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Abstract 

 

 

Geospatial methods can be used in a wide variety of applications to elucidate interactions 

among variables across space and time and at various spatial scales. The identification of spatial 

trends is a foundational element of geospatial methods and can be determined through the use of 

spatial analysis. Honey bees (Apis mellifera) are a unique species for exploring geospatial 

methods as they are pervasive across the United States, have seen increasing losses in the past 

decade, and have complex interactions with their environment which are difficult to measure and 

understand across space and time. This thesis will explore how geospatial methods and spatial 

analysis assists in elucidating factors that may be leading to honey bee colony loss at various 

scales.  

Chapter one of this thesis provides an overview of the main geographical, apicultural, and 

statistical concepts needed to understand the methods developed for this research. Specifically, 

spatial autocorrelation as measured using spatial statistics including the global and local Moran’s 

I, honey bee colony loss as driven by Varroa destructor, and non-invasive colony inspection 

completed through thermal image capture. 

 Chapter two of this thesis aims to understand whether the abundance of 

Varroa destructor, a parasitic mite, shows clustering patterns at the national and regional scales 

using spatial statistics. Varroa destructor has been found to cluster spatially in New Zealand and 

Argentina, however spatial trends of V. destructor have not been investigated in the United 

States. Based on case studies in other countries, it was hypothesized that V. destructor spatial 

clustering will also be present in the United States. Spatial autocorrelation of V. destructor 

abundance was calculated using the global Moran’s I and local Moran’s I statistics, from both 
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manual and automated tasks in GIS. The results showed that V. destructor was spatial clustered 

in the United States and that the automated combination of the global and local Moran’s I 

artificially inflates the detection of spatial clusters, and thus the manual calculation of the global 

and local Moran’s I may be more appropriate.  

 Chapter three investigates the use of a thermal sensor on a drone to capture the average 

colony temperature and compare those temperatures with colony health metrics (number of adult 

bees, amount of brood, and amount of honey). I hypothesized that the sensor would capture the 

most accurate reading of average colony health with both lids removed and that the amount of 

brood and honey would significantly contribute to the average colony temperature. Data were 

collected in November 2020 and health metrics included the number of frames of adult bees, 

brood, honey, and the proportion of adults, brood, and honey in the top brood box. Thermal 

images were taken above 15 colonies with the outer and inner lid in place, the inner lid in place, 

and no lids. Backwards stepwise model building was used to identify variables with statistical 

significance as indicated by the p-value. Results indicate that the removal of the outer lid is most 

appropriate as it allows for the estimation of more honey bee health metrics and that a drone 

equipped with a thermal sensor can be used to conduct non-invasive colony health inspections. 
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Chapter 1 

 

Literature Review 

 

1.1 Introduction 

Since 2010 the average annual rate of honey bee (Apis mellifera) colony loss in the 

United States has been 39% (Bruckner et al. 2020; Steinhauer et al. 2014; vanEngelsdorp et al. 

2008), with beekeepers most recently losing an estimated 44% of their colonies in 2020 

(Bruckner et al. 2020) (Figure 1.1). Although annual colony loss is generally expected by 

beekeepers, especially over winter, acceptable losses range from 8-11%, which is far below the 

observed 44% (Kulhanek et al. 2017). Factors that contribute to these elevated rates of colony 

loss include inadequate beekeeper management practices (Steinhauer et al. 2014), weather and 

climate (Le Conte and Navajas 2008; Ali et al. 2019), pesticide use (Tosi et al. 2016), land-use 

change (Vaudo et al. 2012), and parasites including Varroa destructor (Le Conte et al. 2010; 

Traynor et al. 2020; Dooremalen et al. 2012). Varroa destructor is one of the main threats to 

honey bee populations (Beyer et al. 2018), and as a result, V. destructor threaten to accelerate the 

rate of honey bee colony loss and diminish the economic value of honey bees, which is valued 

annually at $14.2-$23.8 billion in the United States (Chopra et al. 2015) and $215 billion 

globally (Gallai et al. 2008). This economic value makes honey bees the third most important 

agricultural livestock in the world behind cattle and pork (Tautz 2008).  



12 
 

1.2 Biological Background 

1.2.1 Impacts of Varroa destructor on Honey Bees 

Varroa destructor are obligate ectoparasites of honey bees and feed on the fat body of 

larvae and adult bees (Anderson and Truman 2000). At the individual level this feeding results in 

reduced body weight, malformation, and weakening of adults (Ramsey et al. 2019). At the 

colony level, moderate V. destructor infestation levels reduce the growth of honey bee 

populations, and therefore reduce honey production and winter survivorship (Dooremalen et al. 

2012). At high infestation levels the colony will completely collapse within six to twenty-four 

months if left untreated (Le Conte et al. 2010).  

Figure 1.1 Summer, winter, and annual honey bee colony loss from 2007 to 2020. Total 

summer (April 1- October 1), winter (October 1- April 1), and annual (October 1-October 1) 

Honeybee (Apis mellifera) colony loss rates in the US across years of the Bee Informed 

Partnership’s national honey bee colony loss survey (Bruckner et al. 2020). 
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In addition to the direct negative effect of V. destructor feeding, viral transmission driven 

by V. destructor also reduces honey bee populations and threatens colony survival (Sumpter and 

Martin 2004). The two viruses that have been confirmed to be vectored by V. destructor include 

deformed wing virus (DWV) (Martin and Brettell 2019) and acute bee paralysis virus (ABPV) 

(de Miranda et al. 2010). With the global spread of V. destructor, DWV now effects roughly 

55% of colonies per apiary across 32 countries worldwide (Martin and Brettell 2019). Deformed 

wing virus is detrimental to honey bee health because it shortens the lifespan of adult bees to a 

few days, and colonies that tested positive for DWV had fewer combs of brood, which increased 

the likelihood of colony death the following winter (Martin 2001; Sumpter and Martin 2004). 

Similarly, V. destructor vector ABPV at 50-80% efficacy (Ball and Allen 1988) and adult bees 

that are infected with ABPV will experience rapid paralysis that includes darkening of hair on 

the thorax and abdomen, and an inability to fly, which results in death after a few days (de 

Miranda et al. 2010). At the colony level, ABPV infection is associated with decreased adult bee 

populations (Ball and Allen 1988). 

1.2.2 Varroa destructor Distribution and Spread 

Varroa destructor have been spread across the globe from southeast Asia since the 

1960’s and can now be found on all continents except Australia and Antarctica (Navajas 2010) 

(Figure 1.2). This spread can be traced back to the V. destructor host switch event from the Asian 

honey bee (Apis cerana) to the western honey bee in the 1950’s (Akratanakul and Burgett 1975). 

This host switch event was facilitated by the introduction of western honey bee into Asia and is 

maintained because unlike the Asian honey bee, the western honey bee has adapted few 

defensive mechanisms, and as a result, V. destructor populations grow rapidly within western 

honey bee colonies (Braco et al. 1999; Kraus and Page 1995). These infested western honey bee 
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colonies were then shipped globally as part of the international trade of honey bees moving from 

Asia to Europe in the 1960’s, to South America in the 1970’s, and to South America and North 

America in the 1980’s (Navajas 2010) (Figure 1.2).  

1.2.3 Varroa destructor Monitoring and Management 

The current V. destructor monitoring standard is to conduct an alcohol wash of ~300 

adult worker bees and count the number of V. destructor that have been dislodged (Lee et al. 

2010). The number of colonies to conduct alcohol washes varies on the size of the apiary with 

three colonies sampled recommended in four colony apiaries, and 8 colonies sampled 

recommended for >20 colony apiaries (Harris et al. 2019). If the presence of V. destructor is 

above 5% (15 mites/300 bees) treatment is recommended (Harris et al. 2019). Treatment 

strategies include acaricide application (Milani and Barbattini 1988; Milani and Lob 1998; Ritter 

Figure 1.2 Spatial and Temporal spread of Varroa destructor from 1900 to present. Spatial and 

temporal spread of Varroa destructor in Apis mellifera, with more recent records of infestation 

shown in light yellow. Currently, the only remaining Varroa destructor-free land masses with 

substantial honey bee populations are Australia and Newfoundland (Wilfert et al. 2016). 
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1988), organic acid or essential oil application (Calderone 1999; Calderone and Nasr 1999; 

Charrière and Imdorf 2002), and drone brood removal (Engels et al. 1984; Maul et al. 1988). 

1.3 Spatial Background 

1.3.1 Spatial Autocorrelation (Global Moran’s I) 

Spatial autocorrelation (SA) is a spatial statistic that builds upon Tobler’s first law of 

geography, which states everything is related to everything else, but near things are more related 

than distant things (Tobler 1965). Spatial autocorrelation is the degree of similarity between 

georeferenced points or objects and is commonly measured using the global Moran’s Index (I) 

statistic (Tobler 1965; Cliff and Ord 1973). The global Moran’s index provides the sign and 

intensity of clustering, while the z-score and p-value indicate the significance of clustering. 

However, the global Moran’s index does not indicate where clustering occurs across space. The 

global Moran’s I statistic is calculated by: 

𝐼 =
𝑛

𝑆𝑜

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧2
𝑖𝑛

𝑖=1

 

where I is the global Moran’s index, zi is the deviation of an attribute for feature i from its mean, 

wi, j is the spatial weight between feature i and j, n is equal to the total number of features, and So 

is the sum of all the spatial weights (Moran 1950). Spatial autocorrelation can either be positive 

or negative (Boots 2002; Nelson and Boots 2008). Positive SA occurs when similar values 

cluster together and the Moran’s I index approaches +1, and negative SA occurs when dissimilar 

values cluster together and the Moran’s I index approaches -1 (Cliff and Ord 1973). When the 

Moran’s index is equal to 0, spatial randomness is present and therefore there is no SA and no 

clustering among features (Cliff and Ord 1973) (Figure 1.3). A Moran’s I scatterplot quadrants 

(1) 



16 
 

can be used to determine whether positive, negative, or no autocorrelation is present (Cliff and 

Ord 1973) (Figure 1.3). Within these scatterplot quadrants positive SA can be seen where similar 

values cluster (high-high and low-low), 

while negative SA can be seen where 

dissimilar values cluster (high-low and 

low-high).  

Spatial autocorrelation can also be 

either global, where one threshold is 

applied to the entire study area, or local, 

where variations in SA are calculated 

within subsets or neighborhoods of the 

study area (Cliff and Ord 1973). Global 

SA emphasizes typical distributions and 

assumes spatial uniformity throughout the study area (Boots 2002), however, if spatial 

uniformity is not held throughout the study area global SA will not represent the spatial patterns 

(Fotheringham 1997; Fotheringham and Brunson 1999). Application of the global Moran’s I can 

indicate whether SA is present, whether the SA present is positive or negative, and the strength 

or significance of clustering, however, it cannot indicate where significant clusters are occurring.  

1.3.2 Local Indicators of Spatial Autocorrelation 

A local indicator of spatial autocorrelation (LISA) is any statistic that gives an indication 

of the extent of significant spatial clustering around an observation and is proportional to a 

global indicator of spatial association (Anselin 1995). The local Moran’s I statistic is calculated 

by: 

Figure 1.3. Moran’s Scatter Plot. Moran scatter plot 

quadrants can be used to categorize locations based on 

the attribute value of a location in relation to the attribute 

values of neighbors. (Nelson and Boots 2008). 
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𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗
𝑗

𝑧𝑗 

where the observations zi, zj are deviations from the mean for samples i and j (Anselin 1995). 

Unlike a global indicator of SA, a LISA provides spatially explicit information on where 

significant clustering occurs within a dataset, however, a LISA can still be compared with a 

global indicator through the comparison of z-scores. 

Local indicators of spatial autocorrelation can be more appropriate than global indicators 

of SA when the spatial pattern is not uniform across the entire study area (Getis and Ord 2010). 

Local indicators of spatial autocorrelation can be compared to global indications of SA to 

understand whether the global statistic represents the average pattern of local autocorrelation 

(Anselin 1995). If the underlying process that is driving the spatial pattern is stable throughout 

space and time, then the local indicators would show little variation from the mean. But if local 

indicators significantly deviate from the mean then those regions would contribute more to the 

global statistic which, creates a global statistic that represents those areas of local significance, 

rather than the total dataset (Anselin 1995). A global statistic is problematic when determining 

the sign and strength of SA across a study area where spatial non-uniformity is present. 

1.4 Application of Spatial Statistics in Entomological Systems 

Kernel density estimation, which estimates a given value between fix points where the 

value has been measured, has been used to determine the point of introduction of V. destructor in 

New Zealand (Stevenson et al. 2005). Specifically, the presence of V. destructor at inspected 

colonies was used to estimate the presence of V. destructor between measured points. Moreover, 

because of the recent introduction of V. destructor in New Zealand the clustering of V. destructor 

presence indicated that those populations had been there longer, and thus the point of 

(2) 
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introduction was determined to be the Auckland International Airport. Additionally, a spatial 

scan statistic similar to a LISA has been used to determine the clustering of V. destructor 

treatment failure in Argentina (Giacobino et al. 2016). They found that clusters of treatment 

failure were present within the country and that prior V. destructor infestation levels were 

positively correlated with treatment failure. This indirectly indicates that V. destructor 

population levels were also clustered, however, Giacobino et al. (2016) recommended further 

investigation.  

Similar spatial statistics, including the global Moran’s I (Moran 1950) and the local 

Moran’s I (Anselin 1995), have been used to determine the clustering patterns of mountain pine 

beetles (Dendroctonus ponderosae) (Bone et al. 2013), mosquitos (Aedes aegypti L.) (Azil et al. 

2014), and aphids (Myzus persicae) (Cocu et al. 2005), respectively. Specifically, Bone et al. 

(2013) applied a local bivariate Moran’s I, which determined the risk classes and locations where 

mountain pine beetles were declining, increasing, or staying constant in British Columbia, 

Canada. Additionally, Azil et al. (2014) applied the global and local Moran’s I to identify ideal 

trap type and locations for mosquitos at the neighborhood level in Australia. They found that 

although both trap types indicated SA, fewer BG-Sentinel traps could be used to maintain spatial 

accuracy. Lastly, Cocu et al. (2005) applied the local and global Moran’s I on aphid populations 

in France and Great Britain and found that clustering of aphids was present.  

1.5 Precision Apiculture 

Precision agriculture is the use of technology to measure temporal and spatial trends to 

support management decisions in agricultural settings (Pierce and Nowak 1999). Precision 

apiculture is a subset of precision agriculture and specifically measures the temporal and spatial 

trends of honey bee colony health and thermoregulation to support management decisions 
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(Zacepins et al. 2012). Precision apiculture has employed the use of internal colony temperature 

sensors (Braga et al. 2020; Cook et al. 2021; Kridi et al. 2016; Meikle et al. 2015; Meikle et al. 

2017), and thermal imagers (Bujok et al. 2002; Eskov and Toboev 2009; Eskov and Toboev 

2011; Kleinhenz et al. 2003; Lim et al. 2013; Shaw et al. 2010) to measure the average 

temperature of honey bee colonies, which can be useful for estimating overall colony health. 

Specifically, Braga et al. (2020) integrated average colony temperature, ambient temperature, 

and colony health metrics measured in manual colony inspections to train a classification 

algorithm which predicted colony health status with 90% accuracy. Although average colony 

temperature, ambient temperature, and colony health metrics including the presence of adults, 

brood, and resources (pollen and honey) were included in the algorithm, no regression analysis 

was completed and thus the relationships among average colony temperature, and the presence of 

adults, brood, and resources was not determined. Regression analysis and the use of thermal 

imagers to measure the average colony temperature has been successful and found that the 

average colony temperature is positively correlated with the adult bee population (Shaw et al. 

2010) and the winter survivorship of the colony (Lim et al. 2013).  

Moreover, increased rates of honey bee colony loss underscore the need for regular colony 

inspections as they can provide early warning signs for complete colony loss including low 

populations of adults/brood, and low levels of resources. However, current manual colony 

inspections are time and labor intensive, and can disrupt the thermoregulation of the colony 

because of the invasive nature of the inspection. Non-invasive colony inspections have been 

investigated and include the measurement of the average colony temperature using external 

thermal imaging to estimate the adult bee population by regressing the average colony 

temperature and adult bee population. However, the application of drone technology is lacking in 
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precision apiculture, despite its widespread use in precision agriculture (Daponte et al. 2019), 

and thus the combination of drone and thermal technologies coupled with the inclusion of further 

honey bee health metrics should be explored. 

1.6 Conclusion 

 Honey bee colony losses have been elevated in the United States since 2008 and threaten 

to diminish the economic production that honey bees provide through agricultural pollination 

services and honey production. Several drivers of honey bee colony loss have been identified; 

however, V. destructor are a key factor with higher infestation levels leading to increased loss. 

The identification of V. destructor infestation clusters has been completed in Argentina and New 

Zealand, however, no investigation to date has sought to identify them in the United States. 

Additionally, the successful application of the global and local Moran’s I in entomological 

systems indicates that it can be applied to V. destructor infestation levels, and thus is the focus of 

Chapter two. Elevated rates of colony loss driven by V. destructor also underscore the 

importance of regular colony inspections. Current manual colony inspections are time and labor 

intensive, thus non-invasive colony inspections have been investigated through the application of 

thermal sensors. Precision apiculture allows for more regular colony inspection and therefore 

may curb elevated rates of colony loss. The combination of drone and thermal technologies 

coupled with the inclusion of further honey bee health metrics is the focus of Chapter three.  
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Chapter 2 

 

Identifying spatial clusters of a honey bee (Apis mellifera) parasite 

(Varroa destructor) in the United States from 2017 to 2020 

 

2.1 Introduction 

Honey bee (Apis mellifera) colony loss has reached significantly elevated levels in the 

Northern Hemisphere since 2008 (Oldroyd 2008). In the United States, the average annual rate of 

honey bee colony loss since 2010 has been 39% (Steinhauer et al. 2014; vanEngelsdorp et al. 

2008), with beekeepers losing an estimated 44% of their colonies from April 2019 to April 2020 

(Bruckner et al. 2020). Although annual loss is expected by beekeepers, acceptable losses due to 

the reduction of floral resources and inclement weather range from 8 to 11% (Kulhanek et al. 

2017), which is far below the observed 44% of colony loss. Honey bee colony loss is significant 

because the economic value of honey bees, valued annually at $14.2-$23.8 billion in the United 

States (Chopra et al. 2015) and $215 billion globally (Gallai et al. 2008) making them the third 

most economically significant livestock in the world (Tautz 2008). Currently honey bees 

pollinate 52 out of the 115 leading crops in the world (Klein et al. 2007). Honey bees play a 

crucial role in agricultural production, with 22% of all agricultural production in developing 

nations and 14.7% of agricultural production in developed nations being directly pollinator 

dependent (Aizen et al., 2008). When indirect benefits from pollination are included, 35% of the 

human diet benefits from pollination (Klein et al. 2007). 

Factors that contribute to increased honey bee colony loss include inadequate beekeeper 

management practices (Steinhauer et al. 2014), weather and climate (Ali et al. 2019; Beyer et al. 
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2018; Conte and Navajas 2008), pesticide use (Tosi et al. 2016), land-use change (Vaudo et al. 

2012), and parasites, including Varroa destructor (Conte et al. 2010; Dooremalen et al. 2012; 

Traynor et al. 2020). Varroa destructor is an ectoparasite that was first found to parasitize the 

Eastern honey bee (Apis cerana) in Sumatra in 1904 (Oudemans 1904). Prior to the discovery of 

V. destructor, western honey bees were introduced into Asia in 1877 (Saiki and Okada 1973) and 

a period of sympatry continues to be shared between the eastern and western honey bee in Asia 

(Ruttner and Maul 1983). This period of sympatry mediated a host switch event, which occurred 

in the 1950’s, when V. destructor was first found to parasitize the western honey bee (Delfinado 

1963). Since the 1950’s V. destructor has been inadvertently transported to all continents, except 

Australia and Antarctica, as part of the global honey bee trade and was introduced into North 

America in the mid-1980’s (De Guzman et al. 1997). Currently, V. destructor can be found 

across the continental United States (Traynor et al. 2016) and poses a significant threat to honey 

bee colony health because the western honey bee have not co-evolved with the parasite, and thus 

western honey bees have less pronounced defense mechanisms against V. destructor than Eastern 

honey bees (Locke 2016). The susceptibility of Western bees to V. destructor requires 

beekeepers to closely monitor and manage for V. destructor (Kraus and Page 1995; Lee et al. 

2010).  

Varroa destructor threatens honey bee colony health by feeding on the fat body tissue of 

larvae and adult bees (Ramsey et al. 2019). This feeding results in reduced body weight, 

malformation, and overall weakening of adults (Ramsey et al. 2019). This feeding also vectors 

several viral diseases including deformed wing virus (Martin and Brettell 2019), and the acute 

bee paralysis virus (de Miranda et al. 2010), which also drive honey bee colony loss by 

shortening the lifespan of adults (Ball and Allen 1988; Carreck et al. 2010; Martin 2001; 
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Sumpter and Martin 2004). At the colony level, moderate infestation levels (<3 mites per 100 

bees) reduce adult honey bee population growth, and therefore reduce honey production and 

winter survivorship (Dooremalen et al. 2012). At high infestation levels (>3 mites per 100 bees) 

colonies will collapse within one to three years if left untreated (Fries and Rosenkranz 1996; 

Ritter 1981). Although high infestation levels can be minimized through colony management and 

the application of pesticides (Delaplane et al. 2005; Fries et al. 1994), beekeepers may not apply 

similar management strategies and pesticides across space, leading to spatial clustering in 

V. destructor abundance (Giacobino et al. 2015). Thus, V. destructor populations may be more 

pervasive, in some areas of the country compared to others depending on the management 

strategies being applied by beekeepers. A study in New Zealand investigated whether the 

presence of V. destructor was spatially clustered using spatial statistics in the form of kernel 

density estimation to determine the point of introduction of V. destructor (Stevenson et al. 2005). 

They found a high level of V. destructor-positive colonies near the Auckland International 

Airport, which they identified as the point of introduction. In Argentina, it has been shown that 

spatial clusters of V. destructor treatment failure are present within the country and that these 

spatial clusters are significantly correlated with the level of V. destructor infestation prior to 

treatment, indicating that of the abundance of V. destructor populations may also be spatially 

clustered (Giacobino et al. 2016). Determination of V. destructor abundance clustering is 

significant because it allows beekeepers to appropriately adjust their monitoring and 

management strategies. The current recommendation in the United States for V. destructor 

monitoring is to survey ten percent of their colonies once per month from April to October 

(Cornell Cals 2020). If V. destructor infestation is above 3 mites per 100 bees it is recommended 

that treatment be applied in the form of acaricides or partial brood removal (Cornell Cals 2020), 



30 
 

however, beekeepers located within spatial clusters where V. destructor abundance is high the 

current V. destructor monitoring recommendation may need to be increased. 

Spatial autocorrelation (SA), can be quantified using spatial statistics, including the 

global Moran’s I (Moran 1950) and the local Moran’s I (Anselin 1995). The global Moran’s I 

statistic determines whether attributes of a sample in a study area are significantly clustered, 

dispersed, or spatially random by comparing the point values and the distance between them to 

the global mean (mean of all point values in a dataset) (Moran 1950). This generates the global 

Moran’s I index, which indicates whether the attributes are clustered, dispersed, or spatially 

random (Moran 1950). For example, if the global Moran’s index is close to one, the attributes are 

clustered, however, if the global Moran’s index is close to negative one, the attributes are 

dispersed. Additionally, if the global Moran’s index is close to zero, the attributes are spatially 

random. The significance of spatial clustering and dispersion is determined through the z-score 

and p-value. If the p-value is not significant, the null hypothesis of spatial randomness cannot be 

rejected, meaning the spatial distribution of some phenomena shows no spatial pattern and can 

be considered random. This means that if the Moran’s index is not significant no clustering is 

present within the dataset. If the p-value is significant and the z-score is positive, the null 

hypothesis of spatial randomness can be rejected, and clustering of similar values is present. If 

the p-value is significant and the z-score is negative the null hypothesis of spatial randomness 

can be rejected, and spatial dispersion is present. Although the global Moran’s I statistic 

determines whether clustering is present within attributes, it does not indicate where clustering is 

located (Moran 1950).  

To determine where clustering of similar values is present across space, a local indicator 

of spatial autocorrelation (LISA) in the form of the local Moran’s I statistic (Anselin 1995) can 
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be used. Like the global Moran’s I statistic, the local Moran’s I determines whether point values 

are clustered, dispersed, or spatially random, but instead of a global mean it compares the point 

values to the local mean (mean of values within a given area of the dataset) (Anselin 1995).  

However, the local Moran’s I is a neighborhood size dependent equation (Anselin 1995), 

and an appropriate neighborhood size must be determined for each novel application (Nelson and 

Boots 2008). The area where the local mean is calculated is the spatial neighborhood. The 

neighborhood distance where spatial autocorrelation is strongest can be determined by 

calculating the local Moran’s index at increasing neighborhood sizes. The nearest distance at 

which the z-score is largest (first peak) is the appropriate neighborhood size (ESRI 2022). 

Once the appropriate neighborhood size has been identified the local Moran’s I generates 

a local Moran’s index. If the point value is high and the local mean is similarly high the point 

will be identified as a high cluster, however, if the point value is low and the local mean is 

similarly low the point will be identified as a low cluster (Anselin 1995). Additionally, if the 

point value is high and the local mean is low, or if the point value is low and the local mean is 

high, the point will be identified as an outlier. 

The global and local Moran’s I statistics have been used in a wide variety of spatial 

epidemiological applications to measure spatial autocorrelation and determine clustering patterns 

of pest insects including mountain pine beetles (Dendroctonus ponderosae) (Bone et al. 2013), 

mosquitos (Aedes aegypti L.) (Azil et al. 2014), and aphids (Myzus persicae) (Cocu et al. 2005). 

To determine the appropriate neighborhood size for understanding clustering of mosquito 

abundance, Azil et al. (2014) applied the local Moran’s I at increasing neighborhood sizes, and 

the neighborhood size where clustering was most pronounced, as indicated by the highest z-score 

and associated significant relationships as determined by p-values, identified the appropriate 
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neighborhood size, in that case the neighborhood size was 40 meters.  

 Although the manual application of the global Moran’s I, incremental spatial 

autocorrelation, and the local Moran’s I can uncover the clustering patterns of insect abundance, 

optimized outlier analysis automatically combines incremental spatial autocorrelation and the 

local Moran’s I. Optimized outlier analysis also includes locational outlier detection and 

removal. Locational outliers are features that are much farther away from neighboring features 

than the majority of features in the dataset. Locational outliers are computed by calculating the 

average nearest neighbor distance for each feature and evaluating the distribution of all of these 

distances. Features that are more than a three standard deviation distance away from their closest 

noncoincident neighbor are considered locational outliers (ESRI 2022). Additionally, the 

optimized outlier analysis will calculate the optimal neighborhood size by calculating the 

incremental spatial autocorrelation and identify a z-score peak. When a z-score peak cannot be 

identified the average distance to 30 neighbors is calculated and used as the appropriate 

neighborhood size. The optimal outlier analysis will then calculate the local Moran’s I and 

identify high-high clusters, low-low clusters, high-low outliers, low-high outliers, and non-

significant points.  

Varroa destructor abundance in the United States presents an opportunity to determine 

whether the inclusion of locational outliers and calculating the average distance to 30 neighbors 

when a z-score peak cannot be identified in the optimized outlier analysis increases the detection 

of high-high and low-low clusters, respectively. Determining whether optimized outlier analysis 

increases the detection of high-high and low-low clusters is significant because the tool may be 

used and artificially inflate the detection of clusters, thus biasing the results of those who use it. 

Therefore, I hypothesize that V. destructor infestation levels are spatially autocorrelated in the 
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United States from 2017 to 2020, and that the inclusion of locational outliers and calculating the 

average distance to 30 neighbors when a z-score peak cannot be identified increases the detection 

of high-high and low-low clusters, respectively.   

2.2 Methods 

2.2.1 Data 

 Data were obtained from MiteCheck, a national scale citizen science survey which has 

collected V. destructor infestation data on an on-going basis since 2015 (MiteCheck 2021). 

MiteCheck represents the most robust national scale dataset on V. destructor infestation levels in 

the United States, with 3,904 survey entries spanning from 2015 to 2021. This online survey asks 

beekeepers for their contact information, apiary location in geographic coordinates, which (if 

any) V. destructor control methods were used within the past two months, if control methods will 

be used in the next two months, sample collection date, survey method, and V. destructor 

infestation level per 100 bees.  

2.2.2. Data Preparation 

A subset of data were extracted from the MiteCheck dataset. This subset encompassed 

3,765 survey entries in the contiguous United States from 2017 to 2020. Data from 2015, 2016, 

and 2021 were removed because the low sample size within each year (1 survey in 2015, 482 

surveys in 2016, and 19 surveys in 2021, respectively). Data from 2017 to 2020 were subdivided 

for each year, and for the month of September in the years of 2017, 2018, and 2019 as they 

represented the timeframes when most surveys were completed and allowed for more robust 

applications of the global and local Moran’s I statistic (Table 2.1). September was the month 

when most surveys were submitted to MiteCheck as beekeepers are encouraged to submit 

surveys in late August and early September as part of their Mite-a-thon initiative (Mitecheck 



34 
 

2021). Also, September represents a critical time for beekeepers to survey their colonies because 

overwinter survival has been linked to the level of V. destructor infestation in late summer 

(Giacobino et al. 2014). Where multiple surveys were completed at the same location within the 

same month or year, the mean infestation levels were calculated by summing the number of 

V. destructor per 100 bees and dividing by the number of colonies surveyed to produce a single 

V. destructor infestation level to avoid pseudoreplication (Millar and Anderson 2004).  

 

2.2.3 Global Moran’s I 

The global Moran’s I statistic was calculated for each of the seven data subdivisions 

(Table 2.1) using the Spatial Autocorrelation (global Moran’s I) tool in ArcGIS Pro 2.8 (Figure 

2.1). The global Moran’s I statistic is calculated by: 

𝐼 =
𝑛

𝑆𝑜

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧2
𝑖𝑛

𝑖=1

 

where I is the global Moran’s index, zi is the deviation of an attribute for feature i from its mean, 

wi,j is the spatial weight between feature i and j, n is equal to the total number of features, and So 

(1) 

Time period Apiary locations Bad records Input number of features

2017 1,171 0 1,171

2018 1,527 21 1,506

2019 1,807 708 1,099

2020 1,363 0 1,363

Sept. 2017 952 0 952

Sept. 2018 793 9 784

Sept. 2019 739 200 539

Table 2.1 Subdivisions of MiteCheck data reported by time period. Apiary locations 

represent the total number of apiary locations submitted by beekeepers. Bad records represent 

invalid data that were not readable by ArcGIS Pro. Input number of features represent apiary 

locations minus bad records.  
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is the sum of all the spatial weights (Moran 1950). For this analysis, V. destructor infestation 

level was the attribute of colony i, and inverse distance was used as the spatial weight between 

colony i and j as it assigns higher spatial weight to colonies that are closer together than those 

that are farther apart. The total number of colonies (n) was populated with the corresponding 

values for each input data subdivision (Table 2.1), and the sum of all spatial weights (So) was 

generated by the Spatial Autocorrelation tool. Lastly, Euclidean (straight-line) distance was used 

as the definition of distance because the transmission of V. destructor is not constrained to 

transportation (network distance) or grids (Manhattan distance).  

2.2.4 Determining Neighborhood Size 

 For each subdivision of data that had a statistically significant positive global Moran’s I 

index (Table 2.2) indicating that the data were spatially autocorrelated, the optimal neighborhood 

size where clustering was maximized was calculated using the Incremental Spatial 

Autocorrelation tool (Figure 2.1). For this analysis, twenty distance bands (the maximum 

allowed) increasing at the default distance increment automatically calculated by ArcGIS Pro 

were used to determine the optimal neighborhood size across a broad spatial scale while 

maintaining high spatial resolution.  

2.2.5 Local Indicator of Spatial Autocorrelation 

The Cluster and Outlier analysis (local Moran’s I) tool was applied to determine where 

clustering of high V. destructor infestation values, clustering of low V. destructor infestation 

values, and statistical outliers, occurred (Figure 2.1). The local Moran’s I statistic is calculated 

by: 

𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗
𝑗

× 𝑧𝑗 (2) 
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where the observations zi, zj are deviations from the mean j (Anselin 1995). Similar to the global 

Moran’s I statistic, V. destructor infestation level was used as feature i, inverse distance was used 

as the definition of spatial weighting between features i and j, Euclidean was used as the 

definition of distance, and the neighborhood size was set as the distance where clustering was 

most pronounced among the data (first Moran’s I z-score peak) resulting from the Incremental 

Spatial Autocorrelation tool. A new subdivision of data was generated which displayed whether 

each apiary location belonged to a high-high cluster, a low-low cluster, a statistical outlier (low-

high or low-high), or a point of non-significance.  

2.2.6 Optimized Outlier Analysis 

 The optimized outlier analysis tool combines and automates the calculation of the 

Incremental spatial autocorrelation tool and local Moran’s I. The optimized outlier analysis tool 

was applied to all subdivision of data that had a significantly positive global Moran’s index value 

(Figure 2.1).  
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2.3 Results 

2.3.1 Global Moran’s I 

 In 2017 1,171 apiary locations were submitted to MiteCheck with zero bad records 

included resulting in 1,171 input features. The Moran’s index was 0.009 with a of variance of 

0.00003, z-score of 1.72, and p-value of 0.085. The combination of the z-score and p-value 

resulted in a SA status of clustered. In 2018 1,527 apiary locations were submitted to MiteCheck 

with 21 bad records included resulting in 1,506 input features. The Moran’s index was 0.24 with 

a variance of 0.0002, z-score of 16.16, and p-value of <0.01. The combination of the z-score and 

p-value resulted in a SA status of clustered. In 2019 1,807 apiary locations were submitted to 

Figure 2.1 Analytical workflow within ArcGIS Pro. The workflow begins with a subdivision of 

MiteCheck data. The global Moran’s I is calculated for that subdivision. If the global Moran’s index 

is significantly positive the incremental spatial autocorrelation tool was manually applied. Where 

spatial clustering was most significant the local Moran’s I was then calculated. Alternatively, if the 

global Moran’s index was significantly positive the optimized outlier analysis was applied. 
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MiteCheck with 798 bad records included resulting in 1,099 input features. The Moran’s index 

was 0.47 with a variance of 0.0003, z-score of 25.96, and a p-value of <0.01. The combination of 

the z-score and p-value resulted in a SA status of clustered. In 2020 1,363 apiary locations were 

submitted to MiteCheck with zero bad records resulting in 1,363 input features. The Moran’s 

index was 0.05 with a variance of 0.0003, z-score of 2.85, and a p-value of <0.01. The 

combination of the z-score and the p-value resulted in a SA status of clustered. In September of 

2017 952 apiary locations were submitted to MiteCheck with zero bad records resulting in 952 

input features. The Moran’s index was 0.03 with a variance of 0.00006, z-score of 4.1, and a p-

value of <0.01. The combination of the z-score and p-value resulted in a SA of clustered. In 

September of 2018 793 apiaries were submitted to MiteCheck with 9 bad records resulting in 

784 input features. The Moran’s index was 0.018 with a variance of 0.00014, z-score of 1.61, 

and a p-value of 0.11. The combination of the z-score and p-value resulted in a SA status of 

spatially random. In September of 2019 739 apiary locations were submitted to MiteCheck with 

200 bad records resulting in 539 input features. The Moran’s index was 0.14 with a variance of 

0.0004, z-score of 7.84, and a p-value of <0.01. The combination of the z-score and p-value 

resulted in a SA status of clustered.  
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2.3.2 Neighborhood size 

In 2017 the default start distance was 341.2 km increasing by 20.7 km. The first z-score 

peak was 507.5 km while the maximum z-score peak was 673.3 km (Figure 2.2). In 2018 the 

default start distance was 273.9 km increasing by 54.8 km. The first z-score peak was 328.9 km 

while the maximum z-score peak was 493 km (Figure 2.3). In 2019 the default start distance was 

261.4 km increasing by 52.3 km, however, neither a first z-score peak nor a maximum z-score 

peak was identified (Figure 2.4). In 2020 the default start distance was 344.3 km increasing by 

16.4 km. The first z-score was 360.7 km while the maximum z-score peak was 442.6 km (Figure 

2.5). In September of 2017 the default start distance was 341.8 km increasing by 22.8 km. The 

first z-score peak was 524.1km while the maximum z-score peak was 683.7 km (Figure 2.6). 

September of 2018 was found to be spatially random, and thus the Incremental spatial 

autocorrelation tool was not applied (Table 2.2). In September of 2019 the default start distance 

was 272.6 km increasing by 54.5 km, however, neither a first z-score peak nor a maximum z-

score peak was identified (Figure 2.7).  
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Figure 2.2 Results of Incremental Spatial Autocorrelation of Varroa destructor 

abundance in 2017. The default start distance was 341.2 km increasing by 20.7 km. The 

first z-score identified in the dashed circle was 507.5 km with the maximum z-score 

identified in the solid circle being 673.3 km. 

Figure 2.3 Results of Incremental Spatial Autocorrelation of Varroa destructor 

abundance in 2018. The default start distance was 273.9 km increasing by 54.7 km. The 

first z-score identified in the dashed circle was 328.9 km with the maximum z-score 

identified in the solid circle being 493 km. 
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Figure 2.4 Results of Incremental Spatial Autocorrelation of Varroa destructor abundance in 

2019. The default start distance was 261.4 km increasing by 52.3 km. Neither a first z-score 

peak nor a maximum z-score peak was identified. 
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Figure 2.5 Results of Incremental Spatial Autocorrelation of Varroa destructor 

abundance in 2020. The default start distance was 344.3 km increasing by 16.4 km. 

The first z-score identified in the dashed circle was 360.6 km with the maximum z-

score identified in the solid circle being 442.6 km. 

Figure 2.6 Results of Incremental Spatial Autocorrelation of Varroa destructor 

abundance in September of 2017. The default start distance was 341.8 km increasing by 

22.8 km. The first z-score identified in the dashed circle was 524.1 km with the maximum 

z-score identified in the solid circle being 683.7 km. 
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2.3.3. Local Indicator of Spatial Autocorrelation 

 In 2017 all points were found to be non-significant. In 2018 32 points were high-high 

clusters, 343 points were low-low clusters, 22 points were high-low outliers, 36 points were low-

high outliers, and all other points were non-significant (Figure 2.8). In 2020 and September of 

2017 all points were found to be non-significant.  

Figure 2.7 Results of Incremental Spatial Autocorrelation of Varroa destructor abundance in 

September of 2019. The default start distance was 272.6 km increasing by 54.5 km. Neither a 

first z-score peak nor a maximum z-score peak was identified. 
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2.3.4 Optimized Outlier Analysis 

In 2017 1,171 apiary locations were submitted to MiteCheck with zero bad records 

included, resulting in 1,171 input features. Twenty-two location outliers were identified and 

removed resulting in 1,155 final input features. The Incremental spatial autocorrelation portion 

of the optimized outlier analysis tool failed to identify a z-score peak, and thus the average 

distance among 30 neighbors was 176.4 km. In 2017 all points were found to be non-significant. 

Figure 2.8 Results of the local Moran’s I of Varroa destructor abundance in2018. Red dots represent 

high-high clusters of V. destructor, blue dots represent low-low clusters of V. destructor, light blue 

dots represent high-low outliers of V. destructor, orange dots represent low-high outliers of V. 

destructor, and grey points non-significant points of V. destructor. 
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In 2018 1,527 apiary locations were submitted to MiteCheck with 21 bad records 

included, resulting in 1,506 input features. Two location outliers were identified and removed 

resulting in 1,504 final input features. The Incremental spatial autocorrelation portion of the 

optimized outlier analysis tool identified a z-score peak at 350.5 km. In 2018 50 points were 

high-high clusters, 469 were low-low clusters, 45 points were high-low outliers, 115 points were 

low-high outliers, and all other points were non-significant (Figure 2.9).  

 

Figure 2.9 Results of the optimized outlier analysis of Varroa destructor abundance in 2018. Red 

dots represent high-high clusters of V. destructor, blue dots represent low-low clusters of V. destructor, 

light blue dots represent high-low outliers of V. destructor, orange dots represent low-high outliers of 

V. destructor, and grey points non-significant points of V. destructor. 
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 In 2019 1,807 apiary locations were submitted to MiteCheck with 708 bad records 

included, resulting in 1,099 input features. Three location outliers were identified and removed 

resulting in 1,096 final input features. The Incremental spatial autocorrelation portion of the 

optimized outlier analysis tool failed to identify a z-score peak, and thus the average distance 

among 30 neighbors was 172.6 km. In 2019 18 points were high-high clusters, 11 points were 

low-low clusters, 2 points were high-low outliers, 83 points were low-high outliers, and all other 

points were non-significant (Figure 2.10).  

 

Figure 2.10 Results of the optimized outlier analysis of Varroa destructor abundance in 2019. Red 

dots represent high-high clusters of V. destructor, blue dots represent low-low clusters of V. destructor, 

light blue dots represent high-low outliers of V. destructor, orange dots represent low-high outliers of 

V. destructor, and grey points non-significant points of V. destructor. 
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 In 2020 1,363 apiary locations were submitted to MiteCheck with zero bad records 

resulting in 1, 363 input features. Twenty-seven location outliers were identified and removed 

resulting in 1,336 final input features. The Incremental spatial autocorrelation portion of the 

optimized outlier analysis tool identified a z-score peak at 184.5 km. In 2020 0 points were high-

high clusters, 187 points were low-low clusters, 51 points were high-low outliers, 0 points were 

low-high outliers, and all other points were non-significant (Figure 2.11).  

 

  

Figure 2.11 Results of the optimized outlier analysis of Varroa destructor abundance in 2020. Red 

dots represent high-high clusters of V. destructor, blue dots represent low-low clusters of 

V. destructor, light blue dots represent high-low outliers of V. destructor, orange dots represent low-

high outliers of V. destructor, and grey points non-significant points of V. destructor. 
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In September of 2017 952 apiary locations were submitted to MiteCheck with zero bad 

records resulting in 952 input features. Twenty-one location outliers were identified and removed 

resulting in 931 final input features. The Incremental spatial autocorrelation portion of the 

optimized outlier analysis tool identified a z-score peak at 177 km. In September of 2017 all 

points were non-significant.  

 In September of 2019 739 apiary locations were submitted to MiteCheck with 200 bad 

records resulting in 539 input features. Four location outliers were identified and removed 

resulting in 535 final input features. In September of 2019 4 points were high-high clusters, 16 

points were low-low clusters, 4 points were high-low outliers, 10 points were low-high outliers, 

and all other points were non-significant (Figure 2.12).  
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2.4 Discussion 

  This research investigated whether V. destructor exhibited patterns of spatial clustering 

in the United States from 2017 to 2020 and whether the inclusion of locational outlier removal 

and calculating the average nearest neighbor when a z-score peak could not be identified in 

optimal outlier analysis. I hypothesized that V. destructor was spatially autocorrelated and that 

the optimized outlier analysis would increase the number of high-high and low-low clusters 

respectively. 

 

Figure 2.12 Results of the optimized outlier analysis of Varroa destructor abundance in September 

of 2019. Red dots represent high-high clusters of V. destructor, blue dots represent low-low clusters 

of V. destructor, light blue dots represent high-low outliers of V. destructor, orange dots represent 

low-high outliers of V. destructor, and grey points non-significant points of V. destructor. 
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2.4.1 Global Moran’s I 

 In subdivisions of data resulting in a statistically significant positive Moran’s index value 

abundance of V. destructor was spatially autocorrelated with beekeepers who are close to one 

another having similar V. destructor infestation levels. Subdivisions of data that had larger 

Moran’s index values had higher levels of SA. Thus, the level of SA grew from 2017 to 2019 but 

fell in 2020. This does not indicate that V. destructor abundance declined, rather that the 

similarity of V. destructor abundance across space declined in 2020. The increase in SA of V. 

destructor abundance from 2017 to 2019 is likely the result of similar environmental conditions 

paired with regional beekeeping practices. Environmental conditions and beekeeper practices 

that are similar over large areas will drive V. destructor abundance to be similar over larger 

areas, and thus, increase the Moran’s index, however, when environmental conditions and 

beekeeper practices are similar over small areas the abundance of V. destructor will be similar 

over smaller areas, driving the Moran’s index down. 

 In 2017 when the annual Moran’s index is compared with the Moran’s index of 

September the Moran’s index increased. This increase indicates that the level of SA in V. 

destructor abundance increased. This increase is likely because the surveys submitted in 

September were temporally closer, and thus, the V. destructor infestation levels were more 

similar. However, when the annual Moran’s index is compared to the Moran’s index of 

September in 2018 and 2019 the Moran’s index declined. Although surveys submitted in 

September may be temporally similar, they may not be spatially similar. If spatial closeness or 

similarity is not present the likelihood of similarity in V. destructor abundance declines, and 

thus, the Moran’s index declines.  

2.4.2 Manual calculation of neighborhood size and local Moran’s I 
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 When the appropriate neighborhood size was manually calculated using the Incremental 

spatial autocorrelation tool z-score peaks indicated the distance at which SA was largest. Z-

score peaks were identified in 2017, 2018, 2020, and September of 2017, indicating that an 

appropriate neighborhood size could be applied to the local Moran’s I statistic. Alternatively, 

when a z-score peak was not identified (2019, September of 2019) no appropriate neighborhood 

size was identified. This is likely the result of multiple spatial processes impacting V. destructor 

abundance, each of which operate at differing scales (ESRI 2022). In this case, environmental 

conditions and beekeeping practices may be operating at different scales. Additionally, the 

presence of SA at the global level in 2019 and September of 2019, but the lack of a z-score peak 

may indicate that when the study area is fragmented into neighborhoods, thus reducing the 

number of neighbors per feature, this may reduce SA as a result of less features. The inclusion of 

more features may artificially inflate the SA z-score and p-value.  

 When the local Moran’s I was calculated using the appropriate neighborhood size, 2018 

was the only time period that indicated significant SA. The lack of local SA in 2017, 2019, 2020, 

and September of 2017 indicates that V. destructor abundance was not spatially autocorrelated at 

the local level. This is likely because when each feature is compared to the local mean there is no 

significant difference.  

 In 2018 the presence of local SA indicates that significant differences are present within 

features of a given neighborhood. Where low-low clusters were present the abundance of V. 

destructor was significantly similar to a low local mean, and conversely, where high-high 

clusters were present the abundance of V. destructor was significantly similar to a high the local 

mean. Where low-high outliers were present the abundance of V. destructor was significantly 
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lower than the local mean, and conversely where high-low outliers were present V. destructor 

abundance was significantly higher than the local mean.   

2.4.3 Optimized outlier analysis  

When optimized outlier analysis was applied to time periods with a significantly positive 

global Moran’s index value the number of high-high and low-low clusters increased compared to 

the manually calculated Incremental spatial autocorrelation and local Moran’s I. In 2017 no 

local clusters were identified, indicating that V. destructor abundance was not significantly 

similar or different from the local mean. In 2018 a z-score peak was identified at 350.5 km, 

indicating that V. destructor abundance was most spatially autocorrelated at 350.5 km. In 2018 

the number of clusters identified rose by 144 apiaries when optimized outlier analysis was 

applied. Additionally, the neighborhood size rose by 22 km. This indicates that the inclusion of 

locational outlier removal increased the number of clusters identified. In 2019 a z-score peak was 

not identified and the average distance to 30 neighbors was used as the appropriate neighborhood 

size. Additionally, the number of clusters identified rose by 29 apiaries and the neighborhood 

size rose by 172.6 km as no z-score peak was found in the manual calculation. This indicates that 

the inclusion of locational outlier removal and distance to 30 neighbors when no z-score peak 

was identified increased the number of clusters and neighborhood size. In 2020 a z-score peak 

was found at 184.5 km and the number of clusters rose by 187 apiaries. This again indicated that 

the inclusion of location outliers decreased the neighborhood size and increased the number of 

clusters as a result of locational outlier removal. In September of 2017 a z-score peak was 

identified at 177 km, however, no local SA was identified, indicating that V. destructor 

abundance was not significantly close or distant from the local mean. In September of 2019 no z-

score peak was identified and the average distance to 30 neighbors was 265.3 km, indicating that 
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V. destructor abundance was not significant at increasing neighborhood sizes. Additionally, the 

number of clusters identified rose by 20 when compared with the manual calculation of 

neighborhood size and local Moran’s I. This indicates that the inclusion of location outlier 

removal and the use of the average distance to 30 neighbors when a z-score was not identified 

increased the detection of clusters.  

2.4.4 Significance for geospatial research 

 The overall increase in the number of clusters identified when using optimized outlier 

analysis is significant because the inclusion of locational outlier removal and using the average 

distance to 30 neighbors when a z-score peak is not identified may artificially inflate cluster 

detection. Locational outlier removal often decreases the neighborhood detection start distance 

and thus often lowers the appropriate neighborhood size. When neighborhood sizes are smaller, 

the likelihood of a feature being similar to the local mean increases due to Tobler’s first law of 

geography which states that near features are more similar than more distant features (Tobler 

1965). Locational outlier removal is problematic because although features may be locational 

outliers, they may still represent the spatial scale of the sample, particularly among large datasets 

that are spatial spread farther apart.  

 Furthermore, the calculation of the average distance to 30 neighbors when a z-score peak 

often reduces the neighborhood size and artificially inflates the detection of clusters. When 

neighborhood size was manually calculated using the Incremental spatial autocorrelation tool 

and no z-score peak was identified the time period was excluded from further analysis and 

calculation of the local Moran’s I because an appropriate neighborhood size was not identified. 

The shift in calculating the average distance to 30 neighbors in optimized outlier analysis is 
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problematic because the average distance to 30 neighbors may not represent an appropriate 

neighborhood size as SA may not be most prominent at the distance.  

 When using geospatial methods to determine the presence of SA, researchers should be 

aware of these pitfalls. Manual calculation of neighborhood distance using the Incremental 

spatial autocorrelation tool should be completed and compared to the results of the optimized 

outlier analysis. The manual calculation of the local Moran’s I should also be completed and 

compared to the optimized outlier analysis to determine spatial accuracy. In this context the 

results of the optimized outlier analysis were most similar to manual calculations in 2018, and 

thus, are likely accurate. However, when the results of optimized outlier analysis were not 

similar to the results of manual calculations in all other time periods, the results may be 

artificially inflated.  

2.4.5 Significance for beekeepers 

These results are also significant for beekeepers because the presence of SA at the global 

level indicates that V. destructor abundance is on average clustered. Thus, beekeepers should be 

aware that the abundance of V. destructor in neighboring apiaries may impact the level of 

V. destructor abundance within their apiary. Additionally, the presence of local SA in 2018 

indicates that apiaries may be present within high-high clusters, and thus the level of 

V. destructor monitoring and treatment may need to be increased. The current survey scheme is 

to survey ten percent of their colonies once per month from April to October, and before and 

after treatment is applied (Cornell Cals 2020). Additionally, the current V. destructor treatment 

threshold recommendation is 2 mites per 100 bees in the spring and 3 mites per 100 bees in the 

fall (Cornell Cals 2020). From these results, the recommendation that beekeepers in the United 

States should monitor ten percent of their colonies once per month from April to October is 
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supported, particularly for beekeepers within the high V. destructor cluster of the southeast. A 

close monitoring scheme will allow beekeepers to be alerted earlier in the infestation process and 

slow the growth of V. destructor populations by applying treatment sooner (Delaplane et al. 

2005).  

2.4.6 Error propagation 

Error may have also propagated throughout this analysis because of the citizen science 

dataset used. Beekeepers were responsible for accurately surveying for V. destructor with the 

method of their choice and reporting to the MiteCheck application, however, the accuracy of 

these surveys cannot be confirmed, and novel beekeepers may survey incorrectly or misinterpret 

V. destructor survey results. These errors in survey methodology or interpretation may have 

propagated throughout this analysis because the direct, uncorrected value of V. destructor 

infestation reported by beekeepers was used. If these values were invalid in any way, they could 

invalidate the Moran’s I index, and by extension, the significance of spatial clustering. However, 

the MiteCheck dataset represents the largest and most robust national dataset for V. destructor 

infestation levels in the United States and its use is recommended despite the possibility of input 

error.  

Error may have also propagated throughout this analysis when multiple surveys were 

completed in the same geographic coordinates within the same month or year and the mean 

infestation levels were calculated to produce a single V. destructor infestation level. This may 

have skewed results when multiple surveys were completed in the same year V. destructor 

infestation levels peak in the fall as colonies begin to rear more brood before the winter dearth 

season (Arechavaleta-Velasco and Guzmen-Novoa 2001; Harris et al. 2003). If an apiary 

completed multiple V. destructor surveys in the fall the average V. destructor infestation level 



57 
 

would be higher than those apiaries around it that completed surveys in the spring and summer. 

However, the average infestation level was calculated once in 2017, twice in 2020, and thus the 

error that may have been introduced from this method was minimal.  

2.4.7 Limitations 

 Limitations of this research include the number of beekeepers participating and the 

spatial spread of beekeepers from year to year. Although thousands of beekeepers submit their 

data to MiteCheck many hundreds of thousands of beekeepers do not. The results indicated here 

may be biased by the relatively small subset of beekeepers that submit to MiteCheck. 

Additionally, beekeepers may not submit data regularly, which reduces the temporal resolution 

and the power for statistical accuracy. The irregularity of submissions may also affect the spatial 

resolution. In some years beekeepers that are near one another may submit their data, while in 

other years beekeepers that are farther apart may submit their data. This would skew the results 

of spatial statistics because the likelihood that SA among V. destructor abundance increases 

when apiaries are on average closer together.  

 Additionally, subdividing the MiteCheck dataset into years may introduce bias. This is 

because surveys submitted in September-October, when V. destructor abundance is highest, may 

be compared to surveys submitted in February-March, when V. destructor abundance is lower. 

Future research should consider temporal similarity as well as spatial similarity as V. destructor 

abundance is most likely so be similar when data are submitted close in space and in time.  

2.4.8 Future research 

Further research is needed to elucidate the driving factors of V. destructor infestation 

high and low clusters. Prior research has shown that effective beekeeper management strategies 

better explain the clustering of V. destructor infestation levels than geographic location and 
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climate (Giacobino et al. 2016), however, climate may continue to drive V. destructor infestation 

levels with high clusters located in more temperate zones, which have longer growing seasons 

and V. destructor has longer access to brood, which it requires for its reproductive cycle 

(Arechavaleta-Velasco and Guzmen-Novoa 2001; Harris et al. 2003). The regular detection of 

high clusters in the southeast and west indicates that warmer climates may drive V. destructor 

clustering patterns, however, the high degree of outliers within high-high clusters may be 

explained by effective beekeeper management strategies.  

2.5 Conclusion 

 Increased rates of honey bee colony loss have been recorded in the United States since 

2010 and is significant because honey bees provide billions of dollars in economic value and 

benefit one third of all human diet. Varroa destructor has been identified has a significant driver 

of honey bee colony loss and been shown to be spatially clustered in Argentina and New 

Zealand, however, no prior investigation has identified spatial clustering of V. destructor in the 

United States. By obtaining the MiteCheck dataset and applying the global and local Moran’s I 

statistic we showed that V. destructor infestation levels were significantly spatially clustered at 

the global level in 2017, 2018, 2019, 2020, and in September of 2017 and September of 2019, 

and when a LISA was applied high clusters of V. destructor infestation were present in the 

southeast in 2018, while low clusters of V. destructor infestation were present in the northeast 

and in the upper Midwest. Additionally, the application of optimized outlier analysis artificially 

inflated the detection of clusters through the inclusion of locational outlier removal and 

calculation of the average distance to 30 neighbors when a z-score peak was not identified. 

Based on these results it is recommended that beekeepers that are located within high clusters of 

V. destructor monitor and manage for V. destructor once per month from April to October.  
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Chapter 3 

 

Assessing the application of a drone equipped with a thermal sensor for 

surveying honey bee (Apis mellifera) colony health 

 

3.1 Introduction 

Precision agriculture is the use of technology to measure temporal and spatial trends to 

support management decisions in agricultural settings (Pierce and Nowak 1999). Technologies 

that have been applied include drones equipped with multispectral, thermal, red, green blue, and 

light detection and ranging (LiDAR) sensors (Daponte et al. 2019). Drones equipped with 

multispectral sensors have been used to monitor crops by measuring chlorophyll content, leaf 

water content, ground cover and leaf area index (Stehr 2015). Drones equipped with a thermal 

sensor have been used to detect water stress in crops because they present higher temperatures, 

and therefore higher thermal reflectance (Svatos and Trowbridge 2018). Apiculture, or the 

maintenance of honey bee (Apis mellifera) colonies, is a subset of agriculture and the 

technologies that have been applied in precision agriculture are highly applicable to precision 

apiculture, including drones equipped with multispectral and thermal sensor (Zacepins et al. 

2012). Similar to precision agriculture, precision apiculture specifically measures the temporal 

and spatial trends of honey bee colonies to support management decisions (Zacepins et al. 2012). 

Precision apiculture has employed the use of internal colony temperature sensors (Braga et al. 

2020) and thermal imagers (Lim et al. 2013; Shaw et al. 2010) to measure the average colony 

temperature. Specifically, Braga et al. (2020) used average colony temperatures captured by 

internal temperature sensors in tandem with ambient weather data and colony inspections to train 

a classification algorithm, which accurately predicted the colony health status with 90% 
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accuracy. Additionally, Shaw et al. (2010) used external thermal imaging to examine the 

relationship between average colony temperature and the population of adult bees and found that 

higher average colony temperatures were positively correlated with the population of adult bees. 

Specifically, Shaw et al. (2010) completed manual colony inspections, measured the number of 

complete frames covered by adult bees, captured thermal images of 33 colonies, measured the 

average colony temperature from the thermal images, and used a t-test to determine the level of 

correlation between the number of complete frames covered by adult bees and the average 

colony temperature. Similarly, Lim et al. (2013) used external thermal imaging to investigate the 

difference in average colony temperature between colonies that survived the winter and those 

that did not. They found that colonies that survived the winter had a higher average colony 

temperature of 2-6°C, and again indicated that external thermal imaging can be used to 

determine the health of a honey bee colony by measuring average colony temperature (Lim et al. 

2013). Thus, the application of external thermal imaging in precision apiculture has been 

successful and the average colony temperature and population of adult bees is significantly 

positively correlated (Lim et al. 2013; Shaw et al. 2010).  

Although other metrics of honey bee colony health including the amount of brood 

(developing bees) and carbohydrate resources (honey) have been included to predict colony 

survivorship (Braga et al. 2020) they have not been included in investigations of average colony 

temperature as measured by external thermal imagers (Lim et al. 2013 and Shaw et al. 2010). 

The inclusion of other metrics of honey bee colony health like the amount of brood and honey 

may increase the explanatory power between the average colony temperature and metrics of 

honey bee colony health from R2 = 0.63 found in Shaw et al. (2010). Other metrics may be 

analyzed through the application of backward stepwise model building. Other metrics of honey 
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bee colony health that are measured in manual colony health inspections but have not been 

included in investigations of average colony health remain significant to overall honey bee 

colony health. Specifically, higher amounts of adult bees reflect higher levels of honey bee 

colony health. Higher amounts of brood (developing larvae) reflect higher levels of honey bee 

colony health. Higher amounts of carbohydrate resources reflect higher levels of honey bee 

colony health.  

Precision apiculture and the accurate measure of honey bee populations are significant 

because honey bees are an economically significant agricultural livestock that indirectly benefit 

35% of all human diet (Klein et al. 2007). Beekeepers anticipate annual colony losses between 8-

20%, typically due to reduced floral resources and adverse weather conditions in winter 

(Kulhanek et al. 2017), however, elevated rates of honey bee colony loss have been documented 

in the Northern Hemisphere since 2007 (Oldroyd 2007). Most recently in the United States the 

rate of honey bee colony loss has exceeded 40% in 2020 (Bruckner et al. 2020). Early warning 

signs of colony loss are identified via close monitoring schemes (Dainat et al. 2012), which 

involve opening the lids, manually removing frames, and inspecting each frame for the amount 

of adult bees, brood, and resources including honey and pollen (Delaplane et al. 2013). As a 

result of the manual dismantling and inspection of the colony, close monitoring schemes are time 

and labor intensive. Moreover, this process threatens the loss of the queen, which disrupts the 

reproductive cycle of the colony, and in winter the disruption of the colony structure lowers the 

colony temperature and can negatively impact the winter survivorship of the colony 

(Stabentheiner et al. 2002). Thus, non-invasive methods of honey bee colony inspection, which 

include thermal image capture and measurement of the average colony temperature, may avoid 
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these negative impacts of invasive colony inspection while still providing early warning signs of 

honey bee colony loss.  

Backward stepwise model building can be used to identify the significance of predictor 

variables, but it is generally accepted that backward stepwise model building should be used to 

select the most parsimonious set of predictor variables for a final model (Huberty 1989). 

Backward stepwise model building allows for variables to be selected from a larger set of 

predictors and is useful for variance reduction and parsimony (Thompson 1995). Backward 

stepwise model building works by including all variables of interest, running the model, and 

removing the variable with the least statistical significance (Efroymson 1960). This process is 

repeated until all variables are statistically significant. 

Therefore, I further investigated non-invasive honey bee colony inspection methods using 

external thermal imagers and included the amount of adult bees, brood, and honey in our 

investigation. I hypothesized that the inclusion of the amount of adult bees, brood, honey, and 

the position of bees, brood, and honey will further elucidate the relationship between honey bee 

colony health and average colony temperature as shown by statistical significance of variables in 

a final model. Additionally, due to the current minimal use of drone technology in precision 

apiculture, despite its widespread applicability in precision agriculture, I also investigated if an 

external thermal sensor mounted to a drone could accurately measure the average colony 

temperature and whether the outer and/or inner lid needed to be removed for accurate 

measurement. I hypothesized that the average colony temperature will most accurately be 

measured with the inner and outer lid removed, thus allowing beekeepers to remove the lids, 

capture a thermal image, and estimate honey bee colony health. This will be shown if all 

variables included are significant with both lids removed. The statistical significance of all 
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variables with no lids in place is significant because it reduces the time and effort required for 

colony health surveys.  

3.2 Methods 

3.2.1 Manual Colony Inspection 

This research was completed at the Richland Bee Yard in Auburn, AL, USA. The yard 

contained 47 honey bee colonies in total; however, 15 colonies were selected for thermal image 

capture. Each colony was double deep containing two brood chambers. Manual colony 

inspections of adult bees, brood, honey, and the position of adult bees, brood, and honey were 

conducted two weeks prior to thermal image sampling. Manual colony surveys were completed 

by examining each frame within each colony and determining the percent coverage for each 

variable by using the Liebefeld method (Delaplane et al. 2013). The colonies that were selected 

for thermal image capture included the five colonies with the highest amount of adult bees, the 

five colonies with the lowest amount of adult bees, and five colonies with the median amount of 

adult honey bees (Table 3.1). Proportion of adult bees in the top box, proportion of capped brood 

in the top box, and the proportion of honey in the top box were calculated by dividing the total 

number of frames of the respective variable (adult bees/capped brood/honey) in the top box with 

the total frames of the respective variable in the colony to estimate the position of bees, brood, 

and honey. 

3.2.2 Thermal Image Capture 

Three thermal images of each colony were captured including images with the outer and 

inner lid on, with only the inner lid, and with no lid using a DJI Matrice 200 V2 drone equipped 

with a Micasense Altum thermal sensor.. For this preliminary test the  

drone was not flown, but held at a distance of ~1 meter above the colony to maintain compliance 

with local drone regulations (Figure 3.1). 
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Figure 3.1 Thermal image capture of a honey bee (Apis mellifera) colony from above 

with inner and outer lids in place.  Thermal images were captured with a DJI Matrice 

200 V2 drone equipped with a Micasense Altum thermal sensor. The thermal image 

taken here was from above with the inner and outer lids in place. 
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3.2.3 Thermal Image Processing 

Using ArcGIS Pro 2.8, each image was clipped to include only the area of the colony (Figure 

2). Pixel size within each image was resampled to the coarsest resolution captured (0.39 cm by 

0.39 cm) to maintain consistent image and pixel size. Temperature values of each pixel were 

then converted from the default Centikelvin to Celsius (Equation 1). Average temperature was 

identified by applying zonal statistics. 

𝐶° =  
𝑐𝐾°

100
− 273.1 

Table 3.1 Metrics of honey bee (Apis mellifera) colony health by colony. Colony number 

represents individual colonies and their position in the bee yard. Sides of adult bees represents the 

number of the sides with adult bees covering them. Sides of brood represents the number of sides 

with brood covering them. Proportion of adult bees in the top box represents the number of sides of 

adult bees in the top box divided by the total number of the sides of adult bees. Proportion of brood 

in the top box represents the number of sides of brood in the top box divided by the total number of 

sides of brood. Proportion of honey in the top box represents the number of sides of honey in the top 

box divided by the total number of sides of honey.  

Colony Number Sides of adult bees Sides of brood

Proportion of 

adult bees in the 

top box

Proportion of 

brood in the 

top box

Proportion of 

honey in the 

top box

1 5.93 2.90 0.68 1.00 0.86

2 5.93 1.85 0.29 0.32 0.90

3 13.00 3.20 0.34 1.00 0.89

4 15.30 2.63 0.35 0.94 0.85

5 3.20 1.95 0.91 1.00 1.00

6 4.20 2.65 0.96 1.00 0.96

7 2.70 1.88 0.90 1.00 0.95

8 3.10 2.95 0.98 1.00 1.00

9 2.93 1.23 0.06 0.00 0.72

10 12.30 5.75 0.56 1.00 0.61

11 6.40 0.68 0.55 1.00 0.62

12 12.90 4.70 0.36 0.43 0.64

13 6.98 2.45 0.92 1.00 0.88

14 14.25 2.50 0.49 1.00 0.59

15 2.88 1.45 0.67 1.00 0.97

(1) 
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 3.3.4 Statistical analysis 

 Backward stepwise model building was applied to the average temperatures obtained 

from images with no lids, inner lid only, and inner and outer lid respectively, with the global 

model including the average colony temperature as the response variable, and amount of adult 

bees as measured in colony frame coverage, amount of capped brood as measured in colony 

frame coverage, amount of honey as measured in colony frame coverage, proportion of adult 

bees in the top box, proportion of capped brood in the top box, and proportion of honey in the 

top box as explanatory variables. Once the global model was completed the least significant 

variable as measured by the p-value was removed. This process was repeated until all variables 

in the model were statistically significant or confounding. Statistical significance of alpha = 0.1 

was used.   

3.3 Results 

3.3.1 Inner and Outer lid in place 

The average temperature of colonies with both the inner lid and outer lid in place was 

6.6°C. When backward stepwise model building was applied including all variables, the 

proportion of adult bees in the top box was only significantly associated with the average colony 

temperature (p-value = 0.09) (Table 3.1). The least significant variable was the proportion of 

brood in the top box, and thus it was removed (p-value = 0.99). The next model included amount 

of adult bees, amount of brood, proportion of adult bees in the top box, and proportion of honey 

in the top box. The least significant variable of this model was amount of brood, and thus it was 

removed (p-value = 0.67). The next model included amount of adult bees, proportion of adult 

bees in the top box, and proportion of honey in the top box. The least significant variable of this 

model was the amount of adult bees, and thus it was removed (p-value = 0.49). The next model 

included the proportion of adult bees in the top box and the proportion of honey in the top box. 
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Both variables were significant, and thus the final model was identified (Table 3.2). The final 

model had an r-squared value of 0.4 and a p-value of 0.05.  
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3.3.2 Inner lid in place 

The average temperature of colonies with only the inner lid in place was 20.8°C. When 

backward stepwise regression was applied to the average temperatures of colonies with the only 

the inner lid, the global model indicated that proportion of adult bees in the top box was the least 

significant, and thus it was removed (p-value = 0.73) (Table 3.4). The next model included the 

amount of adult bees, amount of brood, proportion of brood in the top box, and the proportion of 

honey in the top box. All variables in this model were significant, and thus the final model was 

identified (Table 3.5). The r-squared value of this model was 0.64 and the p-value was 0.02.  

 

 

 

Table 3.2 Inner and outer lid in place global model results. Variable represents all variables 

included in the model, estimate represents the estimate of effect, standard error represents the 

95% confidence interval, and the p-value represents the statistical significance with statistically 

significant values indicate by an asterisk (*). 

Variable Estimate Standard error p -value

Sides of adult bees -0.14 0.26 0.61

Sides of brood 0.24 0.63 0.71

Proportion of adult bees in the top box 0.051 0.049 0.33

Proportion of brood in the top box -0.0001 0.037 0.99

Proportion of honey in the top box -0.094 0.050 0.09*

Table 3.3 Inner and outer lid in place final model results. Variable represents all variables 

included in the model, estimate represents the estimate of effect, standard error represents the 95% 

confidence interval, and the p-value represents the statistical significance with statistically 

significant values indicate by an asterisk (*). 

Variable Estimate Standard error p -value

Proportion of bees in the top box 0.06 0.02 0.01*

Proportion of honey in the top box -0.08 0.04 0.06*
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3.3.3 Neither lid in place 

The average temperature of colonies with no lid was 23.3°C. When backward stepwise 

regression was applied to the average temperatures of colonies with no lids, the global model 

indicated that the amount of adult bees was the least significant, and thus it was removed from 

further models (p-value = 0.89) (Table 3.6). The next model included amount of brood, 

proportion of adult bees in the top box, proportion of brood in the top box, and proportion of 

honey in the top box. The next model indicated that the proportion of honey in the top box was 

the least significant, and thus it was removed (p-value = 0.89) (Table 3.7). The next model 

included the amount of brood, proportion of brood in the top box, and the proportion of adult 

bees in the top box. This model indicated that the proportion of adult bees in the top box was the 

Variable Estimate Standard error p -value

Sides of adult bees -0.27 0.12 0.05*

Sides of brood 0.44 0.29 0.16

Proportion of adult bees in the top box 0.008 0.023 0.73

Proportion of brood in the top box 0.015 0.015 0.4

Proportion of honey in the top box -0.051 0.023 0.05*

Table 3.4 Inner lid in place global model results. Variable represents all variables included in 

the model, estimate represents the estimate of effect, standard error represents the 95% 

confidence interval, and the p-value represents the statistical significance with statistically 

significant values indicate by an asterisk (*). 

Variable Estimate Standard error p -value

Sides of adult bees -0.3 0.08 0.003*

Sides of brood 0.5 0.23 0.05*

Proportion of brood in the top box 0.02 0.008 0.04*

Proportion of honey in the top box -0.05 0.022 0.04*

Table 3.5 Inner lid final model results. Variable represents all variables included in the model, 

estimate represents the estimate of effect, standard error represents the 95% confidence 

interval, and the p-value represents the statistical significance with statistically significant 

values indicate by an asterisk (*). 
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least significant, and thus it was removed (p-value = 0.36) (Table 3.8). The next model included 

the amount of brood, and the proportion of brood in the top box. This model indicated that the 

amount of brood was not significant, and thus it was removed (p-value = 2.1) (Table 3.9). The 

next model included the proportion of brood in the top box and was found to be significant 

(Table3.10). Additionally, the estimate of effect of the proportion of brood in the top box did not 

significantly changed, thus indicating that the amount of brood is not a confounding variable. 

This was further confirmed with a VIF score of 1.01, which indicated no correlation between the 

two variables.  
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Variable Estimate Standard error p -value

Sides of adult bees -0.02 0.11 0.89

Sides of brood 0.25 0.25 0.35

Proportion of adult bees in the top box 0.01 0.02 0.69

Proportion of brood in the top box 0.01 0.01 0.41

Proportion of honey in the top box -0.29 0.02 0.89

Table 3.6 No lid global model results. Variable represents all variables included in the model, 

estimate represents the estimate of effect, standard error represents the 95% confidence interval, 

and the p-value represents the statistical significance with statistically significant values indicate 

by an asterisk (*). 

Variable Estimate Standard error p -value

Sides of brood 0.22 0.18 0.35

Proportion of adult bees in the top box 0.01 0.01 0.69

Proportion of brood in the top box 0.01 0.01 0.41

Proportion of honey in the top box -0.002 0.02 0.89

Table 3.7 No lid second model results. Variable represents all variables included in the 

model, estimate represents the estimate of effect, standard error represents the 95% 

confidence interval, and the p-value represents the statistical significance with statistically 

significant values indicate by an asterisk (*). 

Variable Estimate Standard error p -value

Sides of brood 0.23 0.16 0.18

Proportion of adult bees in the top box 0.01 0.01 0.36

Proportion of brood in the top box 0.01 0.01 0.23

Table 3.8 No lid third model results. Variable represents all variables included in the model, 

estimate represents the estimate of effect, standard error represents the 95% confidence 

interval, and the p-value represents the statistical significance with statistically significant 

values indicate by an asterisk (*). 

Variable Estimate Standard error p -value

Sides of brood 0.21 0.16 0.21

Proportion of brood in the top box 0.02 0.01 0.02*

Table 3.9 No lid fourth model results. Variable represents all variables included in the model, 

estimate represents the estimate of effect, standard error represents the 95% confidence 

interval, and the p-value represents the statistical significance with statistically significant 

values indicate by an asterisk (*). 
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3.4 Discussion  

3.4.1 Inner and outer lid in place 

When the inner and outer lid were left in place the final model indicated that the proportion 

of adult bees in the top box was positively correlated with the average colony temperature and 

the proportion of honey in the top box was negatively correlated with the average colony 

temperature. This model indicates that as the proportion of adult bees in the top box increases, 

the average colony temperature also increases. Conversely, as the proportion of honey in the top 

box increase, the average colony temperature decreases. When these results are compared to 

Shaw et al. (2010) the positive correlation between proportion of adult bees in the top box and 

average colony temperature shown here is similar to the positive correlation between the amount 

of adult bees and average colony temperature shown in Shaw et al. (2010). Proportion of adult 

bees in the top box was likely more significant than the amount of adult bees because the thermal 

images captured were taken from above, and thus the thermal signature of the top of the colony 

is accurately measured. Similarly, the proportion of honey in the top box was likely more 

significant than the amount of honey because the thermal images were again taken from above. 

The positive correlation between the proportion of adult bees in the top box indicates that when a 

thermal image is taken from above with the inner and outer lid in place the proportion of adult 

bees in the top box can be estimated. Additionally, the negative correlation between the 

Table 3.10 No lid final model results. Variable represents all variables included in the model, 

estimate represents the estimate of effect, standard error represents the 95% confidence interval, 

and the p-value represents the statistical significance with statistically significant values indicate 

by an asterisk (*). 
Variable Estimate Standard error p -value

Proportion of brood in the top box 0.02 0.01 0.01*
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proportion of honey in the top box indicates that when a thermal image is taken from above with 

the inner and outer lid in place the proportion of honey in the top box can be determined.  

The statistical non-significance of the amount of bees, brood, and proportion of brood in the 

top box indicates that they do not contribute to the average colony temperature. When compared 

with the results of Shaw et al. (2010) the statistical non-significance between the amount of adult 

bees and average colony temperature shown here is contradictory to the positive correlation 

between the amount of adult bees and average colony temperature shown in Shaw et al. (2010). 

However, this is likely because Shaw et al. (2010) captured images from in front and behind the 

colony where the thickness of the hive is smaller. Additionally, the average colony temperature 

with both lids in place was on average significantly lower than when the inner lid was in place 

and when no lid was in place. This is likely because the outer lid is wrapped in a metal sheet and 

thus reflects the thermal signature of the environment rather than indicating the thermal signature 

of the colony.  

3.4.2 Inner lid in place 

When the inner lid was left in place the final model indicated that the amount of adult 

bees, brood, proportion of brood in the top box, and the proportion of honey in the top box 

significantly contributed to the average colony temperature. Specifically, the amount of adult 

bees was slightly negatively correlated with the average colony temperature. This indicates that 

as the amount of adult bees increases, the average colony temperature slightly declines. 

Additionally, the proportion of honey in the top box was also negatively correlated with the 

average colony temperature. This indicates that as the proportion of honey in the top box 

increases, the average colony temperature declines. Conversely, the amount of brood was 

positively correlated with the average colony temperature. This indicates that as the amount of 
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brood increases, the average colony temperature also increases. Additionally, the proportion of 

honey in the top box was also positively correlated with the average colony temperature. This 

indicates that as the proportion of brood in the top box increases, the average colony temperature 

also increases.  

When the negative correlation between the amount of bees and the average colony 

temperature is compared to Shaw et al. (2010) the opposite trend is seen. The opposing trends 

among the amount of adult bees and the average colony temperature is likely a result of the 

differing thermal image angles. Thermal images taken from above the colony may only capture 

the thermal signature of adult bees in the top box, while images taken from in front and behind 

the colony may capture the thermal signature of adult bees throughout the colony. However, the 

statistical significance of the amount of brood, the proportion of brood in the top box, and the 

proportion of honey in the top box indicates that they significantly contribute to the average 

colony temperature, and thus should be included in investigations of average colony temperature. 

The statistical non-significance of the proportion of adult bees in the top box indicates that the 

proportion of adult bees in the top box does not significantly contribute to the average colony 

temperature. This may be because the statistical significance of all other variables may mask 

more minute trends.  

3.4.3 Neither lid in place 

 When the inner lid was left in place the final model indicated that the proportion of brood 

in the top box significantly contributed to the average colony temperature. Specifically, the 

proportion of brood in the top box was positively correlated with the average colony 

temperature. This indicates that when neither lid is in place, as the proportion of brood in the top 

box increase, the average colony temperature also increases.  
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 The statistical non-significance of the amount of bees, brood, the proportion of adult bees 

in the top box, and proportion of honey in the top box indicates that when both lids are removed 

these variables do not contribute to the average colony temperature. This may be because the 

removal of hive lids disrupts colony activity, and thus the amount of bees, brood, and position of 

adult bees and honey may appear to change.  

3.4.4 Significance of research for geospatial investigations 

 These results are significant for geospatial research because it is the first indication that a 

drone equipped with a thermal sensor is applicable in honey bee systems to measure average 

colony temperature. Further geospatial investigations within honey bee systems may apply drone 

technology to map bee yards and identify optimal colony placement.  

3.4.5 Significance of research for beekeepers 

 The results shown here are significant for beekeepers because the use of a drone equipped 

with a thermal sensor may reduce the amount of labor and time required to estimate honey bee 

colony health. With the amount of labor and time required to estimate honey bee colony health 

reduced, honey bee colony health surveys can be completed more regularly. When variables of 

honey bee colony health are estimated more often, more informed management decisions can be 

made by beekeepers, which then decreases the rate of honey bee colony loss.  

 Commercial beekeepers (beekeepers with 300 or more colonies) are most likely to benefit 

from more efficient thermal colony health surveys conducted by a drone because they have more 

colonies to survey, and are required to report the health of their colonies prior to pollination of 

agricultural crops. Additionally, commercial honey bee colonies have a single lid that closely 

resembles the inner lid of backyard beekeeper colonies, and thus no lid would need to be 

removed for thermal colony health surveys conducted by drone.  
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3.4.6 Limitations 

 This research was limited in that the drone could not be flown as a result of local 

ordinance. Although if the drone is flown at a similar height to where it was held (~1 meter) the 

results should be similar, however, this can not be confirmed until investigations have completed 

similar analysis while flying the drone. Furthermore, this research was limited in sample size. 

Although 47 colonies were manually surveyed, only 15 were sampled using thermal analysis. 

The limited sample size was a result of preliminary testing, and thus larger sample sizes should 

be collected and analyzed in the future. This analysis was also limited in the temporal scope. All 

thermal images were taken on the same day under the same environmental conditions, however, 

environmental conditions may alter these results, and thus this analysis should be repeated under 

varying environmental conditions to estimate its effect. 

3.4.7 Future research 

Future research should investigate the time in between manual inspection and thermal 

surveys to determine when thermal surveys should be conducted and how long they will remain 

accurate after manual colony inspection. Future research should also investigate further metrics 

of honey bee colony health. The inner lid model explained 64% of the variance in the average 

colony temperature, which indicates that there are several variables that significantly contribute 

to the average colony temperature that were not included in this model. These variables may 

include ambient temperature (Farenhotlz et al. 1989), genetic diversity of the colony (Jones et al. 

2004), and the population of drones within the colony (Coelho 1991).  

3.5 Conclusion 

Elevated rates of honey bee colony loss in the United States have underscored the importance 

of regular colony inspections as they can provide early warning signs of colony loss. Here I have 
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shown that a drone equipped with a thermal sensor can be used to measure the average colony 

temperature with the inner lid in place, and that the amount of adult bees, brood, and position of 

brood and honey significantly contribute to the average colony temperature. These results are 

significant because they provide the first indication that a drone equipped with a thermal sensor 

can provide a more efficient method for estimating honey bee colony health. When honey bee 

colony health is measured more regularly, more informed management decisions can be applied 

by beekeepers, and thus the likelihood of colony loss is reduced.  
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