

significance level. 

Zone Sand (%) Silt (%) Clay (%) Soil texture SOM (%) 
Bulk density 

(g cm-3)[bd] 
pH 

HY 16 ± 9.06 a 47.93 ± 10.65 a 36.07 ± 15 a 
Silty clay 

loam 
3.94 ± 0.40 a 1.60 ± 08 a 5.82 ± 0.60 a 

MY 22.31 ± 6.55 a 40.67 ± 8.06 a 37.02 ± 9.52 a Clay loam 4.18 ± 0.69 a 1.60 ± 06 a 5.13 ± 0.55 b 

LY 30.36 ± 7.86 b 28.87 ± 9.27 b 40.78 ± 8.78 a Clay 4.50 ± 0.78 b 1.67 ± 08 a 5.35 ± 0.68 b 
[bd] Dry bulk density, calculated as mass of oven-dried soil / volume of soil sample. 
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3.3.3 Sample Processing 

In the next step, the composited soil samples were oven-dried and ground using a soil grinder and 

passed through a 2-mm sieve for chemical analysis. The grinder was cleaned with a vacuum 

cleaner between the samples. The soil samples were analyzed for total P, total N, ortho-phosphorus 

(OP), and soil organic matter (SOM). The SOM was determined using the loss-on-ignition method 

(Wright et al., 2008) in the Soil and Water laboratory of the Department of Biosystems Engineering 

at Auburn University. For OP determination, colorimetric analysis (ammonium-molybdate-

ascorbic method) was used (Ahmad et al., 2020; Harmel et al., 2009). The OP ions react with 

ammonium molybdate and antimony potassium tartrate under acidic conditions to form a 

molybdate-phosphate complex. The samples were extracted using distilled water (DI, pH = 6.95) 

for OP analysis with 3 g soil in a 50 mL centrifuge tube. The centrifuge tube was filled with DI 

water up to 30 mL solution of soil and water (1:10::soil:solution). After centrifuging each sample 

at 4600 rpm for 30 minutes at 10 °C or less, samples were filtered through Whatman no. 42 filter 

paper in scintillation vials. The scintillation vials were stored in a refrigerator at 4 °C and analyzed 

within 24 hours for OP. Total P and total N in soil samples were determined by acid digestion 

using persulfate Kjeldahl digesting solution (Dayton et al., 2017, American Public Health 

Association, 1998). All the standard solutions including blanks were also digested to keep a similar 

matrix for the analysis. A 0.5 g sample was digested in a 6 mL digesting solution and centrifuged 

before the analysis. A Lachat automated flow injection analyzer (Quikchem series 2) (Hach 

Company, Loveland, CO, USA) was used to analyze these nutrients in the soil samples. To ensure 

the accuracy of analyses and avoid discrepancies, we ran standard and blank solutions after every 

15 samples. The plant samples were analyzed for total P using ICAP-Open vessel wet digestion 

Digi Block 3000 and for total N using LECO-Nitrogen gas analyzer by Waters Agricultural 
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Laboratories, Inc. (Camilla, GA). Plant samples were oven-dried at 80 °C. The dried samples were 

ground in a Wiley model 4 mill to pass through a 20 mesh (1.0 mm) screen before lab analyses. 

The mill was cleaned with a vacuum cleaner between the samples. 

3.3.4 Hydrological Properties Analysis of the Field 

To understand nutrient variability for site-specific management, the knowledge of within-field 

hydrology is important. Different terrain analyses using collected elevation data were conducted 

to evaluate the significant factors that can affect site-specific nutrient variability and that need to 

be considered in precision nutrient management. The slopes and topographical wetness index 

(TWI) (Beven and Kirkby, 1979) were determined using ArcGIS (version 10.3.1) (Esri, Redlands, 

CA, USA). Maps of TWI and slope were developed to understand the topographical variation in 

these three different zones (fig. 3.3a and 3.3b). TWI explains the potential high and low water 

accumulation areas within the landscape. A low TWI value represents a low water accumulation 

and high slope area, and a high TWI value represents a high water accumulation and relatively 

level area with a low slope (Qin et al., 2011). Maestrini and Basso (2018) found the areas that 

allow water accumulation without runoff and waterlogging exhibits large TWI values. The surface 

drainage lines (fig. 3.3b) were also delineated to understand the direction of the surface water flow 

within the field. 
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Figure 3.3 Terrain maps showing (a) Topographic wetness index (TWI) variation and (b) Slope 

and surface drainage pattern in the cornfield. 

 

3.4 Statistical Analysis  

In this section, we will use the following indices for notation: 

• The sampling time is indexed by 𝑗, with 𝑗 = 1,2, … .𝑁 (where N = 5, number of sampling 

times); 

• The sampling zone is indexed by 𝑘, with 𝑘 = 1,2,3, and the specific sampling location is 

indexed by 𝑖, with 𝑖 = 1,2, … .𝑀 (where M = 12, number of sampling locations); 

• The sampling depth is indexed by 𝑙, with 𝑙 = 1,2,3. 

Considering these notations, it is assumed that the samples analyzed for nutrients are independent 

of each other at the same depth (for example, 0-15 cm soil samples are independent between all 

locations). This assumption is valid because any two sampling locations were at least 

approximately 100 m apart. In addition, we used 𝐶 as a common symbol for nutrient concentration 

in this study. The nutrient concentration 𝐶𝑖𝑗𝑙 at each sampling location 𝑖, each day 𝑗, and each depth 

𝑙 was used to calculate different statistical features to understand the variability in nutrients during 

the growing season. The spatial mean (𝐶�̅�𝑙) for each sampling time was calculated 
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 𝐶�̅�𝑙 =
∑ 𝐶𝑖𝑗𝑙
𝑀
𝑖=1

𝑀
 (3.1) 

The temporal mean (𝐶�̅�𝑙) was calculated as 

 𝐶�̅�𝑙 =
∑ 𝐶𝑖𝑗𝑙
𝑁
𝑗=1

𝑁
 

(3.2) 

The spatial standard deviation (𝜎(𝐶𝑗𝑙)) and coefficient of variation (𝐶𝑉(𝐶𝑗𝑙)) of nutrients for 

each sampling time is given by 

 𝜎(𝐶𝑗𝑙) =   √
1

𝑀 − 1
∑(𝐶𝑖𝑗𝑙 − 𝐶�̅�𝑙)

2
𝑀

𝑖=1

 (3.3) 

 𝐶𝑉(𝐶𝑗𝑙) =   
𝜎(𝐶𝑗𝑙)

𝐶�̅�𝑙
 (3.4) 

In the same way, the temporal standard deviation 𝜎(𝐶𝑖𝑙) and coefficient of variation 𝐶𝑉(𝐶𝑖𝑙) can 

be calculated for each location. The nutrient data were normalized based on the average 

concentration to understand the variation at different sampling locations and at different sampling 

times in the cropland during the growing season. The relative difference, 𝛿(𝐶𝑖𝑗𝑙), for each location 

and time was defined as 

 𝛿(𝐶𝑖𝑗𝑙) =
(𝐶𝑖𝑗𝑙 − 𝐶�̅�𝑙)

𝐶�̅�𝑙
 (3.5) 

Based on the relative difference, the mean relative difference (𝛿�̅�,𝑖𝑙) and standard deviation of 

relative difference (𝜎(𝛿�̅�,𝑖𝑙)) for each location (𝑖) and each depth (𝑙) can be given by 
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 𝛿�̅�,𝑖𝑙 =  
∑ 𝛿(𝐶𝑖𝑗𝑙)
𝑁
𝑗=1

𝑁
 

(3.6) 

 

𝜎(𝛿�̅�,𝑖𝑙) =  √
1

𝑁 − 1
∑(𝛿(𝐶𝑖𝑗𝑙) − 𝛿�̅�,𝑖𝑙)

2
𝑁

𝑗=1

 (3.7) 

To understand the zone-wise nutrient variation within the field during the growing season, the 

results were clustered according to zones based on sampling locations in the respective zones. The 

mean relative difference quantifies the departure of a nutrient in a zone from the average field 

nutrient and distinguishes whether the zone was lower or higher than the mean field nutrient during 

the growing period. A value of the mean relative difference in a zone at a certain depth greater or 

less than zero indicates adequate or inadequate conditions of nutrients concentration in the field, 

respectively. The analyses were carried out at each depth (𝑙) independently. The Spearman’s rank 

correlation (rs) was computed to understand the association between the variables during the 

growing season. 

Finally, in order to consider all effects jointly, and the repeated observations over time, we 

employed a mixed linear model with nested random effects to assess nutrient variation between 

different zones and depths during the growing season. Since all effects are factors that can be 

represented by their respective indices, the model can be written as 

 Cijkl = β0  +  β𝑗 +  β𝑘  +  β𝑙 +  β𝑘𝑙  + γk + γk(i) +  γk(i(l)) + ϵ𝑖𝑗𝑘𝑙 (3.8) 

where β𝑚 is the coefficient of the fixed effect for a general level 

𝑚 (𝑚 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛽 𝑎𝑛𝑑 𝛾 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑠𝑢𝑐ℎ 𝑎𝑠 0, 𝑗, 𝑘, 𝑙), γ𝑚 is the random 

effect for a general level 𝑚, and 𝜖 is the error term. More specifically, β𝑘𝑙 represents the fixed 

effect interaction between zone and depth while γ𝑘(𝑖) and γ𝑘(𝑖(𝑙)), respectively, represent the 
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random effect of location (nested in the zone 𝑘) and depth (nested in the zone 𝑘 and location 𝑖). 

Aside from taking into account the sampling time through the coefficient β𝑗, this mixed linear 

model aims to account for and isolate the dependence in the data due to the repeated measurements 

over time for each depth, location, and zone. By doing so, it is possible to obtain more precise and 

reliable testing for the fixed effects of interest which relate to the effect of time, zone, and depth 

on the nutrient concentration during the growing season. This approach has been adopted and 

promoted in other soil science studies dealing with data collected over different locations in space 

(Slaets et al., 2021). All the statistical analyses were performed using R software (R Project for 

Statistical Computing software (https://www.r-project.org/)) at a 0.05 significance level. Also, 

Moran’s I test (Plant, 2018) was conducted on the residuals of the model to evaluate the spatial 

autocorrelation among them. This test led us to state that the observations have no spatial 

autocorrelation among them. The p-values (0.26, 0.29, and 0.49, for total P, OP, and total N, 

respectively) obtained were too high as compared to 0.05 to reject the null hypothesis of no-

autocorrelation for each nutrient. The Bonferroni correction was used for multiple comparisons 

(Plant, 2018). From now onwards, the corresponding nutrient symbols will replace general 

notation 𝐶. For example, if we discuss soil total P, we will use TP in place of 𝐶 to explain our 

results. 

3.5 Results and Discussion 

3.5.1 Soil P Variability During the Growing Season 

The mean relative difference oin P at three soil layers (0-15 cm, 015-30 cm, and 30-60 cm) of each 

zone, were computed during the growing season, to understand the variation in the entire soil 

profile. Based on the relative difference approach and mixed-linear model, the spatiotemporal 

patterns in total P between the zones across the cornfield were significantly different. According 
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to 𝛿�̅�𝑃 in soil, total P, HY and MY zones had a positive value, and the LY zone had a negative 

value at all three soil depths. For an average condition of soil total P in any zone, 𝛿�̅�𝑃 should be 

zero. Therefore, it explained the adequate condition of soil total P in the HY and MY zones and 

inadequate conditions of soil total P in the LY zone compared to the average soil total P within the 

field during the 2019 growing season (fig. 3.4). The 𝛿�̅�𝑃was +0.17, +0.29, and +0.37 in the HY 

zone in 0-15 cm, 15-30 cm, and 30-60 cm soil profiles, respectively, during the growing season. 

However, in the LY zone, 𝛿�̅�𝑃 was -0.46 in 0-15 cm, -0.53 in 15-30 cm, and -0.38 in 30-60 cm soil 

profile. This pattern of total P variability indicated that the LY zone was low in soil total P relative 

to the average total P concentration in the field during the growing season. The mixed model 

explained a similar pattern of variability in total P during the growing season. The significant 

differences in total P were noticed between HY and LY, and MY and LY zones; however, there 

was no significant difference between HY and MY zones during the growing season. The effects 

of depth, time, zone, and interaction between zone and depth were significant for soil total P in the 

study. The variation in the field topography, soil physical and hydraulic properties, and field 

hydrology (Plach et al. 2019; Reid et al. 2019) resulted in the variable soil P levels across the 

cropland field, which are discussed in the following sections. 
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Figure 3.4 Mean relative difference in soil total P in zones at varying soil profiles during the 

growing season. Error bars represent standard deviation in relative difference. 

The total P data showed that the spatiotemporal mean of total P varied during the 2019 growing 

season, with the mean (CV) of 553 (0.13) mg kg-1, 617 (0.13) mg kg-1, and 257 (0.20) mg kg-1 in 

the 0-15 cm soil profile of HY, MY, and LY zones, respectively. In 15-30 cm soil profile, soil total 

P was 510 (0.10) mg kg-1 in HY, 489 (0.16) mg kg-1 in MY, and 185 (0.14) mg kg-1 in LY zones. 

In 30-60 cm soil profile, soil total P was 467 (0.10) mg kg-1 in HY, 342 (0.27) mg kg-1 in MY, and 

208 (0.23) mg kg-1 in LY zones. Based on descriptive analysis, huge differences in within-field 

variability of soil total P were found across the zones during the growing season. The baseline 

(pre-plant sample) total P concentrations in the 0-15 cm soil profile before the planting were 550 

(0.14) mg kg-1, 601 (0.13) mg kg-1, and 234 (0.24) mg kg-1 in the HY, MY, and LY zones, 

respectively. At the end of the growing season (post-harvest) in the 0-15 cm soil profile, the total 

P concentration were 534 (0.12) mg kg-1, 544 (0.16) mg kg-1, and 236 (0.26) mg kg-1 in the HY, 

MY, and LY zones, respectively. In the middle soil profile (15-30 cm), total P varied from 487 
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(0.12) mg kg-1 at baseline to 530 (0.08) mg kg-1 at end of the growing season in the HY zone. 

However, in the LY zone, the total P varied from 188 (0.13) mg kg-1 at baseline to 180 (0.06) mg 

kg-1 at end of the growing season. At the deepest soil profile (30-60 cm), total P varied from 488 

(0.08) mg kg-1 at baseline to 455 (0.16) mg kg-1 at end of the growing season in the HY zone, from 

331 (0.26) mg kg-1 at baseline to 313 (0.29) mg kg-1 at end of the growing season in the MY zone, 

and 212 (0.25) mg kg-1 at baseline to 214 (0.25) mg kg-1 at end of the growing season in the LY 

zone. The variability in soil total P showed that the HY zone had a greater and LY zone had a 

lower soil total P concentration than the average concentration of soil total P in all depths during 

the growing season, which means soil total P had different spatial variability between the HY and 

LY zones, and this needs to be considered in management zone delineation. It will help farmers to 

make decision with precision farming practices in terms of variable nutrient management of zones 

within a field. Availability of P is rarely adequate for optimum growth and development of plants 

due to soil fixation (Malhotra et al., 2018). Soil OP also had similar spatial variability within HY 

and LY zones. Therefore, according to our analysis, lower soil total P than average in the LY zone 

might have restricted the release of soil total P to OP and limited the supply to the plants in a 

similar proportion as the HY zone. Plants in the HY and LY zones did not accumulate nutrients in 

the same proportion due to differences in the availability of nutrients in soils, which affected the 

growth of the plants. Plants in the LY zone were smaller and had lower total P concentration 

compared to the HY zone due to lower P concentrations available in the LY zone, which impacted 

the crop yield. Serrano et al. (2011) also found the similar pattern of variability in phosphate greater 

and lower than average in a pasture field.  
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Figure 3.5 Mean relative difference in soil OP during the growing season. Error bars represent 

standard deviation in relative difference. 

A similar trend of the mean relative difference in soil total P was also followed by soil OP (fig. 

3.5). The HY zone had maximum, and the LY zone had minimum soil OP within the field. 

However, the MY zone was held between HY and LY zones. It explained the adequate condition 

of soil OP in the HY zone and inadequate conditions in the LY zone compared to average soil OP 

during the growing season (fig. 3.5). The mixed model also explained a similar pattern of 

variability in soil OP during the growing season. The HY zone was significantly higher in soil OP 

as compared to the LY zone. The deeper soil profiles were significantly lower in soil OP as 

compared to the topsoil profile (0-15 cm) in the HY zone. The effects of zone, depth, and time 

were significant for soil OP in the cropland. However, the depth did not have any interaction effect 

with the zones during the growing season. The mean relative difference showed an increasing 

pattern in soil total P and OP with soil depths in the HY zone. It showed the difference in soil P 

concentration increased with increasing soil depth as compared to average soil P concentration 
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within the field corresponding to respective soil profiles during the growing season. However, the 

LY zone always had below average soil P concentrations during the growing season. Differences 

in soil physical and chemical properties across the zones may have caused soil P variability during 

the growing season. The HY zone had a saturated hydraulic conductivity of 63 cm day-1, and the 

LY zone had 9 cm day-1. Within-field hydraulic conductivity variability in the HY and LY zones 

can help explain this variability. The downward movement of nutrients depends on water 

movement, i.e., infiltration and percolation (Defterdarović et al., 2021). A slow rate of water 

movement in the LY zone decreased the flow of nutrients and more opportunity for P fixation. 

Therefore, soil OP differences increase with increasing soil depth in the LY zone compared to the 

HY zone. Lower soil OP in the root zone reduced the nutrient uptake by plant roots, which affected 

the plant and root growth. The concentration of P affects plant reproduction, plant stalk strength, 

plant growth, and crop yield (Beegle and Durst, 2014). It was noticed that the plants in the LY 

zone were smaller in height than in the HY and MY zones. According to the average plant height 

measurements at the silking stage, the plant height in the HY and LY zones were 225 cm and 195 

cm, respectively. Also, the LAI was 4.13 cm2 cm-2 and 3.34 cm2 cm-2 in the HY and LY zones, 

respectively. Phosphorus is required for the growth and development of plants (Dhillon et al., 

2017). It is also necessary for energy transfer produced through photosynthesis to be used for 

reproduction (Malhotra et al., 2018). Availability of P in soil affects plant uptake and consequently 

plant and root growth (Razaq et al., 2017). This showed that an inadequate amount of P decreased 

the plant growth, and energy transfer for photosynthesis, and increased plant stress in the LY zone, 

which ultimately affected crop productivity. Similar results have been reported by Dhillon et al. 

(2017) and Malhotra et al. (2018). The applied fertilizers and manures were washed away due to 

the surface runoff during the growing season since erosion patterns were observed in the LY zone.  



74 

 

3.5.2 Soil N Variability During the Growing Season 

The HY and MY zones had positive values of 𝛿�̅�𝑁 at all three depths (0-15 cm, 15-30 cm, and 30-

60 cm) during the growing season. However, the LY zone had negative values for 𝛿�̅�𝑁 in the entire 

soil profile. The positive values describe the adequate condition of soil total N in the HY and MY 

zones and inadequate conditions of soil total N in the LY zone compared to the average soil total 

N within the field during the 2019 growing season, since the plant height and LAI were smaller in 

the LY zone as compared to the HY zone. In the HY zone, the 𝛿�̅�𝑁 was +0.01, +0.03, and +0.04, 

respectively, in 0-15 cm, 15-30 cm, and 30-60 cm soil profiles during the growing season. 

However, in the LY zone, 𝛿�̅�𝑁 was -0.04, -0.05, and -0.07, respectively, in 0-15 cm 15-30 cm, and 

30-60 cm soil profiles during the growing season. 

 

Figure 3.6 Mean relative difference in soil total N during the growing season. Error bars 

represent standard deviation in relative difference. 

A 𝛿�̅�𝑁 value close to zero represents the average soil total N concentration within the field during 

the growing season. The trend in total N variability showed that the soil total N was lower in the 



75 

 

LY zone and greater in the HY zone compared to the average total N concentration within the field 

during the growing season. Tewolde et al. (2019) found that N accumulation in the plants in 

proportion highly depends on N availability in the soil. Our analysis showed that soil total N was 

not uniformly available throughout the field during the growing season. The HY zone had a higher 

proportion available as compared to the LY zone, which revealed that N also had the corresponding 

spatial variability in these zones similar to P. According to Tewolde et al. (2021), N becomes 

approximately 35% available after applying poultry litter in the same season and enhances the crop 

yield. In our study field, farmers uniformly applied poultry litter first and inorganic fertilizer 

afterward. Levels of N and crop yield were greater in the HY zone as compared to the LY zone in 

all samplings. It was inferred from this analysis that the LY zone always had lower soil total N 

than the HY zone throughout the season, and variable management practices need to be adopted 

in such conditions for precision farming. Similar to P, N is also an important component for 

supporting plant and root growth (Razaq et al., 2017). Plant height and LAI at the silking stage 

were lower in the LY zone than in the HY zone, which revealed that N availability was lower in 

the LY zone for plant uptake and deceased plant growth and development as compared to the HY 

zone. The linear mixed model of soil total N also explained a similar trend across the field during 

the growing season. The linear-mixed model resulted in a lower soil total N in the LY zone than 

in the HY and MY zones during the growing season. It was also found that deep soil layers were 

significantly lower in soil total N than the topsoil profile across the crop field. However, no 

interaction between zones and soil profiles was reported in soil total N. The effects of the zone, 

depth, and time were significant for soil total N in the cropland. However, the depth did not have 

any interaction effect with the zones during the growing season. A significant effect of sampling 

time was observed in soil total N when the sampling was done during post-plant, silking, and pre-
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harvest times. Time as a fixed effect showed a significant effect on soil total N during the growing 

season. This was caused by additional nitrogen application by the farmers as the conventional 

application of inorganic fertilizer during the growing season. The spatiotemporal mean of soil total 

N concentration in the soil profile of 0-15 cm was 3.75 (0.05) g kg-1 in the HY zone, 3.81 (0.04) g 

kg-1 in the MY zone, and 3.57 (0.05) g kg-1 in the LY zone during the 2019 growing season. In the 

15-30 cm soil profile, the total N concentrations were 3.52 (0.05) g kg-1 in HY zone, 3.50 (0.05) g 

kg-1 in the MY zone, and 3.23 (0.06) g kg-1 in LY zone. In the 30-60 cm soil profile, total N was 

3.45 (0.05) g kg-1 in the HY zone, 3.45 (0.05) g kg-1 in the MY zone, and 3.10 (0.08) g kg-1 in the 

LY zone. The positive increasing trend of the mean relative difference in soil total N with 

increasing soil depths was observed in the HY zone. However, a negative increasing trend of the 

mean relative difference in soil total N with increasing soil depth was found in the LY zone during 

the growing season. This trend explained the high soil total N in the HY zone and low total N in 

the LY zone concerning the average soil total N within the field at the corresponding soil depths 

(fig. 3.6). 

3.5.3 Variability in Nutrients Retained in the Plants During the Growing Season  

Levels of soil nutrients provide major guidelines for fertilizer management in current and future 

growing seasons. However, the status of nutrients retained in the plants can be a complementary 

guideline to adopting BMPs for nutrient management and for comprehending the spatial variability 

in the corn grain yield. We investigated the plant total N and total P for variability in nutrients 

retained in the plants at different stages during the 2019 growing season. According to the mean 

relative difference in plant total N and total P, the HY and MY zones had a positive value, and the 

LY zone had a negative value (fig. 3.7). Nutrients which accumulated in the plants had a greater 

concentration in the HY zone and a lower concentration in the LY zone compared to the average 
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concentration of plant nutrients within the field. Nitrogen and P are critical nutrients for plant 

growth and root development, which are important components useful in evaluating the effect of 

nutrients on both plant and root growth. Razaq et al. (2017) found that higher N and P 

concentrations in the plant tissue and application of nutrients in the field significantly affected the 

plant height and root growth. Similarly, we found that plant growth and nutrients in plant tissue 

were lower in the LY zone and greater in the HY zone due to lower soil nutrient concentrations 

available within the LY zone than HY zone. Mean plant heights were 225 cm in the HY zone and 

195 cm in the LY zone. The observed LAI was 4.13 cm2 cm-2 in the HY zone and 3.34 cm2 cm-2 

in the LY zone at silking stage. The plants in the LY zone had a lower possibility of nutrient uptake 

due to lower nutrient concentration available in the soil as found in previous studies (Pereira et al., 

2020; Razaq et al., 2017; Tewolde et al., 2021), which affected the plant height, growth, and 

productivity in the LY zone. Therefore, plants in the HY zone had adequate nutrients and the LY 

zone had inadequate nutrients during the growing season (fig. 3.7). The plant nutrients had a 

similar pattern of variability as in the soil nutrients obtained across the field. This revealed the 

negative impact of nutrient loss in the LY zone on plant growth and crop yield (fig. 3.8). Therefore, 

the results of this study showed that yield in the HY zone was related to adequate soil and plant 

nutrients in the HY zone, and yield in the LY zone was related to inadequate soil and plant nutrients 

in the LY zone during the growing season. 
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Figure 3.7 Mean relative difference in plant nutrients during the growing season. Error bars 

represent standard deviation in relative difference. 

3.5.4 Factors Responsible for Site-Specific Nutrient Variability 

The above-mentioned nutrient variability in different management zones led to the investigation 

of different factors (e.g., topography, soil properties, and hydrology of the field) that caused 

variation within the field. The TWI map (fig. 3.3a) showed lower values of TWI in the LY zone 

which led to a lower concentration of OP (slow conversion of total P into OP due to lower wetness 

for the mineralization process) during the growing season. Also, lower TWI in the LY zone led to 

lower total P and total N concentration in LY and higher TWI in HY led to high total P and total 

N in the zone. This lower TWI affected the mineralization process that is affected by biotic and 

abiotic factors, including organic P substrate availability and the geochemical properties of soil 

(Shaw and Cleveland, 2020). Mineralization is a slow process, and this could have been an issue 

for a decade in the field, which resulted in low plant-available P and N in the LY zone. Ultimately, 
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these long-term processes reduced the productivity in this part of the field. We also calculated rs 

between TWI and the temporal average of soil nutrients to understand the relationship with TWI 

across the crop field (table 3.3). The correlation coefficients were significant in the soil profiles 

for soil nutrients during the growing season. Based on a positive correlation between TWI and 

nutrient concentrations, a higher TWI value in the HY zone was correlated with the higher nutrient 

concentrations in HY, and a lower value of TWI in LY was correlated with the lower nutrient 

concentrations in the LY zone. The soil P had a stronger correlation in upper soil layers than in the 

deep soil layer. This explained the stronger soil P dependency on topographic wetness index (TWI) 

at the upper soil layer than in the deep soil layers. However, soil total N had a stronger correlation 

with TWI in the deep soil layers than in the upper soil layers. This implied the strong soil N 

dependency on TWI in deep soil layers. 

Table 3.3 Correlation coefficients between terrain attributes and soil nutrients in the cornfield. 

Asterisks (*) indicate significance at the 0.05 level. 

  TWI   Slope  

 0-15 cm 15-30 cm 30-60 cm 0-15 cm 15-30 cm 30-60 cm 

Soil TP 0.74* 0.82* 0.76* -0.84* -0.78* -0.56* 

Soil OP 0.80* 0.76* 0.34 -0.71* -0.52* -0.18 

Soil TN 0.64* 0.78* 0.81* -0.68* -0.78* -0.80* 

Erosion gullies were observed in the LY zone during the growth stages and after harvesting, which 

revealed nutrient loss due to surface runoff and topographical variations in the field. The 

topographical variations can be understood using the slope variations in the field (fig. 3.3b). A 

high slope area increases the chance of lateral water movement and reduces infiltration (Huat et 

al., 2006). In our study field, the LY zone had a higher elevation and slope than the HY zone. 

Previous studies have found that higher elevation and steep fields tend to have higher erosion and 

runoff, lower infiltration, and lower soil productivity (Jiang and Thelen, 2004). We found similar 

results in our study, that slope was greater and hydraulic conductivity was lower in the LY zone 
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as compared to the HY zone. The lower hydraulic conductivity and greater slope contributed 

towards the generation of surface runoff in the LY zone. The runoff generation was one of the 

dominant factors for lower nutrient concentration in the LY zone; also reported by Plach et al. 

(2018) and Smith et al. (2007) in their studies. Greater slope and lower TWI values in the LY zone 

did not create the conditions for water accumulation, so greater slope and lower TWI this caused 

loss of nutrients with generated surface runoff. However, the HY zone with greater TWI and lower 

slope had a greater water accumulation condition, which allowed the nutrients to be retained in the 

zone. This lack of surface runoff reduced the loss of nutrients in the HY zone. Therefore, the HY 

zone behaved as a pool for nutrients due to no surface runoff and high water accumulation, and no 

erosion patterns were observed during and after the growing season. 

We also computed rs between slope and the temporal mean of soil nutrient concentrations to 

explain the relationship of soil nutrients with slope across the cropland. The rs values were 

significant for all nutrients except soil OP at 30-60 cm soil layer (table 3.3). A negative correlation 

between nutrient concentrations and slope explained that a lower slope in the HY zone had higher 

nutrient concentrations in the HY zone, and a higher slope in the LY zone had lower nutrient 

concentrations in the LY zone. Similar relationships were obtained in earlier studies conducted in 

Michigan, USA (Jiang and Thelen, 2004). Less availability of soil nutrients in certain areas of the 

field reduced the crop yield. The weak binding of nutrients with soils due to dominant hydrological 

characteristics (TWI, slope, runoff) and soil physical properties in the LY zone enhanced losses. 

The surface runoff, TWI, erodibility, and slope across the field induced nutrient loss during the 

growing season. The hydrologic perspective also suggests that soil profile with higher hydraulic 

conductivity will have a high infiltration rate and reduced runoff and vice versa (Cai and Ugai, 

2004; Duong et al., 2019; Qi and Vanapalli, 2015). According to soil hydraulic properties in all 
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three zones, the LY zone had lower hydraulic conductivity, higher slope, and lower TWI. Based 

on water input data, the entire field received the same precipitation events and the LY zone 

received the least irrigation amount during the growing season; however, no significant differences 

were found in irrigation amount at the end of the growing season. When the rainfall intensity is 

greater than the saturated hydraulic conductivity of the soil, surface runoff occurs along the slope 

(Huat et al., 2006). A saturated hydraulic conductivity for the LY zone of 9 cm day-1 induced 

surface runoff, thereby, causing nutrient loss during the growing season. Djodjic et al. (2004) also 

found that higher water movement down and laterally through the soil profile leads to leaching 

faster, compared to slow water movement. It can also be seen from the drainage pattern within 

irrigation zones of the field (fig. 3.3b). We also computed rs between total P and OP in each of the 

zones during the growing season. The correlation coefficients were significant with 0.52 

(p<0.0001) in the HY zone and 0.42 (p<0.0001) in the LY zone. It was noticed from the correlation 

that HY had a better association between soil total P and soil OP than the LY zone during the 

growing season. Low water accumulation, an outward drainage pattern, surface runoff, and lower 

hydraulic conductivity limited water movement in the LY zone as compared to the HY zone, which 

had greater hydraulic conductivity, an inward drainage pattern, and no runoff. Leaching of 

nutrients within the soil layers happens due to surface water infiltration. However, the field 

hydrological characteristics were not conducive to infiltration in the LY zone, which resulted in 

surface runoff with eroded nutrients from the LY zone. A lack of nutrients within the root zone 

reduced nutrient uptake, which negatively affected the plant height and growth during the growing 

season. The inward drainage pattern did not allow water to flow out as overland flow and retained 

the nutrients in the HY zone and worked as a nutrient pool. Therefore, lower slope and higher 

hydraulic conductivity in the HY zone resulted in greater infiltration and nutrient leaching (fig. 
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3.3b) as compared to the LY zone. This increased the nutrient uptake in the root zone and the 

plants in the HY zone had greater nutrient concentration, which enhanced the plant growth in the 

HY zone relative to the LY zone. The effect of nutrient uptake in plants was observed, affecting 

plant height and LAI during the growing season. Plants in the LY zone did not develop (plant 

growth, height and LAI) as fully as in the HY zone, which ultimately caused the variability in 

nutrients and affected the crop yield This will be discussed in following section. 

3.5.5 Impact of Soil Nutrient Variability on Crop Yield 

The soil nutrients varied across the zones. Also, there was spatial variation in crop yield at the end 

of the season. The corn grain yield produced within the field during the 2019 growing season, as 

measured by the combine yield monitor, varied from 3,139 kg ha-1 to 18,829 kg ha-1. The average 

yields (standard deviation) of 14258 (872) kg ha-1 1 in the HY zone was significantly greater than 

the 10575 (2022) kg ha-1 in the LY zone (p < 0.001). The least yield was produced in the LY zone 

(red) and a higher yield was produced in the other two zones (HY and MY) of the field (green) 

(fig. 3.8). The availability of soil nutrients increases and decreases the nutrient uptake by plants 

and adequate nutrient concentration in the plants helps with plant height, growth, and productivity 

(Malhotra et al., 2018; Pereira et al., 2020; Tewolde et al., 2019). In our study, we found that the 

average plant heights at the silking stage of corn were 225 cm and 195 cm with corresponding LAI 

of 4.13 cm2 cm-2 and 3.34 cm2 cm-2 in the HY and LY zones, respectively. Lack of nutrient 

availability in the LY zone limited the plant uptake and reduced the crop growth in the LY zone, 

which caused the corn grain yield differences across the field. 
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Figure 3.8 Corn grain yield variation in the field during the 2019 growing season. The corn grain 

yield was adjusted to 15.5% moisture. The gray areas indicate relatively low land areas in the 

field. 

3.5.5.1 Plant Nutrients and Crop Yield 

We also calculated rs between corn grain yield and plant total P and plant total N during the 

growing season. The tasseling and silking stages of corn are high nutrient demand period in a 

growing season. The plant total P at silking stage had a positive significant correlation of +0.63 

(p<0.0001), which indicated that increasing P increase crop yield. However, the correlation was 

not significant at the V4 and tasseling stages. The plant total N had a positive significant correlation 

of +0.85 (p<0.0001) at the tasseling stage, however, a negative correlation of -0.63 (p<0.0001) 

was at the V4 stage of the corn. This explained that yield had a positive correlation with the nutrient 

uptake by the plants during the growing season. The rs between yield and plant nutrients indicated 
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that higher nutrients retained in the plants at the tasseling and silking stages can increase corn grain 

yield. 

3.5.5.2 Topographical Attributes and Crop Yield 

We also investigated TWI and slope as responsible factors for corn grain yield variability in the 

field. Maestrini and Basso (2018) investigated corn, soybean, wheat, and cotton in the US 

Midwest, and found that areas with higher TWI values resulted in a higher crop yield. We found a 

strong rs of +0.66 (p < 0.02) between the TWI and grain yield in the field. This indicated grain 

yield was affected by topographical wetness in the field. Lower TWI led to low corn grain yield, 

while a higher TWI led to higher corn grain yield in the field. Slope and corn grain yield had a 

negative correlation of -0.85 (p<0.0005), which explained that a higher slope in the field led to a 

lower corn grain yield. Similar results have been found in a study conducted by Jiang and Thelen 

(2004) in a cornfield. Based on the above discussion, the LY zone had a greater slope and lower 

yield than the HY zone. A lower elevation and slope have greater water accumulation and greater 

yield productivity (Jiang and Thelen, 2004; Serrano et al., 2011). In our study field, TWI was lower 

and the slope was greater in the LY zone. The LY zone did not have enough water accumulation 

conditions to release soil nutrients for plant uptake unlike in the HY zone with its lower slope and 

greater TWI, which ultimately had an impact on plant height, LAI, and corn grain yield. The whole 

above-ground plants without grain in the HY zone had greater nutrient concentrations, and plants 

in the LY zone can have the same potential of soil nutrients available to plants if the LY zone can 

be managed in a different way to increase the nutrient concentrations in the soil and reduce the 

losses during the growing season 
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3.6 Summary and Conclusions 

It can be concluded from the study that the soil nutrient availability and nutrient retained in the 

whole above-ground plants without grain did not occur uniformly across the crop field, although 

fertilizers and manure were uniformly applied during the 2019 growing season. The crop growth 

data showed that plants grew proportionally to the soil nutrient availability throughout the field. 

The soil nutrients (P and N) had within-field variability across the cornfield during the growing 

season. Nutrients retained in the plant had a similar pattern of within-field variability in soil 

nutrients during the growing season. Soil nutrients and nutrients in the whole above-ground plants 

variability was correlated with crop yield variability across the cornfield. The HY and MY zones 

had higher nutrients in soil and plants compared to the LY zone. The zone with greater nutrient 

concentrations compared to field average nutrient concentrations had a higher corn grain yield, 

and the zone with a lower nutrient concentration compared to the field average nutrient 

concentrations had a lower corn grain yield. Consistent management practices (irrigation, fertilizer 

application, and manure application) were applied across the field. However, different topographic 

attributes affected soil nutrient availability, soil nutrient loss, nutrient uptake, crop growth and 

development, and corn grain yield across the field. The TWI, slope, and soil hydraulic properties 

were found as factors responsible for within-field nutrient and corn grain yield variability across 

the crop field. Considering nutrient variability in management zone delineation can be an effective 

way to improve precision agriculture adoption during the growing season. Mainly, two extreme 

groups of nutrient variability (HY zone and LY zone) in soil and plants were identified, which can 

play an important role in the site-specific management of nutrients to improve crop yield. 

Therefore, it is of utmost importance to study nutrient variability across crop fields to increase 

crop yield, reduce loss of nutrients, and reduce negative environmental aspects. Improving and 
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optimizing the lower crop yield areas similar to high yield areas can increase productivity from 

the same crop field during the same growing season. 

3.7 Implications for Site-Specific Management 

Certain areas of a field may be more susceptible to nutrient loss (surface runoff loss in our study), 

lower nutrient availability for plant uptake, and, thus, reduce crop yield. For large cropland areas, 

executing uniform BMPs throughout the field fails to obtain uniform nutrient variability and yield 

across the crop field during the growing season. Implementation of different BMPs can improve 

nutrient variability and availability and can also help to improve crop yield. Farmers need to use 

different fertilizer rates and strategies within zones of the field during the growing season. As a 

recommendation, to minimize nutrient losses, improve crop and root growth, reduce negative 

environmental aspects, and increase crop productivity, farmers can use one or multiple 

conservation practices described below. 

• Apply nutrients to meet the agronomic requirements of the crop fields. The surface 

application of nutrient sources needs to be in the zones with a low potential for surface 

runoff. 

• Subsurface application of fertilizers or manures can help nutrients to be held in the soil for 

a longer period during the growing season, especially in runoff-susceptible areas. This can 

include subsurface band application of poultry litter and knifing-in the side-dress 

application of N. 

• The use of multiple irrigation events with lower water application rates might help reduce 

nutrient losses in the zones which have high nutrient loss potential caused by surface runoff 
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during a growing season. This can promote plant health and the field may have the same 

crop maturity time, so crop productivity may be increased. 

• Drip irrigation can be a good irrigation practice in areas that have high nutrient loss 

potential through surface runoff. 

• Fertigation can also be a good option for farmers to reduce energy consumption and 

increase nutrient availability and nutrient use efficiency. 

• Cover crops in the lower nutrient and higher runoff-generating areas may help enhance the 

soil water-holding capacity, increase adsorption of nutrients to soil particles, and improve 

field hydrologic and hydraulic properties. 

• Conservation tillage with cover crops in the LY areas can reduce soil erosion and loss of 

sediment-bound nutrients, conserve soil water, build the soil structure, and improve water 

infiltration. However, tillage with no cover crop increases the disruption in soil structure, 

accelerating the surface runoff and soil erosion, which increase nutrient loss and decrease 

crop yield. 

• No-tillage with cover crops in the lower nutrient and higher runoff generating areas can 

help enhance the soil water-holding capacity, increase adsorption of nutrients to soil 

particles, and improve field hydrologic and hydraulic properties (such as water retention, 

infiltration, and hydraulic conductivity). In Alabama, cover crop residue left in the field 

reduced surface runoff and increased water infiltration by 50 to 800% (SARE, 2007). 
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Chapter 4 

Scheduling Site-Specific Irrigation Using One-Layer Zone-Specific Soil Hydraulic 

Properties and Inverse Modeling 

4.1 Abstract 

The adoption of irrigation practices has been increasing around the globe to meet irrigation water 

demands. Site-specific soil hydraulic properties (SHPs) are critical for determining irrigation 

thresholds and adopting the best irrigation practices. In this study, we optimized two single-layer 

SHPs for two management zones (namely, zone 1 and zone 2) delineated in a crop field using 

topographic attributes, soil texture, and historical crop yield to demonstrate the need for zone-

specific SHPs. The HYDRUS-1D model was coupled with the shuffled complex evolution (SCE-

UA) algorithm to optimize single-layer zone-specific SHPs using multilayered observed soil 

matric potential or soil water pressure head (ℎ) measured using soil moisture sensors in both zones. 

Statistical indices for goodness of fit showed that  single layer SHPs simulate the multilayered ℎ 

during the growing season well. The irrigation thresholds and amounts determined using optimized 

SHPs were used to trigger irrigations in the two zones. Different irrigation scenarios using the top 

(15 cm), center (30 cm), and bottom (60 cm) soil depths as observation nodes were developed 

using the zone-specific optimized SHPs in the HYDRUS-1D model to meet irrigation water 

demand and reduce water stress during the growing season. A reference HYDRUS-1D model with 

actual water input (precipitation + irrigation) and No Irrigation (NI) model with no irrigation input 

were developed and compared for different irrigation scenarios. The ratio of actual root water 

uptake (ARWU) and potential root water uptake (PRWU) were calculated to compare 

improvements in satisfying daily water demand and to reduce the water stress under different 

irrigation scenarios. At 35% soil water depletion (SWD), the optimized irrigation threshold was at 
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an ℎ value of 76 kPa, and the corresponding irrigation amount was 2.18 cm in the zone 1. However, 

in zone 2, the optimized irrigation threshold was at an ℎ value of 59 kPa and the corresponding 

irrigation amount was 1.48 cm. Out of the total irrigation water triggered during the growing 

seasons, greater than 61% and 75% in zone 1 was triggered in July 2018 and in May-June 2019, 

respectively. However, greater than 73% in July 2018 and greater than 72% in May-June 2019 

were triggered in zone 2. Based on the simulations of various irrigation scenarios in HYDRUS-

1D, we found that installing sensors at 15 cm or 30 cm can help meet the daily crop water demand  

in a timely manner since sensors at these depths indicate the changes in ℎ of irrigation thresholds 

much faster than sensors at 60 cm depth and 60 cm depth did not trigger irrigation in many 

irrigation scenarios. This study discusses the importance of critical water demands due to 

distribution of precipitation over the growing season and the need for site-specific irrigation 

management within the field. This study helps us to understand the importance of zone-specific 

SHPs for optimizing soil water dynamics to avoid discrepancies among laboratory determined 

SHPs and predicting the soil water movement in the field, and so determining the irrigation 

thresholds and amounts. 

4.2 Introduction 

Population growth and climate change are expected to increase freshwater demands (FAO, 2016). 

Also, more than 40% of the earth’s population is already experiencing water scarcity problems 

(Kummu et al., 2016). Approximately 70% of available freshwater withdrawal is for meeting 

irrigation needs in agricultural production to meet the food demands. Thus, any improvements in 

current irrigation practices can help conserve limited water resources and promote sustainable 

agriculture (Himanshu et al., 2021; FAO, 2016). The future forecast of precipitation data showed 

the 14% increment in the annual average of precipitation by 2059, which would alter the time, 
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erosivity characteristics, and distribution of the precipitation events (Takhellambam et al., 2021, 

2022). Depending on climate conditions, irrigation water demands vary greatly from arid to humid 

climate regions (O’Shaughnessy et al., 2018; Rolle et al., 2021). In humid climate regions, 

irrigation is needed due to non-uniform rainfall distribution (Sangha et al., 2020), distribution of 

precipitation over the growing season (Filho et al., 2020), and soil moisture variation within a crop 

field during a growing season (Kumar et al., 2020, 2021b). Within-field soil moisture variation 

can be due to the variability in soil properties, vegetation, and topographic gradients (Fontanet et 

al., 2020; Kumar et al., 2021b), which affect the irrigation rate, time, and depth during the crop 

growing period. Since uniform irrigation does not account for within-field variability in soil 

moisture and applies fixed irrigation amounts over the field, it can result in over- and under-

application of water in different parts of a field. Water is expensive and its supply is limited, so 

irrigation needs to be optimized for applying the right amount, at the right place, and at the right 

time. Because of this, although uniform irrigation is currently the most common practice (Kumar 

et al., 2021b), farmers are increasingly adopting modern irrigation practices (Lena et al., 2020), 

for example, variable rate irrigation (VRI) based on management zones within a crop field. 

To adopt VRI as the best irrigation practice, different management zones can be delineated within 

a field based on variations in crop yield, soil type, and topography (Kumar et al., 2021a). This has 

the potential to conserve water by meeting zone-specific crop water demands (Lowrance et al., 

2016; Liakos et al., 2017). A VRI technology can trigger irrigations at zone-specific irrigation 

thresholds depending on plant available water within specific zones. This helps to increase 

irrigation water use efficiency, reduce leaching and runoff, reduce crop water stress, maximize 

crop yield and profitability, and reduce pressure on freshwater resources (Evans and Sadler, 2008; 

Stone et al., 2019; Yost et al., 2019). Sui and Yan (2017) found increased yield using VRI 
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compared to uniform irrigation in a humid climate. However, precise irrigation to meet zone-

specific crop water demand requires continuous monitoring of soil water dynamics within the 

zones (Reyes et al., 2019; Fontanet et al., 2020). 

In the past ten years, the sensor-based irrigation method has received much attention since this 

approach provides real-time soil water status, as soil water content-𝜃 or soil matric potential (soil 

water pressure head)-ℎ, which can be used for uniform irrigation and VRI. Locations of soil 

moisture sensors are selected based on variabilities (soil, topography, yield, etc.) in the field. 

Detailed information about sensor placement can be found in Irmak et al. (2012). Monitoring soil 

water dynamics in real-time not only improves irrigation timing and depth (Irmak et al., 2010), it 

also permits adequate water distribution using the VRI technique (O’Shaughnessy et al., 2018; 

Sharma and Irmak, 2020). To reduce crop water stress and potential crop yield losses, predefined 

soil water depletion (SWD) methods have been used by irrigation experts to determine irrigation 

thresholds using ℎ or 𝜃 (Gu et al., 2020), where irrigation threshold, depth, and time are determined 

by maximum allowable SWD in each management zone (Allen et al., 1998; Irmak, 2016; Sui and 

Yan, 2017). 

In sensor-based irrigation, soil water dynamics in the soil profile can be explained using knowledge 

on the soil hydraulic properties (SHPs), i.e., the soil water retention curve (SWRC) and the 

hydraulic conductivity curve (HCC). Soil hydraulic properties are required to understand root 

water uptake (Šimůnek and Hopmans, 2009) and to determine irrigation thresholds (Wang et al., 

2017; Gu et al., 2020). Using one SWRC and HCC throughout the field does not account for zone-

specific soil water dynamics and zone-specific characteristics in a crop field. Unfortunately, 

determination of both SWRC and HCC and using them to determine irrigation thresholds are rarely 

applied in irrigation applications. Even when these relationships are applied for determining 
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irrigation thresholds, investigations that optimize zone-specific SHPs (SWRC and HCC) and 

quantify their effect on irrigation threshold determination have not been conducted (Lena et al., 

2022). Previous studies, such as Leininger et al. (2019) recommended a soil matric potential (ℎ) 

value of 50 kPa (1 kPa = 10.1972 cm) as an irrigation threshold for very fine sandy loam textured 

soil in Mississippi. Irmak et al. (2016) recommended a range from 20 kPa to 25 kPa for fine sandy 

textured soils and a range from 90 kPa to 110 kPa for silt loam and silty clay loam textured soils 

in Nebraska. However, these studies used SHPs based on either laboratory determinations (raw) 

using undisturbed soil cores (Lena et al., 2022) or estimated based on soil texture and pedotransfer 

functions using particle size fractions (Iqbal et al., 2020). These SHPs were not optimized for 

observed ℎ or 𝜃 in actual field conditions to determine irrigation thresholds and such SHPs cannot 

explain soil water movement within the soil profiles. Also, these studies did not consider 

significance of HCC, which influences the dynamic behavior of soil water movement. Irrigation 

scheduling using non-optimized SHPs does not account for the discrepancies between field 

observations of ℎ or 𝜃; such discrepancies can also result in the determination of irrigation 

thresholds and depths (Evett et al., 2019). 

This study investigated the difference between uniform irrigation and zone-specific irrigation that 

accounts for zone-specific SHPs (both SWRC and HCC) in a farmer’s field. We hypothesized that 

zone-specific irrigation thresholds and amounts greatly vary with optimized SHPs in each zone. 

Since field measurements are onerous, time-consuming, and include uncertainty in the 

measurements, it makes sense to establish a modeling setup to optimize accurate SHPs for zone-

specific characterization, for more accurate irrigation and agricultural water management. Thus, 

for this investigation, we selected two different management zones of a irrigated cornfield. For 

each management zone, we optimized the SHPs using inverse modeling in HYDRUS-1D, a model 
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to simulate soil water and solute dynamics in unsaturated soil media (PC-Progress, 2022), and 

measured ℎ coupled with the Shuffled Complex Evolution (SCE-UA) algorithm. Based on the 

optimized model, we compared the currently applied irrigation schedule (uniform application) 

with many different scenarios to schedule irrigation.  

4.3 Materials and Methods 

4.3.1 Study Area Description 

This research was carried out in a cornfield belonging to a farmer located in the Town Creek 

Watershed in the Tennessee Valley Region of North Alabama, USA. The study region is classified 

as subtropical humid (Cfa, Köppen climate classification) (Kottek et al., 2006) with average annual 

precipitation is about 140 cm. The growing season usually occurs from April to October (Kumar 

et al., 2021b) and distribution of total monthly precipitation over the 2018 and 2019 growing 

seasons is shown in fig. 4.1. The study was conducted in a 120 ha area of cornfield. The field was 

delineated in three management zones (zone 1, zone 2, and zone 3). We used zone 1 and zone 2 in 

this study due to contrasting properties in these zones using the management zone analyst (MZA, 

USDA-ARS, Columbia, MO, USA) software (Fridgen et al., 2004) based on terrain elevation data 

collected using a John Deere StarFireTM 6000 real-time kinematic GPS receiver (Deere and 

Company, Moline, IL, USA), historical yield data collected using a yield monitor mounted on a 

harvester, and soil texture. A similar approach was adopted to delineate the management zones in 

cornfields of Central Alabama (Filho et al., 2020) and South Alabama (Jiménez et al., 2020). For 

soil texture, a disturbed soil sampling campaign was conducted from several locations for soil 

characterization in the study field at three depths 0-15, 15-30, and 30-60 cm using the hydrometer 

method (Bouyoucos, 1962) (table 4.1). Corn grain yield varied from 3139 kg ha-1 to 18829 kg ha-

1 in the field. The slope data were generated using the collected terrain elevation data and the slope 
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values varied from 0 to 10%. A topographic wetness index (TWI) was also generated (Beven et 

al., 1979), and TWI varied from 5.11 to 18. Two contrasting zones, namely, zone 1 and zone 2, 

differing in slope, soil, TWI, and grain yield were selected for this study (table 4.1). The zone 1 

had lower slope, greater TWI, and greater grain yield as compared to zone 2, which had greater 

slope, lower TWI, and lower grain yield within the field. Zone 3 had properties between zone 1 

and zone 2, and, therefore, it was not used in the study. Since about 95% of corn roots are 

distributed within the 0-60 cm soil layer (Zhou and Zhao, 2019), an array of three Watermark soil 

moisture sensors (Irrometer Co., Riverside, CA, USA) at multiple locations were installed in each 

zone to monitor zone-specific ℎ at 0-15cm, 15-30 cm, and 30-60 cm soil depths during the growing 

season. Watermark sensors are electrical resistance devices to monitor ℎ in different soil types in 

crop fields. Sensors were installed on 01 May 2019 and removed on 11 August 2019. The corn 

was planted on 28 March 2019 and harvested on 30 August 2019. During the 2018 growing season, 

corn was planted on 10 April and harvested on 03 September. An automatic weather station 

(Vantage Pro2 Plus, Davis Instruments, Hayward, CA, USA) was installed near field to record 

meteorological parameters (Kumar et al., 2021b). 
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Figure 4.1 Distribution of precipitation over the growing seasons. 

Table 4.1 Zone-specific soil properties in the crop field. (* indicate data retrieved from 

SSURGO 2022) 

 Depth 

(cm) 
Sand (%) Silt (%) Clay (%) Texture Soil Series* Soil Family* 

Zone 1 
0-15 17.5 42.3 40.2 Silty clay 

Abernathy-Emory 
15-30 17.6 50.1 32.3 Silty clay loam 
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30-60 12.9 51.4 35.7 Silty clay loam 

Fine-silty, siliceous, active, 

thermic Oxyaquic 

Hapludults 

Zone 2 

0-15 31.9 32.8 35.3 Clay loam 

Decatur 
Fine, kaolinitic, thermic 

Rhodic Paleudults 
15-30 30.1 29.6 40.3 Clay 

30-60 29 24.4 46.8 Clay 

4.3.2 HYDRUS-1D numerical approximate model description 

A numerically approximate one-dimensional model HYDRUS-1D was selected to simulate soil 

water dynamics in both zones during the growing season. HYDRUS-1D has been used as a reliable 

tool to model soil water dynamics of variably saturated soils in various field and laboratory 

conditions (Šimůnek et al., 2016; Mokari et al., 2019; Wyatt et al., 2021). The flow between soil 

surface and groundwater predominantly occurs in the vertical direction, and surface water ponding 

occurs as horizontal flow such as surface runoff or irrigation. Therefore, in this study, we used 

HYDRUS-1D instead of a 2D or 3D model (Li et al., 2014). HYDRUS-1D has been used 

extensively to simulate soil water dynamics and solute transport in different soil layers (González 

et al., 2015; Wang et al., 2016; Iqbal et al., 2020). HYDRUS-1D has been used in different 

scenarios such as rainfed agriculture (Iqbal et al., 2020), furrow irrigation (Tafteh and Sepaskhah, 

2012), uniform irrigation (Fontanet et al., 2020), and root water uptake studies (Šimůnek and 

Hopmans, 2009; Zheng et al., 2017). HYDRUS-1D can optimize zone-specific SHPs and can 

simulate a well-defined 𝐾- 𝜃- ℎ relationship in field conditions during a growing season (Wang et 

al., 2021) to understand soil water dynamics for scheduling irrigation. 

The model solves the governing Richard's equation (Šimůnek et al., 2016) by applying a finite 

element code. The one-dimensional equation for water flow in an unsaturated flow medium is 

described by equation (4.1) 
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𝜕𝜃

𝜕𝑡
=  

𝜕

𝜕𝑧
[𝐾 (

𝜕ℎ

𝜕𝑧
+ 1)] − 𝑆 (4.1) 

where 𝜃 is soil water content [L3L-3]; ℎ is soil water pressure head [L]; 𝑡 is time [T]; 𝑧 is the vertical 

spatial coordinate [L]; 𝐾 is unsaturated hydraulic conductivity [LT-1]; and 𝑆 is sink term in the 

water flow equation accounting for water uptake by roots [L3L-3T-1]. 

The zone-specific SHPs were modeled using van Genuchten (1980) to explain soil water retention 

and hydraulic conductivity functions. 

𝜃(ℎ) = {
𝜃𝑟 + 

𝜃𝑠 − 𝜃𝑟
[1 + (𝛼|ℎ|)𝑛]𝑚

; ℎ < 0   

𝜃𝑠; ℎ ≥ 0

} 

 

(4.2) 

𝐾(ℎ) = {𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1
𝑚)

𝑚

]

2

; ℎ < 0   

𝐾𝑠;  ℎ ≥ 0

} (4.3) 

𝑆𝑒 = 
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

 (4.4) 

𝜃𝑟 is residual soil water content [L3L-3]; 𝜃𝑠 is saturated soil water content [L3L-3]; 𝛼 [L-1], 𝑚 [-], 

and 𝑛 [-] are shape parameters, where 𝑚 = 1 − 1/𝑛; 𝑙 [-] is shape parameter in hydraulic 

conductivity function; 𝑆𝑒 is relative saturation or effective soil water content [-]. 

4.3.3 HYDRUS-1D Model Input Parameters 

4.3.3.1 Determination of Zone-Specific SHPs 

For each zone, undisturbed soil cores were collected using a sampler ring of stainless steel (5 cm 

in height and 8 cm in diameter). The sampler rings were carefully removed by digging out 

surrounding soils and stored in a container for transportation to develop the SHPs in the laboratory 

(raw SHPs). The sample cores were saturated in water for 24 hours before the soil water retention 
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measurements were made using the evaporation method with the HYPROP measurement system  

(Meter Group Inc., Pullman, WA, USA) (Peters and Durner, 2008; Peters et al., 2015). HYPROP 

measurements are limited by the cavitation point of the two tensiometers, and for this reason, water 

retention curves can be estimated from saturation until around pF 3. The pF is a logarithmic 

function of absolute ℎ in cm. To determine the dry range of SWRCs, we used a dew-point 

hygrometer (WP4C PotentiaMeter, Meter Group, Pullman, WA, USA). A detailed procedure for 

developing SHPs is shown in Lena et al. (2021, 2022). 

𝑝𝐹 =  𝑙𝑜𝑔10(|ℎ|) (4.5) 

4.3.3.2 Dynamic Field Measurements 

To input meteorological data, the surface water flux (precipitation and irrigation), minimum and 

maximum temperatures, relative humidity, solar radiation, and wind speed were collected from the 

installed weather station. Irrigation data for the 2018 and 2019 growing seasons were recorded in 

addition to precipitation for water input data in the model. The growth stages were recorded for 

corn to determine the associated crop coefficient during the growing season, for use in the model 

(Irmak, 2017). The plant heights and leaf area index (LAI) were also recorded in both zones during 

the field visits. The LAI was measured using an LAI-2200 Plant Canopy Analyzer (LI-COR 

Environmental, Lincoln, NE, USA) on the 57th, 72th, 92th and 128th day after planting during the 

growing season. The LAI was measured from four different locations within each zone with five 

replications for each location (Morata, 2020). 

4.3.3.3 Initial and Boundary Conditions in the HYDRUS-1D model 

The initial conditions were defined in terms of ℎ in the model. Since this study is a field study, and 

the surface layer was subjected to the atmosphere, we defined the upper boundary condition (BC) 
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as atmospheric BC with surface runoff in the HYDRUS-1D model. The lower BC was set to free 

drainage boundary at 100 cm soil depth, indicating no interaction with the groundwater. A spatial 

discretization of 0.5 cm, leading to 201 nodes across the entire soil profile, and no hysteresis in 

soil water retention was used. The observed nodes (top, center, and bottom) were defined at the 

same depths of 15 cm, 30 cm, and 60 cm, respectively, where Watermark sensors were installed 

in both zones.  

4.3.3.4 Root Water Uptake 

HYDRUS-1D simulates root water uptake (RWU) of a crop during the growing season. The 

RWU, i.e., the sink term, 𝑆, in Richard's equation, was computed using equation 4.6 given by 

Feddes et al. (1978).  

𝑆 =  𝛼(ℎ)𝛽(𝑧)𝑇𝑝 (4.6) 

where 𝛼(ℎ) [-] is a dimensionless response function of ℎ (0 < 𝛼(ℎ) < 1) which accounts for 

RWU stress; 𝛽(𝑧) is normalized water uptake distribution [L-1]; 𝑇𝑝 is a potential transpiration 

rate [LT-1]. 

Water stress causes an RWU reduction, which is 𝛼(ℎ), and can be explained as  

𝛼(ℎ) =

{
  
 

  
 

0;          ℎ > ℎ1 𝑜𝑟 ℎ < ℎ4
ℎ − ℎ1
ℎ2 − ℎ1

;   ℎ1 > ℎ > ℎ2            

1;               ℎ2 ≤ ℎ ≤ ℎ3
ℎ − ℎ4
ℎ3 − ℎ4

;   ℎ3 > ℎ > ℎ4  
 }

  
 

  
 

 (4.7) 

where ℎ1 is called the anaerobiosis point, i.e., water uptake is considered to be zero close to the 

saturation (ℎ > ℎ1); ℎ4 is pressure head at the wilting point and water uptake is also considered to 

be zero when ℎ < ℎ4. Maximum RWU happens between ℎ2 and ℎ3, and it decreases or increases 
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linearly between the pressure heads ℎ3 and ℎ4 or ℎ1 and ℎ2, respectively (fig. 4.2). Since 95% of 

the corn roots are found within the 0-60 cm soil profile (Zhou and Zhao, 2019), and for this reason, 

we assumed linear root distribution function to a depth of 60 cm. The crop parameters of corn in 

Wesseling (1991) were selected for the root water uptake of corn in both zones. 

 

Figure 4.2 Schematic diagram of root water uptake stress response function. 

4.3.4 Inverse Modeling to Optimize Zone-Specific SHPs-HYDRUS-1D as Reference 

Model 

We used inverse modeling to optimize a single layer (0-100 cm) effective SHPs using ℎ measured 

at three depths (0-15 cm, 15-30 cm, and 30-60 cm) in both zones. Due to fairly uniform soil layers 

and textural homogeneity within the soil depths in each zone, we used single-layer SHPs. We 

converted ℎ into pF to perform inverse modeling in HYDRUS-1D. The HYDRUS-1D model was 

coupled with the SCE-UA developed by Duan et al. (1994) to perform optimization of SHPs 
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(Diamantopoulos et al., 2012; Qu et al., 2014). An objective function (𝑂𝑏𝑗) was defined for 

minimization in the SCE-UA algorithm. 

𝑂𝑏𝑗 =  ∑[𝑝𝐹𝑗 − 𝑝𝐹�̂�(𝑥)]
2

𝑛𝑛

𝑗=1

 (4.8) 

where 𝑝𝐹𝑗 = [𝑝𝐹15𝑐𝑚, 𝑝𝐹30𝑐𝑚, 𝑝𝐹60𝑐𝑚] is a vector of daily observations of ℎ as 𝑝𝐹 values; 𝑝𝐹�̂� =

[𝑝�̂�15𝑐𝑚, 𝑝�̂�30𝑐𝑚, 𝑝�̂�60𝑐𝑚] a vector that contains daily HYDRUS-1D predictions of ℎ as 𝑝𝐹 values; 

𝑥 = (𝜃𝑟 , 𝜃𝑠 , 𝛼, 𝑛, 𝐾𝑠, 𝑙) is a vector of soil hydraulic parameters used in the van Genuchten model, 

𝐾𝑠 is saturated hydraulic conductivity, 𝑗 is the number of each observation point, and 𝑛𝑛 is the 

total number of measurements at each soil depth. The model was set up from 05 April 2018 to 30 

August 2019 when the corn was harvested. From 05 April 2018 until 30 April 2019, the model 

was trained to set initial conditions to run the simulations for the optimization of SHPs. 

4.3.5 Goodness of Fit 

Different indices of goodness of fit have been calculated: Root mean square error (𝑅𝑀𝑆𝐸), index 

of agreement (𝐼𝐴), and relative root mean square error (𝑅𝑅𝑀𝑆𝐸) were used in this study. 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑛
∑(𝑝𝐹�̂� − 𝑝𝐹𝑗)

2
𝑛𝑛

𝑗=1

 (4.9) 

𝐼𝐴 = 1 −
∑ (𝑝𝐹�̂� − 𝑝𝐹𝑗)

2𝑛𝑛
𝑗=1

∑ (|𝑝𝐹�̂� − 𝑝𝐹𝑎𝑣𝑔| + |𝑝𝐹𝑗 − 𝑝𝐹𝑎𝑣𝑔|)2
𝑛𝑛
𝑗=1

 (4.10) 

𝑅𝑅𝑀𝑆𝐸 =

√ 1
𝑛𝑛
∑ (𝑝𝐹�̂� − 𝑝𝐹𝑗)

2𝑛𝑛
𝑗=1

∑ (𝑝𝐹𝑗)
𝑛𝑛
𝑗

 (4.11) 

where 𝑛𝑛 is the total number of observations; 𝑝𝐹�̂� and 𝑝𝐹𝑗 are simulated and observed ℎ as 𝑝𝐹 

value, respectively, and 𝑝𝐹𝑎𝑣𝑔 is average 𝑝𝐹 values. The lower the 𝑅𝑀𝑆𝐸 value the better is the 
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model performance in predicting the data in terms of its absolute error. The 𝐼𝐴 value ranges from 

0 to 1, and close to 1 indicates a better performance of the model. The 𝑅𝑅𝑀𝑆𝐸 indicates the 

performance of the model is excellent when 𝑅𝑅𝑀𝑆𝐸 <  0.1, good if 0.1 ≤  𝑅𝑅𝑀𝑆𝐸 ≤  0.2, fair 

if 0.2 <  𝑅𝑅𝑀𝑆𝐸 ≤  0.3, and poor if 𝑅𝑅𝑀𝑆𝐸 >  0.3 (Wang et al., 2018). 

4.3.6 Irrigation Thresholds and Scheduling 

We adopted a 35% SWD which is often recommended for most agronomic crops, especially corn 

(Girona et al., 2002; Irmak et al., 2016; Liang et al., 2016) to compute irrigation thresholds (Allen 

et al., 1998; Leininger et al., 2019). The thresholds at 35% SWD can be determined using the 

following equations. 

|ℎ|𝑆𝑊𝐷 = 

{[
𝜃𝑠 − 𝜃𝑟
𝜃𝑆𝑊𝐷 − 𝜃𝑟

]
1/𝑚

− 1}

1/𝑛

𝛼
 

(4.12) 

𝜃𝑆𝑊𝐷 = 𝜃𝐹𝐶 − [𝑆𝐷𝑊(𝜃𝐹𝐶 − 𝜃𝑃𝑊𝑃)] (4.13) 

𝐼𝑆𝑊𝐷 =∑(𝜃𝐹𝐶 − 𝜃𝑆𝑊𝐷)𝑍 (4.14) 

where |ℎ|𝑆𝑊𝐷 is irrigation threshold value as ℎ at 35% SWD [L]; 𝜃𝑆𝑊𝐷 is soil water content at 

35% SWD [L3L-3]; 𝜃𝐹𝐶  is soil water content at field capacity [L3L-3]; 𝜃𝑃𝑊𝑃 is soil water content at 

permanent wilting point [L3L-3]; 𝐼𝑆𝑊𝐷 irrigation amount or depth [L]; 𝑍 is thickness of soil layer. 

Field capacity at an ℎ value of 33 kPa and permanent wilting point at 1500 kPa were used to 

determine irrigation thresholds and schedule irrigation in this study. 

The irrigation amounts were removed before running the simulations for irrigation scenarios in 

both zones. The precipitation was the only water input variable that was kept in the model. We 

defined these models as No Irrigation models (NI). The trigger irrigation module within the 

HYDRUS-1D model was selected to schedule the irrigations using the determined irrigation 
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thresholds and amounts at 35% SWD with zone-specific SHPs. The irrigation scheduling was 

performed using the observation nodes at 15 cm (node 1), 30 cm (node 2), and 60 cm (node 3), as 

the hypothetical depth of an installed sensor. At each observation node, multiple irrigation 

scenarios were created in each zone as summarized in table 2. We triggered the irrigations on the 

same day without delay (0Lag), after one day (1Lag), after two days (2Lag), after three days 

(3Lag), after four days (4Lag), and after five days (5Lag) when irrigation threshold reached (table 

4.2). The idea of different irrigation scheduling was to bring the models of irrigation scenarios to 

the reference model status and reduce water stress or meet potential water requirements (Ramos et 

al., 2009). 

Table 4.2 Descriptions of HYDRUS-1D models created for irrigation scheduling in both zones 

Depth Irrigation trigger description 
Notations for Irrigation 

Scheduling Models 

15 cm 

0Lag Top Node 0Lag 

1Lag Top Node 1Lag 

2Lag Top Node 2Lag 

3Lag Top Node 3Lag 

4Lag Top Node 4Lag 

5Lag Top Node 5Lag 

30 cm 

0Lag Center Node 0Lag 

1Lag Center Node 1Lag 

2Lag Center Node 2Lag 

3Lag Center Node 3Lag 

4Lag Center Node 4Lag 

5Lag Center Node 5Lag 

60 cm 

0Lag Bottom Node 0Lag 

1Lag Bottom Node 1Lag 

2Lag Bottom Node 2Lag 

3Lag Bottom Node 3Lag 

4Lag Bottom Node 4Lag 

5Lag Bottom Node 5Lag 

0Lag: Same day of threshold reached; 1Lag: After 1 day of threshold reached; 2Lag: After 2 days of threshold 

reached; 3Lag: After 3 days of threshold reached; 4Lag: After 4 days of threshold reached; 5Lag: After 5 days of 

threshold reached. 
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4.3.7 Actual Root Water Uptake and Irrigation Water for Various Irrigation Scenarios  

We examined main components of soil water including potential root water uptake (PRWU), 

actual root water uptake (ARWU), and irrigation applied by different scenarios (Zheng et al., 2017; 

Zhou and Zhao, 2019). The HYDRUS-1D model tries to meet every day potential root water 

uptake (PRWU), and if the water is not available, a stress function reduces it to ARWU. The ratios 

of ARWU and PRWU for various scenarios were calculated to estimate the water stress in both 

zones. A value of close to one shows no water stress in the crop, and a value close to zero indicates 

severe water stress in the crop (Ramos et al., 2009) and inefficient irrigation. Increasing ARWU 

helps increase crop yield while ad decrease in ARWU results in yield reduction (Ramos et al., 

2011). 

4.4 Results and Discussion 

4.4.1 Inverse HYDRUS-1D Model Performance for Optimizing SHPs 

A single porosity model characterized the SHPs to satisfy the relation for both zones using 

HYPROP-FIT software (Mualem, 1976; van Genuchten, 1980). The raw SHPs in zone 1 and zone 

2 obtained from HYPROP-FIT software are shown in fig. 4.3. These raw SHPs were used as input 

parameters in the inverse HYDRUS-1D model to start the simulations for optimizing SHPs. The 

raw SHPs showed the spatial variability between zone 1 and zone 2 (fig. 4.3). Both zones had 

distinct patterns of SHPs, which means invariable SHPs cannot be assumed throughout the field 

for irrigation management. It was inferred from the raw SHPs that considering uniform SHPs 

within the field can be a flawed irrigation strategy due to zone-specific variability. Using uniform 

SHPs will trigger irrigation at one threshold and one rate in the entire field. It was inferred from 

these raw SHPs that we need to consider spatial variability between the zones for better irrigation 

management and we need to adopt zone-specific SHPs. Although raw SHPs showed the 
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importance of zone-specific SHPs between the zones, the raw SHPs were not able to simulate field 

observations of soil matric potentials (ℎ) measured during the growing season. This reason 

signified the need for optimizing zone-specific SHPs to simulate the soil water dynamics in each 

zone using field observations. 

 

Figure 4.3 Raw soil hydraulic properties; Soil water retention curves (left), showing relation 

between volumetric soil water content and pF, and hydraulic conductivity curve (right). The 

observations (dots) were obtained from the HYPROP measurement system and fitted with 

HYPROP-FIT software. 

Inverse solution using measured ℎ indicated the importance and need for optimizing the zone-

specific SHPs (fig. 4.4) in precision agriculture, for zone-specific irrigation improvements across 

the field to conserve agricultural water, and for the adoption of VRI technology. The optimized 

SHPs obtained using inverse HYDRUS-1D modeling were different from raw SHPs obtained from 

HYPROP-FIT software in the lab. Using the inverse solution in each zone, we found more 

effective zone-specific SHPs, which simulated soil water dynamics with good agreement in both 

zones (table 4.3). The simulated pF values fitted well with measured pF values for all the soil 

depths using optimized SHPs in both zones using optimized SHPs, as shown in fig. 4.5 and 4.6.  
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Figure 4.4 Zone-specific optimized SHPs; soil water retention curve(left), showing relation 

between volumetric soil water content and pF, and hydraulic conductivity curve (right) obtained 

from inverse modeling. 

The HYDRUS-1D model described relatively well the observed data in all three soil layers in both 

zones using a single layer zone-specific optimized SHPs.  The variability in soil water dynamics 

were due to the attributes considered in delineating management zones, for example, topographic 

attributes and soil texture. At the beginning of simulations, the gap between measured and 

simulated data was be due to the stabilization issues associated with the Watermark sensors, and 

it can take two to three weeks to stabilize the sensors in the crop fields (Irmak et al., 2016). 
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Figure 4.5 Observed and simulated pF values in zone 1 at (a) 0-15 cm, (b) 15-30 cm, and (c) 30-

60 cm soil depths during the 2019 growing season. 
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Figure 4.6 Observed and simulated pF values in zone 2 at (a) 0-15 cm, (b) 15-30 cm, and (c) 30-

60 cm soil depths during the 2019 growing season. 

Table 4.3 Statistical indices showing performance of inverse HYDRUS-1D model to simulate 

pF at each soil depth in both zones 

Zones 
Statistical 

indices  

0-15 cm 15-30 cm 30-60 cm 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

Zone 1 

Mean 0.36 0.82 0.001 0.29 0.84 0.001 0.38 0.78 0.001 

Min. 0.33 0.78 0.001 0.22 0.83 0.001 0.35 0.78 0.001 

Max. 0.38 0.85 0.002 0.33 0.86 0.001 0.41 0.79 0.002 
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Zone 2 

Mean 0.33 0.83 0.001 0.38 0.79 0.002 0.40 0.71 0.001 

Min. 0.27 0.75 0.001 0.35 0.76 0.001 0.24 0.62 0 

Max. 0.41 0.89 0.002 0.4 0.81 0.002 0.55 0.84 0.002 

According to model testing at multiple locations in zone 1, among all soil depths in zone 1, the 

model performed best at a 15-30 cm soil depth with the best agreement and minimum error 

between observed and simulated data, followed by 0-15 cm and 30-60 cm (table 4.3). However, in 

zone 2, the observed and simulated data had the best agreement at 0-15 cm (table 4.3) with the 

lowest error among all soil depths. In comparison between the two zones, zone 1 performed better 

than zone 2 since the statistical indices were better in zone 1. The variation in the model 

performances in both zones was due to differences in the SHPs (fig. 4.4), differences in the 

topographic attributes (low slope and high TWI in zone 1 and high slope and low TWI in zone 2), 

and differences in root water uptake (fig. 4.7), which affected the soil water dynamics in both 

zones (fig. 4.6). It can also be noticed from the recorded plant height and LAI values, which were 

greater in zone 1 and lower in zone 2. 

Please note that the one-layer optimized HYDRUS-1D model is a simplified version using single 

layer SHPs of the complex system, which can be used to simulate soil water dynamics at all three 

layers (fig. 4.5 and 4.6). However, comparing previous studies for HYDRUS-1D model 

performance using multilayer SHPs, Li et al. (2014) conducted a study in an irrigated rice field in 

China and the minimum average 𝑅𝑀𝑆𝐸 achieved was 2.61 cm using the individual retention 

curves obtained from the RETC retention curves computer program for each layer from 0 to 100 

cm at 20 cm increment depth. The RETC is a computer program that determines the soil hydraulic 

properties in the soil profile using parametric models such as van Genuchten and Brooks-Corey 

models (van Genuchten et al., 1991). Wyatt et al. (2017) reported an 𝑅𝑀𝑆𝐸 ranged from 2.95 to 

3.53 in terms of 𝑝𝐹 higher in deep soil layer in a study to estimate groundwater recharge at four 
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different sites in Oklahoma using the HYDRUS-1D model. However, these studies did not take all 

parameters of SWRC and HCC into account to find optimized SHPs. Some underpredictions and 

over-predictions of simulated data compared to observed data during the simulation period can be 

associated with soil water retention behavior of a fine-textured soil (Iqbal et al., 2020), hysteresis 

effect (Zhou and Zhao, 2019), and measurement errors associated with the sensors (Li et al., 2014; 

Mokari et al., 2019). Mokari et al. (2019) reported an IA that varied from 0.44 to 0.73. 

Discrepancies between observed and simulated data in the zones due to lateral leakage and macro-

pores have also been reported in previous studies (Akay et al., 2008; Wang et al., 2011; Zhang et 

al., 2018). Based on the statistics to evaluate the goodness of fit, the model performance was 

evaluated as excellent to optimize zone-specific SHPs since our results were quite consistent and 

better than previous studies (Li et al., 2014; Mokari et al., 2019; Wyatt et al., 2017) using a single 

layer SHPs. Therefore, a single-layer with optimized SHPs can be utilized to predict ℎ in deep soil 

layers more accurately with complete set of parameters.  
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Figure 4.7 Root Water Uptake in (a) zone 1 and (b) zone 2 during 2018 and 2019 growing 

seasons 

Fig. 4.7 shows the actual and potential RWU in both zones simulated using the optimized 

HYDRUS-1D model during the growing seasons of corn. During the seed germination stage, RWU 

was almost zero and increased with growing stages. The different patterns of RWU can be noticed 

in the 2018 and 2019 growing seasons in both zones. The actual RWU gradually increased and 
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reached a maximum of 0.69 cm day-1 in zone 1 and 0.59 cm day-1 in zone 2 around the 86th day 

after planting in 2018, and 0.82 cm day-1 in zone 1 and 0.70 cm day-1 in zone 2 around the 80th day 

after planting in the 2019 growing season. The RWU results are consistent with previous studies 

(Zhou and Zhao, 2019; Iqbal et al., 2020). The maximum RWU increased in both zones from the 

2018 to 2019 growing seasons. The zone 1 had silty clay loam texture in the soil profile; however, 

zone 2 had clay texture. The clay texture has maximum water holding capacity and minimum water 

releasing property. Silt type soils have slightly less water holding capacity than clay, but have a 

greater water releasing property than clay soils. Also, plant available water (field capacity – 

permanent wilting point) in the soil profile of zone 1 was 1.6 times that of zone 2. Therefore, the 

ARWU was greater in zone 1 than zone 2 in both seasons. This variation of RWU in both zones 

and the differences in zone-specific SHPs had the impact on plant characteristics. For example, 

the maximum measured LAI was 4.13 cm2 cm-2 and 3.34 cm2 cm-2 in zone 1 and zone 2, 

respectively on the 92nd day after planting during the 2019 growing season. On the same day of 

LAI measurements, the plant height was 225 cm and 195 cm in zone 1 and zone 2, respectively. 

These field measurements for plant characteristics explain the zone-specific differences in root 

water uptake, which is controlled by zone-specific SHPs. Similar observations have been found in 

previous studies (Wang et al., 2016; Aggarwal et al., 2017). 

4.4.2 Determination of Irrigation Thresholds and Amounts 

The accurate determination of an irrigation threshold and amount is critical for triggering zone-

specific irrigation in crop fields. Table 4.4 summarized the irrigation thresholds and amounts 

determined using zone-specific optimized SHPs. It can be seen from table 4.4 that irrigation 

thresholds in both zones were different, which explicitly indicated the need to manage irrigation 

based on specific zones during the growing seasons. The irrigation thresholds were optimized to a 
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soil matric potential value of 76 kPa from a raw value of 102 kPa in zone 1 and 59 kPa from 69 

kPa in zone 2. The corresponding irrigation amounts were optimized to 2.18 cm in zone 1 and 1.48 

cm in zone 2. Optimizing zone-specific SHPs optimized the thresholds to trigger irrigation and 

reduced the irrigation amount to 2.18 cm in zone 1 and 1.48 cm in zone 2 (table 4.4). Among a 

very few studies that report irrigation thresholds, Irmak et al. (2016) suggested a range of irrigation 

thresholds from 90 kPa to 110 kPa for silt loam to silty clay loam soils in Nebraska. However, the 

range was not estimated using optimized SHPs in field conditions, and therefore, did not hold site-

specific physical and hydraulic characteristics. Generally, farmers apply irrigation uniformly based 

on the feel of the soil or looking at the crop during the growing season (Kumar et al., 2021b). 

Delineating the irrigation management zones and adopting zone-specific irrigation strategies can 

help avoid water stress and water excess in the crop field. Irrigation threshold determined using 

raw SHPs can mislead the time and depth to trigger the irrigation since it did not simulate soil 

water dynamics within the zones. Optimizing the irrigation thresholds to trigger irrigation can help 

consider effective irrigation rate, time, and depth during the growing season. Based on our finding, 

we can reduce applied amounts as compared to raw SHPs obtained in the lab. This methodology 

can help in determining correct irrigation thresholds and amounts, which can be useful in site-

specific management of irrigation water during the growing seasons, and which can help to avoid 

water stress and water excess in crop fields. 

Table 4.4 Irrigation thresholds (soil matric potential values) and amounts using zone-specific 

optimized and raw SHPs at 35% SWD. 

 Irrigation threshold Irrigation amount 

 Optimized Raw Optimized Raw 

Zone 1 76 kPa 102 kPa 2.18 cm 2.6 cm 

Zone 2 59 kPa 69 kPa 1.48 cm 1.9 cm 
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4.4.3 Irrigation Scheduling and Actual Root Water Uptake with Different irrigation 

Scenarios 

 

Figure 4.8 Actual to potential root water uptake ratios in zone 1 for (a) 0Lag, (b) 1Lag, (c) 2Lag, 

(d) 3Lag, (e) 4Lag, and (f) 5Lag irrigation scenarios during 2018 and 2019 growing seasons. 

Reference scenario is the inverse model and NI is the model without irrigation data. 

The zone-specific determined thresholds and amounts using optimized SHPs were adopted in the 

HYDRUS-1D model to develop scenarios of irrigation scheduling. Among all different irrigation 

scenarios, scenarios with 0Lag, 1Lag, 2Lag, 3Lag, 4Lag, and 5Lag using the top node (15 cm) and 

center node (30 cm) in zone 1 reduced the crop water stress conditions and achieved an 

ARWU/PRWU ratio greater than or equivalent to the reference model (fig. 4.8) for both the 2018 

and 2019 growing seasons. The actual irrigations applied in the field were 6.6 cm in 2018 and 8.76 

cm in 2019, which were input in the reference model. The reference model had the ARWU/PRWU 

ratios of 0.8 in 2018 and 0.9 in 2019 in zone 1(fig. 4.8). Among all the scenarios, the maximum 

irrigation amount applied was 21.8 cm in 2018 and 19.62 in 2019 with 0Lag and 1Lag using the 

top node, and achieved an ARWU/PRWU ratio greater than 0.97 in both seasons. However, the 

minimum irrigation applied was 10.9 cm in 2018 with 5Lag and 6.54 cm in 2019 with 0Lag, 1Lag, 
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2Lag, and 3Lag using the bottom node (fig. 4.9). A minimum ARWU/PRWU ratio of 0.83 was 

achieved in both seasons. The distribution of precipitation over the growing seasons is the most 

critical component to decide the irrigation (Filho et al., 2020). Based on total precipitation 

distribution over the growing seasons, the maximum precipitation occurred in the beginning and 

near the end of the growing seasons (fig. 4.1). Therefore, looking at the actual irrigation data 

applied in the field, 71% of actual irrigations were triggered during July 2018 and 100% in May-

June 2019. The reference model had the ARWU/PRWU ratios of 0.7 in July 2018 and 0.8 in May-

June 2019. Out of total irrigations applied by the top and center nodes, more than 61% was 

triggered in July 2018 and more than 75% was triggered in May-June 2019. If no irrigation was 

applied during these periods, the crop was water-stressed with an AWRU/PRWU ratio of 0.44 in 

July 2018 and 0.68 in May-June 2019 due to lack of precipitation in this period (fig. 4.1). As an 

ideal case to adopt an irrigation scenario, the top and center nodes with 5Lag improved the RWU 

in plants and performed better than the reference model in 2018 and equivalent to reference model 

in 2019 in zone 1. The impact of lack of precipitation over the growing seasons and the need for 

irrigation can be understood with an example of the top node with 5Lag. The top node with 5Lag 

scenario applied 15.26 cm and 13.08 cm as total irrigation in 2018 and 2019 growing seasons, 

respectively (fig. 4.9), which was 8.6 cm and 4.26 cm of excess irrigation in 2018 and 2019, 

respectively. Applying this excess irrigation water increased the RWU and improved the 

ARWU/PRWU ratio. Of 15.26 cm and 13.08 cm of irrigation water amounts, 8.72 cm was applied 

in July 2018 and in May-June 2019. It was found that excess irrigation (8.6 cm in 2018 and 4.26 

cm in 2019) contributed to the period of less precipitation in both growing seasons. Applying this 

excess irrigation water improved the ARWU/PRWU ratio in the water-stress months (July 2018 

and May-June 2019) and entire growing season (fug. 4.8). The top and center nodes in zone 1 can 



123 

 

perform well to monitor ℎ and to trigger irrigation with any lag scenario using HYDRUS-1D. 

Irrigation scenarios using the bottom node, which was at the 60 cm at the bottom of root zone in 

zone 1, increased the ARWU and improved the ARWU/PRWU ratio (fig. 4.8) for all irrigation 

scenarios compared to the reference model in 2018. However, the bottom node achieved a 

minimum ARWU/PRWU ratio of 0.83 in 2019 (fig. 4.8). The bottom node triggered minimum 

irrigation in both growing seasons (fig. 4.9) since soil matric potential did not reach irrigation 

thresholds frequently. Using the bottom node to trigger irrigation, greater than 60% of the 

irrigation amount was applied in July, and more than 67% was applied May-June of 2019 

 

Figure 4.9 Total amount of irrigation applied in zone 1 for (a) 0Lag, (b) 1Lag, (c) 2Lag, (d) 

3Lag, (e) 4Lag, and (f) 5Lag irrigation scenarios during 2018 and 2019 growing seasons. 

In all the irrigation scenarios using top, center, and bottom nodes, RWU was mostly affected in 

the middle of the growing seasons, where minimum precipitation occurred. This middle period of 

the growing seasons was critical for the plants, which need maximum water uptake for plant 

growth and better yield production (Filho et al., 2020). A similar effect of precipitation distribution 

and the need for irrigation were found by Filho et al. (2020) in Alabama and Irmak et al. (2012) in 
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Nebraska. Also, the excess irrigation occurred during the water-stress period of the growing season 

(July 2018 and May-June 2019), which increased the ARWU and consequently AWRU/PRWU 

ratios. Although farmers trigger irrigation based on the feel of the soil and looking at the crop, they 

end up with over-irrigation in some areas and under-irrigation in others. It will be wise to adopt an 

irrigation strategy and install the sensors at 15 cm or 30 cm in zone 1 since these depths showed 

an increased ARWU/PRWU ratio relative to the reference scenario. 

 

Figure 4.10 Actual to potential root water uptake ratios in zone 2 for (a) 0Lag, (b) 1Lag, (c) 

2Lag, (d) 3Lag, (e) 4Lag, and (f) 5Lag irrigation models during 2018 and 2019 growing seasons. 

In zone 2, the top node in 2018 and 2019 (except 4Lag and 5Lag in 2019) and center node in 2018 

increased the ARWU, reduced the crop water stress, and produced a greater ARWU/PRWU ratio 

(fig. 4.10) as compared to the reference model for all irrigation scenarios in zone 2. The center 

node in zone 2 increased ARWU and achieved an ARWU/PRWU ratio greater than or equivalent 

to the reference model (fig. 4.10) for all scenarios of 2018, but not in 2019. These models showed 

improved RWU and reduced the water stress conditions in plants in 2018 the growing season. The 

minimum value of the ARWU/PRWU ratio using the center node to trigger irrigation was 0.86 in 
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2019 for 3Lag, 4Lag, and 5Lag scenarios. However, the bottom node did not trigger the irrigation 

during the 2019 growing season and triggered less irrigation than the reference scenario in 2018 

except 0Lag and 1Lag irrigation scenarios (fig. 4.11). The bottom node did not improve the RWU 

and produced the ARWU/PRWU ratio equivalent to the NI model in both growing seasons (fig. 

4.10). This suggested that the bottom node cannot be used to monitor ℎ and cannot be used to 

trigger the irrigation in zone 2. 

 

Figure 4.11 Total amount of irrigation applied in zone 2 for (a) 0Lag, (b) 1Lag, (c) 2Lag, (d) 

3Lag, (e) 4Lag, and (f) 5Lag irrigation scenarios during 2018 and 2019 growing seasons. 

As an ideal case to adopt an irrigation scenario in zone 2, the top node with 1Lag and 2Lag 

improved the RWU by plants in both seasons and performed better than the reference model. These 

models improved the ARWU/PRWU ratio to 0.96 in 2018 and 0.94 in 2019 (fig. 4.11) and reduced 

the water stress in the crop. The irrigation scenario using the top node with 3Lag had a better 

ARWU/PRWU ratio in 2018 and equivalent ratio in 2019 compared to the reference scenario. The 

maximum triggered irrigation was 13.32 cm with the center node (fig. 4.11) using the 0Lag and 

1Lag scenario in 2018. However, the minimum irrigation was 0 cm using the bottom node (fig. 
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4.11). Similar to zone 1, most of the irrigations in zone 2 were triggered in July 2018 and May-

June 2019 due to the lack of precipitation over the growing season (fig. 4.1). Irrigation scenarios 

using top and center nodes triggered greater than 73% of the total irrigation in July 2018 and 

greater than 72% May-June 2019. Without irrigation, NI scenarios had the ARWU/PRWU ratio 

of 0.58 and 0.76 in July 2018 and in May-June 2019, respectively, similar to the bottom node 

scenarios, which showed the crop water stress and lack of water in zone 2. For example, the top 

node with the 4Lag scenario applied 11.84 cm as the total irrigation in both growing seasons (fig. 

4.11), which was 5.24 cm and 3.08 cm of excess irrigation in 2018 and 2019, respectively. 

Applying this excess irrigation water increased the RWU and improved the ARWU/PRWU ratio. 

Of 11.84 cm of irrigation water amount, 7.4 cm was applied in July 2018 and 8.88 cm in May-

June 2019. It was found that excess irrigation (5.24 cm in 2018 and 3.08 cm in 2019) compensated 

for the period of less precipitation in both growing seasons. Irrigation scheduling using the top 

node performed better or equivalent to the reference model for various irrigation scenarios during 

the growing seasons in zone 2. Therefore, farmers can adopt an irrigation strategy in zone 2 by 

installing sensors at 15 cm soil depth to avoid water excess or severe crop water stress conditions 

during the growing season. 

The model can achieve maximum RWU and reduce the crop water stress in both seasons. Also, 

assuming one irrigation threshold or using laboratory-drawn SHPs for the entire field can be a 

flawed irrigation management practice. Optimizing zone-specific SHPs can avoid discrepancies in 

field observation and result in better irrigation practices. Our results showed that each zone should 

be managed differently to improve water use and root water uptake. The results showed that 

optimizing irrigation thresholds can reduce the irrigation amount to be applied and simultaneously 

can increase the ARWU/PRWU ratio. However, if the calculated irrigation depth in any zones is 
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greater than the irrigation system capacity or the application rate exceeds the infiltration rate, the 

irrigation depth needs to be reduced while the frequency to irrigate should increase. Reduction in 

irrigation depth and increased frequency can simultaneously be achieved by adopting a lower 

threshold of SWD. Reducing the irrigation depth will provide more freedom to the plant for water 

uptake and increase the ARWU/PRWU ratio during the growing season. The lack of irrigation and 

crop water stress causes yield loss at any stage of the crop during the growing season (Çakir, 2004; 

Song et al., 2019). Therefore, meeting water demands by plants using zone-specific irrigation 

practices within a field can reduce the crop water stress and improve the crop yield during the 

growing season. Increasing the actual to potential root water uptake ratio can result in increasing 

crop yield (Ramos et al., 2009, 2011). 

4.5 Summary and Conclusions 

Zone-specific SHPs were estimated for two delineated irrigation management zones in a crop field 

with fine-textured soils. It can be concluded that both the zones also had spatial variability in SHPs 

along with the differences in soil texture, topographic attributes, and corn grain yield. The 

optimized inverse HYDRUS-1D model showed the impact on the shape and parameters of SHPs 

in both zones. A single layer HYDRUS-1D model simulated multilayered ℎ very well for each 

zone using optimized SHPs. Determination of irrigation thresholds was highly dependent on zone-

specific characteristics of SHPs and important for site-specific management of irrigation water. 

Optimizing the SHPs for each zone allowed us to develop zone-specific irrigation thresholds and 

irrigation amounts to schedule irrigation during the growing season. The determined irrigation 

thresholds can be used for efficient VRI and other irrigation water management. Based on our 

simulations in this study using optimized models, the irrigation thresholds with soil matric 

potential values of around 80 kPa in zone 1 and 60 kPa in zone 2 can arrive at different times or at 
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the same time during the growing season. The results showed conservation of irrigation water to 

trigger using optimized SHPs compared to laboratory drawn SHPs in both zones. Due to the lack 

of water available to the plants, especially in the middle of the growing season, the crop can suffer 

from severe crop water stress. Farmers can improve site-specific irrigation practices in both zones 

considering spatial variability in SHPs. Farmers can install the sensors at 15 cm or 30 cm depths 

in zone 1 and at 15 cm in zone 2 as optimal depths to monitor the soil matric potential, which can 

be used to trigger the irrigation using optimized SHPs. Improving the ARWU/PRWU by 

scheduling irrigation when needed can increase the crop yield by meeting the crop water demands 

on time. Uniform irrigation or assuming one threshold for irrigation and the use of raw SHPs within 

the zones would be less desirable irrigation strategies. Optimizing zone-specific SHPs showed that 

determining an accurate irrigation threshold in each zone can be an effective irrigation practice 

during the growing season. This study can best represent the site-specific irrigation scenarios. 

Therefore, additional research is needed to validate the suggested irrigation scenarios 

incorporating crop yield and implications of the irrigation management scenarios investigated in 

this study. 
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Chapter 5 

Optimizing Zone-Specific Field Capacity and Irrigation Thresholds Using A Numerical 

Modeling Approach 

5.1 Abstract 

Accurate determination of irrigation thresholds and depths is crucial for timely adoption of best 

irrigation practices in crop fields, which help to reduce crop water stress, avoid excess water, and 

meet crop water demands on time. The accuracy in determining irrigation thresholds and depths is 

highly dependent on the accurate determination of field capacity (FC). The determination of FC, 

irrigation thresholds, and irrigation depths is characterized by site-specific soil hydraulic properties 

(SHPs). This study, conducted in two zones (zone 1 and zone 2) delineated based on soil, 

topography, and historical crop yield, focused on determining zone-specific optimized FC using a 

negligible drainage-flux (𝑞𝑓𝑐) criterion, optimizing irrigation thresholds and comparing with 

observed values of FC and irrigation thresholds. The HYDRUS-1D model, which was used to 

optimize zone-specific SHPs using measured soil matric potential (ℎ) in both zones, determined 

the FCs at 0.01 cm/day as 𝑞𝑓𝑐. The optimized FCs were also compared with benchmark FC (ℎ of 

33 kPa). The results showed that the optimized FC at 𝑞𝑓𝑐 was an ℎ of 39.1 kPa in zone 1, which 

was greater than the benchmark FC and observed FC (14.7 kPa), and 24.6 kPa in zone 2 which 

was lower than the benchmark FC observed FC (59.1 kPa). Our method of determining zone-

specific FC assesses the soil water dynamics by optimizing SHPs with measurements recorded in 

each zone; however, it is not the case with observed and benchmark FC values. Therefore, using 

observed and benchmark FC values can result in inefficient irrigation strategies. At flux-based FC, 

the optimized irrigation threshold and amount in zone 1 were greater and smaller, respectively, 

than the observed values. In zone 2, the optimized irrigation threshold and amount were smaller 
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and greater, respectively, than the observed values. The relationship between accumulated crop 

evapotranspiration (𝐸𝑇𝑐) and required irrigation amount determined using optimized SHPs showed 

a strong correlation in both zones, compared to using observed SHPs. The proposed method of 

optimizing zone-specific FC and irrigation thresholds can help with adopting timely best irrigation 

management schemes (e.g., variable-rate irrigation) in respective zones. The findings can help 

improve irrigation water use efficiency and reduce crop water stress during the growing season. 

5.2 Introduction 

The first definition of field capacity (FC) was proposed by Veihmeyer and Hendrickson (1931) as 

“the amount of soil water in the profile when downward water movement has decreased materially 

due to gravitational forces”. The FC idea depicts the earliest effort of consolidating empirical 

measurements into a physically-based hydrologic criterion. The common FC criterion remains 

obscure for the well-defined hydrologic state of soils regardless of its importance in defining initial 

conditions for agronomic and hydrologic applications and for determining effective soil water 

available to plants. Traditionally, a static soil water pressure head or soil matric potential (ℎ) of 10 

kPa for coarse-textured soil and 33 kPa for fine-textured has been used to represent the soil 

condition at FC (Rivers and Shipp, 1972). However, studies have indicated discrepancies and 

uncertainty associated with the static nature of FC, and these values change based on soil physical 

and hydraulic characteristics and soil profile depth considered, which suggests FC is dynamic 

(Assouline and Or; 2014; Lena et al., 2022; Nemes et al., 2011; Twarakavi et al., 2009). As the 

upper limit of soil water holding capacity changes dynamically, the soil water available will change 

accordingly, ultimately varying irrigation recommendations (Lena et al., 2022). Defining such 

limits are imperative to improving irrigation water-use efficiency and agricultural water 

management practices (de Jong van Lier, 2017; Irmak et al., 2016; Pinheiro et al., 2019; Lena et 
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al., 2022; Romano et al., 2011) since it allows definition of irrigation triggering and depth 

considering a maximum allowable soil water depletion (SWD). Therefore, an accurate assessment 

of ℎ at FC that accounts for site-specific soil characteristics is the first step when the objective is 

to implement irrigation best management practices and mitigate the negative impact associated 

with over- or under-application of irrigation water.  

Due to high uncertainty, onerous, and time-consuming measurements of FC in the field and 

laboratory, the idea of internal drainage flux has been a topic of interest (Lena et al., 2022; Meyer 

and Gee, 1999; Twarakavi et al., 2009). Computer codes have been used to determine FC when 

the drainage flux at the bottom of a pre-defined soil profile depth reaches a negligible value. 

Schroeder et al. (1994) used HELP software to estimate FC at negligible drainage flux (𝑞𝑓𝑐) 

ranging from 0.001 cm/day to 0.1 cm/day depending on the application. Hillel (1998) 

recommended a value of 0.05 cm/day as 𝑞𝑓𝑐 to estimate FC. Meyer and Gee (1999) found 

consistency with the original range from 0.001 cm/day to 0.1 cm/day to interpret FC. Twarakavi 

et al. (2009) tested three 𝑞𝑓𝑐 values (0.001, 0.01, and 0.1 cm/day) using HYDRUS-1D model, a 

model to simulate soil water and solute dynamics in unsaturated soil media (PC-Progress, 2022), 

to determine FC for a 1 cm depth homogeneous soil profile, from soil surface to 1 cm deep, and a 

value of 0.01 cm/day was recommended to represent FC across a range of USA soils. Although 

many studies have proposed the use of different 𝑞𝑓𝑐 values to represent FC, the impact of different 

𝑞𝑓𝑐 values on irrigation calculations is hardly ever investigated. One of the few examples is the 

study conducted by Lena et al. (2022) in which 𝑞𝑓𝑐 values of 0.01 cm/day and 0.025 cm/day were 

found to best represent soil conditions at FC for fine-textured and coarse-textured soils, 

respectively, and these values were used for irrigation recommendations in Alabama. This study 
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showed the importance of site-specific evaluation of 𝑞𝑓𝑐 to reduce the uncertainties in FC 

determination and irrigation recommendations.  

The use of 𝑞𝑓𝑐 to estimate FC has been well accepted by the scientific community; however, the 

accurate determination of FC highly depends on well-defined soil hydraulic properties (SHPs), 

i.e., soil water retention curve (SWRC) and hydraulic conductivity curve (HCC). Field or 

laboratory measurements of SHPs have been considered the standard methods since they provide 

site-specific information about soil physical characteristics, but these methods are time consuming, 

onerous, and include disparities in the measurements. Additionally, a recent study indicated 

discrepancies between field observations and FC determined in the laboratory-based SHPs (raw or 

observed), and these discrepancies also impacted the irrigation scheduling (Evett et al., 2019). An 

alternative is to use estimated SHPs based on soil texture or pedo-transfer functions (Schaap et al., 

2001), with the drawback of not being as precise as measured SHPs. One way to overcome the 

limitations regarding measured and estimated SHPs is the optimization of SHPs with ℎ or soil 

water content (𝜃) measured using soil moisture sensors in the field. Accurate determinations of 

SWRC and hydraulic conductivity (𝐾) help in characterizing the soil water dynamics, which are 

important in irrigation scheduling. Therefore, optimizing the 𝐾-𝜃-ℎ relationship is quite desirable 

in 𝑞𝑓𝑐-based determination of FC and irrigation scheduling to reduce uncertainty. Studies on the 

impact of optimized SHPs on FC determination and irrigation recommendations in field conditions 

have never been conducted. The accurate SHPs enable researchers and farmers to increase water 

use efficiency, improve crop yield, and maintain water resources by determining improved 

irrigation management strategies (Jabro et el., 2022). We hypothesize that optimized SHPs that 

also take into consideration differences in site-specific properties in a crop field will not only 

improve the determination of FC but also the irrigation threshold values over the measured or 
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estimated SHPs during the growing season, which can help with irrigation scheduling decisions. 

Thus, for site-specific management, it is best to delineate a crop field in different management 

zones based on soil, topography, historical crop yield, etc., (Filho et al., 2021a) and determine 

zone-specific FC to avoid discrepancies which would occur if one static FC is used throughout the 

field for irrigation water management. 

Real-time ℎ or 𝜃 monitoring, using soil moisture sensors in the soil profile to schedule irrigation 

has been gaining attention during the last decade (Fontanet et al., 2020). Although this sensor-

based irrigation can improve irrigation efficiency and reduce crop water stress (Irmak et al., 2010; 

Leininger et al., 2019), these improvements are only achieved if the 𝐾-𝜃-ℎ relationship is 

accurately and precisely defined. Due to variability in soil hydraulic and physical characteristics, 

different irrigation thresholds have been adopted to trigger irrigation among the soil types. 

Leininger et al. (2019) recommended a ℎ of 50 kPa for very-fine sandy loam textured soil, and 

Irmak et al. (2014) recommended values ranging from 20 kPa to 25 kPa for fine sandy soils and 

from 90 kPa to 110 kPa for silt loam and silty clay loam soils. However, a single irrigation 

threshold has been adopted for the entire field and they do not account for site-specific variability 

in ℎ or 𝜃 due to soil, topography, and soil water dynamics monitored within the field, and such 

values were recommended considering non-optimized SHPs. The determination of FC using 𝑞𝑓𝑐 

has shown promise in determining irrigation thresholds. However, investigations to quantify the 

impact of zone-specific optimized SHPs and FC at 𝑞𝑓𝑐 on determination of zone-specific irrigation 

thresholds considering discrepancies in soil water dynamics monitored in the field are hardly ever 

conducted. The questions have always been asked and issues have been raised for future research 

to use optimized parameters to determine FC and irrigation thresholds. Zone-specific differences 

in ℎ or 𝜃 can be due to soil properties, topographic gradient, and vegetation (Kumar et al., 2021b). 
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Hence, improved and optimized zone-specific SHPs accounting for measured ℎ or 𝜃 can help in 

determining upper and lower limits of water holding capacity, consequently improving the 

irrigation timing during the growing season.  

The overarching goals of this study were to investigate (1) the impact of zone-specific optimized 

SHPs (both SWRC and HCC) on the determination of zone-specific FC considering a 𝑞𝑓𝑐 criterion 

using the HYDRUS-1D model (Šimůnek et al., 2016), and (2) the effect of such optimized SHPs 

on the zone-specific irrigation thresholds and irrigation amounts using the determined FCs based 

on 𝑞𝑓𝑐 for varying SWD. The study was conducted in uniformly irrigated management zones of a 

delineated crop field. We used optimized and observed (raw i.e., laboratory drawn) zone-specific 

SHPs in this investigation. We hypothesized that the optimized SHPs greatly affect the 

determination of FCs and irrigation thresholds in the respective zones as compared to observed 

SHPs. The optimized FC determined using the 𝑞𝑓𝑐 criterion was compared with traditionally 

adopted FC (soil moisture potential of 33 kPa) as a benchmark.  

5.3 Materials and Methods 

5.3.1 Study Area Description 

The research was performed in a field (34◦43′06.46′′ N and 87◦23′13.53′′ W) located in the Town 

Creek Watershed of the Tennessee Valley Region of North Alabama, USA in the 2019 growing 

season, which usually occurs from April to October. The area is classified as subtropical humid 

(Cfa Köppen climate classification) (Kottek et al., 2006) and has an annual average rainfall of 

about 140 cm. The total area of the field was 180 ha, and 120 ha was covered by a remotely 

controlled 625 m long Reinke center pivot irrigation system (Reinke Manufacturing Co., Inc., 
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Deshler, NE, USA) with a mid-elevation spray application (MESA) sprinklers fitted with pressure 

regulators. 

The field was delineated in three irrigation management zones (MZ-zone 1, zone 2, and zone 3) 

(Fridgen et al., 2004) based on soil texture, topography (slope), and historical yield data (Kumar 

et al., 2021a; Morata, 2020). However, we used zone 1 and zone 2 in this study due to their 

contrasting properties. A similar approach has been adopted to delineate the management zones in 

cornfields of Central Alabama (Filho et al., 2020) and South Alabama (Jiménez et al., 2020). 

Disturbed soil samples at 0-15 cm, 15-30 cm, and 30-60 cm soil depths were collected from several 

locations within the field to analyze the soil particle size distribution (Bouyoucos, 1962). The 

terrain elevation data were collected using a John Deere StarFireTM 6000 real-time kinematic 

GPS receiver (Deere and Company, Moline, IL, USA) mounted to the farmer’s grain harvester. 

The slope was generated using terrain elevation data, and it varied from 0% to 10%. The corn grain 

yield was monitored using a yield monitor mounted on the combine, and corn grain yield varied 

from 3139 kg/ha to 18829 kg/ha. We also generated a topographic wetness index (TWI) in the 

field to differentiate the MZ for this study (Beven et al., 1979), and TWI varied from 5.11 to 18. 

Therefore, two MZ (zone 1 and zone 2), which were different in soil, topographic gradients (TWI 

and slope), and grain yield were selected. Zone 1 had a lower slope, greater TWI, and greater grain 

yield as compared to zone 2, which had a greater slope, lower TWI, and lower crop yield. Zone 3 

had properties between zone 1 and zone 2, therefore, it was not used in the study. Table 5.1 shows 

the average soil particle distribution of zone 1 and zone 2. Based on soil particle distribution 

analysis of zone 1 and zone 2, the soil profiles in each MZ were fairly uniform. Since about 95% 

of corn roots are distributed within the 0-60 cm soil layer (Zhou and Zhao, 2019), an array of three 

Watermark soil moisture sensors (Irrometer Co., Riverside, CA, USA) at multiple locations were 
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installed in both MZ at 0-15 cm, 15-30 cm, and 30-60 cm soil depths during the growing season 

to monitor zone-specific ℎ in the soil profile. The similar array of sensors has been used in soil 

moisture studies by Kumar et al. (2020, 2021b). Sensors were installed on 01 May 2019 and 

removed on 11 August 2019. An automated weather station (Vantage Pro2 Plus, Davis 

Instruments, Hayward, CA, USA) was installed near the field to record meteorological parameters. 

Table 5.1 Zone-specific soil properties in the crop field. (* indicate data retrieved from 

SSURGO 2022). 

Zone 
Depth 

(cm) 
Sand (%) Silt (%) Clay (%) Texture Soil Series* Soil Family* 

Zone 1 

0-15 17.5 42.3 40.2 Silty clay 
Abernathy-

Emory 

Fine-silty, siliceous, 

active, thermic 

Oxyaquic Hapludults 

15-30 17.6 50.1 32.3 Silty clay loam 

30-60 12.9 51.4 35.7 Silty clay loam 

Zone 2 

0-15 31.9 32.8 35.3 Clay loam 

Decatur 
Fine, kaolinitic, thermic 

Rhodic Paleudults 
15-30 30.1 29.6 40.3 Clay 

30-60 29 24.4 46.8 Clay 

5.3.2 Zone-Specific Soil Hydraulic Property Determination 

Undisturbed soil cores were collected for SHPs in both zones using a stainless steel sampler ring 

of 5 cm in height and 8 cm in diameter. The sampler rings were carefully removed by digging out 

surrounding soils and the soil sample was stored in a container for transportation, to measure the 

SHPs (SWRC and HCC) in the laboratory (raw or observed SHP). The sample cores were saturated 

in water for 24 hours before starting the soil water retention measurements. The ring was inserted 

at the hydraulic property analyzer (HYPROP 2, Meter Group, Pullman, WA, USA) for the 

determination of the wet end of the SWRC using the evaporation method (Peters et al., 2015). The 

ℎ-𝜃 data and weight of soil samples were automatically recorded by HYPROP-VIEW software 

(version 4.2.2.0, Meter Group, Pullman, WA, USA) every 30 minutes. After ℎ-𝜃 data 

measurements, the soil samples were removed from the hydraulic property analyzer and placed 

into an oven at 105ºC to determine the dry weight. After the determination of the wet end of 
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SWRC, the soil was removed from the sampler ring and four replicates of small disturbed samples 

were taken for the measurement of the dry end of SWRC using a dew point hygrometer (WP4C 

PotentiaMeter, Meter Group, Pullman, WA, USA). The soil sample was placed in the chamber of 

dew point hygrometer to measure ℎ for the dry end. The permanent wilting point (PWP) was 

measured at a soil matric potential of 1500 kPa in both zones. Soil samples were weighed 

immediately for wet weight and placed in the oven for dry weight. Detailed procedures for 

determining the wet and dry end of SWRC are shown in Lena et al. (2022). The ℎ-𝜃 pairs measured 

by the hydraulic property analyzer and dew point hygrometer were input into HYPROP-FIT 

software (version 4.2.2.0, Meter Group, Pullman, WA, USA) to generate the SWRC. A single 

porosity model (Mualem, 1976; van Genuchten, 1980) characterized the soil hydraulic properties 

to satisfy the relation in both MZs. The generated SHPs in the laboratory are referred to as raw or 

observed SHPs in the following sections. 

5.3.3 Inverse Modeling for SHP Optimization and Sensitivity Analysis of HYDRUS-1D 

The HYDRUS-1D is a numerically approximate model which has been widely used to simulate 

soil water dynamics in different soil types and field conditions. The model uses an axisymmetric 

finite element code to solve Richard’s equation numerically (Šimůnek et al., 2016). A HYDRUS-

1D model was set up and coupled with the Shuffled Complex Evolution algorithm (SCE-UA) 

(Diamantopoulos et al., 2012; Duan et al., 1994; Qu et al., 2014) to optimize the SHPs of zone 1 

and zone 2. The measured ℎ from the array of three Watermark sensors at 0-15 cm, 15-30 cm, and 

30-60 cm soil depths were used to optimize the SHPs to simulate the soil water dynamics in each 

zone. Due to fairly uniform soil profiles and textural homogeneity within the soil depths of each 

zone, we used single-layer zone-specific observed SHPs in each zone and optimized with multi-

depth measured ℎ. The model was set up for a 100 cm soil profile to run the HYDRUS simulations 
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to consider dynamic soil water processes. An objective function (𝑂𝑏𝑗) was defined for 

minimization in the SCE-UA algorithm. We converted ℎ into 𝑝𝐹 to perform inverse modeling in 

the HYDRUS-1D model. The pF is a logarithmic function of absolute ℎ in cm. 

𝑂𝑏𝑗 =  ∑[𝑝𝐹𝑗 − 𝑝𝐹�̂�(𝑥)]
2

𝑛𝑛

𝑗=1

 (5.1) 

𝑝𝐹 = 𝑙𝑜𝑔10|ℎ| 
(5.2) 

where 𝑝𝐹𝑗 = [𝑝𝐹15𝑐𝑚, 𝑝𝐹30𝑐𝑚, 𝑝𝐹60𝑐𝑚] is a vector of daily 𝑝𝐹 observations, 𝑝𝐹�̂� =

[𝑝�̂�15𝑐𝑚,𝑝�̂�30𝑐𝑚, 𝑝�̂�60𝑐𝑚] is a vector containing daily HYDRUS-1D predictions of 𝑝𝐹 value, 𝑥 =

(𝜃𝑟 , 𝜃𝑠, 𝛼, 𝑛, 𝐾𝑠, 𝑙) is a vector of soil hydraulic parameters used in the van Genuchten Mualem 

model, 𝑗 is the measurement time, and 𝑛𝑛 is the total number of measurements at each soil depth. 

To fully use the zone-specific SHPs, we consider all parameters of the van Genuchten Mualem 

model to optimize and simulate soil water dynamics accurately in both zones. 

To set up an inverse HYDRUS-1D model for optimization, we selected time-variable boundary 

conditions to input meteorological data collected from the weather station. The initial conditions 

were defined in terms of ℎ in the model. Since this study is a field study, and the surface layer was 

subjected to the atmosphere, we defined the upper boundary condition (BC) as atmospheric BC 

with surface runoff in the water movement for the HYDRUS-1D model. The lower BC was set to 

free drainage boundary at 100 cm soil depth, indicating no interaction with the groundwater. A 

spatial discretization of 0.5 cm, leading to 201 nodes across the entire soil profile and no hysteresis 

in soil water retention was used. The Feddes et. al (1978) model and the Wesseling (1991) 

parameters were selected for the root water uptake of corn in HYDRUS-1D in both zones. 
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The performance of the HYDRUS-1D model was checked using different statistical indices of 

goodness of fit: Root mean square error (𝑅𝑀𝑆𝐸), index of agreement (𝐼𝐴), and relative root mean 

square error (𝑅𝑅𝑀𝑆𝐸) were used in this study. 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑛
∑(𝑝𝐹�̂� − 𝑝𝐹𝑗)

2
𝑛𝑛

𝑗=1

 (5.3) 

𝐼𝐴 = 1 −
∑ (𝑝𝐹�̂� − 𝑝𝐹𝑗)

2𝑛𝑛
𝑗=1

∑ (|𝑝𝐹�̂� − 𝑝𝐹𝑎𝑣𝑔| + |𝑝𝐹𝑗 − 𝑝𝐹𝑎𝑣𝑔|)2
𝑛𝑛
𝑗=1

 (5.4) 

𝑅𝑅𝑀𝑆𝐸 =

√ 1
𝑛𝑛
∑ (𝑝𝐹�̂� − 𝑝𝐹𝑗)

2𝑛𝑛
𝑗=1

∑ (𝑝𝐹𝑗)
𝑛𝑛
𝑗

 
(5.5) 

where 𝑛𝑛 is the total number of observations, 𝑝𝐹�̂� and 𝑝𝐹𝑗 are simulated and observed 𝑝𝐹 value, 

respectively, and 𝑝𝐹𝑎𝑣𝑔 is the average observed 𝑝𝐹 value. The lower the 𝑅𝑀𝑆𝐸 value, the better 

the performance of the model to predict the data in terms of its absolute error. The 𝐼𝐴 value ranges 

from 0 to 1, and a value close to 1 indicates a good performance of the model. The 𝑅𝑅𝑀𝑆𝐸 

indicates the performance of the model is excellent when 𝑅𝑅𝑀𝑆𝐸 < 0.1, good if 0.1 ≤ 𝑅𝑅𝑀𝑆𝐸 ≤ 

0.2, fair if 0.2 < 𝑅𝑅𝑀𝑆𝐸 ≤ 0.3, and poor if 𝑅𝑅𝑀𝑆𝐸 > 0.3 (Wang et al., 2018). 

5.3.4 Estimation of FC using Negligible Drainage Flux 

Once the SHPs (optimized and observed SHPs) were generated in both MZs, the determination of 

FC using the 𝑞𝑓𝑐 criterion was performed using  HYDRUS-1D (Šimůnek et al., 2016). Since the 

soils in zone 1 and zone 2 presented fine textures, we adopted a 𝑞𝑓𝑐 value of 0.01 cm/day to 

represent the FC estimation for both zones, following the recommendation of Lena et al. (2022). 

For the model setup, an effective root depth (60 cm) was considered, the upper BC was fixed as 
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constant zero flux and the lower BC as free drainage. The initial condition was defined as soil 

matric potential of 0.98 kPa (10 cm of water). The zone-specific optimized and observed SHPs 

were used as inputs in the HYDRUS-1D model for water flow simulations for a 100 cm soil depth, 

from the soil surface to 100 cm below the soil surface. When the bottom of the soil profile reached 

the desired 𝑞𝑓𝑐 of 0.01 cm/day, the profile was assumed to be at the FC condition. The model setup 

was used to simulate the zone-specific 𝑞𝑓𝑐-based FC using optimized and observed SHPs. The FC 

determined using optimized SHPs was named as optimized FC, and the FC using observed SHPs 

was named as observed FC. The optimized FC values using the 𝑞𝑓𝑐 criterion in both zones were 

compared with the observed FC values in zone 1 and zone 2. Additionally, the benchmarked FC 

value at the soil matric potential of 33 kPa for fine-textured soil was also compared with the 𝑞𝑓𝑐-

based FC values in both zones.  

5.3.5 Determination of Irrigation Thresholds and Amounts 

The SWD-based irrigation method is the most commonly adopted technique to determine 

irrigation thresholds or amounts to schedule irrigation which can reduce crop water stress and 

increase the crop yield (Kisekka et al., 2016). The irrigation thresholds and amounts can be 

determined using a predefined SWD in the following equations. 

|ℎ|𝑆𝑊𝐷 = 

{[
𝜃𝑠 − 𝜃𝑟
𝜃𝑆𝑊𝐷 − 𝜃𝑟

]
1/𝑚

− 1}

1/𝑛

𝛼
 

 

(5.6) 

𝜃𝑆𝑊𝐷 = 𝜃𝐹𝐶 − [𝑆𝐷𝑊(𝜃𝐹𝐶 − 𝜃𝑃𝑊𝑃)] (5.7) 

𝐼𝑆𝑊𝐷 =∑(𝜃𝐹𝐶 − 𝜃𝑆𝑊𝐷)𝑍 
(5.8) 
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where |ℎ|𝑆𝑊𝐷 is irrigation threshold as soil matric potential (ℎ) at predefined SWD [L]; 𝜃𝑆𝑊𝐷 is 

the soil water content at predefined SWD [L3L-3]; 𝜃𝐹𝐶  is the soil water content at FC [L3L-3]; 𝜃𝑃𝑊𝑃 

is the soil water content at PWP [L3L-3]; 𝐼𝑆𝑊𝐷 is the irrigation amount or depth [L]; 𝑍 is the 

thickness of the soil layer [L]. The soil water content at FC using the 𝑞𝑓𝑐 criterion for each SHP 

and the soil water content at PWP (soil matric potential of 1500 kPa) in each MZ were used to 

determine the upper and lower limits of water holding capacity to derive irrigation thresholds and 

depths. The upper limit was set as 0% SWD (at FC), while the lower limit was set as 100% (at 

PWP). 

5.3.6 Evaluation of Negligible Drainage Flux Criteria on Zone-Specific Irrigation 

Recommendations for Optimized and Observed SHPs  

To evaluate the impact of a 𝑞𝑓𝑐 of 0.01 cm/day using zone-specific optimized and observed SHPs 

on irrigation recommendations, we implemented an analysis using observed ℎ data in zone 1 and 

zone 2. We used three depths of installed sensors where the soil matric potential measurements 

were recorded during the growing season. For this analysis, the periods with no rainfall events 

were selected to calculate the required irrigation water as the amount of water required to replenish 

ℎ measured with soil moisture sensors back to ℎ𝐹𝐶  (soil matric potential at FC). The required 

irrigation water was calculated based on ℎ𝐹𝐶  and 𝜃𝐹𝐶  determined using a 𝑞𝑓𝑐 of 0.01 cm/day. We 

also calculated accumulated crop evapotranspiration 𝐸𝑇𝑐 for the same periods of irrigation water 

amounts. The daily 𝐸𝑇𝑐 values were calculated as (Allen et al., 1998): 

𝐸𝑇𝑐 = 𝐾𝑐 ∗ 𝐸𝑇0 (5.9) 

where 𝐾𝑐 is crop coefficient and 𝐸𝑇0 is reference evapotranspiration. The daily 𝐾𝑐 for corn was 

calculated using the growth stages recorded during the growing season (Irmak, 2017). The daily 
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grass based 𝐸𝑇0 values (Allen et al., 1998) were obtained from the installed weather station. The 

accumulated 𝐸𝑇𝑐 values were calculated as the sum of daily 𝐸𝑇𝑐 values for the selected interval 

between irrigation or rainfall events. For comparison, a regression model was fitted between 

required irrigation amounts based on 0.01 cm/day as 𝑞𝑓𝑐 and accumulated 𝐸𝑇𝑐 for the selected 

intervals in both zones using optimized and observed SHPs. 

5.4 Results and Discussion 

5.4.1 Goodness of fit analysis of inverse HYDRUS-1D modeling 

Studies have shown that HYDRUS-1D is a reliable tool to describe the soil water dynamics in 

various types of variably saturated soils in different crops such as corn, wheat, and rice (Iqbal et 

al., 2020; Zhou and Zhao, 2019). A single porosity model characterized the SHPs to satisfy the 

relation for both zones using HYPROP-FIT software (Mualem, 1976; van Genuchten, 1980). The 

raw SHPs in zone 1 and zone 2 obtained from HYPROP-FIT software are shown in fig. 5.1a and 

5.1b. These raw SHPs were used as input parameters in the inverse HYDRUS-1D model to start 

the simulations for optimizing SHPs. The raw SHPs showed the spatial variability between zone 

1 and zone 2 (fig. 5.1a and 5.1b). Both zones had distinct patterns of SHPs, which means invariable 

SHPs cannot be assumed throughout the field for irrigation management. It was inferred from the 

raw SHPs that considering uniform SHPs within the field can be a flawed irrigation strategy due 

to zone-specific variability. Using uniform SHPs will trigger irrigation at one FC, one threshold, 

and one rate in the entire field. It was inferred from the raw SHPs that we need to consider spatial 

variability between the zones for better irrigation management and adopt zone-specific SHPs. 

Although raw SHPs showed the importance of zone-specific SHPs between the zones, the raw 

SHPs were not able to simulate field observations of ℎ measured during the growing season. This 

reason signified the need for optimizing zone-specific SHPs to simulate the soil water dynamics 
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and find effective FC and irrigation thresholds in each zone using field observations. Inverse 

solution using measured ℎ indicated the importance and need for optimizing the zone-specific 

SHPs (fig. 5.1c and 5.1d) in precision agriculture, for zone-specific irrigation improvements to 

conserve agricultural water, and for the adoption of variable-rate technology. The optimized SHPs 

obtained using inverse HYDRUS-1D modeling were different from raw SHPs obtained from 

HYPROP-FIT software. Using the inverse solution in each zone, we found effective zone-specific 

SHPs, which simulated soil water dynamics with good agreement in both zones (table 5.2). 

 

Figure 5.1 Soil hydraulic properties; (a) Laboratory drawn SWRC (we called them observed or 

raw) showing volumetric soil water content as function of pF and showing HYPROP 

measurements and fitted curves, (b) Laboratory drawn HCC showing observations and fitted 
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curves, (c) Optimized soil water retention curves showing volumetric soil water content as 

function of pF and, and (d) Optimized HCC in both zones. The observations (dots) shown in (a) 

and (b) were obtained from the HYPROP measurement system and fitted with HYPROP-FIT 

software. 

Table 5.2 Goodness of fit statistics of inverse HYDRUS-1D model to simulate pF in both zones. 

Zone 
Performance 

statistics  

0-15 cm 15-30 cm 30-60 cm 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

RMSE 

(-) 

IA 

(-) 

RRMSE 

(-) 

Zone 1 

Mean 0.36 0.82 0.001 0.29 0.84 0.001 0.38 0.78 0.001 

Min. 0.33 0.78 0.001 0.22 0.83 0.001 0.35 0.78 0.001 

Max. 0.38 0.85 0.002 0.33 0.86 0.001 0.41 0.79 0.002 

Zone 2 

Mean 0.33 0.83 0.001 0.38 0.79 0.002 0.40 0.71 0.001 

Min. 0.27 0.75 0.001 0.35 0.76 0.001 0.24 0.62 0 

Max. 0.41 0.89 0.002 0.4 0.81 0.002 0.55 0.84 0.002 

 

The performance of the HYDRUS-1D model was tested at multiple locations in each zone. The 

results showed that the simulated 𝑝𝐹 fitted well with measured values of 𝑝𝐹 at all three soil depths 

in both zones (table 5.2). Among all soil depths in zone 1, the model performed best at a 15-30 cm 

soil depth with the best agreement and minimum error between observed and simulated data, 

followed by 0-15 cm and 30-60 cm (table 5.2). However, in zone 2, the observed and simulated 

data had the best agreement at 0-15 cm (table 5.2) with the lowest error among all soil depths. In 

comparison between the two zones, zone 1 performed better than zone 2 since the statistical indices 

were better in zone 1. Discrepancies between the observed and simulated data in the zones can be 

due to lateral leakage and macro-pores which have also been reported in previous studies (Akay 

et al., 2008; Wang et al., 2011; Zhang et al., 2018). Li et al. (2014) conducted a study in an irrigated 

rice field in China and the minimum average RMSE achieved was 2.61 cm using the individual 

retention curves obtained from the RETC retention curves computer program for each layer from 

0 to 100 cm at 20 cm increment depth. The RETC is a computer program that determines the soil 

hydraulic properties in the soil profile using parametric models such as van Genuchten and Brooks-
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Corey models (van Genuchten et al., 1991). Wyatt et al. (2017) reported that the RMSE ranged 

from 2.95 to 3.53 with a greater RMSE in deep soil layer in a study to estimate groundwater 

recharge at four different sites in Oklahoma using the HYDRUS-1D model. Mokari et al. (2019) 

reported an IA that varied from 0.44 to 0.73. Based on the statistical indices to evaluate the 

performance of the HYDRUS-1D model, the performance was evaluated as excellent to optimize 

zone-specific SHPs since our results were quite consistent and better than previous studies. 

However, the studies did not consider all parameters to optimize the SHPs. Based on the 

performance criterion, single-layer SHPs can predict ℎ in deep soil layers more accurately. In zone 

2, the observed and simulated data had the best agreement at 0-15 cm with the lowest error among 

all soil depths. In comparison between the two zones, zone 1 performed better than zone 2 since 

the statistical indices were better in zone 1. The variation in the model performances in both zones 

was due to differences in the SHPs and differences in the topographic attributes (low slope and 

high TWI in zone 1 and high slope and low TWI in zone 2), which affected the soil water dynamics 

in both zones. The plant heights and LAI values were greater in zone 1 than in zone 2. Importantly, 

the one-layer optimized HYDRUS-1D model is a simplified version using single layer SHPs of 

the complex system, which can be used to simulate soil water dynamics in all three layers.  

5.4.2 Evaluation of FC Estimation Using Drainage Flux Criterion in HYDRUS-1D Model 

The drainage flux criterion assumes the negligible flux density to simulate FC at the desired depth. 

The intrinsic property of FC is associated with dynamic natural processes within the soils. This 

idea of FC estimation using a 𝑞𝑓𝑐 considers most of the natural processes, such as water movement 

through soil profiles. Based on the recommendation in the previous studies conducted by 

Twarakavi et al. (2009) and Lena et al. (2022), we used 0.01 cm/day as 𝑞𝑓𝑐 in HYDRUS-1D to 

determine zone-specific FC using single-layer zone-specific optimized and observed SHPs in the 
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field conditions. We conducted simulations using the 𝑞𝑓𝑐 criterion in the HYDRUS-1D model at 

the bottom of considered effective root depth. The idea of determining zone-specific FC using 

zone-specific observed SHPs was to comprehend the differences in the optimized FC values and 

the importance of optimizing zone-specific SHPs. The determined FC values using different SHPs 

are tabulated in table 5.3. The optimized FC (soil matric potential of 39.1 kPa) was greater than 

the observed FC (soil matric potential of 14.7 kPa) in zone 1. However, in zone 2, the optimized 

FC (soil matric potential of 24.6 kPa) was lower than the observed FC (soil matric potential of 

59.3 kPa). A similar trend of FC was also found by Lena et al. (2022) using multilayered observed 

SHPs for fine-textured soil types. However, Lena et al. (2022) did not optimize SHPs and FC 

values. The differences in zone-specific optimized FC values show the dynamic soil water 

movement processes that occur in the actual field conditions, which were captured by ℎ 

measurements recorded during the growing season. The differences in zone-specific FC values 

considerably affect the irrigation water management to meet the water demands required for a crop 

in each zone. Additionally, the optimized FC values compared to benchmark FC (soil matric 

potential of 33 kPa) were different in both zones. The optimized FC was higher in zone 1 and was 

lower in zone 2 than the benchmark FC in respective zones, which shows that benchmark FC did 

not hold zone-specific characteristics for soil water dynamics during the growing season. The 

differences in zone-specific FC can generate differences in the irrigation thresholds, and ultimately 

the time to trigger irrigation during the growing season. 

Table 5.3 Determined FC soil matric potential (kPa) values using 0.01 cm/day as negligible 

drainage flux for SHPs (optimized and observed) and benchmark FC. 

Zone 
Optimized 

FC (kPa) 

Observed 

FC (kPa) 

Benchmark 

FC (kPa) 

Zone 1 39.1 14.7 33 

Zone 2 24.6 59.1 33 
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Defining irrigation trigger and the amount is highly dependent on the upper limit of soil water 

holding capacity; therefore, different FC values will result in differences in irrigation 

recommendations. The observed differences of estimated FC using optimized and observed SHPs 

suggested that irrigation recommendation could be improved when zone-specific SHPs are 

optimized using the HYDRUS-1D, ultimately promoting irrigation best management practices. 

The optimized FC in zone 1 and zone 2 hold different values, which indicate the difference in the 

upper limits of soil available water. Assuming benchmark FC value as soil matric potential of 33 

kPa throughout the field for irrigation scheduling cannot be accurate for efficient irrigation water 

management during the growing season. It can over-or under-estimate the zone-specific irrigation 

thresholds, which can result in over-or under-irrigation in the zones. Therefore, determining 

accurate zone-specific FC values can help precise and zone-specific irrigation scheduling with a 

better irrigation threshold in each zone. 

5.4.3 Determination of Zone-Specific Irrigation Thresholds and Amounts Based on 

Drainage Flux FC Criterion 

The initial phase in irrigation water management using an efficient sensor-based irrigation 

approach is the determination of soil matric potential at FC (ℎ𝐹𝐶). This information allows the 

assessment of irrigation trigger and amount considering an allowable SWD, which can facilitate 

decision-making by farmers and crop consultants (Lena et al., 2022). This can improve irrigation 

water-use efficiency, reduce crop water stress, and satisfy the crop water demands on time in each 

zone. Irrigation practices do not perform effectively if the root depth, soil water dynamics, and 

water depletion are not considered in the crop field. It can result in incorrect timing and inaccurate 

irrigation depth, which can be water stress or water excess conditions for the crops. 
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Figure 5.2 Determined irrigation thresholds (absolute values of soil matric potential) based on 

negligible drainage flux FC criterion in (a) zone 1 and (b) zone 2. Irrigation amounts in (c) zone 

1 and (d) zone 2 with corresponding soil water depletion variation using optimized and observed 

SHPs. The blue dotted arrows show the values of irrigation thresholds corresponding to 35% soil 

water depletion. 

The optimized irrigation thresholds and depths were determined with variation in SWD to trigger 

irrigation in both zones (fig. 5.2). In zone 1, we determined the optimized irrigation threshold was 

greater (fig. 5.2a) and optimized irrigation depth was lower (fig. 5.2c) than in other cases, which 

was due to differences in SHPs. The trend of the optimized and observed threshold curves indicate 

the two curves intersect at SWD values greater than 70% in zone 1 (fig. 5.2a), which illustrates the 

reduced differences due to higher depletion in the upper and lower limits with the shape of 

optimized and observed SHPs. In zone 2, the optimized irrigation thresholds were lower than the 
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observed thresholds (fig. 5.2b) and the optimized irrigation amounts were greater than the observed 

irrigation amounts (fig. 5.2d). Comparing optimized irrigation thresholds of both zones, the 

optimized irrigation thresholds were always greater than the observed irrigation thresholds in zone 

1 and lower in zone 2. The optimized irrigation amounts were always lower than observed 

irrigation amounts in zone 1 and higher in zone 2. Differences in the pattern of irrigation threshold 

and amounts showed inaccuracy in irrigation scheduling using observed SHPs and FCs. Therefore, 

it is essential to optimize zone-specific SHPs and FC to adopt best irrigation practices in each zone. 

Table 5.4 Irrigation threshold as absolute values of soil matric potential (kPa) and irrigation 

amounts (cm) at 35% SWD for negligible drainage flux-based FC and benchmark FC. 

 Irrigation threshold (𝒉𝟑𝟓) (kPa) Irrigation depths (cm) 
 Zone 1 Zone 2 Zone 1 Zone 2 
 Flux Benchmark Flux Benchmark Flux Benchmark Flux Benchmark 

Optimized 88 76 45 59 2.00 2.18 1.84 1.50 

Observed 58 102 116 70 3.27 2.59 1.36 1.90 

For example, using a hypothetical 35% SWD as the irrigation trigger value, the optimized soil 

matric potential at 35% SWD (ℎ35) was 88 kPa with a corresponding irrigation amount of 2 cm 

for a 60 cm soil profile in zone 1. The optimized ℎ35 in zone 2 was 45.32 kPa, and its corresponding 

irrigation amount was 1.84 cm (table 5.4). Differences in the optimized and observed irrigation 

thresholds at 35% SWD in both zones were due to discrepancies in soil hydraulic properties. These 

site-specific measurements were studied in the case of optimized computations but not in the 

observed computations. 

From these findings, it was observed that accurate determination of irrigation threshold and 

irrigation amount is highly dependent on accurate and effective SHPs, which allowed zone-specific 

soil water dynamics and showed discrepancies in determination of FC values. The accurate 

threshold value will decide the moment to trigger irrigation and the corresponding irrigation 
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amount in each zone, which can be observed from sensor data installed in farmers’ fields during 

the growing seasons. The decision of the right timing and amount of irrigation can result in 

efficient irrigation water management by maximizing crop yield, reducing crop water stress, and 

meeting crop water demands in the zones. As a result, irrigation scheduling using optimized 

parameters can be an efficient irrigation practice. 

5.4.4 Determination of Irrigation Thresholds and Depths Based on Benchmark FC 

As mentioned previously, a soil matric potential (h) value of 33 kPa was used to represent the 

benchmark FC value for the entire study site. We used the same SHPs to determine the irrigation 

thresholds and amounts in this scenario. Both zones had a similar pattern of irrigation thresholds 

and amounts variation with increasing SWD (fig. 5.3). The optimized irrigation thresholds (fig. 

5.3a and 5.3b) and amounts (fig. 5.3c and 5.3d) were minimum considering benchmark FC in both 

zones. Assuming a static value of FC throughout the field can be flawed (Nemes et al., 2011) for 

irrigation recommendations as was seen in both zones. Although we had two different SHP curves, 

the zone-specific ℎ-𝜃 relation of FC controls the upper limits of SWRCs. We can conclude that 

assuming a single value of FC based on fine-textured soil might not be the best and most robust 

scheme to schedule irrigation. 
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Figure 5.3 Determined irrigation thresholds (absolute values of soil matric potential) based on 

benchmark FC in (a) zone 1 and (b) zone 2. Irrigation amounts in (c) zone 1 and (d) zone 2 with 

corresponding soil water depletion variation using optimized and observed SHPs. The blue 

dotted arrows show the values of irrigation thresholds corresponding to 35% soil water depletion. 

The optimized irrigation thresholds at flux-based FC (using optimized SHPs and optimized FC) 

were higher than optimized irrigation thresholds at benchmark FC (using optimized SHPs and 

benchmark FC) in zone 1. However, optimized irrigation thresholds at flux-based FC were lower 

than optimized irrigation thresholds at benchmark FC in zone 2 (fig. 5.4a). Observed irrigation 

thresholds at flux-based FC (using observed SHPs and observed FC) were lower and higher than 

observed irrigation thresholds at benchmark FC (using observed SHPs and benchmark FC) in zone 

1 and zone 2, respectively (fig. 5.4b). Moreover, differences can be observed in irrigation 

thresholds of both zones for flux-based FC and benchmark FC. 



158 

 

 

Figure 5.4 Comparison of irrigation thresholds (absolute values of soil matric potential) based 

on negligible drainage flux FC and benchmark FC in both zones using (a) Optimized (left) and 

(b) Observed SHPs (right) with corresponding soil water depletion variation. 

We can understand the differences between zone-specific optimized and observed irrigation 

thresholds using flux-based FC with a hypothetical SWD of 35%. For example, the optimized ℎ35, 

i.e., irrigation threshold at 35% of SWD, using flux-based FC was 88.41 kPa in zone 1, which was 

greater than observed ℎ35 (57.94 kPa) using flux-based FC, optimized ℎ35 (76.27 kPa) using 

benchmark FC, and lower than observed ℎ35 (101.94 kPa) using benchmark FC. In zone 2, 

optimized ℎ35 was 45.32 kPa using flux-based FC, which was smaller than observed ℎ35 (116 kPa) 

using flux-based FC, optimized ℎ35 (59.51 kPa) using benchmark FC, and observed ℎ35 (69.76 

kPa) using benchmark FC as mentioned in table 5.4. The change in FC value resulted in different 

values of irrigation thresholds and amounts at a particular SWD. Different SHPs can lead to various 

FC and available water content in the soil. Therefore, a correct zone-specific FC value can help in 

efficient zone-specific irrigation water management within the crop field. It can be concluded that 

the determination of FC in field conditions and optimization of SHPs can be an essential and 

foremost step in adopting best irrigation practices.  
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The irrigation amount calculation can be done with growth stages and increasing root depths 

during the growing season. The soil depth element has been comprised in equation 5.8 of 

computations. Therefore, a decision can be made about the irrigation amount at a particular SWD 

with increasing root depths. This concept of optimizing zone-specific FC using optimized SHPs 

and irrigation thresholds within the zones can trigger irrigation with varying root depths, which 

ultimately can reduce water stress in crops in each zone of the field during the growing season. In 

the following section, we discuss if optimizing zone-specific FC using optimized SHPs can return 

an improved agreement for irrigation recommendations compared to observed FC and observed 

SHPs. 

5.4.5 Assessment of Negligible Drainage Flux Criteria for Irrigation Recommendations 

Using Optimized and Observed SHPs 

Based on FC recommendations using a negligible drainage flux of 0.01 cm/day for zone-specific 

irrigation management, we determined the irrigation recommendation for optimized and observed 

zone-specific SHPs in this study. The relationship between required irrigation and accumulated 

crop evapotranspiration (𝐸𝑇𝑐) was determined for zone-specific optimized and observed FC using 

zone-specific optimized and observed SHPs (fig. 5.5a for zone 1 and fig. 5.5b for zone 2). A linear 

model was fit to best represent the relationships for optimized and observed FC values in both 

zones. The discrepancies in irrigation amount reflect the effect of determined FC and adoption of 

optimized and observed SHPs in each zone. With smaller values of ℎ𝐹𝐶  (absolute value), the 

irrigation amount required will be higher to replenish the soil water content back to FC from a 

given ℎ since ℎ𝐹𝐶  gets closer to zero. Also, the higher values of ℎ𝐹𝐶  will require a smaller amount 

of irrigation water to replenish the soil water content back to FC from a given ℎ since ℎ𝐹𝐶  gets 

farther from zero. Based on the relationship between accumulated 𝐸𝑇𝑐 and required irrigation using 
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optimized and observed FC and SHPs, we found that optimized FC and optimized SHPs resulted 

in a stronger correlation than observed FC and observed SHPs in both zones (fig. 5.5a for zone 1 

and fig. 5.5b for zone 2), which means that irrigation water is being used more efficiently. 

Although Lena et al. (2022) studied irrigation recommendations using FC based on 0.01 cm/day 

as 𝑞𝑓𝑐, the authors did not optimize the zone-specific FC and SHPs, and information about the 

impact of optimizing zone-specific FC, which can help optimizing zone-specific irrigation 

recommendations, was still unknown.  

 

Figure 5.5 Relationship between the accumulated crop evapotranspiration (𝐸𝑇𝑐) and required 

irrigation in a soil profile of 60 cm depth using 0.01 cm/day as 𝑞𝑓𝑐 for field capacity simulations 

using zone-specific optimized and observed SHPs in (a) zone 1 and (b) zone 2. R2 is the 

coefficient of determination for the fitted data. 

The results found in this study suggest that evaluation of the impact of optimized and observed 

zone-specific FC on irrigation recommendations can improve the assessment of an accurate zone-

specific FC. Based on the results obtained in this study, we recommend optimizing zone-specific 

FC values using an optimized HYDRUS-1D model for determining irrigation recommendations. 

The FC determination using soil cores in the lab, pedo-transfer function, or assuming benchmark 

may not be accurate and useful in irrigation management due to discrepancies between monitored 

ℎ in the fields and assumed SHPs and FC. Such discrepancies between FC determined in the lab 
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and field soil water measurements have been discussed by Evett et al. (2019). We do not suggest 

obliterating the determination of FC using such SHP methods. The optimized threshold values for 

irrigation triggering showed the differences between the zones and resulted in promising results of 

zone-specific irrigation demands, which might result in the variable time of irrigation threshold 

arrival and frequency of irrigations in the zones. 

5.5 Summary and Conclusions 

In this study, zone-specific FC for optimized and observed SHPs based on a negligible drainage 

flux criterion was determined using the HYDRUS-1D numerical model in two managements zones 

delineated in a crop field. The FC estimated using 𝑞𝑓𝑐 were compared with benchmark FC value 

assumed as a soil matric potential (absolute value) of 33 kPa for fine-textured soils. The SHPs 

were optimized using observed soil matric potential measured at 0-15 cm, 15-30 cm, and 30-60 

cm during the growing season in both zones. The optimized FC was greater in zone 1 compared 

to the observed and benchmark FC. However, in zone 2, optimized FC was lower than observed 

and benchmark FC. The zone-specific optimized FC values show that observed and benchmark 

FC values were underrepresented in zone 1 and overrepresented in zone 2. The observed and 

benchmark FC in both zones did not consider soil water dynamics for the discrepancies associated 

with FC and SHPs during field observations. Therefore, observed and benchmark FC may not be 

the best options in irrigation scheduling schemes without optimization. Also, assuming a single 

FC (benchmark) throughout the field may not be the best option for irrigation recommendations. 

The determination of FC using zone-specific optimized and observed SHPs with a negligible 

drainage flux and benchmark methods showed differences in irrigation thresholds and amounts to 

trigger irrigation resulting from the differences in the 𝐾-ℎ-𝜃 relation of SHPs. The optimized flux-

based irrigation threshold was greater than observed flux-based irrigation thresholds in zone 1 and 
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lower in zone 2 at any particular SWD value. Both the zones had different thresholds to trigger 

irrigation. Irrigation recommendations using zone-specific optimized FC and optimized SHPs 

showed a strong correlation between accumulated 𝐸𝑇𝑐 and required irrigation amount in both zones 

than observed FC and observed SHPs. Hence, we recommend that considering zone-specific 

optimized FC and optimized SHPs can be the best irrigation choice for irrigation water 

management. Therefore, adopting a variable rate irrigation scheme for efficient irrigation water 

management across the field can be a best irrigation practice. The irrigation thresholds and 

amounts using flux-based FC with optimized SHPs can reduce the water stress in the crops, 

increase irrigation water use efficiency, and conserve the water resources for irrigation. 
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Chapter 6 

Conclusions  

6.1 General Conclusions 

The increasing human population is increasing the demands for water and food all around the 

globe. The need to increase yield while reducing water and nutrient footprint have never been 

greater. Therefore, as irrigated agriculture intensifies to elevate food production, precision 

agriculture aims to reduce water and nutrient use through site-specific agricultural water and 

nutrient management. Excessive water withdrawal from the streams, lakes, and groundwater has 

started depleting the water resources. Also, climate change has changed the distribution of 

precipitation, especially over the growing season (Filho et al., 2020). The future forecast of 

precipitation data showed the 14% increment in the annual average of precipitation by 2059, which 

would alter the time, erosivity characteristics, and distribution of the precipitation events 

(Takhellambam et al., 2021, 2022). Irrigation is required to meet water demands due to lack of 

precipitation over the growing season or no precipitation during the periods of high water demand 

for crops. Meeting site-specific crop water demands on time by scheduling irrigation can increase 

crop yield. The need for site-specific crop water demands can be identified by monitoring soil 

moisture within the crop fields (Kumar et al., 2020, 2021b). Knowing the spatial and temporal 

variation in soil moisture can help in determining irrigation depths. Also, proper site-specific 

nutrient management can help reduce nutrient loss, increase nutrient uptake, and increase crop 

yield (Kumar et al., 2021a). Understanding site-specific spatial and temporal variability in soil 

moisture and nutrient can help understand the problems scientifically and improve the best 

management practices adopted by farmers. Evaluating the impact of uniform application of 
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irrigation and nutrient in the crop field can provide a glimpse into challenges that lie ahead for 

long-term sustainable agriculture management. 

Understanding the spatial variability in soil water and nutrients indicated the adoption of variable-

rate irrigation and nutrient management practices in the crop field. The field hydrology and 

topographic variability across the field influence the decisions for both agricultural water and 

nutrient management during the growing season. Evaluating the spatial and temporal variability in 

soil water in corn and cotton fields has shown that soil water is a key variable in determining 

irrigation. Soil water dynamics in different soil profiles can be used to optimize the irrigation 

amount, time, and rate (Dissertation Objective 1). The spatiotemporal variability in soil water in 

corn and cotton fields has an impact on the intermediate soil layer due to water input from the top 

and suction from the bottom soil layers. Determining a representative location to determine the 

average soil water can help to know the range of irrigation water demands within the field. 

Knowing the spatial and temporal variability in soil water and average soil water in the field helped 

identify the above-and-below soil water conditions compared to the average. A single soil moisture 

sensor location can be useful in scheduling uniform irrigation in a crop field during the growing 

season. To capture the maximum spatial and temporal variability in soil water, the number of 

sensors can be optimized for a maximum absolute error. Reducing the number of sensors installed 

can help farmers to reduce the cost, time, and labor. The meteorological factors had an impact on 

soil water variability due to canopy and root growth differences in corn and cotton crops. Among 

all field attributes, topography in the cornfield and soil properties in the cotton field were 

influential factors in soil water variability and determining the representative location. The 

management zones analysis incorporating nutrient variability can be helpful practice in precision 
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agricultural management. The distribution of sensors throughout the field can be categorized into 

different management zones based on the variability in soil water, nutrient, and soil characteristics. 

Uniform application of nutrients (P and N) can lead to adequate nutrient concentrations in some 

areas and inadequate nutrients in others. Such site-specific spatial and temporal variability had an 

impact on plant growth and development in the study cornfield during the 2019 growing season 

(Dissertation Objective 2). The higher soil nutrient concentration area (HY zone) had better plant 

growth since the plants in the HY zone had higher nutrient uptake. However, the lower soil nutrient 

concentration area (LY zone) had reduced plant growth since the plants in the LY zone had reduced 

nutrient uptake due to a lack of availability of nutrients. The soil nutrient variability, nutrient 

variability in plants, and plant growth variability had a similar pattern, which affected the crop 

yield in the respective zones. The higher nutrient zone had higher crop yield and the lower nutrient 

zone had lower crop yield. The topographic wetness index (TWI), slope, and soil hydraulic 

properties were determined as responsible factors for within-field nutrient and crop yield 

variability across the crop field (Kumar et al., 2021a). These hydrological properties within a field 

caused the surface runoff loss of nutrients in the LY zone, which reduced the crop yield during the 

2019 growing season. Incorporating spatial nutrient variability in management zone delineation 

can be an effective way to improve the adoption of precision agricultural management. 

Assuming a single irrigation threshold to trigger irrigation can result in over-irrigation in some 

parts and under-irrigation in others. Delineating a field in different irrigation management zones 

and determining zone-specific irrigation thresholds can be a better irrigation strategy. The 

topographic attributes play an important role in the distribution of soil moisture sensors throughout 

the field. Uniform SHPs cannot be considered with contrasting topographically variable fields and 

cannot optimize the soil water dynamics. The selection of soil moisture sensors to optimize the 
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SHPs can be made using uniformity within the zones. Although irrigation threshold can be 

determined using laboratory-drawn SHPs, such SHPs do not consider discrepancies associated 

with field observations. Therefore, optimizing the SHPs resulted in accurate zone-specific 

irrigation thresholds. Optimizing zone-specific SHPs can avoid discrepancies in field observation 

and result in better irrigation practice. The results showed (Dissertation Objective 3) that each zone 

should be managed differently to improve water use and root water uptake. Knowing actual soil 

water dynamics in each zone, plants can increase root water uptake to meet potential root water 

demand. Based on our simulations in this study using optimized SHPs at 35% soil water depletion, 

the irrigation thresholds were at absolute soil matric potential value of 76 kPa in zone 1 and 59 

kPa in zone 2, and corresponding irrigation application rates were reduced to 2.18 cm and 1.48 cm 

in zone 1 and zone 2, respectively. Farmers can delay irrigation by a few days depending upon the 

depth of irrigation in zone 1 and zone 2 to increase crop water demands.  

Conventionally, an absolute soil matric potential value of 33 kPa is considered as benchmark field 

capacity in fine-textured soil without considering the particle size fractions, study region, and 

actual soil water dynamics. The zone-specific FC was determined using numerical modeling with 

HYDRUS-1D considering negligible flux criterion with optimized SHPs. The results from this 

study (Dissertation Objective 4) have shown that zone-specific optimized FC had a contrasting 

pattern compared to the benchmark and observed FC. The optimized FC values were found to be 

greater in zone 1 and lower in zone 2 compared to observed and benchmark FC. The observed and 

benchmark FC in both zones did not consider soil water dynamics for the discrepancies associated 

with FC and SHPs during field observations. Therefore, observed and benchmark FC may not be 

the best options in irrigation scheduling schemes without optimization. Irrigation 

recommendations using zone-specific optimized FC and optimized SHPs showed a strong 
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correlation between accumulated crop evapotranspiration and required irrigation amount in both 

zones, compared to observed FC and observed SHPs. 

6.2 Future Work 

Future research that can be performed using this study and its findings as a groundwork for further 

contributing to the science and improving the sustainability of agriculture and environment in the 

precision agriculture are listed below: 

1. Assess and validate the optimized irrigation thresholds and field capacity scenarios to 

evaluate irrigation water use efficiency and crop yield. 

2. Evaluate the two- and three-layer HYDRUS-1D models to see the impact of soil 

heterogeneity on soil water dynamics and root water uptake within the soil profiles. 

3. Evaluate the dynamic irrigation thresholds and field capacity incorporating three-

dimensional soil hydraulic properties. 

4. Evaluate the HYDRUS-1D model for simulating soil nutrients in contrasting areas.  
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