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Abstract

Varying coefficient models have gained popularity in recent years due to their flexibility

in modeling more realistic problems. On the other hand, parametric models provide better

interpretability. Model selection can be performed for both types of models. This dissertation

is focused on estimation and variable selection for a semiparametric combination of the two

types of models known as the semi-varying coefficient model. This model provides a flexible

way to deal with various problems including problems that require spatiotemporal models.

The approach used in this dissertation is based on rank estimation which provides a good

balance between robustness and efficiency.

First, we consider a rank-based estimation of the varying coefficient functions for semi-

varying coefficient model. The consistency and asymptotic normality of the proposed estima-

tors are established. An extensive Monte-Carlo simulation study demonstrates the robustness

and the efficiency of the proposed estimators compared to the least squares estimators. A

backfitting algorithm is developed for estimating the parametric and nonparametric parts

of the model in alternate steps. The semi-varying coefficient model was motivated by the

popular COVID-19 where the rank-based estimation is used to provide accurate estimates

of factors affecting the mortality rate. We use a real data example to show that the classical

approach is highly affected by outliers in response space but not the rank-based method we

propose in this dissertation. This is followed by variable selection method for semi-varying

coefficient model. We develop a LASSO-type rank-based variable selection procedure to

select and estimate coefficient functions.
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Chapter 1

Introduction

One of the most important properties in the estimation of a statistical model is robust-

ness. This is because robustness underlies the strength of the statistical models including

the tests and procedures that are involved in the complete statistical analysis of a model.

For example, the mean is a less robust measure of central tendency compared to the median

because the mean is very sensitive to extreme values at either tails of the distribution. Popu-

lar estimation procedures of statistical model such as linear regression, which emphasize the

mean, assumes fixed parameters and that the data follow well-behaved distributions. In the

absence of fixed parameters, other semi- and non-parametric models have emerged such as

the varying coefficient model (VCM), the semi-varying coefficient model (SVCM), and the

single-index varying coefficient model (SIVCM) that retain certain linearity and/or additive

structures. Recent work has focused on robust estimation of such models are becoming more

popular/useful due to the rise of big data that typically follows no known distribution.

The varying coefficient model (VCM) was pioneered by Cleveland, Grosse and Shyu

(1991) to extend the applications of local regression techniques from one-dimensional to

multi-dimensional setting. VCMs are generalized regression models whose coefficients vary

as smooth function of other variables. As a variant of the VCMs, the semi-parametric or semi-

varying coefficient model (SVCMs) allows for both fixed components and varying components

that changes with other variables. The least squares (LS) method can be applied to both

the VCM and SVCM. However, as in simple regression models, the presence of “outliers”

imposes an unusual influence on the “least squares” estimators. There exist other methods

that are not as sensitive to outlier such as the M-estimators, R-estimators, to mention a
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few. The rank method is an example of a non-parametric method of estimation based on

the minimization of a metric that uses the ranks of the errors.

This dissertation focuses on applying the rank estimation procedure in the estimation of

the fixed and varying coefficients in the SVCM. The Rank-based estimators were developed

as a robust, nonparametric substitute to the classical likelihood or least squares estimators.

The rank regression was first introduced by Jureckova (1971) as the zero of a rank-score

function and Jaeckel (1972) as a minimizer of a rank dispersion function. Just over half

a decade later, McKean and Hettmansperger (1978) developed a Newton step algorithm

that led to viable computation of the rank-based estimates. Many authors have since then,

worked to develop complete rank-based inference for linear models that were based on the

rank-estimates, in ways analogous the way that traditional analysis is based on Least Squares

estimates. Presently, the rank-based analysis is known to be a complete analysis parallel to

the traditional least squares for general linear models. Rank regression works in a way similar

to the way LS works, but instead of using the Euclidean distance, a different kind of distance

function is used that is based on Jaeckel’s dispersion function which we will discuss later

in more detail. That is not all. The only assumption on the distribution of the errors for

rank method is that it is continuous, which is one of the major improvements over LS and

a reason why it provides robust estimators.

Our work follows the Hastie and Tibshirani (1993) model of varying coefficients. We

follow the model in the context of the SVCM, which in addition to the varying coefficient part

of the model, there is a non varying part, where the parameters are fixed. We apply the rank

method to the SVCM to estimate the varying coefficients as well as the fixed coefficients, in

addition, we also use adaptive group lasso to select the relevant variables in the parametric

and nonparametric parts.

To the best of our knowledge, this dissertation is the first to investigate how the rank

method applied to the estimation and variable selection of SVCMs accounts for the behav-

ior of ”outliers” in heavy-tailed error distributions. The rank estimators are found to be
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asymptotically normal and consistent. In a simulation study, we used three error distribu-

tions, the standard normal, the t-distribution with 3 degrees of freedom (for heavy tails)

and the contaminated normal distribution (for contamination) to compare rank and least

squares estimates of fixed and varying coefficients of SVCMs. In doing this, we compare the

estimated functions of rank and LS estimation as well as the true and false positives in the

selection of the fixed coefficient part of the model for both methods. Our results reveal that

the rank method is found to perform better than the LS method of estimation when the

error distribution is heavy-tailed or contaminated. To further demonstrate findings from the

analysis, we apply both approaches to a high-frequency spatial COVID-19 data for empirical

comparison. We apply a LASSO-type penalty for variable selection to select the important

fixed and time-varying variables from the data. The empirical validation results demonstrate

that the rank method provides better estimates that the LS method of estimation for the

high-frequency spatial COVID-19 data.

This dissertation adds to the literature in the robust estimation of semiparametric re-

gression models, particularly semi-varying coefficient models that are useful for spatiotem-

poral modeling. Moreover, the dissertation demonstrates that the rank method is useful for

estimating data from complex structures such as global COVID-19 data. This is further af-

firmation that the rank-based estimation and selection approach provides a useful alternative

to the least squares based estimation and selection approach for SVCMs.

The rest of this dissertation is structured as follows: Chapter 2 gives detailed back-

ground information on the estimation of semiparametric models, including recent works in

rank-based estimation and selection. Chapter 3 focuses on the theory of the rank method in

estimating the unknown coefficients. Consistency, asymptotic normality, and selection con-

sistency of the proposed estimators are proved. In Chapter 4, Monte Carlo simulations are

done to show the edge of rank estimation over LS estimation. Chapter 5 gives an application

of the proposed approach on a global high-frequency spatial COVID-19 data.
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Chapter 2

Background

It is common knowledge that parametric statistical inference is often accompanied by

some model assumptions, most importantly, linearity. Besides parsimony, this is helpful in

efficiency of the computation of the model estimates. So much work has been put into linear

models which makes their properties widely established, but in reality, there are only a few

places where they can be applied. With the wrong assumptions, a researcher can be met

with inconsistencies in the model, especially large bias. To solve this issue, many variants of

parametric models have been proposed but each one with its own setbacks.

Nonparametric models, however, need no assumption(s) on the model specifications, but

may fail to incorporate some prior information, leading to estimators with large variance.

An example is the “curse of dimensionality” which poses a huge setback for non-parametric

models when the data has excessively high dimension. Aiming at fixing this limitation,

Huber (1985) proposed the projection pursuit method, Li (1991) the sliced inverse regression

method, Hardle and Stoker (1990) the single index models, to name a few. In theses methods,

the response variable is modelled as an unknown function of the covariates and unknown

parameters.

y “ gpXTβ1, ¨ ¨ ¨ , X
Tβq, εq, (2.1)

where y is the response, X, a p-dimensional matrix of covariates and ε, the error. The model

is very impractical especially if q ě 3, in fact, there are several limitations that surround

model (2.1) that even its interpretabilty can even be an issue.

To help mitigate this problem surrounding the traditional parametric models, an alter-

native approach is to relax some of the conditions imposed. To that effect, Breiman and

Friedman (1985) and Hastie and Tibshirani (1990) proposed additive models, where the
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response y is related to a sum of univariate (unkown) functions of each of the covariates.

Hastie and Tibshirani (1993), Fan and Zhang (1999, 2000), Chang et al. (2001), intro-

duced varying coefficient models, where the regression coefficients are smooth functions of

a variable. Wong et. al. (2008) proposed the single-index varying coefficient model, where

the regression coefficients are univariate (unknown) functions of linear combination of sev-

eral variables. Friedman (1991), Gu and Wahba (1992), and Stone et al. (1997) proposed

the low-dimensional interaction models, and Wahba (1984), Green and Silverman (1994),

partially linear models, to name a few.

Among the semiparametric models just mentioned, the varying coefficient models arise

in many applications. They have been successfully used in multi-dimensional nonparametric

regression, nonlinear time series models, generalized linear models, analysis of longitudinal,

functional, and survival data, and financial and economic data. When coefficients are varying

with time, the varying coefficient model has the form

Yi “ XT
i αptiq ` εi , (2.2)

where εi P R represent random errors, αp¨q “ pα1p¨q, α2p¨q, ..., αpp¨qq
T P Rp is an unknown

smooth function vector, and Xi is a matrix of time varying covariates.

It is important to note that this type of model can be adjusted to fit a scenario where

some covariates are seen to change with time while others are fixed and are said to be time-

invariant. This is precisely the model of interest in this dissertation. The motivation for

this is the analysis of excess mortality from COVID-19 based on a global high-frequency

spatiotemporal data. Excess mortality is assumed to depend on several variables where

some are not time variant and only changes with the country considered while others varied

with time for each specific country. For this COVID-19 excess mortality analysis, the data

contained variables that changed with time including the number of vaccinated people, num-

ber of deaths, number of COVID-19 cases, and many more. There were also variables that

were assumed to be unchanged over the relatively short period of the COVID-19 pandemic
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including the proportion of people above 70 years of age, the country’s GDP per capita,

median age and so on. The semi-varying coefficient model studied in this dissertation allows

for incorporating fixed-effects variables and time varying coefficients in the same structure.

The semi-varying coefficient model studied in this work, has the form

Yi “ XT
i αptiq ` ZT

i β ` εi, (2.3)

where εi P R, αp¨q “ pα1p¨q, α2p¨q, ..., αpp¨qq
T P Rp is an unknown smooth function vector,

β “ pβ1, ..., βqq
T the constant coefficient vector, with true values α0p¨q and β0, respectively.

X is the matrix of time varying covariates, while Z is the matrix of time invariant covariates.

To understand why this model is of interest, we used the response Yi as the mortality, to

show it’s relationship with the covariates pX,Yq

which we discuss in detail in chapter 4.

Over the years, regression models have been commonly used in analysis of data taken

from numerous sources such as geostatistics that arise often in environmental studies. For

example, given data pyi,xiq, where i “ 1, 2, 3, . . . , n, a common regression problem is to

investigate a relationship between yi and xi, written, yi „ xi, or more formally,

yi “ fpβ0,xiq ` εi,

with n “ 1, 2, 3, . . . , that is, estimating parameters β0 that relate yi and xi via a function f,

which may be linear or nonlinear and εi is an error which follows some distribution, usually

unknown. A fascinating approach to this problem is by finding β so that the residuals

become as small as possible.

Classical methods like the Least Squares (LS), which are easy to interpret and com-

putationally convenient, minimize the squared errors,
řn
i“1pyi ´ fpβ0,xiqq

2, resulting in pa-

rameters that are sensitive, if there are outliers in the data and so is not a reliable method.

The simplest form is given by the model yi “ β0 ` εi, where the LS parameter estimate
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β̂ of β0 is ȳ “ 1
n

řn
i“1 yi, the mean response, and it is common knowledge that the mean,

unlike the median, is very sensitive to outliers. Methods like the M -Estimators, an example

being the Least Absolute Deviation, which minimizes the deviation in absolute values, that

is,
řn
i“1 |yi´ fpβ0,xiq|, and R-Estimates have been introduced to overcome this setback en-

countered with least squares. Even at that, they are still found to be affected by heavy-tailed

distributions.

Huber and others went ahead to develop the theory of M estimators to mitigate the

setbacks encountered when using LS, and rank-based (R) estimation techniques were only

used for simple problems like location comparisons for two-sample problems. Later Jaeckel

(1972), Hettmansperger & McKean (1998) and others showed that R estimators, also called

Wlicoxon estimators can be obtained by minimizing

n
ÿ

i“1

ϕ

ˆ

Rpeipβqq

˙

eipβq, (2.4)

where Rpeipβqq is the rank of eipβq among i “ 1, 2, 3, . . . , n, and ϕp¨q is a score function.

Although the classical M and R estimation techniques are not robust, weights are introduced

in these methods to help improve the results by making them robust.

To understand more about the rank method, from model (2.2), we get

εi “ Yi ´XT
i αptiq ´ ZT

i β,

and minimize the dispersion of the residuals εi. We focus particularly on the rank-based

dispersion function of Jaeckel (1972) described as follows. Let ϕnpiq, i “ 1, 2, ¨ ¨ ¨ , n be a

non-decreasing set of scores, not all equal, such that

n
ÿ

i“i

ϕnpiq “ 0.
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The rank dispersion function is defined as

Dpeq “
n
ÿ

i“1

ϕn
`

Rpeiq
˘

ei. (2.5)

The function D is called a dispersion function which acts like the Euclidean norm in terms

of least squares. Notice that we can write (2.2) as Yi “ W T
i O `ε, with O “ pαptiq, βq

and Wi “ pXi, Ziq
T . The way in which we estimate the unknown functions makes it so that

we can work with a linear model and since this is so, we can use the properties obtained

by Jaeckel (1972) and studied in detail in the monograph by Hettmansperger and McKean

(2011). With this set-up, a lot of work has been done on different model setups. Often the

difficulty in using rank-based approaches is the computational burden but there are several

approximate approaches in the linear models. For example, Sievers and Abebe (2004) used

the rank method to estimate the linear regression coefficients using an iterated reweighted

least squares algorithm. Using arguments from fixed-point theory, they showed that the

iteration converged to the rank estimate regardless of sample size. Abebe, McKean, Kloke

and Bilgic (2016) extended this approach to longitudinal data using an iterated reweighted

generalized estimating equation (GEE) approach.

There has also been some recent work on the rank estimation of models with functional

regression coefficients. Bindele, Abebe and Meyer (2018) used the rank method to estimate

the index and functional parameters of single-index models. In particular, they considered

the model

Y “ g0pβ
T
0 xq ` ε

where both β0 and g0 are unknown. Their approach used a leave-one-out Nadaraya–Watson

estimator of g0 with a resulting non-convex optimization for estimating β0 and g0. They es-

tablished asymptotic optimality results for the estimators and also studied the finite sample
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performance of the proposed approach. Bindele, Abebe, and Zeng (2019) where they con-

sidered the single-index model and developed a penalized generalized signed-rank procedure

for estimation and variable selection following a local linear approximation.

Sun et al. (2019) considered rank-based estimation of the index coefficient and the

functional regression coefficients for the single-index varying coefficient model (SIVCM)

Y “ g0pβ
T
0 xq ` g1pβ

T
0 xqz1 ` ¨ ¨ ¨ ` gppβ

T
0 xqzp ` ε

Note that the single index model is just the intercept model of SIVCM; that is, when g1 “

¨ ¨ ¨ “ gp ” 0. They established the consistency and asymptotic normality of the rank

estimator and performed an extensive Monte-Carlo simulation study to demonstrate the

robustness and efficiency of the rank estimator compared to the least squares estimators.

Their approach also used a local linear approximation.

Motivated by problems in deep-water fish ecology, Sun et al. (2021) again considered

the single-index varying coefficient model (SIVCM)

Y “ g0pβ
T
0 xq ` g1pβ

T
0 xqz1 ` ¨ ¨ ¨ ` gppβ

T
0 xqzp ` ε

and proposed a rank-based procedure for the estimation and selection of the functional

regression coefficients. The estimation of the functional regression coefficients together with

the selection procedure using a back-fitting type computational algorithm to minimize a

rank-based objective function. In their approach, they employed a group LASSO penalty

for selecting functional regression coefficients following a spline approximation. Since only

functional coefficients are being selected, they demonstrate that this same approach can be

used for the varying-coefficient models

Y “ g0pUq ` g1pUqz1 ` ¨ ¨ ¨ ` gppUqzp ` ε

9



by simply taking βT0 x to be a known variable U and skipping the estimation of β0.

Bindele and Abebe (2015) considered a rank estimation of the partial linear regression

model

Y “ βT0 x` gptq ` ε

in the context of response missing at random. They used kernel approximation to estimate

g as a known function of t but unknown with respect to β0.

The work proposed in this dissertation extends and generalizes these to semi-parametric

models that have fixed and varying components - semi-varying coefficient models. The first

part of the model given in (2.3)

Yi “ XT
i αptiq ` ZT

i β ` εi

is the varying coefficient model and its second component is a linear model. We are interested

in developing a rank procedure for estimating and selecting both the functional coefficients

α and the fixed coefficients β using an objective function that contains both group LASSO

and regular LASSO terms.

In Chapter 3, we propose a general R estimation procedure for the semi-varying co-

efficient model that is a robust and more efficient alternative to the classical least squares

method when data are contaminated with heavy-tailed error distributions, or when data con-

tain outliers. We propose a backfitting algorithm by iterating between the fixed and varying

coefficient functions following a B-spline approximation. We show that the resulting esti-

mator is robust and asymptotically efficient when compared to the least squares estimator.

We propose a robust procedure for estimating and selecting coefficient functions using group

LASSO (GRPLASSO) and estimating and selecting the fixed parameters using LASSO. We

demonstrate via a Monte Carlo experiment (Chapter 4) that the proposed procedure is more

efficient than LS when the error distribution is not normal, and it performs as well as LS
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under normal error distribution. It also provides better selection consistency that the LS for

functional coefficients across all simulation scenarios.
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Chapter 3

Semi-Varying Coefficient Model

3.1 Introduction

Throughout the years, considerable work has been done on robust procedures for linear

models. Several classes of robust estimates have been proposed for these models. One is

the rank class of estimates. This class uses an objective function which depends on the

choice of a score function, ϕ. Generally this robust analysis is highly efficient relative to the

LS analysis; see Hettmansperger and McKean (1998). Many interesting problems, in the

real world are nonlinear in nature and traditional procedures based on LS estimates have

been in use for many years. As these LS methods of non-linear models use the Euclidean

norm, they are as easy to interpret as linear models. The asymptotic theory for nonlinear

LS has been developed by Jennrich (1969) and Wu (1981), among others. In this chapter,

we propose a nonlinear analysis based on the rank objective function. In section 2.2, we give

a brief introduction to semi-varying coefficient models. In Section 2.3 we present a family

of estimates for nonlinear models. In Section 3.4, we show that these estimates are strongly

consistent under certain assumptions.

3.2 Semivarying Coefficient Model Setup

Let i P N and let pYi,Xi,Zi, tiq be such that Yi P R1, Xi P Rp, Zi P Rq and ti P rt0, t1s.

We shall consider a semivarying coefficient model of the form

Yi “ XT
i αptiq ` ZT

i β ` εi, (3.1)

12



where εi P R are random errors, αp¨q “ pα1p¨q, α2p¨q, ..., αpp¨qq
T P Rp is an unknown smooth

function vector, β “ pβ1, ..., βqq
T the constant coefficient vector, with true values α0p¨q and

β0, respectively.

3.3 Rank Estimation of Semivarying Coefficient Model

We start by approximating αkptq using B-spline approximation. Let SrCn
ptq be the set of

spline functions of order r` 1 having knots K “ tt0 “ τ0 ă τ1 ă ... ă τCn ă τCn`1 “ t1u. We

say that Bptq P SrCn
ptq if and only if Bptq P Cr´1rt0, t1s, where it’s restriction to rτk, τk`1s is

a polynomial of at most degree r. A piecewise constant function, linear spline and quadratic

spline corresponds to r “ 0, 1 and 2, respectively.

Let

Bkptq “ pτk ´ τk´r´1qrτk´r´1, ..., τkspz ´ tq
r
`, k “ 1, ..., qn,

where qn “ Cn`r`1, rτk´r´1, ..., τkspz´tq
r
` denotes the pr`1qth order divided difference of the

function pz´tqr`, τk “ t0, when k “ ´r, ...,´1, and τk “ t1, when k “ Cn`2, ..., Cn`r`1. Then

πptq “ pB1ptq, B2ptq, ..., Bqnptqq
T forms a basis for SrCn

ptq. For more about spline functions,

see Schumaker (1981).

So we can approximate αkptq as follows:

αkptq «
qn
ÿ

j“1

Bjptqθk,j “ πptq
Tθk,

where Bjptq are spline basis and θk,j are spline coefficients.

Now

Yi «
p
ÿ

k“1

qn
ÿ

j“1

Xi,kBjptiqθk,j ` ZT
i β ` εi “ ΠT

i Θ` ZT
i β ` εi,

with Πi “ pXi,1π
T
i , ..., Xi,pπ

T
i q

T P Rpqn , Θ “ pθT1 , ...,θ
T
p q

T and πi “ πptiq.

Given general rank scores of the form aϕpiq “ ϕp i
n`1
q, we define the general rank

estimator of the semivarying coefficient model parameters pΘ,βq, say pΘ̂, β̂q, as a minimizer

13



of the rank dispersion function

DnpΘ,βq “
1

n

n
ÿ

i“1

ϕ
´RpeipΘ,βqq

n` 1

¯

eipΘ,βq, (3.2)

where eipΘ,βq “ Yi ´Πi
TΘ ´ ZT

i β are the model residuals, Rpeq ”
řn
i“1 IteipΘ,βq ď eu

is the rank of the model residuals, ϕ : R Ñ p0, 1q is a continuously differentiable and non-

decreasing score function.

3.4 Partially Adaptive Group Penalized Rank Estimation

In the context of the approximate model

Yi «
p
ÿ

k“1

qn
ÿ

j“1

Xi,kBjptiqθk,j ` ZT
i β ` εi “ ΠT

i Θ` ZT
i β ` εi

with Πi “ pXi,1π
T
i , ..., Xi,pπ

T
i q

T P Rpqn , Θ “ pθT1 , ...,θ
T
p q

T and πi “ πptiq, our goal is to

select important variables in the parametric and non parametric parts. For the parametric

part, we shall refer to Zk as important if and only if βk ‰ 0. For the nonparametric part,

we refer to Xk as important if and only if θk ‰ 0. Let us suppose, without loss of generality

that tβ0k ‰ 0uck“1 and tβ0k “ 0uqk“c`1. Let β˚ “ pβ1, ..., βcq
T with true value β˚0 . Also, let

tα0lu
v
l“1 be nonzero components of α0ptq with tα0lptq ” 0upl“v`1.

Again, given a general rank scores of the form aϕpiq “ ϕp i
n`1
q, the partially adaptive

group Lrpr ě 1q norm penalized estimator pΘ̂, β̂q can be obtained by minimizing

QpΘ,βq “ DnpΘ,βq `
p
ÿ

k“1

λ1nk}θk}r `
q
ÿ

k“1

λ2nk|βk|

“
1

n

n
ÿ

i“1

ϕ
´RpeipΘ,βqq

n` 1

¯

eipΘ,βq `
p
ÿ

k“1

λ1nk}θk}r `
q
ÿ

k“1

λ2nk|βk|, (3.3)

where λ1nk and λ2nk are tuning parameters that control model complexity of nonparametric

and parametric parts, respectively.
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3.5 Definitions and Assumptions

Before establishing the theoretical properties of the rank estimators, we give some defi-

nitions and assumptions needed to establish the results.

Define Hγ as the collection of all functions on rT0, T1s whose dth order derivative satisfies

the Holder condition of order ν with γ ” d` ν. That is, for any h P Hγ, there is a constant

c P p0,8q such that for each h P Hγ, |h
pdqpsq ´ hpdqptq| ď c|s´ t|ν for any T0 ď s, t,ď T1.

To facilitate theoretical discussion, we will write the model of interest as

Yi “ WT
i O0 `εi,

where O0 “ pΘ0,β0q is the true parameter and Wi “ pΠi,Ziq
T . We will write DnpOq to

represent the rank dispersion function and SnpOq “ ∇ODnpOq to represent the gradient of

Dn. Moreover, we will let Φ “ ϕ1.

We will make the following assumptions:

A1. tαkptq P Hγu
v
k“1 for some γ ą N ` 1

2
.

A2. The random field tpYi, Xi, Zi, tiq, i P Nu is strictly stationary. For all i ‰ j in N, ti and

tj admit a joint density fi,j satisfying |fi,jpt1, t2q´fpt1qfpt2q| ď c1 for all t1, t2 P rT0, T1s,

where c1 ą 0 is a constant and f denotes the marginal density of Ti.

A3. For all i P N, the random design vectors Xi and Zi are bounded in probability, and the

eigen values of EpXiX
T
i |Ti “ tq, t P rT0, T1s are bounded away from 0 and 8 uniformly.

A4. ϕ
´

Rpεiq
n`1

¯

εi is convex and EpΦpεiq|Xi, Zi, Tiq “ 0, for all i P N. In addition, for some

δ ą 0, supiPNEp|Φpεiq|
2`δ|Xi, Zi, Tiq ă 8, and there exist positive numbers bi with

0 ă inf bi ă sup bi ă 8 such that supiPZ |EpΦpεi ` sqq|Xi, Zi, Tiq ´ bis| “ Opps
2q as

sÑ 0, where Φ is the derivative of ϕ.
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A5. There exist constants 0 ă c2, c3 ă 8 such that supiPNEtrΦpεi`sq´Φpεiqs
2|Xi, Zi, Uiu ď

c3|s|, as sÑ 0 and |Φpv ` sq ´ Φpvq| ď c3 for any |s| ď c2 and v P R1.

A6. Let a1n “ suptλ1nk : k “ 1, ..., vu, a2n “ suptλ2nk : k “ 1, ..., cu, b1n “ inftλ1nk :

k “ v ` 1, ..., pu and b2n “ inftλ2nk : k “ c ` 1, ..., qu with maxta1n, a2nu{
?
n Ñ 0,

maxta1n, a2nuq
1{2
n {
?
nÑ 0, n´

1
2 b1n Ñ 8 and n´

1
2 b2n Ñ 8.

A7. Suppose the error distribution has finite Fisher information; that is, 0 ă Ipfq ă 8.

A8. We will assume Θ P intpA1q and β P intpA2q, where A1 and A2 are compact subspaces

of Rpqn and Rq, respectively.

For the conditions given above, A1 is a condition of smoothness that helps to track the

rate of convergence of the spline estimator with respect to the variable coefficients. A2 is a

standard condition used, for example, by Tran (1990), Hallin et al. (2004) and Tang (2014)

in the spatial setting. Although our setting is just a sub-class of the spatial setting. A3 was

used in Huang et al. (2002) and is a technical condition to derive the optimal convergence

rate of the estimators in variable coefficient setting. Conditions A4 and A5 are only on score

function ϕpuq and the random error εi; same conditions were also used in Tang (2014) and

Lu et al. (2014). A6 is used for the convergence rate of tuning parameters. A7 is used to put

the model into a linear setting so as to establish some asymptotics. In particular, as seen in

Hettemanspeger & McKean (2011), we see that

1
?
n

SnpOq “
1
?
n

SnpO0q ´ τ
´1
ϕ Σ

?
npOn ´O0q ` opp1q,

with
?
npOn ´ O0q “ Opp1q and Σ “ limnÑ8 n

´1
ř

WT
i Wi. A8 is a condition imposed on

the parameters from which we get boundedness.

We will denote the nonzero parts of O0 and Wi as O˚0 and W˚
i , respectively. We will

comformably define Σ˚ “ limnÑ8 n
´1

ř

W˚
i
TW˚

i .
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3.6 Asymptotic Properties

Before giving the theorems on the asymptotic properties of the minimizer of QpΘ,βq,

we can assume that there exists a vector β0 “ pβ0
1 , ..., β

0
q q
T such that |β0

k | ‰ 0, k P t1, ..., cu;

|β0
k |1 “ 0, k P tc ` 1, ..., qu. Moreover, under our assumptions, Wang (2016) shows that

there exists a vector Θ0 “ pθ0
1
T
, ...,θ0

p
T
qT such that ||θ0

k||1 ‰ 0, k P t1, ..., vu; ||θ0
k||1 “ 0,

k P tv ` 1, ..., pu and that

sup
tPrT0,T1s

|α0kptq ´ πptq
Tθ0

k| “ Opq´γn q ,

for k “ 1, . . . , p.

The theorem below establishes the estimation sparsity of the rank estimation and selec-

tion procedure for semi-varying coefficient models.

Theorem 3.1 Assume the regularity conditions A1 - A7 hold and that qn “ Opn1{p2γ`1qq.

Then, for r “ 1, 2, β̂ and α̂ptq satisfy

(a) α̂kptq ” 0, k “ v ` 1, ..., p holds with probability tending to 1;

(b) β̂k “ 0, k “ c` 1, ..., q holds with probability tending to 1.

Theorem 3.2 (Estimation Efficiency)

Suppose A1. - A4. hold. Then, the estimator Ô is asymptotically consistent and

?
npÔ˚n ´O

˚
0q

D
ÝÑ Np0, τ 2

ϕΣ˚´1
q.
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Proof of Theorem 3.1

We first establish the consistency of the rank estimator. By Lemma 1 of Wu (1981), the

estimator is consistent if there exists a C ą 0

lim
nÑ8

P

˜

inf
n1{2||O´O0||2“C

´

QpOq ´QpO0q

¯

ą 0

¸

“ 1.

Equivalently,

lim
nÑ8

P

˜

inf
n1{2||O´O0||2“C

ΦnpOq `

p
ÿ

k“1

λ1nkp||θk||r ´ ||θ
0
k||rq `

q
ÿ

k“1

λ2nkp|βk| ´ |β
0
k |q ą 0

¸

“ 1,

where

ΦnpOq “ DnpOq ´DnpO0q.

It suffices to prove that

lim
nÑ8

inf
O:n1{2||O´O0||2“C

pQpOq ´QpO0qq ą 0,

a.s, by Lemma 1 of Wu (1981). Observe that for any r ě 1,

ˇ

ˇ

ˇ
||θk||r ´ ||θ

0
k||r

ˇ

ˇ

ˇ
ď ||θk ´ θ

0
k||r ď ||θk ´ θ

0
k||1 ď q

1
2
n ||Θ´Θ0

||2.

Let A1 “ tΘ : Θ “ Θ0 ` n´1{2u1, ||u1||2 ă C1u and A2 “ tβ : β “ β0 ` n´1{2u2, ||u2||2 ă C2u.

Observe that A1 and A2 are open sets containing Θ0 and β0, respectively. Since A1 and A2

are open in A1 and A2, respectively, their complements are closed in their respective supersets

and for Θ R A1, we have that ||u1||2 ě C1 and because Ac1 is a closed subset of a compact space

A1 it is compact and therefore closed and bounded, so we have
řv
k“1 ||u1k||2 ď ||u1||2 ďM1.

A similar argument can be used to show that
řv
k“1 ||u2k||2 ď ||u2||2 ďM2.
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Now,

QpOq ´QpO0q “ ΦnpOq `

p
ÿ

k“1

λ1nkp||θk||r ´ ||θ
0
k||rq `

q
ÿ

k“1

λ2nkp|βk| ´ |β0k|q

“ ΦnpOq `

v
ÿ

k“1

λ1nkp||θk||r ´ ||θ
0
k||rq `

p
ÿ

k“v`1

λ1nkp||θk||r ´ ||θ
0
k||rq

`

c
ÿ

k“1

λ2nkp|βk| ´ |β
0
k |q `

p
ÿ

k“c`1

λ2nkp|βk| ´ |β
0
k |q

ě ΦnpOq `

v
ÿ

k“1

λ1nkp||θk||r ´ ||θ
0
k||rq `

c
ÿ

k“1

λ2nkp|βk| ´ |β
0
k |q

ě ΦnpOq ´ a1n

v
ÿ

k“1

p||θk||r ´ ||θ
0
k||rq ´ a2n

c
ÿ

k“1

p|βk| ´ |β
0
k |q

ě ΦnpOq ´ a1nn
´1{2q1{2

n

v
ÿ

k“1

||θk ´ θ
0
k||2 ´ a2nn

´1{2
c
ÿ

k“1

|βk ´ β
0
k |

ě ΦnpOq ´ a1nn
´1{2q1{2

n M1 ´ a2nn
´1{2M2,

ě ΦnpOq ´maxta1n, a2nun
´1{2q1{2

n M1 ´maxta1n, a2nun
´1{2M2,

Since limnÑ8 maxta1n, a2nun
´1{2q

1{2
n “ 0, to complete the proof it suffices to show that

lim
nÑ8

inf
O:n1{2||O´O0||2“C

pDnpOq ´DnpO0qq ą 0.

This is shown to be true (using assumptions covered under A1 ´ A8) for general rank esti-

mators of nonlinear models with compact parameter spaces in Abebe, McKean, and Bindele

(2012). Therefore, we have

lim
nÑ8

P

˜

inf
n1{2||O´O0||2“C

ΦnpOq `

p
ÿ

k“1

λ1nkp||θk||r ´ ||θ
0
k||rq `

q
ÿ

k“1

λ2nkp|βk| ´ |β0k|q ą 0

¸

“ 1.
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Now, we show that:

(i) θ̂k “ 0, k “ v ` 1, ..., p, holds with probability tending to 1 and

(ii) β̂k “ 0, k “ c` 1, ..., q, holds with probability tending to 1.

To this end, it is enough to prove that

BQpΘ,βq
Bθk,s

ă 0, θk,s ă 0 and

BQpΘ,βq
Bθk,s

ą 0, θk,s ą 0.

We write the objective function Q as

QpΘ, βq “
1

n

n
ÿ

i“1

ϕ
´RpYi ´ ΠT

i Θ´ ZT
i βq

n̂` 1

¯

pYi ´ ΠT
i Θ´ ZT

i βq `
p
ÿ

k“1

λ1nk||θk||r `
q
ÿ

k“1

λ2nk|βk|

“ DnpOq `

p
ÿ

k“1

λ1nk||θk||r `
q
ÿ

k“1

λ2nk|βk|.

Now let r “ 2, and observe that n´
1
2
BQpΘ,βq
Bθk,j

,

n´
1
2
BQpΘ, βq

Bθk,j
“ ´n´

1
2Sn,k,jpOq ` n

´ 1
2λ1nk

θk,j
||θk||2

Since
?
npOs´O0sq “ Op1q, it follows from the asymptotic linearity result in Hettmansperger

and McKean (2011) that

1
?
n

SnpOq “
1
?
n

SnpO0q ´ τ
´1
ϕ Σ

?
npO ´ O0q ` opp1q.

Thus

n´
1
2
BQpΘ, βq

Bθk,j
“

1
?
n
Sk,jpO0q ´ τ

´1
ϕ Σ

?
npO ´ O0q ` opp1q ` n

´ 1
2λ1nk

θk,j
||θk||2

“Opp1q ` n
´ 1

2λ1nk
θk,j
||θk||2

,

20



Notice that Opp1q

n´
1
2 b1n

Ñ 0, and b1n “ inftλ1nk : k “ v ` 1, ¨ ¨ ¨ , pu so that the sign of BQpΘ,βq
Bθk,j

is completely determined by the sign of θk,j and therefore, they have the same sign since

n´
1
2λ1nk ě n´

1
2 b1n Ñ 8.

Similarly, for

BQpΘ,βq
Bβk

ă 0, βk ă 0 and

BQpΘ,βq
Bβk

ą 0, βk ą 0

we have by a similar argument as before, that

n´
1
2
BQpΘ, βq

Bβk
“´ n´

1
2Sn,jpOq ` n

´ 1
2λ2nksgnpβkq,

“Opp1q ` n
´ 1

2λ2nksgnpβkq,

since
?
npOs ´O0sq “ Opp1q,

Notice that Opp1q

n´
1
2 b2n

Ñ 0, so that the sign of BQpΘ,βq
Bβk

is completely detremined by sgnpβkq

because n´
1
2λ2nk ě n´

1
2 b2n Ñ 8,

So for Ô˚˚ “ pΘ̂˚˚, ˆβ˚˚q with Θ˚˚ “ pθv`1, ..., θpq and β˚˚ “ pβc`1, ..., βqq, we have that

lim
nÑ8

P pÔ˚˚ “ 0q “ 1.
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Proof of Theorem 3.2

To show the asymptotic normality of the estimated parameters, from A7, we have

n´
1
2Sn,jpO

˚
0q ´ τ

´1
ϕ Σ

?
npÔ˚n ´O

˚
0q ` n

´ 1
2λnGpOk,sq “ opp1q ,

with λk,s “ θk,s when the partial derivative is with respect to θ, λk,s “ βk when the derivative

is with respect to β, G is the derivative of the penalty term and λn “ λ1nk or λ2nk, depending

on whether or not we are differentiating with respect to θ or β.

Now, observe that n´
1
2λnsgnpOk,sq ď n´

1
2 maxta1n, a2nusgnpOk,sq Ñ 0, so that n´

1
2λnsgnpOk,sq Ñ

0 either way. Thus

n´
1
2Sn,jpO

˚
0q “ τ´1

ϕ Σ˚
?
npÔ˚n ´O

˚
0q ` opp1q.

Since, n´
1
2SnpO

˚
0q

D
ÝÑ Np0, τ 2

ϕΣ˚´1q, where Σ˚ “ limnÑ8
1
n
W ˚TW ˚ for O˚ “ pΘ˚, β˚q with

Θ˚ “ pθ1, ..., θvq and β˚ “ pβ1, ..., βcq we have that

?
npÔ˚n ´O

˚
0q

D
ÝÑ Np0, τ 2

ϕΣ˚´1
q.

3.7 Estimation Algorithm

In this section, we discuss a backfitting algorithm to implement the rank estimation and

selection procedures for the coefficients of semi-varying coefficient models.

Step 1: Set the initial input for β̂p0q “ 0 and input data tpXi, ti, Yiq, i “ 1, ¨ ¨ ¨ , nu. Set

m “ 1. Set two tolerance limits tolβ and tolθ.

Step 2: Set Ỹ
pmq
i “ Yi ´ ZT

i β̂
pm´1q and fit the expanded form of the varying coefficient

model

Ỹ
pmq
i “ Πi

TΘ` ei
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to estimate Θ̂pmq of Θ as

Θ̂pmq
“ argminΘ

#

1

n

n
ÿ

i“1

ϕ
´RpeipΘqq

n` 1

¯

eipΘq `
p
ÿ

k“1

λ1nk||θk||2

+

,

where eipΘq “ Ỹ
pmq
i ´Πi

TΘ.

Step 3: If αkp¨q, k “ 1, . . . , p, is not selected, delete the column of X associated with αkp¨q.

Organize the remaining columns of X as Xlasso.

Step 4: Use input data tpZi, Yiq, i “ 1, ¨ ¨ ¨ , nu and Θ̂pmq, fit a linear model with the response

Yi ´Πi
T Θ̂pmq on Zi to obtain an estimate β̂pmq of β defined by

β̂pmq “ argminβ

#

1

n

n
ÿ

i“1

ϕ
´Rpeipβqq

n` 1

¯

eipβq `
q
ÿ

k“1

λ2nk|βk|

+

,

where eipβq “ Yi ´Πi
T Θ̂pmq ´ ZT

i β.

Step 5: If βk is not selected, delete the corresponding column of Z associated with βk and

let the remaining columns be Zlasso.

Step 6: Set m Ð m ` 1. If m ă 2, then go back to Step 2. If m ě 2 and p}β̂pmq ´

β̂pm´1q}q ą tolβ}β̂
pm´1q} and p}Θ̂pmq ´ Θ̂pm´1q}q ą tolθ}Θ̂

pm´1q}, then go back to

Step 2. Otherwise, STOP.

23



Chapter 4

Simulation

To assess the finite sample performance of the proposed methodology, we performed

Monte Carlo simulation experiment. This chapter presents the results of this analysis.

4.1 Simulation Setup

We consider the semi-varying coefficient model:

Yi “ α0ptiq `
6
ÿ

k“1

αkptiqxki `
5
ÿ

k“1

βkzki ` εi

“ p1` 3t2i q ` 3expp´t2i qx1i ` 1.5sinpπtiqx2i ` 0.8tix3i ` 1.5z1i ` z4i ` 3z5i ` εi

In this setup, we have taken the true varying coefficients to be

α0ptiq “ 1` 3t2i , α1ptiq “ 3expp´t2i q, α2ptiq “ 1.5sinpπtiq, α3ptiq “ 0.8ti

α4p¨q “ α5p¨q “ α6p¨q “ 0

The true fixed parameters are

β1 “ 1.5, β2 “ 0, β3 “ 0, β4 “ 1, β5 “ 3

Thus the true model contains three zero functional coefficients and two zero fixed coef-

ficients. The times that serve as the index for the varying coefficients are generated as

ti „ Up´1, 1q. The covariates Z are generated from the multivariate uniform distribution

on p´1, 1q and X are generated from the multivariate normal distribution with mean 0

and covariance matrix covpxk, xlq “ 0.5|k´l|. We considered three different error distribu-

tions, the standard normal distribution, Np0, 1q, the t´distribution with three degrees of
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freedom and the contaminated normal distribution with a 5% rate of contamination, i.e,

CN p0.95q “ 0.95Np0, 1q ` 0.05Np0, 102q. The t distributed errors allow us to evaluate the

effect of heavy tails on the proposed on the proposed estimator while the contaminated nor-

mal distribution allows us to evaluate the effect of outliers on the estimator. Two different

sample sizes (n “ 200, n “ 400) are considered.

Both penalized rank (R) and penalized least squares (LS) estimators of the model coef-

ficients were calculated. The assessment of the performance of the estimation and variable

selection procedures for functional coefficients was done by using the following measures:

• True positive rate (TPR): The proportion of non-zero coefficients estimated as non-zero

• False positive rate (FPR): The proportion of zero coefficients estimated as non-zero

• Mean Squared Error (MSE): The mean squared error for the non-zero coefficients

These were computed on B “ 400 replications. For each non-zero functional coefficient αkp¨q,

the MSE of αkp¨q was computed as

MSEpαkq “
1

nB

B
ÿ

j“1

n
ÿ

i“1

pα̂kpt
j
i q ´ αkpt

j
i qq

2 ,

where tji is the ith time index generated in the jth iteration. The MSE of the non-zero

parametric coefficient βk was calculated as

MSEpβkq “
1

B

B
ÿ

j“1

pβ̂jk ´ βkq
2 ,

where β̂jk is the estimate of βk obtained in the jth iteration.

Graphs of the 400 estimated coefficient functions along with the true function are plotted

to show the performance of the selected functions, including the zero functions. Moreover,

graphs containing the 95% pointwise confidence interval for the functional coefficients are

provided.

25



Table 4.1 contains the TPR and FPR results. Table 4.2 and Table 4.3 contain the results

of the estimated MSEs for the functional coefficients and fixed coefficients, respectively.

4.2 Simulation Results

TPR and FPR

The TPR and FPR results contained in Table 4.1 show that LS has a slight edge over R

when the underlying distribution is Gaussian. However, R shows superior performance when

the error distribution is heavier tailed (t3) or there are outliers in the data (error distribution

CN p.95q). This is in line with our expectations and similar to what is observed for linear

models. For the smaller sample size cases (n “ 200), LS shows low TPR and high FPR,

a very undesirable combination. On the other hand, R appears to maintain its high TPR

and low FPR rates even at the n “ 200 sample size. Outliers seem to have an unduly large

effect on the LS estimator with FPR « 5% for n “ 200 which is double the FPR of the R

estimator and TPR « 65% which is around 6% lower than the TPR of R. For n “ 400, the

FPRs of LS and R are comparable but the TPR of R is around 13% higher than the TPR of

LS (82% versus 69%). The observation is analogous for heavy tails with the FPR of LS over

three times that of R for n “ 200. An interesting observation is that when the sample size

is large (n “ 400), LS appears to catch up with R in its performance for the heavier tailed

distribution (t3).
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TPR and FPR

Error Size Method TPR FPR

Np0, 1q 200 LS 0.9275 0.0000

R 0.8950 0.0050

400 LS 0.9875 0.0000

R 0.9888 0.0000

t3 200 LS 0.7263 0.0208

R 0.8200 0.0058

400 LS 0.8013 0.0000

R 0.8100 0.0000

CN p0.95q 200 LS 0.6538 0.0467

R 0.7100 0.0225

400 LS 0.6888 0.0025

R 0.8236 0.0025

Oracle 1.0000 0.0000

Table 4.1: True and False Positive Rates of the Parametric Part

MSEs of αp¨q

Table 4.2 gives the results of the MSEs of the estimated coefficient functions of the non-

zero functional coefficients. In the estimation of the quadratic intercept function α0ptq “

1 ` 3t2, LS and R give comparable performance in the Gaussian error case. However for

heavy tailed (t3) and contaminated (CN p.95q) data, R gives a vastly superior performance

where in some cases MSEpα0q for the R estimator is a third of that of the LS estimator.

In the case of n “ 200, for the estimation of α1ptq “ 3expp´t2q and α2ptq “ 1.5sinpπtq, an

exponential and a sine function, respectively, the LS gives a vastly superior performance for

Gaussian data and R gives a vastly superior performance for heavy tailed and contaminated
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data. The differences in MSEpα1q are particularly stark. Although the pattern is similar

for n “ 400, larger sample sizes seem to ameliorate the situation. Although the pattern in

superiority of performance remains the same for the linear α3ptq “ 0.8t, rather surprisingly,

the differences in the performance of LS and R are somewhat mediated. This suggests a

potential link between performance of the estimators and the underlying nonlinearity of the

coefficient function.

MSEs of Non-Zero functions

Error Size Method α0 α1 α2 α3

Np0, 1q 200 LS 0.0493 0.0386 0.1051 0.0467

R 0.0472 0.0976 0.1910 0.0909

400 LS 0.0259 0.0188 0.0640 0.0152

R 0.0226 0.0259 0.0965 0.0175

t3 200 LS 0.1753 1.7672 0.6520 0.1884

R 0.0958 0.1397 0.2404 0.1419

400 LS 0.0482 0.0421 0.1031 0.0616

R 0.0293 0.0328 0.1087 0.0520

CN p0.95q 200 LS 0.2998 2.4375 0.7543 0.1950

R 0.1636 0.5268 0.5431 0.1917

400 LS 0.0839 0.0807 0.1777 0.1369

R 0.0294 0.0341 0.1219 0.0400

Table 4.2: MSEs of Non-Zero Functions

MSEs of β

The results from the MSEpβq calculations mirror those of MSEpαq with LS giving supe-

rior performance than R for Gaussian data and the reverse when the data are heavy tailed

or contaminated. However, the differences in MSEpβq were not as stark as those between

28



MSEpαq values. Relative efficiencies of the R estimator calculated as

RE “
MSELSpβq

MSERpβq

ranged roughly between 70% and 95% for Gaussian data. The RE values were all over 100%

in some cases up to 140% (t3, n “ 200) indicating a large gain in efficiency from using the R

estimator instead of the LS estimator.

MSEs of Non-Zero Parameters

Error Size Method β1 β4 β5

Np0, 1q 200 LS 0.1213 2.4682 1.5886

R 0.1612 2.2575 1.9741

400 LS 0.0209 0.0175 0.0429

R 0.0268 0.0252 0.0473

t3 200 LS 0.2200 2.6083 1.9776

R 0.1564 2.5304 1.6706

400 LS 0.0446 0.0406 0.0730

R 0.0432 0.0388 0.0653

CN p0.95q 200 LS 0.3124 2.7037 1.8971

R 0.2190 2.6638 1.7588

400 LS 0.0766 0.0710 0.1030

R 0.0757 0.0688 0.0842

Table 4.3: Mean Squared Error of the Non-Zero Parameters

In the following pages, we will provide Figures 4.1 – 4.6 which contain plots of the

estimated functional coefficients from both LS and R estimation methods. A discussion of

the results is given following the Figures.
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Estimated αp¨q, Np0, 1q, n “ 200

Figure 4.1: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); Np0, 1q, n “ 200.
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Estimated αp¨q, Np0, 1q, n “ 400

Figure 4.2: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); Np0, 1q, n “ 400.
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Estimated αp¨q, t3, n “ 200

Figure 4.3: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); t3, n “ 200.
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Estimated αp¨q, t3, n “ 400

Figure 4.4: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); t3, n “ 400.
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Estimated αp¨q, CNp.95q, n “ 200

Figure 4.5: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); CNp.95q, n “ 200.
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Estimated αp¨q, CNp.95q, n “ 400

Figure 4.6: LS estimated 95% band and coefficient functions (top two panels); R estimated
95% band and coefficient functions (bottom two panels); CNp.95q, n “ 400.
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Discussion of the results of the estimation of αp¨q

The efficiency of the estimation of the non-zero functional coefficients will be in line

with the MSEpαq results given in Table 4.2. The graphs, however, will allow us to make

comparisons of the performances of LS and R estimation of the zero functional coefficient

estimation.

For the normal error case, while the efficiency of the LS estimator in the estimation of

the non-zero functional coefficients is superior to that of R, it appears that it does worse

in estimating the zero functional coefficients. R on the other hand does a better job in

estimating the zero functional coefficients without substantial loss in the efficiency of the

estimation of the non-zero functional coefficients.

For the heavier tailed data (t3), the rank estimator gives better efficiency in the estima-

tion of the non-zero functional coefficients as expected. Moreover, the rank estimator gives

better performance in the estimation of the zero functional coefficients while the LS misfires

a few times.

The observation for the contaminated data case is similar to that of the heavy tailed

data. The rank estimator gives excellent performance in efficiently estimating the non-zero

functions as well as in correctly estimating the zero functions.

Generally, the rank estimator does an excellent job with the correct estimation of the

zero functional coefficients even in the case of Gaussian data, which is remarkable. It is also

efficient in the estimation of the non-zero functional coefficients as shown in Figures 4.1 –

4.6 and Table 4.2.

The “oracleness” of rank estimation for functional coefficients in the sense of efficiency

and selection consistency is notable. A similar observation was made by Sun et al. (2022)

which gave a rank-based estimation and selection procedure of the functional regression

coefficients for the single-index varying coefficient regression model.

Although we have not included any confidence interval techniques for the regression

parameters even with small sample sizes. This can be constructed via an empirical likelihood
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(EL) for the regression parameters based on the rank estimating equation. The limiting

distribution of log-empirical likelihood ratio is the χ2 distribution. This has been studied by

Bindele and Zhao (2015).
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Chapter 5

Factors Affecting Excess Mortality from the COVID-19 Pandemic

5.1 Background

Besides being important input in COVID prediction models, correctly estimated excess

mortality from COVID-19 is a measure of the magnitude of impact of the pandemic on

countries across the globe (Wang et al., 2022). Because excess mortality provides a metric

of the overall mortality impact of COVID-19, it can be “useful to monitor trends within

and between countries and inform international, national and local public health policies”

(Beaney et al., 2020). Since 2020, there have been a number of studies that examined excess

mortality on a regional or country basis. These include Chen et al. (2021) that studied

excess mortality in California, Stang et al. (2020) in Germany, Ballin et al. (2021) in

Sweden, Stokes et al. (2021) in the US at the county level, Haklai et al. (2021) in Israel,

Aron and Muellbauer (2020) in England, among others.

When it comes to factors affecting COVID-19 excess mortality, Kapitsinis (2020) studied

the effect of pre-pandemic healthcare conditions on cross-country COVID-19 excess mortality

in 2020. Rossen et al. (2021) studied factors to lead to disparities in COVID-19 excess

mortality in the US using time-series SARIMA models.

Our interest in this dissertation is to examine fixed and time-varying factors that affect

cross-country COVID-19 excess mortality on the global scale using semi-varying coefficient

models, to provide a practical estimation algorithm for estimation and variable selection,

and to make a recommendation on the estimation approach that provides optimal selection

of the important factors.
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5.2 Data and Variables

Before applying to a real data, we will provide a brief discussion of the data.

To examine the impact of varying coefficients non-varying coefficients on COVID-19, we

employ an unbalanced panel data of daily COVID-19 information on confirmed cases, con-

firmed death, stringency index, population, human development index, median age, among

other variables from the COVID-19 Data Repository by the Center for Systems Science and

Engineering (CSSE) at Johns Hopkins University (Our World Data). The dataset contains

monthly/daily observations, for the period February 24, 2020 to November 29, 2021. The

variable definitions are explained below.

Mortality Rate:

We define mortality rate as the ratio of confirmed number of deaths to the number of con-

firmed cases of COVID-19 virus. This definition has been employed by the CDC (2019) and

the study by Akesson et al. (2021). On the one hand, confirmed number of deaths indi-

cates the cumulative number of confirmed COVID-19 deaths per day. In reporting confirmed

deaths, countries follow the World Health Organization’s International Classification of Dis-

ease guidelines (WHO, 2016) as well as individual country guideline on recording COVID-19

deaths. Total confirmed deaths include 55,808 observations with a mean of 11,163 and a

standard deviation of 9,003. On the other hand, confirmed cases of COVID-19 virus entails

the cumulative number of infected people daily.

Stringency index: The stringency index is a composite score drawn from nine metrics on

school closures, workplace closures, public event cancellation, restrictions on public gath-

ering, public transport closures, stay-at-home requirements, public information campaigns,

internal movement restrictions and controls on international travels. These metrics are gen-

erated using the Oxford COVID-19 Government Response Tracker. The index on any given
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day ranges between 0 and 100. A higher score indicates a stricter response with 100 rep-

resenting the strictest response. The data entails daily stringency index for 58,649 with a

mean of 59 and standard deviation of 32.

Other explanatory variables: More explanatory variables employed in this model include

population density, median age, human development index and people aged 65 years and

older. Population density is defined as the number of people per square mile/kilometer.

Median age gives us an important single point for the age distribution of population of

different countries of the world. In this context, we define it as the age ‘midpoint’ of a

population such that there the same number of people that are older than the median age

as there are that are younger than it. As the name indicates, people aged 65 year and

older is a variable that captures the population shares of adults who are 65 years and above.

We include this variable because given the fact that COVID-19 virus affects older as well

as vulnerable population, we wanted to see if this will be captured in the results. Human

development index was also employed as an explanatory variable. The index is defined as a

measure of key dimension of human development such as life expectancy, access to education,

and gross national income per capita adjusted for the price level of each country. To bring

this pandemic to an end, a large share of the world needs to be immune to the virus. The

safest way to achieve this is with a vaccine. Vaccines are a technology that humanity has

often relied on in the past to bring down the death toll of infectious diseases. We use people

vaccinated to see how this affects the mortality rate.

The attribution of deaths to specific causes can be challenging under any circumstances.

Health problems are often connected, and multiplicative, meaning an underlying condition

can often lead to complications which ultimately result in death. Both guidelines state that

if the practitioner suspects that COVID-19 played a role in an individual’s death it should

be specified on the death certificate. In some cases, COVID-19 may be the underlying cause

of death, having led to complications such as pneumonia or ARDS. Even when it’s the
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underlying and not the direct cause, COVID-19 should be listed.

For the variable Cases, a person must have a positive result from laboratory tests to be

classified under confirmed cases,regardless of whether they have shown symptoms of COVID-

19 or not.

Hospital patients are people who are in hospital due to COVID-19 at a given time and ICU

patients are people are in ICU due to COVID-19 at a given time.

5.3 Data Cleaning

At the time this data was collected, it contained 136,687 observations and 68 variables.

The number of observations are from 237 locations, which includes countries. This data had

a lot of NA values for most locations, leaving only a hand full of locations with data to work

with. We started by selecting the explanatory variables that change with time, like People

Vaccinated, as well as variables that do not change with time like Median Age. Because our

work does not consider missing values at this time, we decided to filter out countries with

data in the chosen variables. Although many variables have been ignored for this data set,

most of them are products of other variables and so are highly correlated and we decided to

move forward with the following variables:

Time Dependent Variables: Time dependent variables are “new cases per million”, “new

deaths per million”, “ICU patients per million”, “hospital patients per million”, “stringency

index”, and “people vaccinated”.

Fixed Variables: Fixed variables are “population density”, “median age”, “aged 65 or

older”, “aged 70 or older”, “GDP per capita”, “life expectancy” and “human development

index” and the “mortality rate” is the dependent variable.

41



The data were collected over a period of 90 weeks and we want to see which variables

have an effect on mortality rate.

5.4 A Mixed Backfitting Algorithm

Before we get into the algorithm, we need to discuss a little more about how we handle

this high-frequency data. Since this is a cross-sectional data, we regard each of the 23

selected countries as an observation, so in all, we have 23 observations, each with its own

sample size. With this, we want to see what time varying variables affect the mortality rate

for each country and what variables have been selected per country. The varying variables

will make up the matrix X and the non-varying variables will make up the matrix Z. We

let c “ 23 represent the number of countries and ns the number of time points for country

s, s “ 1, . . . , c. We let n “ n1 ` ¨ ¨ ¨ ` nc denote the total number of observations across all

countries.

The mixed backfitting algorithm is given below:

Step 1: Set the initial input for β̂p0q “ 0 and input data tpXsi,Zsi, ti, Ysiq, i “ 1, ¨ ¨ ¨ , ns; s “

1, . . . , cu. Set m “ 1. Set two tolerance limits tolβ and tolθ.

Step 2: Set Ỹ
pmq
si “ Ysi ´ ZT

siβ̂
pm´1q and fit the expanded form of the varying coefficient

model for each s “ 1, . . . , c

Ỹ
pmq
si “ ΠT

siΘs ` esi

to estimate Θ̂
pmq
s of Θs as

Θ̂pmq
s “ argminΘs

#

1

ns

ns
ÿ

i“1

ϕ
´RpesipΘsqq

n` 1

¯

esipΘsq `

p
ÿ

k“1

λ1nsk||θks||2

+

,

where eispΘsq “ Ỹ
pmq
si ´ΠT

siΘs.
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Step 3: Stack the selected functions in the same format as the matrix X and use it to

compute the residual. If αskp¨q, k “ 1, . . . , p; s “ 1, . . . , c, is not selected, delete the

column of X associated with αskp¨q. Organize the remaining columns of X as Xlasso.

Step 4: Use input data tpZsi, Ysiq, i “ 1, ¨ ¨ ¨ , ns; s “ 1, . . . , cu and Θ̂
pmq
s , fit a linear model

with the response Ysi ´ΠT
siΘ̂

pmq
s on Zsi to obtain an estimate β̂pmq of β defined by

β̂pmq “ argminβ

#

1

n

c
ÿ

s“1

ns
ÿ

i“1

ϕ
´Rpesipβqq

n` 1

¯

esipβq `
q
ÿ

k“1

λ2nk|βk|

+

,

where esipβq “ Ysi ´ΠT
siΘ̂

pmq
s ´ ZT

siβ.

Step 5: If βk is not selected, delete the corresponding column of Z associated with βk and

let the remaining columns be Zlasso.

Step 6: Set mÐ m`1. If m ă 2, then go back to Step 2. If m ě 2 and }β̂pmq´ β̂pm´1q} ą

tolβ}β̂
pm´1q} and

řc
s“1 }Θ̂

pmq
s ´ Θ̂

pm´1q
s } ą tolθ

řc
s“1 }Θ̂

pm´1q
s }, then go back to Step

2. Otherwise, STOP.

5.5 Results

We first present the results of the effects of the time-varying variables on excess mor-

tality. A brief interpretation of the estimated coefficient functions is provided below the

estimates of each variable. Since time-varying coefficients were estimated for each individual

country in the cleaned data, the results are also reported in country specific plots.

5.5.1 Least Squares Estimation and Selection

The estimated functional coefficients using the least squares (LS) approach are given in

the following pages.

Figure 5.1 gives the results of the coefficients for the variable “New Deaths per Million”.

According to the LS estimates, it appears that there is no discernible relationship between
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new deaths per million and excess mortality in Cyprus, Estonia, Finland, Luxembourg,

Malta, and Spain. With the exception of the UK, all other countries finish the time period

showing a decreasing relationship between new deaths per million and excess mortality.

The downward trend following an inflection on the LS estimated coefficient functions gives

the impression that the relationship between COVID mortality and new deaths became

increasingly negative over time.

Figure 5.1: LS Estimated Coefficient Functions for New Deaths per Million.

Figure 5.2 contains the LS estimated coefficient functions relating new cases to excess

mortality over time. Except for the US and Italy, this coefficient is not selected for most

countries. The increasing and then flattening out trend in Italy and the US captures a

relationship that initially became increasingly positive over time. However, this relationship

remained more or less flat in the later half or the time period under consideration.
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Figure 5.2: New Cases per Million.

Figure 5.3: ICU Patients per Million.
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In Figure 5.3, we see the relationship between the number of ICU patients and excess

mortality, where no pattern has been shown for most of the countries except for Italy,

Slovakia, UK and the US. These all show a relationship between excess mortality and the

number of ICU patients that became increasingly negative over time.

Figure 5.4: Hospital Patients per Million.

Figure 5.4, shows how the relationship between excess mortality and the number of

hospital patients became increasingly positive for Czech, Italy, Netherlands, Slovakia and

the United States. Some of these relationships are quadratic within the range of time while

others are either constant or show relationships of a higher degree polynomials but all ended

the time period with an increasing trend.
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Figure 5.5: Stringency Index.

Stringency Index shows no effect on excess mortality for most countries in Figure ??,

except for the Czech Republic, Italy and the US. Although we believe Stringency Index

played a huge role in curbing the impact of this disease, there may have been other factors

responsible for this flattening or reverse effect as we see for the Czech republic even though

the government declared a state of emergency and curfew as early as March. For Italy and

the US, excess mortality appears to decline over time as stricter lockdown measures were

carried out.
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Figure 5.6: People Vaccinated.

Figure 5.6 shows how the number of people vaccinated affects excess mortality. This

seems to have affected different countries in different ways and this may be due to time

lags and vaccination periods since there were no vaccinations until later in the year. Only

in Slovakia does excess mortality and the number of people vaccinated appear to have an

increasingly decreasing relationship over time.

The LS estimated fixed coefficients are as follows: β1 “ ´3.7010 ˆ 10´4, β2 “ 4.700 ˆ

10´3, β3 “ 0.1225, β4 “ ´0.2246, β5 “ ´1.0223 ˆ 10´6, β6 “ 5.9415 ˆ 10´2, β7 “ ´11.7921.

Here β1 is the coefficient of “population density”, β2 is the coefficient of “median age”, β3

is the coefficient of “aged 65 or older”, β4 is the coefficient of “aged 70 or older”, β5 is the

coefficient of “GDP per capita”, β6 for “life expectancy” and β7 the coefficient of “human

development index”. These results are difficult to interpret since several of the variables are

strongly correlated. For instance, the number of people aged 65 or older is likely correlated

with the number of people aged 70 or older, thus the coefficients β3 and β4 may be difficult
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to interpret. This is also likely the case for β5, β6, and β7 since countries with higher life

expectancy and higher GDP per capita will have higher development index.

5.5.2 Rank Estimation and Selection

Figure 5.7: New Deaths per Million.

Figure 5.7 is a display of coefficient functions estimated by rank method

for the effect of new deaths on excess mortality, the affected countries ap-

pear to show a decline in excess mortality as new deaths increases. This may
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be a result of time lag which has to do with the reporting of new deaths.

Figure 5.8: New Cases per Million.
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In Figure 5.8 only the US shows a decline in excess mortality as new cases in-

creases. Other countries show no relationship between new cases and excess mortality.

Figure 5.9: ICU Patients per Million.
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Figure 5.10: Hospital Patients per Million.
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Figure 5.11: Stringency Index.

In Figures 5.9 and 5.10, only In the US does the result show a pattern between ICU

patients vs excess mortality and hospital patients vs excess mortality, respectively,. excess

mortality decreases with ICU patients in the US but increases with hospital patients but in

5.11, stringency index does not appear to have relationship with excess mortality for any of

the countries studied in this work. Stringency index may not be needed to describe excess

mortality for the rank method.

Figure 5.12: People Vaccinated.

Figure 5.9 shows a relationship between people vaccinated and excess mortality for

Belgium, Bulgaria, Portugal, Switzerland and the US being obviously not constant. Rising

for these countries except for Portugal where it showed a significant drop after which it

began to rise within the time range. For the parametric part, the estimated parameters are

as follows:
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β1 “ ´1.3273ˆ10´4, β2 “ 1.9908ˆ10´2, β3 “ ´1.0518ˆ10´2, β4 “ ´7.8982ˆ10´2, β5 “

´9.1290ˆ10´6, β6 “ 5.8820ˆ10´2, β7 “ ´4.0392. Where β1 is the coefficient of ”population

density”, β2 is the coefficient of ”median age”, β3 is the coefficient of ”aged 65 or older”, β4

is the coefficient of ”aged 70 or older”, β5 is the coefficient of ”gdp per capita”, β6 for ”life

expectancy” and β7 the coefficient of ”human development index”. In all these, β5 appears

to have the least effect, if any, on excess mortality, while human development index appears

to have the most effect, with a negative value, showing a negative relationship with excess

mortality.

Mean Square Prediction Error Table

Rank 6.3272

LS 39.1809

Table 5.1: Mean Square Error for Rank vs LS

5.6 Discussion

Overall, the MSPE from a per-country 5-fold cross-validation table (Table 5.1) shows

the Rank method having a better performance than the Least squares method. Though

some of the results obtained do not appear to reflect reality, this maybe due to so many

factors which may not have been captured within the scope of this work, for example,

there were a lot of missing values which lead to one of the reasons 23 locations (including

countries) were selected from a total of 237 as others had significantly less or no data to

work with for most of the variables like in most underdeveloped countries. Moreover, we

may have an issue of reverse causation with some of the variables studied. For instance,

increase in stringency occurred following increase in deaths. So, an increasing relationship
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here may be more an indicator of this association than the effect of the stringency measures

themselves. We believe adjusting the model may be another way to improve the results of

our analysis, because as discussed in Hastie and Tibshirani (1993), where they considered

different variations of varying coefficient models. Several of the predictors have lagged effects.

It is our expectation that the use of a varying coefficient model that includes time-lagged

covariates will better capture the drivers of the dynamics of excess mortality. Such models,

are however, beyond the scope of this current dissertation.
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Chapter 6

Conclusion

This dissertation proposed a robust estimation and selection procedure based on ranks

for the semi-varying coefficient model. Such models are useful for the analysis of large spa-

tiotemporal data. Consistency and asymptotic normality of the estimator were established

under mild regularity conditions. These may be used to provide Wald-type tests as well as

confidence intervals. Moreover, selection consistency and efficiency were established for the

proposed procedure to select both functional and fixed regression coefficients. This work is

a culmination of recent development in the use of rank estimators for estimation and selec-

tion of non- and semi-parametric regression models including single-index models (Bindele,

Abebe, and Meyer, 2018; Bindele, Abebe, Zeng, 2019) and single-index varying-coefficient

models (Sun et al. 2019, 2021). Another related work is the rank estimation of the partial

linear model with responses missing at random (Bindele and Abebe, 2015), but this only con-

sidered a univariate nonparametric component which was treated as a nuisance parameter.

This dissertation studied a rank-based estimation and selection procedure for semi-varying

coefficient models which generalizes many of the models studies previously.

In addition to the theoretical results establishing consistency and efficiency, we also

performed a simulation study that provided important insight into the performance of the

proposed procedure. For instance, although as expected the efficiency results for non-zero

coefficients are comparable to least squares in the case of Gaussian data and far superior

to least squares in the case of heavy tailed or contaminated data, the selection consistency

results of the proposed rank-based approach were somewhat remarkable. The rank estimator

does almost uniformly better than the least squares estimator in correctly estimating of the

zero functional coefficients even in the case of Gaussian data. Thus for functional coefficient
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estimation and selection, the rank estimation appears to have an “oracleness” in the sense

of efficiency and selection consistency. We suspect this is theoretically true as a similar

observation was made following an extensive simulation study by Sun et al. (2021) which

gave a rank-based estimation and selection procedure of the functional regression coefficients

for the single-index varying coefficient regression model.

We also studied the semi-varying coefficient model to study a high-frequency global

COVID-19 data. This cross-country dataset had variables that may affect COVID-19 excess

mortality that only changed at the level of a country. These included variables like the

proportion of the population over 70 years old or the country’s GDP per capita, which are

unlikely to show changes over a short pandemic. On the other hand, the dataset contained

variables that were expected to substantially vary over time for each country. These included

variables like the number of new COVID-19 cases or the number of ICU patients. We followed

a hierarchical modeling approach where the functional coefficients varied by time and were

estimated for each country. These were then fused to estimate the fixed coefficients that only

varied across countries. The mixed backfitting computational algorithm iterates between the

two scales until convergence.

There are several issues that need to be considered in the future. The first is the com-

putational burden. The current computational approach, while amenable for distributed

computing on high-performance computing clusters, is extremely expensive. This is because

the approach internally performs iterated reweighted least squares steps within each back-

fitting step making the computational time significantly more demanding than the least

squares approach. There are other avenues that may be considered. For example, there

are one-step quadratic approximation procedures for the rank-estimator in the case of linear

model estimation. It would be interesting to see if analogous procedures can be developed

for the estimation of the more complex semiparametric models.
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Another potential future direction is how to impute missing values in the context of the

rank estimation of semi-varying coefficient models. For the high frequency global COVID-

19 dataset studied in this dissertation, we had to eliminate several countries since they

were missing parts of the data. The dataset would have been richer if there are rank-based

procedures to impute the missing data, especially given that the missingness is possible not at

random (non-ignorable). It would be of interest to explore ideas such as exponential tilting

(Kim and Yu, 2011) to explore this direction similar to Bindele and Adekpedjou (2019).

Computation

As we noted in the COVID-19 study, some of the variables (eg. stringency index and

excess mortality) may have coupled dynamics. These are often described using predator-

prey type differential equation models. It is of interest to explore versions of semi-varying

coefficient models that account for coupled dynamics using lagged variables. These models

are somewhat complex to analyze in the context of semi-varying coefficient models. While

estimation appears to be within reach (Sun et al., 2019), model selection in this context will

require substantial further research.

Finally, further theoretical investigations of the hierarchical semi-varying coefficient

model similar to the one used in the analysis of the COVID-19 data would be of great

interest. A rank based model selection and estimation procedure which at the same time

quantifies two levels of variation in response would provide means to study data that have

complex features but are currently analyzed using linear mixed models as a best approxima-

tion. This dissertation has provided an initial point in extending the rank-based procedures

for mixed models in Abebe et al. (2016) for longitudinal data in Kloke, McKean, and Rashid

(2009) for exchangeable, cluster-correlated data.
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Appendix A

Simulation Code

################################################################################

## Multivariate Normal Random Variates

################################################################################

rmvnorm <- function(n, p, rho){

X <- matrix(nrow = n, ncol = p)

sigma <- matrix(nrow = p, ncol = p) #variance-covariance matrix

for (i in 1:p){

for (j in 1:p){

sigma[i,j] = rho^abs(i-j)

}

}

L <- chol(sigma) #Cholesky decomposition

for (k in 1:n){

Z <- rnorm(p)

X[k,] <- L%*%Z

}

return(X)

}

################################################################################

## Mixed Normal Random Variates

################################################################################

rmixnorm = function(n, p, mu1, sd1, mu2, sd2)

{

group = rbinom(n, size = 1, prob = p);

m = sum(group);

z = numeric(n);

z[group == 1] = rnorm(m, mu1, sd1);

z[group == 0] = rnorm(n - m, mu2, sd2);

return(z)

}
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################################################################################

## Simulation Code

################################################################################

n = sample size

rep = replications

for (i in 1:rep){

x <- rmvnorm(n,p,0.5)

e <- rmixnorm(n, 0.95, 0, 1, 0, 10)

z <- matrix(runif(q*n,-1,1),n,q)

u <- matrix(runif(n,-1,1),n,1)

f <- (1+3*u^2)+3*exp(-u*u)*x[,1]+1.5*sin(pi*u)*x[,2]+0.8*u*x[,3]

Z <- 1.5*z[,1] + z[,4] + 3*z[,5]

y <- f + Z + e

# run rank variable selection

fit <- vcm_rvs(x,y,u,9)

#Set initial alpha and beta

a.previous <- fit$func

b.previous <- as.matrix(rep(0, q))

A <- 10

B <- 10

while(A > .5 && B > .01){

#Estimate new beta using initial alpha

y2 <- y - (t(fit$w.theta.opt))%*%(fit$basis.coef)

fit2 <- cv.glmnet(z, y2, alpha = 1, lambda = grid)

bestlam <- fit2$lambda.min

fit22 <- glmnet(z, y2, alpha = 1, lambda = grid)

beta <- as.matrix(predict(fit22, type = "coefficients", s = bestlam))[-1]

y1 <- y - z%*%beta

fit <- vcm_rvs(x,y1,u,9)

a.new <- fit$func
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b.new <- beta

A <- norm(as.matrix(a.previous - a.new), "i")/norm(as.matrix(a.previous), "i")

B <- norm(as.matrix(b.previous - b.new), "i")

a.previous <- a.new

b.previous <- b.new

print(c(A, B))

}

}
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