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Abstract

Triggered by the development of 5G technologies, the demand for mobile data has grown

tremendously in recent years. It leads to an urgent need to upgrade the current macro-cell-

based architecture of network infrastructure from which no substantial amount of future

system performance gains could be obtained. Ultra-dense network (UDN) is a promising

technique to meet the requirement of explosive data traffic in the 5G era, because of its ability

to provide better spectrum efficiency. However, a large number of small base stations (SBSs)

or access points (APs), associated with massive MIMO and millimeter wave (mmWave)

technologies, make the UDN suffer from severe interference, signaling overhead, and power

consumption issues. Therefore, effective mobility and energy management strategies that

take account of the architecture of UDN are required to take advantage of 5G technologies

fully.

In this dissertation, I propose several novel strategies and methods to improve mobility

and energy management in 5G UDNs. Specifically, I address the issue of frequent handover

in mmWave UDN with the goal of enhancing time-frequency resource efficiency. By con-

sidering the spatial and temporal features of handover, I propose two multi-armed-bandit

(MAB) based handover strategies to reduce the handover frequency by exploiting the em-

pirical knowledge distribution of the user’s geographical location and the line-of-sight (LOS)

blockage. Secondly, to address the signaling overhead issue of centralized downlink precoding

in cell-free massive MIMO systems, I propose a novel bandwidth-efficient global zero-forcing

precoding strategy associated with a model-based CSI compression method leveraging the

physical structure of Rician fading channels. Thirdly, to address the power consumption
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and scalability issues in cell-free massive MIMO systems, I propose a multi-agent deep re-

inforcement learning-based AP activation strategy as a scalable solution to improve energy

efficiency in UDNs.
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Chapter 1

Introduction

The emerging 5G communication is characterized by higher data throughput, lower la-

tency and higher reliability, which is realized by some key technologies, such as mmWave

(millimeter wave) and massive MIMO (multiple-input-multiple-output). However, the tra-

ditional macro-cell based network architecture, in which a macro cell provides low-frequency

coverage for miles, becomes inadequate to support the 5G communication, since the high-

frequency waves used in 5G communication cannot propagate for such long distance. For

this reason, ultra-dense network (UDN) is introduced as an ideal solution to integrate these

advanced technologies. An UDN, which is usually in a form of small-cell network, is usually

implemented by deploying a large number of small cells providing high-frequency coverage

for around 100 yards, within which users are served by the surrounding small base stations

(SBSs) that are close to them. Although the high-frequency signal brings the benefit of abun-

dant bandwidth, its short-distance serving range and vulnerability to blockage cause severe

service outage at cell edge and render frequent handover, especially in a real-world mobile

scenario, which significantly wastes spectrum resource and degrades users’ experience. The

frequent handover has become a bottleneck for UDNs to be widely used.

To further mitigate frequent handover in UDNs, the cell-free massive MIMO network

is introduced as a promising variant of UDN. In a cell-free massive MIMO network, a large

number of antennas or access points (APs) are distributed within the network and jointly

provide service to UEs. Because of the user-centric nature, the cell-free massive MIMO

system significantly reduces the inter-cell interference and is able to provide uniform quality

of service to the UEs. However, severe inter-user interference caused by the huge number of

APs is the main issue of it. Although the global zero-forcing (GZF) precoding can eliminate
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the inter-user interference theoretically, it will render unaffordable signaling overhead due

to heavy channel state information exchange, which wastes bandwidth resources and delays

communication. How to reduce the overhead in the GZF is a significant but challenging

problem.

Another critical issue of UDNs is the high power consumption. To provide wireless

service, the AP consumes power to generate radio wave. When the number of APs becomes

extremely large, the total power consumption in the network will be considerable. Con-

sidering that the number of APs is much larger than that of UEs, wisely turn off idle or

under-loaded APs is an effective strategy to reduce the power consumption. However, the

straightforward centralized decision-making mode is not suitable for UDNs because of the

huge number of APs which would cause explosively growing solution space and severe com-

munication overhead. Therefore, how to make a shrewd distributed AP activation strategy

by turning off idle APs is a problem that is worth of being investigated.

To address these issues mentioned above, I investigate the following three problems in

this dissertation. Firstly, I propose two novel handover strategies to reduce the handover in

mmWave ultra-dense cellular networks. These two strategies exploit the spatial and tempo-

ral features of handover and generate BS-selection decisions based on a multi-armed bandit

(MAB) model by learning the distribution of UE’s moving trajectory and line-of-sight (LOS)

link blockage from historical handover events. To support the proposed handover strategies,

I develop a signal space partitioning scheme to extract the handover features and design an

acceleration technique to improve the proposed SBS-selection algorithms. Secondly, I pro-

pose a novel bandwidth-efficient global zero-forcing precoding strategy for cell-free massive

MIMO systems, associated with a model-based channel state information (CSI) overhead re-

duction mechanism. By exploiting the physical structure of Rician fading channels, I propose

to decompose a channel matrix into a LOS and a NLOS components, and design tailored

methods to compress these two parts, respectively. Thirdly, I investigate the distributed AP

activation problem in user-centric cell-free massive MIMO systems. To solve the scalability
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issue due to the numerous APs, I propose a multi-agent-deep-reinforcement-learning based

approach to solve this problem effectively.

The main contributions of this research can be summarized as follows:

• I propose a novel handover strategy to reduce unnecessary handovers in mmWave

UDN by carefully deciding the next SBS a user should be switched to so that the

new user-BS connection after the handover can last as long as possible. Without prior

knowledge of the user’s mobility and environment, the proposed handover strategy

extracts the spatial feature of handovers by exploiting the available received signal

strength information to explore the empirical distribution of the user’s post-handover

trajectory and LOS blockage, which is learned online through a multi-armed bandit

(MAB) framework. This work is based on my published paper [64].

• Based on the above MAB-based handover mechanism framework, I future explore the

temporal feature of handovers based on the proposed spatial feature. The newly added

dimension of the handover feature provides an effective way to further distinguish

different handover events. By incorporating the spatial-temporal feature of handovers,

I propose an advanced handover strategy and a Lin-UCB-based BS selection algorithm

to further improve the handover decisions. This work is based on my published paper

[62].

• By exploiting the physical structure of Rician fading channels, I propose a novel model-

based CSI compression mechanism for centralized downlink precoding in cell-free mas-

sive MIMO systems, which decomposes a channel matrix into a line-of-sight (LOS)

and a non-line-of-sight (NLOS) components, and then compresses them using a model-

based method and a singular-value-decomposition (SVD)-based method, respectively.

I also present two optimization-based algorithms to obtain the phase information of

the LOS component of the channel, which is then used by the proposed channel matrix

decomposition. This work is based on my published paper [63].
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• I propose a distributed solution to solve the access point activation (APA) problem in

cell-free massive MIMO networks to reduce power consumption. I leverage the user-

centric characteristic and design a multi-agent deep reinforcement learning (MADRL)

algorithm by which each AP independently decides whether it needs to be switched

on or off. For comparison, I also design a centralized approach by which a centralized

controller decides to switch on/off for all APs.

The rest of this dissertation is organized as follows. In Chapter 2, I present the state

of the art of the existing research. The following two chapters: Chapter 3 and Chapter 4,

are the background of my dissertation. In Chapter 3, I introduce part I of the background

of this dissertation, which refers to multi-armed bandit based optimal handover policies for

mmWave cellular networks. In Chapter 4, I introduce part II of the background of this

dissertation, which refers to the bandwidth-efficient precoding in cell-free massive MIMO

networks with Rician fading channels. Moreover, in Chapter 5, I propose a multi-agent deep

reinforcement learning framework to solve the access point activation problem in cell-free

massive MIMO networks. In Chapter 6, I conclude my research and point out future work.
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Chapter 2

Related Work

This research work is related to four fields: (1) handover strategies for mmWave cellu-

lar networks, (2) machine-learning-based methods for handover in wireless communication,

(3) overhead compression methods for wireless communication, and (4) BS/AP activation

strategies in UDNs.

2.1 Handover Strategies for mmWave Networks

Although the research on handover management in mmWave band is still in the initial

stage, there have been many fundamental works that pave the path to my research. Some

methods are designed for single connectivity implementation, in which a UE is served by a

single base station through beamforming from the base station, and needs a handover when

the current connection is lost [84, 4, 76, 23]. In particular, [84] explored the physical char-

acteristic of 60GHz outdoor mmWave picocells. In this paper, extensive measurements and

system-level simulations on the propagation range, attenuation, and sensitivity to blockage,

demonstrated the feasibility and benefits of 60GHz outdoor mmWave picocells. [4] formu-

lated a user association problem in the mmWave network as a mixed integer linear pro-

gramming model. To solve this NP-hard problem, the authors proposed a novel distributed

algorithm based on Lagrangian duality theory and subgradient methods. [23] took the real-

location cost of potential handovers and the channel variability of the mmWave channel into

account, and investigated an optimal and fair cell selection policy. [76] considered a joint as-

sociation and relaying problem with load balancing in mmWave networks and formulated this

problem as a stochastic optimization problem. To efficiently solve this problem, the authors
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proposed a distributed auction algorithm where the UEs and relays are treated as indepen-

dent agents and act asynchronously to achieve optimal UE-relay association solutions. The

single connectivity implementation suffers from long handover delay since the initial access

of the new beam requires expensive signaling and long training time [7]. Some works improve

the handover delay by employing statistical predictive models such as finite-state Markov

chain [24, 18] and Markov decision process (MDP) [43, 79] to predict the possibility of an

outage in the next time slot based on the current channel state. Moreover, [50] introduced

a linear-regression-based direction of pass detection algorithm to reduce handover delay. In

addition, the content caching technique has been utilized to lower the handover failure rate

and smooth handover [53, 58, 59]. Specifically, to solve the long handover delays and con-

nection latency, [53] developed a caching-based mmWave network to precache video contents

for serving users in handover and reducing connection and retrieval delays. The authors

modeled it as a dynamic programming problem and proposed a cell-by-cell decomposition

method to solve it. [58] analyzed the impact of caching on the number of handovers and the

average handover failure. Based on the analysis, [59] investigated a cache-enabled mobility

management problem that is formulated as a dynamic matching game between UEs and

BSs. A distributed algorithm was also presented to obtain a dynamically stable handover

mechanism.

Another strategy of handover management is multi-connectivity, which maintains beam-

forming from multiple base stations to a user, so that the user is still under cover if its LOS

to one base station is lost [54, 22, 51, 82]. In particular, to address the issue of vulnerable

mmWave signals which are susceptible to blockage, [51] designed a dual connectivity protocol

for a mmWave cellular network to allow mobile UE to maintain two connections to 4G and

5G BSs at the same time. The authors also developed an uplink control signaling system

to enable rapid path switching when any one link is lost and measurement-based chan-

nel models to capture the physical characteristics of mmWave signals. It is demonstrated

that the proposed method outperforms conventional handover mechanisms. [22] pointed out
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that multi-connectivity is a robust way to enhance mmWave communication but it has a

challenging issue of directional tracking due to the highly directional beams and fast vary-

ing channels. To overcome this issue, the authors proposed a measurement system based

on measuring sounding signals and received signal strength to make centralized handover

and scheduling decisions. [82] proposed a received signal strength (RSS) prediction-based

multi-connectivity handover scheme to address the frequent unnecessary handover problem

in UDNs. This scheme is associated with a new handover triggering mechanism and makes

BS selection decisions based on RSS prediction. Since multi-connectivity has low efficiency

in beam utilization and suffers from multi-fold user capacity loss, it is not considered in this

research.

2.2 Machine Learning Based Methods for Handover

Machine learning provides another promising tool to improve handover decisions. In

particular, the authors in [66] introduced a reinforcement-learning (RL) based handover

policy to reduce the number of handovers in HetNet. In [33], the authors utilized RL to

predict user’s mobility and applied proactive handover to improve the throughput. However,

their method needs the user’s velocity and location information obtained via a dedicated

tracking device. In [36], the authors considered a communication system consisting of users

and unmanned aerial vehicles (UAVs), and proposed a user association algorithm based on

RL to reduce redundant handovers.

Moreover, the authors in [45] introduced a partially blind handover scheme that uses

an embedded XGBoost classifier to predict the success rate of handover. In [3], the authors

employed deep learning (DL) framework to predict upcoming failure events and implement

proactive handover based on historical beamforming vectors. However, they did not describe

how it works in multi-user scenarios. In [48], the authors built a convolutional neural network

to predict the signal power that will be received in a short time. But their solution relies on

a costly camera device, which is not scalable in practice.
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As an integration of DL and RL, deep reinforcement learning (DRL) is also utilized

to reduce handover frequency in wireless communication. In [73], the authors proposed an

asynchronous multi-user DRL scheme with a deep neural network (DNN) as a handover

controller to reduce handover frequency. Similarly, the authors in [27] proposed a handover

scheme based on a deep Q-network. Different from [73], [27] utilized the historical received

uplink SINR on APs to characterize the UE’s state and leveraged the convolutional neural

network and the recurrent neural network to extract UE’s features.

2.3 Overhead compression methods for wireless communication

Interference management is rather challenging in the cell-free massive MIMO system

due to the numerous APs. As an effort to eliminate the inter-user interference in downlink

transmission, LZF precoding and its variants [9, 28] are widely applied, in which each AP

conducts ZF precoding independently for its served UEs. However, these precoding tech-

niques can only partially mitigate the interference since the precoding is conducted locally

at each AP without any collaboration with other APs and consequently the precoding de-

cision is “blindly” in some way. In addition, it has another assumption that the number of

antennas at each AP is larger than the number of mutually orthogonal pilots, which limits

the application of LZF in the systems where the APs are equipped with few antennas. Al-

though the GZF is able to further mitigate the interference theoretically, it suffers from huge

overhead caused by CSI exchange. Due to the existence of a huge number of antennas, the

CSI feedback is too large to be transmitted without compression. How to efficiently reduce

the CSI feedback is of great importance to improving the practicality and performance of

wireless networks [55, 80].

As an early CSI compression method, the quantization-based compression has been

widely utilized in C-RANs and MIMO networks [32, 31, 70]. Because of its low complexity,

it is suitable for remote radio heads with limited computation ability. But it is too simple

to be adequate for more complex application scenarios. In recent years, compressing sensing
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(CS) has been applied to reduce the CSI feedback in FDD massive MIMO systems [34, 15, 60].

It exploits the spatial correlation of CSI and represents the sparse signal by a few elements

through random projections [60]. In particular, [15] proposed a channel feedback reduction

technique based on the theory of CS. This technique not only substantially reduces feedback

overhead but also guarantees CSI recovery for BS. Kuo et.al. [34] considered CS-based chan-

nel feedback reduction techniques in a massive MIMO system associated with two adaptive

feedback protocols to efficiently configure the feedback content. Considering the spatial cor-

relation and channel conditions, Sim et.al. [60] proposed a new reconstruction algorithm for

CS. A new codebook for the compressed channel quantization without any assumption of no

other-cell interference was also developed. The two major issues of the CS-related methods

are their complex recovery computation at BS and the limitations and requirements of the

sparsifying basis. In order to address these issues, the PCA (principle component analysis)-

based schemes are proposed [21, 81, 29]. Specifically, Ge et al. [21] proposed a PCA-based

feedback reduction scheme by exploiting the spatial correlation characteristics of a massive

MIMO channel model, by which a UE is able to compress high-dimensional CSI into a

low-dimensional one. Zhang et al. [81] proposed to generate a compression matrix over a

long-term period while feeding back the compressed CSI to the BS in a short-term one. The

authors also investigated the information distortion of the proposed scheme and derived a

closed-form expression for the distortion. Also considering spatially correlated fading chan-

nels, Joung et al. [29] further analyzed the compression feedback error, bit error rate, and

the spectral efficiency of the PCA-based compression used in massive MIMO systems. The

PCA-based compression matrix, being signal-dependent and a statistical basis, is a trade-off

between the DCT basis and the KLT basis [21, 81]. It only requires the UE and the BS

to have the same spatial correlation matrix in a long-term period. Another advantage of

PCA-based compression schemes is the simplified decoding computation at BS, which only

needs to conduct matrix operation on the received low-dimension CSI, instead of solving the

underdetermined linear system as in CS.
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Machine learning (ML) is another powerful tool to solve the CSI feedback-reduction

problem [25]. The advantage of ML over CS lies in that, it requires no sparsifying basis or

random projection and has a simpler CSI recovery procedure [74]. This motivates a grow-

ing research effort in this field [74, 37, 72, 39, 78, 38]. Specifically, convolutional neural

networks (CNNs) have been introduced as the encoder and the decoder, which conducts

random projection and inverse transformation from codewords to original channels, respec-

tively [74, 37, 38, 78]. Moreover, the recurrent neural network (RNN) is utilized to extract

interframe correlation [72], and redesign the feature compression and decompression modules

[39]. However, the ML-based overhead-reduction method requires massive training data sets

and nontrivial hyperparameter tuning.

2.4 AP activation strategy in ultra-dense networks

How to improve the energy efficiency in UDNs by turning off redundant BSs/APs is

a hot topic in the past decade. Many researchers have made remarkable contributions to

this problem and its variants. More details can be found in [75, 26, 19, 57]. Recently,

some papers have focused on the AP activation (APA) strategy in cell-free massive MIMO

networks. In particular, the performance of the APA technique in cell-free massive MIMO

networks powered by adaptively switched on/off APs is analyzed in [30]. Moreover, various

APA strategies are proposed in [16, 20, 44, 42, 71], which are designed for different scenarios.

In particular, Garcia-Morales et al. [20] focused on a cell-free massive MIMO network

with mmWave band in which the inhomogeneous nature of spatial traffic distribution is

considered and investigated energy efficient AP sleep-mode techniques. The authors analyzed

and compared different AP switch strategies based on the use of goodness-of-fit (GoF) tests.

Femenias et al. [16] not only analyzed and compared different AP switch strategies in cell-

free massive MIMO systems but also considered line-of-sight (LOS) and non-line-of-sight

(NLOS) links between APs and UEs, the different antenna array architectures, and specific

power consumption models. Mishra and Vijayakumar considered a special cell-free massive
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MIMO with the architecture of radio stripe and proposed a random AP switch strategy

which is suitable for this kind of cell-free massive MIMO to improve the energy efficiency

[44]. Wang et al. proposed a network decomposition method to divide a cell-free network into

subnetworks in order to reduce signaling overhead and system complexity, which allows the

APs not serving any UEs to be in sleep mode [71]. A rate-constrained network decomposition

algorithm is developed to solve this problem. Moreover, to solve the AP activation problem

in a cell-free MIMO network with the purpose to improve energy efficiency, Mendoza et

al. proposed a deep-reinforcement-learning-based method to find the optimal set of APs

which need to be turned on [42]. Xu et al. also took BS activation decision into their

resource allocation strategy to minimize power consumption in Cloud Radio Access Networks

(CRANs). They presented a centralized deep-reinforcement-learning-based framework to

find a power-efficient resource allocation solution [77].

2.5 Discussion

Upon the plentiful research results in the related fields, the limitations of the existing

works and the contributions of this dissertation are summarized as follows:

• Few of the existing handover strategies explicitly considers the impact of distributions

of user’s mobility and LOS blockage on handover frequency in mmWave cellular net-

works. Most research in the literature uses throughput [54, 24, 51, 33, 66], or delay

[43, 18, 79, 50], or failure rate [53, 58, 59, 45, 3] as the evaluation criteria for handover

policy. Rather than these metrics, I focus on the unobstructed time for a LOS link

which more directly reflects the quality of a handover decision due to the directivity

of mmWave communication. The estimation of the unobstructed LOS time requires

certain knowledge of the user’s post-handover trajectory and LOS blockage, whose

acquisition has not been studied in the literature.
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• Most of the existing handover solutions have specific requirements, for example, the

prior knowledge on the distribution of channel state [43] and user’s mobility [24, 79,

45, 73], or auxiliary devices to obtain user’s movement information [14, 33, 48]. How-

ever, such requirements cannot always be satisfied in practice. Hence, I propose two

novel handover strategies which leverage the available RSS information to extract the

user’s spatial and temporal features to guide the handover decision without any pre-

knowledge of the user’s exact mobility information. I also propose an online learning

framework based on the MAB process with low computational complexity. This online

learning has a simple structure that requires no offline training phase or hyperparam-

eter tuning, hence is easy to implement.

• In most of the related work on feedback reduction, the wireless channels are modeled

to be Rayleigh fading channels which do not fit the characteristics of UDNs. Most

of the current CSI feedback compression methods only consider the statistical charac-

teristics of the channel matrix. In contrast, the proposed GZF precoding strategy is

customized for Rician fading channels in UDNs and fully exploits the physical structure

of Rician fading channels to efficiently reduce the information loss in CSI compression

and therefore is more reliable.

• Unlike many existing methods of CSI compression that rely on sparsefying-basis to

make the channel vector sparse and need time-consuming iterative algorithms to re-

cover CSI, the proposed CSI compression strategy is built on simple SVD and only

involves basic matrix operation. Moreover, this method does not need off-line training

or hyperparameter tuning which is necessary for ML-based methods and hence is easy

to implement.

• The current research on how to turn off BSs/APs in UDNs mainly focuses on small-

cell networks, in which each UE is served by at most one BS/AP, and the existing AP

activation strategies are not tailored for cell-free massive MIMO systems. Moreover,
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the widely-used centralized decision is not suitable for UDNs when the number of APs

is huge. To address these issues, I propose a multi-agent deep reinforcement learning

approach to solve the AP activation problem in cell-free massive MIMO systems.

In summary, I propose two novel online-learning-based contextual handover mecha-

nisms, which can learn the empirical distribution of the user’s post-handover trajectory and

LOS blockage, and use the learning outcome to reduce unnecessary handovers in ultra-dense

mmWave cellular networks. Depending on the availability of information, two different MAB

formulations are proposed for the learning, one focused on features of handover events in the

space domain, and the other on features in both the space and the time domains. Two effec-

tive BS-selection algorithms are developed for these two mechanisms, respectively. Moreover,

in order to address the issue caused by the high-dimension feature of handover in a complex

scenario, a novel acceleration technique is presented to increase the efficiency of the algo-

rithms. Note that, none of these proposed mechanisms requires the knowledge of the user’s

exact (or fine-grained) mobility information. In addition, to address the issue of severe over-

head generated in cell-free massive MIMO systems, I propose an efficient CSI compression

method that exploits the physical structure of Rician fading channel. This method does not

rely on any statistical characteristics of the channel matrix, or sparsefying-basis, and is easy

to implement. To handle the scalability issue in solving the AP activation problem in UDNs,

I propose a multi-agent deep reinforcement learning approach that is tailored for cell-free

massive MIMO systems.
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Chapter 3

Background: Part I

3.1 Motivation

As a supporting technology of 5G cellular communication, millimeter wave (mmWave)

brings a remarkable benefit in bandwidth due to its ultra-high frequency (30 ∼ 300 GHz).

This characteristic makes the mmWave communication highly relies on the line-of-sight

(LOS) path between the base station (BS) and the user equipment (UE). However, when

the UE is moving, the LOS path is easily blocked by obstacles, such as buildings, adver-

tising boards, and tree-tops. Unlike the microwave, the millimeter wave lacks the ability

to penetrate through or circumvent the obstacle because of its too-short wavelength. That

results in a sudden drop of signal strength when the LOS path is blocked and a subsequent

handover, a process switching the UE to another BS to maintain the communication. That

is why the handover frequency in mmWave cellular networks is much higher than that in 4G

networks [69]. Frequent handover not only wastes spectrum resources but also impairs users’

experience. How to efficiently mitigate the frequent handover in mmWave cellular networks

is an important but challenging problem.

Although the handovers are frequent in mmWave cellular networks, 61% of them are

unnecessary. In other words, a large part of handovers could be avoided if better handover

decisions for the UEs could be taken. Therefore, a wise handover strategy is essential to

reduce unnecessary handovers for improving the spectrum efficiency and the user experience.

A straightforward strategy is to choose the BS that provides the strongest signal strength.

However, it may lead to a “short-sighted” handover decision. In particular, the newly built

connection between the UE and the chosen BS may be blocked again in a few seconds because

of the UE’s trajectory and the location of obstacles. A wise strategy should consider not

14



only the instantaneous signal strength but also be aware of which BSs are able to provide

connections that can last for a long time.

In recent years, more and more researchers pay attention to reducing unnecessary han-

dover in mmWave cellular networks by applying Markov theory [43, 13], machine learning

[65, 36, 73, 27], and other methods [22, 82]. Although these works have made remarkable con-

tributions to solving this problem, they still have limitations and could be improved. Some

handover strategies have special requirements, such as an antenna array equipped at UE

and exhaustive direction search [22]. Some strategies have the assumption of pre-knowledge

about the distribution of channel state [43] or the mobility of UE [36]. Some others need

time-consuming offline training [27]. These requirements and assumptions prohibit the wide

usage of these handover strategies in UDNs. Therefore, an advanced handover strategy re-

quires less assumption and pre-knowledge is more suitable in practice. I notice that the

contextual relationship between LOS link, user’s movement, and obstacle location could be

leveraged to direct good handover decisions. In particular, the unobstructed time for a LOS

link is determined by the user’s moving trajectory and the distribution of the obstacles after

the handover. Therefore, the awareness of this information is of benefit to making a wise

handover decision. Unfortunately, this knowledge usually is not available when a handover

event happens. A straightforward way to solve this problem is to predict the user’s post-

handover trajectory, but that requires the physical location information of the user, which

is not always available in reality.

In this chapter, I propose two handover strategies to address this issue by exploiting

the empirical distribution of the user’s post-handover trajectory and LOS link blockage.

These strategies are based on an instinct observation: if a strategy applied on a handover

is optimal, it is quite likely to be also optimal to other handovers of the same feature. The

feature of a handover reflects the user’s state and the environment where the handover event

happens, which is related to the user’s post-handover trajectory and the distribution of

blockage. A feature is treated as a label according to which a specific policy is applied on
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the handovers of that feature. To differentiate the handovers of different features, I propose

a novel partitioning scheme to extract the handover feature in spatial and temporal domains

by leveraging the available signal strength information. Two handover strategies are then

designed based on the extracted feature to direct handover decisions based on the empirical

knowledge accumulated from past handover events. These strategies are easy to implement

and require no exact location information of users.

In these strategies, the empirical knowledge is learned online through a multi-armed

bandit (MAB) framework, in which the goal is to maximize the expected unobstructed time

for the post-handover connection between BS and UE. Specifically, the centralized controller

maintains an individual MAB process for each spatial feature of handover represented by a

block that corresponds to a specific physical area, which will be explained in Section 3.4.1.

When a handover event happens, the controller extracts its spatial (and temporal) feature

and retrieves the MAB model corresponding to the feature. The MAB, which maintains the

empirical knowledge then chooses a BS among all candidate BSs as the handover decision.

Being switched to this BS, the UE will receive an instantaneous reward, which will be

interpreted in Section IV. This reward will then be used by the MAB model to update its

accumulated knowledge to direct future handover decisions of the same feature. Compared

with the existing handover strategies including UEs’ trajectory prediction, one advantage

of the proposed strategies is that they do not require the exact location information of UE.

Instead, they are able to infer the location and mobility information of UE by exploiting

the available received signal strength (RSS). It is demonstrated through simulation that,

although the inferred information is coarse-grained, it is beneficial to make better handover

decisions than some existing counterparts.

This work is mostly related to the SMART scheme [66], which also uses the MAB

framework to direct handover decisions in mmWave cellular networks. The difference be-

tween my work and the SMART scheme is that my work differentiates handover events by

their spatial and temporal features, and applies specific MAB models to deal with different
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handovers according to their features, while the SMART does not consider any individual

characteristics of handover and uses a single MAB model to make all handover decisions.

Moreover, although some works consider a similar context in handover management, they

require auxiliary devices to collect user’s speed information [24], or aim to avoid exhaustively

beam-searching to reduce handover delay [50], which is different from my work.

3.2 System Model

Let’s consider a cellular network G consisting of a set of mmWave small-cell base stations

(SBSs), denoted as L, and a set of single-antenna user equipments (UEs), denoted as K.

These SBSs and UEs are randomly distributed in the network. A centralized controller

(CC) takes charge of handover in this network through the control plane. This UDN can be

illustrated in Fig. 3.1.

Figure 3.1: Ultra-dense network
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3.2.1 Propagation Model

In this chapter, I describe the channel of the mmWave band by the 3GPP standard

probabilistic LOS model. The statistic path loss model is formulated as [66, 2]

PL(d)[dB] = α + 10β log10(d) + ξ, ξ ∼ N(0, σ2), (3.1)

where d is the distance (m) between the SBS and the UE, α and β are the least square fittings

of floating intercept and slope respectively over the measured distances, and ξ represents a

lognormal shadowing with variance σ2. It is assumed that a perfect beamforming technique

is applied and therefore the inter-user interference could be ignored. The signal-to-noise

ratio (SNR) of the signal received by the UE k ∈ K from the SBS l ∈ L is modeled as [66]

SNRl
k =

Pl ×G× PL(d)−1

Pn

, (3.2)

where Pl is the transmit power of SBS l, Pn is the noise power and G is the antenna gain.

The antenna gain in mmWave communication highly depends on the direction of beams

formed by the SBS. Since I assume that SBS is equipped with directional antennas with a

sectorized gain pattern, the antenna gain G is actually a function of the angle of departure

ω from the SBS to the UE. According to [61], this function can be represented by

G(ω) =


Gmax, if |ω| ≤ ωs

Gmin, otherwise,
(3.3)

where Gmax is the main lobe gain, Gmin is the side lobe gain, and ωs is the main lobe width

of the SBS. Since I assume that the perfect beam tracking technique can be used to maintain

mmWave link [66], the UE could always be in the main lobe and have main lobe gain as long

as its LOS path to the SBS is not blocked.
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I assume that an SBS is able to serve at most Umax UEs simultaneously, and all served

UEs equally share its bandwidth. The downlink transmission rate from the SBS l to the UE

k can be calculated as follows:

hl
k =

Bw

Ul

log2(1 + SNRl
n), (3.4)

where Bw is the bandwidth of SBS and Ul is the number of UEs simultaneously served by

the SBS l.

3.2.2 Blockage and Mobility Model

Due to the vulnerability of mmWave signal to obstacles, the transmission rate of a LOS

link would quickly drop to zero immediately when the link is blocked. In the simulation

of this chapter, a user is characterized by a random moving speed and direction, while an

obstacle is modeled as an object with a fixed radius and location. A link is blocked whenever

there is an obstacle to which the distance from the link is less than its radius. Given a LOS

link and a set of randomly distributed obstacles, the link is blocked whenever there is an

obstacle to which the distance from the link is less than its radius. This modeling could be

used to represent any fixed obstacle, such as a tree top, an advertising board or a building.

Note that there is no assumption on the blockage and mobility models of the proposed

mechanisms and their analysis. In other words, they are general enough to work under any

blockage and mobility models that may appear in practical applications. To evaluate the

performance of the proposed handover mechanisms, in the simulations I assume a randomly

distributed circular obstacle model (i.e., an obstacle is modeled as a circle whose location

is randomly distributed) and a random waypoint mobility model. The main reason why I

select this model is that it is easy to simulate but still general enough. Even though I assume

a unified radius for all obstacles in the simulations, this assumption does not undermine the

generality of the obstacle model in the sense that the blockage time caused by an arbitrary
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obstacle to an arbitrary user in the model is still a random variable. This is because this

blockage time depends on not only the size of the obstacle but also the distance between the

obstacle and the user, the user’s moving direction, and speed, which are randomly distributed

in the model. Therefore, this model has already been able to capture the fundamental effects

of heterogeneous blockage time that could have been caused by a more complicated obstacle

model. Moreover, in this chapter, I mainly consider the static obstacle and mobile-user

scenario. The more challenging mobile-obstacle scenario is out of the scope of this chapter

and will be considered in future work.

Moreover, no communication through non-LOS (NLOS) is considered in this chapter.

Although it is feasible to use NLOS for communication when there is no LOS, according to

the commercial tests from Qualcomm [12], Samsung [56], and NI [6], simply switching the

beam to an NLOS component of the mmWave channel when the LOS is blocked [40, 67, 83]

may not always be a good solution to this handover problem. Switching beams to NLOS

may either lead to a transmission rate that is orders of magnitude lower than the LOS rate

if the transmission power is not increased or cause a huge spike in power consumption if one

wishes to retain a comparable transmission rate because of the huge difference in the path

loss between LOS and NLOS. It is obvious that, rather than simply switching to the NLOS,

a more sophisticated handover to another base station or a relay that has a new LOS with

the user, may avoid the above weaknesses and thus generate a more desirable solution. I do

not consider the effect of reflected signals by obstacles in this work.

3.2.3 Handover Trigger Condition

To guarantee the quality of service, the handover trigger condition for a UE k associated

with SBS l is described as

SNRl
k < SNRmin − hys, (3.5)

where SNRmin is the minimum SNR required for a certain service level, and hys is a hysteresis

parameter for avoiding frequent handover. Although how to select a proper value for hys is
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an interesting issue, it is not the key point of this research. For simplicity, I set hys to be

zero. Note that any specific value of hys does not influence the proposed handover strategies.

3.3 Online Learning of Contextual Handover Mechanisms

Among the six handover events defined by the 3GPP technical specification, I focus on

the BS selection for Event A2 (i.e., a handover will be triggered whenever the received signal

strength goes below a pre-defined threshold [1]), since handover triggered by A2 is common

but challenging in mmWave band. The general framework of the proposed MAB-based online

learning of contextual handover mechanisms is illustrated in Fig. 3.2 and elaborated in the

following.

Figure 3.2: Framework of online learning of contextual handover mechanisms
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3.4 Spatial Contextual Handover Mechanism (SCH)

3.4.1 Signal Space Partitioning Scheme

In my strategy, the BS that is able to provide the longest unobstructed time tends to

be chosen as the handover decision. The unobstructed time of the LOS link is determined

by the user’s post-handover trajectory and the location of the blockage, which has a close

relationship with the location of the UE. Therefore, the location of the UE should be taken

as a spatial feature of handover. However, it is impossible to obtain the exact geographical

location of UE without any auxiliary positioning device. To solve this problem, I propose

a signal space partitioning scheme, which exploits the RSS information at UE as a label to

differentiate handovers happening at different locations.

This scheme comes from the observation that the collection of RSSs from surrounding

SBSs could be used as a signature to identify the user’s location. In particular, it is typical

that multiple small cells overlap in a UDN and a UE would receive multiple signals from

multiple SBSs. Since these SBSs different distances from it, the signals transmitted from

them have different strengths at the UE. For example, a UE k at any location is likely to

receive from multiple surrounding SBSs, which form an available SBS setMk for the UE k.

Each SBS inMk has an SNR and all SNRs constitute a signal vector for the UE k, denoted

as vk. Each entry vz ∈ vk is a quantized version of the SNR received from the SBS denoted

by the zth entry. The quantization is defined as follows. Choose J quantization thresholds

e0, . . . , eJ−1, where J is a parameter and ej1 < ej2 , 0 ≤ j1 < j2 ≤ J − 1, then define the

quantized SNR as

vz =


J, if SNRz ≥ eJ−1,

j, if ej−1 ≤ SNRz < ej, 1 ≤ j < J − 1,

0, if SNRz < e0.

(3.6)
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In this way, any geographic area can be mapped to a specific instance of a signal vector.

This idea could be illustrated in Fig. 3.3.

In Fig. 3.3, there are three SBSs, A, B, and C, whose small cells overlap. Within each

cell, a UE is able to receive a signal from the corresponding SBS and the RSS is above

the minimum required threshold. Here I consider a binary quantization criterion, i.e., use a

single quantization threshold e0. There are 9 UEs distributed in the network. If a UE is in

the small cell of an SBS and there is no blockage on the LOS link between the UE and that

SBS, the UE’s quantized SNR corresponding to the SBS is 1, otherwise 0. In this setting, all

UEs’ signal vectors are listed in Table 3.1. It is easy to see that UEs at different locations

receive different signal vectors, hence have different spatial features. In particular, note that

UE 8 does not have the same signal vector as UE 4, even though both of them reside in the

overlap between the small cells of SBS A and SBS B. This disparity in the received signal

vector arises from the blockage of the LOS between SBS B and UE 8 caused by the obstacle.

Instead, UE 8 has the same signal vector as UE 1, also due to the blockage of the obstacle.

As a result, UE 1 and UE 8 are considered to have the same spatial feature in my model.

Table 3.1: Signal vectors

UE Quantized SNR Signal VectorA B C
1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 0 0 1 0 0 1
4 1 1 0 1 1 0
5 1 0 1 1 0 1
6 0 1 1 0 1 1
7 1 1 1 1 1 1
8 1 0 0 1 0 0
9 0 0 0 0 0 0

Whenever a handover is triggered, the CC collects the UE’s instantaneous RSS and

identifies its signal vector by utilizing the proposed signal space partitioning scheme, which

indicates where the handover event happens. According to Eq. (3.1), the RSS is related to

the propagation distance between BS and UE. Therefore, the partition in the signal space
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Figure 3.3: Illustration of signal space partition

could be mapped to the geographic space and each signal vector is corresponding to a unique

geographic area, called block. This scheme is to identify handovers with the same spatial

feature by assigning them the same block id. The quantization thresholds play a key role in

the partitioning scheme since it determines the amount and the size of the blocks, referred

to as the granularity of the partition.

3.4.2 Spatial Contextual BS-Selection based on Empirical Knowledge of Post-

handover Trajectory

In the SCH mechanism, given M blocks (each corresponding to a unique signal vector),

the CC maintains M independent MAB models, each serving a block by making BS-selection

decisions for handover events happening in the block. Each MAB model has multiple arms

corresponding to the candidate SBSs in the block which the MAB model serves. Each arm

is associated with an expected reward of choosing the corresponding SBS as the handover

24



decision, which is accumulated in the past handovers. Choosing an arm means selecting the

corresponding SBS as the decision for the handover event and the UE will be switched to

that SBS. The newly obtained reward after playing that arm will be used to update the

expected reward of that arm.

3.5 UCB-Based BS-Selection Algorithm for SCH

With the context of spatial feature extracted by the proposed partitioning scheme,

the CC is able to retrieve the MAB model corresponding to the block where the handover

event happens and make a BS-selection decision. In this subsection, I will introduce the

BS-selection algorithm for this spatial contextual handover strategy.

3.5.1 Multi-Armed Bandit Model

In a block gi, a UE has a set of candidate SBSs to choose from, denoted as Li. Let

SNRl
i be the SNR received by a UE from SBS l in block gi, then Li is defined as

Li = {l | SNRl
i ≥ SNRmin, l ∈ L}. (3.7)

After the CC chooses a SBS l ∈ Li for a handover in the block gi in trial t at time τ ,

the UE will be served by the SBS l until it needs another handover at time τ ′. Then the UE

get an instantaneous reward associated with the SBS l in block gi, denoted as rti,l = τ ′ − τ .

Since τ ′ is determined by user’s moving direction, speed, and the location of blockage, the

reward rti,l could be treated as an i.i.d. random variable. The BS selection in block gi is

formulated by a MAB model [41], denoted as Mi = {Li, µ
t
i,l}, where l ∈ Li, and µt

i,l is the

expected reward of the SBS l in block gi in trial t.

Suppose ai,t as the SBS truly selected by the CC following a certain handover strategy in

the block gi at trial t. I define the reward as the difference between the actually accumulated
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reward and the optimal one, which could be formulated as

Ri,T = max
l∈Li

E

[
T∑
t=1

rti,l

]
− E

[
T∑
t=1

rti,ai,t

]
. (3.8)

With the model Mi, the handover decision problem in block gi with the aim to choose the

SBS which brings the longest unobstructed LOS connection time is transformed to find the

optimal policy for the corresponding MAB problem that minimizes the regret.

3.5.2 Estimation of Expected Reward

Due to the lack of full knowledge about the distribution of each SBS’s reward, it can only

be estimated based on historical observations [66]. Denote Ti,k and r̄i,l(T
l
i ), as the number of

times that the SBS l has been chosen and the sample mean of reward of the SBS l in block

gi, respectively. Given an instantaneous reward rti,l, Ti,l and r̄ti,l can be updated as

r̄i,l(Ti,l + 1) =
Ti,l × r̄i,l(Ti,l) + rti,l

Ti,l + 1
, (3.9)

Ti,l := Ti,l + 1. (3.10)

The initial values of Ti,l and r̄i,l(0) are set to be 0. The sample mean value r̄i,l(Ti,l) are used

as the approximation of the expected reward of the SBS l in block gi. Since an instantaneous

reward is defined as the time difference between two adjacent handovers, it is determined

by the distribution of blockage and the user’s mobility, which include the moving direction

and the speed. I consider the speed of UE as a factor that contributes to the randomness of

the reward. In this subsection, the speed of UE is modeled as a random variable following a

certain distribution, such as the Gaussian distribution.
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3.5.3 Exploration and Exploitation

How to deal with the trade-off between exploration and exploitation is a key problem

in reinforcement learning. In this subsection, I utilize the widely-used UCB policy proposed

by [5] to handle this trade-off since it can achieve logarithmic regret with low computation

complexity [66]. According to the UCB, the selected SBS should be

k∗ = argmax
k∈Li

(
r̄i,k(Ti,k) +

√
2 lnFi

Ti,k

)
. (3.11)

In Eq. (3.11), r̄i,l(Ti,l)+
√

2 lnFi

Ti,l
indicates the index of the SBS l in block gi, where Fi denotes

the total number of handovers happened in the block. The first and the second item act as

the exploitation part and the exploration part, respectively.

3.5.4 Dynamic Block Set Construction

In the SCH, the handover decision is based on the block information in the network.

However, there is no assumption that there is any pre-knowledge about the blocks that

could be used at the initial stage of the algorithm. Hence, the block set B = initially. When

a handover event happens, the CC calculates the UE’s signal vector. If the signal vector

already exists, then the id of the corresponding block is retrieved. If not, the corresponding

block will be assigned a new id and then added to B. Meanwhile, a new MAB model for the

new block is created. In this way, the block set is dynamically maintained.

3.5.5 Acceleration Technique

When a post-handover connection, built between the UE k and the SBS l in the block

gi, is blocked, a reward ri,l would be reported and only r̄i,l would be updated (time- and

trial- related subscripts are omitted). However, since the UE’s post-handover trajectory is

instantiated at this moment, it is able to update some other SBSs’ rewards on this trajectory

simultaneously, by using the so-called virtual update. Specifically, in the previous handover,
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if the CC switched the UE k to the SBS l in block gi, the CC was also aware of the set of

SBSs which were not selected, denoted as L̄i,l = Li\{l}, and pretended to build a virtual

LOS link between the UE k and each l′ ∈ L̄i,l. During the UE’s post-handover movement,

in addition to checking the handover trigger condition on the true LOS link, the CC kept

checking that on each virtual LOS link. If the virtual LOS path between the UE k and the

SBS l′ was blocked, the observed reward ri,l′ was calculated and used to update the sample

mean r̄i,l′ , although the corresponding handover event did not truly occur. By this virtual

update, any trajectory of UE can be used to update multiple sample means and the efficiency

of the algorithm can be improved significantly.

The UCB-based BS-selection algorithm for the the SCH is summarized in Algorithm 1.

Algorithm 1 UCB-based BS-selection algorithm for the SCH
1: Input: Cellular network G which consists of a set L of SBSs and a set of obstacles
2: B = ∅;
3: while Event A2 handover trigger condition is met for a UE k do
4: Record the current time τ ;
5: Identify the block gi where UE n resides, associated with the available SBS set Li ⊆ L;
6: if gi /∈ B then
7: Tl,k ← 0;
8: r̄i,l(0)← 0;
9: Fi ← 0;

10: B ← B ∪ gi;
11: end if
12: ai = argmaxl∈Li

(
r̄i,l(Ti,l) +

√
2 lnFi

Ti,l

)
;

13: Switch the UE k to the SBS ai;
14: Observe the reward ri,ai = τ ′− τ when the next handover occurs for UE k at time τ ′;
15: r̄i,ai(Ti,l + 1)← Ti,l×r̄i,ai (Ti,l)+ri,ai

Ti,l+1
;

16: Ti,l ← Ti,l + 1;
17: Fi ← Fi + 1;
18: Update r̄i,l′(Ti,l′ + 1), Ti,l′ and Fi for l′ ∈ B̄i,ai in the same way, if the virtual reward

ri,l′ is obtained.
19: end while
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3.6 Space-Time Contextual Handover Mechanism (STCH)

3.6.1 Temporal Feature Extraction

The UE’s mobility includes not only its instantaneous location but also the moving

direction, which refers to the location change. This location change can not be reflected by

a single block id. Hence, I propose to use a sequence of block ids, i.e., a block concatenation,

as a label to identify the UE’s moving direction. In particular, the CC maintains a block

concatenation for each UE, which contains the ids of the blocks that the UE has passed in

chronological order. This block concatenation that reflects the location change over a period

of time could be used as a coarse-grained moving direction of UE.

The handover events shown in Fig. 3.4 illustrate how the block concatenation is used

to represent the UE’s moving direction. Suppose the UEs 1, 2, and 3 need handover in the

block a. Each of them has its own moving direction, which is indicated by the corresponding

arrow. It is assumed that all these three UEs are able to receive signals from the SBS A,

B, and C. According to the SCH strategy, these three UEs have the same spatial feature

since they are in the same block, and they are treated homogeneously by the MAB model

corresponding to the block a. Therefore, they will be switched to the same SBS, suppose

to be the SBS B. Obviously, considering the individual moving directions of these UEs, the

SBS B is not the optimal solution for all of them. In particular, except the UE 2, UE 1

and UE 3 are moving away from the SBS B. So the SBS B is not optimal for them. Due to

their moving directions, the SBS C and the SBS A can provide longer LOS connection times

for them, respectively. That requires further distinguishing the UEs by considering their

moving directions besides their locations. By using the concatenation of historical block

Ids, I can classify those UEs according to their pre-handover trajectories, and hence offer an

opportunity to better tailor the handover decisions for them. For example, being aware that

the UEs 1, 2, and 3 come from the blocks d, b, and c, I can switch them to the SBS C, B,

and A, respectively, and that leads to better handover decisions.
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Figure 3.4: Differentiation of UEs’ moving directions

It is worth noting that, although this block-concatenation-based estimation of UE’s di-

rection is coarse-grained, it provides valuable information to further differentiate UEs with

the same spatial feature. Obviously, with finer partition granularity of the signal space

and longer block concatenation, the concatenation-based temporal feature is more differen-

tiable. However, maintaining the entire block-traversing history for every UE is expensive,

I use the one-step-look-back construct, which is the simplest implementation of the block

concatenation. In particular, given a UE k in the block gk, denote gk = (g−k , gk) as the

block concatenation of UE, where g−k is the immediate preceding block to gk. Using this

one-step-look-back construct not only avoids the “curse of dimensionality” caused by long

concatenation but also saves storage and reduces the space complexity of the system.
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3.6.2 Space-Time Contextual BS-Selection Based on Empirical Knowledge of

Post-handover Trajectory

In the STCH strategy, the CC maintains a space-time contextual MAB model for each

block to make BS-selection decisions for handover events happening in the block. In par-

ticular, for any block gi, I define the set of its preceding blocks Bi = {g−k |gk = gi,∀g̃k =

(g−k , gk),∀k ∈ K} from all block concatenations of all UEs, where K is the set of UEs. The

contextual MAB process corresponding to block gi maintains a coefficient vector θi,l for each

candidate (or arm) SBS l ∈ Li, where Li is the set of all available SBSs a UE may han-

dover to in block gi. The elements in θi,k, each corresponding to a unique preceding block

gj ∈ Bi, represent the expected rewards a UE in block gi can receive by handing over to

the SBS k, considering that the UE has come to gi from various (coarse-grained) directions,

respectively (i.e., one element per direction). As described in the previous section, here each

coarse-grained direction is represented by a unique preceding block in Bi.

Let x denote the context which reflects the temporal feature g̃k = (g−k , gk) of a handover

event happening on the UE k in block gi. Given x and θi,l for ∀l ∈ Li, the MAB model will

calculate the expected reward for handing over to the SBS l as r̄i,l = θji,l, where θji,l is the

element in θi,l corresponding to preceding block gj. The actual handover decision is made

according to a specific criterion, e.g., choosing the SBS, say a, with the largest expected

reward. Once a decision is made, the UE will be switched to and served by the SBS a

from then on. When the LOS connection between the UE and the SBS a is lost, e.g., the

propagation distance is too long or there is a blockage, an actual reward ri,a that represents

the empirical connection time will be calculated. Subsequently, x, a, and ri,a will be used to

update the expected rewards in θi,a, as will be described in details in Section 3.7.
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3.7 LinUCB-Based BS-Selection Algorithm for STCH

In this section, I formulate this decision as a contextual MAB problem and propose a

LinUCB-based BS-selection algorithm that considers the time-space feature of handover for

STCH.

3.7.1 Contextual Multi-Armed Bandit Model

Given the handovers with the same spatial feature, the contextual MAB model identi-

fies the temporal feature of each handover and applies a tailored policy. The BS-selection

algorithm for the STCH is based on the LinUCB algorithm which has been widely utilized in

many industry fields [35, 11]. When a handover event happens in trial t (t = 1, 2, 3, . . . , T ),

the algorithm firstly identifies the block gi where it occurs and finds out the candidate SBS

set Li. The context (i.e., temporal feature of handover) xt
i,l with dimension of di, which is

associated with the SBS l ∈ Li, is then extracted, and the details will be discussed in Section

3.7.2. According to [35], the expected reward received from the SBS l at trail t is linear in

its di-dimension context xt
i,l with unknown coefficient vector θi,k and is shown as

r̄ti,l = E[rti,l|xt
i,l] = xt

i,l
⊤
θi,l. (3.12)

The di-dimension coefficient vectors θi,l are updated with the accumulated observations and

used to guide future handover decisions accompanied with the context xt
i,l. Denote Di,k as

a m× di matrix which consists of m contexts observed in the past for SBS l in block gi, and

ci,l as a m-dimension vector which indicates the rewards of the m observations. By applying

ridge regression to Di,l and ci,l, the optimal θ∗
i,l is estimated as

θ̂i,l = (D⊤
i,lDi,l + Idi)

−1D⊤
i,lci,l, (3.13)
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where Idi is a di-dimension identity matrix. The algorithm chooses SBS in each trial t in

block gi as

ai,t = argmax
l∈Li

(
xt
i,l

⊤
θ̂i,l + η

√
xt
i,l

⊤A−1
i,l x

t
i,l

)
, (3.14)

where Ai,l = D⊤
i,lDi,l + Idi , and η > 0 is the hyperparameter. Specifically, xt

i,l
⊤θ̂i,l is the

predicted reward for the SBS l, while
√

xt
i,l

⊤A−1
i,l x

t
i,l indicates the standard deviation of

reward. Given previous observations, the algorithm chooses the SBS ai,t with the optimal

expected reward according to xt
i,ai,t

. When the reward rti,ai,t is obtained, the new observation

(xt
i,ai,t

, ai,t, r
t
t,ai,t

) is used to update the BS-selection policy.

3.7.2 Context Construction

In the STCH strategy, once there is a handover triggered, the CC firstly identifies its

spatial feature, i.e., the block where it occurs, and then extracts its temporal feature based

on the UE’s block concatenation. These features are then used to construct the context of

the proposed contextual MAB model for the STCH. Specifically, given the preceding blocks

Bi of a block gi and di = |Bi|, i = 1, . . . ,M , I define a context associated with the SBS l ∈ Li

for any handover event raised in block gi in trial t as a di-dimension 0-1 vector, denoted by

xt
i,l = (xt

i1, . . . , x
t
i,di

). Each element xt
ij ∈ xt

i,l corresponds to a proceeding block gij ∈ Bi,

where gij denotes the jth preceding block in Bi. Note that I consider that all SBS l ∈ Li

share the same context construction. The binary value of xt
ij ∈ xt

i,l depends on whether the

gij matches the temporal feature of the handover, say g̃k = (g−k , gk). In particular, xt
ij = 1 if

gij = g−k , and xt
ij = 0 otherwise, where j = 1, . . . , di.

From the very beginning, the CC has no knowledge about the block set in the STCH and

needs to dynamically construct it, which is similar to the block set construction in the SCH,

except for the trigger condition. In particular, in the STCH, the block set is constructed

all the time during UE’s movement and the CC keeps updating UE’s block concatenation,

while in the SCH, the block is constructed only when a handover is triggered. Due to the

lack of prior knowledge in the initial stage, I set Bi = 0,∀gi ∈ B. When a handover event
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happens in the block gi, which is associated with a preceding block g−k , the CC adds it into

Bi if g−k /∈ Bi. Accordingly, the dimension of the temporal feature of any handover events

raised in the block gi increases by 1, as well as the dimensions of related coefficients.

3.7.3 Acceleration Technique

The acceleration technique introduced in Section 3.5.5 can also be applied to improve

the efficiency of the LinUCB-based BS-selection algorithm for the STCH. Specifically, when

switching a UE k to the chosen SBS, suppose to be SBS l, in block gi in trial t with context

xt
i,l, the CC also build a virtual connection from the UE to each SBS in L̄i,l. In the UE’s post-

handover trajectory, if a virtual connection between the UE to a SBS l′ ∈ L̄i,l, is blocked,

the instantaneous virtual reward rti,l′ is obtained. Then the associated virtual observation

(xt
i,l′ , l

′, rti,l′) is used to update the coefficients for the SBS l′ in the LinUCB model of block

gi. In this way, not only the coefficients for the SBS l, but also those for some SBS l′ ∈ L̄i,l

are able to be updated by a single instance of UE’s post-handover trajectory. As mentioned

in Section 3.5.5, the virtual update can fully exploit true experience to increase the efficiency

of the BS-selection algorithm.

The LinUCB-based BS-selection algorithm for STCH is summarized in Algorithm 2.

3.8 Complexity Analysis

To analyze the computation complexity of the proposed algorithm, I divide the total

cost of the system into the following three parts.

(1) Model-related cost. The CC maintains a MAB model for each block. For an UCB-

based BS-selection algorithm, the space complexity is O(Lb), where Lb is the average

number of candidate SBSs in a block. It is because each arm requires two storage units

to maintain its expected reward and its chosen times, respectively. Moreover, the time

complexity is also O(Lb), since the CC needs to compute and search for the biggest

index among the arms which refer to the candidate SBSs. For the same reason, in
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the LinUCB-based BS-selection algorithm, the time complexity is also O(Lb). Due

to the time-space context, the STCH needs extra storage units to keep the temporal

feature and the space complexity is O(dbLb), where db is the average dimension of the

temporal feature of a handover in a block. For the whole system, there are M MAB

models, where M is the number of the blocks as well as the signal vectors identified

according to the signal space partitioning scheme. Theoretically, the number of blocks

is huge. Suppose there are L SBSs in the network and J quantization thresholds, there

exist totally (J +1)L different signal vectors in the signal space. However, because the

Algorithm 2 LinUCB-based BS-selection algorithm for STCH
1: Input: Cellular network G which consists of a set L of SBSs and a set of obstacles, η ∈ R+

2: B = ∅;
3: Keep tracking each UE k and updating its block concatenation g̃k = (g−k , gk);;
4: if gk /∈ B then
5: Bk = ∅, dk = 0;
6: Ak,l = ∅, bk,l = ∅;
7: B ← B ∪ gk;
8: end if
9: while Event A2 handover trigger condition is met for UE k do

10: Identify the block gi where UE k resides, associated with the available SBS set Li

and the corresponding trial number t;
11: Retrieve g̃k = (g−k , gi) for UE k from the memory;
12: if g−k /∈ Bi then
13: Ai,l ← [Ai,l|v0], where v0 is a di-dimension zero vector;
14: A⊤

i,l ← [A⊤
i,l|v1], where v1 is a (di + 1)-dimension vector, v1 = [0, . . . , 0, 1];

15: bi,l ← [bi,l|0];
16: di ← di + 1;
17: Bi ← Bi ∪ g−k ;
18: end if
19: Observe context xt

i,l from g̃k for all SBS l ∈ Li;
20: θ̂i,l ← A−1

i,l bi,l;

21: qti,l ← xt
i,l

⊤
θ̂i,l + η

√
xt
i,l

⊤A−1
i,l x

t
i,l;

22: Choose SBS ai,t = argmaxl∈Li
qti,l and observe a reward rti,l;

23: Ai,ai,t ← Ai,ai,t + xt
i,ai,t

xt
i,li,t

⊤;
24: bi,ai,t ← bi,ai,t + rti,lx

t
i,ai,t

;
25: Update Ai,l′ and bi,l′ for l′ ∈ L̄i,ai,t in the same way, if the virtual reward rti,l′ is

obtained.
26: end while
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propagation range of the mmWave signal is limited, the number of available SBSs for

a UE is much smaller than that of the whole SBSs. It means that the signal space

is sparse and the vast majority of the signal vectors will not show up in practice.

Therefore, the number of MAB models M ≪ (J + 1)L. Hence, the total MAB related

space complexity is O(MLb) for the SCH, and O(MdbLb) for the STCH.

(2) Block-set-related cost. Since the CC keeps the mapping between each block and its

associated signal vector, the space complexity to maintain the signal vector and the

blocks is O(M). When a handover is triggered, the CC needs to retrieve the id of the

block where the handover event occurs according to a given signal vector. This search

contributes to the time complexity of O(M).

(3) UE-related cost. In order to support the BS-selection algorithm, the CC needs to keep

the reward information for all UEs, which causes the space complexity of O(K), where

K is the average number of all UEs in the network over time. If the CC applies the

acceleration technique, it also needs to keep checking the virtual LOS links, and the

extra space complexity of O(KLb) is required to keep the virtual rewards for all UEs.

Especially, for the STCH, the CC also needs to keep a block concatenation for each UE,

which requires additional space complexity of O(ZK), where Z is the size of the block

concatenation. When the one-step-back-look construct is used, L could be reduced to

2.

To sum up, the total costs as well as the computation complexity of the proposed schemes

could be summarized in Table 3.2.

3.9 Numerical Experiments

In this section, I evaluate the performance of the proposed handover strategies in various

scenarios on two important metrics, i.e., the average number of handovers per UE (ANH)

and the average lasting time per each LOS connection (ALT). These two metrics directly
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Table 3.2: Complexity Analysis
Time Space

Complexity Complexity
SCH O(M + Lb) O(MLb +K)

SCH with acceleration O(M + Lb) O(MLb +KLb)
STCH O(M + Lb) O(MdbLb +KZ)

STCH with acceleration O(M + Lb) O(MdbLb +K(Z + Lb))

reflect the quality of the handover decision. I compare the proposed two handover strategies

with two counterparts: the Rate-first handover (RFH) and the SMART [66]. In the RFH, the

CC chooses the BS that provides the maximum transmission rate as the handover decision,

while the SMART proposes to use a single MAB model to make the handover decision for

all handover events in the network.

3.9.1 Experiment Settings

I consider a cellular network G which covers a 100(m)×100(m) square region and consists

of a certain number of mmWave-band SBSs (100 by default) and single-antenna UEs. The

transmit power of SBS is set to 30 dBm, and the noise power is -57 dBm. Similar to [2],

I set the parameters α and β in Eq. (3.1) as 61.4 and 2, respectively, corresponding to a

carrier frequency of 28 GHz. The channel gain Gmax of main lobe is 18 dB as in [61]. The

bandwidth of SBS is set as 1000 MHz. I assume that a certain number of identical obstacles

(20 by default) with a radius of 1(m) are randomly distributed in the network. The minimum

required transmission rate hmin is set to be 1000 Mbps. The number of UEs entering into

the network per time slot has a Poisson distribution with parameter λ. For a new coming

UE, its initial position is uniformly distributed at the border of the network and its moving

orientation is also uniformly distributed. The UE’s moving velocity is supposed to be random

following N(µv, σ
2
v), where µv is the mean value and σv is the standard deviation. I set µv = 1

and σv = 0.1 by default. Any UE’s experience is used to update the accumulated reward

of SBS until it moves out of the network region. Furthermore, the hyperparameter η in Eq.

(3.14) is empirically set to be 1 because that leads to the best results in my experiments.
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Moreover, the UE’s arrival rate and the threshold of SNR are set to be 3 (/iteration) and 20

(dB), respectively by default, if not specified.

3.9.2 Number of SBSs

In this experiment, I compare the performances of the considered handover strategies,

i.e., RFH, SMART, SCH, SCH with acceleration (SCH_acc), STCH and STCH with accel-

eration (STCH_acc), with different numbers of SBSs on the metrics of ANH and ALT. I

consider six instances with different numbers of SBS: 50, 60, 70, 80, 90, and 100, and run

10000 iterations (time unit) for each. The results are shown in Fig. 3.5. It can be found

that the proposed contextual handover strategies perform better than the other two, i.e.,

the RFH and the SMART. Compared with the SMART, which obviously outperforms the

RFH, the SCH improves the ANH and the ALT by up to 10.0% and 14.0%, while the STCH

improves even better, by up to 12.4% and 17.0%, respectively when given 90 SBSs. It is

demonstrated that better handover decisions could be obtained by considering the temporal

feature than by only taking account of the spatial feature. It is worth noting that, when

the acceleration technique is applied, the SCH_acc improves the ANH and the ALT by

13.6% and 19.8%, while the STCH_acc improves by 20.3% and 30.2%, respectively com-

pared with the SMART. This shows the advantages of the acceleration technique. It could

also be found that, when the number of SBSs grows, there is no significant improvement in

the performances of the SCH and the STCH. It is because when there are more SBSs, there

will be more blocks identified and more MAB models maintained by the CC. Therefore, with

a certain number of given iterations, the average number of training samples allocated to

each MAB model is smaller and hence easily causes models under-trained. Fortunately, this

issue could be mitigated by applying the proposed acceleration technique which increases the

utility efficiency of each training sample and achieves good performance even with limited

iterations.
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Figure 3.5: Comparison of performances with different numbers of SBSs
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3.9.3 Density of Obstacles

In this simulation, I investigate the impact of the density of obstacles on the perfor-

mances of the proposed handover strategies. Fig. 3.6 illustrates ANH and ALT obtained

under these considered strategies with various numbers of obstacles, from 10 to 50, after

10000 iterations. With a higher density of obstacles, more handovers are raised, and the

LOS connection time decrease, no matter under which strategy. This trend is in accord with

the intuition that, there are usually more handover events in a complex environment with

many obstacles than in a simple environment with few obstacles. Furthermore, the proposed

handover strategies, i.e., SCH, SCH_acc, STCH and STCH_acc, observably outperform the

other two counterparts, i.e., RFH and SMART, no matter in which scenario.

3.9.4 UE’s Arrival Rate

In this simulation, I compare the performances of the proposed handover strategies with

different arrival rates of UE. The arrival rate of UE reflects the crowdedness of the network.

I consider five values for λ: 1, 2, 3, 4, and 5 to simulate different practical scenarios in terms

of the crowdedness, and run 10000 iterations for each. The results are displayed in Fig. 3.7.

As shown, in a crowded scenario (i.e., when λ approaches 5), the performances of RFH and

SMART decrease, while all the proposed strategies still have good performances, which are

even better than those in a less crowded scenario. The reason is that, in a crowded network,

there are so many users providing sufficient training samples to make the MAB models well-

trained. While in a less crowded situation, the MAB models may get under-trained due

to a lack of enough training samples. This is the reason why two out of the four proposed

strategies, i.e., SCH and STCH, perform even worse than the SMART when λ = 1. However,

if well trained in a crowded scenario, their performances could be improved significantly.
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Figure 3.6: Comparison of performances with different numbers of obstacles
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Figure 3.7: Comparison of performances with different arrival rates
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3.9.5 Variance of UE’s Speed

Since the instantaneous reward obtained by a UE is impacted by its moving speed, as

described in Section 3.5.2, it is worth investigating the influence of the variance of UE’s speed

on the performances of the proposed handover strategies. In this part, I consider the random

moving speed of UEs following Gaussian distribution, denoted as N(1, σ2
v). As the variance

of UE’s speed is indicated by σv, I choose five values for it, from 0.1 to 0.5, and run 10000

iterations for each instance. The simulation results are shown in Fig. 3.8. As expected,

the performances of the proposed strategies on the ANH and the ALT outperform the two

benchmarks. Note that, the ANHs of all considered strategies generally keep the same, no

matter with which variance of speed. The reason lies in that, given the distribution of speed,

the impact of the variance of reward caused by random speeds of UE on the performance

of the ANH could be averaged out over time. This result demonstrates the stability of the

proposed handover strategies in the scenario with UEs whose speeds are various.

3.9.6 Granularity of Partition

As described in Section 3.4.1, the quantization thresholds determine the granularity of

the partition of the signal space as well as the network into blocks. To figure out the impact

of the granularity of partition on the performance of the proposed handover strategies, I try

four values for J : 1, 2, 3, and 4, and run 100000 iterations for each instance. The results

are displayed in Fig. 3.9. The simulation results show that, for any proposed strategy,

the performances with different quantization thresholds are comparable. In other words,

although the performances under fine granularity (i.e., J = 4) of partitioning are better

than those under coarse granularity (i.e., J = 1), their difference is ignorable. However,

the increment of the required storage with fine granularity is much larger than that with

coarse granularity. I show the number of identified blocks under these scenarios with different

values of J in Fig. 3.10. As shown, when the value of J grows, the number of identified

blocks increases exponentially. That means the CC has to spend much higher storage cost
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Figure 3.8: Comparison of performances with different variances of UE’s speed
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to support the fine granularity of partitioning. Obviously, the output is not proportional

to the input when adopting fine granularity of partitioning. At least in this simulation, the

coarse granularity of partitioning, i.e., J = 1, is good enough to achieve good performance

while requiring the lowest computation cost.

3.9.7 Regulation of UE’s Movement

Unlike in the simulations mentioned above, in many real-world scenarios, especially in

urban areas, the UE’s movement is highly restricted. Specifically, since the UEs normally

move along with sidewalks, the UE’s position is actually limited within the area of a sidewalk

but not the whole network, and the UE’s moving direction is along with the sidewalk. In this

simulation, I investigate the impact of the regulation of UE’s movement on the performances

of the proposed handover strategies. Following the grid-based scenario according to [68], I

divide the whole network into 400 identical square areas each with the size of 5(m) × 5(m),

as shown in Fig. 3.11. Note that these square areas have nothing to do with the blocks

mentioned before. In this grid-based network, I set four sidewalks which are indicated by

grey areas within which all UEs move. In particular, the UEs enter the network area from

one end of a sidewalk and their moving directions are indicated by the corresponding yellow

arrows. I deploy 80 SBSs in the network, represented by blue circles, and each of them locates

at the center of a small area along the sidewalks. This deployment simulates the sidewalks

with street lamps equipped with SBSs. Besides, 20 obstacles are randomly distributed on

the sidewalks, represented by red triangles.

In order to express the variance of UE’s moving direction, I introduce a parameter

γ ∈ [0.1, 0.5] to describe the homogeneity of UEs’ movement within the sidewalks. In

particular, if γ = 0.1, ten percent of UEs in the same sidewalk move in the same direction

while ninety percents move oppositely; if γ = 0.5, half of the UEs in the same sidewalk move

oppositely. Besides, I choose different values for SNRmin: 18, 19, and 20, and run 10000

iterations for each instance with distinct combination of γ and SNRmin. The simulation
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results are shown in Fig. 3.12. Not surprisingly, the proposed contextual handover strategies

are superior to the other two, no matter in the scenario with regular movement or the one

with the irregular movement of UE. More importantly, the performance of the proposed

strategies does not change significantly when UEs’ movement becomes irregular. That means

the proposed strategies have stable performances in real-world scenarios.

Moreover, I am also interested in how the performances of the proposed handover strate-

gies change with different requirements of service level, i.e., the values of SNRmin. For the the

ANH, by comparing Fig. 3.12(a), 3.12(c) and 3.12(e), I found that the performances of the

proposed strategies when SNRmin = 18 is better than those when SNRmin = 20. It is because,

with a lower SNR requirement, the candidate SBSs for a handover event are more than those

with a higher requirement. Generally, it is able to make better handover decisions given more

candidate SBSs. The same conclusion could be made on the ALT by comparing Fig. 3.12(b),

3.12(d) and 3.12(f). In addition, the performance difference among the proposed strategies

becomes smaller when SNRmin increases. Specifically, when SNRmin = 18, the performance

differences between the best strategy, i.e., STCH_acc, and the worst one, i.e., SCH, is 16.6%

and 16.7% on the ANH and the ALT, respectively. However, when SNRmin increases to 20,

these two differences significantly reduce to 5.0% and 4.3%, respectively. That means the

advantage of temporal context could be fully exploited with a low requirement of service

level.

3.10 Summary

In this chapter, I investigate the significant benefits of exploiting the spatial and tempo-

ral features of handover in making better handover decisions in ultra-dense mmWave cellular

networks. In particular, with the purpose to choose the optimal SBS that is able to provide

the longest LOS connection time to a UE that needs handover, I formulate the handover

decision-making as a MAB problem associated with the context of the handover. To extract

the spatial and temporal features of handover, I propose a signal space partition scheme to
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Figure 3.12: Comparison of performances on different moving directions of UE
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indicate the location where the handover event happens, and a derived block concatenation

structure to figure out the UE’s moving trajectory. Based on these, an efficient BS-selection

algorithm and a LinUCB-based BS-selection algorithm are designed for the spatial context-

based MAB model and the temporal context-based MAB model, respectively. Moreover, I

also propose an acceleration technique to improve the learning efficiency of the MAB model.
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Chapter 4

Background: Part II

4.1 Motivation

In a cell-free massive MIMO system, a large number of distributed antennas or access

points (APs) jointly serve the user equipments (UEs) in the network. It has become a

promising solution in 5G and 6G communication due to its ability to reduce inter-cell in-

terference and mitigate frequent handover by providing uniform quality of service (QoS) to

UEs. However, one of the main issues of the cell-free massive MIMO system is the inter-user

interference caused by the massive distributed APs. To address this issue, local zero-forcing

(LZF) precoding [9, 28] and global zero-forcing (GZF) precoding [46, 47] are introduced into

the cell-free massive MIMO domain. In the LZF, an AP equipped with multiple antennas

conducts zero-forcing (ZF) precoding for downlink transmission to the UEs it serves. Due

to the lack of collaboration with other APs, the LZF only eliminates the local inter-user

interference but not the interference that comes from other APs. In the GZF, a central-

ized processing unit (CPU) collects the channel state information (CSI) from all APs and

conducts the downlink precoding for them. Since the CPU has full knowledge of CSI in

the network, it is able to make a better precoding decision than the LZF. However, this

benefit comes with the cost of huge overhead due to the heavy CSI exchange between the

CPU and the APs, which wastes bandwidth resources and aggravates transmission delay.

The overhead issue has become a bottleneck that prohibits the GZF to be widely applied in

ultra-dense networks (UDNs).

Overhead compression is an effective way to address this issue. Although many solutions

have been developed to compress the CSI feedback in massive MIMO, they are not tailored

for cell-free massive MIMO systems. On the one hand, most of them are built for conventional
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massive MIMO systems considering the channels to be Rayleigh fading due to a large amount

of reflection and scattering. On the other hand, these methods are statistic-based and focus

on exploring the statistical characteristics of the channel matrix. However, in a cell-free

massive MIMO system, channels are more suitable to be modeled as Rician fading because

the APs are close to the UEs and little obstacles exist on the propagation path [49]. This

propagation characteristic makes the channels in cell-free massive MIMO have remarkably

different physical structures from the channels in conventional massive MIMO. Therefore, a

model-based CSI compression method that considers and fully exploits this unique physical

structure of channels is able to reduce the overhead in cell-free massive MIMO more efficiently

than the statistic-based methods but is overlooked in the literature.

Unlike Rayleigh fading channels, a Rician fading channel consists of two components: a

line-of-sight (LOS) component and a non-line-of-sight (NLOS) component. Compared with

the NLOS component that is caused by multi-path reflection and scattering, the LOS com-

ponent is more deterministic because it relies on the direct propagation path between the

transmitter and the receiver, and contributes the majority of signal power since it suffers

less energy loss. By leveraging this characteristic, a straightforward idea is to apply different

overhead-reduction operations on these two parts separately, rather than directly compress-

ing the original channel matrix, in order to shrink the overhead. In particular, the main

component can be calculated based on the information on the direct propagation path, and

the residual component can be compressed using a matrix compression method. Therefore,

there are two key problems that need to be solved: (1) how to decompose a Rician fad-

ing channel matrix into two components: the main component and a residual component,

respectively; and (2) how to compress these two components effectively.

In this chapter, I propose a novel bandwidth-efficient GZF precoding strategy in order

to suppress interference in downlink transmission for cell-free massive MIMO systems, asso-

ciated with a model-based CSI overhead-reduction mechanism customized for Rician fading

channels. Specifically, the AP exploits side information of direct path, i.e., the signal phase
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and the angle of arrival (AoA), to decompose a Rician fading channel into a LOS component

and an NLOS component, and then conducts model-based compression and singular-value-

decomposition (SVD) on them, respectively.

4.2 System Model

I consider a cell-free massive MIMO system consisting of one CPU, L APs equipped

with N antennas and K single-antenna UEs. Denote L, and K as the set of APs and that

of UEs, respectively. These APs jointly serve the UEs and communicate with the CPU

through fronthaul links with limited capacity. Throughout this chapter, I use upper and

lower case boldfaced letters to describe matrix and vector, respectively. Moreover, I denote

the transpose of matrix by (·)T, the Hermitian transpose of matrix by (·)H, and the l2-norm

of vector by ∥ · ∥.

4.2.1 Propagation Model

The channel matrix of the AP l ∈ L is denoted by Gl = [gl1,gl2, . . . ,glK ] ∈ CN×K .

Each column glk ∈ CN×1 denotes the channel vector between the AP l and the UE k ∈ K.

Each element of glk is modeled as a Rician fading channel, which is a combination of a

dominant LOS component and a NLOS component following Rayleigh distribution. The

channel vector glk is represented as

glk =
√
βlk

(√
Klk

Klk + 1
h̄lk +

√
1

Klk + 1
ȟlk

)
, (4.1)

where βlk is the large-scale fading coefficient and Klk is the K-factor that represents the ratio

of signal power in the dominant component over the scattered power on the corresponding

channel. h̄lk and ȟlk denote the LOS and the NLOS components, respectively.
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The value of βlk depends on the distance dlk between the AP l and the UE k, and is

modeled as [2]

βlk = α + 10ρ log10 (dlk) + ξ[dB], ξ ∼ N(0, σ2
S), (4.2)

where α and ρ are the least square fittings of floating intercept and slope respectively over

the measured distance, and ξ represents a lognormal shadowing with variance σ2
S. Since βlk

does not change frequently, I assume that it is known at both CPU and AP. The large-scale

fading coefficients for the LOS and the NLOS components are computed as β̄lk = Klk

Klk+1
βlk

and β̌lk =
1

Klk+1
βlk, respectively.

The LOS components h̄lk are modeled as

h̄lk =
[
ejφ

(1)
lk , ejφ

(2)
lk , . . . , ejφ

(N)
lk

]T
, (4.3)

where φ
(n)
lk , 1 ≤ n ≤ N is the instantaneous phase of the signal received by the nth antanna

at the AP l from the UE k. The elements in the NLOS components ȟlk are modeled as i.i.d.

random variables drawn from CN (0,Rlk), where Rlk describes the spatial correlation of the

NLOS components.

4.2.2 User-Centric Association

The user-centric association is an inherent characteristic of a cell-free massive MIMO

system, in which each UE is only served by surrounding APs, rather than all APs in the

network. To implement the user-centric association, it is assumed that the AP l serves the

UE k when their propagation distance is smaller than a predefined threshold d̄. I denote

the set of APs that serve the UE k as L(k) and the set of UEs that are served by the AP l

as K(l). Note that other criteria such as the signal strength can also be used to determine

the serving range of the APs, and this would not affect the design and performance of the

precoding strategy proposed below.
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4.2.3 Communication Process

The transmission between APs and UEs is supposed to use in TDD mode and syn-

chronization among all APs is assumed. Specifically, each coherence block consists of three

stages: uplink training, CSI uploading, and downlink transmission.

(1) Uplink Training

In the uplink training stage, all UEs simultaneously send their assigned pilot signals

to APs. Upon receiving the copies of these pilots, each AP utilizes a well-designed channel

estimation method, such as MMSE estimation, to estimate the channels between itself and

the UEs. In this chapter, I assume that the AP l ∈ L somehow is able to have perfect

CSI, i.e., the channel matrix Gl, and focus on the GZF precoding strategy involved in the

subsequent stages.

(2) CSI Uploading

After channel estimation, the AP l compresses its local channel matrix Gl and uploads

the compressed CSI to the CPU through fronthaul link. Then the CPU recovers the original

channel matrix Gl based on the compressed CSI and gets the estimation G̃l. The details

will be discussed in Section 4.3.

(3) Downlink Transmission

Based on the recovered channel matrix G̃ =
[
G̃1, G̃2, . . . , G̃L

]T
∈ CLN×K , the CPU

computes the GZF precoding matrix for downlink transmission. In global predocing, the

whole cell-free massive MIMO system can be treated as a virtual AP with LN antennas.

For the UE k ∈ K, the normalized precoding vector wk ∈ CLN×1 is calculated as

wk =
fk
∥fk∥2F

, (4.4)
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where F = [f1, . . . , fK ] = G̃/
(
G̃HG̃

)
. The collection of the precoding vectors for all UEs is

W = [w1,w2, . . . ,wK ] = [W1,W2, . . . ,WL]
T, where Wl ∈ CN×K is the precoding matrix

for the AP l ∈ L. The CPU sends back the precoding matrix Wl, l ∈ L to the AP l and

then the APl calculates the transmitted signal as

xl =
∑

k∈K(l)

√
ηkwlkqk, (4.5)

where wlk ∈ CN×1 is the kth column of Wl, ηk denotes the power allocated to the UE k,

and qk is the data intended to the UE k, E{|qk|2} = 1.

The received signal at the UE k is formulated as

yk =
∑

l∈L(k)

gH
lk

√
ηkwlkqk +

∑
t∈K
t̸=k

∑
l∈L(t)

gH
lk

√
ηtwltqt + nk, (4.6)

where the first item is the desired signal, the second stands for the interference, and nk ∼

CN(0, σ2
N) is the additive white Gaussian noise at the UE k.

4.2.4 Performance Metrics

In this section, the GZF precoding strategy is evaluated based on two key performance

metrics: spectral efficiency and upload overhead.

(1) Spectral Efficiency

Based on Eq. (4.6), the SINR at the UE k is calculated as

SINRG
k =

∣∣∣∑l∈L(k) g
H
lk

√
ηkwlk

∣∣∣2∑
t∈K
t̸=k

∣∣∣∑l∈L(t) g
H
lk

√
ηtwlt

∣∣∣2 + σ2
N

. (4.7)
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The achievable data rate for the UE k is calculated as

rGk = log2
(
1 + SINRG

k

)
. (4.8)

(2) Upload Overhead

In the GZF precoding, all APs upload their local channel matrices to the CPU through

fronthaul links. If each AP uploads its full channel matrix, the total overhead is 2L×N ×K

(consider each element in a channel matrix as a complex number containing a real part and

an imaginary part). Considering the large amount of APs in the network, the consequent

overhead is too huge to be affordable and causes unacceptable transmission delays. Therefore,

the upload overhead should be considered an important metric to evaluate the performance

of a precoding strategy.

4.3 Bandwidth-Efficient Global ZF Precoding Strategy

In order to improve the efficiency of GZF precoding in cell-free massive MIMO systems,

I propose a bandwidth-efficient precoding strategy, by exploiting the physical structure of

Rician fading channels, to address the upload overhead challenge. This strategy consists of

two parts: the AP-side operation and the CPU-side operation, where the CSI is compressed

and recovered, respectively. The details are discussed as follows.

4.3.1 AP-Side Operation

On the AP side, the AP compresses its channel matrix before uploading it to the CPU.

Unlike the conventional CSI compression methods that conduct compression directly on

the original channel matrix, in the proposed strategy, the AP first decomposes the original

channel matrix into the main matrix and a residual matrix, and then compresses them

respectively.
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(1) Rician Fading Channel Decomposition

Different from a Rayleigh fading channel, a Rician fading channel exhibits higher di-

rectivity as a result of the LOS component that contributes the most of the signal power.

To illustrate this directivity, I collect 50 samples of the channel gain for a Rayleigh fading

channel and a Rician fading channel between two arbitrary pairs of transmitting and receiv-

ing antenna, respectively, and display them in Fig. 4.1. As shown in Fig. 4.1(a), all sample

points of the Rayleigh fading channel are uniformly distributed in the whole signal space;

while for the Rician fading channel, the sample points are constricted within a limited area,

shown in Fig. 4.2(b). This characteristic makes it able to decompose a Rician fading channel

matrix into the main and a residual matrix, which correspond to the LOS and the NLOS

components, respectively. According to Eq. (4.1), the channel between the nth antenna of

the AP l and the UE k can be decomposed as follows:

g
(n)
lk =

√
β̄lkh̄

(n)
lk +

√
β̌lkȟ

(n)
lk , (4.9)

where h̄
(n)
lk is the deterministic LOS component that relies on the phase of the received signal

at the receiving antenna, and ȟ
(n)
lk denotes the NLOS component that is modeled as an i.i.d.

random variable. The relationship between these two components is described in Fig. 4.2(a).

Given a Rician channel gain g
(n)
lk , if the LOS component h̄(n)

lk is known, the NLOS component

ȟ
(n)
lk can be easily calculated. In this way, the sample points of the Rician fading channel

shown in Fig. 4.1(b) can be decomposed and the corresponding LOS component and NLOS

components are shown in Fig. 4.2(b). Compared with directly compressing the original

channel matrix Gl, the information loss caused by compressing the residual matrix brings a

smaller impact on CSI recovery since the NLOS component contributes only the minority of

the signal power, i.e., its magnitude is rather small. The prerequisite for this implementation

is to extract the LOS component from a Rician fading channel, as will be discussed in the

following.
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(a) Sample points of Rayleigh fading channel

(b) Sample points of Rician fading channel

Figure 4.1: Spacial correlations of different fading types
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(a) Decomposition of Rician fading channel

(b) Decomposition of the sample points in Fig. 4.1(b)

Figure 4.2: Rician fading channel decomposition
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(2) LOS Components Extraction

Supposing that the antenna spacing of the horizontal uniform linear array (ULA) equipped

on AP is dA = 1/2λ, where λ is the wavelength. For any AP in the network, considering

that the UEs are in the far-filed of the AP, the signal that reaches the antenna array at the

AP from a UE can be viewed as a plane wave from a generic azimuth angle [8]. Denote the

distance between the closest antenna (suppose to be the 1st antenna) of the AP l and the

UE k as d, the LOS components h̄lk described in Eq. (4.3) can be further modeled as

h̄lk =
[
ejφ

(1)
lk , . . . , ejφ

(N)
lk

]T
=
[
e
j
(
2π d

λ
+φ

(0)
lk

)
, e

j
(
2π

d+dA sin (θlk)

λ
+φ

(0)
lk

)
, . . . ,

e
j
(
2π

d+(N−1)dA sin (θlk)

λ
+φ

(0)
lk

)]T
,

(4.10)

where θlk is the angle of arrival (AoA) from the UE k to the AP l and φ
(0)
lk is the initial

phase. If the AoA θlk and the signal phase φ
(1)
lk = 2π d

λ
+ φ

(0)
lk at the 1st antenna are known,

the phases at all antennas can be aligned and Eq. (4.10) can be simplified as [80]:

h̄lk = ejφ
(1)
lk

[
1, ejπ sin(θlk), . . . , ej(N−1)π sin(θlk)

]T
. (4.11)

In other words, the LOS components h̄lk becomes a function of θlk and φ
(1)
lk . In the rest of

the paper, I use φlk instead by omitting the superscript of φ(1)
lk . As illustrated in Fig. 4.3, the

phase shifts between any two adjacent antennas are identical to be π sin (θlk). This property

makes it enable to infer each element in h̄lk based on the given φlk and θlk. In this way, the

LOS components h̄lk can be extracted from the observed channel vector glk and then the

NLOS components ȟlk is calculated as

ȟlk =
1√
β̌lk

(
glk −

√
β̄lkh̄lk

)
(4.12)
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Figure 4.3: LOS propagation

(3) Side Information Calculation

Since the LOS components are determined by the signal phase and the AoA, they will

change with these two key factors with the UE’s movement. These changes are identical for

all antennas at the same AP [49], and can be tracked as follows.

The first step is to estimate the AoA θlk, for l ∈ L, k ∈ K. There have been many

efficient algorithms to estimate the AoA on ULA with omni-directional antenna elements,

such as MUSIC and ESPRIT. In this section, I use MUSIC to estimate θlk. The details are

omitted.

The next step is to calculate the signal phase φlk. I design the following two algorithms

for different scenarios where the antenna array at AP is large or small, respectively.

Algorithm I: When the antenna array is large, I firstly calculate the mean value of

channel vector glk as follow

1

N

∑
1≤n≤N

g
(n)
lk =

1

N

√
β̄lk

∑
1≤n≤N

h̄
(n)
lk +

1

N

√
β̌lk

∑
1≤n≤N

ȟ
(n)
lk (4.13)
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As a common assumption, the number of the antennas is assumed to be large enough, then

1
N

∑
ȟ
(n)
lk → 0, since ȟlk ∼ CN(0,Rlk). Hence,

1

N

∑
1≤n≤N

g
(n)
lk ≈

1

N

√
β̄lk

∑
1≤n≤N

h̄
(n)
lk . (4.14)

According to Eq. (4.11),

∑
1≤n≤N

h̄
(n)
lk = ejφlk

(
1 + ejπ sin(θlk) + · · ·+ ej(N−1)π sin(θlk)

)
. (4.15)

Substituting Eq. (4.15) into Eq. (4.14), I get

1

N

∑
1≤n≤N

g
(n)
lk ≈

1

N

√
β̄lke

jφlk
(
1 + · · ·+ ej(N−1)π sin(θlk)

)
. (4.16)

As glk is known and θlk has already been calculated, there is only one variable in Eq. (4.16),

which then can be rewritten as

ejφlk = a+ bi, (4.17)

where a and b are the calculation results. According to Euler’s formula and Taylor’s series

for trigonometric functions,

ejφlk = cos (φlk) + i sin (φlk)

= 1− φ2
lk

2
+ o(φ2

lk) + i

(
φlk −

φ3
lk

3!
+ o(φ3

lk)

)
≈ 1− φ2

lk

2
+ i

(
φlk −

φ3
lk

3!

)
.

(4.18)

Combining Eq. (4.17) and Eq. (4.18), the signal phase φlk is calculated by solving the

following optimization problem

minimizeφlk

(
1− φ2

lk/2− a
)2

+
(
φlk − φ3

lk/6− b
)2

. (4.19)
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Algorithm II: When the antenna array is small, I treat the LOS component as a

function of φlk according to Eq. (4.11), denoted by h̄lk(φlk). Then the optimal φlk can be

estimated by solving the following MMSE problem

minimizeφlk
∥
√

β̄lkh̄lk(φlk)− glk∥2. (4.20)

The above two optimization problems can be easily solved. The collection of the cal-

culated side information, i.e., φl = [φl1, . . . , φl,K ] and θl = [θl1, . . . , θl,K ], is the compressed

CSI of the LOS components H̄l =
[
h̄l1, . . . , h̄l,K

]
.

(4) Compression of NLOS Components

Given the obtained NLOS components, denoted as Ȟl =
[
ȟl1, ȟl2, . . . , ȟl,K

]
, according

to Eq. (4.12), the AP l applies the SVD technique to compress it. Specifically, for the given

channel matrix Ȟl of the AP l, its SVD is calculated as

Ȟl = UlSlV
H
l , (4.21)

where Ul = [ul1, . . . ,ul,R] ∈ CN×R and Vl = [vl1, . . . ,vl,R] ∈ CK×R are semi-unitary matrices

that contain the left-singular vectors and the right-singular vectors of Ȟl, respectively, with

R = rank(Ȟl), and Sl = diag (sl1, . . . , sl,R) ∈ CR×R is a diagonal matrix whose diagonal

elements sli > 0 (1 ≤ i ≤ R) are the singular values of Ȟl and sorted in descending

order. Since the top largest singular values contain the most information, the rest can be

discarded for the purpose of compression. That being said, the AP l is able to keep the

most significant information of Ȟl by choosing the first M(M ≤ R) singular values S̃l =

diag (sl1, . . . , sl,M) and the corresponding semi-unitary matrices, i.e., Ũl = [ul1, . . . ,ul,M ]

and Ṽl = [vl1, . . . ,vl,M ], to be the compressed CSI of the NLOS component. Together with

the compressed CSI of H̄l, the total volume of the uploaded data is 2M(N +K + 1) + 2K.

Compared with uploading Gl with the volume of 2 × N × K, the proposed compression
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method is able to save the bandwidth of the fronthaul links when M ≤ ⌊ (N−1)K
N+K+1

⌋, with a

compression ratio of M(N+K+1)+K
NK

.

4.3.2 CPU-Side Operation

On the CPU side, the CPU receives the compressed CSI from each AP and then recovers

the original local channel matrix. After that, the CPU implements the global ZF precoding

and power allocation, and then sends the result back to all APs.

(1) CSI Recovery

Upon receiving the compressed CSI uploaded from all APs, the CPU recovers the whole

channel matrix G in the following steps.

Step 1: Ȟl recovery. Based on S̃l, Ũl and Ṽl, Ȟl can be recovered as

H̃l = ŨlS̃lṼ
H
l . (4.22)

Step 2: H̄l recovery. Based on φlk and θlk, h̄l can be calculated according to Eq. (4.11).

Then the collection of h̄lk, k ∈ K, is H̄l =
[
h̄l1, . . . , h̄l,K

]
.

Step 3: Gl recovery. Upon obtaining h̄lk and h̃lk from H̄l and H̃l, respectively, the

channel vector glk can be recovered as

g̃lk =

√
β̄lkh̄lk +

√
β̌lkh̃lk. (4.23)

And G̃l = [g̃l1, . . . , g̃l,K ] is used as the recovery of Gl.

Step 4: G recovery. Collecting all Gl, l ∈ L, I get the recovery of G as G̃ =[
G̃1, . . . , G̃L

]T
.

(2) GZF Precoding

After obtaining G̃, the CPU computes the precoding matrix W according to Eq. (4.4).
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(3) Power Allocation

Given the estimated channel matrix G̃ and the precoding matrix W, the CPU sets the

transmit power for each UE. The optimal transmit power allocation can be determined by

solving the following optimization problem

maximizeη
∑
k∈K

log2
(
1 + SINRG

k

)
s.t. Eq.(4.7),∀k ∈ K,∑

k∈K(l)

ηk ≤ Pl,∀l ∈ L,

ηk ≥ 0,∀k ∈ K,

(4.24)

where η = [η1, . . . , ηK ] and Pl is the maximum power that the AP l can provide. The

power constraints require that the total transmitted power from an AP to its served UEs

can not exceed its power capacity. The above power allocation problem is modeled as non-

linear programming and could be solved by using the interior-point algorithm offered by the

Matlab toolbox.

4.4 Simulations and Analysis

This section is to evaluate the performances of the proposed GZF precoding strategy in

various scenarios. I compare it with three counterparts: GZF precoding with fully uploading

(GZF-FU), GZF precoding with preliminary SVD (GZF-PSVD), and LZF precoding.

The communication process in both the GZF-FU and the GZF-PSVD strategies are

similar to that in my strategy, except for the following difference. In the GZF-FU strategy,

each AP uploads its original local channel matrix; and in the GZF-PSVD strategy, the SVD

is conducted directly on the original local channel matrix without channel decomposition as

in my strategy.
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In the LZF precoding strategy, all APs implement downlink precoding independently

based on their own local channel matrices without any information exchanging with the CPU

or other APs. Specifically, in the LZF precoding, the AP l ∈ L computes its normalized

precoding vector as

wlk =
flk
∥flk∥2F

, (4.25)

where Fl = [fl1, . . . , flK ] = Gl/
(
GH

l Gl

)
. The AP l ∈ L independently allocates its power to

its served UEs by solving the following optimization problem

maximizeηl

∑
k∈K(l)

log2
(
1 + SINRL

lk

)
s.t. SINRL

lk =
∣∣gH

lk

√
ηlkwlk

∣∣2 /σ2
N, ∀k ∈ K(l),∑

k∈K(l)

ηlk ≤ Pl,

ηlk ≥ 0,∀k ∈ K(l),

(4.26)

where glk ∈ CN×1 indicates the channel vector between the AP l and the UE k, and ηlt

denotes the power allocated to the UE k by the AP l. The optimal solution of the above

problem is denoted as η∗
l = [η∗l1, . . . , η

∗
lK ]. When all APs conduct the downlink transmission

with their optimal power allocations, the received signal at the UE k is

yk =
∑

l∈L(k)

gH
lk

√
η∗lkwlkqk +

∑
t∈K
t̸=k

∑
l∈L(t)

gH
lk

√
η∗ltwltqt + nk. (4.27)

The SINR at the UE k is calculated as

SINRL
k =

∣∣∣∑l∈L(k) g
H
lk

√
η∗lkwlk

∣∣∣2∑
t∈K
t̸=k

∣∣∣∑l∈L(t) g
H
lk

√
η∗ltwlt

∣∣∣2 + σ2
N

, (4.28)

and the achievable sum data rate of all UEs is
∑

k∈K log2
(
1 + SINRL

k

)
.
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4.4.1 Simulation Setup

In the following simulations, I consider a cell-free massive MIMO system consisting of

25 APs (i.e., L = 25), each of which is equipped with 20 antennas (i.e., N = 20), and 16

single-antenna UEs (i.e., K = 16). The APs and the UEs are uniformly distributed in a

100(m) × 100(m) square area. The UEs are moving in the area with random directions at

the speed of 1(m)/iteration. In all simulations, I consider 10 iterations. The AP’s serving

range is set to be 50(m) (i.e., d̄ = 50) and the maximum transmit power is set to be 1. The

noise power is σ2
N = −92 dBm [10]. For Eq. (4.2), I consider the conventional 1900 MHz

frequency band and set α = −30.18, ρ = −2.6 and σS = 4 [49]. The K-factor in Eq. (4.1) is

modeled as [49]

Klk = 101.3−0.003dlk [dB], (4.29)

where dlk is the distance between the AP l and the UE k. The spatial correlation of the

NLOS components Rlk is calculated according to [49], and the details are omitted in this

chapter. I estimate the φlk and θlk, l ∈ L and k ∈ K according to Sec. 4.3.1, and implement

the simulations as follows.

4.4.2 Compression Ratio

Since the number of singular values chosen is a key factor in SVD which determines

the compression ratio and impacts the CSI recovery accuracy, I evaluate these strategies

under different values of M in this simulation. The results of the spectral efficiencies and

the overhead are shown in Fig. 4.4 and Fig. 4.5, respectively.

In Fig. 4.4, the spectral efficiencies of the considered strategies are compared when M =

1, 2 and 3. It is illustrated that the GZF-FU precoding outperforms all other strategies in

all scenarios since the CPU has full CSI knowledge and is able to make a better precoding

decision to suppress interference. In the LZF strategy, since each AP makes its own precoding

decision and has no collaboration with other APs, the interference suppression is not very
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good. Although the GZF-PSVD is also a global precoding strategy, like the GZF-FU, its

performance is even worse than the LZF’s performance when M = 1, as shown in Fig. 4.4(a).

The reason is that when only one singular value is used, very limited information is contained

in the compressed CSI, which leads to low CSI recovery accuracy. It is worth noting that,

compared with the GZF-PSVD, the proposed GZF precoding strategy significantly increases

the spectral efficiency by 134.4% on average. Besides, my strategy is slightly sub-optimal,

with an average gap of only 3.5% relative to the GZF-FU strategy. It is also observed

in Fig. 4.5 that my strategy drastically cuts the overhead by 83.4% compared with the

GZF-FU. That being said, the proposed precoding strategy can provide slightly suboptimal

performance with much less overhead and hence can reach outstanding bandwidth efficiency.

Moreover, the spectral efficiencies of both the GZF-PSVD strategy and the proposed

GZF strategy increase with the number of chosen singular values and the increasing rate of

the former is larger than that of the latter. The reason is that, in the GZF-PSVD, the more

singular values are chosen, the more information is kept in the compressed CSI. Therefore,

the CPU can recover the channel matrix with higher accuracy and consequently make a

better precoding decision. However, in my strategy, since the compressed CSI only contains

the NLOS components that contribute little signal power, choosing more singular values does

not bring obvious performance improvement as in the GZF-PSVD.

But there is no free lunch. For the GZF-PSVD, its performance is improved at the

cost of significantly increased overhead. As displayed in Fig. 4.5, to achieve comparable

performance with the LZF, the GZF-PSVD needs 3 singular values (i.e., M = 3). That

needs three-fold overhead when M = 1. In contrast, the performance of my strategy when

M = 1 is even higher than that of the GZF-PSVD when M = 3, but with much less

overhead. This indicates that my strategy is able to achieve a sub-optimal performance with

substantially low overhead.
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Figure 4.4: Comparison of spectral efficiency with different values of M
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4.4.3 K-Factor

The K-factor indicates the degree of dominance of the LOS component over the NLOS

component. A larger K-factor means that the LOS component contributes more power

to channel gain. Especially, if the K-factor equals 0, there is no direct path between the

transmitter and the receiver, meaning that the Rician fading channel decays to a Rayleigh

fading channel. In this simulation, I evaluate the considered strategies in the scenario of

Rayleigh fading channels. The simulation results when M = 1 are shown in Fig. 4.6. It is

demonstrated that the performance of the proposed precoding strategy is identical to that of

the GZF-PSVD strategy. It is because there is no LOS component in this case. That means,

in Rayleigh fading channels, my strategy degrades to the GZF-PSVD whose performance is

the worst. Therefore, this strategy is not suitable for Rayleigh fading channels.

4.4.4 Frequency Band

In this simulation, I evaluate the impact of the frequency band on the performance of the

proposed precoding strategy. Different from the setting in Sec. 4.4.2, I choose another set of
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Figure 4.6: Comparison of spectral efficiency when the K-factor = 0

path loss parameters, i.e., α = −61.4, ρ = −2 and σS = 5.8 for mmWave 28 GHz frequency

band [2], and set M = 1. The simulation results are shown in Fig. 4.7. Comparing Fig.

4.4(a) with Fig. 4.7, it could be found that, in the conventional band, my strategy achieves

96.5% of the spectral efficiency of the GZF-FU strategy on average; and in the mmWave

band, this proportion is 96.7%, showing that the proposed strategy has similar performances

in these two frequency bands and performs well in both scenarios. This indicates the great

flexibility and reliability of my strategy when being applied to various application scenarios

with different frequency bands.

4.5 Summary

In this chapter, I propose a bandwidth-efficient GZF precoding strategy for cell-free

massive MIMO systems considering Rician fading channels. In order to reduce the CSI over-

head on fronthaul links, I propose to decompose the channel matrix into two components by

exploiting the physical structure of Rician fading channels and then design two corresponding

efficient compression methods. Moreover, two effective algorithms are developed to calculate
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Figure 4.7: Comparison of spectral efficiency in 28 GHz frequency band

the necessary information that is required for the proposed CSI method. Through well-

designed simulations, I demonstrate that the proposed GZF precoding strategy has a good

ability to significantly reduce the upload overhead while achieving comparable performance

to the traditional GZF without CSI compression.
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Chapter 5

Multi-Agent Deep Reinforcement Learning for Access Point Activation Strategy in

Cell-Free Massive MIMO Networks

5.1 Introduction

As an advanced ultra-dense small-cell network, the cell-free massive MIMO network has

been introduced and attracted much attention in recent years due to its advantages of low

inter-cell interference and uniform quality of service. In a cell-free network, a large number

of antennas or access points (APs) are distributed within the network and jointly serve user

equipments (UEs). This architecture makes it able to avoid handover and provide seamless

wireless services.

However, the cell-free massive MIMO network still suffers from two major issues. One

is the huge power consumption. To provide wireless services, an AP consists of multiple

components with different functionalities, such as amplifiers, filters, mixers, and synthesizers.

Typically, the power consumption at AP is composed of the power expenditure on the RF

transmissions, the circuit power expenditure on RF chain, and the power expenditure on

site-specific and architecture-specific factors [52]. When the network scale becomes large,

i.e., as there are a large number of APs deployed in the network, huge power will be consumed

network-wide. A practical approach is to turn off some APs to reduce unnecessary power

consumption, especially when the demand traffic is not heavy. This approach is referred to

as the AP sleep mode strategy or activation strategy [75]. However, blindly turning off the

APs might also affect the quality of the service. Therefore, the AP activation decision should

be carefully made to balance the trade-off between the service level and power consumption,

especially in large-scale cell-free massive MIMO network implementation.
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The other one is the scalability issue. In a traditional cell-free massive MIMO network,

there is a centralized controller that takes charge of the radio-related decisions for all APs,

such as precoding, power control, and switching on/off. When the number of APs increases,

the computation time needed for making those decisions at the controller will become less

affordable due to its limited computational capacity. Besides, to make reasonable decisions,

the controller needs to have a comprehensive knowledge of the whole network, referring to the

resources (e.g., bandwidth) and environment (e.g., channel state information (CSI)). This

will lead to considerable signaling overhead that wastes bandwidth resources. To address

this scalability issue, a promising solution is to apply a distributed control, in which each AP

makes the decision by itself and no centralized controller exists. Since each AP only needs

the local environment knowledge and undertakes lightweight computation, the scalability

issue in the cell-free massive MIMO networks is expected to be effectively solved.

How to improve the energy efficiency in UDNs by turning off redundant BSs/APs is a

hot topic in the past decade. Many researchers have made remarkable contributions to this

problem and its variants. More details can be found in [75, 26, 19, 57]. Recently, some papers

have focused on the AP activation (APA) strategy in cell-free massive MIMO networks. In

particular, the performance of the APA technique in cell-free massive MIMO networks is

analyzed in [30]. Moreover, various APA strategies are proposed in [16, 20, 44, 42, 71], which

are designed for different scenarios, such as in mmWave domain [20], with homogeneously and

heterogeneously distributed users [16, 20], and for radio stripe-based deployment [44]. The

widely used approaches to solve the APA problem include random strategy [44], optimization

theory [16, 20, 71], and machine learning [77, 42]. However, all these papers assume that

the APA decision is made by a centralized controller and, therefore, none of the approaches

can address the scalability issue. The authors in [17] proposed a distributed solution to

solve the APA problem in mmWave cellular networks, but the approach they proposed is

for small-cell networks where each UE is served by at most one BS and is not applicable for

cell-free networks.
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Considering the inherent relationship between distributed control and multi-agent decision-

making, I fill this gap by proposing a multi-agent deep reinforcement learning (MADRL)

approach to solve the APA problem in cell-free massive MIMO networks with static and

dynamic user demand. In particular, Ileverage the user-centric characteristic of the cell-

free massive MIMO network to design a DQN-based MADRL approach. In the proposed

approach, each AP acts as an independent agent that makes the switching on/off decision-

based on its local knowledge of the network. By comparing it with a centralized deep

reinforcement learning (CDRL) on the reduced power consumption, I demonstrate that the

MADRL can efficiently solve the APA problem and it outperforms the CDRL.

The rest of this paper is organized as follows. In Section 5.2, I formulate the APA

problem in a user-centric cell-free massive MIMO network as an optimization problem. In

Section 5.3, a MADRL approach is proposed to solve the APA problem, and in Section 5.4,

a CDRL is presented. The performance of the proposed approach is evaluated in Section

5.5. Finally, I conclude this research in Section 5.6.

5.2 Problem Formulation

Consider a cell-free massive MIMO cellular network G, composited of a set of access

points (APs)M = {m1,m2, . . . ,mM} and a set of user equipments (UEs)K = {k1, k2, . . . , kK},

which is shown in Fig. 5.1. The APs, each of which is equipped with N antennas, as well

as the single-antenna UEs, are independently distributed in the network. The APs jointly

provide downlink service to the UEs with a predefined minimum requirement of the received

signal-interference-noise-ratio (SINR) for the UEs. All APs are connected to a centralized

processing unit (CPU) via fronthual. The CPU takes charge of the data exchange and

processing for wireless communication in the network.
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Figure 5.1: Cell-free massive MIMO network

5.2.1 Propagation Model

In this research, the channels between the APs and the UEs are modeled as Rayleigh

fading channels. Note that the method proposed in this paper can also be applied to other

channel fading models, such as Rician fading. For the AP m ∈ M and the UE k ∈ K, the

channel vector gmk ∈ CN×1 between them is modeled as

gmk =
√

βmkhmk,m ∈M, k ∈ K, (5.1)

where βmk denotes the large-scale fading coefficient and hmk ∼ CN(0, IN) represents the

small-scale fading. The estimation of the CSI is outside of the scope of this paper. I assume

that the APs have the full knowledge of the CSI and apply the maximum ratio transmission

(MRT) precoding for downlink transmission. In particular, given the channel vector gmk for

the AP m and the UE k, the corresponding precoding vector wmk = g∗
mk. The transmitted
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signal xm ∈ CN×1 at the AP m is calculated as

xm =
∑

k∈K(m)

√
pmkwmkqk, (5.2)

where K(m) denotes the subset of UEs that are served by the AP m, pmk is the power

allocated to the UE k by the AP m, and qk represents the data intended to the UE k,

E{|qk|2} = 1. Denoting the subset of APs that serve the UE k asM(k), the received signal

at the UE k is calculated as

yk =
∑

m∈M(k)

g∗
mk

√
pmkwmkqk +

∑
t∈K
t̸=k

∑
m∈M(t)

g∗
mk

√
pmtwmtqt + nk, (5.3)

where the first item is the desired signal, the second stands for the interference, and nk ∈

CN(0, σ2
N) denotes the additive white Gaussian noise at the UE k.

Based on the above setting, the received SINR at the UE k can be calculated as

SINRk =

∣∣∣∑m∈M(k) g
∗
mk

√
pmkwmk

∣∣∣2∑
t∈K
t̸=k

∣∣∣∑m∈M(t) g
∗
mk

√
pmtwmt

∣∣∣2 + σ2
N

, (5.4)

where σ2
N is the noise power.

5.2.2 User-Centric Association

In a typical cell-free massive MIMO network, a UE is assumed to be served by all APs

in the network. However, this assumption is not realistic in a real-world network. On the

one hand, different APs have different distances to a UE. The APs that are near a UE

provide stronger signals than those that are far away. On the other hand, an AP in a

UDN has limited transmitting power. The APs that are far away from the UE have little

impact on it. Therefore, in this research, I consider a user-centric cell-free massive MIMO

network, in which each UE is only served by nearby APs. In particular, for the UE k ∈ K,

78



M(k) = {m|dmk ≤ d̄,m ∈M}, where dmk is the distance between the UE k and the AP m,

and d̄ is a predefined threshold.

5.2.3 AP Activation Problem

In order to provide seamless and reliable services, it is typical that, in a cell-free massive

MIMO network, there are much more APs than UEs, i.e., M ≫ K. However, when the

number of UEs is not large or the demand traffic is not heavy, e.g., at midnight, some APs

may be redundant. In other words, only a subset of APs could fulfill the total demand in

the network. In this case, for the purpose of energy saving, I can turn off the redundant APs

if the remaining activated APs have the capacity to serve all UEs. The problem is how to

find the maximum subset of APs which can be turned off while maintaining the minimum

requirement of wireless service. Here, I consider two scenarios: static and dynamic. In the

static scenario, all UEs are active, i.e., each UE has a demand to be met. In particular, let

xm denote whether the AP m is active or not, i.e., xm = 1 if the AP m is active and xm = 0

otherwise. Supposing the AP m consume energy em when it is active, this APA problem

(P1) is formulated as follows.

P1:min
∑
m∈M

emxm (5.5a)

s.t. rk ≥ r̄k, k ∈ K, (5.5b)

rk =

∣∣∣∑m∈M(k) g
∗
mk

√
pmkwmkxm

∣∣∣2∑
t∈K
t̸=k

∣∣∣∑m∈M(t) g
∗
mk

√
pmtwmtxm

∣∣∣2 + σ2
N

, k ∈ K, (5.5c)

pmk =
Pm

|K(m)|
,m ∈M, (5.5d)

xm ∈ {0, 1},m ∈M, (5.5e)

where Pm is the total transmit power of the AP m and r̄k is the minimum requirement of

received SINR of the UE k. In the above model, the objective function (5a) is to minimize
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the number of activated APs. The constraints (5b) and (5c) introduce the requirement of

the received SINR for each UE. The constraints (5d) indicate the power allocation for the

APs. According to the user-centric association, I assume that each AP equally allocates its

transmit power to the UEs that are served by it.

In the dynamic scenario, whether a UE is active, i.e., raises a demand, or not is an i.i.d.

random variable at each time slot. Specifically, let zk(t) denote the status of the UE k at

time t ∈ T , i.e., zk(t) = 1 if the UE k is active, while zk(t) = 0 otherwise. Moreover, I use

xm(t) and rk(t) to denote the status of the AP m and the SINR of the UE k at time t. The

formulation of this problem (P2) in the dynamic scenario is

P2:min
∑
t∈T

∑
m∈M

emxm(t) (5.6a)

s.t. rk(t) ≥ r̄kzk(t), k ∈ K, t ∈ T , (5.6b)

rk(t) =

∣∣∣∑m∈M(k) g
∗
mk

√
pmkwmkxm(t)

∣∣∣2 zk(t)∑
t∈K
t̸=k

∣∣∣∑m∈M(t) g
∗
mk

√
pmtwmtxm(t)

∣∣∣2 + σ2
N

,

k ∈ K, t ∈ T ,

(5.6c)

pmk =
Pm

|K(m)|
,m ∈M, (5.6d)

xm(t) ∈ {0, 1},m ∈M, t ∈ T . (5.6e)

It is obvious that problem P1 is NP-hard and P2 is dynamic which is even more complex.

Since it is difficult to apply optimization-based methods to solve them, I design two efficient

deep reinforcement learning (DRL) approaches to solve them, which are described in the next

section. Another reason to use DRL-based approaches is that, compared with traditional

optimization-based methods, they are more energy-efficient. Using traditional optimization-

based methods, we need to calculate the solution frequently in each time slot because of

the dynamic environment and system status. The power spent on frequent computation

is considerable in large scale of time. In contrast, the DRL-based approaches could be
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trained online or offline and the well-trained models could be used for inference based on

simple computation which costs less power. Therefore, the energy overhead in DRL-based

approaches is less than that of traditional optimization-based methods.

5.3 Multi-Agent Deep Reinforcement Learning Approach

In this section, I propose a MADRL approach to solve the APA problem. In this

approach, each AP acts as an independent agent and interacts with the unknown environment

to gain experience that is then used to direct its future actions, to reduce the total power

consumption in the network while satisfying the required service level. The MADRL is

illustrated in Fig. 5.2 and explained in detail in the following.

Figure 5.2: Multi-agent deep reinforcement learning

5.3.1 Preliminaries

In my model, each AP is treated as an independent agent to make its own decision,

i.e., switch itself on or off, according to its policy given the observation of the environment.

In particular, given the instantaneous state smt at time t, the AP m takes an action amt

based on its policy πm, which maps a specific state to a corresponding action. After acting
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the action, the AP m gets a reward Rmt and observes a new state sm,t+1, and then repeats

this process. The goal of any AP m is to find the optimal policy π∗
m that maximizes its

accumulated reward

Gmt =
∞∑
τ=0

γτRm,t+τ , (5.7)

where γ ∈ [0, 1] is a discount factor that scales down the rewards more and more after each

step.

5.3.2 Deep Q-Network Framework

My MADRL approach is based on the deep Q-network (DQN) framework, which is

described as follows.

(1) State

The state of the AP m at time t is defined as the collection of its neighbors’ activation

status, i.e., smt = {xnt|n ∈ Nm}, where Nm denotes the AP m’s neighbor APs. The neighbor

of the AP m is defined as a set of APs that is closed to it, i.e., Nm = {n|dmn ≤ d̄N , n ∈

M}, where dmn is the Euclidean distance between the AP m and the AP n, and d̄N is a

predefined threshold, which determines the neighborhood range of an AP. Although each AP

independently determines to be on or off, I allow it to exchange simple information with its

neighbors. In particular, an AP can query its neighbor APs’ activation status through the

connection between them, e.g., wired or wireless fronthaul. Since this information exchange

is local, this assumption does not impair the scalability of the solution.

(2) Action

As mentioned above, any AP m ∈M independently decides whether it will be switched

on or not. When it observes the instantaneous state smt, it chooses an action amt ∈ {0, 1}.

After the AP m’s neighbor APs choose their actions, the AP m’s state will change from smt

to sm,t+1. Note that am,t+1 is not necessarily different with amt.
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(3) Reward

When all agents take their actions given their respective states at time t, they will

receive a reward Rt from the environment. Since my goal is to minimize the number of the

power consumption of the network, I define the reward as the sum of the power consumed

by the activated APs. Moreover, because of the constraints (5b), I cannot apply RL to

solve this problem directly. In order to do so, I need to eliminate the constraints (5b) first.

Similar to the Lagrange multiplier method, I transform the constraints as a penalty item

and incorporate them into the objective function. In particular, I formulate the reward as

Rt =


−
∑

m∈M emxmt, if rkt ≥ r̄k,∀k ∈ K

−B, otherwise,
(5.8)

where rkt is the SINR perceived by the UE k at time t and B is a big number. Note that, in

my MADRL model, all APs receive identical rewards.

(4) Policy Update

Each agent’s policy is a function in which the input is an observed state and the output

is the action mapped to the state. To obtain the AP m’s policy πm, I need to know its

Q-function

Qπ(smt, amt) = Eπ{Gmt|smt, amt}, (5.9)

which shows how good a certain action is, given a state, for an agent following a policy.

Q-table is a simple method to estimate the value of Q(s, a) when the state space is discrete

and limited. But when the state space is huge, it is computationally intractable to build

such a table. In order to address the issue of the “curve of dimension", the DQN uses a

neural network, called Q-network, rather than a Q-table, to estimate the Q-function. The

Q-network, denoted as Qeval, takes a state as the input and generates an action. Besides the

Q-network, I introduce another target-network that has the same structure as the Q-network,
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denoted as Qtarget. Qeval and Qtarget are parameterized by θm,eval and θm,target, respectively.

I calculate

qtarget = Rt + γmax
a′

Qtarget(sm,t+1, a
′; θm,target), (5.10)

which is used to update the neural networks. The purpose of introducing the target-network

is to make qtarget stable. Besides, I use the experience replay technique to address the

correlation of training data. Each AP maintains a replay buffer D to store the tuples

(s, a, r, s′) observed recently. When training, the AP m randomly samples a mini-batch

of size Ba from D and calculates the loss value as

Lm,eval =
1

Ba

Ba∑
i=1

(qtarget,i −Qeval(si, ai; θm,eval))
2 . (5.11)

The Qeval is updated by performing a gradient descent step on Lm,eval as

∆θeval = αLeval · ∇Qeval(st, at; θm,eval), (5.12)

where α is the learning rate. I update the Qtarget once every C rounds of updating the Qeval,

as

θm,target ← θm,eval. (5.13)

The algorithm of the MADRL is summarized in Algorithm 3.

5.4 Centralized Deep Reinforcement Learning Approach

For comparison, I propose a centralized DRL (CDRL) approach that is also based on

DQN to solve the APA problem. In the CDRL, the AP activation decision is made by a

centralized controller. The controller may locate at a macro BS that takes charge of the

control plane of the cell-free massive MIMO network, or at the remote cloud. The controller

maintains a DRL model to make the activation decision for all APs in the network. The
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Algorithm 3 Multi-Agent DQN algorithm for APA problem
1: Input: Cellular network G which consists of an AP setM and a UE set K
2: Initialize Qeval with random θeval for each AP
3: Initialize Qtarget with random θtarget for each AP
4: Initialize a replay buffer with size of Ba for each AP
5: for episode = 1, . . . , E do
6: Reset each AP’s activation status
7: for t = 1, . . . , T do
8: for m = 1, . . . ,M do
9: AP m observes its local state smt from its neighborsMm

10: With probability ϵ select a random action amt

11: Otherwise, choose amt = argmaxa′ Qeval (smt, a
′; θm,eval)

12: end for
13: All APs conduct their actions
14: for m = 1, . . . ,M do
15: AP m gets reward Rt and observes the next state sm,t+1

16: AP m stores tuple (smt, amt, Rt, sm,t+1) in its replay buffer D
17: AP m randomly chooses mini-batch of tuple (smt, amt, Rt, sm,t+1) from D
18: Calculate qtarget by Eq. (5.10)
19: Update θm,eval by performing gradient descent step on Lm,eval

20: Every C steps update θm,target ← θm,eval

21: end for
22: end for
23: end for

framework of the CDRL as the same to the MADRL, except for the definition of state and

action.

The CDRL is illustrated in Fig. 5.3 . In the CDRL, the controller needs to collect the

current state of the whole network. I define the state of the network as the combination

of all APs’ activation statuses. In particular, the state of the network at time t is denoted

as st = {x1t, x2t, . . . , xMt}. At the beginning of each round, each AP uploads its activation

status to the controller through the fronthual. I assume the fronthaul is reliable and without

any capacity limitation.

When the controller observes the state st, it generates an action at following the current

policy π, i.e., at = π(st). I define at as the id of the AP whose activation status will be flipped

over. In particular, suppose the current state is st = {x1, x2, . . . , xM} and the controller

chooses the action at ∈ {1, . . . ,M}, then the next state st+1 = {x1, x2, . . . , 1− xat , . . . , xM}.
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Figure 5.3: Centralized deep reinforcement learning

It is worth noting that, I allow the controller to make no change to the network state.

Specifically, if the controller chooses at = M + 1, it will not change any AP’s activation

status in this round, i.e., st+1 = st.

The algorithm of the CDRL is summarized in Algorithm 4.

5.5 Performance Evaluation

In the evaluation part, I consider a cell-free massive MIMO cellular network that covers

a 100(m) × 100(m) square region and consists of 50 APs and 10 UEs randomly deployed

with uniform distribution in the region. Each AP is equipped with 10 antennas and the

UEs are single-antenna. According to the user-centric setting, I set d̄N = 20, which means

each UE is served by the APs to which the distance is less than 20(m). Moreover, I set the

transmit power of AP as 1w, the minimum requirement of SINR at UE as 0.1, and the noise

power σ2
N = −92 dBm. I assume the channels between the APs and the UEs are Rayleigh

fading channels and the APs use the Maximum Ratio Transmission (MRT) precoding for the

downlink transmission. For the Q-network / target-network, the sizes of the input layer and

the output layer are set to be the size of the state space and the action space, respectively.
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Algorithm 4 Centralized DQN algorithm for APA problem
1: Input: Cellular network G which consists of an AP setM and a UE set K
2: Initialize Qeval with random θeval for the centralized controller
3: Initialize Qtarget with random θtarget for the centralized controller
4: Initialize a replay buffer with size of Ba for the centralized controller
5: for episode = 1, . . . , E do
6: Reset each AP’s activation status
7: for t = 1, . . . , T do
8: The centralized controller observes the state st
9: With probability ϵ select a random action at

10: Otherwise, choose at = argmaxa′ Qeval (st, a
′; θeval)

11: The centralized controller conducts the chosen action
12: The centralized controller gets reward Rt and observes the next state st+1

13: The centralized controller stores tuple (st, at, Rt, st+1) in its replay buffer D
14: The centralized controller randomly chooses mini-batch of tuple (st, at, Rt, st+1)

from D
15: Calculate qtarget by Eq. (5.10)
16: Update θeval by performing gradient descent step on Leval

17: Every C steps update θtarget ← θeval
18: end for
19: end for

The other parameters of the neural network are listed in Table 5.1. Moreover, the parameters

of the RL are listed in Table 5.2.

Table 5.1: Neural Network Parameters

Notation Explanation Value
- Number of hidden layers 1
- Size of hidden layer 50
- Activation function ReLU
|D| Reply buffer size 2000
Ba Mini-batch size 32
C Frequency of Qtarget update 100
- Optimizer Adam

5.5.1 Static Scenarios

In this subsection, I evaluate the performances of the proposed DRL-based approaches

in static scenarios, where all UEs are active all the time.
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Table 5.2: RL Parameters

Notation Explanation Value
Nepisode Number of episodes 100
Nstep Number of steps 1000
α Learning rate 0.01
λ Discount 0.9
ϵ Exploration trigger value 0.1

Firstly, I compare the performances of the MADRL and two counterparts, i.e., the

CDRL approach and the random approach, on the APA problem. In the random approach,

each AP randomly chooses its activation status at each time slot. I consider 50 APs in

the network and plot the simulation results in Fig. 5.4. In particular, in Fig. 5.4(a), the

accumulated rewards achieved by these three approaches are displayed. To further analyze

their performances, I compare the power consumption of these approaches in Fig. 5.4(b). It

shows that the random approach renders solutions with the minimum power consumption,

while the performances of the MADRL and the CDRL are comparable. However, a solution

with low power consumption may be infeasible because of the constraints of service level. To

reveal that whether the solutions obtained by these approaches are feasible (can meet the

requirement of service level), I also show the number of solutions generated in each episode

for each approach, say total penalty, in Fig. 5.4(c). It can be found that, although the

solutions obtained by the random approach have the minimum power consumption, most

of them cannot meet the requirement of service level. Although the quality of the solu-

tions generated by the CDRL are better, compared with that of the random approach, it

exhibits obvious oscillation. In contrast, the MADRL can find much better solutions and

shows good convergence. The results demonstrate that, among these two RL approaches,

the MADRL outperforms the CDRL. Notably, the MADRL converges quickly and its perfor-

mance keeps stable over all episodes. In contrast, the CDRL’s convergence is not so good and

its performance fluctuates over the episodes, even though it reaches some excellent solutions

occasionally. The reason why the MADRL is better than the CDRL in solving the APA
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problem lies in that, in the MADRL, each agent has a much smaller state space and action

space, which makes it have good convergence. Another reason comes from the user-centric

characteristic of the cell-free massive MIMO network. In particular, since each UE is served

by the APs that are near it, each AP only needs to collaborate with its neighbor APs, rather

than all other APs, to jointly serve a subset of UEs. In other words, those APs that are

far from it have little impact on its decision. Therefore, it does not need to be aware of the

status of the APs that are far away. That is why an agent in the MADRL only needs a small

state space. Moreover, in the MADRL, an agent has a small action space, i.e., {0, 1}, while

in the MADRL, the agent’s action space is {1, 2, . . . ,M + 1}, which is much larger. That

also helps the MADRL have good convergence. These results show that, compared with the

CDRL, the MADRL not only reduces the communication overhead but also provides better

solutions for the APA problem.

Secondly, I investigate the impact of the density of APs on the performance of the

MADRL. I consider three numbers of the APs, i.e., 50, 60, and 70, and run the MADRL

with these settings respectively. From the results shown in Fig. 5.5, it is demonstrated that,

with all these densities, the performances of the MADRL are stable. This shows the ability

of the MADRL to provide reliable performance with various densities of APs. Moreover, it

is illustrated that the performance of the MADRL with 50 APs is the best. It is because,

compared with the other two densities, the state space of the MADRL is smaller when the

number of APs is 50. It makes the MADRL converge to better solutions.

Thirdly, I consider the impact of the neighborhood range on the performance of the

MADRL. A larger neighborhood range means that each AP’s state space is larger. I choose

three values for the neighborhood range and show the results in Fig. 5.6. It is illustrated that

the neighborhood range of d̄N = 30 renders the best performance. When the neighborhood

range grows larger, for example, to 50 and 70, the performance degrades. The reason is

similar to that in the above. With a larger neighborhood range, each agent’s state space

is larger and more complicated. The larger neighborhood range brings little gain to the
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(a) Accumulated rewards of the three approaches

(b) Power consumption of the three approaches

(c) Total penalties of the three approaches

Figure 5.4: Performances of the MADRL, the CDRL, and the random strategies with static
demand
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Figure 5.5: Performances of the MADRL with different numbers of APs

learning process but causes more communication overhead. This insight discloses that no

matter from the point of view of performance or cost, a large neighborhood range is not a

good choice for the APA problem.

5.5.2 Dynamic Scenarios

In this subsection, I evaluate the performances of the proposed DRL-based approaches in

the dynamic scenarios, in which whether any UE raises demand is an i.i.d. random variable.

In all simulations conducted in this part, I set the number of UEs as 30 and the minimum

requirement of SINR at UE as 0.05.

Firstly, I consider a dynamic scenario where each UE k ∈ K has an individual active

probability bk uniformly distributed in [0, 1] to raise a demand at each time slot. The same

as the first simulation in Section 5.5.1, I compare the performances of the MADRL, the

CDRL, and the random approach in this scenario. The results are displayed in Fig. 5.7,

in which the subfigures 5.7(a), 5.7(b), and 5.7(c) show the comparison on the accumulated

reward, the power consumption, and the total penalty, respectively. It is obvious that the
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Figure 5.6: Performances of the MADRL with different neighborhood ranges

proposed MADRL still significantly outperforms the other two in both the quality of the

solution obtained and the convergence rate, and that the CDRL is insufficient to solve the

APA problem in the dynamic scenario due to the huge state and action space, as well as the

time-varying demand of UE. This result demonstrates that, compared with the CDRL, the

proposed MADRL has an excellent ability to solve the APA problem when user demands

are random.

Secondly, I investigate the performance of the MADRL when given different active prob-

abilities of UE. Here I assume that all UEs have an identical value of the active probability b.

I choose 4 values for b: 0.25, 0.5, 0.75, and 1, and evaluate the performance of the MADRL

in these scenarios, respectively. Especially, b = 1 means all UEs are active all the time,

which is equivalent to the static scenario. According to the result shown in Fig. 5.8, the

MADRL converges to a solution with more active APs when the active probability is high,

e.g., b = 1, while it tends to choose another solution with less active APs given a low active

probability, e.g., b = 0.25. It is because when the active probability is low, there are not

many UEs raising demand and just a few APs are needed to meet the total demand. When
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(a) Accumulated rewards of the three approaches

(b) Power consumption of the three approaches

(c) Total penalties of the three approaches

Figure 5.7: Performances of the MADRL, the CDRL, and the random strategies with dy-
namic demand
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the active probability is higher, more demands are raised and consequently more APs need to

be turned on. This result shows that the MADRL can generate effective APA strategies that

are suitable for different active probabilities of UE. Moreover, the MADRL shows a good

convergence rate in all scenarios. That means the performance of the MADRL is rather

stable in various scenarios and it is suitable for general use cases in practice.

Figure 5.8: Performances of the MADRL with active probabilities of UE

5.6 Summary

In this chapter, I investigate an AP activation problem in a user-centric cell-free massive

MIMO network. Considering the static and the dynamic user demand, my goal is to find

a strategy to turn off unnecessary APs to reduce power consumption while maintaining the

minimum required service level and I model it as an optimization problem. To address

the scalability issue in such a UDN, I propose a multi-agent deep reinforcement learning

(MADRL) approach and, as a counterpart, a centralized deep reinforcement learning (CDRL)

approach. The simulation results demonstrate that, compared with the CDRL, the MADRL

is able to find much better solutions and has a much better convergence rate in both static
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and dynamic scenarios. More important, the MADRL has great potential to solve the APA

problem in cell-free massive MIMO systems in order to reduce power consumption and

mitigate the scalability issue.

95



Chapter 6

Conclusions and Future Work

Because of the large number of APs, mobility and energy management become two

critical problems in 5G UDNs. In this dissertation, I propose several novel approaches to

solve them effectively. Firstly, I develop two MAB-based handover strategies to reduce the

handover in mmWave ultra-dense cellular networks. These two strategies learn the empirical

knowledge about the distribution of the user’s moving trajectory and LOS link blockage from

historical handover events and use it to guide future handover decisions. When a handover

event happens, supported by a signal space partitioning scheme, these two strategies extract

its spatial and temporal features to retrieve the accumulated knowledge and generate a han-

dover decision by the proposed SBS-selection algorithms. Compared with some counterpart

strategies, the proposed handover strategies can significantly reduce the handover frequency.

Secondly, I focus on a special UDN: a cell-free massive MIMO system, which is able to fur-

ther reduce handover. To address the severe inter-user interference issue in cell-free massive

MIMO systems, I propose a bandwidth-efficient GZF precoding strategy associated CSI feed-

back compression mechanism. By leveraging the physical structure of Rician fading channels

in cell-free massive MIMO systems, I propose to decompose the channel matrix into LOS

and NLOS components, and design two customized methods to compress them, respectively.

The simulation result shows that the proposed precoding strategy remarkably reduced the

communication overhead with little information loss in CSI compression. Thirdly, being

aware of the considerable power consumption UDNs where there are a large number of APs,

I propose an AP activation (APA) strategy to wisely turn off idle or under-loaded APs in cell-

free massive MIMO systems with the purpose to reduce power consumption. To address the

scalability issue when the number of APs grows extremely large, I design a MADRL-based
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approach to solve this problem effectively. It is demonstrated through simulation results that

the distributed DRL is a strong tool to solve the APA problem in cell-free massive MIMO

systems. Compared with the centralized DRL, the multi-agent DRL has better performance

and convergence.

My research in this dissertation could be extended in the following directions in the

future.

(1) The proposed MAB-based handover strategies can only be applied in scenarios where

the obstacles are fixed. In the next step, I will consider how to improve them and make them

able to handle mobile obstacles.

(2) In the proposed bandwidth-efficient GZF precoding strategy, it is assumed that the

APs are equipped with antenna arrays. When given single-antenna APs, how to solve the

same SCI overhead reduction problem is another future work.

(3) In the APA problem considered in Chapter 5, I only consider fixed UEs. The future

work is to investigate the performance of MADRL when given mobile UEs and how to

improve it.
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