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The Toxics Release Inventory is a public access database established under the 
Emergency Planning and Community Right-to-Know Act (EPCRA) to protect public 
health, safety and the environment from toxic chemical hazards.  In 2002, industrial 
facilities in the US were required to report their annual environmental releases of 
approximately 650 toxic chemicals to the Environmental Protection Agency.  Around 4 
billion pounds of toxic chemicals were released into the environment in 2002 from 
industrial facilities.  These toxic substances have the potential to impact morbidity and 
mortality in a significant way. 
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The City of Anniston in Calhoun County, Alabama is one of many places that 
have to deal with multiple environmental hazards.  In the mid-1990s Anniston discovered 
that the city had been heavily contaminated with PCBs.  Then, in the late-1990s, the US 
Army began the construction of Anniston Chemical Agent Disposal Facility to dispose of 
chemical weapons at the Anniston Army Depot, which is a Superfund site and generating 
a significant amount of toxic chemicals.  To make the situation worse, lead contamination 
in Anniston was discovered in 2000, when EPA conducted tests for PCBs.   
Impacts of toxic chemicals on human health may impose several types of costs to 
the society.  The first type of these costs is the depreciation of values of residential 
properties in the area with high levels of toxic chemicals.  The second type is the ultimate 
direct and indirect costs associated with health impacts of toxic substances.   
The purpose of this dissertation is to investigate the impacts that toxic chemicals 
pose on the society.  Specifically, we analyze how toxic substances affect property 
values, individual?s health status and labor productivity losses.  A number of economic 
models including hedonic price model and health capital models as well as econometric 
models including Full Information Maximum Likelihood model, generalized instrumental 
variable model and count model, are employed for the analysis.   
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I. INTRODUCTION 
 
The Emergency Planning and Community Right-to-Know Act (EPCRA) was 
enacted in 1986 by Congress to protect public health, safety and the environment from 
toxic chemical hazards.  The law gives the public the right to know about toxic chemical 
releases in their community by requiring major industrial facilities in the U.S. to report 
their emissions of certain toxic chemical substances into the environment.  Under 
EPCRA, the Toxics Release Inventory (TRI) program, managed by US Environmental 
Protection Agency (USEPA), was established to contain yearly information on toxic 
chemical releases and other waste management from industrial facilities.   
In 2002, industrial facilities were required to begin reporting their annual 
environmental releases of approximately 650 toxic chemicals to USEPA.  Around 4 
billion pounds of toxic chemicals were released into the environment in 2002 from 
industrial facilities, of which 1.6 billion pounds were air releases, 0.2 billion pounds were 
water releases, and 2.2 billion pounds were land releases (RTK NET 2002).  Water and 
land toxic chemical releases include a huge amount of arsenic and arsenic compounds, 
lead compounds, nickel and nickel compounds, chromium compounds, and cadmium 
compounds, which are either possible or proven human carcinogens, respiratory 
toxicants, developmental toxicants, skin and sense organ toxicants, or cardiovascular 
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toxicants (EPA 2005).  All these toxic substances have the potential to impact morbidity 
and mortality in a significant way. 
The City of Anniston in Calhoun County, Alabama is one of many places that 
have to deal with multiple environmental hazards.  National focus on Anniston began in 
the mid-1990s when it was discovered that the city has been heavily contaminated with 
PCBs.  The contamination occurred gradually over several decades since the time PCBs 
were first produced at the Anniston Monsanto plant.  Then, in the late 1990, the US Army 
began the construction of Anniston Chemical Agent Disposal Facility to dispose of 
chemical weapons at Anniston Army Depot.  The chemical weapons include the nerve 
agents GB (known as sarin) and VX, and blistering agents HD and HT (know as mustard 
gas), which are very toxic.  Residents of the area surrounding the disposal facility are 
concerned about the health risks in the case of leaking of chemical weapons during the 
process of disposal.  The Anniston Army Depot is also a Superfund site and generating a 
significant amount of toxic chemicals.  To make the situation worse, lead contamination 
in Anniston was discovered in 2000, when EPA conducted tests for PCBs.  Unlike PCBs 
contamination, lead has been released into Anniston by a number of sources including 
several private enterprises.  Both PCBs and lead are very toxic chemicals, which may 
cause a number of ill health effects. 
There may be a number of economic impacts resulting from environmental health 
risks associated with toxic chemicals.  The first type of costs is the depreciation of values 
of residential properties in areas where high levels of toxic chemicals are present.  It is 
believed that property values are determined not only by the physical characteristics of 
the house such as its age, size and quality but also by environmental goods such as parks 
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and beaches and environmental bads such as landfills, incinerators and all types of 
pollution.  In this case, concerns about potential heath risks may drive people away from 
the area filled with toxic chemical releases depressing property values in the area as a 
result. 
The second type of cost is related to the ultimate direct and indirect health impact 
costs associated with substances.  People exposed to toxic chemical releases may develop 
some environmental illnesses including asthma, developmental problem, immune system 
damage, birth defects as well as cancer.  Direct costs would be costs of treatments for 
these environmental illnesses.  Indirect costs come from productivity losses associated 
with these illnesses, including sick days in bed, restricted activity days and especially loss 
of workdays.   
The purpose of this dissertation is to investigate the economic impacts that toxic 
chemicals impose on the society.  Specifically, we analyze how toxic substances affect 
property values, individual?s health status and labor productivity.  A number of economic 
models, including the hedonic price model and health capital model are investigated 
using econometric techniques such as Full Information Maximum Likelihood model, 
generalized instrumental variables and count model.  The next three chapters of this 
dissertation present three independent studies.  The last chapter concludes the findings in 
this dissertation and provides some recommendations. 
In the second chapter, we explore how environmental health risks influence 
property values where environmental risks are represented by toxic chemical releases, 
Superfund sites and cancer mortality.  A simultaneous Full Information Maximum 
Likelihood (FIML) approach is employed to control for endogeneity of toxic releases and 
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cancer mortality using a county level dataset from the US.  A comparison between 
Ordinary Least Squares and FIML models is performed.  We also estimate the value of 
statistical life and predict the effect of an environmental cleanup and calculate net 
benefits of such a policy. 
In the third chapter, we investigate how toxic chemical releases impact 
individual?s health status and labor productivity losses.  We begin by providing a 
theoretical model of health capital to explain how time lost due to illness is affected by 
toxic chemical exposure.  We then construct a system of equations to simultaneously 
estimate impacts of toxics on workdays lost.  A generalized instrument variable approach 
is employed using a unique dataset combining the 2002 National Health Interview 
Survey, TRI and other data. 
In the fourth chapter, we examine the effects of multiple environmental hazards 
on health and labor productivity in Calhoun County, Alabama.  This study is a modified 
version of the third chapter using micro level data.  Another difference is that in this 
study we employ the maximum likelihood approach to solve simultaneously the system 
of equations instead of an instrumental variable approach.  Environmental hazards 
include PCB contamination, lead contamination and the Army Depot.  A survey was 
conducted to obtain individual characteristics, economic status, education status, health 
status and labor productivity losses.   The dataset used for this study is created by 
merging survey data with PCB and lead levels from EPA office in Anniston and other 
data. 
The results from these studies may be useful for environmental policy makers, 
especially in cost-benefit analysis.  For example, the results of the first and second studies 
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could be used in cost-benefit analysis for environmental cleanup of Superfund sites and 
reduction of toxic chemical releases at the aggregate level of county in the US.  The 
results of the third study would inform policy makers about the health effects and indirect 
costs of environmental hazards and those results may be used for welfare estimates for 
environmental cleanup of the City of Anniston or other places that contaminated with 
PCBs or lead. 
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II. CANCER MORTALITY, TOXIC CHEMICAL RELEASES, AND HOUSE 
VALUES IN THE UNITED STATES 
 
2.1  Introduction 
Environmental health risks have attracted much public attention in recent decades.  
Environmental risks arise from air, water and land pollution that come from automobiles, 
agricultural activities or undesirable facilities such as hazardous waste sites and industries 
at the local or regional level.   In this paper, we attempt to measure the economic impacts 
of environmental health risks originating from point sources such as waste sites and 
industrial facilities. 
Concerns about environmental health risks may be reflected in lowered property 
values, with a resulting negative impact on individual economic welfare.  The idea is that 
people are willing to pay more to reduce environmental risks.  However, compensating 
differentials for risk are only indirectly observed in marketed goods.  One method that 
has been developed to estimate the risk-money tradeoff is the hedonic price model 
(HPM) using housing market data (Rosen 1974).  The model assumes that housing 
consists of a bundle of characteristics.  Hedonic prices are defined as the implicit prices 
of characteristics and can be estimated from observed house prices and specific quantities 
of characteristics embodied in the houses.  The effect of environmental risks on property 
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values can thus be measured by regressing house values on characteristics, including 
environmental health risks. 
The purpose of this paper is to estimate the effect of environmental health risks on 
property values in the United States.  We include environmental disamenities, such as 
Superfund sites and toxic chemical releases, as proxies for environmental health risks.  
We also include cancer mortality as a factor that can impact house values; however, 
cancer mortality may also be a function of demographic characteristics and 
environmental disamenities.  Further, toxic chemical releases may be explained by 
county demographic and economic characteristics such as percent male, percent white, 
percent with college degree and percent in the 35-54 age group.  We hypothesize that 
house values, health risks and toxic releases are endogeneously determined.  To test this, 
we employ a simultaneous Full Information Maximum Likelihood modeling approach to 
jointly estimate housing prices, cancer mortality, and total chemical releases using a 
county level dataset from the United States and compare the results to Ordinary Least 
Square models.  The results indicate that a single model of house values significantly 
underestimates the effect of releases and cancer mortality.  In addition, using the 
simultaneous model, we predict the effects of an environmental cleanup, estimating net 
benefits of such a policy. 
 
2.2  Literature Review 
There has been an intensive literature that uses the HPM to investigate the 
property value impacts of environmental goods as measured by proximity to toxic sites.  
Michaels and Smith (1990) use the hedonic model to investigate the impact of hazardous 
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waste sites on house prices in Boston, finding that property values increase with distance 
from the house to the nearest site.  Kohlhase (1991) studies the impact of toxic sites in 
Houston on property values before and after the sites were listed in the Superfund 
National Priorities List (NPL).  Her study suggests that toxic sites have a significant 
impact on house prices once they are listed as NPL sites, with prices positively related to 
distance from toxic sites for up to 6.2 miles.  Nelson, Genereux, and Genereux (1992) 
examine the effect of landfills on house sales in Minnesota and conclude that landfills 
have a negative impact on house values for homes within two miles and the value of a 
house located on a landfill boundary could be reduced more than 12 percent.  Kiel and 
McClain (1995) use sale data from Massachusetts to examine the impact of an incinerator 
on sale prices and find that the impact of the incinerator is significant during the 
construction and ongoing operation stages.  Hite et al. (2001) study the impact of the 
presence of four landfills in Ohio on the property values of nearby houses.  The authors 
find that property values are negatively impacted by the proximity of both open and 
closed landfills.  Anstine (2003) tests the influence of buyer information on house price, 
by examining how the presence of two very different noxious facilities impact property 
values in a semi-rural area of Tennessee.  He finds that a visible noxious facility 
negatively affects home values while a non-visible disamenity does not. 
A number of studies focus on the way environmental health risk beliefs affect 
property values.  McClelland, Schulze, and Hurd (1990) estimate the effect of health risk 
beliefs on property values in the Los Angeles area.  They find that health risk beliefs have 
a substantially negative correlation with property values, and risk beliefs decrease when 
moving away from hazardous waste sites.  Gayer, Hamilton, and Viscusi (2000) examine 
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the effect of cancer risk perceptions from Superfund sites on house prices in Grand 
Rapids, Michigan before and after the USEPA released its assessment of site risks.  Total 
lifetime cancer risk is defined as the sum of soil and groundwater cancer risk from each 
site.  They find that people are willing to pay more for houses with lower levels of 
exposure to cancer risk, and residents? willingness to pay to reduce risks decreases after 
release of the assessment.  McCluskey and Rausser (2001) study the impact of perceived 
risks on property value, where perceived risk is assumed to be a function of lagged 
perceived risk and media coverage of certain hazardous waste sites in Dallas County, 
Texas.  The authors find that perceived risk is negatively related to house prices, and 
media coverage increases perceived risk. 
In contrast to previous studies that use house-level data, Chay and Greenstone 
(2005) used county-level data to investigate how total suspended particulates (TSPs) 
affect median values of owner occupied housing units in the county in 1970 and 1980.  
Their dataset consists of 988 counties, accounting for approximately 80 percent of the US 
population.  They use two different models based on two measures of TSPs.  In the first 
model, they regressed actual TSPs on median house values and find that the results are 
mixed.  For 1970, correlation between housing prices and TSPs was significant and 
negative but for 1980, correlation between housing prices and TSPs was unexpectedly 
positive.  In the second model, nonattainment status, which is defined by concentrations 
of TSPs that exceed a federally set ceiling, is used as an instrumental variable for TSPs.  
They estimate that a reduction of 1 mg/m3 in TSPs results in an increase of 0.2?0.4 
percent in mean housing values, or a -0.20 to -0.35 elasticity, using the county-level 
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regulations as an instrument.  They also estimate aggregate welfare gain of $45 billion for 
homeowners for the late 1970s reductions in TSPs. 
 
2.3  Empirical Model and Data 
2.3.1  Environmental health risks 
Sources of air, water, and land pollution are categorized into two groups: point 
and nonpoint.  Point sources consist of stationary facilities or processes that generate a 
significant amount of pollution from their activities.  Point sources include major 
industrial facilities like chemical plants, power plants, steel mills, oil refineries, and 
incinerators.  Nonpoint sources arise from a large number of small and widely dispersed 
origins.  Nonpoint sources include emissions from automobiles or runoff from land-
disturbing activities like agriculture, forestry, mining, and urban development.  The focus 
of this paper is environmental risks imposed by point sources, as there are currently 
policy prescriptions and regulatory infrastructure in place to measure these hazards. 
Environmental exposure to toxic substances from hazardous waste sites or toxic 
chemical releases from industries poses human health risks.  The potential health effects 
may be cancer or noncancer-related, such as birth defects, respiratory and immune system 
damage.  Cancer is defined as a disease of heritable, somatic mutations affecting cell 
growth and differentiation, characterized by an abnormal, uncontrolled growth of cells.  
Cancer has been linked to exposure to toxic substances by means of carcinogenic 
chemicals. 
In addition to direct indicators of health risks such as total toxic chemical releases, 
cancer mortality and cancer incidence form indirect cancer risk indicators.  Individuals 
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may form subjective measures of health risks by examining cancer statistics in their 
areas, since cancer mortality is observable and information is readily available.  
 
2.3.2  Empirical model  
We use the hedonic price model to investigate county-level cross-sectional 
relationships between median house values and environmental health risks.  House value 
in each county reflects the value people place on a bundle of characteristics associated 
with a housing unit.  The hedonic house price in equation 1 is assumed to be a function of 
house, neighborhood, county, and environmental characteristics  
V = f (H, C, E) + ?                         (1) 
where V is house value, H is a vector of the house characteristics, C is a vector of county 
socio-demographic characteristics, E is a vector of environmental disamenities with their 
attendant risks. 
A number of previous studies have used individual house sale price as the 
dependent variable in hedonic price models (Gayer, et al. 2000a; Gayer, et al. 2000; Kiel 
and Zabel 2001; Kohlhase 1991; McCluskey and Rausser 2001; Nelson, et al. 1992).  
This paper, however, uses the county level median value of owner-occupied units 
obtained from the 2000 census as the dependent variable as we were unable to obtain 
cancer data at any lower level of aggregation.  Review of the literature provides 
precedence for using median unit value to estimate the impact of environmental goods on 
housing (Nelson 1978; Schulze and King 2001; Zabel and Kiel 2000).  In particular, as 
previously mentioned, Chay and Greenstone (2005) use the county level median value of 
owner-occupied housing units in their study.  An advantage of using owners? self 
valuation of their house is that it provides values for houses whether or not they sell; 
therefore it eliminates the likelihood of sample selection bias (Kiel and Zabel 1997).  Kiel 
and Zabel (1997) tests the accuracy of owner-estimated values and concluded that 
hedonic equations based on owners? valuation would provide unbiased estimates of 
changes in house prices. 
People exposed to local environmental risks arising from Superfund sites and 
toxic chemical releases from industrial facilities suffer potential health impacts.  We use 
several variables as proxies to measure environmental health risks, including total 
releases of toxics.  Individuals may also be exposed to environmental health risks arising 
from hazardous waste sites.  We thus include the number of Superfund sites on the 
National Priority List within a county to represent health risks.
1
 
If individuals use publicly available statistics to assess local environmental health 
risks, we can assume cancer mortality or cancer incidence are potential candidates to 
represent environmental health risk proxies.  Individuals? valuations of health effects of 
hazardous substances may therefore be reflected in house values, allowing us to include 
cancer incidence and death rates as an explanatory variable in the hedonic housing 
equation.  County level cancer mortality data used in this analysis are the only publicly 
available data.  
The effect of potential spatial correlation on house prices needs to be addressed in 
hedonic analysis.  Several papers have used absolute location into econometric analysis  
 
 
1
 Although we recognize that these are imperfect measures of actual health risk, perceived risks may be 
relevant for their impacts on individual willingness to pay to avoid exposure. 
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to control for spatial effects (Anselin 1988; Case 1991; Clapp 2003; Fik, et al. 2003; 
Pavlov 2000).  Pavlov (2000), Clapp (2003), and Fik, Ling, and Mulligan (2003) 
incorporate geographic coordinates of individual housing units as explanatory variables 
in the hedonic house price model.  Anselin (1988) uses neighborhood centroid 
coordinates to explain the variation in crime while Blair and Hite (2005) use geographic 
coordinates for county centroid to control for location effects on the landfill industry.  
Following these papers, county centroid geographic coordinates are included as 
explanatory variables in this analysis to control for spatial effects in house values.  
The exponential specification of the hedonic price model with an additive error 
term is used in this paper.  Within the hedonic framework, house value is assumed to be a 
function of environmental health risks including total chemical releases, number of 
Superfund sites, cancer mortality, and other explanatory variables. 
We hypothesize that there are endogeneities in the system of equations.  In 2000, 
579 individual chemicals were tracked in the TRI database, of which 189 are classified as 
recognized carcinogens under the requirements of the Occupation Safety and Health 
Administration.  Thus, total chemical releases may increase cancer mortality to exposed 
individuals; in addition, some Superfund sites may pose a risk.  Some studies also find 
that cancer mortality is affected by local socioeconomic patterns (Burnley 1997; 
Faggiano et al. 1997; Singh et al. 2002).  Singh et al (2002) show that cancer morality 
differs significantly among different age groups and Kesteloot (1994) finds there are 
highly significant positive correlations between cancer mortality and age, and a decrease 
in the rate of cancer incidence after 65 years of age.  Thus it is important to control for 
these variables to the extent possible.  
Other health-related characteristics within a county may also help explain 
differences in cancer death.  We thus include county percent of obese individuals as an 
explanatory variable, since there is evidence that obesity and overweight positively affect 
cancer death rates, especially in women (Adderley-Kelly and Williams-Stephens 2003; 
Calle, et al. 2003).  We also include the proportion of the population with any kind of 
health care coverage, since people with health care may be more likely to have cancer 
discovered early and are more likely to receive treatments in a timely manner.  Tobacco 
use has been found a cause to lung cancer; hence percent of persons smoking on a daily 
basis is included as an explanatory variable in the cancer mortality equation.  Since 
cancer mortality statistics used in this analysis covers all types of cancer, including skin 
cancer, average temperature is included as an explanatory variable
2
. 
Total chemical releases are probably endogenous to house values and cancer 
incidence.  Toxic sites could be located in areas where poor people live (Hamilton 1993, 
1995; Gayer, Hamilton, and Viscusi 2000).   Further, Bui (2003) finds that TRI-emitting 
plants tend to locate in communities with more middle-aged residents, and where 
residents are more likely to be registered as Democrats.   
 The system of three equations is written as 
V =exp (?
V
 +? DR +? H +? C +? CM + ?
V
 TR +?
V
 NPL +?X + ? Y) +?
V
        (2) 
CM =exp (?
CM
 +? DR +? C + ? HE +?
CM
TR +?
CM
NPL +?X + ? Y) + ?
CM 
       (3) 
TR =exp (?
TR
 + ?
 
DR
 
+ ? C + ?
TR
 NPL +?X + ? Y) + ?
TR
                             (4) 
2
 Although skin cancer is associated with exposure to sunlight, increased exposure is correlated 
with warmer climates. 
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where V is the median value of a county?s owner-occupied housing units; DR is a vector 
of dummy variables for regions, to control for unobserved heterogeneity in the data (e.g. 
differences in building material costs, job markets or tastes);  H is a vector of house  
characteristics; C is a vector of county characteristics; CM is cancer mortality at county 
level in year 2000; TR is total release/ person for years 1987-2000 at the county level; 
NPL is the number of Superfund sites on the NPL /1000 sq mile within a county; X and 
Y are county centroid coordinates; where HE is a vector of health characteristics; and ? is 
the error term.  
Each of the four environmental health risk variables is expected to have negative 
impacts on house values so that as environmental health risks increase, there will be a 
reduction in property values.  House values are also expected to be positively related to 
desirable variables such as percent white, percent college degrees and household income. 
Environmental hazards, such as total toxic releases and number of Superfund 
sites, are expected to increase cancer mortality.  That is, the higher the total releases and 
the more Superfund sites within a given county the greater the potential exposure to 
carcinogens, which in turn increases incidence of cancer and cancer deaths.  Total 
releases are assumed to be positively affected by the number of NPL sites and negatively 
related to household income.  Certain regions are known to have particularly high 
concentrations of industrial activity; hence region dummy variables are included.   
 We first estimate the system of equations (2)-(4) using OLS.  However if cancer 
mortality and total releases are endogenous, OLS parameter estimates will be biased and 
inconsistent.  We thus also estimate a simultaneous FIML to compare with the OLS 
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results.  The FIML model is also useful for simulating outcomes of various policy 
alternatives, as it can capture feedback effects from endogenities in the system.   
  
2.3.3  Data 
The county-level data for this paper are obtained from several sources.   House 
values and housing characteristics come from the 2000 decennial census, US Census 
Bureau.  The crime rate is obtained from Federal Bureau of Investigation Uniform Crime 
Statistics.  The number of Superfund sites on the Final National Priorities List is obtained 
from the CERCLIS database, Superfund Information System, EPA. Cancer mortality 
comes from the National Center for Health Statistics while health characteristics come 
from the Behavioral Risk Factor Surveillance System (BRFSS) 2000, Centers for Disease 
Control and Prevention. 
Air, water, and land toxic releases are derived from the USEPA?s TRI database, 
housed on the Right-to-Know network (www.rtknet.org).  These are total releases of all 
chemicals into the air, water, and land reported to EPA by major industrial facilities in 
each county.  Air releases include stack emissions, which occur through confined air 
streams, such as stacks, vents, ducts or pipes, and fugitive emissions such as equipment 
leak, evaporative losses from surface impoundments and spills, and releases from 
building ventilation systems (TRI).  Water releases include surface water discharges to 
streams, rivers, lakes, oceans and other bodies of water and underground injection, which 
is the subsurface emplacement of fluids through wells.  Land releases include all the 
chemicals disposed of on land within the boundaries of the reporting facility.  
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The total releases in the inventory cover about 582 individually listed chemicals 
accounting for less than 1% of the over 75,000 chemicals manufactured in the U.S., 
according to EPA's Toxic Substances Control Act Inventory (USEPA).  However, TRI 
does not address all sources of releases and other waste management activities of TRI 
chemicals.  The TRI releases contain annual data from its initial year, 1987, to 2000.  
Since it generally takes many years after exposure to a toxic substance for chemically-
induced cancer to develop, we use cumulative TRI chemical releases from all sources 
from 1987 to 2000 as the explanatory variable in this paper. 
Due to missing variables in Alaska, Hawaii and Washington DC, the final data set 
constructed from the different sources includes 3,106 counties in 48 states in the US. 
Identification issues arise when we estimate parameters in a simultaneous 
equation model.  Before estimating equations (2)-(4), we examine potential identification 
problem to determine whether we can obtain parameter estimates for the system.  
Regional dummies, county characteristics are included in all three equations.  Proportion 
of county?s population that is obese, proportion with any kind of health care coverage, 
and percentage of daily smokers are included only in the cancer mortality equation.  
Similarly, total earnings in manufacturing, percent of jobs in manufacturing, and percent 
Democratic votes in the 2000 Presidential election as a proportion of total population are 
included only in the total release equation.  Housing characteristics included only in the 
house equation are number of rooms, year built, proportion of housing units with 
complete kitchen, real estate taxes, proportion of vacant houses and proportion of owner-
occupied houses.  To be sure that we exclude them reasonably, correlation coefficients 
are calculated (Table 2.1) between room and year built and age and gender of the owners 
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since certain age and male or female may prefer houses of a certain age or with a certain 
number of rooms and year built.  The correlation coefficients justify our exclusion.  The 
results are similar for variables representing proportion of obese people, proportion of 
daily smokers, and proportion of people with health care.  The correlation coefficients 
between them and 35-54 age group, gender, rooms, and year built are very small; 
therefore we exclude them from the house value and total release equations. 
Table 2.2 presents descriptive statistics for all variables in the model.  The mean 
value of county median owner-occupied housing units is $80,864 for the sample.  The 
main explanatory variables are environmental health risks, represented by total releases, 
number of Superfund sites, counties with high chemical releases, and cancer mortality.  
The mean value of total releases is 626 pounds of toxic chemicals per person and the 
average number of Superfund sites is 0.79 per thousand square miles.  The mean cancer 
mortality per county is 200 per hundred thousand persons. 
 
Table 2.1 Correlation coefficient matrix 
 
Rooms 
Year 
built 
35-54 
age 
Male Obese Health Dem00
Rooms      1     
 
 
Year built   -0.29      1    
 
 
35-54 age     0.23   0.17      1   
 
 
Male   -0.09   0.06   0.17      1  
 
 
Obese   -0.13 -0.06 -0.10  -0.08    1 
 
 
Health    0.44 -0.25  0.14  -0.03  -0.16 
 
     1  
Dem00    0.09 -0.14  0.17  -0.19  -0.06 
 
  0.24     1 
Table 2.2  Variable definitions and descriptive statistics (N=3,106) 
Variable Mean Std Dev 
Median value of owner-occupied housing units ($1,000) 80,864.26 41,893.27 
Cancer mortality (deaths/100,000 population)  200.3659  27.7276 
Total releases (10,000 pounds/person) 0.0626    0.6903 
Superfund sites (sites/1000sq mile) 0.7911    0.2236 
Dummy for county with total release > 0.05 0.0959    0.2945 
Household income($1,000)    40.7993  10.7805 
Percent with college degrees (%)    10.9542   4.9238 
Percent white (%)    84.7681   16.0126 
Percent male (%)    49.5087   1.9389 
Percent married people (%)    60.4018   5.3682 
Percent people in 35-54 age group (%)    29.0931   2.5870 
Percent employed in services (%)    23.2208   4.7242 
Unemployment rate (%) 3.3901   1.4235 
Crime rate (%) 3.2268   2.0785 
Median rooms of  housing units 5.9327   0.4479 
Median year built of  housing units 1969.3 11.2174 
Percent house with complete kitchen %)    99.4231   0.9442 
Real estates taxes ($1,000)  840.7414 634.2332 
Percent vacant houses (%)    14.1438  9.5472 
Percent owner occupied housed (%)    74.1038  7.5274 
X coordinate of county?s centroid   -91.6642 11.4803 
Y coordinate of county?s centroid    38.2790   4.8381 
Percent jobs in manufacturing (%)  6.7768   5.1178 
Dummy for Northwest region
3 
0.0637   0.2443 
Dummy for Northeast region
4 
 0.0698   0.2549 
Percent votes for Democrat in 2000 election (%) 15.7034   5.0591 
Percent population with health coverage (%) 86.6429   5.8989 
Percent obese population (%) 19.6754   3.2329 
Percent daily smoker (%) 18.0382   3.5531 
Average temperature (
o
F) 54.8480   8.3669 
 
 
3 
Northwest region: Washington, Oregon, Idaho, Montana and Wyoming 
4
 Northeast region: Maine, Vermont, New Hampshire, Massachusetts, Connecticut, Rhode  Island, 
New York, New Jersey and Pennsylvania. 
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2.4  Model Estimates 
Using the Breusch-Pagan test, we found that heteroscedasticity existed in the OLS 
model.  After correcting for heteroscedasticity, the modified regression result showed that 
the chi-square statistics were calculated to be 0.52 for the first equation, 3.72 for the 
second equation , and 5.35 for the third equation, which are all smaller than the 5% 
critical value of significance of 7.81 (3 degrees of freedom).  Therefore, we fail to reject 
the null hypothesis of homoscedasticity and concluded that heteroscedasticity is mitigated 
in the corrected model. 
Tables 2.3, 2.4, and 2.5 present house value, cancer mortality, and total release 
regression results using OLS.  In the house value equation, out of four variables for 
environmental health risks, parameter estimates for cancer mortality, total releases and 
county with high releases have the expected negative signs and are statistically 
significant.  From the model specification, coefficients can be interpreted as the 
percentage impact of parameter on house values.  For example, an increase of 1 cancer 
death per 100,000 in a county reduces house values by 0.07 percent, while an increase of 
10,000 pounds of toxic releases per person reduces house values by 3.6 percent.  The 
coefficient for number of Superfund sites is insignificant.  The significantly positive 
coefficient for latitude is interpreted to mean that house values rise when moving to the 
North and a significantly negative coefficient of longitude indicates that property value 
increases when moving to the East.  Holding latitude and longitude constant, house 
values are found to be higher in the Northeast and Northwest region.  Housing 
characteristics include median number of rooms and median year built of housing units, 
in which median number of rooms has negative impact on house values and median year 
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built has positive impact on house values.  One additional room leads to a decrease of 
house values by 10.42 percent and one additional year in year built leads to an increase of 
house values by 0.75 percent.   Neighborhood characteristics of household income, 
proportion of white, proportion population in the 35-54 age group, proportion employed 
in services and vacancy rate have positive effects on house values.  An increase of 1 
thousand dollars in household income raises house values 3.34 percent and an increase of 
1 unit in proportions of white, population in the 35-54 age group, employed in services 
and vacant houses raise house values by 0.28, 0.93, 1.17 and 0.38 percent, respectively.  
Other neighborhood characteristics including proportion of college graduates, proportion 
of male, proportion of married people, unemployment rate and proportion of owner-
occupied houses are negatively related to house values.  One additional unit in these 
numbers leads to a decrease of house values by 0.36, 1.18, 0.94, 0.74 and 0.15, 
respectively. 
In the cancer mortality equation, the coefficients for total releases, number of 
Superfund sites, and the dummy for county with high releases are unexpectedly 
insignificant.  Counties with higher percent of daily smokers have a higher cancer death 
rate with a 1 percent increase in daily smoker increasing cancer mortality by 0.65 percent.  
County average temperature increases the rate of cancer mortality; each degree increase 
in average annual temperature is associated with a 0.24 percent increase in cancer 
mortality.  One additional thousand in household income results in an increase of 0.12 in 
the cancer death rate.  An increase of 1 unit in unemployment rate and crime rate raises 
cancer mortality rate by 0.42 and 0.43, respectively.  Each percent increase in proportion 
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of college graduates, males and married people reduces cancer death rate by 1.18, 0.55 
and 0.63 percent, respectively.   
In the total release equation, household income has an unexpectedly positive 
effect on total releases.  An increase of household income by 1 thousand dollars raises 
toxic releases by 11.24 percent.  This may be explained by recognizing that there are 
more jobs where there are more releases and that chemical factories provide high-paying 
jobs.  Toxic chemical releases increase with unemployment rate, percent male and 
percent employed in services, but decrease with percent of college graduates, crime rate 
and percent of married people. Counties with a higher percentage of people voting 
Democratic in the 2000 President election have lower toxic chemical releases.  Each 
percent increase in people voting Democratic is associated with a 15.62 percent decrease 
in total releases. 
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Table 2.3  Nonlinear OLS estimates for house value equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value 
Intercept    -4.2224*** 0.8818 -4.79
Household income     0.0334*** 0.0007 46.86
Percent with college degrees    -0.0036*** 0.0012 -2.95
Percent white     0.0028*** 0.0004 7.61
Percent male    -0.0118*** 0.0022 -5.27
Percent married people    -0.0094*** 0.0011 -8.45
Percent people in 35-54 age group     0.0093*** 0.0016 5.77
Percent employed in services     0.0117*** 0.0012 9.87
Percent vacant houses     0.0038*** 0.0005 8.45
Percent owner occupied housed    -0.0015** 0.0007 -2.02
Unemployment rate    -0.0074** 0.0035 -2.10
Crime rate (crimes per 1,000 population)    -0.0025 0.0019 -1.37
Median rooms of  housing units    -0.1042*** 0.0108 -9.69
Median year built of  housing units     0.0075*** 0.0005 16.58
Real estates taxes ($1,000)    -0.0001*** 0.0000 -5.73
X coordinate of county?s centroid    -0.0044*** 0.0004 -10.86
Y coordinate of county?s centroid     0.0084*** 0.0012 6.90
Dummy for county with population > 100,000     0.0035 0.0116 0.30
Cancer death rate (death/100,000)    -0.0007*** 0.0002 -4.16
Total releases (10,000 pounds/person)    -0.0358*** 0.0085 -4.20
Superfund sites (sites/1000 sq mile)     0.0386 0.1584 0.24
Dummy for county with total release > 0.05    -0.0318** 0.0151 -2.11
Dummy for Northeast region     0.1860*** 0.0175 10.61
Dummy for Northwest region     0.0919*** 0.0168 5.46
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.4  Nonlinear OLS estimates for cancer mortality equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value
Intercept         5.5014*** 0.0888 61.96
Household income         0.0012*** 0.0004 3.25
Percent with college degrees       -0.0118*** 0.0008 -14.65
Percent white       -0.0003* 0.0002 -1.69
Percent male       -0.0055*** 0.0011 -4.96
Percent married people       -0.0063*** 0.0006 -10.31
Percent people in 35-54 age group        0.0109*** 0.0010 10.52
Percent employed in services       -0.0014* 0.0008 -1.80
Unemployment rate        0.0042** 0.0020 2.13
Crime rate (crimes per 1,000 population)        0.0043** 0.0011 3.84
Percent population with health coverage       -0.0005 0.0004 -1.20
Percent obese population        0.0010 0.0008 1.27
Percent daily smoker        0.0065*** 0.0007 9.35
Average temperature        0.0024*** 0.0004 6.81
Dummy for county with population > 100,000      -0.0204 0.0193 -1.06
Total releases (10,000 pounds/person)        0.0004 0.0034 0.10
Superfund sites (sites/1000 sq mile)        0.0306 0.1015 0.30
Dummy for county with total release > 0.05        0.0103 0.0079 1.30
Dummy for Northeast region      -0.0046 0.0104 -0.44
Dummy for Northwest region        0.0069 0.0109 0.64
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.5  Nonlinear OLS estimates for total releases equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value
Intercept     -5.5139*** 1.7962 -3.07
Household income      0.1124*** 0.0120 9.35
Percent with college degrees     -0.1908*** 0.0305 -6.25
Percent white      0.0160* 0.0089 1.80
Percent male      0.0772*** 0.0194 3.98
Percent married people    -0.0482*** 0.0182 -2.65
Percent people in 35-54 age group      0.0129 0.0208 0.62
Percent employed in services      0.0798*** 0.0119 6.69
Unemployment rate      0.1005*** 0.0319 3.15
Crime rate (crimes per 1,000 population)     -0.1751*** 0.0636 -2.75
Percent votes Democratic in 2000 election     -0.1562*** 0.0245 -6.37
Percent jobs in manufacturing     -0.0776 0.0594 -1.31
Dummy for county with population>100000     -1.3486* 0.7204 -1.87
Superfund sites (sites/1000 sq mile)      1.6261 2.8117 0.58
Dummy for Northeast region     -0.9655 1.1945 -0.81
Dummy for Northwest region     -0.3629 0.3755 -0.97
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Our suspicion that endogeneities exist in the model means the OLS results are 
inconsistent.  We thus performed a Hausman specification test (Hausman 1978) to test for 
endogeneity.  The chi-squared statistics testing OLS against FIML is 10.42, which when 
compared with a critical value at the 5% level of significance of 3.84 (1 degree of 
freedom) suggests that there is endogeneity in the model, suggesting a simultaneous 
estimation method is appropriate.  We thus employ a FIML model to jointly estimate the 
three equations. 
Tables 2.6, 2.7 and 2.8 present the FIML model results corrected for 
heteroscedasticity.  In the house value equation, coefficients for total releases and cancer 
mortality remain statistically significant.  It is interesting to note that the magnitude of the 
significant coefficient for total releases is larger in the FIML model.  Specifically, the 
percentage impact of total releases per person increases from 3.58 percent in the OLS 
model to 6.63 percent in the FIML model.  Similarly to toxic releases, the negative effect 
of cancer mortality in the system model is greater than in the OLS model, increasing from 
0.07 percent to 0.13 percent.  This indicates that the OLS model underestimates the effect 
of toxic releases and cancer mortality.  The coefficient for the dummy for counties with 
toxic releases greater than 500 pounds per person becomes insignificant.  Coefficients for 
latitude, longitude and the Northeast and Northwest region remain statistically 
significant.  The effects of other variables including housing characteristics and 
neighborhood characteristics remain the same in terms of the direction and magnitude of 
the effects. 
 In the cancer mortality equation, coefficients for total releases, number of 
Superfund sites and high release county dummy remain insignificant.  The coefficients 
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for economic and demographic characteristics including household income, percent 
college degrees, percent male, percent married people and percent in the 35-54 age group 
are consistent terms of signs and absolute values of the parameters with OLS model.  
Coefficients for percent white and percent employed in services become statistically 
significant at the 5 percent level.  One percent increase in percent white and percent 
employed in services reduces cancer mortality by 0.03 and 0.15 percent, respectively.  
The insignificant coefficient for percent with health care coverage in the OLS becomes 
significant with the expected negative sign, with one additional percent of health care 
coverage reducing cancer mortality by 0.08 percent.   
 In the total release equation, the coefficient for number of Superfund sites remains 
insignificant.  The effects of household income, proportion of college graduates, white 
and male, and unemployment rate, crime rate, percent voting Democratic in 2000 
President election on house values are consistent with the OLS model in terms of the 
direction but are greater in absolute values. The coefficient for percent employed in 
services becomes insignificant in the system model. 
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Table 2.6  Nonlinear FIML Estimates for house value equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value
Intercept     -4.2276*** 0.6335 -6.67
Household income      0.0334*** 0.0004 84.31
Percent with college degrees     -0.0052*** 0.0009 -5.57
Percent white      0.0027*** 0.0003 8.94
Percent male     -0.0124*** 0.0020 -6.11
Percent married people     -0.0100*** 0.0008 -12.38
Percent people in 35-54 age group      0.0105*** 0.0010 10.26
Percent employed in services      0.0116*** 0.0008 14.87
Unemployment rate     -0.0067** 0.0031 -2.16
Crime rate (crimes per 1,000 population)     -0.0021 0.0018 -1.14
Median rooms of  housing units     -0.1024*** 0.0066 -15.57
Median year built of  housing units      0.0076*** 0.0003 23.12
Real estates taxes($1,000)     -0.0001*** 0.0000 -9.76
Percent vacant houses      0.0037*** 0.0003 13.37
Percent owner occupied housed     -0.0014*** 0.0005 -2.90
X coordinate of county?s centroid     -0.0043*** 0.0002 -19.16
Y coordinate of county?s centroid      0.0082*** 0.0010 8.07
Dummy for county with population > 100,000      0.0035 0.0101 0.35
Cancer death rate (death/100,000)     -0.0013*** 0.0002 -5.89
Total releases (10,000 pounds/person)     -0.0663** 0.0291 -2.27
Superfund sites (sites/1000 sq mile)      0.0315 0.2541 0.12
Dummy for county with total release > 0.05     -0.0260 0.0203 -1.28
Dummy for Northeast region      0.1856*** 0.0133 14.00
Dummy for Northwest region      0.0915*** 0.0134 6.85
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.7  Nonlinear FIML estimates for cancer mortality equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value
Intercept      5.5361*** 0.0704 78.62
Household income      0.0011*** 0.0004 2.88
Percent with college degrees    -0.0117*** 0.0007 -15.87
Percent white    -0.0003** 0.0002 -2.01
Percent male    -0.0056*** 0.0007 -7.90
Percent married people    -0.0065*** 0.0005 -12.57
Percent people in 35-54 age group      0.0110*** 0.0009 12.77
Percent employed in services    -0.0015** 0.0006 -2.32
Unemployment rate      0.0039*** 0.0013 2.88
Crime rate (crimes per 1,000 population)      0.0044*** 0.0012 3.74
Percent population with health coverage    -0.0008** 0.0004 -2.00
Percent obese population      0.0012* 0.0008 1.65
Percent daily smoker      0.0064*** 0.0007 9.13
Average temperature      0.0023*** 0.0003 7.96
Dummy for county with population > 100,000    -0.0205* 0.0126 -1.65
Total releases (10,000 pounds/person)      0.0030 0.0260 0.11
Superfund sites (sites/1000 sq mile)      0.0299 0.0976 0.31
Dummy for county with total release > 0.05      0.0099 0.0083 1.19
Interaction of DPOP and Superfund sites      1.9559 1.6615 1.18
Dummy for Northeast region     -0.0033 0.0151 -0.22
Dummy for Northwest region      0.0054 0.0109 0.49
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.8  Nonlinear FIML estimates for total releases equation (N=3,106) 
Variable 
Parameter 
Estimate 
Standard 
Error 
t value 
Intercept     -7.5733 7.1406 -1.06
Household income      0.2030** 0.0371 5.47
Percent with college degrees    -0.3614** 0.0764 -4.73
Percent white      0.0732* 0.0412 1.78
Percent male      0.0703* 0.0407 1.73
Percent married people    -0.0862 0.0646 -1.34
Percent people in 35-54 age group      0.0802 0.0620 1.29
Percent employed in services    -0.0627 0.0382 -1.64
Unemployment rate      0.4393*** 0.0859 5.11
Crime rate (crimes per 1,000 population)    -0.7795*** 0.2399 -3.25
Percent votes for Democrat in 2000 election    -0.5702*** 0.1298 -4.39
Percent jobs in manufacturing    -0.2268 0.1712 -1.32
Dummy for county with population>100000    -0.9286 9.1080 -0.03
Superfund sites (sites/1000 sq mile)   -14.5501 78.0084 -0.19
Interaction of DPOP and Superfund sites    37.8538 32.8000 0.01
Dummy for Northeast region    -0.1334 6.7000 0.00
Dummy for Northwest region    -4.1638 40.5903 -0.10
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 
 
There are some significant differences when comparing OLS results with FIML 
results.  In the house value equation, the coefficients for cancer mortality and total 
releases in the two models are significant and negative in both models, but the 
coefficients of the FIML are almost double in absolute value the coefficients of the OLS.  
The OLS coefficients for other variables are similar to the FIML results.  In the cancer 
mortality equation, the estimates for total releases and number of Superfund sites are not 
significant in both the OLS and FIML models.  The OLS coefficient for health care 
coverage is not significant while the FIML coefficient is significant.  In the total release 
equation, number of Superfund sites does not have any impact on total toxic releases in 
both models.   
 
2.5  Marginal Willingness to Pay and Value of Statistical Life 
In the hedonic price model, the derivative of price with respect to a characteristic 
is equivalent to the marginal willingness to pay for changes in characteristic, which can 
be computed using the parameter estimates from Tables 2.3 and 2.6.  The negative 
coefficients for cancer death and total releases in the house equation suggest that people 
are willing to pay higher prices for houses located in areas with lower cancer mortality 
rates and lower toxic chemical releases. Marginal willingness to pay for reducing cancer 
mortality and chemical releases is 
  ? house value     
 
??????? = ?? * house value                      (5)  
? cancer mortality 
 
? house value  
?????? = ??
V
 * house value                                     (6)      
? total releases           
 
            
    
where ??  is the estimated coefficient for cancer mortality, and ??
V
 is the estimated 
coefficient for total releases in the house value equation. 
From the OLS parameter estimates in Table 2.3, the marginal willingness to pay 
for a reduction of 1 cancer death per 100 thousand persons is calculated to be $55.05 and 
for a 1 pound reduction of total chemical releases to be $0.29.   
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Taking endogeneity of cancer and total chemical releases into account, the 
equation to compute marginal willingness to pay for reducing cancer death is the same as 
in equation (5), but to compute marginal willingness to pay for reducing total releases as 
follow 
         ? house value  
?????? = ??
V
 *house value + ?? * house value *??
CM
*cancer death        (7) 
? total releases 
where ??
CM
 is the estimated coefficient for total releases from equation 3.  The FIML 
estimated parameters reported in Table 2.6 give the marginal willingness to pay for one 
cancer death reduction per 100 thousand persons to be $105.47 and for a 1 pound 
reduction of total chemical releases to be $0.54.   
An important implication of the model estimated in this paper is that it can be 
used to calculate the value of statistical life based on the correlation between house 
values and cancer mortality.  The assumption here is that there is a tradeoff between risk 
and property values, with mean willingness to pay for decreased cancer mortality using 
OLS and FIML estimated to be $55.05 and $105.47 respectively.  However, this 
willingness to pay is for a representative household.  To calculate the willingness to pay 
for an individual, the willingness to pay per household must be divided by the mean 
number of persons per household.  With the mean household size of 2.586 at the county 
level, the mean willingness to pay per individual using OLS and FIML is estimated to be 
$21.29 and $40.79, respectively. 
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The value of statistical life is computed using the equation 
             Willingness to pay 
 Value of statistical life = ??????????                    (8). 
              Size of risk reduction      
  
For example, the willingness to pay estimates of $21.29 and $40.79 represent the 
amount of money an individual would be willing to pay to reduce cancer deaths by 1 per 
100,000 persons.  This results in an average value of statistical life per person of $2.13 
million using OLS and $4.08 million using the FIML model in 2000 dollars. 
 There is a large difference in the value of statistical life between using OLS and 
FIML.  Statistical life when cancer mortality and total releases are treated as exogenous is 
nearly half of the value of statistical life when they are treated as endogenous.  However, 
the estimated value of statistical life from the simultaneous model seems to be more 
consistent with the findings of other studies in the housing market using hedonic price 
model to investigate the relationship between house prices and cancer risks.  In their 2000 
paper, Gayer, Hamilton, and Viscusi estimate the willingness to pay of residents to avoid 
cancer risks at Superfund sites and calculate the statistical value of cancer to be $4.6 
million in 1996 dollars.  Analyzing how changing information on cancer risk of 
Superfund sites affects house price, Gayer, Hamilton, and Viscusi (2002) report the value 
of a statistical cancer case to be $8.3 million.  The range of our estimates is also similar to 
the calculations from the labor and automobile markets.  Viscusi (1993) reviews labor 
market studies and reports a range for value of statistical life from $3 million to $7 
million in 1990 dollars.  Atkinson and Halvorsen (1990) calculate the value of statistical 
life at $3.4 million 1986 dollars using the hedonic price model for automobiles.  Because 
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we have imperfect measures of the correlation between total releases and cancer deaths, 
we suspect our measure is conservative.  With better measures of specific carcinogenic 
releases, the links between releases and cancer should be more pronounced. 
 
2.6  Welfare Estimates 
  In this section we conduct a rudimentary benefit cost analysis to estimate the 
welfare effects of cleaning up Superfund sites and reducing industrial point source 
releases.  We use the simultaneous-equation model to perform this analysis. The 
assumption is that all Superfund sites are completely cleaned up and total toxic releases 
are decreased by half.  The benefits and costs associated with our assumptions are 
calculated to obtain net benefits representing the welfare gain from reducing 
environmental health risks. 
 Predicted house values and cancer mortality rates are calculated by 
simultaneously solving the system represented by equations 2-4.  We apply the Quasi-
Newton method to simultaneously solve for predicted house value and cancer mortality 
under the baseline and different policy assumptions.  The simulations are reported in 
Table 2.9.  If a policy mandated elimination of Superfund sites and a reduction of total 
releases by half, the median house value would rise by $396.27 and cancer death rates 
would drop by 0.45 per 100,000 persons.  
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Table 2.9  House value and cancer mortality simulations 
Original level of total 
releases and number of 
Superfund sites 
Total releases decreased by 
50% and clean-up of all 
Superfund sites Variable 
Mean Std Error Mean Std Error 
House value ($) 
Cancer mortality 
(per 100,000 persons) 
80,812.110 
     200.316    
 
38,008.870 
       16.041 
 
 81,208.380 
      199.866    
 
 38,466.850 
        16.031 
 
 
 
2.6.1  Benefits 
Benefits from environmental risk reduction are estimated from the change in 
house value and cancer death rate.  Table 2.10 presents estimated benefits for changes in 
house value and cancer rate that result from environmental improvement.  The house 
value increase is multiplied by the total number of housing units in the sample to obtain 
benefits from the house value change.  There are around 69 million owner-occupied 
housing units in the US and the net present value of benefits from changes in capitalized 
house values is $27.5 billion.  Benefits from the cancer mortality decrease are calculated 
by multiplying the number of lives saved by the value of statistical life, where the number 
of lives saved is computed by multiplying the cancer rate reduction by the total number 
of persons living in owner-occupied houses.  The cancer death rate decrease yields 
benefits of $3.3 billion per year.  If we assume that such benefits will accrue over the 
foreseeable future, we can obtain a rough estimate of the net present value of all future 
benefits as a perpetuity.  Based on a 3% interest rate, the net present value would be 
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about $109.7 billion dollars. Therefore, the total benefits from cleaning up all Superfund 
sites and reducing toxic releases are $137.1 billion dollars. 
 
Table 2.10  Estimated benefits 
Variable 
Change in 
Value 
Sample Size Benefits ($1,000) 
Capitalized house value  
 
Annual cancer mortality 
 
NPV cancer mortality in 
perpetuity 
Total  NPV benefit 
       396.270 
($/housing unit) 
         -0.450 
(death/100,000) 
 
 
      69,323,860 
  (housing units) 
    179,271,502 
         (persons) 
 
      27,470,966 
 
        3,290,214 
 
 
    109,673,703 
   
    137,144,669 
 
2.6.2  Costs 
Costs associated with the new level of toxic chemical releases and number of 
Superfund sites are costs from reducing total releases and cleanup of Superfund sites.  
Average cost of cleanup activities per Superfund site is presented in Table 2.11.  The 
average cost of cleanup actions per site is around $31.6 million dollars. There are 1,152 
Superfund sites in the final NPL and total cost of cleanup for all sites in the US is 
estimated to be $36 billion. 
Costs for reduction of toxic chemical releases are not readily available.  However, 
EPA annually spends about $7 billion in monitoring and regulatory costs for all US 
facilities.  For the sake of expediency, we will assume that costs will increase 
incrementally by about $7 billion per year to reduce toxic chemical releases, adding a 
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NPV of about  $233 billion to the total cost for cleanup of the NPL sites above, for a 
grand total cost of  about $269 billion. 
 The net benefit of environmental health risk reduction is the difference in benefits 
and costs.  In this case the difference between $137 billion in benefits is outweighed by 
the $269 billion in costs.  However, as previously noted, our benefit estimate 
underestimates the true benefit significantly, as it includes only owner occupied house 
values and cancer mortality.  Arguably, costs of lost value in rental housing and costs of 
treating cancer, as well as the other chronic illnesses related to toxic releases, such as 
respiratory diseases and birth defects will incur an even greater cost to society; further 
lost labor productivity is also not accounted for.  Reductions in conditions associated with 
toxic releases might therefore result in an actual net benefit. 
 
Table 2.11  Average cost of cleanup actions per NPL site 
Cost category 
Average total cost 
per site (US$) 
Remedial investigation/Feasibility study   1,300,000 
Remedial Design   1,500,000 
Remedial Action 25,000,000 
Net present value of operation and maintenance   3,770,000 
Total 31,570,000 
 
Source: Office of Program Management, Office of Superfund Remediation Technology 
Innovation, EPA. 
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2.7  Conclusions 
 In this paper, we investigate the effects of environmental health risks on house 
values in the US at the county level.  A unique data set consisting of 3,106 counties in the 
US is used for the analysis.  Several variables are used to represent environmental health 
risks including total chemical releases, number of Superfund sites, and cancer mortality.  
We assume that there are endogeneities in the model, using a system of equations to 
capture indirect impacts of variables.  Both OLS and FIML are used to estimate the 
system.  We go on to simulate cleanup of sites and toxic releases using a quasi-Newton 
method to solve the system.  Our findings suggest that property value responds negatively 
to total releases and cancer mortality.  The results of the FIML estimate indicate that a 
reduction of total releases by 1 pound per person leads to an estimated increase of $0.54 
in house value and a decrease of cancer mortality by 1 death over 100,000 persons leads 
to an increase of $105.47 in housing values when cancer mortality and total chemical 
releases are endogenous.  The value of statistical life is estimated to be $4 million with 
FIML model. 
Based on the value of statistical life and capitalized house values, a simple cost 
benefit analysis is conducted.  The results indicate that cleanup costs of $267 million 
exceed benefits of $137 million when only owner-occupied housing units and cancer 
mortality are accounted for.  The findings suggest that in future research, we will need to 
include other kinds of health costs in order to estimate the true benefit of environmental 
cleanup, as reflected in housing markets.  In addition, effects of releases, not just on 
cancer deaths but on morbidity associated with cancer and other diseases will be the 
subject of future research. 
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III. TOXIC CHEMICAL RELEASES, HEALTH EFFECTS,  
AND LABOR PRODUCTIVITY LOSSES 
 
3.1  Introduction 
The effects of pollution on human health have been investigated widely in the 
environmental and health literature.  Pollutants may be linked to a wide range of effects 
on human health, including cancer or noncancer-related diseases, such as birth defects, 
respiratory and immune system damage.  Since health is considered to be a capital good 
in the production process, health effects may impact labor productivity.  As a result, 
exposure to pollution may contribute to productivity losses. 
Although the relationship between pollution and morbidity has been investigated 
thoroughly in the health literature, almost all previous studies focused on air pollution 
alone (Bates and Sizto 1987; Ostro 1983; 1987; Ostro and Rothschild 1989; Pope-III 
1991; Xu, et al. 1995).  Two other types of pollution, including land and water pollution, 
which cause potentially more serious human health effects (Hopenhayn-Rich, et al. 1998; 
Lopez-Abente, et al. 2006; Smith, et al. 1998), have been neglected.   
The focus of this analysis is to investigate the effects of pollution measured by 
aggregate levels of toxic chemical releases to air, land and water from industrial facilities 
on productivity losses represented by lost work days.  The analysis uses a simultaneous 
equation count data model of work day lost and health status to estimate impacts of 
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environmental factors on work days lost.  Health instruments include toxic chemical 
releases, demographic and socioeconomic characteristics, a number of health conditions 
and behavior variables.  A unique dataset combining the 2002 National Health Interview 
Survey (NHIS), TRI, US Census 2000 data and climatic data is used to estimate the 
impact of toxic releases on health status and lost labor productivity. 
 
3.2  Literature Review 
There is an extensive literature studying the impacts of pollution on human 
morbidity.  Pollution has been linked to several kinds of diseases including respiratory 
symptoms, asthma, chronic bronchitis, and cancer by Mills et al., 1991, Ostro et al., 
1991, Portney and Mullahy, 1986.  A number of other papers have analyzed relationships 
between air pollution, hospital admissions and emergency room visits (Bates and Sizto 
1987; Pope-III 1991; Samet, et al. 1981; Xu, et al. 1995). However, the focus of this 
section is to review some of the previous papers investigating the effects of pollution on 
labor productivity losses in the form of lost work days. 
Ostro (1983) used 1976 NHIS data to study the effect of air pollution on 
morbidity measured by work loss days and restricted activity days.  Two air pollution 
variables used were annual mean levels of particulates and sulfates (SO
4
).  The author 
found that there was a statistically significant relationship between particulates, work 
days lost and restricted activity days in three different functional forms tested including 
linear, Tobit, and logit-linear. 
In another paper, Ostro (1987) replicated the previous analysis with four NHIS 
datasets from the year 1976 to 1981.  Fine particles were used as a measure of air 
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pollution instead of total suspended particulates.  Another change from his previous study 
was that a Poisson distribution was used for work days lost and restricted activity days.  
The study reported that fine particles were positively and significantly associated with 
work loss days in 4 out of 6 years, and were positively related to restricted activity days 
in all 6 of the years. 
Portney and Mullahy (1986) also used NHIS data to analyze health effects of air 
pollution.  The dependent variable was the number of respiratory-related restricted 
activity days during survey respondents? 2-week recall periods with air pollution 
measured by ozone and sulfates during the same period.  Maximum likelihood was used 
to estimate a Poisson model in the analysis.  The authors found that there were positive 
and significant associations between ozone and respiratory-related restricted activity 
days. They also calculated the elasticity of respiratory-related restricted activity days with 
respect to ozone and evaluated the change in respiratory-related restricted activity days 
resulting from a change in ozone concentrations.  The elasticity ranged from 0.005 to 0.5 
and respiratory-related restricted activity days for urban adult population ranged from 
240,000 to 22,000,000. 
Ostro and Rothschild (1989) contributed to a series of studies on the relationship 
between health effects and air pollution by analyzing the health consequences of two air 
pollutants using 6 separate years of NHIS data.  Respiratory-related restricted activity 
days and minor restricted activity days were used as indicators of acute morbidity.  The 
results indicated that there was a positive and significant relationship between fine 
particles and respiratory-related restricted activity days in all six of the years.  The 
association of fine particles with minor restricted activity days appeared to be weaker and 
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the coefficient for fine particles was positive and significant in 4 out of the 6 years.  The 
study found no relationship between ozone and respiratory-related restricted activity days 
but a weak association of ozone with minor restricted activity days. 
  Ostro (1990) used the 1979-1981 NHIS data to explore the association between 
acute respiratory morbidity and different measures of particulate matter, including 
sulfates, total suspended particulates, and fine and inhalable particulates.  The author 
reported that of the alternative measures of particulate matter, sulfates appeared to have 
the greatest association with acute respiratory morbidity. 
 Samakovlis et al. (2005) investigated the impacts of NO
2
 concentrations on 
incidence and duration of respiratory restricted activity days in Sweden using the 1999 
National Environmental Health Survey.  To handle the overdispersion problem in the 
Poisson model, the authors used a logit model to analyze how NO
2
 concentrations affect 
incidence of respiratory problems and then used a Poisson model to investigate the 
relationship between NO
2
 concentrations and number of respiratory restricted activity 
days.  The results indicated that NO
2
 level did not affect incidence of respiratory 
problems but positively affected respiratory restricted activity days. 
 
3.3  Health Capital Model 
This study follows the health capital model by Grossman (1970a,b) and Cropper 
(1981). A consumer maximizes the utility function 
  U = U(H
0
, H
1
, ? , H
n
, Z
0
, Z
1
, ? , Z
n
)           (9) 
 43
where H
0
 is initial stock of health, H
t
 is the stock of health in period t, and Z
t
 is total 
consumption of another commodity in period t. 
 Investments in health are given by the production function 
  I
t
 = D (M
t
, X
t
, TH
t
; E
t
)        (10) 
where M
t
 is medical care, X
t
 is the market good input, TH
t
, is time input, and E
t
 is the 
stock of human capital. 
The increase in the stock of health is the net investment in health capital 
dH
t
/dt = H
t+1
 ? H
t
 = I
t
 ? ?
t
 H
t
        (11) 
where I
t
 is gross investment and ?
t
 is the rate of health depreciation during the t
th
 period. 
 The marginal cost of gross investment in health capital is given by 
  ?
t
 = N (PM
t
, W
t
)         (12) 
where PM
t
 is price of purchased goods and W
t
 is wage rate. 
The production function of healthy days is written as 
  h
t
 = F (H
t
)          (13) 
The stock of health and the number of healthy days are presented in Figure 3.1. At 
H
t
=H
min
, the number of healthy days equal zero.  Along the curve, healthy time increases 
at a decreasing rate and approaches the 365-day line.  The marginal product of the stock 
of health is R
i
 = ? h
t
/ ?H
t
>0. 
365 
h
t 
Figure 3.1  Stock of health and the number of healthy days 
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Sick time equals the total amount of time available in any period minus the 
number of healthy days in that period 
TL
t
 = ? ? h
t
           (14) 
where TL
t
 is time lost due to illness and ? is total amount of time available. 
The marginal product of health capital, the increase in the number of healthy days 
due to a one unit increase in the stock of health, equals the negative of the marginal 
product of lost health capital: R
i
 = ? h
t
/ ?H
t
= - ? TL
t
/ ?H
t
. 
The optimal amount of sick time can be derived by equating the value of marginal 
product of lost health capital due to illness to the cost of health depreciation 
W
t
(? TL
t
/ ?H
t
) = - ?
t
?
t
  
or  ? TL
t
/ ?H
t
 = - ?
t
?
t
/ W
t           
(15) 
where ?
t
 is the marginal cost of gross investment in health. 
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 In Grossman?s model, the rates of health depreciation are assumed to be 
exogenous.  However, this paper follows Cropper (1981) by assuming that the rates of 
health depreciation are endogenous.  If an individual is exposed to air, water, and land 
pollution, her/his health is degraded gradually.  Beside, the rates of depreciation also are 
affected by age and stock of health.  Therefore, the rate of depreciation of health capital is 
written as  
?
t
 = G(t,P
t
,S
t
)           (16) 
where t is time, P
t
 is pollution, and S
t
 is chronic illness or stress. 
From (10), (15), and (16), we have  
? TL
t
/ ?H
t
 = Q(t,W
t
, PM
t
, P
t
, S
t
)        (17). 
This equation is interpreted to mean that pollution, along with wages, medical 
care, and other variables would affect health and time lost due to illness. 
 
3.4  Empirical Model 
3.4.1  Poisson regression and statistical tests for Poisson model 
 An empirical model is formulated to test whether toxic chemical releases have a 
positive impact on number of lost work days.  We employ a Poisson regression model for 
count data to estimate discrete days of work lost, assuming number of lost work days, Y, 
follows a Poisson distribution with parameter ? 
  
!
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Equation (18) gives the probability an individual has n work loss days in a given period 
of time.  Both the expected value and variance of a Poisson distribution are equal to ? 
  E[y] = Var[y] = ?.         (19) 
The Poisson regression model can be formulated as a loglinear model 
  ln ? = ?X + ?
?
          (20) 
where X is the vector of explanatory variables. 
 The Poisson model is a more restrictive version of the negative binomial in that ? 
= E[y] = Var[y]; it is thus necessary to test if the restrictions of the Poisson model hold.  
If the variance is greater than the mean, overdispersion exists and if the variance is 
smaller than the mean, underdispersion exists.  Thus, a number of tests for the equality of 
the mean and the variance must be conducted (Cameron and Trivedi 1998).  The first test 
is the likelihood ratio test based on Poisson and negative binomial regressions.  In the 
negative binomial distribution 
Var[y] = E[y] + k (E[y])
2
  
where k is a dispersion parameter; for the Poisson distribution Var[y] = E[y]  or k=0.  
The null hypothesis is H
0 
: k = 0 and the alternative hypothesis is H
a 
: k > 0.  The null 
hypothesis is rejected
 
if the likelihood ratio statistic is greater than ?
2 
(1-2? , 1 df)
 where ? is 
the significance level. 
The second test for equality of the mean and the variance is the Wald test, which 
is conducted as a t test of dispersion parameter k using the one-sided test critical value of 
z
1-?
 where ? is the level of significance. 
3.4.2  Negative binomial 
If the tests for equality of the mean and variance in the Poisson model fail, the 
negative binomial model is used. The probability mass function with a negative binomial 
distribution takes the following form  
yk
pp
ky
yk
yf )1(
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)(
)( ?
?
+?
=         (21) 
where y is number of lost work days, y=0,1,2?, ? is the gamma function, and p and k are 
parameters of the distribution. 
In investigating how toxic chemicals affect labor productivity, losses are 
measured by number of work days lost.  Based on the dataset created from the 2002 
NHIS, the work-loss days equation is thus specified as 
 ln ? = ?
0
 + ?
1 
H + ?
2 
I + ?
3 
T + ?
4 
CO + ?
5
 WE + ?
Y
         (22) 
where ? is expected value of work days lost, H is health status, I is a vector of 
individual?s characteristics, T represents total toxic chemical releases, WE is a vector of 
weather condition including average temperature and precipitation, and CO is a vector of 
characteristics of the county of residence. 
 
3.4.3  Sample selection bias 
The dependent variable in this analysis is number of work days lost for those 
people who had a job in the past 12 months.  Individuals with poor health might be 
systematically less likely to be employed; leading to potential selection bias in the model 
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due to censoring of the data.  Thus, a two-stage sample selection model developed by 
Heckman (1979) is used to control for selection bias. 
A probit model using all observations in the dataset is employed to estimate 
probability of working 
 W = ?
0
 + ?
1
 H
 
+ ?
2
 I + ?
3
 T + ?
4
 CO + ?
5
 WE + ?
w
    (23) 
where W is a binary variable for working status, H is health status, I is a vector of 
individual characteristics, T represents total toxic chemical releases, CO is a vector of 
characteristics of the county of residence, WE is a vector of weather condition and ? is 
the error term.  A selection bias control variable, which is equivalent to the Inverse Mill's 
ratio, is calculated using the equation 
),(
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=                      (24) 
where ? and ? are the probability density function and the cumulative distribution 
function, X is the vector of explanatory variables in the employment equation, and ? is 
the conformable parameter vector.  The inverse Mills ratio is then included as an 
additional explanatory variable in the main model to correct for selection bias between 
those working and those not working. 
 
3.4.4 Endogenous health status 
 Previous studies show that pollution is positively related to a number of diseases 
(Mills, et al. 1991; Ostro, et al. 1993; Ostro, et al. 1991; Pope-III 1991; Portney and 
Mullahy 1986; Samakovlis, et al. 2005), which would lead to health deterioration.  As a 
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result of reduced health input, labor productivity would drop; not only would number of 
days worked drop, actual on-the-job performance may suffer as well.  In the context of 
the effect of toxic chemical releases on productivity losses, health may be an endogenous 
variable.  It follows that in the health literature, health status is  hypothesized to be 
endogenous in a number of studies (Cai and Guyonne 2004; Dwyer and Mitchell 1999; 
Haveman, et al. 1994; Stern 1989).  While Dwyer and Mitchell (1999) reject the 
endogeneity of self-reported health measures, Stern (1989), Haveman et al. (1994), Cai  
and Guyonne (2004) find health status to be endogenous. 
We follow the literature and assume that health is an endogenous variable.  The 
generalized instrumental variable method is used to control for the endogeneity of health 
status.  First, health status is regressed against explanatory variables that affect health 
status and predicted values of health status are calculated from this regression.  Then, 
health status is replaced by the predicted values in the sample selection equation and 
work-loss equation.   
The instrument equation is written as 
  H
*
 = ?
1
X + ?
H
          (25) 
where H
*
 is an unobservable latent variable, and X is a vector of explanatory variables 
including demographic and economic characteristics of an individual.  The instrument 
equation of health status is estimated using a probit model. 
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3.5  Dependent and Independent Variables 
Two measures of self-reported health status that have been used in the health 
literature are dichotomous (Dwyer and Mitchell 1999; Haveman, et al. 1994) and a multi-
point scale of health status (Cai and Guyonne 2004; Lee 1982; Rivera 2001; Stern 1989).  
In this study, these two measures of health status are used to investigate how toxic 
chemical releases affect productivity loss.   
The 5-point scale measure is respondents? self-reported health status, ranging 
from excellent, very good, good, fair and poor, and taken directly from the survey.  A 
dichotomous health status measure is then created from 5-point scale by including 
excellent and very good in a ?good health? category and good, fair and poor in a ?fair 
health? category.   
Determinants of self-reported health status include toxic chemical releases and 
other variables that affect employment status and work-loss days including demographic 
and socioeconomic variables; behavioral variables; employment conditions; and 
meteorological conditions.  We also include health-related conditions, health care access 
and utilization, and health insurance as explanatory variables of health status.  These 
variables are common in much of the literature modeling general health status (Cai and 
Guyonne 2004; Haveman, et al. 1994; Stern 1989). 
Employment is assumed to be a function of demographic and socioeconomic 
characteristics including gender, age, race, education, marital status, income and home 
ownership (Bradley, et al. 2002; Cai and Guyonne 2004; Stern 1989) as well as health 
status.  Annual mean precipitation and the annual minimum temperature are included as 
explanatory variables and differences in regions also are controlled using regional 
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dummies.  Other variables that may influence working status are toxic releases, behaviors 
such as drinking and smoking and living in an urban environment, controlled for by 
population density and a dummy for urban counties.  
Work loss is hypothesized to be affected by environmental pollution measured by 
total toxic chemical releases at the county level.  Ostro (1983, 1987 and 1989) found a 
positive relationship between air pollution and work loss and restricted activity days.  
Work loss is also assumed to be a function of general health status (Marmot, et al. 1995; 
Marmot, et al. 1993; North, et al. 1993).  It is expected that good health status has a 
negative effect on work loss. 
Biological variables such as gender, age, and race and of education and economic 
variables are believed to affect work loss.  Women are expected to miss more work days 
since their labor may be valued more highly at home, and are more often required to care 
for sick children (Machnes 1992; Ostro 1987).  People who are married or have children 
tend to miss more work days since they have to spend more time to take care of their 
family (Ostro 1987). People become less healthy as they age, so age is predicted to have a 
positive effect on work-loss days (Ostro 1987; Silver 1970).  More highly-educated 
people tend to lose fewer work days since they have greater job responsibility, and may 
also have higher paying jobs (Grossman 1972; Stratmann 1999).  High-income and wage 
rate are predicted to negatively impact lost work days since they represent higher 
opportunity costs (Meyer, et al. 1995; Ostro 1987).  Likely because of limited access to 
health care, African-American individuals experience higher morbidity than whites, so 
they are expected to take more sick days than white workers (Ostro 1987; Stratmann 
1999).   
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Other independent variables assumed to affect work days lost are behavior 
variables including lifestyle habits, work characteristics and meteorological conditions of 
the county of residence.  Lifestyle habits including smoking and drinking are linked to a 
number of diseases and injuries, which results in losses of work days (Centers for Disease 
Control and Prevention 1994; Parrish, et al. 1993; Robbins, et al. 2000; Smith, et al. 
1999; US Department of Health and Human Services 1982; 1983; 1984).  Employment 
characteristics are included to control for the differences in working environments of 
respondents, since in service industries, workers are exposed to lower risk levels, while 
manufacturing and agricultural industries are riskier.  Dummies for regions are also 
included since people in different regions have different culture, lifestyles, which may 
result in variations in health status and lost work days.  
 
3.6  Data 
3.6.1  Sources of data 
As previously mentioned, we use a unique dataset, combining individual data 
from NHIS with county level TRI data, National Climatic data, and Census 2000 data, to 
investigate the effects of toxic release exposure on work loss.  
The NHIS is conducted annually by the National Center for Health Statistics, 
Centers for Disease Control and Prevention (http://www.cdc.gov/nchs/nhis), and is the 
main source of health information for the American household population.  The primary 
data in the NHIS consists of a Basic Module which is divided into three components: 
Family Core, Sample Adult Core, and Sample Child Core.  The Family Core component 
collects information on household composition and socio-demographic characteristics, 
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income and assets, health status and limitation of activity, injuries, and health care access 
and utilization and health insurance coverage for all family members.  One sample adult 
and one sample child are randomly selected in each sample family and their detailed 
information is included in Sample Adult Core and Sample Child Core components.  The 
Sample Adult component requires self-response to all questions and the Sample Child 
component requires response from a knowledgeable adult in the family.  The Sample 
Adult component covers subjects that are included in the Family Core, in which the 
questions are more specific and some additional subjects, including adult health 
behaviors and occupation and employment status.  Similarly, additional subjects are 
covered in the Sample Child Core component including child behavior and child 
immunization.  The interviewed sample size of 2002 NHIS was 36,161 households with 
93,386 persons in 36,831 families.  The Sample Adult component consisted of 31,044 
persons 18 years of age or older and the Sample Child component consisted of 12,524 
children under 18 years old.  The data used in this study are from the Sample Adult 
component of the 2002 NHIS including work loss, health status, demographic 
characteristics, economic status and education status.  
Total toxic chemical releases at county level are derived from the TRI, USEPA 
(http://www.rtknet.org).  Data for population density, urban county and population at 
county level are taken from Census 2000 Summary File 3, US Census Bureau, 
(http://www.census.gov/Press-Release/www/2002/sumfile3.html ).  Average temperature 
and precipitation data at the station level come from National Climatic Data Center, 
National Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov).  
The individual-level NHIS data are then merged with county-level data from TRI, 
US Census 2000 and National Climatic Data Center using the county FIPS code.   
However, the public release of the NHIS dataset does not contain county codes because 
of confidentiality issues.  Hence, our county-level dataset of environmental and other 
variables was sent to the Research Data Center, National Center for Health Statistics, 
CDC to be merged with individual-level NHIS data by the Research Data Center
5
.  Data 
analysis conducted in this study is performed using remote access where SAS programs 
are submitted and outputs are received via email.  
 
3.6.2  Data description 
Working status is used as a dependent variable in the sample selection equation. 
Working status takes the value of 1 if response was ?had job last week? or ?had no job last 
week but had job past 12 months?.  Data for this variable were taken from the responses 
to the question ?Although you did not work last week, did you have a job or business at 
any time in the past 12 months?.  Data for work days lost is based on responses to the 
question ?During the PAST 12 MONTHS, about how many days did you miss work at a 
job or business because of illness or injury (do not include maternity leave)??.  Only 
those who had a job in the past 12 months were asked this question.  General health status 
is self-reported, based on the response to the question ?Would you say your health in 
general is excellent, very good, good, fair, or poor?? where 5 represents excellent health 
and 1 represents poor health. 
 
 
5
 We would like to thank Negasi Beyene at the National Center for Health Statistics, CDC for his help 
on merging data and providing access to the dataset using the remote access system 
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Demographic characteristic variables used are race, age, sex and marital status 
socio-economic variables are education and income.  Education attainment is represented 
by dummy variables where having a college degree is assigned a 1 and 0 otherwise.  
Income is a dummy variable taking a value of 1 if total combined family income was less 
than $45,000 and 0 otherwise. 
A dummy for alcohol drinking is created from the current alcohol drinking status, 
taking the value of 1 if the respondent had more than 3 drinks per week.  The current 
smoker dummy takes the value of 1 if the respondent currently smokes at least some 
days.  
Employment conditions and characteristics include number of hours worked, 
number of years worked, a dummy variable for paid sick leave (1 if having paid sick 
leave on the current or most recent job), a dummy hourly worker at the current or most 
recent job, and a dummy for respondents who work more than one concurrent job.  
Dummies are also included for the type of industries in which respondents are employed.  
These include dummies for employment in service, manufacturing and agricultural 
industries. 
Several health care access and utilization variables were used as determinants of 
health status, including the number of times the respondent had seen a doctor or other 
health care professional about his or her own health, number of emergency room visits, 
and if the respondent had a pneumonia shot during the past 12 months.  A dummy is 
created taking the value of 1 if the respondent did not have any health insurance coverage 
at the time of interview.   
Health-related conditions include existence of cancer, asthma and migraine, and 
body mass index.  Data for the existence of cancer is based on response to the question 
?Have you ever been told by a doctor or other health professional that you had cancer or 
a malignancy of any kind??, existence of asthma is based on the question ?Have you ever 
been told by a doctor or other health professional that you had asthma?? and existence of 
migraine is based on the question ?During the past three months, did you have severe 
headache or migraine??. 
Population density is the number of persons per square miles.  The dummy for 
urban county takes the value of 1 if the county belongs to a Metropolitan statistical 
containing a core urban area of 50,000 or more population.  The dummy for the  
Western region takes value of 1 if county of residence is in the Western region.  The 
same applies for dummies for the Northeast and the Midwest regions
6
. 
Total toxic chemical releases are the sum of air, water, and land releases at the 
county level.  Precipitation data are the annual average precipitation level per station.  If a 
county has missing data, we use data from the nearest station of another county, based on 
distance from the county?s centroid. 
Of the original 31,044 observations in the Sample Adult component, 25,552 
remain after eliminating data for item non-response.  The sub-sample that excludes those 
who did not have a job in the past 12 months contains 14,632 observations.  Table 3.1 
contains definitions and Table 3.2 contains descriptive statistics of all the variables used  
 
 
 
6
 Western region: Washington, Oregon, California, Nevada, New Mexico, Arizona, Idaho, 
Utah, Colorado, Montana, Wyoming, Alaska, and Hawaii. Northeast region: Maine, Vermont, New 
Hampshire, Massachusetts, Connecticut, Rhode  Island, New York, New Jersey, and Pennsylvania. 
Midwest region: Ohio, Illinois, Indiana, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North 
Dakota, South Dakota, Kansas, and Nebraska
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in this study.   The means of the two measures of health status of the sub-sample are 
statistically higher than those of the whole sample at the 1% level of significance.  The 
means for binary and 5-point scale health status for the whole sample are 3.74 and 0.61, 
respectively and for the sub-sample are 4.02 and 0.72, respectively.  Other variables 
which have significant differences at the 5% level between mean in the whole sample as 
compared to the sub-sample include DU, MALE, COLLEGE, MARRIED, INCOME45, 
DRINK and SMOKE.  The mean work loss days is 3.5 days per year and average total 
toxic chemical releases is 10 pounds per person in 2001 for the sub-sample.  Table 3.3 
presents the frequencies of the three main categorical variables.   
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Table 3.1  Variable description 
Variable Description 
NE =1 if living in the Northeast region, =0 otherwise 
WE =1 if living in the West region, =0 otherwise 
MW =1 if living in the Midwest region, =0 otherwise 
HEALTH5 General health status on a five-point scale (1=excellent, 5=poor) 
HEALTH2 Binary general health status (1=good, 0=fair) 
TOTREL Total toxic  releases in 2001 at county-level (10,000 pounds/person) 
DU =1 if county of residence is urban county, =0 otherwise 
DENSITY Thousand of persons/square mile 
PRECIP Annual mean precipitation (inch) 
LOWTEMP Lowest temperature (
o
F) 
MALE =1 if male, =0 otherwise 
AGE Years of age 
WHITE =1 If white, =0 otherwise 
COLLEGE =1 If has a college degree, , =0 otherwise 
MARRIED =1 If married, =0 otherwise 
INCOME45 =1 if  income < $45,000, =0 otherwise 
ASTHMA  =1 if having asthma, =0 otherwise 
CANCER =1 if having cancer, =0 otherwise 
MIGRAINE =1 if had severe migraine in past 3 months, =0 otherwise 
BMI Body Mass Index 
NOINSUR =1 if had no health insurance coverage, =0 otherwise 
EMER Number of times in a hospital emergency room 
DOCVISIT Number of times seeing a doctor 
PNEUSHOT =1 if ever had pneumonia shot,=0 otherwise 
HOME50 =1 if respondent's home built before 1950, =0 otherwise 
HOUSEOWN =1 if owning a house, =0 otherwise 
DRINK =1 if current moderate or heavy drinker, =0 otherwise 
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Table 3.1 (continued) 
Variable Description 
SMOKE = 1 if current smoker, =0 otherwise 
WORK =1 if had a job in past 12 months, =0 otherwise 
WORKLOSS Number of work-loss days 
SERVICE =1 if working in service industry, =0 otherwise 
MANUF =1 if working in manufacturing  industry, =0 otherwise 
AGRI =1 if working in agriculture, =0 otherwise 
ONEJOB =1 if having more than 1 job, =0 otherwise 
HOURWORK Number of hours worked in a week 
YEARONJOB Number of years on a current or recent job 
PAIDSICK =1 if had paid sick leave, =0 otherwise 
PAIDHOUR =1 if paid by hour, =0 otherwise 
EMP500 =1 if working in place > 500 employees, =0 otherwise 
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Table 3.2  Descriptive statistics  
The whole sample 
(N=25,552) 
Subsample (those 
working) (N=14,632) 
Variable 
Mean  Std dev  Mean  Std dev  
NE 0.1843 0.3878 0.1794 0.3837
WE 0.2058 0.4043 0.2068 0.4050
MW 0.2400 0.4271 0.2474 0.4315
HEALTH5 3.7405 1.0824 4.0167 0.9122
HEALTH2 0.6111 0.4875 0.7161 0.4509
TOTREL 0.0011 0.0041 0.0010 0.0039
DU 0.8350 0.3711 0.8504 0.3566
DENSITY 0.0221 0.0719 0.0214 0.0692
PRECIP 37.7165 17.4160 37.4308 17.2815
LOWTEMP 10.1479 13.5197 9.8939 13.6266
MALE 0.4435 0.4968 0.5004 0.5000
AGE 47.1817 17.7876 41.0985 12.6523
WHITE 0.7991 0.4007 0.8049 0.3962
COLLEGE 0.1623 0.3687 0.2027 0.4020
MARRIED 0.4930 0.5000 0.5224 0.4995
INCOME45 0.6500 0.4770 0.4678 0.4989
ASTHMA 0.1081 0.3106 0.1039 0.3052
CANCER 0.0770 0.2666 0.0430 0.2029
MIGRAINE 0.1527 0.3597 0.1515 0.3585
BMI 2.6976 0.5738 2.6988 0.5571
NOINSUR 0.1371 0.3440 0.1355 0.3423
EMER 0.3215 0.7752 0.2427 0.6263
DOCVISIT 2.6330 2.2690 2.2466 2.0636
PNEUSHOT 0.1787 0.3831 0.0863 0.2809
HOME50 0.3066 0.4611 0.2843 0.4511
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Table 3.2 (continued) 
The whole sample 
(N=25,552) 
Subsample (those 
working) (N=14,632) 
Variable 
Mean  Std dev  Mean  Std dev  
HOUSEOWN 0.6766 0.4678 0.6839 0.4649
DRINK 0.1918 0.3937 0.2272 0.4190
SMOKE 0.2258 0.4181 0.2412 0.4278
WORK 0.6951 0.4604 1 0
WORKLOSS 3.4950 12.2222
SERVICE 0.3952 0.4889
MANUF 0.1285 0.3347
AGRI 0.0210 0.1435
ONEJOB 0.0800 0.2713
HOURWORK 40.6040 12.8768
YEARONJOB 7.7776 8.5663
PAIDSICK 0.5947 0.4909
PAIDHOUR 0.5516 0.4973
EMP500 0.2129 0.4094
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Table 3.3  Frequencies of health status and working status 
Variable Frequency 
5-point scale health status  
    Excellent   7,493 
    Very good   8,123 
    Good   6,585 
    Fair   2,516 
    Poor     835 
Binary health status  
    Good 15,616 
    Fair   9,936 
Working status  
    Working 17,762 
    Not working   7,790 
 
3.7  Empirical Results 
 In this section, we present the empirical results of investigating how toxic 
chemical releases impact productivity losses.  The first section reports the results for the 
model using binary health status. 
 
3.7.1  Results using binary health status 
The estimated coefficients of variables in the working status equation with 
exogenous health status are presented in Table 3.4.  Respondents were more likely to 
work if they lived in the Midwest region or in areas experiencing lower minimum 
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temperatures.  Health status has a positive and significant association with the likelihood 
of working.  The healthier the respondent, the more likely they are to have held a job in 
the past 12 months.  The likelihood of working increased if respondents were male, 
young, had a college degree, or owned a house and decreased if family had an income 
less than $45,000 and were married.  To correct for selection bias, the inverse Mill ratio 
is calculated and included as an explanatory variable in the work loss equation (Heckman 
1979). 
Results for work-loss days using the Poisson model and overdispersion tests of 
Poisson regression are presented in the Appendix A.  Tests of overdispersion suggest the 
negative binomial is the appropriate model for days work lost (Appendix B). 
 Table 3.5 presents the parameter estimates from the negative binomial regression 
for the work loss model assuming binary health status is exogenous.  The estimated 
coefficient for the inverse Mills ratio was statistically significant.  General health status is 
significantly related to work days lost.  It is estimated that being in good health reduces 
the number of work-loss days by 2.92 days per year.  This result is consistent with other 
findings (Marmot, et al. 1995; Marmot, et al. 1993; North, et al. 1993). Levels of toxic 
chemical releases in county of residence are positively related to work days lost, which is 
similar to other studies (Ostro 1983; 1987; Ostro and Rothschild 1989).   An increase in 
toxic releases by 1 pound/person would raise lost work days by 6.2 per year. Respondents 
in the Northeast and Midwest regions lost more days at work than respondent in other 
regions.  An increase in population density of 100,000 persons/square mile decreases 
days on the job by 1.53 days.  Higher minimum temperatures are associated with more 
work days lost, suggesting these conditions promote more rapid spread of diseases like 
 64
colds and influenza.  Coefficients for all six biological and socioeconomic variables are 
negative and statistically significant except for the white dummy.  Women lost 0.88 more 
work days compared to men.  Interestingly, an additional year in age lowers number of 
days missing from work by 0.04.  Possible explanations for this finding are that the older 
workers rarely miss work because there is a possibility that they will be replaced by 
younger workers if they take days off and that they have more responsible jobs.  Married 
people and people with college degrees have fewer days lost.  Having family income less 
than $45,000 reduced number of days lost by 0.58.  This is likely because they do not 
have sick leave or no health insurance.  Behavior variables including smoking and 
drinking are both positively associated with number of days missed, with drinking 
contributing more to productivity loss by 0.35 days, in concurrence with other studies 
(Batenburg and Reinken 1990; Bush and Wooden 1995; Marmot, et al. 1993; North, et al. 
1993).  Working in a service industry decreased the work days missed by 0.58.  
Individuals who work for more years or work longer numbers of hours are also likely to 
miss fewer work days.  Having paid sick leave, being paid by the hour and working in a 
place with more than 500 others is associated with increased work days lost. 
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Table 3.4  Results for working status equation with exogenous binary health status 
(Dependent variable = working status) 
 
Variable Parameter Estimate Standard Error Chi-Square 
Intercept           2.3962**** 0.0635   37.73 
NEA -0.0260 0.0309   -0.84 
WE  -0.0560 0.0365   -1.53 
MW       0.0707** 0.0317     2.23 
HEALTH2         0.3455*** 0.0201   17.13 
TOTREL   0.3383 2.2464     0.15 
DU   0.0183 0.0268     0.68 
DENSITY   0.0163 0.1496     0.11 
PRECIP -0.0005 0.0007    -0.61 
LOWTEMP     -0.0022** 0.0009   -2.28 
MALE        0.4117*** 0.0202   20.34 
AGE       -0.0403*** 0.0006 -64.65 
WHITE              -0.0094 0.0248   -0.38 
COLLEGE        0.2503*** 0.0288     8.68 
MARRIED       -0.1200*** 0.0210   -5.70 
INCOME45       -0.5620*** 0.0233 -24.07 
DRINK        0.1219*** 0.0268             4.54 
SMOKE        0.1058*** 0.0241     4.38 
HOUSEOWN        0.2140*** 0.0239     8.95 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.5  Negative binomial results for work loss with binary exogenous health 
(Dependent variable = work days lost) 
 
Variable 
Parameter  
Estimate 
Standard  
Error 
Chi-
Square 
Discrete change 
(1 unit) 
INTERCEPT   1.7140*** 0.1479  134.32 
 
NEA   0.2348*** 0.0584 16.18  0.8961 
WE       0.0887 0.0681   1.70  0.3212 
MW   0.1528*** 0.0585   6.83  0.5630 
HEALTH2
 
-0.7507*** 0.0506  219.74 -2.9187 
TOTREL 9.7839** 4.9265   3.94  62,626 
DU       0.0173 0.0537   0.10  0.0607 
DENSITY     -0.5670** 0.2866   3.91 -1.5274 
PRECIP     -0.0026* 0.0015   3.02 -0.0090 
LOWTEMP  0.0060*** 0.0019 10.37  0.0211 
MALE -0.2530*** 0.0501 25.55 -0.8836 
AGE -0.0109*** 0.0031 11.99 -0.0381 
WHITE     -0.0581 0.0476   1.49 -0.2084 
COLLEGE     -0.1129** 0.0519   4.73 -0.3836 
MARRIED     -0.0787** 0.0408   3.72 -0.2775 
INCOME45 -0.1623*** 0.0603   7.24 -0.5816 
DRINK 0.2595*** 0.0472 30.22  0.9866 
SMOKE 0.1735*** 0.0453 14.70 0.6371 
SERVICE -0.1677*** 0.0415 16.29 -0.5808 
MANUF       0.0193 0.0582   0.11  0.0686 
AGRI       0.0674 0.1318   0.26  0.4380 
ONEJOB       0.0516 0.0679   0.58  0.1862 
HOURWORK -0.0042*** 0.0015   7.61 -0.0147 
YEARONJOB  0.0087*** 0.0026 11.25  0.0308 
SDAYPAID  0.2841*** 0.0408 48.36  0.9741 
PBYHOUR  0.2241*** 0.0396 31.96  0.7726 
EMP500  0.1583*** 0.0468 11.45  0.5829 
INVERSE MILLS  1.6465*** 0.4549 13.10 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 67
The generalized instrumental variable method is used to estimate the working 
equation and the work loss equation, in order to account for the endogeneity of health 
status.  A Hausman specification test (Hausman 1978) is used to test for endogeneity of 
health status.  In this case, we conclude that health status is endogenous since the 
calculated statistic of 267.74 is greater than the critical value of 3.84 for a chi-square with 
1 degree of freedom.  However, it is necessary to test for the validity of any instrument 
used in instrumental variables estimation.  The Nelson and Startz (1990) test is used in 
this analysis.  The calculated Nelson and Startz statistic is 5,267, which is greater than 
critical value of 2.  We conclude that the instruments are relevant. 
 The instrumental variable probit results for working status using binary health 
status are reported in Table 3.6.  All of the coefficients that are statistically significant in 
the exogenous health model remain significant in the endogenous model and the Western 
dummy becomes significant as well.  Health status still has positive but even greater 
effect on employment status.  Coefficients for the other significant variables are slightly 
smaller in absolute values than those in the exogenous model.  This means that the effect 
of explanatory variables is overestimated in the case of exogenous health status. 
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Table 3.6  Results for working status equation with endogenous binary health status 
(Dependent variable = working status) 
 
Variable Parameter Estimate Standard Error Chi-Square 
INTERCEPT         2.1752*** 0.0681   1,019.55 
NEA -0.0258 0.0309   0.70 
WE     -0.0695** 0.0365   3.61 
MW        0.0764*** 0.0317   5.79 
HEALTH2
IV 
       0.4111*** 0.0247      278.13 
TOTREL 0.7585 2.2357   0.12 
DU             -0.0028 0.0270   0.01 
DENSITY               0.0163 0.1495   0.01 
PRECIP             -0.0006 0.0008   0.52 
LOWTEMP  -0.0018* 0.0010   3.20 
MALE        0.4056*** 0.0202      402.35 
AGE      -0.0371*** 0.0007   2,880.79 
WHITE              -0.0365 0.0250   2.12 
COLLEGE        0.2267*** 0.0288 61.80 
MARRIED      -0.1307*** 0.0211 38.51 
INCOME45      -0.5094*** 0.0238      456.74 
DRINK       0.0916*** 0.0270 11.50 
SMOKE       0.1515*** 0.0247 37.68 
HOUSEOWN       0.2160*** 0.0239 81.65 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 
The instrumental variable estimation for the work days lost equation is presented 
in Table 3.7.  Comparing the results in Table 3.7 and Table 3.5, there are some significant 
differences in the estimated coefficients.  The coefficient for health status remains 
significant and of the expected negative sign but the magnitude of the effect of health 
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status on work loss increases in a nontrivial way: when endogeneity of health status is 
controlled for, the negative impact on work loss nearly doubles.  It is not surprising that 
the effect of health on work loss is understated in the case of exogenous health, which 
may result from measurement error on the health status variable.  The coefficient for 
toxic releases remains significant, but less so.  The coefficient for toxic chemical releases 
is smaller than that with exogenous health, but the marginal effect of toxic releases on 
work-loss days is greater.  The likely reason for the increase in the effect is that in the 
case of endogenous health, toxic chemicals have direct and indirect impacts on work days 
lost, and toxic releases negatively affect health, which in turn negatively affects work 
loss.  A 1 pound/person increase in toxic releases results in an increase of 8.7 days in 
work lost.  The coefficient for the urban county dummy becomes significant and has the 
expected positive sign.  Dummies for college, being married and smoking no longer have 
significant effects on work days lost.  Coefficients for age and dummies for male, income 
of less than $45,000 and drinking remain significant.  The effects of male and drinking 
dummies on work-loss days are almost the same but those for the age and income 
dummies triple.  The coefficients for dummy variables for working in the service 
industry, number of years on job, having paid sick leave, being paid by the hour and 
working in a place of more than 500 people all remain significant and consistent. 
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Table 3.7  Negative binomial results for work loss with binary endogenous health 
(Dependent variable = work days lost) 
 
Variable 
Parameter 
Estimate 
Standard 
Error 
Chi-
Square 
Discrete change  
(1 unit) 
INTERCEPT       2.7118*** 0.1540 310.10 
 
NEA       0.2117*** 0.0569   13.86  0.7938 
WE       0.0280 0.0681     0.17  0.0987 
MW       0.0942* 0.0575     2.69  0.3382 
HEALTH2
IV 
    -1.4080*** 0.0579 592.01 -7.4041 
TOTREL       9.0982* 5.1710     3.10  87,489 
DU       0.1963*** 0.0529   13.80  0.6427 
DENSITY     -1.0167*** 0.2901   12.28 -2.2326 
PRECIP     -0.0036*** 0.0015     5.89 -0.0124 
LOWTEMP       0.0030* 0.0018    2.73  0.0105 
MALE     -0.2008*** 0.0487  16.98 -0.6947 
AGE     -0.0244*** 0.0029  69.78 -0.0842 
WHITE       0.1365*** 0.0470    8.43   0.4602 
COLLEGE       0.0020 0.0498    0.00   0.0071 
MARRIED      -0.0479 0.0404    1.40 -0.1675 
INCOME45      -0.4063*** 0.0565  51.75 -1.5049 
DRINK       0.3546*** 0.0460  59.35   1.3832 
SMOKE      -0.0195 0.0454   0.18 -0.0678 
SERVICE      -0.2248*** 0.0405  30.86 -0.7679 
MANUF      -0.0288 0.0569    0.26 -0.0995 
AGRI      -0.1679 0.1293    1.69 -0.5421 
ONEJOB      -0.0453 0.0664    0.46 -0.1553 
HOURWORK      -0.0044*** 0.0015    9.21 -0.0154 
YEARONJOB       0.0092*** 0.0026  12.86   0.0324 
PAIDSICK       0.2282*** 0.0399  32.71   0.7797 
PAIDHOUR       0.2282*** 0.0386  34.98   0.7798 
EMP500       0.1557*** 0.0454  11.73   0.5681 
INVERSE MILLS       2.0373*** 0.4230  23.20 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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3.7.2  Empirical results using a 5-point scale health status 
The probit regression results for working status using an exogenous 5-point scale 
health status are reported in Table 3.8.  The coefficients for the variables are consistent in 
terms of signs and magnitude when compared with the coefficients using binary health 
status.  Health status is significantly positively associated with working status. 
Testing for dispersion, it is obvious that the Poisson regression model is 
inadequate for lost work days since the calculated likelihood ratio is 127,552.  Therefore, 
the negative binomial is used to model number of work days lost.   
Table 3.9 shows the negative binomial regression results for work loss with an 
exogenous 5-point scale health status.  As expected, health status has a significantly 
negative effect on work loss.  Discrete changes in work days lost with a change in health 
status from one scale to another are not constant, increasing when health status gets 
worse.  For example, a change in health status from excellent to very good results in an 
increase of work loss by 1.12 days while a change in health from fair to poor results in an 
increase of work loss by 4.19 days (Table 3.10).  The coefficient for toxic releases is 
positive in sign and remains significant at the 10% level, suggesting pollution contributes 
to work days lost.  However, the effect of toxic releases on work loss is reduced.  An 
increase of toxic releases by 1 pound raises the number of work days lost by 1.63 
compared with 6.26 days with exogenous binary health status.  The rest of the 
coefficients have the same signs and levels of significance as using exogenous binary 
health status. 
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Table 3.8  Results for working status equation with exogenous 5-point scale health status 
(Dependent variable = working status) 
 
Variable Parameter Estimate Standard Error Chi-Square 
INTERCEPT          1.7652*** 0.0729   24.21 
NEA        -0.0370 0.0310   -1.19 
WE        -0.0627* 0.0367   -1.71 
MW          0.0626** 0.0318    1.96 
HEALTH5          0.2163*** 0.0094  22.94 
TOTREL          0.5754 2.2559    0.26 
DU          0.0084 0.0270    0.31 
DENSITY        -0.0011 0.1504   -0.01 
PRECIP        -0.0004 0.0007   -0.49 
LOWTEMP        -0.0023*** 0.0009   -2.35 
MALE          0.4184*** 0.0207   20.55 
AGE        -0.0390*** 0.0006 -62.03 
WHITE        -0.0250 0.0250   -1.00 
COLLEGE          0.2291*** 0.0289    7.92 
MARRIED        -0.1227*** 0.0211   -5.80 
INCOME45        -0.5445*** 0.0234 -23.21 
DRINK         0.1008*** 0.0269    3.74 
SMOKE         0.1309*** 0.0243    5.38 
HOUSEOWN         0.1952*** 0.0240    8.11 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.9  Negative binomial results for work loss with exogenous 5-point scale health 
(Dependent variable = work days lost) 
 
Variable 
Parameter 
Estimate 
Standard 
Error 
Chi-
Square 
Discrete change 
(1 unit) 
Intercept        2.9664*** 0.1765 282.60 
 
NEA        0.2276*** 0.0580   15.40  0.7992 
WE        0.0477 0.0674     0.50  0.1574 
MW        0.1329** 0.0583     5.21         0.4490 
HEALTH5      -0.4392*** 0.0265 274.44  
TOTREL        8.5263* 4.8518     3.09  16,256 
DU        0.0135 0.0534     0.06  0.0437 
DENSITY      -0.6697*** 0.2860     5.48 -1.5889 
PRECIP      -0.0034** 0.0015     5.36 -0.0110 
LOWTEMP        0.0068*** 0.0018   13.82  0.0223 
MALE      -0.2962*** 0.0507   34.12 -0.9528 
AGE      -0.0100*** 0.0031   10.24 -0.0324 
WHITE      -0.0381 0.0474     0.65 -0.1252 
COLLEGE      -0.1123** 0.0512     4.80 -0.3515 
MARRIED      -0.0658* 0.0405     2.64 -0.2139 
INCOME45      -0.1396*** 0.0592     5.56 -0.4610 
DRINK       0.2813*** 0.0466   36.44  0.9947 
SMOKE       0.1656*** 0.0454   13.34  0.5587 
SERVICE      -0.1673*** 0.0413   16.45 -0.5349 
MANUF      -0.0098 0.0578     0.03 -0.0319 
AGRI       0.0366 0.1311     0.08  0.1212 
ONEJOB       0.0534 0.0673     0.63  0.1778 
HOURWORK      -0.0029** 0.0015     3.67 -0.0094 
YEARONJOB       0.0083*** 0.0026   10.52  0.0271 
SDAYPAID       0.2760*** 0.0404   46.71  0.8725 
PBYHOUR       0.2077*** 0.0392   28.06  0.6625 
EMP500       0.1467*** 0.0464   10.00  0.4969 
INVERSE MILLS       1.2650*** 0.4595     7.58 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.10  Discrete change of work loss with exogenous 5-point scale health status  
 
Health status Change 
Discrete change in  
lost work days 
From excellent to very good 5 ? 4 1.1230 
From very good to good 4? 3 1.7423 
From good to fair 3 ? 2 2.7032 
From fair to poor 2? 1 4.1939 
 
Table 3.11 presents probit regression results for working status using an 
endogenous 5-point scale health status, and the results are similar to those using the 
exogenous 5-point scale health status presented in Table 3.8 and to the results using 
binary health status in Table 3.6. 
Table 3.12 and table 3.13 report the negative binomial regression results for work 
days lost when health status is endogenous.  Compared to the work loss estimate with the 
HEALTH5 model in Table 3.7, coefficients for health status both have negative and 
statistically significant effect on work loss but the magnitude of the effect is quite 
different.  The effect of health status on work loss is much stronger in the endogenous 
model than in the exogenous model.  Moving from excellent health status to very good 
health status raises number of work days lost by 2.30 while raising work days lost only 
1.12 days with exogenous health.  Discrete changes in work loss when moving from one 
health status to another increase with endogenous health status.  The change in work days 
lost resulting from a change in health status from excellent to very good is 2.30 days 
while from fair to poor is 15.46 days.  The coefficient for toxic releases is insignificant in 
the endogenous health model while it is significant at the 10% level in the exogenous 
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model.  The dummy for urban county becomes significant in the case of endogenous 
health.   Lowest minimum temperature no longer has an effect on work days lost. The 
coefficient for dummy for white respondent becomes significantly positive with 
endogenous HEALTH5.   
 There are some similarities and differences when comparing estimated 
coefficients for explanatory variables in endogenous HEALTH2 with endogenous 
HEALTH5 model.  Regardless of the way health status is measured, it has a significant 
and negative effect on work-loss.  The significant coefficient for total releases in the 
endogenous HEALTH2 becomes insignificant in the endogenous HEALTH5 model.  The 
dummies for urban county, white, male and income less than $45,000, age, drinking, 
population density and precipitation all have significant effects on work-loss in both 
models and the magnitude of those effects are consistent.  The dummies for college and 
smoking become significant in the endogenous HEALTH5 model.  The coefficients for 
other variables of employment status including the dummies for working in the service 
industry, having sick days paid, being paid by the hour, working place of more than 500 
people, number of hour worked and years on the job remain significant and are consistent 
in terms of signs and absolute values in the endogenous HEALTH5 model. 
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Table 3.11  Results for working status with endogenous 5-point scale health status 
(Dependent variable = working status) 
 
Variable Parameter Estimate Standard Error Chi-Square 
Intercept        1.7089*** 0.1032      274.41 
NEA -0.0368 0.0308  1.42 
WE   -0.0625* 0.0365  2.94 
MW      0.0654** 0.0317  4.26 
HEALTH5
IV 
       0.2100*** 0.0182      133.71 
TOTREL  0.4560 2.2313  0.04 
DU  0.0084 0.0269  0.10 
DENSITY  0.0204 0.1491  0.02 
PRECIP -0.0004 0.0008  0.25 
LOWTEMP       -0.0023*** 0.0010  5.71 
MALE        0.4079*** 0.0202      409.30 
AGE      -0.0382*** 0.0007   2,830.52 
WHITE -0.0311 0.0251   1.54 
COLLEGE        0.2230*** 0.0293 58.09 
MARRIED      -0.1273*** 0.0210 36.74 
INCOME45      -0.5275*** 0.0240      483.10 
DRINK       0.1040*** 0.0271 14.73 
SMOKE       0.1366*** 0.0248 30.21 
HOUSEOWN       0.2202*** 0.0239 85.24 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.12  Negative binomial results for work loss with endogenous 5-point scale health 
(Dependent variable = work days lost) 
 
Variable 
Parameter 
Estimate 
Standard 
Error 
Chi-
Square 
Discrete change 
(1 unit) 
INTERCEPT       7.0100*** 0.2250 970.51 
 
NEA       0.3213*** 0.0560  32.92  1.2593 
WE       0.1584*** 0.0660    5.75  0.5839 
MW       0.0884 0.0564    2.45  0.3190 
HEALTH5
IV 
    -1.2778*** 0.0388 1,083.11  
TOTREL       5.9586 4.6515    1.64  5,5339 
DU       0.2425*** 0.0518  21.92  0.7873 
DENSITY      -0.9517*** 0.2850  11.15 -2.1608 
PRECIP      -0.0024* 0.0014     2.71 -0.0082 
LOWTEMP       0.0025 0.0018     2.03  0.0089 
MALE      -0.3524*** 0.0476   54.72 -1.2165 
AGE      -0.0291*** 0.0030   95.92 -0.1009 
WHITE        0.2381*** 0.0463   26.41  0.7888 
COLLEGE        0.1970*** 0.0504   15.29  0.7449 
MARRIED      -0.0157 0.0394    0.16 -0.0551 
INCOME45      -0.4618*** 0.0571  65.32 -1.7340 
DRINK        0.4317*** 0.0455  90.09  1.7455 
SMOKE      -0.2495*** 0.0454  30.20 -0.8397 
SERVICE      -0.1905*** 0.0397  23.00 -0.6569 
MANUF        0.0643 0.0557    1.33  0.2318 
AGRI      -0.0507 0.1260    0.16 -0.1742 
ONEJOB      -0.0080 0.0651    0.01 -0.0279 
HOURWORK      -0.0047*** 0.0015  10.53 -0.0165 
YEARONJOB        0.0082*** 0.0025  10.62  0.0289 
SDAYPAID        0.2491*** 0.0391  40.65  0.8534 
PBYHOUR        0.2023*** 0.0380  28.40  0.6973 
EMP500        0.1691*** 0.0447  14.31  0.6226 
INVERSE MILLS        0.6273 0.4281    2.15 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.13  Discrete change of work loss with endogenous 5-point scale health status 
 
Health status Change 
Discrete change in 
lost work days 
From excellent to very good 5 ? 4   2.3037 
From very good to good 4? 3   5.2671 
From good to fair 3 ? 2  9.6674 
From fair to poor 2? 1          15.4644 
  
3.7  Conclusion 
Although the Toxics Release Inventory program has been in operation since 1988, 
the Toxics Release Inventory data have not been widely used in health literature.  This 
paper tries to take advantage of this rich dataset by investigating how air, water and land 
pollution all together impact productivity losses measured by work days lost using a 
unique dataset merging individual-level NHIS data and county-level Toxic Releases 
Inventory data. 
A simultaneous equation model using a negative binomial regression for work 
days lost is built taking into account the endogeneity of health status.  Instrumental 
variable estimation is used to estimate parameters of the model.  This study also 
compares the effect of health status on work days lost using two different measures of 
self-reported health status: a binary and a 5-point scale.  The results show that health 
status is negatively associated with work days lost, regardless of how health status is 
measured.  The magnitude of the effect of health status on productivity loss increases 
when health status is endogenous.   The estimations also indicate that air, water and land 
pollution have positive and significant impacts on work days lost with both exogenous 
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and endogenous binary health status.  Although the absolute value of the coefficient for 
toxic releases is reduced when binary health status is endogenous, the discrete change in 
work days lost from 1 pound reduction in toxic chemical releases increases.  A 1 pound 
increase in toxic releases leads to an increase in work-loss by 6.26 days with exogenous 
binary health status and 8.75 days with endogenous binary health status.  The coefficient 
for toxic releases is not significant in the case of endogenous 5-point scale status.  The 
findings confirm that it is important to control for selection sample bias in the case of a 
censored sample. 
As research on the effects of toxic chemicals on labor productivity has not 
received much attention, this paper may be useful for policy-makers.  These results 
provide information on how industrial pollution including air, water and land pollution 
together impact individual productivity losses.  The estimates of this study may be used 
for cost-benefit analysis for reducing industrial pollution.  Benefits of pollution reduction 
would be increased significantly when taking into the account that toxic chemicals 
significantly increase productivity losses.  It would help policy-makers decide what level 
of toxic chemical releases from industries is appropriate. 
However, it is important to conduct future research at a sub-county level in order 
to better understand the impact of toxic chemical releases on health and productivity.  
Since air pollution is easily dispersed in the air, it is expected that the effect of toxic 
releases on work loss will be greater at the lower levels of aggregation.  Future research 
should also be detected toward identifying which toxic chemicals contribute the most to 
work days lost, thus helping decision-makers to more efficiently target reductions of 
those chemicals. 
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IV. EFFECTS OF MULTIPLE ENVIRONMENTAL HAZARDS ON HEALTH AND 
LABOR PRODUCTIVITY IN CALHOUN COUNTY, ALABAMA 
 
4.1  Introduction 
Unique environmental characteristics have brought the City of Anniston into the 
spotlight in recent years.  It is home to Anniston Army Depot and the Anniston Chemical 
Agent Disposal Facility, and is highly contaminated with polychlorinated biphenyls 
(PCBs) and lead, which resulted in several high-profile lawsuits.  Furthermore, Anniston 
is located in a county that was ranked among the worst 30% of all counties in the United 
States in terms of total environmental releases, the worst 20% in terms of cancer risk and 
the worst 10% in terms of noncancer risk in 2002 (Scorecard 2006). 
 Anniston is located in Calhoun County, Alabama, about 90 miles west of Atlanta, 
Georgia and 65 miles east of Birmingham, Alabama.  The city has a population of 24,000 
with 49% African America and 48% white.  The per capita income for the city in 2005 
was about $18,800 and 23% of the population were below the poverty line.  The city was 
founded in 1872 as a private enterprise when Samuel Noble and General Daniel Tyler 
formed the Woodstock Iron Company.  Historically, Anniston was an industrialized 
manufacturing town where at least 23 major industrial facilities operated over the past 
one hundred years. 
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 The purpose of this study is to analyze the relationship among environmental 
hazards, health status, and labor productivity in Calhoun County.  Environmental hazards 
are represented by PCBs and lead contamination and the Depot.  The theoretical 
framework from the previous essay is employed, in which labor productivity losses are 
measured by numbers of sick days, restricted activity days and lost work days and they 
are hypothesized to be adversely affected by environmental hazards.  A direct mail 
survey was conducted to obtain data on individual characteristics, health status and 
productivity losses.  Maximum likelihood estimation is employed to estimate a 
simultaneous system of equations. 
 
4.2 PCBs Contamination and the Monsanto Anniston Plant 
4.2.1 Background information 
In 1929, PCBs were first produced by the Theodore Swann Company in Anniston.  
In 1935, the Swann Anniston PCB plant was purchased by the Monsanto Corporation.  In 
1971, the Monsanto Anniston plant stopped producing PCBs.  In 1979, due to concerns 
about the environmental and health impacts of PCBs, the United States government 
banned the production of PCBs by the U.S. Environmental Protection Agency regulations 
under the Toxic Substances Control Act.  In 1997, the Anniston plant under the name 
Solutia was spun off from Monsanto.  Para-nitrophenol and polyphenyl compounds are 
now manufactured at the site (ATSDR 2000b).  Solutia filed for bankruptcy in 2003.  
 
 
 
Figure 4.1: Map of the study area 
 
The Solutia plant covers 70 acres located one mile west of downtown Anniston on 
State Highway 202 in Calhoun County, Alabama.  The plant is bordered on the south by 
Highway 202, on the east by the Clydesdale Avenue extension, on the west by First 
Avenue, and on the north by the Norfolk Southern and Erie Railroads.  The area north of 
the plant is surrounded by residential, commercial, and industrial properties.  Residential 
properties are also located east and west of the plant. 
During four decades of PCBs production at the Anniston Solutia plant, millions of 
pounds of PCB-containing waste may have been released into the environment through 
various pathways.  These pathways include direct discharges to ditches, streams and other 
waterways, air emissions, dumping of PCB wastes into sewers, and the release of PCB 
wastes into unlined landfill sites.  According to the company's July 1970 progress report, 
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about 16 pounds of PCB waste were dumped daily into the town's waterways, while the 
year before, the company had been dumping about 250 pounds a day (Beiles 2000).  The 
West End Landfill and the South Landfill located adjacent to the plant are the two 
unlined landfills where hazardous wastes from the Monsanto facility were disposed of 
(ATSDR 2000b).  The West End Landfill comprises an area of six acres situated on the 
southwest side of the facility, north of Highway 202.  The landfill was used for disposal 
of all wastes from the facility from the mid-1930s to 1961.  In November 1961, the West 
End Landfill was closed and traded to the Alabama Power Company. With the closure of 
the West End Landfill, Monsanto began disposing of wastes at the South Landfill.  The 
South Landfill was located southeast of the Monsanto facility, south of Highway 202, 
sitting on the lower northeast slope of Coldwater Mountain.  The South Landfill was 
divided into 10 individual cells, each intended to hold a specific type of waste (ATSDR 
2000b).  Operations at the South Landfill ceased in 1988.  
USEPA reported that PCBs migrated away from the Solutia facility during 
precipitation events as surface water flowed through areas containing PCBs during 
precipitation events and into various drainage ditches leading to Snow Creek, which 
flows north of the Solutia facility and through residential and business areas before 
emptying into Choccolocco Creek (EPA 2003).  PCBs were also disseminated into the 
Anniston area through wind-blown dust, open burning and volatilization into the air.   
 
4.2.2  Lawsuits 
In Summer 1993, Anniston residents got their first glimpse of PCBs and 
Monsanto?s involvement (Beiles 2000).  Largemouth bass with blistered scales were 
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discovered in the nearby Choccolocco Creek and tests showed that the fish contained 
extremely high levels of PCBs.  In November 1993, the Alabama Department of Public 
Heath issued a fish consumption advisory warning residents not to eat fish caught 
between the confluence of Snow Creek and Choccolocco Creek south of Oxford, 
downstream to where Choccolocco Creek flows into Lake Logan Martin (ADPH 2001).  
Around the same time, Alabama Power Company broke ground on land that previously 
belonged to Monsanto, breaching a PCB landfill that bled black tar (Beiles 2000).   
Since the discovery of PCB contamination in Anniston, there have been a number 
of lawsuits filed against Monsanto by Anniston residents.  In 1996, the Mars Hill 
Missionary Baptist Church, which was located across the street from Soluttia, filed a 
lawsuit against Monsanto over PCBs contamination.  This case was settled in 1998 for 
$2.5 million.  In 1996, the Owens v. Monsanto class action suit of 1,596 plaintiffs was 
filed over PCB contamination and was settled in April 2001 for $43 million.  Also in 
1996, Abernathy v. Monsanto was filed in Alabama state court on behalf of 3,500 
plaintiffs in Anniston who have high levels of PCBs in their blood and on their 
properties, alleging that the company knew the hazards of introducing PCBs into the 
environment, failed to inform the community and tried to conceal what it had done 
(Beiles 2000).  In 2001, more than 17,000 Anniston residents filed the Tolbert v. 
Monsanto suit against Monsanto in federal court over property and health damages 
associated with PCB contamination.  In August 2003, lawyers for more than 20,000 
plaintiffs in both the Abernathy v. Monsanto and Tolbert v. Monsanto cases and Solutia 
agreed to a $700 million settlement to resolve all outstanding Anniston PCB litigation 
(Centers 2003).  The $700 million would include costs for cleanup, prescription drugs 
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and $600 million in cash payments, of which Monsanto will provide $390 million in cash 
and $160 million in commercial insurance and Solutia will pay $50 million over 10 years.  
The $600 million was split between the two cases, with $350 million for 17,000 plaintiffs 
in the federal court case and $350 million for 3,500 plaintiffs in the state court case. 
 
4.2.3 Responses from authorities 
Several studies have been conducted by government agencies in response to the 
discovery of PCB contamination in Anniston.  In 1996, the Alabama Department of 
Public Health studied the potential health effects of PCBs contamination and concluded 
that exposure to soil and sediment in the West End Landfill, Snow Creek and 
Choccolocco Creek presents a public health hazard (ADPH 1996b).  Also in 1996, the 
Alabama Department of Public Health conducted an Exposure Investigation for the 
Cobbtown/Sweet Valley Community (ADPH 1996a).  This is a neighborhood in West 
Anniston near the Solutia plant, where most houses have been purchased and demolished 
by Solutia.  The Exposure Investigation found that PCB levels were elevated and 
concluded that PCB levels in soil, sediment, indoor dust and surface water in this 
neighborhood presented a public health hazard.  
In February 2000, the Agency for Toxic Substances and Disease Registry 
(ATSDR) conducted an investigation on whether PCBs in soil, blood, and air in the area 
of Solutia are a threat to public health (ATSDR 2000b).  The investigation has detected 
elevated blood PCB levels in many residents living around the Solutia plant as well as 
high PCB levels in soil in West Anniston.  ATSDR concludes that soil concentrations of 
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PCBs in some areas of Anniston are high enough to present a public hazard in the form of 
cancer and non-cancer health impacts.   
In October 2000 Solutia entered into an Administrative Order on Consent for a 
removal action at the Anniston PCB site (EPA 2006a).  The purpose of the removal 
action is to reduce the short-term threat to public health and the environment caused by 
PCBs in the area around the Solutia facility and part of Oxford where they were 
contaminated with PCBs.  The removal action includes sampling properties in these areas 
and cleanup for residential properties with PCBs level of 10 part per million (ppm) (EPA 
2003).  The cleanup includes the removal of the top three inches of soil from the 
impacted area.  Additional composite sampling and removal of soils in these areas will 
continue until remaining soils within the next 9 inches of soil have PCB levels below 2 
ppm.  Soils in these areas below a depth of 12 inches will be removed until the PCBs 
level based on composite sampling is below 10 ppm (EPA 2001).   
 
4.3  Lead Contamination  
USEPA has determined that ?the Anniston Lead Site consists of the entire 
geographic area in Anniston and its environs where lead has come to be located? 
(USEPA 2005).  Lead contamination in Anniston was discovered in 2000, when USEPA 
conducted tests for PCBs.  USEPA believes that lead has been released into Anniston?s 
environment through a number of pathways, including urban activities such as lead paint 
and leaded gasoline and through the operations of various private enterprises in the 
Anniston area, and it is also been found to be naturally occurring.  For the last source of 
lead contamination, EPA's investigation indicated that lead had been released into the 
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environment through air emissions, use of foundry sand as residential fill material, and 
through surface water runoff.    
 The USEPA responded to the lead contamination problem in the Anniston area in 
2000, and cleanup activities began in April 2002 (USEPA 2006c).  The USEPA has set 
400ppm of lead as the cutoff level for cleanup for the Anniston area.  Any house with 
lead level greater than 400ppm is subject for cleanup.  USEPA has cleaned up 133 
properties with elevated lead and 209 properties are waiting for cleanup. 
 
4.4  The Anniston Army Depot 
The Anniston Army Depot (ANAD), built in 1941 as an ammunition storage 
depot, covers an area of 15,200 acres in Calhoun County, and is located about 8 miles 
west of the city of Anniston.  Currently, activities at the Depot include rebuilding and 
maintaining equipment such as tanks, missiles, and small arms.  
 
4.4.1 Anniston Chemical Agent Disposal Facility 
The ANAD is one of the eight Army Depots in the U.S. and has stored chemical 
weapons in on-site bunkers since 1961.  Currently, the ANAD stores approximately 
2,254 tons or 7.4 percent of the original U.S. stockpile of chemical weapons including 
projectiles, cartridges, rockets, ton containers and land mines containing the nerve agents 
GB (known as sarin) and VX, and blistering agents HD and HT (know as mustard gas). 
In 1993, the United States was one of 120 countries that signed an international 
treaty called the Chemical Weapons Convention.  The treaty required signatories to 
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destroy their chemical weapons stockpiles by April 2007, with the possibility of a 5-year 
extension. 
In 1996, the U.S Army contracted with Westinghouse Anniston to build, test, 
operate and close a facility to dispose of the ANAD stockpile.  Facility construction was 
completed in 2001, and the Army began disposing of the chemical weapons at the 
Anniston Chemical Agent Disposal Facility (ANCDF) in August 2003.  The facility 
operates 24 hours a day, 7 days a week and will be closed once all the chemical weapons 
have been destroyed. ANCDF uses high-temperature incineration technology to destroy 
the weapons.  
 Release of a chemical agent may affect different areas in different ways and at 
different times.  The likelihood of being exposed to a chemical agent from a release 
decreases as the distance from the point of release increases.  The extent of exposure also 
decreases with distance as the concentration of the agent becomes lower.  Therefore, 
zones have been established to differentiate appropriate levels of response to a potential 
accidental chemical release.  The zones are 
? Immediate response zone (pink zone): 6 miles from ANCDF 
? Protective action zone (orange zone): 9 miles from ANCDF 
? Precaution zone (yellow zone): 20-30 miles from ANCDF. 
Approximately 116,000 residents of Calhoun County are impacted to varying 
degrees.  The map and table below describe the affected areas and the population 
distribution among the affected zones in Calhoun County. 
 
 
Table 4.1  Affected population by risk zones for Calhoun County, Alabama 
 
Zone Distance from ANAD (miles) Number of Residents 
% of 
residents 
Pink Zone 6   35, 000   30.17  
Orange Zone 9   40, 000   34.48  
Yellow Zone 20-30   41, 000   35.35 
TOTAL  116,000 100.00 
 
Figure 4.2  Map of the risk zones of Calhoun County 
 
            Source: Alabama Emergency Management Agency 
4.4.2  The Superfund site and TRI facility 
The Anniston Army Deport was listed as a Superfund site in the final National 
Priority List Past in 1989 (EPA 2006d).  Past activities at the Depot included vapor 
degreasing, metal cleaning, sandblasting, electroplating, and painting operations.  The 
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Depot generated a significant amount of solid and liquid wastes including metals, 
cyanide, phenols, pesticides, herbicides, chlorinated hydrocarbons, petroleum 
hydrocarbons, solvents, acids, chelating agents, asbestos, and creosote, that were 
disposed of in trenches, lagoons, landfills, or other holding vessels from the 1940s 
through the late 1970s.  Soil and groundwater in the area were contaminated as a result of 
the on-site disposal of wastes. 
The Depot was ranked among the dirtiest 10% of all facilities in the US in terms 
of total environmental releases, cancer risk and non-cancer risk in 2002 (Scorecard 2006).  
In 2003 the Deport released into the environment 451,581 pounds of TRI chemicals. 
 
4.5  Health Risks and Effects 
4.5.1  PCBs 
PCBs are mixtures of up to 209 individual chlorinated compounds (ATSDR 
1999).  There are no known natural sources of PCBs in the environment.  PCBs are either 
oily liquids or solids and are colorless to light yellow, having no smell or taste.  Due to 
their non-flammability, chemical stability, high boiling point and electrical insulating 
properties, PCBs were used widely as coolants and lubricants in transformers, capacitors, 
and other electrical equipment. 
 Upon entering the environment, PCBs may remain for a long period of time. They 
can easily cycle between soil, water, and air since they can evaporate from both soil and 
water.  In the atmosphere, PCBs are present as solid particles or as a vapor. 
 PCBs are classified as probable human carcinogens by the USEPA and the 
International Agency for Research on Cancer (IARC) (ATSDR 1999; 2000a; IARC 1978; 
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1987; NCI 1978).  Other studies link PCB exposure with health effects, including 
neurotoxicity,adverse reproductive and developmental effects, immune system 
suppression, liver damage, skin irritation, and endocrine disruption (ATSDR 1999; EPA 
2006b; Gladen and Rogan 1991; Hagamar, et al. 1995; Jacobson, et al. 1990; Jacobson, et 
al. 1985; Taylor, et al. 1984; Taylor, et al. 1989; Tryphonas 1995).  
The USEPA Office of Pollution Prevention and Toxics has created the TRI 
Chronic Human Health Indicators called toxicity weights in order to compare the 
relationship between various chemicals and chronic human health effects including 
cancer and non-cancer effects (Bouwes and Hassur 1997).  Two toxicity weights are 
calculated for most TRI chemicals based on exposure pathway: oral toxicity weight and 
inhalation toxicity weight.  PCB was assigned an oral toxicity weight of 100,000 and an 
inhalation toxicity weight of 1,000.  It should be noted that the higher the weight, the 
more toxic the chemical. 
 
4.5.2 Lead 
Lead is described as ?a heavy and low melting metal that occurs naturally? 
(ATSDR 2005).  However, it is rarely found naturally as a metal but usually found 
combined with two or more other elements to form lead compounds.  
Lead is a toxic element, which can cause a variety of adverse health effects 
ranging from reproductive or developmental effects to acute and chronic effects (EPA 
2000).  Reproductive or developmental effects include high likelihood of spontaneous 
abortion in pregnant women, increased risk of preterm delivery, low birth-weight, and 
impaired mental development (ATSDR 1992; 1997; DHHS 1993).  Acute effects include 
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death from lead poisoning, brain and kidney damage and gastrointestinal symptoms 
(ATSDR, 1992, 1997).  Chronic effects include anemia, neurological symptoms and 
slowed conduction in peripheral nerves (ATSDR, 1992, 1997).   
 Lead has been assigned a toxicity weight of 100,000 for both inhalation and oral 
exposure pathways (Bouwes and Hassur 1997). 
 
4.5.3  The chemical weapons 
The chemical weapons in ANAD include GB and VX agents and mustard.  When 
released into the air, GB and VX are broken down but persist for a few days.  These 
agents tend to break down quickly in water and moist soil, but small amounts may 
evaporate or travel below the soil surface and contaminate groundwater (ATSDR 2002a).  
GB and VX are rapidly acting, lethal nerve agents which are extremely toxic chemical 
agents.  Health effects of GB and VX include rhinorrhea and chest tightness, pinpoint 
pupils, shortness of breath, excessive salivation and sweating, nausea, vomiting, 
abdominal cramps, involuntary defecation and urination, muscle twitching, confusion, 
seizures, flaccid paralysis, coma, respiratory failure, and death.   
HT and HD agents or mustard agents are not readily water soluble, but dissolve 
easily in oils, fats, and other solvents (ATSDR 2002b).  Mustard agents can cause skin 
burns and blisters and damage to the respiratory airways. 
 
4.5.4  TRI chemicals 
 TRI chemicals released by the Depot include very toxic chemicals such as lead 
compounds, chromium compounds, hexachloroethane, tetrachloroethylene and 
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dichloromethane.  A number of health effects including acute and chronic effects, 
reproductive and developmental effects and cancer are caused by these chemicals 
(ATSDR 1997; EPA 2007a; 2007b).  
 
4.6  Data 
4.6.1  Sources of data 
Data for this analysis come from a number of sources.  A direct mail survey 
provides data on perceived risks, health status, labor productivity and demographic and 
socioeconomic characteristics.  Housing characteristics were taken from the Calhoun 
County Property Tax System, Calhoun County Administrative Offices.  Toxic chemical 
releases at census block level and socioeconomic characteristics of block group are 
obtained from Toxic Release Inventory, USEPA (http://www.rtknet.org) and Census 
2000, US Census Bureau (http://www.census.gov), respectively.  Data on PCBs and lead 
levels in Anniston come from the regional EPA office in Anniston. 
 
4.6.2  The survey 
 The survey instrument was developed and the targeted population determined 
after a research trip to Anniston in 2005 during which we met and discussed with citizen 
groups, county officers, newspaper reporters and Army personnel overseeing the 
incinerators.  A mail survey entitled the 2006 Anniston Environmental Risk Survey was 
conducted to obtain the perceived risks from the incinerator and PCBs, health status, and 
labor productivity losses from residents in Calhoun County.  The survey also obtained 
 94
demographic and lifestyle data to control for confounding factors in order to isolate 
health and environmental effects on labor productivity.  
 Questions on health status and labor productivity losses were adapted from the 
National Health Interview Survey, Center for Disease Control and Prevention.  Residents 
were asked about their general health status, and several diseases that may be linked with 
PCBs such as cancer, bronchitis and migraine.  Labor productivity loss questions 
included how many hours a week residents work at their job, the number of days lost due 
to illness and injury, and the number of restricted activity days. 
 A cover letter accompanied the questionnaire stating the purpose of the survey 
and providing contact information to the respondents.  The questionnaire and the cover 
letter were reviewed and approved by the Auburn Office of Human Subjects before being 
sent to Calhoun County residents.  The cover letter and questionnaire are provided in 
Appendix C. 
 Although not the focus of this study, one of the purposes of the survey is to 
investigate if risk perceptions affect house prices in Calhoun County.  Thus, the target 
population for the survey was individuals who purchased housed between 1993 and 2005 
in Calhoun County.  A total of 4,719 transactions that took place between 1993 and 2005 
with complete addresses were taken from transactions records of the Calhoun County 
Property Tax System.  A probability design to select addresses was used with stratified 
sampling by zone where each zone has a different sampling rate.  The Pink Zone, which 
is the closest to the incinerator and contains the PCBs contaminated sites, was sampled at 
the highest rate.  The Orange Zone, located 7-9 miles away from the incinerator, was 
sampled at the second highest rate and the Yellow Zone was sampled at the lowest rate.  
A final sample of 3,492 house owners from 4,719 addresses were randomly selected 
using Excel.  A map of the distribution of survey recipients is presented in Figure 4.3.   
 Questionnaires were first mailed to 3,492 residents in Calhoun County on January 
20, 2006 using bulk rate mailing service.  There were 480 responses or 13.7 percent 
within four weeks of the first mailing.  On February 17, 2006, a total of 1,939 reminder 
postcards were randomly sent to residents those who did not respond.  Subsequently, a 
second set of 1,550 questionnaires was mailed randomly to selected nonrespondents on 
March 18 and March 28.  There were a total of 738 usable responses yielding a raw 
response rate of 21%.  However, it should be noted that because surveys were mailed via 
bulk rate, there was no way to track bad addresses; thus the true response rate is likely 
higher. 
  
Figure 4.3  Map of survey recipients 
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Figure 4.4  Map of the survey responses 
 
4.6.3 Data 
Demographic and economic characteristics of survey respondents are reported in 
Table 4.2.  Almost two third of respondents are aged between 35 and 65 and about 85 
percent are white.  Respondents are divided rather evenly between male and female.  
Around 40 percent of respondents have college, professional and graduate degrees and 70 
percent have family annual income of $40,000 or more. 
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Table 4.2  Demographic characteristics of survey respondents (N=738) 
 Variable Number Percentage 
Age 
  
   20-34 
107 15 
   35-49 
244 33 
   50-64 
240 32 
   Over 65 
147 20 
Gender 
  
   Male 
392 53 
   Female 
346 47 
Race 
  
   White 
623 84 
   African-American 
  96 13 
   Other 
  19   3 
Education 
  
   Less than 12
th
 grade 
  54   7 
   High school graduate 
135 18 
   Associate or college, no degree 
353 35 
   College degree 
146 20 
  Graduate or professional degree 
150 20 
Income 
  
   Under 20,000 
  86 11 
   20,000-39,999 
145 20 
   40,000-59,999 
169 23 
   60,000-99,999 
237 32 
   100,000-150,000 
  79 11 
   Over 150,000 
  22   3 
Marital status 
  
   Single 
  45   6 
   Married 
538 73 
   Other 
155 21 
 
There are 3,586 PCB soil samples with PCB levels in soil ranging from 0 to 5,501 
ppm and 5,301 lead soil samples with lead levels in soil ranging from 0 to 52,000 ppm in 
Anniston.  Table 4.3 presents descriptive statistics for PCBs and lead levels in soil 
 98
samples.  The mean value of PCB levels in soil is 5.37 ppm and the mean lead level is 
247.90 ppm.  Maximum values of PCB and lead levels are 5,501 ppm and 52,000 ppm, 
respectively, which are much higher than the baseline levels for cleanup actions. 
 
Table  4.3  Statistics for PCBs and lead samples 
  PCBs (ppm) (N=3,586) Lead (ppm) (N=5,301) 
Mean 5.37 247.90 
Median 0 151 
Standard Deviation 111.91 859.28 
Minimum 0 0 
Maximum 5,501.00 52,000.00 
Skewness 42.45 44.85 
 
Geographic Information System software (ArcGIS 9.0) is employed to estimate 
and assign calculated values of PCBs and lead to all unsampled locations.  Specifically, 
we use interpolated kriging, an advanced geostatistical procedure that generates an 
estimated surface of PCB and lead levels from a scattered set of points.  Kriging assumes 
that a local influence of an input point diminishes with distance; hence it weights the 
points closer to the processing cell greater than those farther away.  Kriging assigns 
values to locations based on the surrounding measured values, mathematical formulas 
that determine the smoothness of the resulting surface, and statistical models that include 
the statistical relationship among the measured points.  In this study, PCBs and lead 
levels are calculated for a square cell size of 30 meters for an area with a radius of 1,000 
meters around the measured points. 
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 Maps of PCB and lead levels in Anniston soil are presented in Figures 4.5 maps 
of PCB and lead kriging are presented in Figures 4.6.  PCB and lead levels are assigned 
to each house using GIS by overlaying the PCB and lead kriging maps with the map of 
survey respondents? houses.  
 GIS is also used to measure proximity of each house to the incinerator and Solutia 
plant.  Since x and y coordinates of the incinerator are not released to the public because 
of confidentiality issues, the centroid of the Army Depot is used instead. 
 The survey data were merged with data for census block group demographic 
characteristics, and with toxic chemical releases using the census block group code. The 
final dataset consists of 738 observations.  
 
4.7  Empirical Models 
This analysis employs the theoretical health model framework presented in the 
previous essay.  An empirical model is designed to investigate health effects and 
productivity losses of the risks associated with the ANCDF, PCBs and lead levels in 
Anniston.   
L = Q (I, E, W, E, H)       (26) 
where L is a vector of production loss measures, I represents a vector of individual 
demographic and economic characteristics, W is working condition, E is environmental 
characteristics and H is health status. 
 
  
 Figure 4.5: Maps of PCB and lead levels in Anniston soil samples 
   
Figure 4.6  Maps of PCB and lead kriging  
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Three different types of measures of productivity losses are used, including sick 
days lost, restricted activity days and work days lost.   Sick days lost is based on the 
question ?During the past 12 months, how many days did illness or injury keep you in 
bed more than half of the day?, restricted activity days is based on the question ?During 
the past 12 months, about how many days were your activities restricted due to illness or 
injury? and work days lost based on the question ?During the past 12 months, about how 
many days did you miss work at a job or business due to illness or injury.   Health status 
is based on responses to the question ?How do you evaluate your general health? 
Excellent, good, fair and bad?.  Health status is then recoded into binary variable where 
excellent and good take the value of 1 and fair and bad take the value of 0. 
 As presented in the previous section, there might be a number of health effects 
associated with PCBs, lead and the Depot.  Therefore, we assume that health status is 
endogenous.  A simultaneous-equations approach is employed to control for the 
endogeneity of health status, using maximum likelihood estimation of the simultaneous 
equations. 
Three different systems of equation are set up based on three productivity loss 
measures.  The simultaneous equations model is written as 
 lnL = ?
D
 + ?H + ?
L
I + ?
L
P + ?
L
A + ?
L
T + ?
L
D + ?
L
                    (27) 
 H    = ?
H 
+ ?
H
I + ?
H
P+ ?
H
A + ?
H
T + ?
H
D + ? S + ?
H
                    (28) 
where L is productivity loss measured by sick days lost, restricted activity days and work 
days lost, H is health status, I is a vector of individual?s characteristics, P is PCBs level, 
A is lead level, T is toxic release at census block group level, D is distance from each 
house to the centroid of the ANCDF and S is lifestyle characteristics. 
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To control for selection bias due to data censoring of those whose did not respond 
to the survey, the 2-stage Heckman sample selection model is used.  In the first stage, a 
probit regression is used to estimate the individual probability of responding 
R = ?
0
 + ?
1
Z + ?
R
                 (29) 
where R is a binary variable with survey respondents coded 1 and addresses from with a 
response not received are coded 0, X is a vector of explanatory variables including 
housing characteristics and demographic and socioeconomic characteristic at census 
block group level. 
The inverse Mills ratio is calculated 
         ?
i
 (Z
i
, ?
1
) 
 ?
i
 = ?????          (30) 
                    ?
i
 (Z
i
, ?
1
) 
where ? and ? are the probability density function and the cumulative distribution 
function, Z is a vector of explanatory variables in the survey response equation, and ?
1
 is 
the conformable parameter vector of equation 4.  In the second stage, the inverse Mills 
ratio is included as an explanatory variable in the main model to correct for selectivity 
bias.  
 The inverse Mills ratio is also calculated for working status to control for 
selection bias when estimating the lost work days model.  Working status is assumed to 
be a function of individual demographic and socioeconomic characteristics and health 
status.  The inverse Mills ratio for working is included in the lost work days model, along 
with the inverse Mill ratio for survey response. 
A negative binomial equation for count data is employed to estimate productivity 
losses.  The equation for productivity losses is written as 
  y =?'X
1
 + ?
y
                       (31) 
where y is productivity losses, and X
1
 is a vector of explanatory variables.  
The probit equation for health status is given as 
  H* =?'X
2
 + ?H        (32) 
  H = 1 iff H* > 0, H = 0 iff H* ? 0  
where H* is a latent variable for health status. 
The likelihood function for the simultaneous model represented in equations 31-
32 is written as 
 
 
)1(
2
2/1
2
2/1
2
exp
)2(
1
)1(
)(!
)(
2
exp
)2(
1
)1(
)(!
)(
2
2
H
X
yk
H
X
yk
dt
t
pp
ky
yk
dt
t
pp
ky
yk
L
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
+?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
+?
=
??
?
?
??
where p=exp(X
1
)/[exp(X
1
)+k] 
 
4.8  Empirical Results 
A test for endogeneity of health status is conducted using a Hausman specification 
test (Hausman 1978).  The calculated chi-squared statistic is 14.49, which when 
compared with a critical value at 5% level of significance of 3.84 (1 degree of freedom) 
suggests that there is endogeneity in the model and thus a simultaneous estimation 
method is appropriate.  We employ a maximum likelihood approach to jointly estimate 
the two equations. 
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 Dummy variables for PCB and lead levels are created, in which the PCB dummy 
takes a value of 1 for any positive PCB level and 0 otherwise, and the lead dummy takes 
the value of 1 if lead value is greater than 50 ppm and 0 otherwise.  The cutoffs were 
chosen after testing a number of models that used different cutoff levels.  Since PCBs and 
lead levels are positively correlated, the simultaneous model is estimated separately for 
the PCB and lead dummies. 
Tables 4.4, 4.5 and 4.6 show definitions and descriptive statistics for the 
dependent and independent variables for the survey response model, sick days in bed 
model and work days lost model, respectively.  There are 3,492 observations in the 
dataset for the survey response model, comprising demographic and socioeconomic 
characteristic data at the census block group level, along with individual housing 
characteristics.  Data for the sick days in bed and restricted days models include 738 
observations from the survey at individual level merged with the PCB and lead dummies 
at individual property level, and total releases at census block group level.  The dataset 
for work days lost is a sub-sample of the dataset for sick days in bed, containing 530 
observations for those who had held a job in the past 12 months. 
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Table 4.4  Descriptive statistics of variables for survey responding model (N=3,492) 
Variable Definition Mean 
Response =1 if responding; 0 otherwise   0.2113 
% white Percent of white at census block group (%) 80.8464 
% male Percent of male at census block group (%) 47.4913 
% never married Percent of never married at census block group (%) 19.7185 
% bachelor degree Percent of bachelor degree at census block group (%) 10.9638 
% poverty 
Percent of household below poverty line census block 
group   9.7455 
% rural population Percent rural population at census block group (%) 22.6003 
Year erected Year the house was erected 1969 
Basic area Total basic area of the house (square feet) 1501 
Total releases 
Total toxic releases/person at census block group 
(pound/person) in 2005   1.4026 
Distance to Solutia Distance from the house to Solutia (mile)   6.3947 
Distance to Depot Distance from the house to Depot (mile)   9.8874 
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Table 4.5  Descriptive statistics of variables for sick days in bed and restricted days 
models (N=738) 
 
Variable Definition Mean 
Working status =1 if had a job in the past 12 months; =0 otherwise 0.7182
Sick days in bed Number of days in bed more than half of the day 8.1653
Restricted days 
Number of days in which activity is restricted due to 
illness or injury 20.1043
Male =1 if male; =0 otherwise 0.5312
Black =1 if black; =0 otherwise 0.1301
Degree 
=1 if has college or graduate or professional degree; 
=0 otherwise 0.3997
Married =1 if married; =0 otherwise 0.7290
Age Years of age 51.4472
Income 2005 household income ($10,000) 0.6263
Years at residence Number of years at the current residence 7.9118
Pcbdum =1 if PCBs level > 0 ppm; =0 otherwise 0.1640
Leaddum =1 if lead level > ppm; =0 otherwise 0.1640
Total releases 
Total toxic releases/person at census block group 
(pound/person) 0.1497
Distance to Depot Distance from the house to Depot (mile) 9.9645
Health insurance =1 if has health insurance; =0 otherwise 0.9309
Health status =1 if health status is good; =0 otherwise 0.7480
Alcohol =1 if daily alcohol drinker; =0 otherwise 0.0691
Smoke =1 if daily smoker; =0 otherwise 0.1531
Cancer =1 if has cancer; =0 otherwise 0.0650
Asthma =1 if has asthma; =0 otherwise 0.1043
ER visits Number of emergency room visits 1.2696
No adults Number of adults in the household 1.1165
No kids Number of kids in the household 0.7168
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Table 4.6  Descriptive statistics of variables for work days lost model (N=530) 
Variable Definition Mean 
Working status =1 if had a job in the past 12 months; =0 otherwise 1.0000
Sick days in bed Number of days in bed more than half of the day 4.8962
Restricted days 
Number of days in which activity is restricted due to 
illness or injury 10.1340
Work days lost 
Number of days missed at a job or business due to 
illness or injury 5.2774
Male =1 if male; =0 otherwise 0.5377
Black =1 if black; =0 otherwise 0.1132
Degree 
=1 if has college or graduate or professional degree; 
=0 otherwise 0.4453
Married =1 if married; =0 otherwise 0.7623
Age Years of age 46.2340
Income 2005 household income 0.6998
Years at residence Number of years at the current residence 7.2582
Pcbdum =1 if PCB level > 0 ppm; =0 otherwise 0.1453
Leaddum =1 if lead level >50 ppm; =0 otherwise 0.1415
Total releases 
Total toxic releases/person at census block group 
(pound/person) 0.1537
Distance to Depot Distance from the house to Depot (mile) 10.1981
Health insurance =1 if has health insurance; =0 otherwise 0.9340
Health status =1 if health status is good; =0 otherwise 0.8226
Alcohol =1 if daily alcohol drinker; =0 otherwise 0.0679
Smoke =1 if daily smoker; =0 otherwise 0.1528
Cancer =1 if has cancer; =0 otherwise 0.0415
Asthma =1 if has asthma; =0 otherwise 0.0925
ER visits Number of emergency room visits 1.2472
No adults Number of adults in the household 1.2208
No kids Number of kids in the household 0.8396
Construction 
Percent of worker employed in construction at census 
block group level 9.5580
Work at Depot =1 if working at Army Depot 0.0962
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4.8.1  Results for survey response model 
Regression results for the survey response equation are presented in Table 4.7.  
Percent male and never married at census block group level are negatively associated 
with the likelihood of responding to the survey but percent bachelor degree is positively 
associated with the likelihood of a survey response.  The year a house was erected and 
the square footage of the house are positively associated with the likelihood of a survey 
response. 
 
Table 4.7: Regression results for survey response equation (N=3,492) 
Variable 
Parameter 
Estimate 
Std Error Chi-Square 
Intercept       -6.0559*** 2.5315 5.72 
% white -0.0016 0.0024 0.44 
% male     -0.0189** 0.0092 4.22 
% never married    -0.0129** 0.0061 4.53 
% bachelor degree   0.0087* 0.0048 3.32 
% poverty 0.0077 0.0076 1.01 
% rural population         -0.0005 0.0010 0.28 
Year erected       0.0031*** 0.0013 5.76 
Basic area       0.0002*** 0.0001      13.42 
Total releases 0.0026 0.0031 0.69 
Distance to Solutia 0.0102 0.0121 0.71 
Distance to Depot         -0.0078 0.0122 0.40 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
The inverse Mills ratio is calculated from the survey response model in Table 4.7 
and then is included as an additional independent variable for the simultaneous model 
using survey dataset. 
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4.8.2   Results of  sick days in bed model 
Table 4.8 provides maximum likelihood estimates for the sick days in bed model 
for PCB levels.  The likelihood of good health is positively associated with college or 
graduate or professional degrees and income.  This may be explained that those with 
college degree or better or higher income are more likely to have a healthy lifestyle, to 
consume healthy food and to have access to healthcare.  As expected, good health is 
negatively associated with age.  The number of years living at a residence has a negative 
impact on good health; the longer a resident?s tenure, the lower the likelihood of good 
health.  It should be noted that both PCB and lead are the chemicals that have very high 
toxicity weight in terms of chronic health effects on human.  Hence, it may be the case 
for those who have been living in the area for a long period of time suffering chronic 
health effects that deteriorate their health over time.  Another explanation is that children 
are very susceptible to PCB and lead, thus the longer respondents live in the area, the 
higher the chance their health was affected when they were young.   
The PCB dummy, the variable of interest, was negatively associated with good 
health.   This means that residents of a house with any positive kriged PCB level are less 
likely to enjoy good health.  Distance to the Depot has a positive effect on the probability 
of good health; the closer a respondent lives from the Depot, the smaller the likelihood of 
good health.  The Depot is the source of many toxic chemicals, thus those who live close 
to the Depot may suffer some health effects which result in bad health status or they may 
simply believe their health is worse because of the Depot.  Working status is positively 
correlated with good health, possibly because the employ have better access to health 
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care.  Respondents with cancer are less likely to be in good health, and numbers of 
hospital emergency room visits are associated with poor health. 
 
Table 4.8  Results for PCB sick days in bed model 
Health status equation Sick days in bed equation 
Variables 
Estimate Std Error Estimate Std Error 
Male   0.0197 0.1306      -0.5361*** 0.1805 
Black -0.2467 0.1729      -0.1737 0.2637 
Degree      0.3214** 0.1381      -0.5146*** 0.1857 
Married  0.0452 0.1453     0.4086** 0.2218 
Age      -0.0159*** 0.0054 0.0033 0.0077 
Income     0.4684** 0.2251   -0.6454** 0.2877 
Years at residence   -0.0193** 0.0083 0.0093 0.0153 
PCBs dummy   -0.3329** 0.1723     0.4693** 0.2608 
Toxic releases 0.0454 0.0525      -0.1741 0.1366 
Distance to Depot     0.1121** 0.0579 0.0824 0.0781 
Health status       -1.6808*** 0.2199 
Health insurance 0.2151 0.2326 0.1207 0.3521 
Working      0.3987*** 0.1551      -0.5543*** 0.2228 
Alcohol       -0.2291 0.2363   
Smoke       -0.2137 0.1591   
Cancer   -0.1788** 0.0783   
Asthma       -0.0966 0.0823   
Emergency room visit     -0.1853*** 0.0285   
No of adults   0.1314 0.1034 
No of kids   0.0779 0.0823 
Inverse Mills - response       5.3779*** 2.0676     -3.7958 2.8794 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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For the sick days in bed equation, males and those with a college or graduate or 
professional degree are likely to have fewer sick days in bed.  A possible explanation is 
that those respondents are more likely to have a job; hence it is the opportunity cost that 
makes them less likely to stay in bed.  Married respondents are more likely to have more 
sick days in bed.   Income is also negatively associated with sick days in bed; possibly 
because of higher opportunity cost.  Residents who had a job in the past 12 months have 
fewer sick days in bed; again possibly because of opportunity cost.  The PCB dummy is 
positively associated with sick days in bed.  Those living in a house with a positive 
kriged PCB level may experience health effects, so they are likely to stay in bed longer.  
As expected, good health is negatively associated with sick days in bed. 
Maximum likelihood estimates for the sick days in bed model using the lead 
dummy are reported in Table 4.9.  Except for the insignificant coefficient for distance to 
Depot, the results for the health status equation are similar to the PCB model, with the 
lead dummy negatively associated with health status.  However, the magnitudes of the 
effects of PCBs and lead on health status are different; the coefficient for PCB in the 
health status equation is -0.3329 and for lead is -0.4187.  A reasonable explanation is that 
the toxic weight for lead is greater than that for PCBs.  This means that lead may cause 
more severe chronic health effects, which results in more severe health deterioration. 
The sick days in bed equation results are similar to the model with PCBs, except 
that the lead dummy no longer has an effect on sick days in bed.  It should be noted that 
sick days in bed is the measure of an individual?s health that reflects how the individual 
can react to an acute condition.  The finding of an insignificant effect of lead in the sick 
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days in bed equation indicates that PCBs may cause more seriously acute health effects 
than lead does. 
 
Table 4.9  Results for lead sick days in bed model 
Heath status equation Sick days in bed equation 
Variable 
Estimate Std Error Estimate Std Error
Male -0.0002 0.1314      -0.5583*** 0.1838 
Black -0.2234 0.1743 -0.0846 0.2720 
Degree        0.3268*** 0.1385      -0.5571*** 0.1873 
Married  0.0484 0.1449    0.3613* 0.2196 
Age      -0.0165*** 0.0054  0.0038 0.0079 
Income     0.4494** 0.2252    -0.6431** 0.2851 
Years at residence    -0.0195** 0.0083  0.0101 0.0152 
Lead dummy     -0.4187*** 0.1765 -0.0579 0.2845 
Toxic releases 0.0476 0.0524 -0.1591 0.1375 
Distance to Depot 0.0930 0.0586  0.0535 0.0828 
Health status        -1.7796*** 0.2249 
Health insurance 0.1941 0.2325 -0.0310 0.3628 
Working      0.3860*** 0.1549      -0.4609*** 0.2206 
Alcohol       -0.2342 0.2368   
Smoke       -0.2039 0.1588   
Cancer  -0.1825** 0.0786 
Asthma      -0.0962 0.0827   
Emergency room visit   -0.1879*** 0.0286   
No of adults     0.1091 0.1042 
No of kids    0.0858 0.0828 
Inverse Mills - response    5.2457*** 2.1076 -4.4623 3.0531 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.8.3  Results for restricted days model 
Regression results for the PCB restricted days model are presented in Table 4.10.  
In the health equation, coefficients for the college degree or better dummy and income 
have significantly positive signs, while the coefficients for age and number of years at 
residence have significantly negative signs.  The variable of interest, the PCB dummy, is 
negative and statistically significant.  This indicates that residents at houses with non-
zero PCB levels are less likely to enjoy good health.  The coefficient for distance to 
Depot is positive and significant.  Working status, cancer and number of emergency room 
visits are significantly associated with health status. 
 A restricted activity day are defined as a day in which usual activities are limited 
because of illness or injury, and reflect a loss of ability to perform one?s social role at 
work, home or school.  Restricted activity days are expected to be correlated to physical 
limitations (Scholes, et al. 1991).  In the restricted days equation, those with college 
degree or better experience fewer restricted days, possibly because these respondents are 
more likely to have had better overall health care, thus preventing physical limitations.  
Good health significantly reduces the number of restricted days.  This suggests that 
restricted days may be used as an indicator for health status.  Working status is negatively 
correlated with restricted days, possibly because those without a job are likely to have 
some physical limitations that prevent them from doing so.  However, PCBs do not have 
a significant role in restricting respondents? activities. 
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Table 4.10  Results for PCB restricted days model 
Health status equation Restricted days equation 
Variable 
Estimate Std Error Estimate Std Error 
Male 0.0203 0.1306 -0.0881 0.1834 
Black     -0.2493 0.1728      -0.3989 0.2602 
Degree      0.3339*** 0.1382      -0.7776*** 0.1747 
Married      0.0425 0.1453 0.0639 0.2152 
Age    -0.0161*** 0.0054 0.0009 0.0076 
Income   0.4701** 0.2244      -0.2129 0.2842 
Years at residence  -0.0193** 0.0083 0.0104 0.0135 
PCBs dummy    -0.3367*** 0.1721 0.3758 0.2511 
Toxic releases      0.0444 0.0519 0.0029 0.0588 
Distance to Depot  0.1101** 0.0577  0.1301 0.0763 
Health status       -1.5785*** 0.2124 
Health insurance      0.2091 0.2314 0.4324 0.3335 
Working    0.3888*** 0.1546     -0.8055*** 0.2173 
Alcohol     -0.2282 0.2364 -  
Smoke     -0.2201 0.1589 -  
Cancer  -0.1802** 0.0784 - 
Asthma     -0.0969 0.0823 -  
Emergency room visit    -0.1853*** 0.0285 -  
No of adults   -0.0101 0.1018 
No of kids    0.1267 0.0854 
Inverse Mills - response     5.3834*** 0.20612 -4.1986 2.7548 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 
 
 
 115
Table 4.11 provides regression results for the restricted days model that includes 
the lead dummy.  The results for this model are consistent with the results for restricted 
days model with PCBs.  The coefficient for the lead dummy, the variable of interest, is of 
the expected negative sign and significant in the health status equation but is not 
significant in the restricted days equation.  Once again, lead has a greater impact on 
health status than PCBs do; the coefficient for PCBs in the health status equation is  
-0.3367 compare with -0.4167 for lead.  It is possible that lead has a more severe chronic 
effect on health status than PCBs do because of its higher toxic weight. 
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Table 4.11  Results for lead restricted days model 
Health status Restricted days 
Variable 
Estimate Std Error Estimate Std Error
Male  0.0032 0.1315 -0.1521 0.1861 
Black -0.2173 0.1742 -0.3323 0.2714 
Degree       0.3468*** 0.1386      -0.8171*** 0.1771 
Married 0.0496 0.145 -0.1167 0.2178 
Age     -0.0165*** 0.0054  0.0008 0.0077 
Income    0.4499** 0.225 -0.2085 0.2865 
Years at residence    -0.0193*** 0.0083  0.0132 0.0136 
Lead dummy    -0.4167*** 0.1765      -0.2074 0.2727 
Toxic releases       0.0482 0.0526 0.0191 0.0601 
Distance to Depot  0.0954* 0.0586 0.0974 0.0808 
Health status       -1.6428*** 0.2153 
Health insurance 0.1981 0.2316 0.2900 0.3472 
Working     0.3741** 0.1552     -0.7229*** 0.2148 
Alcohol      -0.2351 0.2369   
Smoke      -0.2094 0.1586   
Cancer      -0.1847*** 0.0787   
Asthma      -0.0963 0.0826   
Emergency room visit      -0.1876*** 0.0286   
No of adults        -0.0272 0.1019 
No of kids   0.1163 0.0856 
Inverse Mills - response      5.2383*** 2.0839  -4.8204* 2.9535 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.8.4   Results for work days lost model 
Among the three measures of productivity losses, number of work days lost is the 
most important variable.  This variable represents a direct labor productivity loss, which 
may be readily quantifiable in economic terms, while sick days in bed and restricted days 
represent general productivity loss and are more difficult to measure.  Table 4.12 reports 
maximum likelihood estimates of the work-loss days model using the PCB dummy.  
Those with college degree or better are more likely to enjoy good health.  The older the 
respondents are, the higher the likelihood they will experience poor health.  Asthma and 
the number of emergency room visits are negatively related to good health as expected.  
Surprisingly, the presence of PCBs does not have an effect on the health status of those 
who were employed.  This is possibly because those who are affected by PCBs are less 
likely to work because of their sickness.  At the same time those who had a job are likely 
to have access to health care, hence they would get treated if they have ever suffered any 
health effects from PCBs.  In addition, those with jobs may live in areas of Calhoun 
County that are less likely to be contaminated. 
In the work days lost equation, the coefficient for the college degree or better 
dummy is of the expected negative sign and is significant.  This is consistent with the 
notion that those higher education levels have greater opportunity costs from missing 
work (Grossman 1972b; Stratmann 1999).  Income is also negatively associated with lost 
work days; residents with higher income miss fewer days of work, which is similar to 
findings in the labor literature (Meyer, et al. 1995; Ostro 1987).  The PCB dummy is 
significant and has a positive impact on missed work; that is, living in a house with 
positive PCB levels increases the number of lost work days.  Like sick days in bed, lost 
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work days reflect an outcome from acute health effects.  The result shows that PCBs do 
acutely and negatively affect respondents? work histories.  Good health is significantly 
and negatively associated with work days lost.  Health insurance is positively related to 
lost work days; possibly because those with health insurance will also work for an 
employer who provides paid leave benefits.  Percent employed in construction at the 
census block group level is also positively related to number of lost work days, possibly 
because those working in the construction industry are more likely to be exposed to dust 
and other air pollutants. 
Table 4.13 presents maximum likelihood estimates for the lost work days model 
using the lead dummy, rather than PCB dummy as the explanatory variable of interest.  
The results for the health status equation are consistent with the equation using the PCB 
dummy, in which the coefficient for lead dummy is not significant.  In the lost work days 
equation, the coefficients for college degree or better, health status, health insurance and 
construction remain statistically significant, but the coefficient for income becomes 
insignificant.  The lead dummy is not significant in the work days lost equation.  These 
results are consistent with the results in the sick days in bed model (these two measures 
reflect individual?s react onto acute conditions) in which the coefficient for the lead 
dummy is not significant, but the coefficient for the PCB dummy is significant in the lost 
work days equation. 
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Table 4.12  Results for PCB work days lost model 
Health status Work days lost 
Variables 
Estimate Std Error Estimate Std Error 
Male  0.0446 0.1635 -0.1469 0.1817 
Black -0.2244 0.2371 -0.5586 0.3263 
Degree    0.2985* 0.1691      -0.5922*** 0.1622 
Married 0.0784 0.1855 0.2001 0.2145 
Age      -0.0263*** 0.0073      -0.0173 0.0129 
Income 0.4359 0.2759   -0.4354** 0.2191 
PCBs dummy      -0.2233 0.2236       0.7158*** 0.2877 
Distance to Depot 0.0408 0.0586 0.0092 0.0754 
Toxic releases 0.0588 0.0694 0.0505 0.0785 
Health status       -0.6094*** 0.2203 
Health insurance 0.1633 0.2964      0.8395*** 0.3295 
Alcohol      -0.2686 0.2835   
Smoke      -0.2863 0.1987   
Cancer      -0.0928 0.0939   
Asthma      -0.426** 0.2134   
Emergency room visit     -0.1501*** 0.0334   
Work at Depot 0.1064 0.4196  0.6248 0.2708 
Construction 0.0591 0.0733      0.0367** 0.0179 
No of adults        -0.0027 0.1051 
No of kids   0.0017 0.0838 
Inverse Mills-response    5.7674** 2.6476      -0.3831 2.6712 
Inverse Mills-working     2.4581*** 1.0329       2.1117*** 1.1365 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 4.13  Results for lead work days lost model 
Health status Work days lost 
Variable 
Estimate Std Error Estimate Std Error 
Male 0.0133 0.1650 -0.1518 0.1826 
Black     -0.1742 0.2409 -0.2943 0.3338 
Degree      0.3132*** 0.1690      -0.6486*** 0.1616 
Married 0.0881 0.1841 0.1552 0.2177 
Age     -0.0261*** 0.0073      -0.0117 0.0130 
Income 0.4421 0.2758      -0.4393 0.3038 
Lead dummy      -0.3101 0.2342  0.0794 0.3221 
Distance to Depot 0.0481 0.0701 -0.0105 0.0787 
Toxic releases 0.0449 0.0596   0.0684 0.0841 
Health status        -0.6308*** 0.2207 
Health insurance 0.1771 0.2973       0.8642*** 0.3274 
Alcohol     -0.2682 0.2846   
Smoke     -0.2679 0.1990   
Cancer     -0.0992 0.0944   
Asthma     -0.4290** 0.2141   
Emergency room visit    -0.1534*** 0.0335   
Work at Depot      0.0951 0.2118  0.7823 0.6694 
Construction      0.0367 0.1177     0.0273** 0.0174 
No of adults        -0.0284 0.1066 
No of kids   0.0075 0.0854 
Inverse Mills - response 4.7476 2.6174      -1.7323 2.8858 
Inverse Mills - working      1.9720*** 0.8993 1.3875 1.0998 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.9 Discussion 
 The simultaneous system of equations and the inclusion of PCBs and lead in those 
two equations allow us to draw some conclusion about the extent of direct and indirect 
effects of labor productivity losses.  PCB presence has both direct and indirect effects on 
the number of days in beds, has indirect effects on the number of restricted days and has 
direct effects on number of work days lost.  Lead presence has indirect effects on the 
number of days in bed and restricted days, but has no effect on lost work days. 
 The coefficients for the PCB and lead dummies are used to calculate the marginal 
effects of those variables on productivity losses.  The results are reported in Table 4.14.  
A discrete change in the PCB dummy from 0 to 1 results in an increase of sick days in 
bed by 0.77, an increase in restricted days by 0.15 and an increase in lost work days by 
0.52 annually.  Similarly, a discrete change in the lead dummy from 0 to 1 results in an 
increase of sick days in bed by 0.19 and restricted days by 0.17 annually.   
 In terms of toxic weight of chronic health effects, PCBs are less toxic than lead.  
In this study we find that PCBs have stronger effects on productivity losses than lead 
does.  However, this result is not surprising if we consider that sick days in bed and lost 
work days both reflect mostly the effect of an acute conditions rather than a chronic 
condition.  This indicates that PCBs are more toxic in terms of acute health effects than 
lead is.  Further, the PCB effect may reflect the significant local and national media 
coverage, which raised Calhoun County residents? awareness level about the potential 
danger of PCBs. 
 We can use the marginal effects of PCB and lead on productivity losses to 
estimate welfare losses from lost days at work.  However, costs for sick days in bed and 
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restricted days are not available; we estimate here costs of labor productivity loss based 
on cost of one work day lost.  The mean annual income for a household in the subsample 
of working respondents is $69,980.  Under the assumption that the income comes from 2 
people in the household, each working 250 days per year, one working day is worth $140 
for the average household.  The cost per work day lost as a result of the presence of PCBs 
is thus estimated to be $73 per working person.  For the entire sample of working 
respondents this suggests a total loss of $38,690.  If we extrapolate to numbers of 
employed persons in Calhoun County are 82,300 (71% working rate of 116,000 persons), 
the aggregate loss is $6 million, suggesting a significant economic loss given that the 
total annual value of labor in Calhoun County in 2002 was $959 million. 
 
Table 4.14  Marginal effects for discrete change in PCB and lead dummies 
Productivity loss 
Discrete change in 
PCB (0? 1) 
Discrete change in 
lead (0? 1) 
Sick days in bed 0.77 0.19 
Restricted days 0.15 0.17 
Lost work days 0.52  
 
4.10  Conclusion 
 The empirical results presented here demonstrate that PCBs have significant and 
negative effects on the health status of residents in general, but no significant effect on 
the health status of working residents in particular.  Similarly, lead is significantly and 
negatively associated with the health status of residents but is not associated with the 
health status of working residents.  The effect of the chemical weapon incinerator on 
 123
health status is inclusive since the coefficient for distance to Depot is significant in the 
model using PCB levels but insignificant in the model using lead levels.  Since 
measurements of both PCBs and lead were generally taken at the same houses in the 
sample, this result is somewhat puzzling and worthy of further investigation. 
 PCBs are positively associated with all three measures of productivity loss.  The 
presence of PCBs in the soil of respondents? house increases sick days in bed by 0.77, 
restricted days by 0.15 and lost work days by 0.52.  Lead is positively related to only sick 
days in bed and restricted days.  The presence of lead increases sick days in bed by 0.19 
and restricted days by 0.17. 
 The evidence suggests that there are welfare losses associated with PCB and lead 
contaminations in Anniston City.  Welfare losses come from the deterioration of 
residents? health status and labor productivity losses.  Hence, it is necessary to carry out 
cleanup actions to restore worker productivity and limit welfare losses.  Currently, the 
base level for PCB cleanup is 10 ppm and for lead is 400 ppm.  As shown in this study, a 
positive level of PCB and a 50 ppm level of lead are associated negatively with health 
status and positively with productivity losses.  Hence, the base levels of cleanup actions 
on PCBs and lead should be reduced since PCBs and lead are shown to have significant 
effects on health and productivity losses at levels smaller than the clean up level.  It is 
also recommended that cleanup be accelerated since through 2006 USEPA has only 
mitigated 133 of the 209 properties with elevated lead levels in Anniston. 
 
 
 
 
 
 124
 
 
 
V. CONCLUSION 
 
In this dissertation, we investigate economic impacts that toxic chemical hazards 
may impose on society, including losses in house values and indirect costs of health 
effects resulting from toxic chemicals.  Specifically, we study how toxic chemicals 
impact property values, health status and labor productivity.   
In the second chapter, we analyze the relationship between environmental health 
risks and property values in the US at the county level using a dataset with 3,106 
counties.  Several variables are used to represent environmental health risks including 
total chemical releases, number of Superfund sites, and cancer mortality.  FIML is 
employed to control for the endogeneities of cancer mortality and toxic chemical releases 
in the model.  Our findings indicate that house values are negatively associated with total 
releases and cancer mortality.  The FIML estimates show that a reduction of total 
chemical releases by 1 pound per person results in an increase of $0.54 in house value 
and a decrease of cancer mortality by 1 death in 100,000 persons results in an increase of 
$105.47 in housing value.  The value of statistical life is estimated to be $4 million with 
the FIML model.  The value of statistical life and capitalized house values are used to 
estimate benefits of cleanup.  Based on these estimates, a simple cost benefit analysis 
suggests that cleanup costs exceed benefits.  However, it should be noted that the benefits 
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are underestimated since only owner-occupied housing units and cancer mortality are 
accounted for in this study. 
In the third chapter, we investigate how toxic chemical releases impact 
productivity losses measured by work days lost using a unique dataset merging 
individual-level NHIS data and county-level Toxic Releases Inventory data.  A 
generalized instrumental variable estimation is used to account for the endogeneity of 
health status.  The results reveal that health status is negatively associated with work days 
lost, regardless of how health status is measured, either in binary form or on a 5-point 
scale.  The model underestimates the effect of health status on productivity loss when 
health status is exogenous.  The estimations show that toxic chemical releases have 
positive and significant impacts on work days lost with both exogenous and endogenous 
binary health status.  A 1 pound increase in toxic releases leads to an increase in lost 
work by 6.26 days with exogenous binary health status and 8.75 days with endogenous 
binary health status.  The coefficient for toxic releases is not significant in the case of 
endogenous 5-point scale health status.   
 In the fourth chapter, we investigate how environmental hazards impact health 
status and labor productivity in Calhoun County, Alabama.  Environmental hazards are 
represented by PCB contamination, lead contamination and distance to the Depot.  A 
maximum likelihood approach is employed to simultaneously estimate the models of 
count and dichotomous data.  A data set of direct mailing surveys, census block group 
data and kriged PCB and lead levels is used for the analysis.  The results reveal that PCBs 
have significant and negative effects on the health status of residents in general, but no 
significant effect on the health status of working residents in particular.  Similarly, lead is 
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significantly and negatively associated with health status of respondents but is not 
associated with health status of working respondents.  PCBs have positive impacts on all 
three measures of productivity losses.  The presence of PCBs in the soil of respondents? 
houses increases sick days in bed by 0.77, restricted activity days by 0.15 and lost work 
days by 0.52.  Lead has positive impacts only on sick days in bed and restricted days.  
The presence of lead increases sick days in bed by 0.19 and restricted days by 0.17.  
Welfare losses from the deterioration of residents? health status and lost work days 
associated with PCB contamination are estimated to be $6 million annually for Calhoun 
County.   
Although the three essays in this dissertation are independent studies, they are 
connected by the main topic of environmental health risks.  These studies may be useful 
for the general public since they provide information on how toxic chemicals impact their 
lives including their property values and health status.  These studies are especially 
valuable to environmental policy-makers as they provide rich information on welfare 
losses associated with environmental hazards.   
The results of the second chapter are important to decision makers as not only do 
they provide information on how property values respond to levels of toxic chemical 
releases, but also on how cancer mortality is associated with toxic chemicals.  Along with 
the value of statistical life also estimated in this study, these results can be used for cost-
benefit analysis for considering environmental cleanup of toxic releases.  However, to 
estimate the true benefits of environmental cleanup, we suggest that in addition to cancer 
deaths, other health effects of toxic chemicals including cancer incidence, respiratory 
diseases, immune system damage and birth defects should be included in future research.  
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Costs of cancer treatment should also be included to calculate true benefits of reducing 
toxic chemical releases.  It is also recommended that rental housing units should be 
included in future research. 
The results of the third chapter provide information on how industrial pollution 
including air, water and land pollution together impact individual productivity losses.  
Like the results of the second chapter, the estimates of this study may be used for cost-
benefit analysis for reducing toxic releases from industrial facilities.  Benefits of 
pollution reduction would be increased significantly when taking into the account that 
toxic chemicals significantly deteriorate individual?s health and increase productivity 
losses.  However, it is important to conduct future research at a sub-county level in order 
to better understand the impact of toxic chemical releases on health and productivity 
because of the easily dispersed characteristics of air pollution.  Future research should 
also be directed toward identifying which toxic chemicals contribute the most to work 
days lost, thus helping decision-makers to more efficiently target reductions of those 
specific chemicals. 
 The information in the fourth essay may be useful for policy makers in addressing 
areas that are contaminated with PCBs or lead.  Currently, there are only a few studies 
investigating the economic impacts of PCBs and lead, therefore the results of this study 
may be used for cost-benefit analysis associated with the contamination.  The study 
indicates that PCBs and lead affect not only individual?s health status but also labor 
productivity.  This is useful for policy makers to estimate the true cost of PCB and lead 
contamination.  The results may also be used as a reference to establish a base level for 
cleanup action for contaminated areas.  Currently in Anniston, the base level for PCB 
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cleanup is 10 ppm and for lead it is 400 ppm.  However, as shown in this study, a positive 
level of PCB and a 50 ppm level of lead are associated negatively with health status and 
positively with productivity losses.  Hence, the base levels of cleanup actions on PCBs 
and lead should be reduced since PCBs and lead are shown to have significant effects on 
health and productivity losses at the level that is smaller than the clean up level.  
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APPENDICES 
Appendix A: Poisson results for work loss days 
Table A1: Poisson results for work loss days with binary exogenous health status  
(Dependent variable = work days lost) 
 
Variable Parameter Estimate Standard Error Chi-Square 
HEALTH2 -0.6791*** 0.0114       3,570.48 
TOTREL  4.6635*** 0.9884     22.26 
DENSITY -0.8585*** 0.0788   118.78 
PRECIP -0.0038*** 0.0004   106.20 
LOWTEMP  0.0059*** 0.0005   160.43 
MALE -0.1655*** 0.0123   180.19 
AGE -0.0134*** 0.0008   311.43 
WHITE        -0.0138 0.0113       1.51 
COLLEGE -0.0684*** 0.0136     25.21 
MARRIED -0.0848*** 0.0099    73.52 
INCOME45 -0.1667*** 0.0145  131.87 
DRINK  0.1737*** 0.0112 239.92 
SMOKE 0.2093*** 0.0103  415.07 
SERVICE -0.1825*** 0.0100 331.20 
MANUF          0.0094 0.0137      0.47 
ONEJOB  0.1041*** 0.0164    40.23 
HOURWORK -0.0072*** 0.0004  330.87 
YEARONJOB  0.0090*** 0.0006 224.19 
SDAYPAID 0.2669*** 0.0101  694.24 
PBYHOUR  0.1784*** 0.0099 321.43 
EMP500 0.2051*** 0.0106  373.52 
INVERSE MILLS  1.9867*** 0.1087 333.79 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A2: Poisson results for work loss days with binary endogenous health status 
(Dependent variable = work days lost) 
 
Variable Parameter Estimate Standard Error Chi-Square 
NEA  0.2266*** 0.0142 254.74 
MW   0.1378*** 0.0148   86.61 
HEALTH2
IV 
-1.4398*** 0.0133  11,645.10 
TOTREL          -0.0697 1.0219     0.00 
DENSITY -0.9738*** 0.0796 149.64 
PRECIP -0.0039*** 0.0004 109.47 
LOWTEMP  0.0035*** 0.0005   56.18 
MALE -0.1071*** 0.012   80.14 
AGE -0.0281*** 0.0007    1,741.32 
WHITE  0.1197*** 0.0114 109.91 
COLLEGE  0.0708*** 0.0136  27.18 
MARRIED -0.0516*** 0.0099  27.17 
INCOME45 -0.4543*** 0.0136    1,111.89 
DRINK   0.3351*** 0.0112       898.41 
SMOKE          -0.0236** 0.0106    4.99 
SERVICE -0.1930*** 0.0100       369.13 
MANUF  0.0345*** 0.0137    6.34 
AGRI  0.0965*** 0.0341    8.04 
ONEJOB           0.0129 0.0165    0.61 
HOURWORK -0.0068*** 0.0004       300.63 
YEARONJOB  0.0099*** 0.0006       273.36 
SDAYPAID  0.2357*** 0.0101       544.23 
PBYHOUR  0.1960*** 0.0099       389.05 
EMP500  0.2170*** 0.0106       418.69 
INVERSE MILLS  2.3702*** 0.1031       528.19 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A3: Poisson results for work loss days with 5-point exogenous health status 
(Dependent variable = work days lost) 
 
Variable Parameter Estimate Standard Error Chi-Square 
NEA  0.2464*** 0.0142 301.40 
MW   0.1501*** 0.0148 102.34 
HEALTH5 -0.4397*** 0.006    5,388.17 
TOTREL   4.0768*** 0.9948    16.79 
DU   0.0974*** 0.0135    52.22 
DENSITY -0.8692*** 0.0791 120.79 
PRECIP -0.0038*** 0.0004 107.85 
LOWTEMP   0.0061*** 0.0005 174.45 
MALE -0.1861*** 0.0122 232.53 
AGE -0.0133*** 0.0007 347.14 
WHITE          0.0017 0.0113     0.02 
COLLEGE -0.0625*** 0.0134   21.64 
MARRIED -0.0815*** 0.0099   67.93 
INCOME45 -0.1572*** 0.0139 128.56 
DRINK  0.1811*** 0.0112 262.91 
SMOKE 0.1789*** 0.0103 299.46 
SERVICE -0.1761*** 0.0100 307.69 
MANUF        -0.0039 0.0137     0.08 
AGRI        -0.0263 0.0341     0.60 
ONEJOB  0.1045*** 0.0164   40.57 
HOURWORK -0.0064*** 0.0004 265.35 
YEARONJOB  0.0095*** 0.0006 250.94 
SDAYPAID 0.2676*** 0.0102 694.95 
PBYHOUR  0.1686*** 0.0099 287.61 
EMP500 0.2145*** 0.0106 407.81 
INVERSE MILLS  1.6457*** 0.1041 250.14 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A4: Poisson results for work loss days with 5-point endogenous health status 
(Dependent variable = work days lost) 
 
Variable Parameter Estimate Standard Error Chi-Square 
Intercept   6.6252*** 0.0485 18,691.80 
NEA   0.2920*** 0.0142  423.20 
WE   0.0679*** 0.0175    15.01 
MW   0.1962*** 0.0148  175.56 
HEALTH5
IV 
-1.2265*** 0.0083 21,754.40 
TOTREL          0.6769 1.0106     0.45 
DU   0.2670*** 0.0135 389.04 
DENSITY -0.8501*** 0.0782 118.15 
PRECIP -0.0030*** 0.0004   66.87 
LOWTEMP   0.0046*** 0.0005   94.75 
MALE -0.1309*** 0.0123 114.10 
AGE -0.0304*** 0.0007   1,776.78 
WHITE   0.2142*** 0.0114 351.97 
COLLEGE   0.2387*** 0.0135 310.53 
MARRIED        -0.0100 0.0099      1.01 
INCOME45 -0.4897*** 0.0142   1,191.74 
DRINK   0.4060*** 0.0113   1,291.03 
SMOKE -0.1465*** 0.0106 189.75 
SERVICE -0.1698*** 0.0100 286.35 
MANUF   0.0651*** 0.0137   22.55 
AGRI   0.1717*** 0.0341   25.30 
ONEJOB          0.0001 0.0164     0.00 
HOURWORK -0.0068*** 0.0004 310.07 
YEARONJOB   0.0089*** 0.0006 223.09 
SDAYPAID   0.2429*** 0.0101 573.54 
PBYHOUR   0.1959*** 0.0099 390.92 
EMP500   0.2082*** 0.0106 385.61 
INVERSE MILLS   1.4539*** 0.1065 186.53 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Appendix B: Overdispersion tests 
 
The likelihood ratio for Poisson and negative binomial models is calculated as 
LR = -2 (LL (Poisson) ? LL(negative binomial)) = 130,738.   
Since the likelihood ratio test statistic is greater than the critical value of 5.41 at the 1% 
level, the null hypothesis is rejected, indicating the presence of overdispersion.  The Wald 
test statistic is 4.2236/0.0682 = 61.92, which is greater than the 1% critical value of 2.33. 
We thus reject the null hypothesis of Poisson distribution of work-loss days.  Hence, 
these two tests conclude that the Poisson model is inadequate for lost work days data and 
the negative binomial regression is used to model number of lost work days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C: Information letter and survey questionnaire 
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