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Abstract 

 

Antibodies are the most studied and successful therapeutic binding protein. Alternative, 

smaller-sized binding proteins are being modified for therapeutic applications. Computational 

energy models i.e. forcefields, protein analysis and design tools have been developed to aid in the 

discovery and engineering of antibodies and other binding proteins. Current binding protein design 

tools employ iterative cycles of energy calculations and optimizations, which are computationally 

expensive. In this work, I have gained a deeper understanding of features of binding interface 

residues and make an attempt towards developing novel computational design approaches that use 

sequential forcefield-independent steps.   

The dissertation begins with the development and energetic analysis of a database of non-

redundant antibody-antigen complexes. Building upon this analysis, we developed AUBIE, a 

novel computational tool for the de novo design of binding proteins like antibodies for any target 

epitope. AUBIE identifies groups of compatible binding loops that can simultaneously make 

strong interactions with the target epitope. AUBIE-generated antibodies for a HER2 epitope were 

tested experimentally. In order to get a better understanding of flexible nature of binding surfaces, 

features related to the conformational stability of binding epitopes and paratopes were studied. 

Learning from these features, improvements were made to the AUBIE approach to better replicate 

epitope stabilities in AUBIE designed antibodies. We then developed a novel MutDock, docking 

approach that can simultaneously perform mutations for fixed backbone binding protein scaffolds 

for any target epitope. MutDock was benchmarked against commonly used fixed-sequence 
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docking tools. The dissertation will provide in-depth details about the methods and results 

regarding database generation and analysis, AUBIE and MutDock. 
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1. Chapter 1 - Introduction 

Proteins are a class of biomolecules made of repeating units called amino acids. There are 

twenty common naturally occurring amino acids which vary in the group of atoms attached to the 

alpha carbon of the amide backbone atoms. These side chain atoms are responsible for the unique 

properties of each amino acid such as size, polarity, charge and hydrophobicity. The diverse 

arraignment of these amino acids in protein sequences allows them to attain structures that are able 

to perform a wide array of functions in living organisms. In humans, proteins catalyze biochemical 

reactions (enzymes) [1], act as messengers between cells, tissues and organs (hormones) [2], 

perform vital structural roles (collagen) [3], maintain the required pH levels (hemoglobin) [4] and 

supply and store nutrients (hemoglobin, ferritin) [5] among other vital roles. Furthermore, in the 

immune system, proteins are responsible for aiding in the recognition and elimination of foreign 

substances through surface receptors on various immune cells and antibodies. Parts of this chapter 

have been adopted from our article titled “MutDock: A Computational Docking Approach for 

Fixed-Backbone Protein Scaffold Design”, which is under review. 

Antibodies 

Antibodies (i.e., immunoglobulins (Ig)) are binding proteins that can attach to immune cell 

receptors and harmful foreign microbes, viruses and molecules at the same time, thus functioning 

as signaling proteins that increase the effectiveness of the immune response. After the innate 

immune system is unable to control the growth and spread of a foreign pathogen, the adaptive 

immune system employs B-cells to secret antibodies which will bind to that pathogen with high 

specificity and affinity [6]. This production of antibodies occurs after naïve B-cells are activated 

by either helper T cells that present a surface protein of the pathogen or B-cell surface receptors 
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that bind to the pathogen itself. Once the antibodies are secreted into the blood stream, they aid in 

deletion of their target pathogen (i.e., antigen) through various mechanisms. By binding to their 

target antigens, antibodies may either block the target’s mode of action to enter host cells (viruses) 

or tag the target for destruction by macrophages, natural killer cells or complement activation [7]. 

During and after the antibody-mediated attack on the pathogen, some activated B-cells undergo 

clonal expansion and differentiation to become affinity matured memory B-cells in the lymph 

nodes. The affinity maturation of B-cells in lymph nodes occurs through the somatic 

hypermutation of the antibody-coding genetic code in the B-cells and the selection of higher 

affinity antibodies expressed on the surface of the mutated B-cells [6]. These memory B-cells exist 

in the bloodstream for significantly longer durations than non-memory B-cells and lead a stronger 

immune response during future exposures to the same pathogen [8]. The large diversity of 

antibodies and their strong binding affinity and specificity towards their target antigens can be 

understood in their structure and mode of generation.  

Among the five classes of antibodies (i.e., IgA, IgD, IgE, IgG and IgM), which differ from 

one another in their structure and role during an immune response, IgG is the most abundant type 

[9]. IgG antibodies fold into a ‘Y’ shape that consists of pairs of heavy and light chains as shown 

in Figure 1.1. The stem of the ‘Y’ structure consists of two identical heavy chains that extend into 

and occupy half of the two branches of the antibody. The other halves of the branches are the 

identical light chains. The stem and lower halves of the branches constitute the constant region 

while the upper halves are known as the variable regions of the antibody. The constant region of 

the antibody (Fc) is responsible for binding to the immunogenic cell receptor [9]. The variable 

region consists of a highly consistent segment known as the framework and a hypervariable region 

known as the Complementarity Determining Regions (CDRs) as shown in Figure 1.2. The six 
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CDR loops (H1, H2, H3, L1, L2, L3), three from each chain, form the antigen binding region of 

the antibody and are capable of binding to a variety of proteins, peptides and small molecules [10]. 

The region of the antibody that binds to the antigen is called the paratope and the region of the 

antigen that binds to the antibody is known as the epitope. In humans, the IgG variable region is 

created through the recombination of three germline gene regions: variable (V), diversity (D) and 

joining (J). The recombination of three genes (V, D and J) is used to generate heavy variable 

regions while the recombination of two genes (V and J) is used from two gene loci (κ and λ) to 

create the light variable regions. There are 65 V, 27 D and 6 J genes for the heavy variable regions, 

resulting in a diversity of 10,530 combinations. For the κ light chains, 40 V and 5 J gene segments 

can provide a diversity of 200 combinations. For the λ light chains, 30 V and 4 J gene segments 

can provide a diversity of 120 combinations. Hence a total of 320 different light chains can 

combine with 10,530 types of heavy chains to provide a theoretical diversity of 3,369,600 different 

variable regions [11]. The process of joining V, D or J segments involves the deletion of 

nucleotides by the Recombination-Activation Genes (RAG) protein complex and the random 

addition of nucleotides by the enzyme terminal deoxynucleotidyl transferase (TdT), leading to 

junctional diversity at gene joints only [11]. This junctional diversity is located entirely in CDR3 

since all the gene junctions occur in this CDR. The combination of genetic combinatorial diversity, 

junctional diversity and B-cell somatic hypermutations enables the human immune system to 

produce billions of distinct antibodies [11] [12]. 

Alternative binding proteins 

Although antibodies have been very successful, they may not be the best choice for all 

contexts where protein binding is needed. An alternative to their use are smaller sized protein 
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domains, including Knottins [13], Kunitz domains [14], Fynomers [15], and Fibronectin domains 

[16] among others. Benefits of using smaller sized scaffolds over antibodies include better 

thermostability, higher tumor penetration, lower cost of production and decreased chance of 

denaturation [17]–[19]. These smaller scaffolds have seen success as therapeutics: drugs 

developed using Kunitz domains and Knottins have been approved by the FDA while other 

alternative scaffold-based drugs are in different phases of clinical trials [20].  

Some of these alternative scaffolds bind to target molecules with modular loops, 

comparable to the CDRs of antibodies, and such proteins can be designed with computational 

protocols similar to those developed for antibodies. However, binding for a subclass of these 

alternative scaffolds is governed by point mutations to surface residues in highly stable secondary 

structures, and these mutations do not alter the proteins’ structures. Such proteins will be referred 

to as fixed-backbone binding proteins. Examples of such binding proteins include affibodies and 

designed ankyrin repeats (DARPins) [21]. An affibody consists of 58 amino acids and is arranged 

in a three alpha helix bundle framework. Design of antigen-specific affibodies has been primarily 

done through combinatorial mutations of 13 surface residues on two helices [22]. Affibodies have 

been designed to bind over 40 antigens and the HER-2 binding affibody ABY-025 has reached 

phase 2/3 clinical trial [23]. A DARPin molecule consists of 33 residue long motifs that are 

typically repeated two to four times, along with N and C terminal motifs. Similar to affibodies, 

binders are designed by mutating six residues in each motif barring the terminal motifs [24]. 

Abicipar, a VEGF-A binding therapeutic DARPin drug, has reached phase III clinical trial [20]. 

The structures and variable residues of affibodies and DARPins are shown in Figure 1.3.  

Each antibody has a potential to bind to its respective target region (i.e., epitopes) with 

high affinity and specificity, a feature that makes them extremely useful in biomedical research 
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and powerful tools in the study of proteins [25]. Since 1975, monoclonal antibodies (mABs) have 

been synthesized in the lab to bind to specific epitopes [26]. mABs have been used for numerous 

therapeutic applications that mainly include serving as diagnostic reagents for imaging and 

analysis of diseases and as direct treatments for several cancers, autoimmune diseases and 

cardiovascular diseases. These applications have led to the development of a $130 billion global 

market of more than 80 FDA approved therapeutic mABs [27], [28]. All these mABs have been 

initially identified using experimental means. The two conventional approaches of generating 

mABs in lab, in-vitro evolution and hybridoma technology, while fairly successful, are laborious 

and inefficient in binding to the target epitope [29], [30]. Hence there is a need for a paradigm shift 

in antibody design approaches to generate novel antibodies faster than purely experimental means.  

Force fields 

The fundamental challenge of rational antibody design and in protein design in general, is 

predicting the structure and function of a protein from its amino acid sequence [31]. Proteins are 

made of hundreds or thousands of amino acids and there exist a vast number of possible backbone 

and side chain angles of each amino acid, diverse non-bonded interactions and various folding 

mechanisms and secondary structures. Such large degrees of freedom make overcoming this 

challenge virtually impossible without computational means [31]. Using computational methods 

allows for the quantification of the forces that dictate how atoms interact with one another within 

and between amino acids and eventually, allow us to make reasonable predictions of the protein 

structure and behavior. This quantification of forces requires the calculation of various forms of 

energies through mathematical formulations (i.e., energy force fields). Energy force fields are used 

to calculate the change in the Gibbs free energy between the initial and final states of proteins since 
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proteins adopt structures that allow them to minimize their total Gibbs free energy [32]. The change 

in Gibbs free energy is given by Equation 1. 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆 (1) 

Here, ∆𝐻 is the enthalpic energy change and 𝑇∆𝑆 represents the free energy change due to 

entropic disorder of the system, mainly from the protein’s interaction with the solvent (i.e., 

solvation) [32]. In the context of this work, Gibbs free energy calculations need to be performed 

to determine energetically stable protein structures obtained from experimental methods, to 

analyze antibody-antigen complex interfaces and for molecular dynamics (MD) simulations. 

Several force fields have been developed for protein analysis such as CHARMM [33], AMBER 

[34], Rosetta [32], GROMOS [35], FoldX [36] among others. CHARMM, AMBER and Rosetta 

have often been used in other work concerning antibody design [10] [37] or analysis [38] and 

hence are used in this work.  

The AMBER force field calculates the total change in Gibbs free energy using Equation 2 

[39]. 

∆𝐺𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑉𝑛

2
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

((1 + cos(𝑛𝜙 − 𝛾)) + ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
] 

𝑖<𝑗

+ ∑ [
𝐶𝑖𝑗

𝑅𝑖𝑗
12 −

𝐷𝑖𝑗

𝑅𝑖𝑗
10] 

𝐻 𝑏𝑜𝑛𝑑𝑠

+ 𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 

 

(2) 

In the first and second term in Equation 2, separate energy functions treat bonds and angles as 

springs and use the quadratic form of Hooke’s law to calculate the respective bond and angle 

energies. The third term calculates the bond rotation energy i.e., torsion energy by using a Fourier 
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series equation. All the fitted coefficients in these equations are determined through experimental 

data [39]. The non-bonded energies (the fourth term) comprise of Van der Waals (vdW) and 

electrostatic energies. The vdW energies were calculated using the 12-6 Lennard Jones potential 

while the electrostatic energies were calculated using Coloumbs law with a distance dependent 

dielectric. The penultimate term calculates the hydrogen bond energies using a 10-12 potential. 

The modified implicit Generalized Born Surface Area (GBSA) model by A. Onufriev, D. Bashford 

and D.A. Case divides the solvation energy into two components: columbic and non-columbic 

[34]. The columbic solvation energy accounts for the electrostatic energy between solute atoms in 

a continuum solvent based on the position of the solute atom in the protein. It is calculated using 

the generalized Generalized Born model. The non-columbic solvation energy accounts for the 

charge-less vdW effect between the solvent and the solute and the energetic cost of breaking this 

solute-solvent complex. It is proportional to the solvent exposed surface area of each atom and is 

calculated by the Linear Combinations of Pairwise Overlaps (LCPO) model [40]. The AMBER 

force field ff14SB was used in this work.  

Similar to the energy calculation in AMBER, the total free energy change in CHARMM 

was calculated as a sum of individual energies that accounts for bond lengths, bond angles, bond 

torsions, improper dihedral angles, Urey-Bradley energy, vdW, electrostatics and solvation 

energies as shown in the Equation 3 [33].  
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∆𝐺𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

((1 + cos(𝑛𝜙 − 𝛿))

+ ∑ 𝐾𝜑(𝜑 − 𝜑0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝑈𝐵(𝑟1,3 − 𝑟1,3;0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ [
𝑞𝑖𝑞𝑗

4𝜋𝐷𝑟𝑖𝑗
+ 𝜀𝑖𝑗 [(

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

]]  

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

+ 𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 

 

(3) 

The additional fourth term accounts for out-of-plane bending and the Urey Bradley energy 

ensures the right distances between two atoms bonded to a common atom (1-3 atom pair). Similar 

to Equation 2, energies for bond lengths, angles, improper dihedrals and Urey-Bradley energies 

are accounted for using a quadratic function and angle torsions are calculated by a Fourier series 

form. The Fast Analytical Continuum treatment of Solvation (FACTS) model was used to calculate 

implicit solvation energy in CHARMM [41]. FACTS is a Generalized Born model that differs 

from AMBER’s GBSA model in its approach to calculate the atomic electrostatic solvation free 

energy and the solvent exposed surface area. Both the columbic and non-columbic energies in 

FACTS are estimated using a geometrical approach that accounts for the symmetrical manner in 

which solute atoms displace water around another atom. Explicit solvation models are 

computationally expensive and slow to implement for the purposes of this work even though they 

are more accurate than the implicit solvation models used in this work [42]. The CHARMM force 

field models CHARMM22 and CHARMM36 have been used in this work. An additional 
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correction term for the backbone angular dependence of the total energy is added to Equation 3 in 

CHARMM 22.  

Rosetta uses a linear combination of several energies to calculate the total change in Gibbs 

free energy given by Equation 4 [32]. 

∆𝐺𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑤𝑖𝐸𝑖(Θ𝑖, 𝑎𝑎𝑖) 

𝑖

 (4) 

Here, 𝑤𝑖 is a weight factor for energy 𝐸𝑖 which is a function of degrees of freedom Θ𝑖 and 

amino acid identity 𝑎𝑎𝑖. Rosetta uses segmented versions of the Lennard-Jones potential and 

Coulomb’s law to simulate vdW and electrostatic energies respectively. Rosetta uses the Gaussian 

solvent-exclusion model EEF1 developed by Lazardis and Karplus [43]. This implicit solvent 

model has two components. The first component estimates the free energy change associated with 

the loss in volume occupied by the solvent around the solute with a Gaussian function. The second 

component calculates the energy associated with solvent perturbation due to secondary solute 

presence by using neutralized ionic side chains and a distance-dependent dielectric constant. 

Rosetta adds a third anisotropic orientation-dependent term that accounts for the destabilizing 

presence of solutes at possible hydrogen bonding regions around ionic atoms. Hydrogen bond 

energies are calculated by combining electrostatics and orientation preferences observed in 

experimentally obtained high resolution protein crystal structures. Moreover, hydrogen bond 

energies are divided into four components based on the side chain or backbone identity and 

distance between the participating atoms [32]. Disulfide bond energies are calculated based on 

structural features observed in crystal protein structures. Energies associated with backbone and 

side chain torsions are calculated based on parameters obtained from probability estimates of 

backbone dihedral angles and rotamer conformations given the amino acid type. All probability 
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calculations are based on a library of high-resolution, non-redundant protein structures [32]. 

Additional terms account for reference amino acid energies in the unfolded state, unstable open 

proline rings and tyrosine hydroxyl hydrogens which are not in the aromatic plane. The weight 

factor for each energy term has been adjusted to match calculated energies with small molecule 

thermodynamic data and experimental observations [32]. Contrary to the ‘first principles’ based 

approach of AMBER and CHARMM, Rosetta is highly dependent on statistical coefficients 

obtained from protein structures. Rosetta is the most commonly used force field for protein 

engineering and is used specifically for antibody design in approaches such as 

RosettaAntibodyDesign (RAbD) [37] and hotspot-centric approach [44]. However, its 

electrostatics potential is parameterized for the hydrophobic interiors of proteins rather than the 

polar exteriors [45]. Other design software developed by the Maranas group [10] [12] [46] employ 

CHARMM for antibody design as discussed later. 

Computational antibody design 

The computational design of antibodies has made several advances in the past two decades. 

Analysis of libraries of antibody structures has revealed that the backbone structure of antibody 

framework and constant regions is mostly conserved [10]. Combined with the fact that antibody 

binding is dictated by CDR loops, antibody design efforts have focused at engineering CDR loop 

shapes and sequences to bind to the target antigen. Various types of computational approaches 

have been used to generate novel antibodies. One of these approaches includes grafting non-Ig 

peptides into CDRs to mimic natural interactions from a non-Ig complex. Williamson et al. grafted 

binding regions of the misfolded Prion protein (PrPsc) into HCDR3 and generated antibodies that 

bound both PrPsc and cellular Prion proteins [47]. Peter el al. grafted hydrophobic regions of Aβ 
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peptide into HCDR3 and generated antibodies that bound Aβ fibrils with sub-micromolar affinity 

[48]. Another approach combines experimental and computational design by conserving residues 

of interest and mutating neighboring residues in CDRs to generate libraries that are screened for 

the desired property. Smith et al. [49] and Taussig and Stoevesandt [50] used this hybrid approach 

to design integrin binding antibodies and phosphorylated peptide binding antibodies respectively. 

A common design approach is to redesign CDRs through point mutations. Lippow, Wittrup and 

Tidor improved binding affinity of anti-lysozyme antibody by computationally evaluating point 

mutations in the CDRs and selecting those that increased electrostatic interactions [51]. 

Sasisekharan et al. mutated residues at the periphery of the binding interface of a dengue virus 

antibody to widen its specificity to other variants of the virus [52]. Further information on 

computational antibody design approaches can be obtained from reviews performed by Tessier 

and Tiller [53], Fischman and Ofran [54], Nakamura et al. [55] and Saven et al. [31]  

The most challenging approach to designing antibodies is to determine the sequence and 

structure of CDR loops or variable domains that produces a desired function, such as binding to a 

target epitope, without an initial antibody-antigen complex structure as a starting point. Several 

methodologies and software have been proposed for the computational design of CDRs and 

antibody variable domains that bind to a specific antigen epitope. These are OptCDR [10], 

OptMAVEn [12], OptMAVEN 2.0 [46], RAbD [37], Hotspot-centric design [44] and AbDesign 

[56] among others. These are reviewed in brief below. 

OptCDR follows a four step workflow. In step 1, optimal canonical CDR structures are 

selected to bind with the selected antigen epitope. This is done through the use of a library of 

canonical structures for all the CDRs and MILP optimization to determine the best group of non-

clashing canonical structures. In step 2, the amino acid sequences of the canonical CDR structures 
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from step 1 are initialized through the use of energy functions, a rotamer library and a MILP 

rotamer optimization formulation. In step 3, over thousand iterations of the IPRO program [57] 

are performed to determine the optimal CDR structures and sequences. Each IPRO iteration 

consists of steps that perturb the backbone angles of a randomly chosen CDR, reselect the CDR 

amino acid sequence, minimize the total energy of the complex and dock the antibody to the 

epitope followed by another energy minimization. In step 4, several ranked solutions with different 

amino acid sequences are obtained using the optimal complexes from step 3 through rotamer 

selection MILP. OptCDR was used to design antibodies that bind to a peptide from the capsid of 

hepatitis C, fluorescein and VEGF. In all the three cases, the OptCDR designs for antibody and 

nanobody scaffolds had binding energies similar to or stronger than the wild type and mutated 

antibodies designed to bind the same epitope. All the simulations were run on 3.0 GHz Intel Xeon 

processors with 4 GB of RAM for an average of 9 days [10]. Out of 50 designs generated by 

OptCDR to bind a tetra peptide, four displayed strong binding as they bound with nanomolar 

affinity in experimental tests [58]. 

OptMAVEn follows a three step workflow. In step 1, an antigen binding site is defined as 

a rectangular box near the CDRs that occupies all the geometric centers of 750 known epitope 

structures. The target epitope mean is then positioned in 539 equally spaced grid points inside the 

box and rotated around the z axis with intervals of 60 degrees while the epitope is positioned facing 

the CDRs. In step 2, a MILP optimization formulation was used to identify combinations of six 

modular antibody parts from the MAPS database [59] with low interaction energies calculated 

using the CHARMM force field. The MAPS database, developed by the same group, consists of 

modular variable domain loops analogous to the V, D, and J germline regions. In step 3, the IPRO 

protocol is used for affinity maturation of the designed variable domains from step 2. Furthermore, 
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in each iteration, all 9-mer sequences from the designs are compared with 9-mer sequences from 

human antibodies to assess their immunogenicity. Designs with lower dissimilarity scores are 

selected for the next IPRO iteration. The authors computationally benchmarked each step of the 

OptMAVEn workflow and designed antibody libraries to bind to two antigens, envelope 

glycoprotein gp120 and hemagglutunin. All the final affinity matured designs displayed interaction 

energies lower than the native complexes and the pre-affinity maturation designs. A design run 

using ten processors in parallel with an antigen of about 100 amino acids is expected to take less 

than three weeks of computational time [12]. Five designs from this set were chosen for 

experimental validation and three of the designs showed <30 nM binding affinities [60].  

The OptMAVEN approach was improved in its second version, OptMAVEN 2.0. 

OptMAVEn 2.0 improved the handling of the vast amount of sequence and structural data, while 

the core OptMAVEn procedures of using a rectangular box of grid points for the epitope 

positioning, searching through the MAPS database, IPRO affinity maturation and humanization 

remained the same. Initially, for each MAPs loop type, a matrix of pairwise sequence similarity 

score is developed. Stojmirovic’s method is then used to convert the similarity scores into metric 

distances. This is followed by determining a 3D coordinate for each loop using Distance Geometry 

Optimization Software and the metric distances. Each OptMAVEn-2.0 design is represented as a 

23-dimensional vector, each dimension for a geometric identity for the MAPs parts, antigen 

position and antigen rotation angle. The 23-dimensional vectors are transformed into 3-

dimensional vectors using Principal Component Analysis and clustered using k-means clustering. 

The clustered designs are then ranked from most to least promising. OptMAVEN 2.0 provides the 

user with an additional option of performing a 50 ns MD simulation using QwikMD to assess the 

binding stability of the designs. The authors showed that OptMAVEn 2.0 was about 80% more 
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efficient in terms of CPU time and memory than OptMAVEn. Moreover, the authors benchmarked 

OptMAVEn 2.0’s performance computationally through 64 antigens [46] and reported runtimes 

ranging from 4 to 55 hours. No experimental verification has been reported.   

RAbD performs the de novo CDR redesigns of input antibody-antigen complex structures. 

RosettaDock can be used prior to RAbD for complex generation. The RAbD design protocol 

contains of inner and outer loops that are executed repeatedly. The outer loop is responsible for 

selecting a CDR structure from a CDR cluster and CDR type, all of which are randomly chosen. 

The inner loop is responsible for performing several tasks such as the sequence design, side-chain 

repacking and energy minimization of the CDR. The sequence design and side-chain repacking 

are done using the Monte Carlo side-chain repacking procedure available in Rosetta. Rosetta is 

also used to perform local steepest-design energy minimization. The Metropolis Monte Carlo 

criterion is applied to the antibody structure after each inner and outer loop based on the total 

energy or the interface energy. The structure with the lowest observed energy is produced from 

the outer loop as the final solution. Users can select the number of inner and outer loop design 

steps. The authors did not report any runtimes for the benchmarking simulations. The affinity 

maturation ability of RAbD was experimentally tested. Out of 30 RAbD designs for HIV-CD4 site 

binding antibody, 20 designs showed some degree of binding. Similarly, out of 27 RAbD designs 

that were predicted to improve hyalunoridase binding antibody, 7 designs showed some degree of 

binding. Moreover, four of these designs improved binding affinities 10 to 50 fold over their native 

structures [37].   

The hotspot-centric approach can been used to redesign any scaffold, including antibodies, 

to bind a target epitope. The approach builds on the idea that protein binding interface consists of 

hotspots, a cluster of few residues that make a significant contribution to binding energy through 



28 

 

short range hydrogen bonding, vdW packing or electrostatic interactions. The design protocol 

consists of initially designing a library of single amino acid hotspot positions on the antigen surface 

using RosettaDock. Parallel to the hotspot library design, the chosen scaffold is docked to the 

target surface using PatchDock and then the low resolution RosettaDock. Binding poses from the 

second step that incorporate native or mutated resides from the hotspot library are passed through 

hotspot energy evaluations and target-specific filters in iterative steps. Successful complexes from 

the previous step are optimized through RosettaDesign and energy minimization before passing 

through another set of binding energy and shape complementarity filters [44]. The authors tested 

the protocol by designing 88 proteins of two or three residue hotspots from various scaffolds to 

bind the stem region of Hemagglutinin. Out of the 88 designs, only two designs displayed weak 

binding affinities. The authors then used designed libraries of variants of the two designs using 

single site-saturation mutagenesis and error-prone polymerase chain reaction. The authors were 

able to identify mutations that improved the binding affinities to single digit nanomolar values. 

The authors did not mention any runtimes since the approach consists of iterative steps that require 

manual analysis [61].  

The AbDesign algorithm is built upon the idea of combinatorial backbone and sequence 

sampling from a database of known structures from the same protein family. The initial steps of 

the workflow consist of constructing a Position Specific Scoring Matrix (PSSM) based on the 

structures of proteins from the same family as the chosen scaffold. The chosen scaffold is then 

segmented based on structurally conserved positions. For antibodies, the segmentation is inspired 

from the V-D-J genomic segmentation. For each antibody segment, a library of backbone 

confirmations is then developed. Canonical structures from the clustered database of backbone 

confirmations are determined and inserted into the chosen scaffold to obtain combinatorial 
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confirmations. Each of these conformations is docked using low resolution RosettaDock, repacked 

with side chains using the PSSM matrix, minimized and passed through energy and structural 

filters. The solution structure from the previous step is then refined using randomly selected 

different backbone conformations and multi-constrained optimization. The optimization 

formulation attempts to optimize the binding energy and the energy of the unbound scaffold. A 

final set of energy and structural filters are used to determine the final solution structures. The 

authors used AbDesign to improve a set of nine antibody structures binding to their respective 

epitopes. The generated designs displayed comparable interaction energies and buried surface 

areas and lower shape complementarity scores than a set of natural protein-binding antibodies. The 

authors reported runtimes of 4.6 hours for the precomputation steps (PSSM and backbone 

conformation database generation) and 7 hrs for each design trajectory respectively [56]. An 

epitope-specific design approach can consist of multiple such design trajectories.   

The approaches reviewed represent the current state-of-the-art in computational antibody 

design. These methodologies employ computationally burdensome and time-consuming 

algorithms and can design only antibodies, even though have been successful in designing novel 

high-affinity antibodies with experimental validation. All the approaches employ iterative routines 

of either protein-protein docking and energy calculations and minimizations which increase 

memory usage and runtimes. This can be seen in the workflows of the reviewed approaches as 

shown in Figure 1.4. OptCDR, OptMAVEn and OptMAVEN 2.0 employ CHARMM while RAbD, 

AbDesign and Hotspot-centric approach use Rosetta for their energy calculations. RAbD, 

OptMAVEn 2.0 and OptCDR use databases of antibody structures, thus excluding their use for 

other non-Ig scaffolds discussed earlier. AbDesign depends on the availability of a family of 

protein structures similar to the chosen scaffold, hence making it difficult to use for other binding 
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scaffolds. The hotspot-centric approach does not guarantee the generation of designs for a selected 

scaffold. Previous work that has validated the approach have tested multiple scaffolds [61] [62].  

Computational design of fixed backbone scaffolds 

Computational methods to design fixed backbone protein scaffolds, such as affibodies and 

DARPins, require different approaches than those for antibodies due to their lack of loops 

analogous to CDRs. One strategy is to use a docking program [63]–[67] to create an initial complex 

followed by iterative cycles of point mutations [68], [69]. This approach is analogous to and 

inspired by the affinity maturation process of antibodies by the immune system [70] as well as the 

experimental directed evolution protocol [71]. Various docking approaches have been developed 

over the past two decades. ZDOCK uses stepwise movements and rotations of rigid body 

representation of the ligand around the receptor and uses fast Fourier transforms to quickly identify 

poses with good shape complementarity features. Poses are then ranked based on energy potentials 

[63]. Other approaches like ClusPro use ZDOCK for good quality pose identification followed by 

further pose refinement and binding energy evaluations [66]. RosettaDock uses a coarse-grained 

rigid body Monte Carlo search for high scoring poses which are later refined through local docking 

accompanied with side chain and backbone packing and energy minimizations. The Rosetta energy 

function is used in the Monte Carlo search and to rank poses [65]. Swarmdock, a population-based 

metaheuristic approach, starts with a group of random initial poses and uses a particle swarm 

optimization algorithm to minimize electrostatic and vdW potentials between two proteins [67]. 

HADDOCK uses a combination of rigid body energy minimizations of randomly generated 

starting poses and flexible energy minimizations of the best 1000 initial complexes [64].  
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Docking approaches use rigid-structure and/or fixed-sequence representations of scaffolds 

since the original purpose of such tools was to predict native binding orientations. This feature, 

while appropriate for replicating native complexes, imposes limitations for designing binding 

proteins because it will reject protein poses with clashes between native side chains that could be 

rectified through mutations. A design approach that can dock scaffolds with mutable binding 

surfaces would be likely to identify higher quality complexes than methods that cannot. One 

strategy to do this would be to dock proteins in a manner where they form strong interactions 

which are known to be abundant in protein-protein binding interfaces, such as hydrogen bonds (H-

bonds) and hydrophobic interactions. The Baker lab has developed RIFdock, an approach that 

docks proteins to a ligand or another protein while simultaneously making mutations. RIFdock 

does this by docking individual amino acids to the epitope, generating a large library of reverse 

rotamers for the well docked amino acids and identifying scaffold positions that can hold multiple 

reverse rotamers [72]. Cao et al. designed SARS-CoV-2 binding miniproteins by initially scanning 

a library of 19000 miniproteins through RIFdock against the ACE-2 binding epitope of the RBD. 

High quality poses were then affinity matured to bind with picomolar affinity with the ACE-2 

binding epitope [73]. Similar to other docking approaches like ZDOCK and HADDOCK, RIFdock 

makes use of grid based movements of the scaffold around the target protein. As of the time of 

writing of this dissertation, a detailed description of the RIFdock methodology is not available in 

a peer-reviewed article. Further, RIFdock is not available in the Rosetta Commons.  

Objective 

The design paradigm that is followed in current approaches is to identify an initial structure 

with the potential to have a desired function and then identify mutations to improve that function. 
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While effective, the iterative nature of this paradigm makes it computationally expensive to 

implement. There is a need for a novel paradigm in protein engineering that replaces the 

burdensome iterative procedures with straightforward faster geometric tools that can design 

binding proteins. In this dissertation, I have made an attempt at advancing the state-of-the-art in 

binding protein engineering. First, energetic and conformational features of binding interfaces 

were studied and this knowledge was then used to develop geometric tools for the design of 

antibodies and fixed-backbone binding proteins for any target epitope. In Chapter 2, the 

development of a non-redundant database of antibody-antigen complexes and the energy 

contributions to binding on a per-residue basis are discussed. In Chapter 3, the findings from 

Chapter 2 are built upon to develop a novel computational approach for the de novo design of 

antibodies. Although the designed antibodies are predicted to be statistically superior to naturally 

occurring ones (p < 0.0001 for numerous metrics), they failed to bind when tested experimentally. 

Motivated by this discrepancy, in Chapter 4, features built on quantitative metrics regarding 

conformational stability of binding interface residues are developed and analyzed. Chapter 5 

describes improvements to the approach from Chapter 3 and the subsequent case study results 

regarding its effectiveness in generating binding antibodies are described. In Chapter 6, a novel 

variable sequence docking approach for fixed-backbone protein scaffolds is developed. Results 

regarding its performance in comparison with other docking tools are described. Finally, in 

Chapter 7 the learnings, contributions, and future work regarding the projects completed in this 

dissertation are discussed. An illustrative description of the dissertation is provided in Figure 1.5. 
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Figure 1.1 The structure of Protein Data Bank (PDB) [74] file 1HZH [75]. This is a human IgG 

and its heavy chains are depicted in blue and its light chains in red, with the variable domains 

shown in lighter shades. 
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Figure 1.2 Heavy and light CDR loops (in green) of a human IgG. PDB 1HZH [75] 

 

Figure 1.3 Examples of alternative binding scaffolds. Depicted are Affibody (PDB: 3MZW) and 

DARPin (PDB: 6FPA) structures. Their variable residues that mutate to bind target proteins are 

colored in pink. 
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Figure 1.4 Design workflows of currently available antibody design approaches: RAbD, 

AbDesign, OptCDR, OptMAVEn and Hotspot-based design. Though OptCDR, OptMAVEn and 

OptMAVEn 2.0 follow different approaches, they all employ the above shown iterative cycle for 

affinity maturation. 
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Figure 1.5 Illustrative description of dissertation. 
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2. Chapter 2 - Antibody-antigen database 

As mentioned in Chapter 1, antibodies recognize epitopes on antigens and bind specifically 

and strongly at these locations. This specificity is achieved through strong structural fitting of the 

interacting protein surfaces and the presence of hydrophobic, electrostatic and vdW interactions 

which stabilize the binding interface. The knowledge of antibody binding interface features can be 

used in computational protein engineering tasks such as designing novel antibodies that bind to 

their target molecules and predicting target binding regions of given antibody and antigen 

structures. This Chapter will provide a background on the work done in this field of research and 

present the methodology and results of a multi-force field analysis of a large database of antibody-

antigen complexes. The contents in this Chapter have been adapted from our publication [1].   

Background 

For over two decades, features of antibody-antigen binding interfaces have been studied in 

detail using the crystal structures of antibody-antigen complexes. Such studies have been made 

possible by the advent of high resolution imaging tools such as X-ray diffraction and NMR 

spectroscopy. Initially, Mian et al. studied six antibody structures which included only one antigen 

[2]. Work by Lo Conte et al. and Sundberg and Mariuzza studied 19 and 30 complexes respectively 

[3] [4]. The former analyses studied features of the CDR residues that bind to the antigen (i.e., 

paratope) in more detail when compared with epitope properties. W. Chen et al. studied interaction 

methods and molecular surface properties of both paratopes and epitopes in 155 protein-antibody 

complexes, with 53 unique structures [5]. The work of Fellouse et al. constructed paratope libraries 

with a diversity of only four amino acids and studied the features of two complexes for the 

generation of synthetic antibody libraries [6]. Shape complementarity (Sc) is the widely used 
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binding metric that accounts for the conformational fitting of the two interacting surfaces [7]. 

Kuroda and Gray studied the features of hydrogen bonds and Sc in 6637 non-redundant protein-

protein interfaces which included 191 antibody-antigen complexes [8]. An average Sc score of 

0.70 +/- 0.06 was reported for antibody-antigen complexes. Nguyen et al. analyzed 403 antibody-

antigen complexes using computational methods to find hydrogen bonds and vdW, hydrophobic 

and ionic interactions. The authors reported that the binding interfaces are enriched in short chain 

hydrophilic residues while TYR is the most frequent amino acid making the highest number of 

hydrogen bonds. Having observed waters ranging from 5 to 25 molecules in binding interfaces, 

the authors believe that the interfaces are stabilized by these molecules through hydrogen binding 

and by negating any poor shape complementarity between the epitope and paratope. Martineau et 

al. analyzed 227 antibody antigen complexes using the FoldX force field [9]. After calculating the 

change in free energy due to ALA mutations at each residue position in the variable domains, the 

authors identified that 8 residues in 30 key positions made an average contribution to 80% of the 

binding energy. Moreover, TYR was found in abundant frequency at the key paratope positions 

followed by GLY, SER, TRP, ASP and ASN. The importance of TYR in antibody binding 

interfaces was also reported in the work by Mumey et al. in their analysis of a database of 53 non-

redundant antibody-antigen structures [10]. The authors also studied spatial and geometrical 

features of the interface such as the gap volume index, dimensions and shape.  

The previous studies have identified numerous features about paratopes, including which 

amino acids are most commonly used and the types of interactions that can occur. Similar to the 

work of Martineau et al., which used only one force field, antibody-antigen interfaces were 

analyzed using more force fields without any ALA mutations. CHARMM36, AMBER and Rosetta 
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molecular mechanics force fields were used to quantify the percent contribution to binding of every 

paratope residue and residue type in a database of 498 antibody – protein complexes.  

Methodology 

Initially, 2498 antibody structures were gathered from the International Immunogenetics 

Information System 3D Structure Database [11]. 1344 antibodies with at least five CDR mutations 

from one another were identified, of which 492 were in complex with protein/peptide antigens. 

Those structures were selected for this study. 

Missing atoms were added and the overall energies of each of the 492 complexes were 

minimized in each force field. Next, the energies of interaction between every antibody residue 

and every antigen residue were tabulated. Due to the pairwise additive nature of the energy 

functions and known inaccuracies in the approximations inherent in their formulations, the total 

energy can vary significantly from complex to complex and generally increases in magnitude as 

the total number of amino acids increases. Therefore, the energies were normalized to the percent 

of total energy for each complex to facilitate comparisons between complexes.  

Results 

The percent contribution to binding energy of residues was determined to follow a 

logarithmic growth for all the force fields, as shown in Figures 2.1, 2.2 and 2.3. The R2 of the 

logarithmic fits for antibodies were 0.986, 0.993 and 0.989 with the AMBER, CHARMM36 and 

Rosetta force fields, respectively. Using CHARMM36, AMBER and Rosetta, the first five residues 

contribute to an average of 59.2%, 52.4% and 58.0% of the total binding energy respectively. 

Similar observations have been made computationally by Martineau et al. [9]. Also, the percent 
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contributions to binding energy are marginally greater using CHARMM36 and Rosetta than with 

AMBER. Without experimental data, it is not clear which is the most accurate prediction, but all 

three force fields show the same logarithmic growth trend. Similar to this finding, experimental 

studies have demonstrated that in most complexes, five antigen residues are sufficient for specific 

and high affinity binding [12], [13]. There are, on average, > 40 CDR residues and >200 residues 

in the variable domains. Comparing these numbers to the results in Figures 2.1, 2.2 and 2.3 show 

us that a minute fraction of antibody residues contribute to a majority of the binding affinity. Thus, 

the top five paratope residues in each complex were defined as “significant residues”. 

Figure 2.4 depicts the fractional frequency of amino acid usage in the significant residues 

versus the CDRs as a whole for all three force fields. The CDR residue trends do not follow any 

specific trend with respect to hydrophobicity of the amino acids types. Hydrophobic residues PHE 

and ILE have higher frequencies than hydrophilic residues such as LYS, GLU and ARG. This 

observation hints at the importance of the structural contribution of each residue to the CDR loop 

shape over its hydrophobicity even though CDR loops are surface exposed structures. SER is the 

most frequent CDR amino acid since it can play dual roles: structural through its small side chain 

which offers high conformational flexibility [14] and functional through its hydrophilic hydroxyl 

group. TYR is the second most frequent CDR residue due to its high propensity to engage in 

binding interactions as mentioned later. GLY is the third most frequent CDR amino acid since it 

plays a structural role similar to SER along with offering its backbone atoms for hydrogen bonding. 

The hydrophilic residues with small side chains, THR and ASP, are the fourth and fifth most 

abundant CDR residues.  

The trends regarding significant residues are consistent with expected behaviours: charged 

and polar amino acids which can participate in binding interactions are overrepresented in the 
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significant residues relative to hydrophobic residue types when compared with CDR residue 

preferences. HIS and GLN are underrepresented in significant residues in spite of their polar side 

chains. This could partly be due to the presence of large hydrophobic hydrocarbon groups in the 

side chains along with the polar groups. Furthermore, significant residues are also depleted in SER 

due to the structural role it plays in CDR loops as mentioned before. The top five amino acid 

frequencies in significant residues for CHARMM36, AMBER and Rosetta are 

ASP>TYR>ARG>SER>GLU, ASP>TYR>ARG>GLU>SER and TYR>ASP>ARG>TRP>PHE 

respectively. Amongst the hydrophilic residues, TYR is the most significant residue type by a large 

margin using Rosetta and ranks second behind ASP by a small margin with the AMBER and 

CHARMM36 force fields. TYR has 0.4% and 6% lower frequency than ASP according to 

AMBER and CHARMM36 respectively but 81% higher frequency in Rosetta calculations. Similar 

observations regarding TYR’s importance in paratopes have been made earlier in several 

publications [6] [15]. The significance of TYR for binding can be attributed to the presence of an 

aromatic ring and hydroxyl group in its side chain, which lends it the ability to engage in both π 

stacking and hydrogen bonds with epitope atoms. ASP is the second most significant residue due 

to its ability to engage in hydrogen and ionic bonds through its anionic oxygen atoms. Furthermore, 

the presence of only a single methylene group does not offer any major hydrophobic effects. ARG 

is the third most significant residue types according to all the force fields. Its positively charged 

side chain can participate in both hydrogen bonds and ionic interactions. There were major 

differences between the force fields for the fourth and fifth most abundant significant residue type 

selections. While CHARMM36 and AMBER selected hydrophilic residue types SER and GLU, 

Rosetta selected aromatic residue types TRP and PHE. This difference might be a result of 

CHARMM36 and AMBER’s inability to adequately capture the types of interactions aromatic 
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rings can engage in: cation-π, π-π and hydrophobic interactions. Alternatively, Rosetta’s 

parameterization to effectively simulate the hydrophobic cores of protein structures may have also 

led to this contradictory behaviour between force fields.  

In order to compare the performance of the force fields with regards to the different amino 

acids, the similarities between the amino acid fractional frequencies for each force field were 

studied. To do this, the absolute difference of the percent deviations from the average between 

each pair of force field results for each amino acid and the average of these percent deviations for 

each force field comparison were calculated. The results are detailed in Table 2.1, which shows 

that AMBER and CHARMM36 give similar results when compared with the results from Rosetta. 

This was expected since both AMBER and CHARMM36 follow similar energy formulations to 

calculate the enthalpic and solvation energies while Rosetta is heavily dependent on statistical 

parameters obtained from large protein structure databases.  

Discussion 

In the context of protein engineering, the key lesson that was taken from these analyses is 

that a handful of residues, either hydrophilic or aromatic, contribute the majority of the binding 

energy. Thus, a straightforward antibody design approach could be developed that prioritizes the 

presence of these few residues in its CDR loops making strong interactions with the epitope in the 

form of either hydrogen bonds, cation-π stacking or π-π stacking interactions.  

I developed a non-redundant database of 498 antibody-protein complexes and used the 

CHARMM36, AMBER and Rosetta force fields to energetically minimize and analyze the binding 

interactions in these complexes. This allowed for the quantification of the contributions to binding 

of single residues in antibodies and antigens. The primary finding is that the cumulative 
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contributions follow a logarithmic growth, with only a few residues contributing most of the 

binding energy. This data should aid in the development of computational methods to design 

binding proteins and in the development of diagnostics, vaccines, and therapeutics. 
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Table 2.1 Differences between percent deviations from average calculated using CHARMM, 

AMBER and Rosetta force fields for each amino acid. 

 
CHARMM vs 

AMBER 

CHARMM vs 

Rosetta 

AMBER vs 

Rosetta 

TYR 13.18 15.83 29.00 

ASP 9.34 42.77 33.42 

ARG 0.66 45.90 45.24 

SER 15.13 60.29 45.15 

TRP 33.54 113.34 79.80 

ASN 16.54 7.22 23.75 

GLU 3.35 62.10 58.75 

PHE 31.99 121.97 89.98 

THR 2.44 10.35 12.80 

LYS 5.07 53.70 58.77 

GLY 1.13 86.04 84.92 

GLN 34.01 45.21 11.20 

LEU 4.60 147.96 113.36 

ILE 9.67 132.45 122.78 

VAL 27.62 167.46 139.84 

HIS 44.30 9.88 54.18 

ALA 4.13 121.43 125.56 

PRO 51.73 91.28 39.55 

MET 0.43 74.88 75.31 

CYS 43.19 85.53 128.72 

Average 19.10 74.78 68.60 
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Figure 2.1 Average cumulative fractional binding energy calculated using CHARMM36 force 

field. 
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Figure 2.2 Average cumulative fractional binding energy calculated using AMBER force field. 
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Figure 2.3 Average cumulative fractional binding energy calculated using Rosetta force field. 
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Figure 2.4 Fractional frequency of each amino acid obtained using CHARMM36, AMBER and 

Rosetta force fields. 
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3. Chapter 3 - AUBIE 

Building on the observation from Chapter 2 that more than half of the binding energy in 

antibodies is contributed by five paratope residues, I hypothesized that a design strategy focusing 

on engineering several key, strong interactions between the target epitope and paratope would 

simplify and reduce the computational load. To this end, I have developed and tested the Algorithm 

for Ultra-rapid Binding Interaction Engineering (AUBIE) for the de novo design of binding loops 

for antibodies and alternative scaffolds that bind to a specific antigen epitope. AUBIE quickly 

designs libraries of PDB structure files that are expected to have strong binding interactions with 

the target epitope. AUBIE was used to generate libraries of antibody structures that bind to the 

human epidermal growth factor receptor 2 (HER2) and the resulting predictions were 

experimentally tested. The Chapter will be provide a description of the AUBIE methodology and 

case study results. This work will be submitted for publication in 2022. 

Methodology 

AUBIE is divided into two main steps: database generation and protein design. In the first 

step, the Protein Data Bank is scanned for loops that can fit into the binding regions of the chosen 

framework and strong interaction regions around these binding loops are identified. The second 

step includes the positioning of the antigen around the framework and geometrically identifying 

which compatible binding loops from the database align their strong interaction regions with 

relevant epitope atoms.  

Binding loops database generation 

The required input information for this step is the PDB file of the binding protein scaffold, 

the first and last residue information of each binding region, the maximum number of binding loop 
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structures and the minimum and maximum residue lengths of the binding loops searched. Here, a 

binding region is defined as the segment of the scaffold structure that will be replaced by loops, 

referred to as binding loops, obtained from the PDB (Figure 3.1, Step 1). In the first step of 

database generation, AUBIE searches for binding loops that fit into the specified scaffold binding 

regions. AUBIE uses the entire PDB available as of 3/13/2018 as its source of binding loops. The 

PDB was refined by purging it of any incomplete protein chains, heteroatoms and chains that 

contained non-natural amino acids. All the structures in the PDB are searched for protein loops for 

each binding region that meet a geometric grafting criteria and are compatible with the scaffold. 

The geometric criteria entails that the distances between backbone atom pairs in the first and last 

residues of the loop must be within a small threshold distance to the corresponding atom pair 

distances in the specified attachment point residues in the scaffold. AUBIE uses the following 

backbone atom pairs: Cαi-Cαf, Cβi-Cβf, Cαi-Cβf, Cβi-Cαf, Ni-Nf, Oi-Of and Ci-Cf where ‘i’ and ‘f’ 

refer to the initial and final attachment point residues (Figure 3.1, Step 2). This approach ensures 

continuity in the backbone dihedral angles from the scaffold into the binding loop and hence the 

stability of the grafted loop. There is a variability in distance between the binding loop attachment 

points since biomolecules are in constant motion. Hence, a deviation cutoff is utilized while 

comparing the pairwise distances. AUBIE uses a default deviation of 0.225 Å. The variability of 

protein structures can be captured through MD simulations. Users have the option of providing a 

set of scaffold structures obtained from a MD simulation, which will be used to determine the 

starting scaffold structure and attachment residue distance variability. In this case, the scaffold 

structure is then determined by first calculating the average positions for all the atoms from all the 

MD structures provided and then selecting one of the input structures that is most similar to the 
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average structure. The standard deviations are then used as the backbone atom pairwise distance 

deviations.  

The selected binding loops are checked with steric clash and energy filters to ensure their 

compatibility with other loops and the constant part of the scaffold i.e., the framework (Figure 3.1, 

Step 3). The loops that pass the following two criteria are eventually stored in the binding loop 

database.  

1. The binding loop must be compatible with the framework structure. The antibody-antigen 

database from Chapter 2 had revealed that 10% of CDRs had more than 16 steric clashes 

(i.e., at least one pair of non-Hydrogen atoms, also known as heavy atoms, are less than 

the sum of their vdW radii apart) and more than 237.5 kcal/mol of interaction energy with 

the framework. Binding loops are classified as framework compatible if they have lower 

steric clashes and interaction energy than these metrics. The interaction energy was 

calculated as the sum of the electrostatic and vdW energy calculated using the 

CHARMM22 force field [1].  

2. The binding loop must be compatible with at least one binding loop from all the other 

binding regions. This way it was ensured that every binding loop can be part of a final 

solution. Using the antibody-antigen database, it was determined that 10% of CDRs have 

more than three steric clashes and 55.6 kcal/mol energy interaction with the other CDRs. 

Hence loops that do not pass these steric and interaction energy criteria are deleted. The 

compatibility information of each binding loop is stored for future use during the later 

protein design portion of AUBIE.  

The framework is positioned at the origin with the binding loops oriented in the positive z 

direction. AUBIE does this by positioning the centroid of the attachment point backbone atoms at 
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the origin and ensuring that the best fit plane that passes through these backbone atoms has zero x 

and y axes slopes. Each binding loop identified from the previous step is positioned so that the 

backbone atoms of the first and last residues match the position of their respective backbone atoms 

in the attachment point residues in the framework. 

As mentioned before, the AUBIE approach attempts to engineer a few strong interactions 

between the designed protein and target epitope. It does so by identifying specific regions around 

binding loop residues for epitope atoms to occupy to make strong binding interactions. In this step, 

knowledge of the geometries of optimal attractive interactions is used to generate a library of 

strong binding regions (SBRs) for each of the binding loops identified in the previous step (Figure 

3.1, Step 4). The library will contain SBRs for all rotamers of all the residues in the binding loops 

since residue side chains are expected to repack to better interact with the epitope. The strong 

interaction types covered in the library are multiple H-bonds between charged residues, single 

hydrogen bonds and various orientations of π-π and cation-π interactions. Previous work has 

shown that the lowest energy conformations for π-π stacking follow the parallel displaced and T 

shaped arrangements [2]. Hence these interaction geometries were incorporated into AUBIE. 

Regarding cation-π interactions, the lowest energy conformations incorporated into AUBIE 

include the parallel and T-shaped arrangements shown in Figure 3.2. Table 3.1 gives information 

regarding the paratope and epitope atoms and paratope residues for each interaction type.  

For each interaction in Table 3.1, positional information about the epitope atoms that are 

important for binding and bond orientation is obtained and stored. This is done using geometrical 

constraints obtained from literature and the antibody-antigen database as shown in Table 3.2. The 

distance information for hydrogen bonds was obtained from the antibody-antigen database, while 

the remaining information was obtained from literature as detailed in Table 3.2. The geometric 
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constraints of all SBRs consist of a fixed position for an atom and secondary constraints such as a 

fixed position for another atom, fixed planar presence for an atom or fixed planar presence for a 

group of atoms. The secondary constraints for each SBR depend on the interaction type and 

flexibility of the orientation and the epitope side chain involved. These constraints need to ensure 

that all possible conformations of the strong interactions are covered. SBRs with secondary 

constraints as fixed positions for two atoms (SBRs 9, 11 and 15) can be occupied by only a single 

epitope residue conformation. On the contrary, several epitope residue conformations can meet the 

requirements of other SBRs. SBRs 1, 2, 5 and 6 simulate single H-bond between paratope 

Hydrogen and epitope Oxygen. A fixed position for bond acceptor, oxygen, and a plane for the 

acceptor antecedent, carbon, are determined. A plane is required to capture the two optimal 

positions of the carbon atom due to the presence of two electron lone pairs of the oxygen atom, 

both of which could participate in the hydrogen bond. Similarly, SBR 10 simulates H-strong H-

bond complex with paratope LYS and epitope acids. A plane is required to capture the two oxygen 

atom positions along with a fixed position of the carbon atom that is bonded to the oxygen atoms. 

For SBRs 7 and 8, which simulate H-bond between paratope Oxygen and epitope Hydrogen, the 

fixed positions of the hydrogen and donor atoms are determined for both the electron lone pairs on 

the acceptor oxygen atoms. For SBRs 11 and 15, which need to simulate epitope ARG positions, 

a fixed conformation of the guanidinium group is determined. Similarly, in SBR 9, fixed 

conformation of the carboxylic acid group is determined in order to simulate strong H-bond 

complex with paratope ARG. For SBRs 12 and 16, the point coordinates of the nitrogen and carbon 

atoms in the epitope LYS are determined. For SBRs to be occupied by aromatic residues for either 

cation-π or π-π interactions, the constraints include a fixed coordinate for either an atom (SBRs 17 

and 23) or the center of the aromatic ring (SBRs 13, 14, 19, 20, 21 and 22) along with a planar 
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constraint for all the six ring atoms. SBR 18, which represents a particular conformation of T-

shaped π-π stacking, is the only exception since it consists of two point constraints: a ring atom 

and the ring center. For π-π or parallel cation-π interactions such as SBRs 13, 17, 18, 20, 22, and 

23, SBRs are computed twice: above and below the ring. SBRs 3 and 4 are currently not part of 

the algorithm and are incorporated in future versions of AUBIE in Chapter 5. The database of 

compatible binding loops and optimal binding positions needs to be generated only once for each 

scaffold. The same database can be used for multiple design runs with that scaffold. 

Protein design 

In the AUBIE protein design workflow, the binding loop database is systematically 

searched for loop combinations that make strong interactions with the epitope without having any 

steric or charge clashes with each other and the antigen. The input information required for this 

step is the PDB file of the antigen, the epitope residue numbers, the minimum number of strong 

interactions required in each solution and the maximum number of solutions needed to be 

identified. The first step of the workflow orients the epitope to point at the binding pocket (i.e., the 

epitope points along the negative z-axis, Figure 3.3, Step 1). The binding protein framework and 

binding loops, which are already positioned around the origin and oriented towards the positive z 

direction facing the epitope, are loaded from the database. If the binding protein, which is 

comprised of the framework and binding loops, is fixed, the antigen has six degrees of freedom, 

three translational and three rotational, to search for binding conformations around the binding 

protein. The three translational degrees of freedom are movements along the three Cartesian axes 

and the three rotational degrees of freedom comprise the three Euler rotations around each of the 

three axes. Large rotations around the x and y axes would yield incompatible conformations since 

AUBIE positions the epitope to face in the negative z direction, which in turn would lead to steric 
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clashes between the antigen and binding protein. AUBIE rotates the antigen around the z axis in 

one degree steps and for each rotation, simultaneously searches for the three translational 

movements of the antigen that would yield strong affinity binding protein-antigen complexes 

(Figure 3.e, Step 2).  

For each rotation, AUBIE employs a two-step workflow to identify sets of compatible 

binding loops. First, AUBIE identifies combinations of epitope residues that can all simultaneously 

align with the minimum required SBRs. Subsequently, the second step checks if the binding loops 

of the paratope residues are compatible with each other, the framework and the antigen.  

AUBIE searches for congruent pairings of SBR and epitope residues (Figure 3.3, Step 3) 

by checking if the secondary SBR coordinates are less than 0.33 Å away from their respective 

epitope atoms after aligning the SBR primary coordinate with the respective epitope atom. For 

example, in SBR type 1, after matching the epitope oxygen atom with the primary SBR coordinate, 

it is ensured that the carbon atom of that epitope residue is less than 0.33 Å away from the SBR 

plane. This step applies to all SBRs since all SBR types consist of a primary atom coordinate along 

with other secondary coordinates which could either belong in a plane or point(s). A congruent 

movement signifies a strong interaction between the SBR paratope residue and epitope residue. 

For a group of congruent movements to be classified as a probable solution (Figure 3.5, Step 4), it 

must satisfy the following criteria. 

1. The translational movements of each pair of congruent movements in the group must not 

differ by more than 0.33 Å. This ensures that all the epitope residues in the group 

simultaneously occupy their respective SBRs and, at the same time, allows for some wiggle 

room for the placement of the epitope atoms in the SBRs.  
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2. No two congruent movements must be harbored by binding loops that have steric clashes. 

The compatibility information between the binding loops is pre-calculated during the 

database generation step. Moreover, if two congruent movements are from SBRs belonging 

to the same residue, then one of them has to be backbone atom interaction. Congruent 

movements from the same binding loop are also allowed. 

3. If both the congruent movements include a point coordinate and a plane in their SBRs 

(SBRs 1, 2, 5, 6 and 10), additional verification is performed that the primary points of the 

SBRs are more than 2 Å apart to avoid possible clashes of the secondary points.  

Figure 3.4 shows three movements, two of which are congruent, to illustrate this concept. 

Following the identification of groups of compatible congruent movements, groups that have 

binding loop similarity over 60% compared to other solution groups are purged to ensure a rich 

diversity in the final library of the solutions.  

Each solution group identified in the previous step is further analyzed for compatibility 

(Figure 3.3, Step 5).  

1. Initially, the antigen is positioned so that the epitope atoms of the congruent movements 

match with their respective SBRs. This is done by translationally moving the antigen by 

the average x, y and z movements of all the congruent movements in the group. 

2. After the antigen is positioned, two compatibility checks are performed: between the 

binding loops and the antigen and between the framework and the antigen. The 

compatibility checks are performed by computing steric clashes and electrostatic clashes. 

A steric clash is defined when two protein backbone atoms from different structures are 

closer than 80% of their vdW radii. AUBIE allows steric clashes involving side chain atoms 

under the assumption that the side chains would repack in order to avoid the clash but retain 
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the binding affinity. Solution conformations that have more than two steric clashes are 

rejected. The shortest distance between two atoms with the same charge (i.e., between the 

positively charged nitrogen atoms of LYS and ARG and the negatively oxygen atoms of 

ASP and GLU) in the antibody-antigen database is 4.2 Å. Therefore, an electrostatic clash 

is defined when two atoms with the same charge are closer than 4.2 Å. Histidine is not 

accounted as a charged amino acid since AUBIE assumes that the binding takes place at 

normal pH.  

3. In the scenario that a solution group does not have loops for a binding region in the 

framework, AUBIE scans the database for a binding loop belonging to the incomplete 

binding region that would pass the above mentioned compatibility checks. The PDB format 

file of the now complete binding protein and antigen is then generated and output to the 

user. 

Designs that pass these compatibility checks are immediately output as a final successful solution 

in the PDB format (Figure 3.3, Step 6). In other words, AUBIE designs binding proteins that have 

a sufficient number of favorable interactions (i.e., strong binding interactions) and no obvious 

detrimental interactions, without doing energy calculations.  

Results 

In order to test AUBIE’s performance, HER-2 binding antibodies were designed and 

experimentally tested. The HER2 antigen is overexpressed in breast cancer cells and is the target 

antigen for various therapeutics [3]. Trantuzumab (sold as Herceptin) is a HER2 binding 

therapeutic monoclonal antibody. The general epitope region selection for AUBIE and the 

experimental testing was done by Dr. Jamie Spangler’s group at Johns Hopkins University. They 
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wished to create bispecific antibodies made of the known HER2 binding Herceptin Fab domain 

and a novel Fab domain that bound an adjacent epitope on HER2. The antigen structure and 

selected epitope are shown in Figure 3.5. For the database generation step, the CDRs and 

framework region were obtained from the Herceptin-SCFV (Single Chain Fragment Variable) 

structure found in PDB 4X4X. Herceptin was selected as the framework source owing to its known 

stability, solubility and experience of the Spangler group with it’s experimental generation. The 

six CDRs were selected as the binding regions. The scaffold structure and CDR loop regions are 

shown in Figure 3.6.   

For the database generation step, a maximum limit of 500 loops per binding region was 

set. The database generation step identified 494 loops for H1, 498 loops for H2, 489 loops for H3, 

472 loops for L1, 498 loops for L2 and 481 loops for L3 in approximately 11.5 hours. The 

calculations were performed using an Intel Xeon E5-2660 processor with a speed of 2.60 GHz. 

The large number of candidate loops for each CDR ensures a large combinatorial solution space 

for the design step to search through. This antibody database is generated only once and can be 

used for any antibody design step. For the generation of AUBIE designs, two design runs were 

performed, each with unique epitopes. Multiple epitope selections allowed us to explore more final 

design orientations as the epitope dictates the antigen positioning before rotations. The two 

epitopes consisted of 23 and 18 residues respectively. The HER2 antigen structure was obtained 

from PDB 1N8Z. A minimum limit of six interactions and a maximum limit of 300 total solutions 

was set for all the design runs. The two AUBIE design runs generated 300 and 69 designs in 35.5 

hours and three days respectively using the previously mentioned Intel Xeon processor. An initial 

test of AUBIE against the same 12 amino acid epitope bound by Herceptin generated 300 designs 

in less than 6 hours using the same processor. This demonstrates that AUBIE runtimes scale rapidly 
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as the size of the target epitope increases. Target epitope sizes of 23 and 18 residues are relatively 

large. Smaller epitopes sizes are enough to generate large solution sets, AUBIE is able to identify 

numerous solutions in a short time frame (i.e., < 10 hours) for reasonably sized (i.e., < 13 residues) 

epitopes. 

All the AUBIE generated designs were run through all-atom energy minimizations using 

the CHARMM22 force field with the FACTS implicit solvation model [1]. CHARMM22 was used 

to initially minimize design energies since prior experience with the force field has shown that it 

is better at resolving side chain clashes than AMBER and Rosetta. The CHARMM22 minimized 

designs were subsequently minimized with AMBER’s ff14SB [4] and Rosetta’s REF2015 [5] 

force fields. Upon energy minimizations, the designs were analyzed for binding metrics such as 

buried surface area and binding energies. The AMBER binding energies were obtained by 

summing up pairwise residue energies between the antibody and antigen. The buried surface area 

and Rosetta binding energies were obtained by using the InterfaceAnalyzer module from Rosetta 

[6]. Analysis of such metrics for binding affinity prediction has been done in previous antibody 

design work [7]. Table 3.4 lists the average values for these metrics from the AUBIE generated 

designs and the antibody-antigen database, as well as the number of hydrogen bonds and salt 

bridges in the structures. 10 designs were selected for experimental testing based on these metrics.  

The selected designs have statistically better properties than those in the antibody database 

for five metrics: Amber-calculated binding energies (p < 0.0001), Rosetta-calculated binding 

energies (p = 0.02), buried surface area (p < 0.0001), salt bridges (p = 0.0004), and number of 

hydrogen bonds (p < 0.0001). These results demonstrate that not only is AUBIE able to rapidly 

design antibodies using limited computational resources, but that it can also design ones that are 

computationally predicted to be superior to natural antibodies.  
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Experimental testing and discussion 

The selected AUBIE-designed antibodies were evaluated for binding by the Spangler Lab 

at Johns Hopkins University. The antibodies were expressed using yeast surface display. Full 

expression and proper folding of the antibodies was confirmed with protein L. Unfortunately, 

while a control HER2-binding antibody, Trastuzumab, demonstrated low nanomolar affinity under 

these conditions, the AUBIE designs displayed no detectable binding up to 2 μM. As these 

experiments were not performed by the author of this dissertation, they are not being described in 

further detail in this document. 

Upon learning that the top AUBIE designs did not bind to HER2, an in-depth analysis of 

the AUBIE binding interfaces was performed. It was observed that AUBIE designed paratopes 

consisted of a large number of ARG, LYS and GLN residues. The side chains of these residues 

have multiple polar atoms, which allows them to form multiple H-bonds. On the other hand, the 

side chains of these residues have many degrees of freedoms and hence are referred to as highly 

flexible residues from here onwards. The total number of CDR ARG, LYS and GLN residues per 

complex in the antibody-antigen database and AUBIE designs were calculated. Structures from 

the antibody-antigen database and the AUBIE designed set consisted of 4.87 ± 1.72 and 8.63 ± 

2.25 highly flexible CDR residues per complex respectively. Table 3.4 lists the number of highly 

flexible CDR residues in the top AUBIE designs. The average AUBIE design has around four 

more highly flexible residues than the average complex from the antibody-antigen database. From 

the top 10 AUBIE designs, six designs had more highly flexible CDR residues than 84% (one 

standard deviation above mean) of the complexes from the antibody antigen database. ARG, LYS 

and GLN had increased odds of forming H-bonds and being part of an AUBIE solution since they 
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have multiple polar atoms. Interactions with these highly flexible side chains are associated with 

large entropic cost. Antibody paratopes consist of relatively larger number of low entropy amino 

acids such as SER and TYR, which have lower entropic cost upon binding. Considering the highly 

beneficial binding energies obtained for the AUBIE designs, forcefields were not able to 

adequately capture the large entropic cost associated with making interactions with ARG, LYS 

and GLN side chains. This inability of forcefields to capture entropy costs efficiently has also been 

reported in literature [8]. In Chapters 4 and 5, I looked more in depth on conformational stability 

of paratopes and epitopes and made modifications to the AUBIE approach. More detailed 

computational benchmarking and comparisons with the modified AUBIE design approach is 

described then. 
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Table 3.1 Interaction types, paratope and epitope chemical groups involved and applicable 

paratope residue types for SBRs. Interacting atom shown in bold. 

SBR Interaction type Paratope Epitope Paratope Residue 

1 H-bond N-H O=C All 

2 H-bond N-H H-O-C All 

3 H-bond C=O H-N All 

4 H-bond C=O H-O-C All 

5 H-bond C-O-H O=C SER, THR, TYR 

6 H-bond C-O-H H-O-C SER, THR, TYR 

7 H-bond C-O-H H-N SER, THR, TYR 

8 H-bond C-O-H H-O-C SER, THR, TYR 

9 H-bond complex ARG O=C-O ARG 

10 H-bond complex LYS O=C-O LYS 

11 H-bond complex O=C-O ARG ASP GLU 

12 H-bond complex O=C-O LYS ASP GLU 

13 Cation-pi ARG Aromatic ARG 

14 Cation-pi LYS Aromatic LYS 

15 Cation-pi Aromatic ARG PHE, TRP, TYR 

16 Cation-pi Aromatic LYS PHE, TRP, TYR 

17 π-π (parallel displaced) Aromatic Aromatic PHE, TRP, TYR 

18 π-π (T-shaped) Aromatic 
Aromatic (T 

horizontal) 
PHE, TRP, TYR 

19 π-π (T-shaped) Aromatic Aromatic (T-vertical) PHE, TRP 

20 
Cation-π (parallel 

displaced) 
HIS Aromatic HIS 

21 Cation-π (T-shaped) HIS Aromatic HIS 

22 
Cation-π (parallel 

displaced) 
Aromatic HIS PHE, TRP, TYR 

23 Cation-π (T-shaped) Aromatic HIS PHE, TRP, TYR 
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Table 3.2 SBR distance constraints 

 
Distance (Å) Source 

A hydrogen bond between an N-H (donor) and O=C (acceptor) 2.89 [9] 

A hydrogen bond between an N-H (donor) and a HO-C 

(acceptor) 

3.00 [9] 

A hydrogen bond between an O-H (donor) and a O=C (acceptor 2.79 [9] 

A hydrogen bond between an O-H (donor) and a HO-C 

(acceptor) 

2.86 [9] 

The distances from C to C in an ARG to ASN/GLN interaction 3.96 [9] 

The distance from N to C in a LYS to ASN/GLN interaction 3.18 [9] 

The distance from the central C in ARG to the center of an 

aromatic ring in an ARG-π interaction 

3.75 [10] 

The distance from the N in LYS to the center of an aromatic ring 

in a LYS – π interaction 

4.20 [10] 

The vertical displacements from center of ring to center of ring 

in a parallel displaced π-π stacking interaction 

3.75 [11] 

The horizontal displacements from center of ring to center of 

ring in a parallel displaced π-π stacking interaction 

1.50 [12] 

The distance from center of ring to center of ring in a T-shaped 

π-π interaction 

5.00 [11] 

The distance from the center of histidine ring to the center of 

benzene ring in a parallel histidine-π interaction 

3.50 [10] 

The distance from the center of histidine ring to the center of 

benzene ring in a T-shaped histidine-π interaction 

4.25 [10] 
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Table 3.3 Binding metrics such as AMBER and Rosetta forcefield calculated binding energies, 

buried solvent accessible surface area (SASA), number of salt bridges and H-bonds and number 

of highly flexible CDR amino acids in antibody-antigen database, AUBIE designed solution set 

and best 10 tested AUBIE designs.  

Name AMBER 

binding 

energy 

(kcal/mol) 

Rosetta 

binding 

energy 

(kcal/mol) 

Buried 

SASA (Å2) 

Number of 

salt 

bridges 

Number 

of H-

bonds 

Number 

of ARG, 

LYS and 

GLN 

Antibody-

antigen 

database 

-139.4 ± 

43.46 

-54.66 ± 

16.04 

1903.77 ± 

489.20 

4.19 ± 

3.40 

9.41 ± 

4.02 

4.87 ± 

1.72 

AUBIE 

database 

-170.66 ± 

31.83 

-40.38 ± 

9.90 

2153.70 ± 

386.35 

6.88 ± 

2.39 

8.22 ± 

3.30 

8.63 ± 

2.25 

Top 10 

AUBIE 

designs 

-225.32 ± 

20.88 

-59.46 ± 

5.64 

2705.05 ± 

200.29 

7.10 ± 

1.91 

13.50 ± 

1.78 

7.40 ± 

2.01 

P-values 2.06 10-8 1.60 10-2 1.36 10-8 3.94 10-4 8.70 10-6 1.77 10-3 

Design_40 -245.81 -65.41 2829.76 8 14 6 

Design_41 -240.92 -63.47 3001.11 9 14 5 

Design_42 -216.28 -52.10 2582.06 7 13 7 

Design_43 -249.09 -67.54 2965.49 6 16 5 

Design_47 -202.02 -55.74 2396.38 7 11 9 

Design_51 -189.09 -62.39 2863.84 3 16 7 

Design_119 -250.12 -57.47 2650.95 10 14 11 

Design_139 -225.13 -53.23 2630.45 8 14 9 

Design_227 -220.11 -53.72 2623.53 7 11 6 

Design_289 -214.57 -63.55 2506.90 6 12 9 

 



78 

 

 

 

Figure 3.1 Database generation step workflow 
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Figure 3.2 Interaction types simulated by SBRs in AUBIE  
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Figure 3.3 AUBIE binding protein design workflow  
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Figure 3.4 Movements of three SBRs between two paratope residues (gray) and one epitope 

residue (orange) are shown. Movements A and B are congruent while movement C is not 

congruent with any other movement.  
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Figure 3.5 HER2 antigen (orange) in complex with Herceptin (green) from PDB 1N8Z. Epitope 

selected for AUBIE design run shown in magenta. 

 

Figure 3.6 Selected antibody scaffold and binding regions for AUBIE database generation. 

Framework and CDR binding regions shown in gray and magenta respectively. Structure 

obtained from PDB 4X4X.  
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Figure 3.7 Binding interface of AUBIE design 119. AUBIE antibody and HER2 antigen shown 

in gray and orange respectively. H-bonds shown in green.  
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4. Chapter 4 - Pre-binding conformational stability 

In Chapter 3, I learned that while AUBIE can design antibodies computationally predicted 

to be superior to natural ones, they are ineffective experimentally, possibly due to a heavy reliance 

on long chain amino acids such as ARG, LYS and GLN. The total number of such side chains in 

AUBIE designs was significantly higher than the average complex from the antibody-antigen 

database. Long chain amino acids like ARG, LYS and GLN have many degrees of freedom and 

hence have large entropic energies if not stabilized by steric or electrostatic interactions. Chapter 

2 reported that antibody paratopes have more aromatic residues like TYR and TRP, which offer 

more conformational stability due to their large size and low degrees of freedom. This Chapter 

will provide an in-depth analysis of features related to conformational stability of binding interface 

residues in antibody-antigen and non-antibody protein-protein complexes. This work will be 

submitted for publication in 2022. 

Introduction 

Other work has also studied the various aspects of conformational stability in protein 

binding interfaces. Qiao et al. performed 100 ns long MD simulations of 10 antibody-antigen 

complexes before and after complex formation [1]. They found that epitope contact residues 

displayed lower B-factor values than non-epitope antigen surface residues before binding. This 

observation was true even for epitopes made of non-secondary structural elements such as helices 

and β-strands. Uversky and Regenmortel reported that both antibody and antigen interfaces consist 

of some degree of pre-binding flexibility rather than highly rigid or flexible conformations [2]. 

They recommend a “flexible lock – adjustable key” mode of interaction for antibody-antigen 

complexes. Fernandez-Quintero et al. analyzed 10 pairs of antibody fragment domains before and 
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after affinity maturation through metadynamics and MD simulations [3]. They reported that 

mutations introduced during affinity maturation reduced HCDR3 conformational diversity, hence 

making the paratope more rigid. Mishra and Mariuzza have also reported similar findings that 

increased rigidity is part of the modifications brought upon via affinity maturation for increased 

specificity and affinity [4]. An analysis of 178 enzyme active sites by Bartlett et al. revealed that 

active site residues have lower B-factor values than other enzyme surface residues [5]. Side chains 

of large amino acids such as ARG or LYS are tethered via hydrogen bonds with one of their polar 

atoms while the other(s) react with the substrate. Wang et al. analyzed databases of antibody-

antigen and non-antibody protein-protein complexes for interface residue side chain entropy along 

with other properties [6]. They reported that paratopes select low entropy amino acids and hence 

their side chain entropies are lower than epitope side chain entropies. Additionally, they learned 

that side chain entropies of non-antibody receptor and ligand proteins are higher than those of 

antibody paratope residues. Fleishman et al. computed rotamer probabilities of interface aromatic 

side chains in designed and native protein complexes that had comparable computational binding 

energy [7]. They reported that native side chains displayed higher rotamer probabilities when 

compared to designed side chains. These observations coincide with the ones with AUBIE designs, 

which also had high binding energies but poor side chain stability.  

The commonly used hotspot-based design approach is based on designing binding proteins 

that target few strong interactions [8], [9]. No database wide quantitative analysis of pre-

stabilization in terms of interactions has been done even though literature is available underscoring 

the significance of paratope pre-binding stability. Current literature has focused on pre-

stabilization on a residue basis, rather than on an interaction basis. In this work, databases of 

protein-antigen, protein-peptide and non-antibody protein-protein databases were analyzed to 
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identify pre-stabilization related frequencies and features of various interaction types, binding 

loops and surfaces. Knowledge from this analysis can help develop constraints or rules that can 

guide antibody or binding protein design.  

Methodology 

Two sets of databases, one made of antibody-antigen complexes and the other made of 

non-antibody protein-protein complexes, were primarily analyzed in this work. The antibody-

antigen set was obtained by extracting Chapter 1 database complexes that had an antigen size 

larger than 15 residues and resolutions better than 3 Å. A total of 268 complexes were obtained, 

out of which 57 were nanobody-antigen complexes. Nanobodies are antibodies that consist of only 

a single heavy chain variable domain instead of the heavy and light chain Fab complex [10]. The 

non-antibody protein-protein database was generated by collecting complexes from the PDB4Bind 

database [11] that had binding affinity strong than 100 nM, resolutions better than 3 Å and were 

made of single chain binding proteins. Furthermore, complexes with proteins larger than 400 

residues or sequence similarity 90% with any other database structure were deleted. Complexes 

with large proteins were not used for computational runtimes purposes, while those with high 

similarity were removed to ensure non-redundancy. A total of 231 complexes were obtained. Table 

4.1 lists the PDB ids of all the complexes in the two databases, as well as those of a third database 

composed of 75 antibody-peptide (i.e., complexes < 15 amino acids) used in a subsequent study. 

All the complexes in the three databases were initially run through vacuum energy minimization 

using CHARMM36 [12] with fixed backbone atoms, followed by energy minimizations using 

REF2015 [13]. This minimization protocol was used for all designed protein complexes in this 
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work hereafter and was used for database complexes for consistency purposes. Reasons for the use 

of this routine will be described later in Chapter 5.  

The protein-protein interactions analyzed in this work include H-bonds, salt bridges and 

hydrophobic interactions. Interactions were identified using structural definitions rather than with 

force field dependent energy calculations since force fields are known to have biases towards 

certain interaction types or structural elements [14]–[16]. H-bonds were determined by identifying 

polar hydrogen atoms and acceptor atoms that were less than 2.5 Å apart, possessed donor-

hydrogen-acceptor angles less than 120° [17], and had donor-acceptor-acceptor antecedent angles 

less than 90°. Salt bridges were determined by identifying negatively charged oxygen and nitrogen 

atoms from ARG, LYS side chains and N-terminals that were less than 4 Å  apart [18]. All the 

amino acid rotamers for this work were obtained from the Dunbrack rotamer library [19]. Buried 

SASA was calculated using principles from work by Shrake and Rupley [20]. For each atom, 

solvent exposed spheres were generated and the atom specific SASA was calculated by 

determining what regions of these spheres were not buried by other solvent spheres. The radius of 

a solvent sphere was the sum of the atom’s vdW radius and the probe radius of 1.4 Å. Hydrophobic 

interactions between residues were estimated by determining the loss of SASA of nonpolar atoms 

upon binding. The buried nonpolar SASA was calculated by considering the SASA loss of only C 

and S atoms.  

The nonpolar SASA lost between all pairs of residue parts in the antibody-antigen database 

were collected. Nonpolar contacts were defined as significant if the nonpolar SASA lost was more 

than one standard deviation larger than the mean value. The 84.1st percentile value from the entire 

nonpolar contact set was 24.38 Å2. Hence, two residue elements were defined to be making a 

hydrophobic interaction/nonpolar contact if the buried nonpolar SASA between them was more 



90 

 

than 24.38 Å2. To ensure that the threshold was not excluding residues that made significant 

hydrophobic interactions, nonpolar contacts made by known significant nonpolar residues were 

analyzed. The SKEMPI 2.0 database was searched for ALA mutations made to nonpolar amino 

acids in antibody-antigen complexes that resulted in loss in binding affinity by at least an order of 

magnitude [21]. Through visual analysis, mutations vital for structural stability of the antibody 

rather than to binding were filtered out. Table 4.2 lists the mutations, initial and final affinities and 

largest nonpolar contact SASA. The limit of 24.38 Å2 misses 5 out of 35 (~15%) of the mutations.     

In order to develop and analyze features related to conformational flexibility before 

complex formation, residue elements were classified as either stable or unstable. A residue was 

broken down into two component elements: backbone and side chain. Stability definitions were 

based on probabilities of finding residue elements in their native conformational state. For 

backbone elements, it was assumed that the covalent bonds of the backbone provide inherent 

stability so all backbone elements were classified as stable. For side chain elements, rotamers of 

the native amino acid were used to represent the alternative states that side chain can take. A side 

chain element was defined to be stable if it met either of two conditions: 1) it made two salt bridge 

interactions or 2) more than 80% of all rotamers had at least one heavy atom (i.e., non-hydrogen) 

vdW clash with surrounding atoms. Two heavy atoms were defined to have a vdW clash if they 

were closer than 90% of the sum of their vdW radii [12]. Salt bridge interactions are the most 

attractive electrostatic interaction and are known to be highly stable [22]. Hence charged side 

chains making two or more salt bridges were classified as stable side chains. The 80% limit is not 

applied to SER and THR since they can have only three rotamer states and side chains with no 

more than one non-clashing rotamer were classified as stable. Side chains of ALA, PRO and GLY 

were classified as stable because they do not have alternative rotamer states.  
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Results 

After classifying all interface residues as either stable or unstable and identifying the H-

bonds, salt bridges and nonpolar contacts these residues were making, the data was analyzed to 

quantify several binding interface related features. These features included stability-related 

binding frequencies at different structural levels: complex, CDR, antibody position and amino acid 

type. A metric to quantify paratope and epitope conformational stability before binding was also 

defined and analyzed. 

First, the frequencies of different interaction types based on the pre-binding stability of the 

two interacting residue parts were analyzed. Figure 4.1 plots the different percentage frequencies 

of H-bonds, salt bridges and nonpolar contacts between stable-stable, stable-unstable and unstable-

unstable residue parts. Figure 4.2 does the same for interactions from the protein-protein database. 

Nonpolar contacts were found to be the most frequent interaction type in antibody-antigen 

complexes followed by H-bonds and salt bridges. This result was expected since all residues can 

make nonpolar contacts while only polar and charged amino acids can make H-bonds and salt 

bridges respectively. Similar trends were seen in the protein-protein database but with more 

frequencies of nonpolar contacts. Interactions made by one stable and one unstable residue parts 

were more than twice as frequent as other interaction types in both the databases. Stable-stable salt 

bridges were rare and unstable-stable and unstable-unstable salt bridges were approximately 

equally frequent in both datasets. Similar frequencies of stable-stable and stable-unstable H-bonds 

were observed in both datasets. An explanation for this is that stable backbone parts form a large 

fraction of these H-bonds. Abundance of backbone atoms in atom contact pairs in binding 

interfaces has been reported in literature [23].  
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Upon learning that a majority of interactions in binding interfaces consisted of at least one 

stable residue part, it was analyzed if these higher frequencies of stable parts is an evolutionarily 

selected feature or consistent with random chance given the frequency of stable residues in binding 

surfaces. To answer this question, the probabilities of the occurrence of the four types of 

interactions were calculated and compared to the actual frequencies. The probabilities were 

obtained by calculating what fractions of the epitope and paratope SASA were composed of stable 

and unstable parts. After the probabilities and actual frequencies of the four interaction types were 

calculated for each interface, averages and standard deviations were computed. The results are 

shown in Figures 4.3 and 4.4. On average, stable-stable interactions were made more frequently 

than expected through random chance. The opposite was true for unstable-unstable interactions, 

as they occurred less frequently than expected. These patterns were true for protein-protein binding 

interfaces too. Antibody-antigen interfaces disfavor interactions with unstable antigen side chains 

while favoring interactions with stable antigen residue parts. Antibody binding interfaces select 

interaction pairs that consist of unstable low entropy side chains from the antibody rather than 

higher entropy side chains from the antigens since antibody paratopes consist of more lower 

entropy side chains than their epitopes. Further quantification of entropy loss from paratopes and 

epitopes is required. In protein-protein interfaces, both the binding surfaces do not have any 

distinguishing features unlike antibodies. Thus, they were not classified as epitopes or paratopes 

and all stable-unstable interactions were lumped into one group as shown in Figure 4.4. It was 

observed that the frequencies of stable-unstable interactions in protein-protein interfaces were 

similar to those expected from random chance. Hence, the selection of stability was only reflected 

in stable-stable and unstable-unstable interactions.      
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After the interaction-level analysis, binding patterns on a residue level were examined. The 

different types of interactions made by individual unstable antigen amino acids were studied since 

epitope surfaces have more unstable side chains that can be targeted for antibody design. The 

results are shown in Figures 4.5, 4.6 and 4.7. For charged amino acids, more than 50% of unstable 

side chains make single or multiple interactions with stable residue parts. A considerable fraction 

of the remaining side chains made multiple strong salt bridge interactions with other unstable side 

chains to compensate for the loss in entropy of the two binding side chains. The long chain ARG 

and LYS side chains make more nonpolar contacts than shorter chained ASP and GLU side chains, 

which depend more on salt bridge formation. For amino acids like ASP, GLU, ASN and GLN, that 

have multiple polar groups, approximately half of all unstable side chains make H-bond(s) with 

stable residue parts. ASP and GLU form more multiple H-bonds since they can form salt bridges 

too. Aromatic side chains TYR, HIS and TRP depend more on nonpolar contacts with stable 

residue parts. Interestingly, SER and THR also form predominantly more nonpolar contacts than 

H-bonds with stable residue parts. The most abundant interaction type for nonpolar amino acids 

was multiple nonpolar contacts. For all the amino acids, a large fraction of these multiple nonpolar 

contacts consisted of either a single or all stable residue parts. This fraction was lower for PRO 

due to its smaller side chain and for HIS since it has two Nitrogen atoms in side chain ring.  

Next, paratope and epitope conformational stability before binding were quantified and this 

property was analyzed between databases and the AUBIE designed interfaces from Chapter 3. To 

quantify conformational flexibility loss upon binding, the total non-clashing rotamers lost upon 

binding were counted and divided by the total SASA loss upon binding. This metric is termed 

Rotamers Lost per Solvent Accessible Surface Area lost (RL-SASA). The RL-SASAs, averages, 
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and standard deviations were calculated for all epitopes and paratopes from the databases and 

AUBIE solutions. The results are shown in Figure 4.8.  

The RL-SASAs for paratopes were significantly lower than those from the epitopes from 

the antibody-antigen complexes. This result was expected since it is known that antibody paratopes 

consist primarily of low entropy amino acids such as SER and TYR. Similar results have been 

obtained in other work [6]. Meanwhile, epitope surfaces consist of relatively higher number of 

high entropy amino acids. Similarly, protein-protein binding surfaces also consist of several 

unstable high entropy side chains and hence have larger RL-SASA values than antibody paratopes. 

One possible reason for the lack of high entropy side chains in antibody paratopes could be the 

minor instabilities of CDR loops. While this work has considered all backbone atoms to be stable, 

backbone atoms of secondary structures like helices and β-strands are less flexible than backbone 

atoms of regular loops such as CDRs. Epitope surfaces can consist of the stable secondary 

structural elements while CDRs cannot, and hence may compensate for this weaker backbone 

stability by selecting low entropy amino acids. Peptides do not consist of a fixed backbone 

conformation and are more flexible than regular protein structures. Whether antibody paratopes 

for peptide antigens compensate for this extra instability through the rigidification of their 

paratopes was investigated. Upon comparing the RL-SASAs of paratopes from antibody-antigen 

and antibody-peptide complexes, it was determined that the average RL-SASA from peptide 

binding paratopes is statistically lower than the average from antigen-binding paratopes (p-value 

from one-sided t-test assuming unequal variances was 0.0004). Of note, the paratope RL-SASA 

values from the top AUBIE designs were significantly larger than those from the antibody-antigen 

complexes. This was most probably caused by the abundance of high entropy ARG and LYS CDR 
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residues. Hence it is likely that the AUBIE designs did not bind since their paratopes were highly 

unstable and not adequately stabilized during complex formation. 

A common design strategy for the de novo design of antibodies for target epitopes is to 

dock or design a CDR loop towards a hotspot residue(s) and to build the remaining antibody 

structure based on the position of the docked CDR loop. The docking or designing of CDR loops 

becomes easier if it makes multiple interactions with the target epitope residue since it reduces the 

degrees of freedom in the problem. The number of unstable epitope side chains that make 

interactions with multiple residues from the same CDR was analyzed. Figure 4.9 displays the 

percentage frequencies of epitope side chains that make different combinations of electrostatic and 

nonpolar interactions with residues from the same CDR. As expected, for large amino acids such 

as ARG, LYS, PHE, TRP, LEU and MET, more than half of unstable side chains make interactions 

with two or more residues from the same CDR. ARG, LYS, GLN and GLU are able to make more 

electrostatic and nonpolar interactions than the other amino acids because have both hydrophobic 

and polar parts. PHE side chains, while not being the largest amino acid, seem to be the easiest to 

target since they had the largest fraction of multiple residue binding interactions. Thus docking 

CDR loops to have two or more residues make interactions with a single unstable large side chain 

is a viable first step towards antibody design. 

The final feature analyzed in this work was the likelihood of specific antibody positions to 

host interaction forming stable side chains of individual amino acids. This was done by calculating 

the percentage frequencies of interactions at each antibody position. Moreover, this was done for 

each amino acid type. All antibody residue positions were numbered using the IMGT numbering 

scheme. The results are shown in Figures 4.10, 4.11 and 4.12. CDR positions that were most likely 

to host stable side chains included the end residues of the CDR1 loops, positions 36 to 38, and the 
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beginning and end residues of HCDR2 loop, positions 55 to 57 and 64 to 66. Initial CDR3 residue 

positions 107-109 were also observed to be common hosts of stable side chains of several amino 

acids such as VAL, PRO, GLN and GLU. Amino acid side chains at CDR2 end regions and CDR3 

stem regions end up making several interactions with the epitope and have restricted flexibility 

since these regions form the central binding region of all antibodies. Unlike other aromatic amino 

acids, which were most common in the previously mentioned CDR3 and CDR2 positions, stable 

HIS side chains were common at positions L31, H40 and H113. Similarly, unlike other amino 

acids, negatively charged ASP and GLU side chains were commonly found at CDR3 end position 

116 of heavy and light chains respectively. Some framework positions were more likely to host 

stable side chains of certain amino acids than other CDR positions. For example, stable ARG and 

LYS side chains were common at framework position L80. Stable ARG side chains were most 

prevalent at H106. PRO and backbone interactions were unique since they were most frequent 

only in CDR3 positions. CDR3 loops are relatively longer than other CDR loops and hence are 

less likely to have surrounding residues to help stabilize its side chains. Therefore, interactions 

made by low flexibility elements like PRO and backbone parts were frequent in CDR3 positions. 

Discussion 

In this chapter, databases of antibody-antigen and protein-protein complexes were analyzed 

to learn more about the prestabilization features of binding interface residues. Initially, residue 

side chains were classified as either stable or unstable and the various H-bonds, salt bridges and 

nonpolar contacts they made were analyzed. The main learnings from the various features studied 

can be summarized in the following points: 

1. Most interactions in binding interfaces consist of at least one stable residue part. 
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2. Stability in interface is selected rather than being a natural result of pre-binding stabilities. 

3. Unstable charged and nonpolar side chains make salt bridges and multiple nonpolar 

contacts respectively, most with stable residue parts to compensate for entropy loss.  

4. Antibody paratopes are more rigid than their epitopes. Peptide-binding paratopes are more 

rigid than antigen-binding paratopes.  

5. More than half of all unstable large chain epitope side chains make interactions with two 

or more residues from a single CDR. 

6. Specific antibody residue positions are more likely to host stable side chains than other 

residue position 

Non-antibody protein-protein interfaces consisted of more unstable-unstable interactions 

than antibody-antigen interfaces. One likely cause for this is that protein-protein binding interfaces 

have marginally different interaction mechanisms due to the amino acid compositions of the 

binding surfaces. Antibody paratopes consist of more aromatic residues while other binding 

surfaces consist of more nonpolar residues such as ILE, LEU, VAL, PRO, and MET [6].      

The results from this Chapter can be used to guide binding protein design algorithms. One 

of the benefits of computational antibody design is targeted epitope binding, and epitope selection 

is a crucial step in this process. The selected epitope should preferably minimize or reduce the 

energetic cost of binding. One approach would be to use the learning from this work and select 

epitopes that are conformationally stable. Since the entropic cost of binding to such an epitope 

would be low, it gives the antibody designer more leeway in using more flexible CDR amino acids.  

Force fields are widely used in protein design work, though their limitations in assessing 

computationally designed binding interfaces are known [7]. One of the features that they fail to 

accurately capture is entropic energy [24]. Other metrics are often used along with binding energy, 
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such as shape complementarity or buried surface area, to assist in the analysis of binding interfaces. 

Results from this work can be further built on to develop novel metrics such as RL-SASA can be 

used to further examine binding interfaces. Such metrics can also be used in other steps of binding 

protein design such as docking or affinity maturation.  
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Table 4.1 PDB file IDs of complexes in the antibody-antigen database, non-antibody protein-

protein database and antibody-peptide database. 

Antibody-antigen database PDB IDs 

1A14, 1A2Y, 1AR1, 1BJ1, 1BQL, 1C08, 1CZ8, 1DEE, 1DQJ, 1EZV, 1FNS, 1FSK, 1G9M 

1IQD, 1JHL, 1JPS, 1JRH, 1LK3, 1NCA, 1NDM, 1NSN, 1OB1, 1ORS, 1OSP, 1OTS, 1P2C, 

1QFU, 1RJL, 1TPX, 1TZH, 1UJ3, 1V7M, 1ZTX, 2ADF, 2B0S, 2BDN, 2CMR, 2DD8, 2EIZ, 

2H9G, 2J4W, 2J88, 2OSL, 2OZ4, 2Q8A, 2QQK, 2QQN, 2R0L, 2R56, 2VXQ, 2VXS, 2VXT 

2WUB, 2XQB, 2XRA, 2XWT, 2YPV, 2ZCH, 3BDY, 3BKY, 3BN9, 3D85, 3DVG, 3EFD, 

3FFD 3G04, 3G5Y, 3GBM, 3GBN, 3GI8, 3H0T, 3H42, 3K2U, 3KR3, 3L5W, 3L5Y, 3LD8, 

3LHP 3LZF, 3MA9, 3MAC, 3MLW, 3NFP, 3NH7, 3NPS, 3PGF, 3R1G, 3RKD, 3SKJ, 3SOB    

3SQO 3TJE, 3U30, 3U9P, 3UJJ, 3WIH, 3WKM, 3X3F, 3ZKM, 4AG4, 4AL8, 4BZ2, 4CAD, 

4CMH 4D3C, 4D9Q, 4DGI, 4DKF, 4DTG, 4EDW, 4EDX, 4F15, 4FFV, 4FFY, 4FQJ, 4GMS, 

4HT1, 4I77, 4I9W, 4IJ3, 4J6R, 4JB9, 4JR9, 4K2U, 4K3J, 4K94, 4KI5, 4KRP, 4KUC, 4L5F 

4LEO, 4LIQ, 4LMQ, 4LQF, 4LSR, 4LSU, 4LU5, 4LVH, 4M48, 4M62, 4M8Q, 4N9G    

4NNP 4NP4, 4O58, 4O9H, 4OGX, 4OKV, 4OLU, 4PLJ, 4QCI, 4QHU, 4QNP, 4QWW, 

4R8W   4RDQ 4RRP, 4RWY, 4S1Q, 4TSB, 4U0R, 4UU9, 4UV7, 4XAK, 4XNY, 4XVT, 

4XZU, 4YDK, 4YDL 4YE4, 4YK4, 4YUE, 4ZFF, 4ZFO, 4ZPT, 5A3I, 5ANM, 5BO1, 5BV7, 

5C7X, 5CZX, 5D70 5D71, 5D72, 5D93, 5D96, 5DFV, 5DO2, 5DUR, 5E94, 5EPM, 5F96, 

5F9O, 5F9W, 5FB8 5IES, 5IKC, 5K59, 5KN5, 5KVD, 5KVE, 5KVF, 5KVG, 1DZB, 2YBR, 

3UX9, 3UYP, 3UZQ 4XGZ, 4YJZ, 5DFW, 1BZQ, 1JTO, 1KXQ, 1KXT, 1KXV, 1MVF, 

1OP9, 1RI8, 1RJC, 1SQ2 1ZV5, 1ZVH, 2BSE, 2I26, 2P4A, 2VYR, 2XT1, 3CFI, 3EZJ, 

3K3Q, 3K74, 3K7U, 3K80 3P9W, 3QSK, 3STB, 3V0A, 3ZKQ, 4AQ1, 4DK3, 4EIG, 4EIZ, 

4FHB, 4GRW, 4HEM, 4HEP 4I0C, 4IOS, 4KML, 4LDE, 4LGP, 4LHJ, 4NBX, 4NBZ, 4NC2, 

4ORZ, 4P2C, 4PGJ, 4QO1 4WEM, 4WEN, 4WEU, 5C2U, 5C3L, 5E0Q, 5FV1, 5HVF 

Non-antibody protein-protein database PDB IDs 

1GPW, 6SAK, 6F0G, 2CJS, 5EOA, 1TM1, 1TM7, 3TNF, 1TAW, 3ZRZ, 3E1Z, 3GMW, 

1EZU 1G0V, 2GWW, 3FPU, 1D6R, 6JB8, 5BNQ, 3F4Y, 6NDZ, 6DWH, 5J7C, 4QLP, 4HFK, 

4ML7, 1L2W, 6J7W, 1PXV, 4ZGM, 2J0T, 5AYS, 3C5T, 4GI3, 1P27, 2GOX, 1DP5, 2NYZ, 

1EER, 1Y6K, 2VOH, 3DGC, 3K1R, 4C7N, 2QJA, 2VOI, 3N4I, 3LMS, 3WDG, 1ZJD, 6OG4, 
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6NE2 6DWF, 1FLT, 4JO6, 3FJU, 4W6Y, 2D10, 2OUL, 3QT2, 5AYR, 2HWN, 3K9M, 3KJ0, 

3KJ1, 4AYI, 3ONW, 3EBA, 2QJ9, 4AFQ, 4EQA, 6FTO, 3VPJ, 4GLV, 1DPJ, 1XX9, 2BO9, 

5JDS, 6F0H, 6E3I, 1TE1, 5IMM, 1EWY, 4JW2, 5YIP, 1LQS, 4UDM, 3BX1, 4XWJ, 6FU9, 

5UUL 4ZW2, 1OPH, 1XG2, 5N48, 4W6X, 2UUY, 4GH7, 4ILW, 1XU1, 3P92, 1FLE, 4HX3, 

1YVB, 3ZU7, 5MTM, 5N47, 3WN7, 5XSQ, 3C9A, 2J8X, 2VAY, 5VZ4, 2V9T, 6JJW, 

3EGG, 4MP0 1TA3, 2HRK, 4C2B, 4L0P, 5XCO, 5E7F, 6FE4, 4K5A, 1SV0, 3UL4, 5DJU, 

1TDQ, 3RBB 1VET, 2Z7F, 2G81, 4JE4, 5NVM, 6BX5, 6E3J, 1KAC, 1SYQ, 2Q0O, 2OOR, 

2Z58, 3HG0 3P9W, 4ZQU, 5DJT, 2NZ1, 6JHW, 2J12, 2YGG, 3FXD, 3HUG, 3H8K, 4G6V, 

4IU3, 3BK3 4EKD, 5F5S, 1FC2, 1KGY, 5K22, 5UA4, 5Y4R, 6FUB, 1YCS, 5TZP, 6OBN, 

6H46, 4BD9 4LYL, 4DH2, 4N7V, 5M72, 2YQ7, 5DC4, 3BRT, 1RKC, 1T01, 5YWR, 1GUA, 

1I5K, 6J9H 3BRV, 3IM4, 6FHP, 1NF3, 2JBY, 4BRW, 3T04, 2A78, 4AOR, 2HEV, 2F4M, 

6D4P, 3QBR 5B64, 5J4A, 1PVH, 2WWX, 3H8D, 5FW5, 5MR5, 2UYZ, 3QHT, 4YN0, 3IXS, 

4KFZ, 3BH6 1MCV, 1AZZ, 1JTD, 1MXE, 1PPE, 1R0R, 1UGH, 2NQD, 2QC1, 2SIC, 2SNI, 

2VLN, 2XTT 3FP6, 3G7Z, 3IT8, 3ME2, 3QHY, 3SGB, 3VV2, 4K5B, 4Q5U, 5O0W 

Antibody-peptide database PDB IDs 

1KCR, 3GJG, 4J8R, 4JO3, 1I8I, 2GSI, 5FGB, 2ZPK, 2OR9, 3QG6, 4HS6, 2H1P, 1P4B 

1SM3, 2HKF, 1ACY, 3D0L, 2QHR, 3E8U, 5CIN, 4TUL, 1UWX, 3GO1, 3HR5, 2QSC, 

5EOR 1BOG, 1CU4, 1E4W, 1KCS, 1TJG, 1Q1J, 4WHY, 5DLM, 3UO1, 4JZN, 1FPT, 5FGC, 

3FN0 5A2I, 1SVZ, 4N8C, 4JO1, 3MLT, 1KTR, 5AUM, 4DGV, 4TUJ, 1KC5, 4LKX, 2Y36, 

4HPY, 2V17, 4JZO, 3MLX, 5I8C, 4HS8, 4ZTO, 4RAV, 4G6A, 1NAK, 4O51, 4GAJ, 2HH0, 

1XGY 5EOC, 4WHT, 4Q0X, 4HZL, 4XVJ, 3GHE, 3MLR, 2A6D, 5EOQ, 4Z0X 
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Table 4.2 Initial and final experimental binding affinities of ALA mutations to nonpolar residues. 

The largest buried nonpolar SASAs lost due to the mutations are also reported. 

PDB Mutation Initial Kd 

(nM) 

Final Kd (nM) Largest nonpolar contact (Å2) 

1DQJ YC20A 2.78E-09 7.14E-07 20.21 

1JRH HH100bA 1.20E-08 2.11E-07 20.22 

3SE8 FH100dA 6.30E-08 3.71E-07 20.51 

3SE8 FL97A 6.30E-08 2.51E-07 23.23 

1VFB YA32A 2.00E-08 1.92E-07 23.84 

1DQJ YA50A 2.78E-09 2.56E-07 26.56 

1VFB YB101A 2.00E-08 No binding 28.07 

3NGB WH50A 2.20E-08 1.88E-07 29.86 

3NGB YL91A 2.20E-08 6.33E-07 30.19 

3SE9 VH56A 2.50E-08 1.28E-07 31.08 

3SE8 YH59A 6.30E-08 2.61E-07 31.38 

3NGB VH57A 2.20E-08 2.10E-07 31.39 

1AHW YC156A 3.40E-09 >2.1E-06 34.10 

1VFB IC124A 1.25E-08 1.00E-07 38.32 

3SE9 LL91A 2.50E-08 1.24E-07 38.92 

2NYY FA953A 1.25E-10 1.24E-07 43.46 

1JRH WH53A 1.20E-08 7.16E-07 44.95 

1JRH YH32A 1.20E-08 1.35E-07 45.25 

1JRH VI51A 1.44E-08 3.46E-07 45.25 

1NMB YH99A 4.55E-08 1.69E-06 45.58 

2NYY HA1064A 1.25E-10 3.17E-05 47.99 

3BN9 FB97A 1.23E-11 >1E-06 49.20 

1JRH YI49A 1.44E-08 4.48E-06 51.00 

3HFM YH53A 2.38E-09 5.26E-07 52.22 

3NGB VH73A 2.20E-08 1.34E-07 53.10 

1DQJ YB33A 2.78E-09 3.13E-05 53.11 

1VFB WA92A 2.00E-08 2.00E-06 54.62 

1JRH WL92A 1.20E-08 1.40E-06 56.13 

4ZS6 WA535A 3.12E-07 No binding 59.15 

1JRH WI82A 1.44E-08 3.01E-05 60.07 

3SE8 WH54A 6.30E-08 2.23E-07 63.67 

3G6D FH103A 1.84E-11 No binding 64.87 

1DQJ WB98A 2.78E-09 1.15E-05 76.93 
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Figure 4.1 Percentage frequencies of H-bonds, salt bridges and nonpolar contacts made by two 

stable residue parts, one stable and one unstable residue parts and two unstable residue parts in the 

antibody-antigen database.   

 

Figure 4.2 Percentage frequencies of H-bonds, salt bridges and nonpolar contacts made by two 

stable residue parts, one stable and one unstable residue parts and two unstable residue parts in the 

antibody-antigen database. 
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Figure 4.3 Average and standard deviations of percentage frequencies of different interaction types 

predicted by random chance and actual calculations in the antibody-antigen database. 

 

Figure 4.4 Average and standard deviations of percentage frequencies of different interaction types 

predicted by random chance and actual calculations in the protein-protein database. 
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Figure 4.5 Percentage frequencies of unstable charged side chains forming different types of 

interactions in antibody-antigen complexes. 

 

Figure 4.6 Percentage frequencies of polar charged side chains forming different types of 

interactions in antibody-antigen complexes. 
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Figure 4.7 Percentage frequencies of unstable nonpolar side chains forming different types of 

interactions in antibody-antigen complexes. 
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Figure 4.8 Average and standard deviations of RL-SASA values for epitopes and paratopes from 

different databases.   
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Figure 4.9 Percentage frequencies of unstable side chains forming multiple electrostatic 

interactions, multiple nonpolar contacts and both electrostatic and nonpolar interactions with 

multiple residues in the same CDR. 
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Figure 4.10 Percentage frequencies of interactions made at by all amino acid side chains and 

backbone atoms at antibody positions H1 to H90.  

ARG LYS ASP GLU GLN ASN THR SER TYR TRP PHE HIS MET LEU ILE VAL PRO ALA BB

H_1 0.0 0.0 0.0 4.3 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4

H_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.1

H_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0

H_16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_24 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

H_28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

H_29 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.3

H_30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

H_34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_35 1.4 6.5 0.0 0.0 0.0 1.4 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.0 0.0 0.0 2.0

H_36 0.0 0.0 1.6 0.0 0.0 1.4 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8

H_37 0.0 0.0 5.5 0.0 0.0 0.0 2.4 4.1 9.6 0.8 2.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 2.3

H_38 1.9 3.2 3.1 0.0 0.0 4.1 4.0 2.0 5.9 14.3 4.6 3.1 0.0 4.5 0.0 0.0 1.6 12.0 1.2

H_39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_40 0.0 0.0 0.0 2.1 0.0 4.1 0.0 2.0 0.3 0.0 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_46C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_51 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_55 3.8 0.0 0.0 13.8 0.0 0.0 2.4 2.0 2.0 13.5 1.3 0.0 53.8 1.5 0.0 2.9 0.0 2.0 0.5

H_56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

H_57 0.0 3.2 10.2 2.1 0.0 14.9 3.2 10.2 7.4 7.4 4.6 3.1 15.4 10.4 37.5 2.9 0.0 4.0 0.7

H_58 0.9 0.0 0.0 0.0 0.0 2.7 4.0 4.1 1.7 2.4 0.7 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.8

H_59 1.9 3.2 1.6 0.0 5.0 2.7 3.2 0.0 0.0 0.0 2.0 0.0 15.4 4.5 37.5 0.0 0.0 5.0 3.4

H_60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0

H_61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H_62 0.0 0.0 3.9 0.0 0.0 0.0 1.6 4.1 0.5 0.0 10.5 0.0 0.0 0.0 0.0 0.0 1.6 0.0 3.6

H_63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1

H_64 0.0 0.0 5.5 1.1 0.0 1.4 6.4 2.0 2.4 0.0 1.3 6.3 0.0 0.0 6.3 14.3 0.0 9.0 1.9

H_65 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 3.2 0.0 1.5

H_66 8.0 3.2 6.3 0.0 0.0 12.2 2.4 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4

H_67 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

H_68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0

H_69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.9

H_70 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_72 0.9 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_75 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_80 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_82 0.5 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

H_83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

H_84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 0.0 0.0 0.0 0.0 0.0 0.4

H_84A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_84B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0

H_85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_86 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_90 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FR
1

FR
2

FR
3

C
D

R
1

C
D

R
2



109 

 

 

Figure 4.11 Percentage frequencies of interactions made at by all amino acid side chains and 

backbone atoms at antibody positions H105 to L65. 

ARG LYS ASP GLU GLN ASN THR SER TYR TRP PHE HIS MET LEU ILE VAL PRO ALA BB

H_105 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H_106 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 1.4 0.0 0.0 0.0

H_107 4.7 6.5 7.9 8.5 15.0 0.0 1.6 4.1 0.7 5.0 3.3 6.3 0.0 4.5 0.0 0.0 0.0 2.0 0.9

H_108 4.2 3.2 3.9 10.6 5.0 1.4 0.0 0.0 1.0 2.4 5.3 0.0 0.0 9.0 0.0 11.4 3.2 2.0 3.7

H_109 1.9 0.0 3.1 2.1 5.0 2.7 0.0 0.0 3.4 1.6 1.3 9.4 0.0 0.0 0.0 7.1 19.0 6.0 4.9

H_110 2.3 0.0 3.1 0.0 0.0 1.4 5.6 0.0 2.9 3.4 2.6 0.0 0.0 0.0 0.0 0.0 3.2 0.0 4.6

H_111 0.0 0.0 0.8 1.1 0.0 0.0 0.0 0.0 2.4 0.0 3.9 0.0 0.0 4.5 0.0 5.7 0.0 7.0 3.6

H_111A 0.0 0.0 0.8 1.1 0.0 0.0 2.4 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 4.3 3.2 1.0 2.7

H_111B 2.8 0.0 0.0 0.0 0.0 0.0 0.8 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9

H_111C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

H_111D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.2 3.0 0.5

H_111E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_112 1.9 0.0 3.9 4.3 0.0 4.1 0.0 0.0 1.4 3.2 0.7 0.0 0.0 3.0 0.0 0.0 7.1 0.0 1.7

H_112A 0.9 0.0 0.0 0.0 0.0 2.7 2.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 2.3

H_112B 0.5 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.2

H_112C 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 3.2 3.0 1.2

H_112D 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4

H_112F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

H_113 1.9 0.0 6.3 3.2 0.0 4.1 0.8 0.0 4.5 7.4 2.6 12.5 0.0 10.4 0.0 1.4 3.2 4.0 1.7

H_114 1.4 0.0 0.0 1.1 0.0 0.0 0.0 2.0 1.2 1.9 0.7 0.0 0.0 6.0 0.0 2.9 1.6 1.0 1.0

H_115 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 0.0 0.0 1.5 0.0 1.4 0.0 1.0 0.2

H_116 1.4 0.0 10.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 3.0 0.0 1.4 0.0 1.0 0.0

H_117 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_1 0.0 0.0 2.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9

L_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 1.4 0.0 0.0 0.1

L_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1

L_27 0.0 0.0 0.0 2.1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

L_28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4

L_29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.8 0.0 0.4

L_30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_31 0.9 0.0 1.6 2.1 0.0 0.0 4.0 0.0 1.4 0.0 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.3

L_33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2

L_34 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

L_35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.4

L_36 3.8 6.5 3.1 1.1 0.0 2.7 0.0 28.6 1.5 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.3

L_37 0.0 6.5 0.0 0.0 0.0 8.1 4.0 2.0 1.7 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5

L_38 4.7 9.7 1.6 0.0 0.0 2.7 0.0 0.0 9.3 1.6 7.2 0.0 0.0 0.0 0.0 1.4 0.8 6.0 0.9

L_40 0.5 0.0 0.0 1.1 0.0 5.4 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

L_42 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_52 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0

L_55 0.0 3.2 0.0 1.1 0.0 0.0 0.0 0.0 7.9 0.0 2.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

L_56 5.6 19.4 0.8 4.3 0.0 0.0 1.6 0.0 3.5 2.4 0.0 0.0 0.0 9.0 0.0 0.0 0.0 5.0 0.5

L_57 0.0 3.2 2.4 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 1.0 0.1

L_65 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
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Figure 4.12 Percentage frequencies of interactions made at by all amino acid side chains and 

backbone atoms at antibody positions L66 to L117. 

  

ARG LYS ASP GLU GLN ASN THR SER TYR TRP PHE HIS MET LEU ILE VAL PRO ALA BB

L_66 3.3 3.2 0.0 0.0 20.0 2.7 7.2 2.0 0.1 0.0 0.0 0.0 0.0 0.0 6.3 0.0 0.0 0.0 0.0

L_67 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

L_68 0.5 0.0 0.8 6.4 0.0 0.0 0.0 0.0 1.2 0.0 0.7 6.3 0.0 0.0 0.0 0.0 2.4 0.0 0.4

L_69 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 3.0 0.6

L_70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

L_71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

L_72 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.1

L_74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.1

L_78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

L_79 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_80 1.9 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

L_83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_84 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4

L_105 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0

L_106 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L_107 4.2 0.0 0.8 0.0 5.0 1.4 0.8 0.0 4.4 6.3 7.2 6.3 0.0 3.0 0.0 0.0 0.0 0.0 3.5

L_108 2.3 0.0 2.4 1.1 15.0 6.8 0.0 4.1 0.8 11.1 1.3 3.1 0.0 1.5 0.0 0.0 0.0 2.0 6.8

L_109 0.0 0.0 0.0 3.2 0.0 5.4 3.2 6.1 1.5 1.6 0.0 0.0 0.0 0.0 0.0 8.6 0.8 1.0 3.1

L_110 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

L_113 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.9

L_114 0.0 0.0 2.4 0.0 0.0 1.4 5.6 0.0 0.1 0.0 1.3 0.0 0.0 1.5 0.0 2.9 10.3 4.0 4.5

L_115 0.0 0.0 0.8 0.0 0.0 0.0 0.8 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.9

L_116 4.2 0.0 0.0 16.0 5.0 0.0 0.0 0.0 3.0 7.1 5.9 0.0 0.0 6.0 0.0 0.0 4.0 2.0 0.4

L_117 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 5.9 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.1
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5. Chapter 5 - AUBIE Modifications 

From Chapters 3 and 4, I learned that AUBIE designs consisted of relatively large numbers 

of highly flexible CDR residues which led to them having highly unstable paratopes before 

binding. Using the knowledge from Chapter 4 and better experience with force field performance, 

modifications were made to certain parameters, interaction selection criteria, minimization 

routines and residue steric clash filters to generate antibodies with more stable paratopes. The 

modified AUBIE approach was used to design antibodies for 25 randomly selected antigens and 

analyzed for binding metrics. This Chapter will describe the modifications and new results. This 

work will be submitted for publication in 2022. 

AUBIE changes 

Types of interactions 

The prestabilization features studied in Chapter 4 demonstrated that interactions between 

unstable side chains are rare and interactions are likely to consist of at least one stable side chain 

or backbone element. Furthermore, paratopes are filled with low entropy, hydrophilic amino acids. 

Thus, the AUBIE approach was modified to search for H-bonds involving at least one backbone 

atom. All interactions made by antibody ARG, LYS and GLN residues were omitted. H-bonds 

between antibody SER, THR and TYR and antigen ASP were allowed since H-bonds between 

these residues were relatively more frequent than other types of H-bonds in the antibody-antigen 

database. To ensure the search for salt bridges, only negatively charged paratope residues were 

allowed to form them. From the analysis of the types of interactions that were being selected in 

AUBIE solutions, it was observed that almost all the interactions were H-bonds. This may have 

been caused due to the distance thresholds being too tight for the other cation-π and π-π 
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interactions. To reduce computational runtimes, only H-bonds were searched for in the current 

implementation. All the permitted types of H-bonds are listed in Table 5.1. 

Distance threshold 

The distance matching threshold was increased from 0.33 Å to 0.50 Å to increase the 

solution space searched after the types of interactions searched were reduced. The new threshold 

resulted in large enough solution sets as discussed in the results. 

Residue clashing 

In the previous implementation of AUBIE, residue side chain atoms were allowed to clash 

under the assumption that energy minimizations would fix the clashes. A more conservative 

approach was used here to lower the odds of prestabilized interactions in the epitope being affected. 

Thus a new definition for steric clashes between residues was defined. Two residues were defined 

to have a steric clash if any of the following conditions were met: 1) Two heavy (i.e., non-

hydrogen) atoms were closer than 1.3 Å, 2) More than one pair of heavy atoms were closer than 

1.8 Å, or 3) One pair of heavy atoms was closer than 1.8 Å, with at least one of the two atoms 

being a backbone atom. Instead of calculating vdW energy between atoms like conventional 

approaches, AUBIE used these relaxed clash constraints under the assumption that the flexibility 

of the proteins would compensate for the minor steric clashes introduced during antigen placement. 

These clash definitions were selected because they consistently allowed CHARMM36 energy 

minimization to rectify the clashing structures, which was used as a proxy for the proteins’ 

flexibility. Designs that had steric clashes between antigen and framework residues were deleted. 

Designs that had steric clashes between the antigen and binding loops were passed through a clash 

resolving mutation step. 

Mutation of clashing residues 
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Once a design was identified, a novel feature-based approach was used to mutate binding 

loop residues for one of two purposes: 1) resolving clashing variable side chains and 2) improving 

binding features. The mutation decisions were based on features obtained after analyzing the 

database of antibody-antigen complexes. The affinity maturation mutations were conservative in 

nature and made changes with high confidence of creating either nonpolar or polar interactions 

since the approach avoids any energy minimizations. 

The following steps were taken for the binding loop residues that had steric clashes with 

the antigen: 

1. Identify an alternate rotamer of the native amino acid that does not have steric clash with 

any surrounding antigen or scaffold residue. 

2. If step 1 fails, search for an ASP rotamer that forms a salt bridge with an antigen residue. 

Salt bridges are prioritized because they are the strongest polar interactions and are less 

orientation dependent than H-bonds. Each antigen ARG/LYS is allowed to form a salt 

bridge with only one mutated paratope residue to avoid the formation of closely placed 

negatively charged residues. 

3. If step 2 fails, search for a GLU rotamer that forms a salt bridge with an antigen residue. 

ASP is prioritized over GLU for salt bridge formation since it is a smaller side chain and 

thus its stabilization involves a lower entropic cost. Moreover, ASP salt bridges are more 

frequent than GLU salt bridges in known antibody-antigen complexes [1]. AUBIE does 

not consider introducing ARG/LYS mutations for salt bridge formation due to their high 

side chain flexibilities.  

4. If step 3 fails, rotamers that can introduce new H-bonds are searched for. If a polar rotamer 

does not have steric clashes and forms the required type and number of H-bonds with the 
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antigen, it is selected. Polar rotamers are searched in the sequence: SER, THR, ASN, ASP 

and HIS. The required minimum number of H-bonds is one for SER and THR and two for 

ASP, ASN and HIS. It was observed in the antibody-antigen database that ASN rotamers 

frequently make hydrogen bonds with backbone atoms. Hence ASN rotamers making 

single H-bonds with antigen backbone atoms were also selected. GLN and GLU rotamers 

were not analyzed due to their relatively high entropy side chains. 

5. If step 4 fails, rotamers that introduce nonpolar contacts are searched for. The nonpolar 

amino acids analyzed in this step are ALA, VAL, LEU, ILE and PHE. A side chain atom 

is defined to be making a nonpolar contact if it is either a C or S atom and is less than 4.5 

Å away from an antigen C or S atom. MET is not considered due to the relatively high 

entropy of its side chain. TRP and TYR are also not considered because they need to satisfy 

both polar and nonpolar requirements when buried in an interface. The rotamer make the 

most nonpolar contacts is selected. 

6. If step 5 fails, the pose is rejected because it has an irreconcilable steric clash. 

Only one mutation per binding loop was allowed to lower the odds of the mutations 

impacting the loop structures. Following the mutations, the clash-free mutated designs were output 

in PDB format. In the current version of AUBIE, no further pose refinement or ranking is 

performed and rotamer repacking/energy minimization and pose ranking strategy is left to the user.  

Solvent exposed epitope atoms 

In the previous AUBIE approach, all the epitope residue atoms were searched through 

during solution identification steps. This led to buried atoms being part of interactions that were 

always destined to have steric clashes. In order to avoid wasting computational load on such 
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solutions, only epitope atoms with non-zero SASA were allowed to be a part of any AUBIE 

solution.  

Solution similarity 

In the previous AUBIE approach, the maximum total CDR loop similarity allowed between 

two unique designs was 60%. This limit was considered to be relatively relaxed since the chances 

of generating antibody designs with three same CDR loops is increased when the number of 

interactions searched for is reduced to four or lower. The maximum limit was reduced to 40% to 

increase solution diversity. 

Results 

The modified AUBIE approach was tested through antibody design runs for known 

antibody-binding epitopes. For the database generation step, antibody structure from PDB file 

1N8Z was used. It was selected since its HCDR3 loop allowed reasonable loop length to replace 

without mutating key hydrophobic residues important for VH-VL domain binding. Similar to the 

database from generated in Chapter 3, the six CDR regions were selected as binding regions with 

the modification that more conservative CDR3 hinge residues were selected. The selected binding 

loops and framework structures are shown in Figure 5.1. Maximum limits of six residues and 750 

loops was set for each binding region. The generated database consisted of 212 loops for HCDR1 

region and 750 loops for all the other CDRs. The generated database was used to design antibodies 

for known epitopes on 25 randomly selected antigens from the antibody-antigen database as listed 

in Table 5.2. Epitopes for the 25 design runs were manually selected from their native antibody-

binding complexes and ranged from 10 to 15 residues as listed in Table 5.2. A minimum limit of 

four interactions was enforced for all design runs. Upon testing the three force fields, it was 
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observed that CHARMM36 was better than AMBER and Rosetta in resolving the minor steric 

clashes that exist in AUBIE solutions. Hence, fixed backbone vacuum energy minimization with 

CHARMM36 force field [2] was used to resolve steric clashes and then an all-atom energy 

minimization with Rosetta’s REF2015 force field [3] was performed to relax the complex since it 

the most widely used force field in protein engineering. All structures from the antibody-antigen 

database were run through the same minimization protocol before using their binding metrics for 

comparison purposes. All binding metrics were calculated by Rosetta’s InterfaceAnalyzer module 

[4]. All design runs were performed on single Intel Xeon Gold 6248R processors with 3.00 GHz 

speed.  

The binding metrics of the top AUBIE designs were analyzed and compared to the binding 

metrics from known and wild-type (WT) antibody complexes. The runtimes for 25 design runs 

ranged from 6 hours, for antigen from 3P30, to 46.5 hours, for antigen from 4HEP. As mentioned 

in Chapter 3, AUBIE runtimes depend on the number of solvent exposed polar epitope atoms and 

initial orientation of binding loops towards epitope. Table 5.3 lists the number of designs and 

binding metrics of the WT complex and the best AUBIE design generated for each design run. 

Apart from the antigen from complex 3P30, AUBIE was able to generate at least 150 designs for 

each run. The antigen from complex 3P30 consists of two helices and hence does not have any 

backbone atoms to offer for H-bond formation. This led to a substantial limitation in the solution 

space of low entropy H-bonds being targeted and thus resulted in only 13 designs and low runtime. 

AUBIE was able to generate two top designs that had binding energies > 50 kcal/mol and seven 

other top designs that had binding energies > 40 kcal/mol. 18 out of the 25 top designs had binding 

energies within one standard deviation of the mean binding energies from the antibody antigen 

database (53.11 ± 16.00 kcal/mol). These results show that the modified version of AUBIE is 
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capable of generating designs with comparable performance to known antibodies but is not able 

to generate superior designs with binding energies > 60 kcal/mol.  

Figures 5.2 and 5.3 show the pre-minimization interfaces of five top AUBIE designs with 

their targeted interactions. When compared with the WT complexes, the top AUBIE design had 

better (>3 kcal/mol difference), similar and worse binding energies in 4, 4, and 17 cases 

respectively. AUBIE was not able to design antibodies that could match up to the WT complexes 

due to multiple reasons. AUBIE targets all its interactions through the CDRs, while natural 

antibodies can also use framework residues to form interactions with the antigen (Figure 5.4), 

Moreover, natural antibodies often use long HCDR3 loops to form multiple interactions with the 

epitope. Meanwhile, AUBIE does not perform loop targeted design and if it were to find designs 

with long CDR3s making many interactions, it does so by chance. Hence WT complexes can form 

larger binding interfaces and better binding energies than AUBIE designed complexes. 

 The other binding metric analyzed was shape complementarity (Sc), which is an indicator 

for how well the epitope and paratope surfaces structurally fit with each other. While half of the 

top AUBIE designs had Sc scores below 0.6, AUBIE was able to generate other complexes with 

higher Sc scores for each design run. AUBIE designs can have relatively poor Sc scores when 

compared with Sc values from known complexes (Database average 0.68 ± 0.07) since shape 

fitting is not a targeted feature in the design steps.   

Along with the binding metrics, the number and types of mutations being made during the 

clash resolution step were also analyzed. Table 5.4 lists the fraction of designs, on a per-CDR 

basis, that had zero mutations for each design run. The results showed that a small fraction of CDR 

loops required a single mutation to resolve the steric clashes. The largest fraction of loops that 

required single mutations, around 14%, belonged to the CDR2 loops in the antibodies designed to 
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bind the antigen from 2XT1. This low presence of mutations is another reason why most AUBIE 

designs do not have better than average binding metrics. Natural antibodies go through somatic 

affinity maturation to increase binding affinity [5]. Meanwhile, AUBIE designs antibodies by 

combining compatible loops from the PDB without any further affinity maturation. Table 5.5 lists 

the initial and final amino acid distributions in residues that were mutated in all the design runs. 

The amino acids that were most frequently mutated include large inflexible chain amino acids such 

as TYR, TRP, HIS and PHE. Mutations were mainly being made to LEU to fill up cavities left by 

the native large side chains and to other small amino acids like ASP, ASN, ALA and SER. 

Next, the current and old Chapter 3 AUBIE designs were compared in terms of 

conformational stability before binding. RL-SASA values for the top designs for the 25 cases were 

computed and averages and standard deviations were plotted as shown in Figure 5.5. The average 

AUBIE designed paratope had lower RL-SASAs than the ones from the old AUBIE designs but 

were still larger than RL-SASAs from known antibody paratopes. The large standard deviation of 

RL-SASAs from new AUBIE designs indicated that AUBIE was now able to generate top designs 

that had comparable paratope rigidity to known antibodies. The mutations to LEU were a likely 

contributor to increasing the RL-SASAs of the new AUBIE designs.   

Unlike other antibody design approaches, the current version of AUBIE does not perform 

any computational affinity maturation. The improvements in binding energies upon affinity 

maturation of AUBIE designs were explored. RAbD’s sequence design feature [6] was used to 

modify the CDR sequence of 13 top designs from Table 5.3 that had large binding energy 

differences with their WT complexes. The inner_kt, outer_kt, seq_design_profile_samples, nstruct 

and outer_cycle_rounds parameters were set as 2.0, 2.0, 50, 300 and 50 respectively. The results 

of the affinity maturation are listed in Table 5.6. For nine designs, the affinity maturations 
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improved the binding energies and for five of these designs, the affinity matured designs had better 

binding energies than the WT complexes. For four designs, RAbD’s random search approach was 

unable to find any beneficial mutations. RAbD made a large number of mutations in all improved 

designs. The native and improved interfaces with the mutated side chains of 3P9W-antigen binding 

AUBIE design is shown in Figure 5.6. Several mutations were made in the stem regions of CDRs 

which were not involved in antigen binding. Despite the large number of mutations, several 

AUBIE-designed loops were unchanged as shown in the figure.  

AUBIE was compared with OptMAVEn 2.0 [7], another de novo antibody design approach 

for target epitopes. Both the approaches were used to design antibodies binding to the Herceptin 

epitope on HER2. The OptMAVEn 2.0 designs run were done by Dr. Ratul Chowdhury, the 

program’s lead developer. Designs generated by both methods were run through the same 

minimization protocol. The top three binding energies from the AUBIE and OptMAVEn 2.0 

simulations were -40.84, -40.66, -40.43 kcal/mol and -43.45, -37.42, -33.82 kcal/mol. Even 

without affinity maturation, AUBIE was able to generate designs with comparable binding 

energies to the ones made by OptMAVEn 2.0.  

MD simulations were used to further test the quality of the top AUBIE designed binding 

interfaces. Implicit solvent NpT (isobaric and isothermal) MD simulations with 5 ns long 

equilibration steps [8] and 50 ns long production steps [7]using NAMD 2.14 were performed for 

AUBIE designs with the best and worst binding energies: -52.07 kcal/mol from 3BDY-ab and -

31.70 kcal/mol from 4LMQ-ab. The configuration files were set up using QwikMD and default 

parameters were used. Both the complexes remained bound at the end of the MD simulations. 

Figures 5.7 compare the initial and final frames after aligning the antibody structures of both the 

MD simulations. While the AUBIE design for 4LMQ antigen remained bound, the MD simulation 
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substantially rearranged the binding interface to form new strong beneficial interactions that were 

not designed for. Thus it was concluded that the complex remained bound mainly by chance. 

Similar to 4LMQ MD simulation, the MD simulations for 3BDY-AUBIE design also identified 

new strong beneficial interactions that helped stabilized the complex but few interactions from the 

starting complex persisted throughout the MD simulation. These interactions included salt bridge 

between 56D and 35K and hydrophobic interactions between 38L and 68M. Moreover, 107N and 

76Q were in close proximity even though the initial H-bond between them was not present in the 

final frame. These interactions are shown in Figure 5.8.  

Discussion 

AUBIE is a first-of-its-kind computational method that can design antibodies for any 

specific epitope. The workflow has been divided into two broad steps: database generation and 

protein design. The diversity of naturally produced antibody structures and sequences is limited 

by the genetic code. By combining loops available in the PDB, AUBIE explores a design space 

that the human immune system cannot search for and hence generates never-seen-before designs. 

AUBIE uses this innovative de novo approach to rapidly generate high affinity designs without 

any energy functions or optimization formulations as seen in other software. Current software 

often use such energy functions to predict structure changes due to residue mutations [6], [7], [9]. 

Rather than determining backbone structures using such energy functions, AUBIE makes use of 

the sequence and structure information already available in the PDB in the database generation 

step. Antibodies are known to bind via few strong “hotspot” interactions. Our results from Chapter 

2 supported this conclusion. It was hypothesized that one could still generate high affinity solutions 

by engineering known geometric requirements of strong interactions and avoiding obvious 
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energetically expensive steric and charge clashes. Aided with the knowledge from Chapter 3, these 

strong interactions were defined to be low entropy H-bonds. This hypothesis was supported by the 

results from this Chapter. Without using any affinity maturation, AUBIE was able to design 

antibodies that had comparable binding energies to known antibody-antigen binding complexes. 

The close proximity of the two binding proteins allowed for the formation of extra H-bonds and 

hydrophobic interactions that lead to the acceptable binding energies in the top designs. 

Furthermore, the modifications made in this Chapter led to the desired rigidification of AUBIE 

paratopes. The top AUBIE designs had poor Sc scores when compared with the antibody-antigen 

database. While the design approach has negative design elements such as rejecting solutions with 

steric and charge clashes, it lacks positive design steps to encourage the selection of well-docked 

solutions. This shortcoming requires the user to manually compare individual Sc values while 

deciding which designs to experimentally test. 

When compared with the current state-of-the-art software in computational de novo 

antibody design, AUBIE offers several advantages. An advantage AUBIE possess over other 

software is its lack of iterative energy calculations in the design workflow, which could potentially 

lead to considerable reduction in runtimes once further updates are made. One of these updates 

includes moving the AUBIE code from Cython to C++. Furthermore, both OptMAVEN 2.0 and 

RAbD have been developed to design only antibody structures while AUBIE is capable of 

generating structures of protein binders, including antibodies, which have modular parts such as 

CDRs. An example of such a binding scaffold is 10th type human fibronectin domain. AbDesign 

can be used to design alternative binding scaffolds but requires a database of protein structures 

similar to the scaffold. Such databases are not readily available for several scaffolds. AUBIE 

requires no such database and uses only the single input scaffold structure provided. Though I 



126 

 

acknowledge that AUBIE and Baker et al.’s approach share a similar step of modelling target high 

affinity residue positions, there are differences in how this step is implemented. While Baker et 

al.’s work identifies ideal paratope residue positions using RosettaDock [10], AUBIE identifies 

ideal epitope atom positions using simple distance and angle information from literature for 

various interaction types. The subsequent steps in both the approaches are considerably different. 

Our primary goal with regards to AUBIE was to develop an approach that designed binding 

antibodies rapidly. There is still significant improvement needed even though AUBIE is now able 

to generate designs with acceptable metrics. I believe that AUBIE’s sequential search approach 

and simple distance matching algorithm can eventually lead to faster design generation after 

further modifications.  
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Table 5.1 Antibody and antigen amino acid types allowed to form H-bonds in AUBIE solutions. 

Antibody Antigen 

Backbone Backbone 

Backbone All side chains 

All side chains except R, K and Q Backbone 

S, T, Y D 

D, E R, K 
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Table 5.2 Epitope residue numbers in the 25 AUBIE test cases and HER-2 binding design run.  

Ag PDB ID Epitope residue numbers 

3L5Y  2, 6, 7, 9, 10, 13, 74, 75, 76, 78, 79, 81, 82, 83, 84 

5EPM  9, 11, 12, 23, 24, 25, 26, 27, 30, 32 

4LMQ  9, 10, 11, 12, 13, 14, 15, 17, 35, 36, 37, 38, 39, 40 

4LQF  19, 20, 22, 23, 57, 58, 59, 64, 66, 67, 68, 69, 70 

3X3F  6, 16, 17, 18, 19, 29, 33, 35, 36, 37, 38, 39, 40, 41, 42 

4N9G  7, 10, 11, 12, 13, 14, 16, 17, 19, 20, 23 

3P9W  28, 29, 30, 31, 62, 63, 64, 66, 69, 71, 80, 81, 82, 83, 84 

1OB1  8, 9, 10, 11, 14, 23, 28, 36, 39, 40 

4UU9  14, 16, 17, 18, 19, 25, 30, 33, 41, 43, 44, 45, 46, 47, 48 

2YBR  7, 10, 13, 15, 16, 17, 18, 22, 24, 42, 43, 44, 45, 64 

4HEP  3, 4, 5, 20, 21, 24, 27, 28, 33, 34, 41, 42, 43 

5DFV  17, 20, 23, 24, 25, 32, 48, 49, 51, 52, 56, 59, 60 

2XT1  2, 3, 4, 5, 6, 7, 26, 30, 31, 32, 33, 43, 44, 47, 48 

4AL8  13, 14, 16, 17, 18, 19, 20, 24, 26, 66, 67, 68, 69, 71 

2H9G  5, 6, 16, 17, 18, 19, 30, 33, 36, 38, 39, 42 

5IKC  10, 11, 12, 13, 14, 44, 45, 46, 48, 80, 82, 83, 84, 85, 86 

2BDN  27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 52, 53, 58, 62, 65 

4DGI  15, 16, 17, 18, 19, 20, 21, 22, 26, 79, 83, 87 

4P2C  14, 16, 17, 18, 20, 27, 29, 31, 32, 33, 53, 59, 60, 61, 63 

1JRH  37, 39, 40, 41, 42, 43, 44, 45, 46, 74, 88 

3UZQ  8, 9, 10, 11, 12, 13, 14, 29, 64, 90, 91, 92 

3NH7  10, 31, 32, 39, 44, 45, 46, 48, 53, 58, 59, 60, 61, 62, 64 

3BDY  35, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 

3KR3  2, 6, 7, 8, 11, 14, 24, 31, 33, 36, 40, 41, 43, 45, 55 

3P30  55, 56, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 77 

HER2 (1N8Z)  532, 558, 560, 561, 569, 570, 573, 593, 594, 597, 598, 602 
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Table 5.3 Total number of designs, binding energies and Sc scores of top AUBIE designs and WT 

complexes for the 25 antigens. 

Ag PDB ID Solutions Top AUBIE 

BE 

(kcal/mol) 

Sc of Top 

design 

WT BE 

(kcal/mol) 

WT Sc WT BE - 

AUBIE BE 

(kcal/mol) 

4LQF 210 -33.78 0.64 -26.59 0.63 7.20 

3BDY 1016 -52.07 0.67 -45.67 0.68 6.40 

4DGI 512 -32.74 0.57 -28.55 0.73 4.18 

4P2C 361 -39.42 0.64 -36.26 0.62 3.16 

3P30 13 -35.31 0.47 -32.73 0.65 2.58 

4AL8 364 -43.32 0.59 -40.83 0.67 2.49 

2BDN 365 -40.56 0.62 -41.00 0.66 -0.45 

1OB1 900 -39.14 0.55 -41.98 0.69 -2.84 

4N9G 564 -33.47 0.53 -36.77 0.67 -3.30 

3X3F 544 -50.85 0.66 -56.51 0.76 -5.66 

2H9G 637 -49.75 0.69 -56.08 0.72 -6.32 

4HEP 950 -40.38 0.51 -49.12 0.75 -8.74 

5EPM 619 -33.00 0.66 -41.86 0.58 -8.86 

3L5Y 356 -45.76 0.48 -54.74 0.74 -8.99 

5IKC 542 -38.10 0.61 -50.06 0.67 -11.96 

4LMQ 953 -31.70 0.77 -45.85 0.72 -14.15 

5DFV 418 -39.28 0.55 -55.47 0.63 -16.20 

3P9W 582 -39.43 0.59 -59.98 0.67 -20.55 

2YBR 204 -39.73 0.61 -64.50 0.70 -24.77 

2XT1 154 -41.18 0.56 -66.21 0.75 -25.03 

3UZQ 216 -36.87 0.41 -62.79 0.67 -25.93 

1JRH 494 -42.27 0.68 -71.58 0.81 -29.31 

3KR3 469 -45.61 0.63 -76.40 0.79 -30.79 

3NH7 167 -38.63 0.54 -72.02 0.65 -33.38 

4UU9 200 -38.58 0.64 -74.67 0.73 -36.09 
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Table 5.4 Percentage fraction of designed loops that were not mutated 

Ag PDB ID HCDR1 HCDR2 HCDR3 LCDR1 LCDR2 LCDR3 

1JRH 95.93 92.68 94.11 90.85 94.51 97.97 

1OB1 98.11 94.44 97.22 96.44 97.00 99.78 

2BDN 96.97 92.01 93.39 94.21 95.04 98.90 

2H9G 97.78 94.78 94.62 94.78 95.89 99.84 

2XT1 94.81 86.36 94.81 93.51 96.10 98.70 

2YBR 96.08 93.63 97.06 91.18 97.06 98.53 

3BDY 98.13 96.85 96.36 94.59 96.65 98.43 

3KR3 97.44 93.39 96.16 94.88 95.52 99.36 

3L5Y 97.46 96.90 96.90 96.62 96.06 99.44 

3NH7 100.00 97.01 97.60 97.60 98.20 98.80 

3P30 92.31 92.31 100.00 92.31 100.00 92.31 

3P9W 96.56 92.08 93.46 93.29 90.71 99.14 

3UZQ 99.07 93.98 94.44 88.89 94.44 99.54 

3X3F 97.42 95.57 93.36 93.36 92.25 99.63 

4AL8 98.35 97.53 94.23 94.78 92.58 99.45 

4DGI 97.26 97.26 94.32 92.56 93.54 100.00 

4HEP 98.73 95.46 95.68 97.47 96.10 99.47 

4LMQ 95.26 94.84 95.26 93.89 94.42 98.21 

4LQF 97.62 94.29 87.62 89.05 94.29 98.10 

4N9G 98.05 97.87 95.56 93.78 98.05 98.93 

4P2C 96.94 92.76 96.10 91.92 94.99 98.61 

4UU9 96.97 94.95 95.45 96.97 96.97 98.99 

5DFV 96.86 92.75 94.93 93.72 92.03 98.55 

5EPM 96.92 97.89 94.98 96.11 97.57 99.84 

5IKC 97.23 95.19 94.27 93.16 92.79 99.45 
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Table 5.5 Percentage frequencies of different native and final amino acids in mutated residues. 

Amino acid Initial percentage Final percentage 

LEU 1.18 45.33 

ASP 1.95 13.84 

ASN 3.09 11.09 

ALA 0.00 9.58 

SER 0.50 9.21 

GLU 0.67 5.38 

ILE 1.68 3.43 

THR 6.18 1.28 

VAL 2.22 0.84 

HIS 9.85 0.03 

ARG 0.97 0.00 

CYS 0.07 0.00 

GLN 0.60 0.00 

LYS 0.87 0.00 

MET 0.10 0.00 

PHE 7.69 0.00 

PRO 0.00 0.00 

TRP 11.79 0.00 

TYR 50.57 0.00 
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Table 5.6 Binding energies of top mutated and native AUBIE designs and WT complexes. The 

differences between these energies and the number of mutations in the best mutated design are 

also listed.    

Ag 

PDB 

ID 

Native 

BE 

(kcal/mol) 

WT BE 

(kcal/mol) 

New BE 

(kcal/mol) 

New BE - 

WT BE 

(kcal/mol) 

New BE - 

Native 

BE 

(kcal/mol) 

Mutations 

3P9W -39.43 -59.98 -82.85 -22.88 -43.43 21.00 

4LMQ -31.70 -45.85 -60.09 -14.24 -28.39 29.00 

5DFV -39.28 -55.47 -61.97 -6.50 -22.69 24.00 

3L5Y -45.76 -54.74 -67.77 -13.03 -22.02 18.00 

5EPM -33.00 -41.86 -50.69 -8.83 -17.68 22.00 

3NH7 -38.63 -72.02 -53.84 18.18 -15.21 28.00 

1JRH -42.27 -71.58 -53.96 17.62 -11.69 20.00 

4UU9 -38.58 -74.67 -46.18 28.50 -7.59 18.00 

5IKC -38.10 -50.06 -41.40 8.66 -3.30 15.00 

3UZQ -36.87 -62.79 -36.87 0 0 0 

2YBR -39.73 -64.50 -39.73 0 0 0 

2XT1 -41.18 -66.21 -41.18 0 0 0 

3KR3 -45.61 -76.40 -45.61 0 0 0 
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Figure 5.1 Binding regions (green) and framework (gray) structure used for database generation 

step. Also shown are the CDR3 loop side chain atoms that would have been classified as binding 

regions if IMGT definitions of CDR3 loops were used. These side chain atoms were classified to 

be significant for antibody stability and hence were not mutated. Structures obtained from PDB 

1N8Z. 
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Figure 5.2 Designed low entropy H-bonds in top AUBIE designs for antigens from PDB files 

2YBR, 3P30 and 3KR3 before energy minimizations. Antibodies and antigens shown in gray and 

orange respectively. H-bonds shown in green. 



135 

 

 

Figure 5.3 Designed low entropy H-bonds in top AUBIE designs for antigens from PDB files 

2YBR, 3P30 and 3KR3 before energy minimizations. Antibodies and antigens shown in gray and 

orange respectively. H-bonds shown in green. 



136 

 

 

Figure 5.4 Antibody (gray) and antigen (orange) complexes from PDB files 3KR3 and 4UU9. 

Long CDR3 loops and interacting framework regions shown in green. 

 

Figure 5.5 Averages and standard deviations of RL-SASAs of epitopes and paratopes of antibody-

antigen, protein-protein databases, top designs from old and new AUBIE approach. 
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Figure 5.6 Native and mutated side chains from AUBIE design binding antigen from PDB 3P9W. 

Native, mutated antibodies and antigens shown in gray, sea green and orange respectively. 
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Figure 5.7 Initial and final antibody-antigen complexes from MD simulations of top AUBIE 

designs binding to antigens from PDB 3BDY and 4LMQ. Starting antibodies and antigens shown 

in dark gray and orange, while final antibodies and antigens shown in light gray and red 

respectively. 
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Figure 5.8 Initial and final antibody-antigen complexes from MD simulations of top AUBIE design 

binding to antigen from PDB 3BDY. Side chain atoms of interacting residues 56D, 38L and 107N 

from the antibody and 35K, 68M and 76Q from the antigen. Starting antibodies and antigens shown 

in dark gray and orange respectively. H-bonds shown in green. 
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6. Chapter 6 - MutDock 

The results from Chapter 5 demonstrated that targeting for low entropy H-bonds in the 

AUBIE approach resulted in antibody designs that had acceptable metrics. I now turned my 

attention towards developing a docking approach for fixed-backbone scaffolds that built on the 

same design principles AUBIE was based on. In this chapter, the algorithm and initial evaluation 

of MutDock, a novel mutation-based docking approach, is described. Instead of translating and 

rotating a protein scaffold in 6D steps around the target, MutDock uses pairwise distance matching 

of H-bonding regions around the variable paratope and epitope to identify mutated scaffold-target 

poses making multiple H-bonds in a single step. Parts of this chapter have been adopted from our 

article titled “MutDock: A Computational Docking Approach for Fixed-Backbone Protein 

Scaffold Design”, which is under review.   

Methodology 

MutDock has been developed around two major goals: 1) introducing mutations 

simultaneously to docking using a single geometry alignment step and 2) designing binding 

proteins without the use of a force field. Although they are constantly being updated, there is 

evidence that force fields have biases towards and against certain types of interactions and 

structural elements [1]–[3]. Hence, instead of using force field guided energy minimizations like 

conventional docking tools such as RosettaDock and HADDOCK, MutDock uses the known 

structural features of strong interactions such as H-bonds to guide pose identification and rotamer 

selection during docking. Similar to ZDOCK, where the generated poses are scored in the final 

step, in this manuscript force fields are used to evaluate MutDock’s predicted poses but not in their 

identification. 
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The MutDock approach can be divided into two primary steps: 1) identifying docked poses 

with H-bonds formed by native and/or mutated residues and 2) mutating clashing side chains using 

a feature-based approach. This algorithm is depicted in Figure 6.1, with panels A, B, and C 

corresponding to step 1 and panel D corresponding to step 2. 

Docking 

Docking with MutDock can be further subdivided into two steps: pose identification and 

pose validation. The pose identification step generates antigen-scaffold poses with unique sets of 

H-bonds, while the pose validation step checks for steric compatibility, bond formation and 

solution uniqueness. Necessary information for docking includes the structures of the binding and 

target proteins, which residues in the binding protein are intended to interact with the target protein 

(i.e., the paratope), which paratope residues are mutable, and which residues in the target protein 

are intended to interact with the paratope (i.e., the epitope).  

In the first step of pose identification, spatial coordinates that can be occupied by 

compatible epitope atoms for the formation of a H-bond are identified for each paratope residue. 

These coordinates for binding interactions, referred to as Paratope Binding Regions (PBRs), 

consist of one atom and three spatial positions. The atom is either a hydrogen, if the interaction is 

an H-bond forming from the paratope to the epitope, or an H-bond acceptor, if the H-bond is 

forming from the epitope to the paratope. The primary point of the PBR is the ideal position of an 

atom in the epitope to form an H-bond with the PBR’s atom. The position of the primary point lies 

1.5 Å from the PBR’s atom on the vector determined by the atom and an antecedent point. The 

possible PBR atoms and corresponding antecedent points are listed in Table 6.1. The third spatial 

position of a PBR is the secondary point, 1 Å further along the vector from the primary point, 
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which is used for ensuring the designed H-bonds have appropriate orientations (e.g., avoiding the 

formation of H-bonds with acute angles).  

The pose identification step of MutDock is focused on finding complexes with many H-

bonds because they are prevalent in naturally occurring binding interfaces. As listed in Table 6.2, 

the mutable paratope residues are only allowed to change into polar residues to facilitate this search 

for favorable H-bonds. The rotamers used in MutDock were obtained from the Dunbrack rotamer 

library [4] and a maximum of ten structurally diverse rotamers for each possible mutation were 

used to limit final solution set diversity. 

Once the PBRs are identified, the epitope residues are scanned for polar atoms capable of 

forming H-bonds with the scaffold in MutDock’s second step of pose identification. Initially, 

epitope residues that have non-zero solvent accessible surface areas (SASA) are collected to avoid 

including buried atoms in subsequent calculations. For each solvent accessible epitope residue, 

Epitope Binding Atoms (EBAs) are identified. An EBA consists of two points: a primary point 

that is a polar hydrogen atom or an H-bond acceptor and a secondary point that is analogous to the 

antecedent points of PBRs. 

Figure 6.2 illustrates the values that are calculated in the third step of pose identification. 

For each pair of PBRs, one distance and four angles are calculated. The distance is the distance 

between the primary points of the PBRs, while the angles are those of the quadrilateral formed by 

the primary and secondary points. Similar calculations are carried out for each pair of EBAs. Pairs 

of PBRs or EBAs that belong to the same residue are not considered in this step to encourage 

formation of larger binding interfaces by MutDock. A maximum limit of one positively charged 

residue in the paratope was enforced in step 4 to reduce the presence of highly flexible and unstable 
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positively charged side chains in the interface. Thus, only one ARG/LYS residue per PBR couplet 

is allowed. 

MutDock’s fourth step of pose identification searches for PBR and EBA sets that can 

coexist simultaneously. This begins by finding pairs of compatible PBR and EBA couplets. An 

initial screen eliminates from consideration incompatible interactions. A readily evident example 

would be H-bonds between ARG and ARG side chains, but many other potential interactions are 

also excluded from consideration. It is known that antibody binding interfaces are abundant with 

interactions made by pre-stabilized or low entropy side chains [5]. To replicate such features, H-

bond type constraints are enforced to lower the chances of forming H-bonds between long chain 

amino acids which are unlikely to be stable. The atom and amino acid types allowed for a 

compatible PBR-EPA pair are listed in Table 6.2. 

Interactions that are potentially compatible are then checked for geometric alignment using 

five constraints:  

|𝐷1 − 𝐷2| < 𝑑𝑙𝑖𝑚𝑖𝑡 (1) 

Where D1 and D2 are the PBR and EBA distances, respectively, as calculated in step 3 and 

dlimit is a user-defined threshold on the maximum permissible deviation in the primary point 

distances.  

|∠𝑃𝐵𝑅1𝑝 − ∠𝐸𝐵𝐴1𝑝| < 𝑎𝑙𝑖𝑚𝑖𝑡 (2) 

|∠𝑃𝐵𝑅2𝑝 − ∠𝐸𝐵𝐴2𝑝| < 𝑎𝑙𝑖𝑚𝑖𝑡 (3) 

|∠𝑃𝐵𝑅1𝑠 − ∠𝐸𝐵𝐴1𝑎| < 𝑎𝑙𝑖𝑚𝑖𝑡 (4) 

|∠𝑃𝐵𝑅2𝑠 − ∠𝐸𝐵𝐴2𝑎| < 𝑎𝑙𝑖𝑚𝑖𝑡 (5) 

Geometric constraints 2-5 ensure the deviations in the interaction angles do not exceed a 

user-defined limit, alimit. For this study, dlimit was set at 1.8 Å and alimit was set at 70°. These values 
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were selected as the cutoffs because they permit 85% of H-bonds from the database from Chapter 

2. An illustration of these constraints is shown in Figure 6.2. After compatible PBR-EBA couples 

are found, larger sets of PBR-EBA matches are identified by searching for groups of couples that 

are all mutually compatible (e.g., if AB, AC, and BC are each compatible couples, than ABC must 

be a compatible triple). Thus each group corresponds to a unique solution consisting of three or 

more predicted interface H-bonds.  

In the fifth and final step of MutDock’s docking protocol, each unique solution group from 

step 4 is positioned and analyzed for interface size, hydrogen bond geometry and steric 

compatibility with the scaffold and antigen. The antigen is positioned so that the RMSD between 

the primary atoms of the EBA and their corresponding PBR primary points is minimized. Next, 

the rotamers of the binding protein are changed to match those used in the PBRs, corresponding 

to the inclusion of any mutations identified during pose identification. These mutations are referred 

to as design mutations. If these newly placed rotamers have steric clashes with other PBR rotamers 

or native side chains, the pose is rejected. The definition of a steric clash was adopted from Chapter 

3. 

A coarse-grained filter is used to facilitate the rejection of low quality poses (i.e., those 

with small buried surface areas or major clashes between proteins). Each residue is divided into 

its backbone and side chain units. Each such unit is approximated as a sphere at the center of mass 

of the atoms with a radius equal to the distance of the farthest atom from the center of mass. 

Analysis of the antibody-antigen database from Chapter 2 revealed that the coarse-grained spheres 

should be a minimum of 3.39 Å apart and that the complexes should have a minimum of 12 spheres 

in contact with one another. Poses that violate either of these requirements are rejected as having 

irreconcilable steric clashes or too small of interface surface areas, respectively. 
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After the coarse-grained filter removes obviously deficient poses, an all atom pose 

validation is conducted. Each designed H-bond is checked, and they are accepted if the acceptor – 

hydrogen distance is less than 2.5 Å and the acceptor – hydrogen – donor angle is larger than 120 

degrees. Poses that fail to form even one of their predicted H-bonds are rejected. Finally, the steric 

compatibility between the antigen and scaffold is verified. Poses that consist of steric clashes 

between the antigen and the binding protein’s backbone and/or non-variable side chains are 

discarded, as are those that have clashes involving the residues forming the designed H-bonds. 

However, poses with clashes involving mutable paratope residues that do not form designed H-

bonds are retained, as those residues can be changed in the second major step of MutDock: 

mutation. The mutational approach from Chapter 5 was employed here to resolve steric clashes. 

Following the mutations, the clash-free mutated poses are output in PDB format. In the current 

version of MutDock, no further pose refinement or ranking is performed and rotamer 

repacking/energy minimization and pose ranking strategy is left to the user.  

Complex Evaluation 

Force fields were used to evaluate the MutDock predictions and compare them to other 

docking methods, even though they were not used for energy calculations during the MutDock 

algorithm. All MutDock poses were relaxed through two energy minimization runs: CHARMM36 

force field vacuum energy minimization [6] with fixed backbone atoms followed by 2) Rosetta 

force field energy minimization [7]. When docked poses are identified, they include minor steric 

clashes. CHARMM36 energy minimizations were able to consistently correct the clashes caused 

by the steric constraints used in the method, while Rosetta could only sometimes correct them. 

Thus, CHARMM36 was used to prepare the complexes for computational analysis while Rosetta, 

the most commonly used protein engineering force field, was used for comparing the quality of 
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poses. Complexes from the previously mentioned antibody-antigen database were run through the 

same energy minimization routine as the MutDock poses. The key metric analyzed in this work is 

binding energy, which is the difference in the Gibbs free energy of the system before and after 

complex formation, since the primary purpose of MutDock is to identify high affinity mutated 

poses. Along with computational binding energy, other binding metrics analyzed in this work such 

as shape complementarity and buried interface area have been calculated by the InterfaceAnalyzer 

application from Rosetta [8]. 

MutDock is compared to ZDOCK and HADDOCK. To compare the epitope specific/local 

docking of MutDock to that of ZDOCK, residues far from the epitope and paratope were manually 

selected to be blocked from being part of ZDOCK pose interfaces. The HADDOCK webserver 

was used for HADDOCK docking simulations and epitopes and paratopes were defined as the 

“active regions” on the webserver. For each run, all the 2000 ZDOCK poses and 200 HADDOCK 

poses from the “it1” directory were run through the energy minimization routine. All protein 

visualization and image generation were done via UCSF Chimera [9].  

Results 

MutDock’s performance was tested by docking 10 randomly selected antigens from the 

antibody-antigen database with two scaffolds: affibody and DARPin. The affibody and DARPin 

structures were obtained from PDB files 3MZW and 6FPA, respectively. The identities of the 13 

and 18 variable residues for affibodies and DARPins were obtained from literature [10], [11]. The 

paratope residues included the variable residues, as well as several surrounding residues. The 

epitopes from the native antibody-antigen complexes were selected as the epitopes for the docking 

runs. The source PDB IDs of the 10 antigen structures, residue numbers of the paratope, epitope 
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and variable residues are listed in Table 6.3. The docking runtimes ranged from 1 to 13 hours 

depending on the number of preliminary poses that needed to be filtered for various metrics. These 

high runtimes were expected, as the current implementation of MutDock is intended as a proof of 

principle method and its code has not been optimized for computational efficiency.  

The predicted binding energies for the top poses of the 20 complexes are reported in Table 

6.3, along with those of the native antibody-antigen complexes. Greater than 1000 poses were 

identified for all antigens except PDB 3P30. That antigen consists of a two-helix bundle and hence 

lacks solvent exposed backbone atoms for binding. Approximately 500 poses were identified for 

this antigen with both the affibody and DARPin scaffolds. The binding energies of top MutDock 

poses ranged from 35 to 51 kcal/mol. For eight of the ten antigens, the DARPin poses had stronger 

binding energies than the affibody poses. This is consistent with the facts that DARPins have larger 

paratopes than affibodies and our prior experience that computationally calculated binding 

energies are strongly correlated with interface size. The stronger calculated binding energies of the 

antibodies versus the MutDock designed proteins is also consistent with this trend. 

Table 6.5 lists the percentage frequencies of poses with different numbers of mutations. It 

is observed that the docking approach relies heavily upon design mutations for identifying poses, 

as more than 90% of all poses consist of either two or three design mutations. In contrast, less than 

50% of all poses had any clash mutations, with a majority of them having only one mutation. 

Considering that all variable side chains were allowed to clash before the mutation step, this result 

signifies that the rotamer repacking step (i.e., step 1 of 6 of the clash mutation calculations) was 

efficient at resolving most side chain clashes.  

Table 6.6 lists the percentage frequency of the amino acid types in design and clash 

mutations. The data demonstrates expected trends, as MutDock favors the introduction of low 
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entropy side chains, such as SER and TYR, that can form H-bonds with backbone atoms and other 

low entropy side chains. In contrast, the positively charged, high entropy side chains of ARG and 

LYS are disfavored. The most favored clash mutation was LEU. Examples of design and clash 

mutations are illustrated in Figure 6.3.  

The widely used docking programs ZDOCK and HADDOCK were tested on the same 

affibody and DARPin scaffolds against the same antigens. ZDOCK was selected for comparison 

with MutDock since neither method uses local pose refinement or rigid body energy minimizations 

[12]. ZDOCK run times lasted for 4 minutes while HADDOCK webservers took a maximum of 

approximately 6 hours, which also includes the time when the job was queued, for each docking 

run. On the other hand, MutDock runtimes ranged from 3 to 46 hours on a 3.00 GHz Intel Xeon 

Gold 6248R processor. 

The top binding energies for each complex along with the difference with the best 

MutDock pose energies are listed in Table 6.7. MutDock predicted poses with binding energies at 

least 3 kcal / mol stronger than ZDOCK in 17 of 20 complexes and at least 10 kcal / mol stronger 

in 11 complexes. The only antigen ZDOCK outperformed MutDock on was 3P30, whose helical 

nature eliminates the possibility of the backbone H-bonds that MutDock preferentially targets. 

MutDock was also compared to HADDOCK [13], [14], a docking approach that performs 

local rigid body energy minimizations along with further refinement using short MD simulations. 

The top binding energies for each complex along with the difference with the best MutDock pose 

energies are listed in Table 6.8. MutDock predicted better poses for nine complexes, similar quality 

poses (i.e., ± 3 kcal / mol) in five complexes, and worse poses in six complexes. Prior experience 

had demonstrated that multiple Rosetta energy minimizations with the same complex resulted in 

binding energies within 2 kcal/mol of each other. Thus, 3 kcal/mol was defined as the threshold 
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for significant binding energy difference. In the nine complexes where MutDock outperformed 

HADDOCK, the improvement in binding energies were lower than those obtained from the 

ZDOCK comparisons. Thus, HADDOCK predicted complexes with stronger binding energies 

than ZDOCK. 

A likely cause of HADDOCK’s performance being evaluated well by energy calculations 

is its use of such calculations to refine initial poses. To investigate whether the positional 

refinements HADDOCK utilizes could further improve the MutDock poses, the top MutDock 

designs were docked using HADDOCK. After HADDOCK docking, poses were defined as near 

native if they had an interface Cα RMSD less than 4 Å when compared with the respective top 

MutDock pose.  

Table 6.8 lists the top binding energies of near-native poses, their RMSDs and the 

respective binding energy differences. For nine complexes, HADDOCK identified novel poses 

with better binding energies than the native MutDock poses. Of those nine complexes, HADDOCK 

identified: no near native pose for two complexes, better (i.e., by at least 3 kcal / mol) poses for 

three complexes, comparable poses for two complexes and worse than native poses for two 

complexes. For the remaining eleven complexes, HADDOCK identified: better poses for two 

complexes, comparable poses for six complexes, and worse poses for three complexes. Finally, 

the top HADDOCK poses using the MutDock designed binding proteins had stronger calculated 

binding energies for 16 / 20 complexes than the top HADDOCK poses with the original scaffolds. 

Discussion 

It is particularly notable that more than 90% of the poses MutDock identified required at 

least two mutations. This shows that MutDock has the ability to generate large number of poses 
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with multiple beneficial mutations per pose. Conventional design approaches search for beneficial 

mutations through iterative cycles of random point mutations [15], [16]. On the other hand, 

MutDock is able to simultaneously identify multiple beneficial mutations per pose in a single 

search step with further beneficial mutations added in the clash-removal step. Such an approach 

allows MutDock to search a larger solution sequence space and hence identify poses that would 

not be identified by fixed-sequence docking methods. 

Using Rosetta-calculated binding energies as a benchmark, MutDock performed 

significantly better than ZDOCK for most of the complexes. Each of these methods relies on 

geometric criteria for identifying binding poses: H-bond formation for MutDock and shape 

complementarity along with molecular mechanics for ZDOCK. This is in line with expectations, 

as the mutations introduced by MutDock should result in improved binding energies relative to 

those attainable by the original scaffold. Nonetheless, this demonstrates that strictly using 

geometric criteria MutDock is able to identify favorable and promising binding conformations. 

The comparison of the performances of MutDock and HADDOCK is more nuanced. Each 

did best on approximately half of the complexes in a head to head comparison. This is due in part 

to the fact that each has an advantage over the other: MutDock allows for mutation of the scaffold, 

while HADDOCK uses energy minimizations and positional refinement to maximize predicted 

binding energies. However, 16 / 20 complexes were improved when HADDOCK used the 

MutDock designed scaffolds compared to when it used the original ones, albeit not always in 

conformations similar to MutDock’s predicted poses. This indicates that the MutDock’s predicted 

mutations, which are unguided by energy calculations, create the potential to improve binding 

energies. It is notable that in a number of complexes, HADDOCK was unable to identify poses 

with binding energies as strong as MutDock’s predictions. Given that it is demonstrable that those 
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poses exist, this indicates that HADDOCK’s energy-based pose identification algorithm still has 

potential room for improvement.  

Force fields are the best available tool for computationally assessing designed proteins, but 

they have limitations and biases. One of the primary motivations of MutDock was to explore the 

design of binding proteins without the use of a force field in the design decisions. Despite only 

using force fields to evaluate the designs and not in their generation, MutDock was able to generate 

poses with computational metrics comparable to known binding complexes and poses made with 

force field -dependent docking tools. Thus, MutDock serves as an example of a viable docking-

design approach that attempts to replicate known beneficial features of binding interfaces, such as 

hotspot interactions in hotspot-centric design [17]. The development of such methods has been 

made possible by the availability of large datasets of known complex structures that be analyzed 

for common key structural features which can later be targeted.  

The only other interaction-based docking approach I have seen in the literature is RIFdock 

[18], [19]. Compared to MutDock, RIFdock uses a larger library of rotamer poses and includes 

hydrophobic interactions as target interactions too. A major difference between the two approaches 

is the search strategy. RIFdock moves the receptor protein in 6D steps, with increasing resolution, 

around the target protein to find scaffolds poses that host multiple rotamers which make strong 

interactions with the epitope. On the other hand, MutDock uses pairwise distance alignment to 

identify groups of compatible interactions in one step. However, a more thorough comparison of 

the approaches was not possible since the detailed description of the RIFdock methodology is not 

available in a peer-reviewed article. 

The recent breakthroughs of AlphaFold and RosettaFold at predicting protein structures 

without heavy reliance on physics-based force fields herald a change in computational protein 
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engineering. I believe that one of the frontiers of bioengineering will be the growth of 

computational protein design methods that use machine learning and engineering principles 

instead of force fields. MutDock demonstrates the potential of such approaches. Through spatial 

positioning and mutation steps, MutDock is able to identify poses that have many low entropy, 

favorable interactions. The results, especially those from re-docking the scaffolds with 

HADDOCK, indicate that the binding energies can be improved without relying on force field 

calculations.  
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Table 6.1 Polar atom and their antecedent atom names considered for PBR and EBA identification. 

Atom names follow the CHARMM PDB atom naming.  

Amino 

Acid 

PBR 

Atom 
Antecedent Point 

Backbone O C 

Backbone OT1 C 

Backbone OT2 C 

Backbone HN N 

Backbone HN1 N 

Backbone HN2 N 

Backbone HN3 N 

ARG HE NE 

ARG HH11 NH1 

ARG HH12 NH1 

ARG HH21 NH2 

ARG HH22 NH2 

LYS HZ1 NZ 

LYS HZ2 NZ 

LYS HZ3 NZ 

ASP OD1 CG 

ASP OD2 CG 

GLU OE1 CD 

GLU OE2 CD 

SER HG1 OG 

SER OG Midpoint of HG1 and CB 

THR HG1 OG1 

THR OG1 Midpoint of HG1 and CB 

TYR HH OH 

TYR OH Midpoint of HH and CZ 

ASN OD1 CG 

ASN HD21 ND2 

ASN HD22 ND2 

GLN OE1 CD 

GLN HE21 NE2 

GLN HE22 NE2 

HIS HD1 ND1 

HIS NE2 Midpoint of CD2 and CE1 

TRP HE1 NE1 
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Table 6.2 Amino acid types allowed to form H-bonds in the MutDock approach.  

Scaffold Antigen 

Backbone Backbone 

Backbone All 

All except ARG, LYS, GLN Backbone 

ARG, LYS * ASP, GLU 

ASP, GLU ARG, LYS 

HIS, ASN, ASP, TYR, SER, THR, TRP ** HIS, ASN, ASP, TYR, SER, THR, TRP 

* Only one per solution 

** No H-bonds allowed between ASN and ASP since they contain multiple polar 

groups 
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Table 6.3 Residue numbers of “active binding regions” in HADDOCK simulations. Residue 

numbers of epitope, paratope and variable paratope residue numbers for MutDock runs are also 

provided. For 4AL8-dp and 1OB1-dp MutDock simulations, the number of epitope residues were 

reduced to increase runtimes. 

Complex  Residues 
 HADDOCK 

1JRH 
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 66, 67, 68, 69, 70, 72, 74, 88, 89, 90, 91, 

93 

1OB1 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 23, 24, 25, 26, 28, 31, 36, 38, 39, 40 

2XT1 1, 2, 3, 4, 5, 6, 7, 9, 26, 30, 31, 32, 33, 35, 36, 39, 40, 42, 43, 44, 47, 49 

3BDY 31, 32, 35, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81 

3L5Y 1, 2, 3, 6, 7, 9, 10, 13, 74, 75, 76, 78, 79, 81, 82, 83, 85 

3P30 52, 55, 56, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 77 

3X3F 14, 15, 16, 17, 18, 19, 28, 29, 33, 35, 36, 37, 38, 39, 40, 41, 42 

4AL8 
13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 52, 54, 55, 56, 57, 58, 66, 67, 68, 69, 

71 

5DFV 
13, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 49, 50, 51, 52, 53, 55, 56, 57, 58, 

59, 60, 69 

5IKC 9, 10, 11, 12, 13, 14, 15, 16, 43, 44, 45, 46, 47, 48, 80, 82, 83, 84, 85, 87 

DARPin 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 

44, 45, 46, 47, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 101, 102, 103, 

104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 135, 136, 137, 138, 139, 140, 

141, 142, 143, 144, 145, 146, 147, 148 

Affibody 
6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 

37 
 MutDock 

1JRH_aff 
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 66, 67, 68, 69, 70, 72, 74, 88, 89, 90, 91, 

93 

1JRH_dp 
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 66, 67, 68, 69, 70, 72, 74, 88, 89, 90, 91, 

93 

1OB1_aff 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 23, 24, 25, 26, 28, 31, 36, 38, 39, 40 

1OB1_dp 8, 9, 10, 11, 13, 14, 15, 16, 23, 24, 25, 26, 28, 36, 38, 39, 40 

2XT1_aff 1, 2, 3, 4, 5, 6, 7, 9, 26, 30, 31, 32, 33, 35, 36, 39, 40, 42, 43, 44, 47, 48 

2XT1_dp 1, 2, 3, 4, 5, 6, 7, 9, 26, 30, 31, 32, 33, 35, 36, 39, 40, 42, 43, 44, 47, 48 

3BDY_aff 31, 32, 35, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 

3BDY_dp 31, 32, 35, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 

3L5Y_aff 1, 2, 3, 6, 7, 9, 10, 13, 74, 75, 76, 78, 79, 81, 82, 83, 84 

3L5Y_dp 1, 2, 3, 6, 7, 9, 10, 13, 74, 75, 76, 78, 79, 81, 82, 83, 84 

3P30_aff 55, 56, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 77 
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3P30_dp 55, 56, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 77 

3X3F_aff 6, 14, 16, 17, 18, 19, 29, 33, 35, 36, 37, 38, 39, 40, 41, 42 

3X3F_dp 6, 14, 16, 17, 18, 19, 29, 33, 35, 36, 37, 38, 39, 40, 41, 42 

4AL8_aff 
13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 52, 54, 55, 56, 57, 58, 66, 67, 68, 69, 

71 

4AL8_dp 13, 14, 17, 18, 19, 20, 21, 22, 26, 52, 54, 56, 66, 67, 68, 69, 71 

5DFV_aff 
13, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 49, 50, 51, 52, 53, 55, 56, 57, 58, 

59, 60, 68 

5DFV_dp 
13, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 49, 50, 51, 52, 53, 55, 56, 57, 58, 

59, 60, 68 

5IKC_aff 9, 10, 11, 12, 13, 14, 15, 16, 43, 44, 45, 46, 47, 48, 80, 82, 83, 84, 85, 86 

5IKC_dp 9, 10, 11, 12, 13, 14, 15, 16, 43, 44, 45, 46, 47, 48, 80, 82, 83, 84, 85, 86 

DARPin 
6, 7, 10, 14, 15, 16, 33, 34, 35, 36, 37, 38, 43, 46, 47, 66, 68, 69, 70, 71, 79, 80, 

99, 101, 102, 103, 104, 112, 113, 132, 134, 135, 136, 137, 145, 146, 147 

Affibody 6, 9, 10, 11, 13, 14, 15, 17, 18, 24, 25, 27, 28, 31, 32, 35, 36, 37, 38 
 MuDock variable residues 

Affibody 9, 10, 11, 13, 14, 17, 18, 24, 25, 27, 28, 32, 35 

DARPin 33, 35, 36, 38, 46, 47, 66, 68, 69, 71, 79, 80, 99, 101, 102, 104, 112, 113 
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Table 6.4 Top binding energies (BE) of MutDock poses and their native wild type structures for 

the 20 antigen-scaffold complexes. The shape complementarity values of these top MutDock poses 

and the native structures are also listed.  

Antigen 

PDB 
Scaffold 

Top MutDock 

BE (kcal/mol) 

Sc of top MutDock 

pose 

WT BE 

(kcal/mol) 
WT Sc 

1JRH Affibody -41.31 0.64 -71.58 0.81 

1JRH DARPin -48.67 0.61 -71.58 0.81 

1OB1 Affibody -34.95 0.53 -41.98 0.69 

1OB1 DARPin -39.54 0.59 -41.98 0.69 

2XT1 Affibody -46.83 0.74 -66.21 0.75 

2XT1 DARPin -46.38 0.66 -66.21 0.75 

3BDY Affibody -35.07 0.60 -45.67 0.68 

3BDY DARPin -43.44 0.56 -45.67 0.68 

3L5Y Affibody -35.06 0.62 -54.74 0.74 

3L5Y DARPin -42.92 0.65 -54.74 0.74 

3P30 Affibody -32.88 0.71 -32.73 0.65 

3P30 DARPin -35.11 0.50 -32.73 0.65 

3X3F Affibody -42.95 0.64 -56.51 0.76 

3X3F DARPin -46.56 0.59 -56.51 0.76 

4AL8 Affibody -49.89 0.61 -40.83 0.67 

4AL8 DARPin -46.66 0.70 -40.83 0.67 

5DFV Affibody -38.38 0.56 -55.47 0.63 

5DFV DARPin -51.02 0.56 -55.47 0.63 

5IKC Affibody -37.87 0.62 -50.06 0.67 

5IKC DARPin -42.75 0.61 -50.06 0.67 
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Table 6.5 Total number of poses generated and percentage frequencies of different number of 

design and clash mutations for each of the 20 MutDock simulations. Per., Freq., Des., and Mut. 

refer to percentage, frequency, design and mutations respectively. Aff and DPn refer to Affibody 

and DARPin respectively.  

Antigen 

PDB 

Scaf-

fold 

Total 

poses 

Per. Freq.  

of 3 Des. 

Mut. 

Per. Freq. 

of 2 Des. 

Mut. 

Per. Freq. 

of 1 Des. 

Mut. 

Per. Freq.  

of 0 Des. 

Mut. 

Per. Freq. 

of any 

clash Mut. 

1JRH Aff 2000 41.05 54.55 4.40 0.00 47.00 

1JRH DPn 2000 19.40 72.40 8.10 0.10 22.85 

1OB1 Aff 2000 52.85 42.90 4.25 0.00 35.10 

1OB1 DPn 2000 57.70 36.80 5.20 0.30 17.60 

2XT1 Aff 1937 71.55 25.97 2.48 0.00 39.29 

2XT1 DPn 1654 71.28 26.36 2.36 0.00 18.38 

3BDY Aff 1607 70.82 26.45 2.61 0.12 43.25 

3BDY DPn 1806 62.57 32.67 4.71 0.06 22.54 

3L5Y Aff 2000 73.75 25.00 1.25 0.00 39.05 

3L5Y DPn 2000 66.15 30.30 3.45 0.10 20.25 

3P30 Aff 503 70.38 26.44 2.98 0.20 34.19 

3P30 DPn 564 43.44 45.57 10.11 0.89 18.26 

3X3F Aff 1575 69.52 28.38 2.10 0.00 38.67 

3X3F DPn 1540 64.94 31.62 3.38 0.06 20.71 

4AL8 Aff 2000 64.45 31.90 3.55 0.10 39.35 

4AL8 DPn 1120 61.61 33.04 5.27 0.09 17.95 

5DFV Aff 2000 66.65 30.25 2.95 0.15 39.85 

5DFV DPn 2000 67.85 29.70 2.35 0.10 16.80 

5IKC Aff 2000 63.90 34.00 2.05 0.05 40.25 

5IKC DPn 2000 62.55 33.80 3.50 0.15 21.65 
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Table 6.6 Percentage frequencies of different amino acids in design mutations, native and final 

clash mutations in all 20 MutDock simulations. 

Amino 

acid 

Percentage frequency in 

design mutations 

Percentage frequency in 

native clash mutation 

residues 

Percentage frequency in 

clash mutation 

ARG 9.86 0.70 0.00 

ALA 0.00 0.00 0.81 

ASN 13.48 0.29 13.41 

ASP 11.51 0.00 14.74 

GLN 0.00 0.05 0.00 

GLU 13.34 0.06 5.78 

GLY 0.00 0.00 0.00 

HIS 0.00 2.49 0.03 

ILE 0.00 0.00 1.46 

LEU 0.00 0.07 54.89 

LYS 7.48 0.02 0.00 

MET 0.00 0.20 0.00 

PHE 0.00 20.33 0.00 

PRO 0.00 0.00 0.00 

SER 14.82 0.00 7.58 

THR 3.28 0.03 1.08 

TRP 7.55 25.14 0.00 

TYR 18.69 50.37 0.00 

VAL 0.00 0.25 0.23 
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Table 6.7  Top binding energies (BE) from the MutDock and Zdock docking simulations along 

with their energy differences for the 20 antigen-scaffold complexes. 

Antigen PDB Scaffold 
Top MutDock 

BE (kcal/mol) 

Top Zdock 

BE (kcal/mol) 

Top Zdock BE - 

Top MutDock 

BE (kcal/mol) 

1JRH Affibody -41.3 -28.9 12.4 

1JRH DARPin -48.7 -28.8 19.8 

1OB1 Affibody -35.0 -30.7 4.2 

1OB1 DARPin -39.5 -33.2 6.4 

2XT1 Affibody -46.8 -31.1 15.8 

2XT1 DARPin -46.4 -31.3 15.0 

3BDY Affibody -35.1 -30.8 4.3 

3BDY DARPin -43.4 -36.5 7.0 

3L5Y Affibody -35.1 -26.5 8.6 

3L5Y DARPin -42.9 -31.3 11.6 

3P30 Affibody -32.9 -38.6 -5.7 

3P30 DARPin -35.1 -39.3 -4.2 

3X3F Affibody -43.0 -30.7 12.3 

3X3F DARPin -46.6 -31.4 15.1 

4AL8 Affibody -49.9 -26.2 23.7 

4AL8 DARPin -46.7 -26.1 20.5 

5DFV Affibody -38.4 -38.2 0.2 

5DFV DARPin -51.0 -43.5 7.5 

5IKC Affibody -37.9 -23.6 14.3 

5IKC DARPin -42.8 -28.0 14.8 
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Table 6.8 Top binding energies (BE) from the MutDock (Mut) and HADDOCK (HAD) with native 

and MutDock scaffold docking simulations along with their energy differences for the 20 antigen-

scaffold complexes. Also listed are the best binding energies of near native poses from the 

HADDOCK docking with MutDock scaffolds and the RMSD of these poses. All binding energies 

are reported in kcal/mol.   

Antigen 

PDB 

Scaf-

fold 

Top 

HAD BE 

Top 

HAD BE 

- Top 

Mut BE 

Top HAD 

w/ Mut 

scaffold 

(HAD-

Mut) BE 

Top HAD 

BE - Top 

HAD-Mut 

BE 

Top 

near 

native 

BE 

RMSD 

(Å) 

Top 

Mut BE 

- Top 

HAD-

Mut BE 

1JRH Aff -36.7 4.6 -48.5 11.8 -48.5 0.7 7.2 

1JRH DP -42.7 6.0 -48.9 6.2 -41.5 1.8 0.2 

1OB1 Aff -44.7 -9.7 -46.1 1.5 None None 11.2 

1OB1 DPn -42.6 -3.1 -54.9 12.3 -45.2 0.6 15.3 

2XT1 Aff -43.0 3.9 -42.9 -0.1 -42.9 0.7 -3.9 

2XT1 DPn -46.3 0.1 -55.9 9.6 -41.7 3.0 9.5 

3BDY Aff -27.4 7.7 -39.2 11.8 -35.0 0.6 4.2 

3BDY DPn -45.9 -2.4 -40.4 -5.5 None None -3.0 

3L5Y Aff -32.8 2.2 -37.4 4.6 -37.4 1.5 2.4 

3L5Y DPn -47.8 -4.9 -54.2 6.3 -41.9 2.4 11.3 

3P30 Aff -39.1 -6.3 -48.4 9.2 -27.5 3.7 15.5 

3P30 DPn -52.1 -17.0 -53.6 1.5 None None 18.5 

3X3F Aff -35.3 7.7 -45.3 10.0 None None 2.3 

3X3F DPn -49.9 -3.4 -56.5 6.6 -50.7 1.0 9.9 

4AL8 Aff -34.3 15.6 -39.7 5.4 -39.7 0.7 -10.2 

4AL8 DPn -40.0 6.6 -46.9 6.9 -46.9 0.6 0.3 

5DFV Aff -39.0 -0.7 -44.3 5.3 -41.9 3.1 6.0 

5DFV DPn -47.7 3.3 -53.4 5.7 -53.4 1.1 2.4 

5IKC Aff -34.6 3.3 -40.7 6.2 -34.0 2.4 2.9 

5IKC DPn -40.0 2.8 -51.7 11.8 -49.6 3.4 9.0 
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Figure 6.1 The MutDock workflow. MutDock can be divided into two main steps: pose 

identification (panels A-C) and pose validation (panel D). Step A: PBRs are identified for all 

paratope residues and all other rotamers of variable residues (shown in pink). Similarly, EBAs are 

identified for all epitope residues. Step B: Pairwise distance calculations within the sets of PBRs 

and EBAs. Step C: Pairwise distance matching between PBR pairs and EBA pairs to identify 

groups of compatible low entropy interactions. Step D: Each pose from Step C is passed through 

steric clash filters and clashing variable side chains are mutated.  

 

Figure 6.2 PBR and EBA pairwise distance and angle calculations. PBRs generated for paratope 

ASP and ARG. EBA identified for epitope TRP and GLU. The interactions being considered here 

are H-bonds between 1) ASP and TRP and 2) ARG and GLU. For the two interactions to be 



166 

 

compatible, |D1 – D2| < 1.8 Å, |∠PBR1p - ∠EBA1p| < 70°, |∠PBR2p - ∠EBA2p| < 70°, |∠PBR1s 

- ∠EBA1a| < 70° and |∠PBR2s - ∠EBA2a| < 70°.   

 

Figure 6.3 Example design and clash mutations in three MutDock designs. Design mutations are 

shown in pink, clash mutations are shown in dark cyan, and H-bonds are shown in broken green 

lines. (A). 1JRH-affibody. Native residue 10ARG and design mutations ARG28TRP 

andALA17ASP making H-bonds with 91GLU, 43ASN and 46TRP respectively. Clash mutation 
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TYR13ASP makes H-bond with 37LYS. Clash mutation TYR35LEU makes hydrophobic 

interaction with 39TYR. (B). 4AL8-DARPin. Design mutations VAL102GLU, GLN80ASN and 

MET101TYR making H-bonds with 69ASN, 20HIS and 67PRO respectively. Clash mutation 

TRP71LEU makes hydrophobic interaction with 20HIS. (C). 3BDY-affibody. Design mutations 

ARG28ASN, TYR13ASP and LEU18ARG making H-bonds with 76GLN, 80GLU and 31GLU 

respectively. Clash mutation TYR35LEU makes hydrophobic interaction with 78ILE.     
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7. Chapter 7 - Summary and Future work 

Over the past two decades, significant work has been done towards developing 

computational tools for the design and docking of proteins. These design tools depend on 

computationally expensive iterative cycles of force field dependent energy calculations and 

optimizations. The overall purpose of this dissertation was two-fold: 1) to gain a better 

understanding of protein-protein residue interactions and 2) to implement a new design paradigm 

that targets the formation of groups of strong interactions via simple geometry alignments. This 

paradigm was implemented for both antibodies and other fixed-backbone binding proteins. 

Chapters 2 and 3: Database development and AUBIE 

In Chapter 2, I developed a non-redundant database of antibody-antigen complexes from 

the IMGT database and analyzed pairwise residue energies between epitopes and paratopes in three 

force fields. This database served as a reference set for all comparison studies done in this 

dissertation. According to all the force fields, five residues contributed, on average, more than half 

of the total binding energy. It was hypothesized that a quick and general computational design 

approach for binding proteins could be developed that targeted these few “hotspot” interactions in 

a sequential step method. Unlike conventional design tools, this method would be independent of 

any computationally expensive, force field dependent iterative design cycles. In Chapter 3, I 

developed AUBIE, a first-of-its-kind computational method that can rapidly design antibodies and 

other binding proteins for any specific epitope. The workflow has been divided into two broad 

steps: database generation and protein design. To generate the database, non-redundant loops that 

match the geometric criteria of the binding loop attachment points are identified from the PDB 

database. Optimal binding positions for various interactions types are then identified for all the 
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loops in the database. The initial steps of the design section include positioning the antigen to face 

the epitope towards the framework and rotating it around the z axis in one degree steps. For each 

rotation, distances between the antigen residues and SBRs are calculated to identify equivalent 

movements which correspond to a simultaneous fit for that combination of epitope residues. Final 

solution structures are identified after checking for steric and electrostatic compatibility between 

the antigen, loops and framework.  

AUBIE was used to design HER2 binding antibodies in a collaborative project with Dr. 

Spangler at Johns Hopkins University. Although the top AUBIE designs were computationally 

predicted to be statistically significantly better than naturally occurring antibodies, they did not 

demonstrate binding when tested experimentally. Comparing AUBIE-designed and known 

antibody paratopes revealed that AUBIE designed paratopes had a larger number of ARG, LYS 

and GLN residues than the average antibody paratope. The common property shared by these 

amino acids is their large conformational variability due to their highly flexible side chains. From 

a thermodynamics point of view, the change in Gibbs free energy is the sum of the enthalpic loss 

in energy, due to bond formation and solvation, and the entropic loss in energy, due to the loss of 

motion of binding atoms. The top AUBIE designs consisted of large beneficial enthalpic energy 

contributions due to several H-bond and salt bridge formations. Their failure to bind to HER2 

demonstrated that the enthalpic loss in energies were not enough to compensate for the larger gains 

in entropic energy of the designed paratopes.  

Chapter 4: Pre binding conformational stability 

Upon learning that the AUBIE designs contain a large number of highly flexible side chains 

that required very strong interactions to compensate for their large entropy loss upon binding, I set 



173 

 

out to get a better understanding of conformational stability in binding interfaces. In Chapter 4, 

databases of antibody-antigen and non-antibody protein-protein complexes were analyzed for 

various prestabilization related features. Residue side chains were defined as either stable or 

unstable before binding and quantified the different interactions they made. The results 

demonstrated that most interactions in the binding interfaces consist of either one or two stable 

interacting residue parts. Moreover, this preference for stability is selected and not an expected 

result of the stabilities of paratopes and epitopes before binding. This binding surface 

conformational stability was defined as rotamers lost per buried SASA and was substantially larger 

for paratopes in AUBIE solutions than in known antibodies. Lastly, key antibody residue positions 

were identified that are more likely to host certain stable amino acid side chain interactions than 

other positions.   

The computational analysis of the conformational stability of residues by themselves and 

in groups can be explored in several directions and depths in future work. In this work, very simple 

definitions of stability based on the fraction of clashing rotamers were used. Side chain stability is 

a dynamic property. This property was estimated from the minimized complex structure since it 

was not possible to perform MD simulations for each database complex. B-factor values are often 

used to predict protein atom stabilities [1]. B-factor prediction tools are being developed [2] and 

can be incorporated into binding metrics to judge designed interfaces by comparing them to values 

from known antibody-antigen complexes. This work focused mainly on interactions between 

protein atoms. Water molecules are known to form H-bonds within binding interfaces [3]. The 

features that were analyzed can be extended to complexes with interface waters and the stability 

of side chains forming H-bond networks via water molecules can be studied. The interaction 

patterns determined from this work can be used to guide binding protein design. As mentioned 
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earlier, a common strategy for binding protein design is to dock proteins or single loops and to 

mutate. Liu et al. designed Keap1 binding proteins via this approach [4]. The frequency of CDR 

residues to host stable side chains or the interaction types they make can be used to guide this 

docking step. For example, to dock a CDR or antibody towards a hotspot unstable ARG or LYS 

in the center of epitope, aromatic side chains from positions 37 and 38 of CDR1 loops can be 

targeted to make hydrophobic interactions first rather than searching through all the CDR 

positions. Similarly, knowledge from Chapter 4 can also be used to dock CDRs in such a way that 

they use two CDR residues to make interactions with the ARG or LYS side chain. Another 

approach that can be used for binding protein design is to use sequence homology between the 

target epitope and known antibody binding epitopes. Akbar et al. analyzed frequent sequence 

motifs between interacting epitope and paratope regions in antibody-antigen complexes [5]. 

Stability related information from this work can incorporated into such models to increase chances 

of designing stable interfaces. The work presented in this chapter aided us in understanding the 

key role played by the entropic component of the change in Gibbs free energy during antibody 

binding, which was not adequately captured by the forcefields used in Chapter 3.   

Chapter 5: AUBIE modifications 

In Chapter 5, the AUBIE approach was modified to only target low entropy H-bonds and 

salt bridges made by paratope ASP and GLU. Along with other  changes, the improved AUBIE 

approach was tested by using it to design antibodies for 25 randomly selected antigens. 18 / 25 top 

AUBIE designs that binding energies that were within one standard deviation of the mean of 

known antibody-antigen binding energies. For eight designs, the top AUBIE complex has better 

or similar binding energies than the WT complex. When compared with OptMAVEn 2.0, AUBIE 
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was able to generate designs with similar binding energies for the same epitope. AUBIE-designed 

interactions in a top design persisted during a 50 ns long MD simulation.  

One way of doing force field - independent design is to replicate known structural and 

sequence features. In AUBIE, that was done by replicating low entropy H-bonds, interactions often 

seen in antibody-antigen complexes. However, doing affinity maturation without force fields is 

challenging since there is a need to minimize total energy to predict long and short range effects 

of mutations. AUBIE is able to generate designs with acceptable metrics with no affinity 

maturation and few mutations made only due to clashing residues. This approach now accounted 

for both the enthalpic and entropic elements of the change in Gibbs free energy by targeting only 

low entropy H-bonds. As shown in the results, AUBIE designs can be improved with further, force 

field guided, computational affinity maturation.   

The current version of AUBIE can be improved in various ways. The database generation 

step in AUBIE defines loop compatibility based on the lack of steric clashes, which can be 

improved by including inter-loop interactions. Doing so would encourage the identification of 

groups of loops that have interactions with each other and increase the overall stability of the 

paratope. The current version of AUBIE rotates the antigen around the z axis in one degree steps. 

This search method needs to be made independent of stepwise movements or rotations and 

transformed into a MutDock-like search approach. This way, a larger solution space can be 

searched and better designs can be identified. Furthermore, AUBIE searches for H-bonds in all 

CDR residues positions. This search can be made more efficient by first searching through high 

probability positions identified in Chapter 4. To reduce runtimes and computational load, the 

AUBIE code will be transferred from Cython to C++. Hydrophobic interactions are as crucial as 

H-bonds or salt bridges in protein binding and AUBIE needs to be improved to target these 
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interactions too. One way to overcome the challenge of their lack of specific geometries is to 

replicate orientations of nonpolar contacts from known binding complexes. The modification 

bought about in this chapter rigidified the designed paratopes and brought them one step closer to 

known antibody paratope stabilities. One possible route to replicate known paratope stability is to 

obtain binding loops only from antibodies and/or to enforce constraints on aromatic or small polar 

amino acid frequencies in CDRs. Recently improved protein sequence-to-structure prediction tools 

like AlphaFold2 [6] can be used to validate the antibody structure predictions by de novo design 

tools like AUBIE. As a final verification of AUBIE’s efficacy, the designed antibodies need to be 

tested experimentally for different antigens.  

Chapter 6: MutDock 

In Chapter 6, I developed MutDock, a novel computational approach for the generation of 

mutated, docked scaffolds designed to bind target epitopes. The approach identifies regions around 

the scaffold paratope which can host polar epitope atoms to form H-bonds. Similar to AUBIE, the 

MutDock approach attempts to balance entropic and enthalpic elements of the change in Gibbs 

free energy by targeting only low entropy H-bonds. Pairwise distance alignment between the 

epitope atoms and H-bond regions is used to obtain groups of low entropy H-bonds that can be 

formed simultaneously. Each group constitutes a unique pose that is passed through several 

compatibility filters. MutDock was benchmarked by docking ten antigens with two scaffolds. The 

predicted binding energies of the top MutDock poses were comparable to those of known binding 

complexes when accounting for the influence of interface size on calculated energies. The 

MutDock poses were significantly better than ZDOCK’s results for 17 of the 20 predicted 

complexes. When compared to HADDOCK, MutDock performed better in 9 / 20 complexes, 
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comparably in 5 / 20, and worse in the remaining 6 / 20 complexes. However, the HADDOCK 

scores improved for 16 / 20 complexes when HADDOCK was used to dock the MutDock-designed 

scaffolds. 

MutDock could also be used for antibody design. Nimrod et al. docked an antibody 

database to the IL-17A epitope using ZDOCK and Hex [7]. Similarly, MutDock can be used to 

dock an antibody to a target epitope, where CDR side chains that do not interact with other residues 

can be identified and labelled as variable residues. I believe that single or double mutations to non-

interacting side chains in antibody CDR1 and CDR3 loops will have minimal effect on antibody 

backbone structure. However, unlike the numerous antibody-only protein design programs, 

MutDock is also able to design proteins that bind using variable surfaces, such as affibodies and 

DARPins. 

Several improvements need to be made to the current MutDock implementation. To reduce 

the runtimes, the source code will be shifted to C++ and more coarse-grained steric clash filters 

will be used. Furthermore, an additional interface size filter based on atom-atom contacts will also 

be added to prevent generation of poses with low buried interface areas. Similar to RIFdock, 

hydrophobic interactions and a larger rotamer library will be incorporated into MutDock. Relaxed 

steric clash constraints between heavy atoms of interface side chains were used since the approach 

did not perform any energy calculations or minimizations during the design process except at the 

end. Such relaxed clash constraints were also observed in ZDOCK poses as several heavy atoms 

were closer than 2 Å in a single pose. The use of strict clash constraints through vdW force 

calculations can lead to the loss of good solutions even though is a safer approach. There is a need 

for smarter but simple steric clash constraints that can predict if energy minimizations would 
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resolve specific clashes. One possible strategy is to use clash constraints that are a function of the 

amino acid types involved.    

Contributions 

I believe that this dissertation has three major contributions. 1) The first contribution is the 

quantitative understanding of pre-binding stability of protein binding interfaces. The knowledge 

gained from Chapter 5 can open the doors for optimization-free feature-driven design approaches 

for binding proteins. The other two contributions include the application of simple pairwise 

distance alignments for targeted interaction formation for the 2) de novo design of antibodies and 

3) mutational docking of fixed-backbone protein binders. This work serves as an example that 

geometry-based single step calculations can be used to tackle complex combinatorial problems of 

binding loop and residue selection in different types of binding proteins. To the best of our 

knowledge, no other work has attempted to solve the epitope-specific binding protein design 

problem using such geometrical alignment-based techniques and with further development, these 

techniques can become the standard way to design binding proteins. There are various applications 

of these contributions beyond the direct scope of the work presented in this Chapter. The pairwise 

distance alignment approach for targeted design can be used for the design of other protein 

functionalities too such as pH depended binding and enzyme active sites. pH-dependent binding 

interfaces are rich in HIS residues, since its side chain is the only amino acid with multiple 

protonation sites [8]. MutDock and AUBIE design techniques can be modified to target the 

formation of H-bonds made by HIS side chains for pH dependent binding interface design. Enzyme 

active sites have stable precise geometries before substrate attachment [9]. Side chain orientations 
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of active side triads can be replicated from an enzyme to another scaffold using distance matching 

techniques used in this work.  

ML based tools are being developed at rapid pace for different antibody and protein 

prediction purposes [10], [11]. There are several reasons why the MutDock and AUBIE methods 

differ from any ML-based design approach. A ML-based tool will rely only on the frequency of 

structural elements to base its design decisions on. On the other hand, the approaches developed 

in this work are based on thermodynamics and ease of computational design. For example, a ML 

based antibody design tool may target long HCDR3 loops since they are prevalent in known 

antibodies, but AUBIE does not target such long loops due to the difficulty in predicting their pre-

binding conformations. Furthermore, using ML tools like neural networks often result in black 

box-like models which are difficult to interpret [12]. On the other hand, every step of the approach 

that we have developed is based on either thermodynamics or computational load related reasons 

that are easy to understand. A major issue with using ML methods for binding protein related 

prediction tools is the lack of large learning sets of binding interface structures. One way to 

overcome this challenge is to combine biophysics-based constraints, like the ones identified in 

Chapter 4, with ML-based learning abilities to develop a new class of computational tools.  
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