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Abstract 

 

 Drug resistance has remained the Achilles' heel in cancer chemotherapy which serves as the 

principal limiting factor in achieving favorable treatment outcomes in cancer patients. Drug 

resistance that exists even before drug exposure (intrinsic resistance) or resistance that develops 

with the course of treatment (acquired) is responsible for therapy failure and clinical progression 

(relapse or recurrence) in 90% of the cases. Intra-patient and inter-patient tumoral heterogeneity 

also play a significant role in therapy resistance and failure as they govern the treatment response. 

Recent evidence indicates that the underlying sub-cellular molecular characteristics of the tumor 

govern the heterogeneity in drug response. The treatment-refractory subpopulations of tumor 

cells or cancer stem-like cells (CSCs) are believed to drive drug resistance and disease relapse 

in various cancers. Due to their quiescent nature, which allows them to escape conventional 

therapeutics, standard agents fail to improve long-term clinical outcomes significantly. Thus, the 

development of drug resistance and disease relapse in cancer is primarily attributed to the 

treatment-refractory subpopulations of tumor cells or cancer stem-like cells (CSCs) with 

potential self-renewal and differentiation capacities. Moreover, a significant limitation of cancer 

drug discovery is the low predictive value of the pre-clinical studies as they mostly ignore the 

cellular heterogeneity and complexity, which resulted in extensive inter-individual variation in 

response, drug resistance, and dose-limiting toxicities. So, deciphering key features within 

patients’ underlying tumor heterogeneity and personalized sensitivity to chemotherapy is 

essential to predict the efficacy of anti-cancer drugs and prevent delays in selecting more 

effective alternative strategies. 
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1.1 Cancer 
 

 

Cancer is a group of diseases characterized by the uncontrolled proliferation of abnormal cells 

in the body that arises due to the malignant transformation of normal cells and may remain 

localized in a particular tissue or organ or can spread to the other part of the body (metastasis).1,2 

 

1.1.1 Statistics 
 

Cancer is the second leading cause of death in the US after cardiac disease, with estimated  

1,918,030 new cancer cases (~ 439 people per 100,000 people) and 609,360 deaths (~ 146 people 

per 100,000 people)  reported in 2022.3–5 

 

Figure 1A: Estimated new cancer cases in the US, in 2022 

 

 
 

 

Figure 1B: Estimated cancer-related deaths incidence in the US, in 2022 
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Globally, cancer is the second most common cause of death after cardiovascular disease, with 

an estimated reported 19.3 million new cases and 10 million cancer deaths in 2020.6–8 

 

Figure 2A: Estimated new cancer cases globally in 2020 
 

 

 
 

Figure 2B: Estimated cancer-related deaths incidence globally in 2020 
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1.1.2  Molecular Mechanism of Cancer Development 

 

i. Sustaining Proliferative Signaling:  Cells require growth factor signals through the surface 

receptor (e.g., Epidermal growth factor (EGF)/ Epidermal growth factor receptor (EGFR)  

they express, which then activate the intracellular signaling cascades and promote cell growth 

and division.1,9,10 In normal cells, this process happens in a coordinated manner through a 

feedback mechanism.10 But cancer cells acquire the ability to grow and divide even without 

external growth signals, leading to the uncontrolled proliferation of the cells and the formation 

of mass or tumor.10–12 It happens due to the mutation in the receptor genes that leads to the 

constitutive activation of the signaling pathways that promote cell proliferation, such as Akt, 

MAPK/ERK, and mTOR.9,13,14 

  

ii. Evading Growth Suppressors: The cell cycle that leads the cell division is a tightly regulated 

event controlled through several signaling pathways and checkpoints that prevent the division 

of cells with damaged DNA and induce senescence or apoptosis.11,15,16 Cyclin and Cyclin-

dependent kinases (CDKs) are the regulatory proteins that control the checkpoint for the next 

phase of the cell cycle. Anti-growth factors such as TP53, phosphatase and tensin homolog 

(PTEN), and Retinoblastoma protein (Rb) are the proteins that inhibit cell growth to ensure 

cell division doesn’t continue unchecked.17–19 However, in cancer cells, this regulatory 

mechanism gets disrupted as the expressions of these anti-growth factors get suppressed due 

to loss-of-function mutation or deletion of the gene, and cancer cells stop responding to the 

growth-inhibitory signals from the growth suppressors.1,20,21  

 

iii. Activating Invasion and Metastasis: Cancer cells spread to the tissues and organs beyond 

their site of origin and form new tumors (secondary and tertiary sites). This process, known 

as metastasis, involves invasion, intravasation, and extravasation.1,22–24 Invasion is where the 

cancer cells detach from the original site, extend to the adjacent tissues, and penetrate that 

space by breaching the extracellular matrix (ECM).23–25 In this step, the tumor cell undergoes 

epithelial to mesenchymal transition (EMT) by down-regulating epithelial proteins such as E-

cadherin, an upregulation of mesenchymal proteins such as N-cadherin and vimentin, which 

causes loss of polarity and enable them to migrate freely.22,24,26,27 This is followed by 

intravasation, where the cancer cells migrate through the blood vessels to the new site. The 

cancer cells integrate with the new site's tissues in the metastasis phase. 23,28 This step involves 
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the Mesenchymal to Epithelial transition (MET), where the cells revert to epithelial cells and 

form tumors.29,30 

 

iv. Enabling replicative mortality: Normal cells have limited replicative potential, which 

means they can grow and divide only a limited number of times, after which they undergo 

programmed cell death or apoptosis.1,31 On the other hand, cancer cells acquire genetic 

mutations that enable them to replicate for an indefinite number of times and evade apoptotic 

signals.1,32 The probable mechanism involves maintaining the telomere's length by increasing 

the telomerase's expression through up-regulation of oncoproteins and de-differentiated to the 

stem-like phenotype in response to the signaling pathway such as Hippo and Wnt/β-Catenin 

which are found to be frequently over-expressed in cancer cells.1,31,33–35 

 

v. Inducing angiogenesis: Angiogenesis refers to the formation of new blood vessels from pre-

existing blood vessels.35,36  Hypoxic core of the tumor mass leads to the stabilized expression 

of hypoxia-inducible factor-1 (HIF-1), which is a transcription factor and induces the 

expression of cytokines such as vascular endothelial growth factor (VEGF),  fibroblast growth 

factor (bFGF), or platelet-derived growth factor (PDGF) which are found to be over-expressed 

in cancer cells.37,38 They stimulate endothelial cells to promote angiogenesis which plays an 

essential role in tumor growth.39 In normal cells, angiogenesis is a tightly regulated process.40 

On the other hand, tumor cells remain dormant or benign if they don’t receive an adequate 

supply of blood and nutrients. Activation of the angiogenic switch, which is the imbalance 

between stimulatory and inhibitory factors, promotes new blood and lymphatic vessel 

formation. This vascular network allows the adequate supply of nutrients and oxygen as well 

as the removal of metabolic waste, which leads to the sustained growth of the tumor cells.40,41 

 

vi. Resisting cell death: Normal cells have limited replicative potential, after which they 

undergo programmed cell death known as apoptosis which causes nuclear condensation, 

cellular shrinkage, and ultimately, the formation of apoptotic bodies.1,42 Apoptosis is mediated 

by two factors: regulators present on the cell surface and receive death stimuli ( in case of the 

extrinsic pathway of apoptosis), and effectors such as Caspase-3, caspase-6, and caspase-7 

that execute the action of apoptosis.42,43 In the intrinsic pathway of apoptosis, the balance 

between pro-apoptotic (Bax, Bad, Bik, Bim, Bid, etc.) and anti-apoptotic (Bcl-2, Bcl-xL, Mcl-

1) Bcl-2 family of proteins is critical to determine the cells’ fate.44,45 In normal cells, following 
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cytotoxic or genotoxic stress (such as DNA damage), the apoptotic pathway gets activated, 

which leads to cell death.46 But in cancer cells, the hypoxic stress, genomic instability, and 

oncogenic stress fail to trigger the apoptotic pathway due to defects in the DNA damage 

sensing mechanism or alteration in the proteins involved in apoptosis.47,48 Cancer cells are 

characterized by over-expression of the anti-apoptotic proteins and down-regulation of pro-

apoptotic proteins that prevent the induction of apoptotic events.44,45,49 Apart from that, 

reduced expression of p53 due to loss-of-function mutation and deletion, which functions as 

an apoptosis gatekeeper by regulating the cellular response to DNA damage and other 

genomic aberrations, also leads to the inhibition of apoptosis.50,51 

 

1.1.3 Treatment52–54  

 

1. Surgery 
 

2. Radiation therapy 

 

3. Chemotherapy: Alkylating agents, Antimetabolites, Anti-tumor antibiotics, 

Topoisomerase inhibitors, Mitotic inhibitors, Plant alkaloids, Corticosteroids 

 

4. Immunotherapy: CAR-T therapy, monoclonal antibodies (mAbs), immune checkpoint 

inhibitors, immunomodulatory drugs 

 

5. Hormone therapy: Aromatase inhibitors, androgen deprivation therapy, androgen 

blockers, antiestrogens, LHRH agonists 

 

6. Targeted drug therapy: Proteasome inhibitors, Bruton Tyrosine Kinase Inhibitors 

  

7. Bone marrow transplant 
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1.2 Drug Resistance in Cancer 
 

1.2.1 Drug resistance in cancer is responsible for recurrence or relapse 
 

Despite significant advancements and clinical success achieved by the classical 

chemotherapeutic drugs and novel targeted drugs, resistance against them remains the major 

impediment in cancer therapies.55–57 Drug resistance in cancer patients poses a significant 

clinical challenge to the clinical success of the treatment regimen, where it accounts for almost 

90% of the cases of morbidities due to treatment failure and clinical progression. 56,58 

 

Table 1. Recurrence Statistics of Different Cancers 

 
Cancer Type Recurrence Rate 

Bladder59 50% after cystectomy 

Breast60,61 
30% overall 

5% to 9% with letrozole or placebo during a median of 10.6 years 

Colorectal62 17% after curative surgical resection with microscopically clear margins 

Glioblastoma63 Nearly 100% 

Head and neck, stage IV64 

After intensified, split-course, hyper-fractionated multiagent 

chemoradiotherapy: 

17%, locoregional 

22% distant 

Hodgkin lymphoma65,66 
10% to 13% after primary treatment 

20% to 50% after second-line treatment 

Lymphoma, DLBCL67 30% to 40% 

Lymphoma, PTCL68 75% 

Melanoma69 
15% to 41%, depending on the stage 

87%, metastatic disease 

NSCLC70,71 
26% after curative surgery 

27% after chemoradiotherapy for locally advanced disease 

Osteosarcoma72 
11%-12% local recurrence 

5%-45% metastasis 

Ovarian73 85% 

Pancreas74,75 

36% within 1 year after curative surgery 

38% local recurrence after adjuvant chemotherapy 

46% distant metastasis after adjuvant chemotherapy 

Prostate76 After prostatectomy at 10 years: 
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24% low-risk disease 

40% intermediate-risk disease 

48% of high-risk disease 

Soft tissue sarcoma77 
50% after adjuvant chemotherapy 

Nearly 100% of advanced disease 

 
 

Cancer drug resistance is a multi-faceted phenomenon that renders the cancer cells insensitive 

to pharmaceutical perturbations that ultimately cause therapy failure and cancer relapse.55 Cancer 

cells can evade the cytotoxic effects of the drug by its intrinsic and/or acquired ability and regrow 

the tumor, which is referred to as a relapse.78 The significant drivers behind this phenomenon 

are alteration of the drug target and the downstream signaling pathway (for e.g., point mutation, 

chromosomal translocation), the enhanced expression level of drug efflux molecules such as 

transmembrane transporters (ABC transporter superfamily), reduction in intracellular drug 

accumulation, over-activation of the DNA damage repair pathway, inhibition of the apoptotic 

pathway, Intra-tumoral heterogeneity such as genetic, temporal, metabolic and spatial 

(distribution of cancer cells, stromal cells, and immune cells), the chemoprotective effect of 

tumor microenvironment.55,56,79 

 

1.2.2 Types of cancer drug resistance 
 

There are two different mechanisms cancer cells become resistant to chemotherapy: Innate 

resistance and Emerging/ acquired resistance.57,80 

 

i. Innate resistance: Innate resistance is the resistance that is already present in the patient even 

before the first exposure to the drug and reduces its clinical efficacy.56,57 This type of resistance 

may develop due to the presence of a small subpopulation of cells that are insensitive to the 

standard-of-care treatment due to the presence of the genetic mutation.78,81 

 

ii. Acquired resistance: Acquired or Emerging resistance is the type of resistance that develops 

after the initial exposure to the drug or over the course of the treatment, which gradually reduces 

its clinical efficacy.78,80,82 Activation of alternative pathways such as the genetic mutation that 

alters the drug target or its activation level, activation of the secondary proto-oncogenes, driver 

mutation expression, interaction with the tumor microenvironment such as bone marrow stromal 

cells, immune cells (NK cells, macrophages), the dominance of resistant sub-clones is the major 

reasons behind the emergence of this type of resistance.78,81–84 
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1.2.3 Driving factors behind drug resistance in cancer 
 

a.Intra-tumoral heterogeneity: Intra-tumoral heterogeneity refers to the presence of distinct 

subpopulations of cancer cells with different molecular and histopathological profiles within a 

single tumor specimen.85,86 This plays a significant role in therapeutic resistance and treatment 

failure, leading to relapse and disease progression with poor progression-free and overall 

survival.86,87 The mosaic nature contributes to the spatial variation in drug sensitivity due to 

the different expression levels of target molecules through clonal evolution, and intra-tumor 

heterogeneity due to the presence of treatment-refractory subpopulations or cancer stem-like 

cells leads towards drug resistance and disease relapse.88–90  Single-cell RNA sequencing is an 

effective approach to capturing this cellular landscape.90 

 

b. Tumor microenvironment (TME): The tumor microenvironment is the complex and 

dynamic ecosystem that is present around the tumor cells within the body.91,92 In addition to 

the tumor cells, the component of TME includes extra-cellular matrix/ ECM (collagen, 

fibronectin, hyaluronan, laminin), stromal cells (fibroblasts, endothelial cells), immune cells 

(microglia, macrophages, dendritic cells, NK cells, lymphocytes).93,94 Cross-talk between 

TME and the malignant cells promotes tumor growth, invasion, and metastasis with poor 

clinical outcomes.91,92 TME interacts with the tumor cells through a complex network that 

includes i) ECM-mediated cell-cell interaction, ii) interaction through soluble mediators such 

as cytokines, chemokines, growth factors, matrix modulating enzymes, iii) interactions through 

vesicles such as circulating tumor cells (CTCs), exosomes, cell-free DNA (cfDNA).91,94–96  

Together, all these factors create a safe environment for the malignant cells to evade the 

therapy-induced apoptosis and provide further oncogenic cues that ultimately lead to the de 

novo drug resistance development. 

 

c. Cancer stem cells: Cancer stem cells are a small subpopulation of self-renewing cancer cells 

that function as tumor-initiating cells and drive chemo-resistance, therapy failure, and disease 

progression.79,97,98 They have high tumorigenic potentials and are characterized by the over-

expression of ATP-binding cassette (ABC) transporters, a family of membrane proteins that 

serve as the drug-efflux pump to nullify the effect of the drugs.97–99 
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d. Multidrug resistance (MDR): Activation of efflux drug transporters such as Classical MDR 

(P-glycoprotein) and non-Pgp MDR (MRP), which prevents the accumulation of the drug 

inside the cells by pumping it out.79 

 

1.3 Types of cancer 
 

Cancers are of two types: 

 

i. Solid tumor or organ tumor 

ii. Liquid tumor or blood cancer, or hematological malignancies 

 

1.3.1 Hematological Malignancies 
 

Hematological malignancy is the neoplastic disease of hematopoietic tissue, such as bone 

marrow and lymphoid tissue or blood-forming cells (T cells, B cells, and natural killer cells).100 

It accounts for almost 10% of all new cancer cases in the US and nearly 6% globally in 2021, 

with a total estimated case of >1.2 million and death cases of >700,000 (7% of all cancer 

deaths).101,102 
 

There are four main types of hematological malignancies: Leukemia, Lymphoma, Multiple 

myeloma, and others that include Myelodysplastic syndromes.103,104 
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Figure 3. Classification of Hematological Malignancies105 
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1.3.1.1 Hematopoiesis 
 

Hematopoiesis is the process of the formation of a wide variety of blood cells. Hematopoiesis 

during the early stages of embryogenesis occurs in the yolk sac and subsequently in the liver.106 

During the 3rd to 7th month of gestation, it primarily occurs in the spleen and, just before birth, 

shifts to the marrow cavity.107,108 In adults, hematopoiesis occurs in the bone marrow, which is 

the soft, spongy, gelatinous tissue found in the hollow spaces in the medullary cavities (centers) 

of the bone.106,108 

 

This process begins with the pluripotent hematopoietic stem cells (HSCs) in the specialized bone 

marrow regions called niches. As they divide, they give rise to multipotent HSCs that can become 

any type of blood cell as regulated by growth factors and other mediators.106,108,109 HSCs are 

capable of self-renewal through asymmetric cell division, where some of the daughter cells 

remain as HSCs to maintain the pool, and the other daughters become progenitor cells.110 

Progenitor cells are the multipotent cells that follow either Lymphoid or Myeloid lineage 

commitment and differentiate into more specialized or mature blood cells.106,110 Common 

lymphoid progenitor cells give rise to lymphocytes (T cell, B cell, NK cells), and common 

myeloid cells generate monocytes, macrophages, neutrophils, basophils, eosinophils, 

erythrocytes, and megakaryocytes to platelets.106 
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Figure 4. Hematopoiesis 
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1.3.1.2 B-cell malignancies 
 

B-cell malignancies are a group of cancers and the fifth most common cancers, which include 

B-cell lymphoma, B-cell leukemia, and plasma cell dyscrasias (Multiple Myeloma).111 They 

arise from different stages of B-cell development and differentiation. They are characterized by 

intra-and inter-patient heterogeneity that dictates the clinical progression of the disease and the 

treatment outcome.111 Despite the high number of approved therapies, primary and acquired 

therapeutic resistance poses significant challenges in managing B-cell malignancies.111–113 

Especially when they progress to the resistant or refractory disease state, they exhibit dismal 

clinical prognosis and poor survival rates with limited or no therapeutic options.111,112 

 

Thus, it demands a continuous expansion of the therapeutic arsenal for the clinical management 

of B-cell malignancies. 

 

1.3.1.3 B-cell development and differentiation 
  

The B-cell development and maturation process mainly involves the generation of the B-cell 

receptor (BCR) with a diverse repertoire to fight against a wide array of antigens which is the 

cornerstone of adaptive immunity.114–116 This is achieved through V(D)J recombination event, 

which gives rise to a fully functional antibody that contains two light chains and two heavy 

chains through the random assembly. Each light chain contains variable (V), joining (J), and 

constant NAÏVE gene segments, and each heavy chain consists of variable (V), diversity (D), 

joining (J), and constant NAÏVE gene segments.114,117 It starts in multipotent progenitor cells, 

which migrate to the bone marrow and receive the signals (CXCL12) from the bone marrow 

stromal cells (BMSC) that binds to the chemokine receptor 4 (CXCR4) expressed on its 

surface.116 MPP then transformed into (lymphocyte primed multilineage progenitors (LMPP) by 

expressing FLT-3, which interacts with the FLT-3 ligand present on the BMSC that, in turn, 

induces the synthesis of IL-7 receptor (IL-7R).118 LMPP then become Common lymphoid 

progenitor cells (CLP) committed to the development of cells of B-cell lineage by receiving the 

signals such as Cytokines (IL-7) that leads to the over-expression of Mcl-1 and c-Myc.119 In 

CD34+ CLP, this cytokine signaling induces the terminal deoxynucleotidyl transferase (TdT) and 

recombinase activating genes 1 and 2 (RAG-1 & RAG-2) to join the immunoglobulin heavy 

chain (IgH) to the D-J gene segment (D-JH) and becomes Pre-Pro B-cells. They express CD45 

which is a B-cell lineage-specific marker.114,116,119  This receptor complex also contains the signal 
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transduction component of BCR: Ig-α (CD79a) and Ig-β (CD79b), and the pre-BCR mediated 

signaling cascade is essential for the development of the B-cell.120 Upon antigen engagement, Ig 

α- Ig β sends the downstream signal through the phosphorylation of the Immunoreceptor 

Tyrosine Activation Motifs (ITAMs) that reduce the expression of RAG 1/ 2 and form large pre-

B cells that are rapidly proliferating in nature.121  In non-dividing small Pre-B cells, light chain 

(Igκ/ Igλ) rearrangements (joining of V-J with L chain) occur following re-expression of the 

RAG 1/ 2, which is also accompanied by the expression of µ chain.114,120 Following this, the 

light chain and heavy chain combine to express complete IgM BCR on immature B-cell 

membranes.114 When these immature naïve B-cells leave the bone marrow, they start expressing 

IgD on their surface, which helps them to avoid binding with the self-antigen. They are now 

called mature naïve B-cells, capable of evoking immunogenic response against exposure to the 

foreign pathogen.114,122 

This thesis will discuss two types of B-cell malignancies: 

1) Multiple Myeloma: Malignancy of the post-germinal center B-cells or plasma cells.123 

2) Mantle Cell Lymphoma: Malignancy of the Pre-germinal B cells. 124 
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1.4 Multiple Myeloma 
 

1.4.1 What is Multiple Myeloma? 
 

Multiple Myeloma (MM) is an incurable, age-dependent, post-germinal center-derived B cells 

or plasma cells neoplasm characterized by abnormal monoclonal proliferation and accumulation 

of malignant clones within the bone marrow, crowding out the normal, healthy plasma cells. 

125,126 

The terminally differentiated clonal plasma cells or B cells usually protect our body against 

foreign pathogens by producing antibodies. But, when they become malignant, the clonally 

expanded plasma cells secrete an excess amount of a specific isotype of monoclonal protein (M-

protein or para-protein or M-spike) such as heavy chain (IgG/IgA/IgD) or light chain 

(kappa/lambda) immunoglobulin which is non-functional and may result in poor immunity, renal 

failure, hypercalcemia, over-thickening of the blood, bone lesions, thrombocytopenia, and 

anemia.127 

 

1.4.2 Statistics 
 

This is the second most prevalent hematological malignancy (10%), with 34,470 estimated new 

cases (1.8% of all new cases) & 12,640vestimates deaths (2.1% of all cancer deaths) in the USA 

in 2022. The typical survival without treatment is seven months, while with current therapies, it 

is 4-5 years, with a 5-year survival rate of 57.9%. The lifetime risk of getting myeloma is 1 in 

132 (0.76%).128,129 

 

1.4.3 Symptoms and Diagnosis 
 

Common symptoms of Multiple myeloma are termed CRAB, which stands for C = Calcium 

(elevated) – hypercalcemia, R = Renal failure, A = Anemia, and B = Bone lesions.127 

 

1.4.4 Diagnostic tests for Multiple Myeloma 
 

a) Complete blood count test  

 

b) Blood chemistry tests: Creatinine, Albumin, Calcium levels, lactic dehydrogenase (LDH), 

immunoglobulins level (IgA, IgD, IgE, IgG, and IgM) 
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c) Electrophoresis to detect abnormal monoclonal antibody/ M-spike/ paraprotein and light 

chain of antibody/ Bence Jones protein in serum and urine, respectively. 

   

d) Bone marrow biopsy: Immunohistochemistry, Flow cytometry, Cytogenetics, Fluorescent in 

situ hybridization (FISH) 

 

1.4.5 Current Treatment Strategies 
 

a. Radiation Therapy: Targeting cancer cells with high-energy X-rays or proton beam is a 

treatment option for the localized disease state. 

 

b. Immunotherapy: Immunotherapy stimulates the body’s own system to recognize and attack 

the malignant cells, which otherwise evade the immune attack by producing certain 

proteins.130 Example of such a drug is Teclistamab (Tecvayli) which is a Bispecific T cell 

engager (BiTE); one part of this is attached to the T-cells, whereas the other part binds the 

BCMA protein on myeloma cells which then stimulates the T-cells to attack the myeloma 

cells.131 

 

Monoclonal antibodies (mAbs) such as Daratumumab (Darzalex) are another type of 

immunotherapy where they bind with the CD38, a transmembrane glycoprotein highly 

expressed in myeloma cells, and induce apoptosis via antibody-dependent cellular 

cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC).132 

 

Elotuzumab (Empliciti) is another mAb that attaches to Signaling lymphocytic activation 

molecule F7 (SLAMF7), a cell surface glycoprotein expressed in myeloma cells and activates 

NK cells mediated myeloma cell killing and antibody‐dependent cellular cytotoxicity 

(ADCC).133 

 

c. Chemotherapy: Cyclophosphamide (Cytoxan), Etoposide (VP-16), Doxorubicin 

(Adriamycin), Liposomal doxorubicin (Doxil), Melphalan, Bendamustine (Treanda). 

 

d. Steroids: Corticosteroids, such as dexamethasone and prednisone, reduce inflammation by 

inhibiting pro-inflammatory cytokines (IL-6) and nuclear factor kappa B (NF-κB). They also 

modulate the immune cells to fight against cancer cells. 
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1.4.6 Relapsed Refractory MM (RRMM) 
 

According to the International Myeloma Working Group (IMWG) guidelines, Relapsed and 

Refractory Multiple Myeloma is defined as the disease state that shows clinical signs (increase 

in M-protein level, one or more CRAB symptoms) of recurrence after initial response and 

becomes unresponsive or shows clinical progression while on treatment or within 60 days of 

most recent treatment where patient showed at least minimal response.134,135 

 

1.4.7 Mutational landscape of RRMM 
 

MM is a highly heterogeneous disease at the cytogenetic and molecular levels. There is multi-

step genetic (somatic mutations, quantitative and qualitative chromosomal aberrations), 

epigenetic and micro-environmental transformation involved behind the development and 

progression from normal plasma cells to monoclonal gammopathy of undetermined significance 

(MGUS), Smoldering MM, symptomatic MM and aggressive extra-medullary disease including 

plasma cell leukemia.136,137 There are at least 12 different molecular sub-types of multiple 

myeloma with unique clinical and pathological features and varying degrees of response toward 

the treatment. 138,139  Lack of identifiable universal driver mutation, intra-patient & inter-patient 

heterogeneity at the clonal and sub-clonal level associated with disease progression increase its 

complexity. Due to the heterogeneous nature of this disease, standard therapeutic strategy yields 

variable response and treatment outcome that is observed across patient populations. Rather than 

using a ‘one size fits all’ approach, pharmacogenomics-guided precision medicine holds great 

potential to increase therapeutic efficacy and reduce side effects by pairing the right patients with 

the right medications based on their genetic architecture. Somatic mutations, which affect the 

cellular function of many genes involved in many critical molecular pathways, have been shown 

to be a driving factor behind the development of Multiple myeloma and significantly influence 

the treatment outcome and survival of the patients.140,141 Molecular profiling of the individual 

MM patients by the high throughput omics technology like next generation sequencing enable 

the clinicians to identify somatic mutations associated with clinical and prognostic features like 

drug response, drug resistance, drug toxicity, overall survival, and progression-free survival. 

This is particularly useful in identifying the actionable mutations in individual patients and 

designing the treatment strategy accordingly to correct the abnormal gene functions to improve 

the therapeutic efficacy and quality of life. 
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1.4.8 Mutation profile of RRMM 
 

Various studies have reported that mutational profile has a strong influence on the treatment 

outcome of multiple myeloma (Table 2).142  
 

The frequency of mutation in genes involved in the RAS/RAF pathway is very high, especially 

in newly diagnosed MM. Patients harboring RAS mutations have higher β2 micro-globulin 

levels and are characterized by enhanced activation of the MAPK pathway, shorter survival, and 

aggressive phenotype, as compared to the wild type of RAS patients but phase III Myeloma XI 

trial didn’t find any correlation between RAS mutation and adverse outcome. 143,144 

 

Mutation in codons 12, 13, and 61 of KRAS and NRAS has been reported. The low abundance 

of RAS mutation in MGUS as compared to MM indicates that RAS mutation is an essential 

factor behind the transformation from MGUS to MM. 143 

 

N-RAS is highly mutated in RRMM. In single-agent Bortezomib-treated patients but not in high-

dose dexamethasone-treated patients, N-RAS mutation is associated with reduced drug 

sensitivity, shorter TTP, higher chances of relapse, lower response rate, and progression-free 

survival. K-RAS mutated patients have shown poor survival. KRASG12D mutation is associated 

with ERK activation. 143–145 

 

MEK inhibitor Trametinib has shown moderate response overall with few cases of remissions) 

and has shown to be effective in overcoming paradoxical activation of the MAPK pathway. The 

Arkansas group, in a retrospective study, has demonstrated that in patients harboring both RAS 

and RAF mutation, combination therapy of B-RAF inhibitor and MEK inhibitor could enhance 

the partial response rate.146  

 

BRAFV600E mutation constitutively activates the MEK-ERK pathway. Studies have reported that 

BRAF mutation in MM is characterized by aggressiveness, extramedullary disease, shorter 

Progression-free survival (PFS), and Overall survival (OS).146 Dabrafenib and Vemurafenib 

have shown anti-tumor activity in B-RAF mutated cells where they block the kinase activity of 

BRAF. Inactivating BRAF mutations such as BRAFD594N may activate MEK-ERK signaling by 

heterodimerization with C-RAF. In mutated BRAFV600E cells, NRAS mutations (NRASG12A) 

have been shown to confer resistance to vemurafenib, which is a major concern for using B-RAF 

inhibitors as monotherapy since MM patients may harbor sub-clonal RAS mutation in BRAF 
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mutated tumor.143,144,146 A recent case study has depicted this scenario where a proteasome 

inhibitor was used to overcome Vemurafenib resistance.147 Thus, combination therapy is ideal 

for patients with mutational heterogeneity at the sub-clonal level.  

 

Del(17p) mutated cells have shown enhanced sensitivity towards Panobinostat and BCL2/ BCL-

xL inhibitor Navitoclax, but BCL2 inhibitor Venetoclax has fewer effects on them.148 This 

observation is useful in determining the treatment regimen for the relapsed del(17p) patients 

Venetoclax has shown to be effective in combination with bortezomib and dexamethasone, 

where it achieved a significantly improved overall response rate in all groups. Venetoclax 

treatment increases progression-free survival and overall response rate in patients with high 

BCL2 expression in t (11;14) mutated patients. Combination therapy with Venetoclax and 

dexamethasone has yielded positive results in t (11;14) and del17p.145,149 

 

Although FGFR3 and MMSET over-expression is observed in t (4;14) mutated cells, the cells 

didn’t show significant sensitivity towards FGFR inhibitors.145,149 Instead, Histone demethylase 

inhibitor GSK-4j showed potential therapeutic efficacy by inhibiting the demethylation on lysine 

27 trimethylation on histone H3 (H3K27me3) by JMJD3/ KDM6B.150,151 t (4;14) cells also 

showed sensitivity towards Pomalidomide, Linsitinib, dual PI3K-mTOR inhibitors but not 

towards Navitoclax.151 An activating p.Arg248Cys mutation and an activating read-through stop 

lost mutation *809Cys46 have been identified in MM patients.  K650E, G384D, and Y377C are 

the activating mutations in FGFR3 that confers resistance against anti-FGFR3 antibody PRO-

011 in MM cell lines. A recent study has shown that dexamethasone could sensitize NRAS-

mutant cell lines to FGFR3 inhibition by FGFR3 inhibitor, BIBF 1000.150,152 FGFR-specific 

tyrosine kinase inhibitor SU5402 has demonstrated sensitivity in FGFR3 activating mutation 

carrying cells and resistance in cells with no FGFR3 expression. 150 

 

Mutations in Epigenetic modifier IDH do not affect PFS but significantly reduce OS.142,145   

p. Arg132His is an activating mutation found in 1 MM patients and provides a druggable site, 

which is vital in MM therapy. AG-120 and AG-221 are the drugs under clinical trial for treating 

patients with IDH-1 and IDH-2 activating mutations. 149 

 

TP53 gene is recurrently mutated in MM and is significantly associated with shorter relapse-free 

survival and high-risk patient cohort. A patient harboring 7181C>T (S2394L) ATM mutation 
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has shown poor response toward melphalan and died after six months of diagnosis. IVS-1G/C- 

mutation is a splice site mutation associated with poor treatment outcomes. 142,145,153 

 

CCND1 is significantly mutated in the t (11;14) subgroup, where it is associated with lowered 

OS and poor prognostic value. Up-regulated expression of CCND1 due to juxtaposition with 

IGH enhancer can be inhibited by CDK4/6 inhibitor Palbociclib is an attractive therapeutic 

approach in MM.145,154 

 

Mutation in CRBN is linked with Immunomodulatory Drug (IMiD) resistance like p.Asn316Lys 

carrying patients are unresponsive to IMiD therapy. CUL4B mutation is also associated with 

IMiD resistance. DDB1 mutation (Ala971Asp) affects its binding with CUL4A, thus impairing 

its function, which leads to IMiD and steroid resistance. 153 

 

Mutation in PTPN11/SHP-2 at Gly503Arg, a gene associated with drug resistance in cancer, 

leads to the activation of the MAPK pathway. A potent and selective inhibitor GS-493 is in a 

preclinical trial.153 

 

A tumor suppressor gene SP140 has been found to be frequently mutated in Multiple myeloma, 

which has a significant effect on the MM prognosis. Inactivating mutations (2 frameshifts, one 

nonsense, one splice site, and one missense) in this top driver gene have been reported to be 

associated with an increased risk of relapse. The role of two truncating mutations, p.Arg576* 

and p.Glu75*, and one missense mutation, p.Glu856Ly are yet to be known. PRDM1 is another 

highly mutated gene found in myeloma patients. Mutation in this gene has been associated with 

favorable outcomes.140,145,154 

 

1.4.9 Multiple Myeloma Mutation Panel (M3P) panel  
 

Targeted sequencing of untreated and multi-drug refractory patients (treated with IMiD, 

Proteasome Inhibitors) using M3P, which consists of genes known to be frequently mutated in 

MM, genes which are associated with therapy and its outcomes revealed that MEK-ERK 

pathway, NF-kB pathway, and Cyclin D pathway are the most frequently mutated pathway in 

MM. Mutations in genes involved in CCND1 and DNA repair pathways like TP53, ATM, ATR, 

and ZNFHX4 have a negative impact on survival, but IRF4 and EGR1 mutations favor OS.155,156 

 

The top 10 recurrently detected non-synonymous mutations were KRASQ61H, NRASQ61R, 

NRASQ61K, BRAFV600E, KRASG12D/G12V, NRASG13D, NRASG13R/Q61H and 
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KRASG12A. In addition, the study has found a total of 10 patients carrying eight individual 

types of BRAFnon-V600E mutations within the kinase domain (CR3), including previously 

reported inactivating mutations G466V (n=1), G469E (1), D594A (1), D594G (2) and D594N 

(2), as well as activating mutations G469R (1), K601E (1); and one mutation with unknown 

function N581I.155,156 

 

Table 2. Clinically relevant mutations observed in RRMM patients155–157 

 

Gene Mutation Clinical Significance 

K-RAS 
KRASQ61H, KRASG12A, 

KRASG12D/G12V 

high-risk MM, including del17p, has less frequency and relatively more in 

relapsed MM. 

N-RAS 
NRASQ61R, NRASQ61K 

NRASG13D, NRASG13R/Q61H 

high-risk MM, including del17p, has less frequency and relatively more in 

relapsed MM 

B-RAF 
V600E 

Gly466Val 

Activating mutation, druggable site 

Paradoxically activate MAPK pathway via C-RAF 

TP-53 
Lys132Asn 

Met237Ile 

Associated with impaired event-free survival & overall survival (OS) in non-del 

cohorts 

DIS3 
Arg418Gly 

Arg780Thr 

Exclusively present in t (4;14) & t (11;14) patients 

Causes significant aberration in exoribonucleolytic activity 

FAM46C Ile276Thr  

IRF4 

Lys89Asn 

Lys123Arg 

Gly43Ser 

Len refractory 

Responsive to the dose-adapted treatment of Len & Dexamethasone 

Affecting the CRBN pathway; Associated with IMiD resistance 

CRBN 

Asn316Lys 

Ile393Metfs*10 

Asn316Lys 

Len refractory 

Impaired CRBN-IMiD binding 

IMiD resistance 

IKZF3 Gly191Arg Len resistant 

XBP1 Glu99Lys Bz refractory 

NR3C1 Lys772Asn Steroid Drug resistance 

CUL4B Asp426Gly Affecting the CRBN pathway; Associated with IMiD resistance 

DDB1 Ala971Asp Affecting the CRBN pathway; Associated with IMiD resistance 

FGFR3 
Arg248Cys 

*809Cys 

Activating mutation 

Activating read-through stops lost mutation 

IDH1 Arg132His Activating mutation; druggable target 

RASA2  Activates MAPK pathway 

PTPN11 Gly503Arg Acquired resistance to targeted therapy 
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1.4.10 RRMM treatment 
 

FDA-approved therapy for RRMM includes proteasome inhibitors (PI) such as Velcade 

(Bortezomib), Kyprolis (Carfilzomib), and Ninlaro (Ixazomib); Immunomodulatory drugs such 

as thalidomide, lenalidomide, and pomalidomide. 158 

 

1.4.11 Proteasome Inhibitor (PI)  
 

Proteasome inhibitors are the class of drug that inhibits the activity of the enzyme complexes 

called proteasomes, thereby preventing ubiquitin-proteasome pathway-mediated degradation of 

the protein.159,160  The proteasomal system, present in both normal and cancer cells, is a 

proteolytic pathway for intracellular protein degradation to control cellular protein 

turnover.161,162 It plays a pivotal role in maintaining cellular homeostasis by breaking down 

damaged and unwanted proteins as well as undamaged proteins marked with a poly-ubiquitin 

chain to small peptides, which is critical for proper cellular functioning.161,162 Aberrant 

proteasome-dependent proteolysis of essential pro-apoptotic and cell-cycle regulatory proteins 

such as p53, p21, and p27, as well as activation of the oncogenic signaling pathway nuclear 

factor kappa-B (NF-κB) by proteasome-mediated degradation of its inhibitor IκB, has been 

observed in many cancers.161,162 Proteasome inhibitor induces unfolded protein response (UPR) 

by blocking the degradation of the misfolded proteins and activating the ER stress.159,160  

Prolonged ER stress leads to programmed cell death by activating PERK/eIF2α/CHOP signaling, 

IRE1α signaling, and caspase pathway.159 

 

1.4.11.1 FDA-Approved Proteasome Inhibitor (PI) for RRMM management 
 

Bortezomib: Bortezomib/ Velcade is a first-in-class proteasome inhibitor.  It is a dipeptide 

boronic acid derivative approved initially for the treatment of multiple myeloma. It has been 

approved by the FDA for the treatment of R/R MCL based on the data obtained from results of 

the landmark PINNACLE trial where single agent Bortezomib treatment provided an extended 

period of durable and complete drug response as measured by a median duration of response 

(DOR), Median time to progression (TTP) and Median time to next therapy (TTNT) which were 

9.2 months, 12.4 months, 14.3 months respectively in responding patients. It was also associated 

with remarkable survival in patients with relapsed or refractory MCL as measured by overall 

survival (OS), which was 35.4 months.163 
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Mechanism of Action of Bortezomib 
 

Bortezomib specifically inhibits the ATP-independent chymotryptic activity of the 26S 

proteasome through reversible binding to the β5-subunit (PSMB5) of the 20S multi-catalytic 

protease core.159 Bortezomib has thus been shown to interfere with tumor metastasis and 

angiogenesis by accelerating unfolded protein response (UPR) - ubiquitin-dependent proteolysis 

of critical regulatory proteins involved in key physiological and pathophysiological cellular 

processes in cancer cells.161 That leads to the disruption of cellular homeostasis, which ultimately 

activates the apoptosis pathway.161 Bortezomib also inhibits proteasome-mediated degradation 

of key pro-apoptotic proteins, which eventually leads to the cell cycle arrest during the G2-M 

phase and interferes with the NF-κB-enabled regulation of cell adhesion-mediated drug 

resistance by preventing uncontrolled degradation of IκB- an inhibitor of NF-κB.159,160 

 

Molecular mechanism of resistance towards Proteasome Inhibitor (PI) 
 

a.PSMB5 point mutation: Amino acid substitution in the S1 binding pocket that recognizes the 

peptide bond of the substrate in the β5-subunit encoding gene PSMB5 has been frequently 

observed in the Bortezomib-resistant cell lines.  Substitution of Ala49 with Thr or Val, A50V, 

C52F, M45V, M45I, C63F, and T21A that are in or near the S1 binding pocket affect 

Bortezomib binding by constricting the S1 pocket or reducing favorable hydrophobic 

interactions.164 

 

b. Over-expression of PSMB5: PSMB5 expression level found to be upregulated in many 

Bortezomib-resistant cancer cell lines, which is an adaptive compensatory mechanism to retain 

sufficient chymotrypsin-like proteasomal activity in PSMB5 mutant cells to maintain cellular 

homeostasis and it’s down-regulation restores the Bortezomib sensitivity.165 

 

1.4.12 Immunomodulatory Drugs (IMiD) 
 

Immunomodulators are the class of drugs that modify the activity of the immune system in a 

favorable manner (by increasing immune stimulators such as lymphocytes, macrophages, 

neutrophils, natural killer/ NK cells, and cytotoxic T lymphocytes/ CTL. and decreasing immune 

suppressors) to intensify the immune response to threats such as malignant cells and 

infections.166 

 

 



45 | P a g e  

 

1.4.12.1 FDA-Approved Immunomodulatory Drugs (IMiD) for RRMM management 
 

Lenalidomide: Lenalidomide/ Revlimid is an orally bioavailable immunomodulatory drug 

which has been approved by the FDA in 2006 for the treatment of multiple myeloma-based 

clinical trials where it showed significant clinical benefits in terms of prolonging median time to 

progression. It is a thalidomide derivative with a potent immunomodulatory effect.167 

  

Mechanism of Action of Lenalidomide 
 

Lenalidomide primarily acts by modulating the substrate specificity of CRL4CRBN E3 ubiquitin 

ligase, composed of damaged DNA-binding protein 1 (DDB1), cullin 4a (CUL4A), and regulator 

of cullins 1 (ROC1).168 Lenalidomide binds to CRBN, the substrate adaptor of this cullin-ring 

ligase complex, and induces the recruitment of the substrates, followed by subsequent 

ubiquitination-mediated degradation.168,169 In multiple myeloma (MM), CRBN induces the 

proteasomal degradation of two essential transcription factors for B-cell differentiation, 

IKAROS Family Zinc Finger 1 & 3 (IKZF1 & IKZF3).169 In MM cells, IKZF1 transcriptionally 

regulates interferon regulatory factor 4 (IRF4), which plays an important role in MYC-mediated 

oncogenic programs. A proteomic study showed degradation of IKZF1 leads to the down-

regulation of IRF-4.169 On the other hand, IKZF3 transcriptionally represses the expression of 

proinflammatory cytokine Interleukin-2  (IL-2).168,170 Degradation of IKZF3 transcriptionally 

up-regulates the expression of IL-2 as well as IFN-γ that in turn, stimulate the proliferation of 

natural killer (NK) cells and CD3 T cell-mediated activation of CD4+ T cells (Th1 subset).169 All 

these events lead to enhanced NK-cell mediated cellular cytotoxicity and antibody-dependent 

cellular cytotoxicity (ADCC), which kill the MM cells.168,169 

 

Molecular mechanism of resistance towards Immunomodulatory Drugs 
 

a.Down-regulation of target protein Cereblon (CRBN): CRBN is the direct target of the IMiD 

drugs. CRBN serves as the substrate adapter for the CRL4CRBN E3 ubiquitin ligase complex 

that consists of damaged DNA-binding protein 1 (DDB1), cullin 4a (CUL4A), and regulator 

of cullins 1 (ROC1); IMiD drug interacts with the CRBN and induces the proteasomal 

degradation of 2 zinc finger transcription factors Ikaros (IKZF1) and Aiolos (IKZF3). Studies 

have shown significant down-regulation in the expression of CRBN both at the mRNA and 

protein level transcriptional, post-transcriptional factors such miRNA, post-translational 

modifications such as proteasomal degradation by SCFFbxo7 ubiquitin ligase due to down-
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regulation of CSN9 signalosome complex, can be observed in acquired IMiD resistant MM 

cells and patients’ population. Patients with low CRBN expression levels show poor responses 

to IMiD therapy with poor survival benefits.171,172 

 

b. Mutation in the genes involved in CRBN–IKZF1–IRF4 axis: Mutation-mediated alteration 

in the activities or the functional inactivation of the member of the CRBN–IKZF1–IRF4 axis 

genes such as IKZF1, IRF4, are observed in both innate and acquired IMiD-resistant MM 

patients. A152T mutation in IKZF1 alters the Lenalidomide sensitivity. In contrast, the 

treatment-induced mutation in CRBN (truncating mutation such as pIle393Metfs*10, p. 

Pro241Argfs*10, p. Gln327* [#12], and splicing acceptor c.551-2T>C; a mutation that alters 

the IMiD binding domain such as F381C, P411H), the mutation in CUL4B, are observed in 

acquired IMiD resistant MM patients.  IRF4 harbors a truncating mutation that renders it 

resistant towards Lenalidomide-mediated downregulation.171–173 

 

c. Mutation in other important genes: Targeted sequencing on the IMiD refractory MM 

patients revealed activating mutations in the genes involved in RAS oncogenic pathways such 

as KRAS, NRAS, and BRAF. Deletion mutation (del17P) in the TP53 gene and RASA2 and 

PTPN11 genes are also observed. Mutations in the latter two genes activate the MAPK 

pathway that induces IMiD resistance.173,174 

 

d. Increase in cell adhesion: Lenalidomide induces the activation of Wnt/β-catenin signaling, 

which promotes the nuclear translocation of β-catenin that causes transcriptional up-regulation 

of its target gene, CD44. CD44 enhances the interaction between MM cells and the stromal 

cells that confers cell-adhesion-mediated resistance.175 

e. Up-regulation of IL-6/ STAT3 pathway: Transcriptome study of the Lenalidomide resistant 

MM cells showed up-regulation of IL-6 and STAT3 expression as compared to Lenalidomide 

sensitive MM cells. Lenalidomide-induced enhanced autocrine signal from IL-6 leads to the 

constitutive expression of the STAT3 gene, which initiates a cascade of oncogenic events such 

as dysregulation of IKZF1/ IKZF3, IRF4, which inhibits their IMiD mediated down-

regulation; up-regulation of MYC, activation of MAPK and PI3K pathway.171  
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1.5 Mantle Cell Lymphoma 
 

1.5.1 What is Mantle Cell Lymphoma? 
 

Mantle cell lymphoma is typically an aggressive, rare form of B-cell non-Hodgkin lymphoma 

(NHL) that arises due to the malignant transformation of a B lymphocyte in the outer edge of a 

lymph node follicle (the mantle zone).176 

 

Mantle cell lymphoma (MCL) accounts for ≈ 7% of all non-Hodgkin lymphomas (NHL).177 

 

Age is a risk factor for Mantle Cell Lymphoma as it is more frequent in older people, with the 

median age at diagnosis being>60. 

 

1.5.2 Signs & Symptoms176 
 

i.Loss of appetite and weight 

ii.Fever 

iii.Night sweats and unexplained itching 

iv.Nausea and/or vomiting 

v.Swollen lymph nodes in the neck, armpits, or groin 

vi.Heartburn, abdominal pain/ abdominal swelling (distension), or bloating 

vii.A sense of fullness or discomfort from enlarged tonsils, liver (hepatomegaly), or spleen 

(splenomegaly) 

viii.Pressure or pain in the lower back, often going down one or both legs 

ix.Fatigue related to anemia (low red blood cell count that leads to low Oxygen transport) 

x.Malignant lymphocytes crowd out the bone marrow, leading to a) Anemia or abnormally low 

levels of the oxygen-transporting red blood cells that leads to fatigue, b) Thrombocytopenia or 

low count of platelets that plays an essential role in blood clotting (coagulation) and c) 

Neutropenia or low neutrophil count – a type of white blood cell helps the body to fight 

infection. 

 

1.5.3 Cellular Origin of Mantle Cell Lymphoma 
 

Lymph nodes, a part of the lymphatic system, are small, bean-shaped structures and a critical 

component of the adaptive immune system. Lymph nodes are the secondary lymphoid organ of 

the human body located in the neck, armpit, chest, abdomen (belly), and groin.178,179 They serve 
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as the primary reservoir for the B & T lymphocytes, which exposes them to the antigens filtered 

from the interstitial fluid.  The lymph node consists of three cellular compartments: the cortex, 

where mostly B cells reside; the paracortex, which mainly contains T cells; Medulla, which 

houses plasma cells. Dendritic cells and macrophages predominantly.178–180 In the cortex of 

unstimulated lymph node, naïve B-cells and the loose meshwork of dendritic cells form primary 

follicles. Antigen exposure makes B-cells activated, which leads to their rapid proliferation and 

forms a germinal center along with the tightly packed network of dendritic cells and 

macrophages. There is another outside layer or ring of resting B-cells with dendritic cells 

forming the mantle zone around the germinal center. The germinal center, together with the 

mantle zone, forms the secondary follicle, which serves as the site for antigen-dependent B-cell 

maturation and moves to the medulla to proliferate as antibody-secreting plasma cells.178,179 

 

Mantle cell lymphoma (MCL) arises from the malignant transformation of a subset of naive pre-

germinal center B cells localized in the mantle zone of the lymph node follicle.178,179 

 

1.5.4 Diagnosis176,181,182 
 

i.Bone marrow and lymph node biopsy: Sample tissues are collected from lymph node(s) and/ 

or bone marrow to check the reason behind the swollenness and to check the possible spread or 

metastasis of the lymphoma cells to the bone marrow, respectively. The samples are observed 

under a microscope to detect the presence of abnormal or cancerous cells and to detect specific 

types/ subtypes of NHL. 

 

ii.Cytogenetic analysis: Cytogenetic analysis by Fluorescence in situ hybridization (FISH) is an 

indispensable tool in the diagnosis and risk stratification of MCL. This method helps to detect 

the gene fusions involving the IGH gene at 14q32 and CCND1 at 11q13 with the help of a 

fluorescently labeled probe that finds and then binds to its matching sequence within the set of 

chromosomes. 

 

iii.Immunophenotyping: Flow cytometric analysis is another important tool for precise disease 

diagnosis, classification & staging, risk stratification, and oncogenic progression. These 

phenotypic markers distinguish the cell lineages and the differentiation steps, which are crucial 

for the identification of separate disease entities. For e.g., MCL has a characteristic expression 

of CD5 but lacks CD23 expression, which contrasts with B-CLL.181,182 
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Table 3. List of immunophenotypic markers used to identify and classify MCL182,183 

 
Marker Expression Pattern 

CD19 + 

CD20 + 

CD22 + 

CD23 - 

CD25 - 

FMC7 + (-) 

CD79b + 

CD5 + 

slg + 

CD10 - 

CD11C - 

CD103 _ 

CD43 + 

CD30 _ 

CD45 + 

CD138 - 

Bcl-1 + 

Bcl-2 + 

Bcl-6 - 

Heavy chain (IgG, IgA, IgM) + 

Light chain Ig (kappa or lambda) + (moderate expression) 

 

iv.Blood Test: 
 

a. Comprehensive blood count (CBC) 

b. Differential blood count  

c. Lactate Dehydrogenase (LDH) Test: High LDH activity indicates upregulated 

glycolytic stress due to hypoxia, higher tumorigenic activity, and correlated with poor 

prognosis and unfavorable outcome. 

d. Uric acid level test 

e. Comprehensive metabolic panel (CMP) 

f. β2 Microglobulin: This is secreted by B-cells in the blood, and its high level indicates 

oncogenesis. 

 

v.Positron emission tomography (PET) scan: This is an imaging test where a special dye 

containing radioactive tracer is administered through vein/ oral ingestion, which creates the 

image of the tissue/ organ of interest. This helps the physicians to check for the disease. 

 

https://my.clevelandclinic.org/health/diagnostics/22058-comprehensive-metabolic-panel-cmp
https://my.clevelandclinic.org/health/diagnostics/10123-pet-scan
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vi.Computed tomography (CT) scan: This is another imaging-based test where a series of X-rays 

is taken, and then computer technology processes them to build the 3D images of the soft tissues 

and bones. 
 

 

vii.Colonoscopy 

 

1.5.5 Molecular pathways involved in the pathogenesis of MCL 

 

a.Mutation: Reciprocal chromosomal translocation–t (11;14) (q13; q32) is the most observed 

genetic event in the pathogenesis of MCL, as it is found in ~90% of all cases. This is the 

primary/ initial oncogenic process that happens in the bone marrow in an early B cell at the 

pre-B stage of differentiation during the V(D)J recombination process by the recombination 

activating gene (RAG) enzymes. It is considered to be the hallmark of MCL pathogenesis 

which involves the juxtaposition of the proto-oncogene Cyclin D1 (CCND1) locus to the 

immunoglobulin heavy chain (IGH) regulatory locus. This genetic lesion causes constitutive 

expression of Cyclin D1, which is not observed in normal B lymphocytes. Cyclin D1 is a 

positive regulator of the cell cycle and belongs to a family of proteins that play a pivotal role 

in regulating cell cycle progression and cell proliferation. Its over-expression causes malignant 

transformation of the naive pre-germinal center B-lymphocytes by dysregulating the cell cycle 

at the G1/S phase through binding and activating the G1 Cyclin-dependent kinases, CDK4 & 

CDK6. Cyclin D1, upon translocation to the nucleus, forms a holoenzyme complex with 

CDK4/6 and activates the E2F transcription factor by releasing it through the phosphorylation-

mediated inactivation of the Retinoblastoma (Rb) protein. Overexpression of Cyclin D1 also 

leads to the ubiquitination-mediated degradation of the p27 by ubiquitin ligase F-box protein 

Skp2 and promotes Cyclin E/CDK2 mediated entry to the S-phase of the cell cycle.179,184,185 

 

In some cases (4-10% of all MCL cases), genetic changes other than t (11;14) are responsible 

for the over-expression of Cyclin D1 that includes secondary chromosomal rearrangements at 

the 3′ untranslated regions (3′UTR) region of the Cyclin D1a isoform of the Cyclin D1 

transcripts.  Cyclin D1 has five exons and gives rise to two different isoforms, Cyclin D1a and 

Cyclin D1b, by alternative splicing. Genomic deletions at the 3’ of the gene or point mutations 

at the 3’ UTR of the Cyclin D1a transcript led to the expression of truncated Cyclin D1 

transcripts. These shorter transcripts lack the full-length functional 3’ UTR and are devoid of 

the mRNA destabilizing AU-rich elements, which extend its half-life, unlike the full-length 

https://my.clevelandclinic.org/health/diagnostics/4808-ct-computed-tomography-scan
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Cyclin D1a that has full-length 3’ UTR. It also lacks the binding sites for the translation 

inhibitory microRNAs like miR15/16. Together, these additional genetic events result in higher 

and prolonged Cyclin D1 protein expression that increases its tumorigenic potential, which 

resulted in poor survival outcomes for the patients.184,185 

 

Whole genome profiling of the MCL samples also showed amplification of the translocated 

(11;14) allele might also contribute to the over-expression of Cyclin D1.184 

 

b. Cyclin D1– MCL: Some rare sub-set of MCL patients (<5% of all MCL cases) do not exhibit 

the over-expression of Cyclin D1 or the t (11;14) translocation, although they have a similar 

phenotype, gene expression profile, secondary genetic events, and clinical outcome. FISH and 

NGS analysis of this Cyclin D1– MCL show over-expression of Cyclin D2 & Cyclin D3 driven 

by the chromosomal rearrangements – t (2;12) (p12; p13) translocation that causes fusion 

between κ light Ig chain gene locus and the Cyclin D2/D3 gene loci.184,186,187 

 

c. Deletions of INK4A/ARF (CDKN2A) Locus and TP53 mutation: Another common genetic 

alteration observed in ~20% of MCL cases is the homozygous deletion of the CDKN2A locus 

(9p21) that encodes two tumor suppressor gene p16INK4A and p14ARF. These tumor suppressor 

genes act as negative regulators of the cell cycle and inhibit the uncontrolled proliferation of 

the cells; its deletion leads to poor treatment outcomes and shorter overall survival in the 

patients. p16INK4A inhibits the cell cycle stimulatory effect of both CDK4/6, which otherwise 

form a complex with the member of the Cyclin family of proteins (Cyclin D1/D2/D3) to 

inactivate Retinoblastoma (Rb) protein by phosphorylation to release E2F, a transcriptional 

activator and promote G1 to S phase cell cycle progression. p14ARF is an E3 ubiquitin ligase 

that stabilizes p53- one of the most important tumor suppressors that inhibits tumor formation 

and promotes apoptosis by preventing its MDM2-mediated degradation. p14ARF does so by 

interacting with the C-terminal domain of the proto-oncogene MDM2 through its N-terminal 

domain, which in turn promotes the degradation of Mdm2.186,187 

 

    In some cases, it has been reported that despite having the wild type of CDKN2A, the 

amplification and the over-expression of BMI 1 by amplification at 10p11.23, a polycomb 

transcriptional repressor inhibits its normal function. Other secondary genetic events such as 

RB1 deletion and amplification of the CDK4 also lead to cell cycle dysregulation and 

contribute to the oncogenic progression.186,187 
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d. SOX11 expression: Sex-determining region Y-box 11/ SOX11, a neuronal transcription 

factor, has been reported to be over-expressed in the conventional MCL (cMCL) due to 

hypomethylation of the distant enhancer region of SOX11 leads to the alteration of the 3 -

dimensional chromatin configuration that brings it near the promoter region of the gene. It is 

an important prognostic factor in MCL pathogenesis as SOX11 expression is absent in Normal 

B lymphocytes throughout its different differentiation phases, and the non-nodal MCL 

(nnMCL), as well as other lymphoid neoplasms, lack the SOX11 expression. Studies suggested 

that SOX11 blocks terminal B-cell differentiation locks it in a more primitive form and 

promotes MCL tumor growth and aggressiveness by directly regulating the expression level of 

its target gene PAX5- a critical transcriptional factor that determines and regulates the B-cell 

development by activating the specific sets of genes responsible for B-cell lineage identity and 

inhibits the genes that drive the plasma cell differentiation. Moreover, SOX11 also blocks the 

entry of MCL cells to the germinal center by inhibiting the expression of its other target, BCL-

6, and promotes angiogenesis through Platelet-derived Growth Factor A (PDGFA). It is also 

reported that SOX11 modulates the tumor microenvironment and promotes cell migration and 

adhesion to confer stromal cell-mediated drug resistance in MCL cells by up-regulating the 

expression of C-X-C chemokine receptor type 4 (CXCR-4) and C-X-C chemokine receptor 

type 12 (CXCR-12) which in turn induces the FAK (Focal Adhesion Kinase) expression. 188,189 

 

e. DNA damage response pathway alterations: The deletion of the 11q22-23 region in the 

chromosome is one of the most frequent genetic alterations observed on MCL. Ataxia-

telangiectasia mutated (ATM) gene, located in this locus, encodes a serine/threonine kinase 

which is a member of the Phosphoinositide 3-kinase family of proteins and plays a pivotal role 

in the activation of p53 in response to the DNA damage, e.g., DNA Double Stranded Break 

(DSB). Naïve B cells in the mantle zone of the lymphoid follicle express ATM, but the 

immature B-cells in the bone marrow and the follicular germinal center cells lack ATM 

expression as physiological DSB occurs in the pre-B cell stage for the initial Immunoglobulin 

gene rearrangements (VDJ recombination) or during the VH somatic hypermutations (SHM) 

and immunoglobulin class switching that occurs in antigen-activated follicular germinal center 

B cells that contributes to the generation high-affinity antibody maturation. ATM cytogenetic 

alterations, including truncating or missense mutation accompanied by the loss of the other 
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allele, are observed in almost 40-75% of all MCL cases and mainly affect the PI3K domain or 

lead to the formation of unstable truncated ATM protein. Inactive ATM in the Naïve B cells 

of the mantle zone facilitates the onset of genomic instability and promotes oncogenesis. ATM 

inactivation is believed to be an early event in the pathogenic progression of MCL, which 

allows the accumulation of chromosomal aberrations due to compromised DNA damage 

response pathways. Serine/ Threonine Kinases Checkpoint Kinase 1 (CHEK 1) and 

Checkpoint Kinase 2 (CHEK 2) are the two downstream targets that act as an S-phase 

checkpoint to arrest cell cycle by integrating DNA damage response signal from ATM & ATR. 

Germline mutation of CHEK 2 and down-regulation of CHEK 1 have been reported in some 

MCL cases with high chromosomal imbalance. Overall, the mutations in the DNA damage 

response pathway and mitotic checkpoints don’t have a significant impact on the pathogenesis 

of MCL, but they serve as the driving factor to give rise to the complex tetraploid karyotype 

with a high genomic imbalance that promotes MCL lymphomagenesis.179,184–187 

 
 

Point mutation and 17p13 deletion-mediated p53 inactivation are also observed in ~30% of 

MCL. These chromosomal aberrations in p53 deregulate CDK inhibitor p21, inhibit p53-

mediate cell cycle arrest, DNA damage response induced apoptosis, senescence in both cMCL 

and nnMCL and are reported to be associated with aggressive disease state and poor overall 

survival.186 

 

1.5.6 Current Treatment Strategies176,190 
 

a.Chemotherapy and immunotherapy: Rituximab-based combination treatment regimen is the 

first line of the treatment strategy. Rituximab is the monoclonal antibody that recognizes and 

targets CD20, which is a pre-B and mature B-lymphocytes specific marker including malignant 

B-cell in MCL and induces apoptosis by blocking the signaling pathways p38 mitogen-

activated protein kinase (MAPK), Nuclear factor kappa B (NF-κB), extracellular signal-

regulated kinase 1/2 (ERK 1/2), AKT antiapoptotic survival pathways, Complement dependent 

cellular cytotoxicity (CDC) and Antibody-dependent cellular cytotoxicity (ADCC).191 The 

following combination treatment regimens are commonly used: R-CHOP (rituximab plus 

cyclophosphamide, doxorubicin, vincristine, and prednisone), BR (bendamustine and 

rituximab), (R-BAC) rituximab, bendamustine and cytarabine, R-DHAP (Rituximab 

(Rituxan®), Dexamethasone (Decadron®), High-dose Ara-C (Cytarabine), CisPlatin), 
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Hyper-CVAD (cyclophosphamide, vincristine sulfate, doxorubicin (Adriamycin), 

dexamethasone), VcR-CAP (bortezomib (Velcade), rituximab (Rituxan), cyclophosphamide, 

doxorubicin (Adriamycin), prednisone), R-FCM ([Rituxan, fludarabine (Fludara®), 

cyclophosphamide and mitoxantrone], R-CVP (Rituxan, cyclophosphamide, vincristine,  and 

prednisone), R-CBP [Rituxan, cyclophosphamide, bortezomib (Velcade®) and prednisone]. 
 

b. Steroids: Prednisolone, Dexamethasone, and Methylprednisolone are the most common 

steroids that boost the efficiency of chemotherapy and help in reducing the side effects. 

 

c. Radiotherapy: Radiotherapy is the treatment option for the 1st and 2nd stage Mantle Cell 

Lymphoma patients. 

 

d. Stem cell transplant: Allogenic stem cell transplantation is where patients receive healthy 

blood-forming stem cells from a donor to replace their own bone marrow, either crowded with 

malignant cells or has been destroyed by chemotherapy in order to suppress the disease or 

restore the immune system. This is the treatment option for the relapsed disease state to restore 

the drug sensitivity or prolong the drug response and is also beneficial for some high-risk fit- 

chemo-sensitive patients who are able to undergo intensive chemo-therapy treatment regimen 

for e.g., BEAM (carmustine, etoposide, cytarabine, and melphalan) & LEAM (lomustine, 

etoposide, cytarabine, and melphalan). For older patients, allogenic transplantation is coupled 

with reduced-intensity chemotherapy. This may help in sustained remission. Another treatment 

option is autologous stem cell transplantation, where patients’ own stem cells are infused to 

attack the cancer cells to achieve enhanced response to induction therapy and prolong 

remission. 

 

1.5.7 Mantle Cell Lymphoma (R/R MCL) 
 

However, despite these recent advancements in the treatment landscape, MCL remains incurable 

with limited therapeutic options owing to drug resistance, extensive inter-individual variation in 

drug response, and toxicity profile that limits their efficacy in clinical settings with progression-

free survival (PFS) of ~1-2 years and median overall survival (OS) of < 3 years. Patients who 

show a high response rate to the initial treatment eventually become refractory or unresponsive 

to the standard of care treatment. Relapsed Mantle Cell Lymphoma is the disease state where 

it responded initially to the treatment but returned after a brief period of remission.  Refractory 
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Mantle Cell Lymphoma is the disease state when it does not respond to the initial treatment or 

responds only for a short period of time, and the cancer cells continue to grow.192,193 

 

Currently available chemotherapeutic treatment options for R/R MCL include the three Bruton’s 

Tyrosine Kinase Inhibitors (BTKi): Ibrutinib, Acalabrutinib, Zanubrutinib; Proteasome 

Inhibitors: Bortezomib; Immunomodulatory drug: Lenalidomide.192,194 

 

Despite the recent advances in the treatment landscape, R/R MCL remains incurable with a high 

recurrence rate and poor long-term prognosis. It has limited therapeutic options owing to drug 

resistance, extensive inter-individual variation in response, and toxicity profile that limits 

efficacy in clinical settings with median progression-free survival (PFS) of <15 months and 

Overall Survival (OS) of 1-2 years.192,195 

 

The available therapies for the R/R MCL (e.g., Bruton Tyrosine Kinase inhibitor Ibrutinib) are 

not curative and confer modest progression-free survival (PFS) of 13–14.6 months as compared 

to 4-9 months in non-BTKi treated patients.  Despite the impressive initial clinical advantage, 

Ibrutinib treatment is not durable, and eventually, most of the patients show signs of clinical 

progression within 18-24 months with poor prognosis and shorter periods of remission. Once 

patients develop resistance, the median overall survival is only 6-10 months. Only one-third of 

patients respond to their next line of treatment; those who do respond experience only brief 

remissions and have poor outcomes, irrespective of stem cell transplantation.179,185,192,195 

 

1.5.8 Bruton’s Tyrosine Kinase Inhibitors (BTKi) 
 

1.5.8.1 Bruton’s Tyrosine Kinase: Bruton tyrosine kinase (BTK) gene encodes for a 

cytoplasmic non-receptor tyrosine kinase, a member of Tec (Tyrosine kinase expressed in 

hepatocellular carcinoma) family of non-receptor tyrosine kinases. BTK is an enzyme containing 

659 amino acid residues, primarily expressed in both normal and malignant B-lymphocytes, 

myeloid cells, and platelets, and has five structural domains: i) N-terminal pleckstrin homology 

domain (PH) that binds to the protein and recruit to the cell membrane; ii) proline-rich TEC 

homology domain (TH) containing zinc finger motifs regulating its activity and stability, iii) & 

iv) Src homology domains 2 (SH2) and 3 (SH3) that modulate the protein-protein interaction, v) 

the catalytic kinase C-terminal domain. It plays a central role in the B-cell receptor (BCR) 

mediated cell signaling by catalyzing the incorporation of a phosphate group (phosphorylation) 
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from ATP to the tyrosine residues of other proteins, activating an array of signaling cascade 

including phosphoinositide 3-kinase (PI3K)-AKT pathway, PLC, PKC, and nuclear factor-κB 

(NF-κB). These BCR signaling-mediated downstream signaling cascades that get triggered by 

the antigen engagement to BCR, followed by its subsequent activation, play a pivotal role in the 

maintenance and normal functioning of B-cells. Aberrance in this signaling pathway, especially 

in secondary lymphatic organs, is reportedly responsible for the development and progression of 

B-cell malignancies. 194,196 

 

1.5.8.2 Bruton’s Tyrosine Kinase in B-cell receptor signaling: BCR is a multimeric protein 

structure consisting of surface transmembrane immunoglobulin (IgM) with a very short 

cytoplasmic domain and coupled with the disulfide-linked transmembrane signal transduction 

unit: Igα (CD79A) and Igβ (CD79B) heterodimer (Ig-α/Ig-β(CD79a/CD79b) that have 

immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic tails.196,197 

 

BCR signaling is an antigen-dependent signaling pathway where antigen engagement of BCR 

induces receptor aggregation followed by ITAM phosphorylation by Src-family protein tyrosine 

kinases LYN, FYN, BLK, and LCK and creates docking sites for a spleen tyrosine kinase (SYK). 

SYK, upon binding with ITAM, gets activated, which in turn activates the B cell linker scaffold 

protein (BLNK). LYN and SYK also phosphorylate tyrosine residues in the cytoplasmic tail of 

B-cell co-receptor CD19 and/or the adaptor protein B-cell PI3K adaptor (BCAP), which promote 

the recruitment and activation of PI3K and guanine nucleotide exchange factor VAV. VAV, 

through activation of Rac1- a member of the Rho family of GTPases promotes the enzymatic 

activity of PI3K (PI3Kδ), which in turn phosphorylates PIP2 to PIP3- a critical intracellular 

second messenger which activates the subsequent downstream signaling cascade. PIP3, by 

interacting transiently with the PH-domain of BTK, recruits it to the plasma membrane, which 

is otherwise essentially present in the cytosol in the unphosphorylated and catalytically inactive 

state. SYK or SRC family kinases phosphorylate BTK at Y551 upon its recruitment to the plasma 

membrane, which promotes its catalytic activity and subsequent phosphorylation at Y223 of the 

SH3 domain to become physiologically active and stable. Activated BTK can interact with 

adapter protein BLNK/SLP65 through its SH2 domain, and the complex binds to the downstream 

target phospholipase C γ2 (PLCγ2) followed by its activation by phosphorylation at Y753 & 

Y759, producing intracellular second messenger Inositol triphosphate (IP3) and DAG 
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(Diacylglycerol) through hydrolysis. IP3 binds to its receptor in the endoplasmic reticulum (ER), 

which causes the release of Ca2+ from ER store and this sustained influx of Ca2+ activates the 

nuclear factor of activated T-cells (NFAT) by Calmodulin and Calcineurin through its 

dephosphorylation mediated translocation to the nucleus. DAG, on the other hand, activates 

AKT/ PKCβ that in turn activates down-stream transcriptional activation and pro-survival 

signaling pathway such as nuclear factor κB (NF-κB) signaling pathway, mitogen-activated 

protein kinase pathways [ERK 1/ ERK 2, p38MAPK, JNK/SAPK pathway. Other important 

downstream targets of BTK include transcription factors such as STAT3, forkhead transcription 

factors (FOXOs), BAP-135/TFII-I, and ARID3A. Thus, BTK plays an essential role in B-cell 

development, differentiation, and proliferation through regulation and coordination among cell 

cycle regulators and pro- and apoptotic proteins.196–199 

 

1.5.8.3 FDA Approved BTKi for R/R MCL management 
 

i. Ibrutinib: Ibrutinib/ Imbruvica (previously PCI-32765) is a potent, irreversible, covalent oral 

inhibitor of BTK that binds to Cys-481 near the ATP-binding domain of the BTK molecule/ 

allosteric inhibitory segment of BTK (TK/SH1 domain) leading to irreversible inhibition of 

enzymatic activity and BCR-mediated survival signals in human B cells. It inhibits BTK’s full 

activation by inhibiting its autophosphorylation at Tyr-223.199 

 

US Food and Drug Administration (FDA) approved Ibrutinib in November 2013 for the 

treatment of adult patients with Mantle cell lymphoma who have received at least one prior 

therapy based on Phase II PCYC-1104 single-arm clinical trial in 111 previously treated 

patients with relapsed or refractory MCL that showed improved overall response rate (ORR) 

and duration of response (DOR). The median age of the patients was 68 years, and 86% of 

them had an intermediate or high risk of MCL.  Ibrutinib was able to achieve an ORR of 69% 

(complete response rate = 21%; partial response rate = 48%) and a median duration response 

of 17.5 months with a median progression-free survival (PFS) of 13.9 months.199,200 
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Mechanism of Action of Ibrutinib: 
 

Ibrutinib exhibits its cytotoxic effect by disrupting key B-cell processes 
 

a.Inhibits proliferation and survival: BTK signaling plays a pivotal role in MCL cell survival 

and proliferation. Studies have shown BTK inhibition by Ibrutinib induces dose and time-

dependent cytotoxicity in MCL and CLL cell lines in vitro. Ibrutinib inhibits the expression of 

the Bcl-2 family of proteins such as Bcl-2, Bcl-xL, and Mcl-1 and induces the activation of the 

caspase-3-dependent apoptotic pathway.201,202 

 

b. Inhibits cellular adhesion and modulates chemotaxis and trafficking: Interaction between 

malignant B cells and the tumor microenvironment plays a major role in the pathogenesis and 

the disease progression in MCL. Interplays among cytokines, chemokines, and the adhesion 

molecules drive the B-cell migration and homing to the tissue microenvironment, where they 

adhere to the stromal cells. This interaction provides adhesion-mediated drug resistance and 

confers survival benefits to the malignant B-cells. Ibrutinib abrogates these growth and 

survival advantages inhibiting chemokine receptors such as CXCL12, and CXCL13 as well 

as disrupting BCR signaling; integrin-mediated (VLA-4 on B cells to VCAM-1 on stromal 

cells) homing and adhesion to the tissue microenvironment (lymph node and bone-

marrow).199,202 

 
 

ii. Acalabrutinib: Acalabrutinib/ CALQUENCE is the second-generation orally bioavailable 

small molecule BTK inhibitor which was approved in 2017 by the FDA for the treatment of 

patients with relapsed/refractory (R/R) MCL based on the ACE-LY-004 trial where single-

agent Acalabrutinib treatment showed a high rate of durable responses and a favorable safety 

profile.203–205 

 

Mechanism of action of Acalabrutinib: Both Acalabrutinib and its active metabolite, ACP-

5862, bind covalently with the Cys481 residue in the BTK active site with higher specificity 

than Ibrutinib, which inhibits its enzymatic activity and subsequent downstream signaling 

proteins such as BCR activation markers CD86 and CD69.203–205 

 

iii. Zanubrutinib: Zanubrutinib/ BRUKINSA is another second-generation, orally bioavailable 

small molecule BTK inhibitor that got FDA approval for treating R/R MCL in 2019 based on 
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its efficacy in the BGB-3111-206 clinical trial. Its mechanism of action is similar to 

Acalabrutinib.206 

 

1.5.8.4 Molecular mechanism of resistance towards BTK inhibitors 
 

a. Innate resistance (Refractory disease state) 
 

i. Activation of PI3K-AKT pathway: Constitutive activation of the PI3K/AKT pathway and 

overexpression of the phosphorylated Akt (pS473) are observed in the primary resistance 

against BTKi in MCL cells. Activated Akt phosphorylates tumor suppressor FOXO3a, which 

leads to its cytoplasmic sequestration and subsequent degradation. As a result, FOXO3a-

mediated transcriptional activation of the pro-apoptotic genes PTEN and bim gets 

inhibited.207,208 

 

ii. Activation of alternative NF-kβ pathway: Ibrutinib-resistant MCL cells show activation of 

alternative NF-kβ pathway (MAP3K14-NFkB) as compared to the classical NF-kβ pathway 

(BCR-BTK- NF-kβ) that is observed in Ibrutinib sensitive cells. Mutations in the negative 

regulator of this pathway, such as loss of function mutation in tumor necrosis factor receptor-

associated factor 2 (TRAF2) and deletions in TRAF3, are observed in BTK-resistant patients. 

This causes stabilization of MAP3K14 that causes constitutive activation of alternative NF-

kβ pathway.207–210 

 

iii. Over-expression of Cyclin D1: Mutation in the CCND1 like E36K, Y44D, or C47S causes 

less protein degradation. This enhanced CCND1 protein level leads to cell cycle progression 

by promoting the degradation of Rb and causes Ibrutinib resistance.208 

 

b. Acquired resistance (Relapsed disease state) 

 

i. Mutation: Mutation in the BTK inhibitor interacting residue of BTK (C481S) reduces the 

binding affinity of BTKi for BTK and attenuates its covalent binding making the bond 

reversible. Thus, BTKi becomes less potent in inhibiting the mutant BTK and the 

phosphorylation-mediated activation of downstream PLCG2, AKT, and ERK signaling 

pathways, which results in diminished clinical activity. Other BTK mutations such as T474I, 

T474S, and T316A further abrogate the selectivity and binding affinity to BTKi and inhibits 

its interaction with other proteins that drive the resistance.207,211 
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Mutation in the PLCG2 gene, such as R665W, L845F, and S707Y, is another common 

phenomenon in the development of Ibrutinib resistance. These mutations lead to the 

independent activation of BCR signaling by LYN and SYK kinase bypassing the BTK, which 

causes enhanced Ca2+ influx that activates different oncogenic signaling pathways.208 

 

Deletion of the short arm of chromosome 8 (8p) leads to haploinsufficiency of TNF-related 

apoptosis-inducing ligand receptor (TRAIL-R), which causes downregulation of TRAIL-R1 

and TRAIL-R2 genes which inhibits their binding to TRAIL and TRAIL-induced apoptosis. 

This mutation, along with other driver mutations such as MLL2, SF3B1, RPS15, and EP300, 

play a pivotal role in conferring survival advantage in response to BTKi.208,210,211 

 

Another chromosomal aberration that plays an essential role in the development of acquired 

resistance e against Ibrutinib is the gain of the short arm of chromosome 2 (2p+) which results 

in overexpression of Exportin-1 (XPO1).  Exportin 1 exports several cell cycles regulatory 

proteins such as p53, FOXO, and retinoblastoma (pRb) from the nucleus to the cytoplasm, 

where they get degraded and thereby nullifying their tumor suppressor effects. 

 

Also, constitutive activation of BCR signaling due to the mutation in BCR signaling pathway 

molecules CARD11, CD79A/B, TNFAIP3, and MYD88 promotes Ibrutinib resistance.212 

ii. Aberrant signaling pathway: Interaction of mantle cell lymphoma cells with the tumor 

microenvironment activates the PI3K–Akt–mTOR pathway and Integrin β1 signaling that 

drives Ibrutinib resistance. Apart from that, overexpression of Bcl-2 has also been reported in 

Ibrutinib-resistant cells.207,211 
 

 

 
 

1.5.9 Cancer Stem cells (CSCs) and their role in drug resistance in MCL 
 

Cancer stem cells (CSCs) are the rare subpopulation of cancer cells present within tumors with 

self-renewal, differentiation capabilities, and tumorigenic potential. CSCs are believed to be the 

most crucial driving factor behind tumor initiation, disease progression, therapy resistance, and 

post-therapy relapse.  In MCL, these putative stem-like cells include side populations (SP), 

CD45+CD19- cells or MCL-initiating cells (MCL-ICs), and relatively quiescent-highly 

clonogenic aldehyde dehydrogenase positive / ALDH+ cells.213–215 
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Side populations (SP) are the distinct subset of cancer stem cells that has the intrinsic capacity 

of pumping out DNA-binding dye Hoechst 33342 due to their expression of adenosine 

triphosphate (ATP)-binding cassette (ABC) membrane transporter ABCG2, ABCB1, which are 

absent in the non-SP cells. These cells display higher self-renewal and proliferation capacity 

with reduced expression of differentiation markers and elevated tumorigenic potential as 

compared to the non-SP cells. 216 All these are the hallmarks of tumor-initiating cells that are 

responsible for drug resistance and relapse. It is believed that this SP population contains a minor 

subpopulation of cells that lacks CD19 expression, which is a 95 KD transmembrane 

glycoprotein belonging to the immunoglobulin (Ig) superfamily and a prototypic B cell surface 

marker. These CD45+CD19- MCL cells display very high tumorigenic activity and self-renewal 

capacity as compared to the CD45+CD19+ MCL cells. This relatively quiescent, highly 

heterogenous population sub-population of cells is referred to as Mantle-Cell Lymphoma 

Initiating cells (MCL-ICs) and has significantly increased aldehyde dehydrogenase (ALDH1 and 

ALDH2) enzymatic activity.213,214,216,217 MCL-ICs also exhibit elevated reactive oxygen species 

scavenging capacity through the higher expression of antioxidant enzymes like Metallothionein 

1B (MT1B) and Superoxide dismutase 2 (SOD2), which protects them from ROS-mediated 

apoptosis. They have higher expression of a marker of a chemo-resistance gene such as ATP 

transporters ABCC3, ABCC6, and cell surface adhesion receptor CD44.213,214 MCL-ICs are also 

characterized by the over-expression of the oncogenic signaling pathways genes such as Wnt-β 

catenin and enriched expression for stemness markers like Nanog, Oct4, KLF4.213–215,217–219 

 

Previous studies have shown that intra-tumoral heterogeneity due to the presence of treatment-

refractory subpopulations or cancer stem-like cells (CSCs) drives drug resistance and disease 

relapse in various cancers. 215 

 

Most importantly, no study so far has attempted to develop drugs explicitly targeting these sub-

clones. Standard of care drugs Ibrutinib is ineffective in targeting MCL-CSCs.208 
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1.6 Prostate Cancer 
 

1.6.1 What is Prostate Cancer? 
 

The prostate is a small walnut-shaped gland, found only in males, located below the bladder at 

the base of the penis, in front of the rectum, that produces the seminal fluid that helps in the 

nourishment and transportation of sperm. Uncontrolled proliferation of the prostate gland cells 

is termed Prostate cancer.220 

 

Figure 5: Anatomy of Prostate 

 

 

 

1.6.2 Statistics 
 

Prostate cancer is the 2nd most common cancer after skin cancer and the second leading cause of 

death after lung cancer in US men.221 

 

In the US, the estimated number of new cases of prostate cancer in 2022 is 268,490 (14% of all 

new cancer cases), and the estimated number of deaths is 34,500 (5.7% of all cancer deaths). 

About one man in 8 is at risk of getting diagnosed with prostate cancer during his lifetime. It is 

one of the most common cancers in American men, with a 6% increase in occurrence rate and a 

7% increase in mortality rate in 2019 as compared to 2018. About 1 in 41 men will die of prostate 

cancer, and every 17 minutes, another man in the U.S. dies from the same.222 
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Figure 6.  Prostate Cancer incidence rate and mortality rate in the U.S. 

Source: SEER*Explorer 

 

 
 

1.6.3 Risk factors221–223 
 

Scientific studies suggested a few factors responsible for the development of prostate cancer. 
 

▪ Age: Age is one of the most critical risk factors for prostate cancer. The chances of getting 

diagnosed with prostate cancer increase significantly after age 50 (60% of all cases) but are 

rare in the case of men younger than 40.   

 

Figure 7A: Prostate Cancer Risk from Birth Over Time; Source: SEER*Explorer 
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Figure 7B. Age-wise prevalence of Prostate Cancer among the US males; Source: 

SEER*Explorer 

 

 

 

Figure 7C. Age-adjusted incidence rates of Prostate Cancer among US men.   

Source: SEER*Explorer 
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▪ Race/ Ethnicity: African American men are at higher risk of developing and dying from 

prostate cancer than white men and men of other races (1.7 times higher chances of getting 

diagnosed and 2.1 times higher chances of death). Also, they are more prone to develop 

aggressive or advanced disease states). Prostate cancer has less occurrence in Asian American 

and Hispanic/Latino men than in non-Hispanic whites. Genetic predisposition, diet & obesity, 

socio-economic status, and access to health care may contribute to this differential racial 

distribution. 

 

Figure 7D. Age-adjusted incidence rates of Prostate Cancer among US males by Race/ 

Ethnicity. Source: SEER*Explorer 

 

 

 

▪ Family history: Genetics and heredity are essential risks factor for the onset of prostate cancer, 

and familial prostate cancer makes up 20% of all cases. Having a first-degree relative (father 

or brother) with prostate cancer increases the risk of prostate cancer by almost two folds than 

the average risk. The higher the number of blood relatives affected by prostate cancer, the 

higher the risk.223–225 

 

Inherited or germline mutations in the DNA repair gene of BRCA1 or BRCA2 genes, which 

are commonly associated with increased risk of breast and ovarian cancer in women in some 
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families, can also enhance the risk of prostate cancer in men (especially mutations 

in BRCA2).224 

 

▪ Genetic factors: i) Inherited mutation in BRCA1, BRCA2, CHEK2, ATM, PALB2, RAD51D, 

DNA mismatch repair genes (MSH2, MSH6, MLH1, PMS2), RNASEL, HOXB13 genes ii) 

acquired mutation in androgen (testosterone) producing gene which increases its level is linked 

to the development of prostate cancer.223 

 

1.6.4 Types of Prostate Cancer 

Prostate cancer has two types: 

 

i.Adenocarcinoma of the prostate: This is the most common type of prostate cancer that arises 

in the glandular epithelial cells that make the lining of the prostate gland and the associated 

tubes.220,226 

There are two sub-types of prostate adenocarcinoma 

 

a.Acinar adenocarcinoma: This is the carcinoma of the acinar cells that make the lining of the 

prostate’s fluid-secreting glands.226 

 

b. Ductal adenocarcinoma of the prostate: This is a rare and aggressive subtype of prostate 

adenocarcinoma that develops in the cells lining the tubes (ducts) of the prostate gland.226 

 

ii. Other types of prostate cancer include Transitional cell carcinoma/ urothelial cancer, 

Neuroendocrine prostate cancer that includes small cell prostate cancer, Squamous cell 

carcinoma, etc.226 

 

1.6.7 Symptoms227 

 

• Trouble and frequent urination (especially at night). 

• Decreased force of the urine flow or the need to strain to empty the bladder. 

• Pain or burning during urination, discomfort when sitting caused by an enlarged prostate. 

• Blood in the urine and in the semen 

• Sudden weight loss and bone pain 

• Erectile dysfunction 
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1.6.8 Screening Test 
 

i. Prostate-specific antigen (PSA) test: Prostate-specific antigen (PSA) is a protein that is 

produced naturally by the cells in the prostate gland (both normal cells and cancer cells). PSA 

generally presents in small amounts in the bloodstream, but blood PSA level increases (which is 

measured in units called nanograms per milliliter (ng/mL) if there is any abnormality in the 

prostate gland, such as prostate cancer. A high PSA level (> 4 ng/ ml) enhances the chances of 

prostate cancer.228,229 
 

ii.Digital rectal exam (DRE): The doctor examines the prostate which is adjacent to the rectum, 

by inserting a gloved, lubricated finger into the rectum to check if there are any abnormalities in 

the texture, shape, or size of the gland.228 

 

1.6.9 Diagnostic Test 
 

i. Prostate Biopsy:  A biopsy is a procedure where small samples of the prostate are removed, 

followed by examination under the microscope. A core needle biopsy is the main method used 

to diagnose prostate cancer where a urologist inserts a thin, hollow needle is inserted into the 

prostate through either a transrectal or trans-perineal route followed by removal of small 

cylinders (core) of prostate tissue for further examination to identify the presence of abnormal/ 

cancerous cells.220,228,230 
 

ii. Transrectal ultrasound (TRUS): This procedure involves transrectal ultrasound by insertion 

of a small probe into the rectum, which is the size and shape of a cigar that creates a picture of 

the prostate gland. 230 
 

iii. Magnetic resonance imaging (MRI): Magnetic resonance imaging creates detailed images of 

soft tissues in the body using radio waves and strong magnets. MRI coupled with ultrasound 

creates 3D images that help the doctor to locate and target areas of the prostate that are most 

likely to be cancerous. This method is particularly useful in biopsy procedures and in 

determining the spread of cancer, i.e., metastasis.230 
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1.6.10 Prostate Cancer Grades 
 

Based on the Prostate-specific antigen (PSA) test and the grade group, Prostate cancer is divided 

into four stages.  

 

Table 4. Stages of prostate cancer and their characteristics231,232 

 

Stage Substage PSA level Grade Group 
Gleason 

Score 
Localization 

Stage I  <10 1 6 or less Found only in the prostate 

      

Stage II IIA 
Between 10 -

20 
1 6 or less 

Confined only in prostate tissue, found in 

more than one–half of one side or on both 

sides of the prostate 

 IIB < 20 2 7 Found in one or both sides of the prostate 

 IIC < 20 3 or 4 7 or 8 Found in one or both sides of the prostate 

Stage 

III 
IIIA At least 20 1,2,3 or 4 < 6 to 8 Found in one or both sides of the prostate 

 IIIB Any level 1,2,3 or 4 < 6 to 8 

Has spread from the prostate to the seminal 

vesicles or to nearby tissue or organs, such as 

the rectum, bladder, or pelvic wall 

 IIIC Any level 5 9 or 10 

Found in one or both sides of the prostate and 

may have spread to the seminal vesicles or to 

nearby tissue or organs, such as the rectum, 

bladder, or pelvic wall 

Stage 

IV 
IVA Any level 1,2,3,4 or 5 < 6 to 10 

Found in one or both sides of the prostate and 

may have spread to the seminal vesicles or to 

nearby tissue or organs, such as the rectum, 

bladder, pelvic wall, nearby lymph nodes 

 IVB Any level 1,2,3,4 or 5 < 6 to 10 
has spread to other parts of the body, such 

as the bones or distant lymph nodes. 
 

 

1.6.11 Treatment options 
 

Current treatment approaches include surgical removal, radiation therapy, hormone therapy, 

cryosurgery, chemotherapy, immunotherapy, CAR-T therapy, and monoclonal antibody. 

Different treatment modalities are available based on the stage of cancer.233–235 
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Table 5: Current treatment modalities for different stages of prostate cancer233–235 

 

 

Different classes of drugs are approved for the treatment of different stages of prostate cancer. 

 

Table 6. FDA-approved drugs for different stages of prostate cancer235,236 

  
 

Class Drugs Comments 

Cancer vaccine Sipuleucel-T 

Used to treat advanced prostate cancer that's no longer 

responding to hormone therapy but is causing few or no 

symptoms 

Immune Checkpoint inhibitor PD-1 inhibitor  

Chemotherapy 

Docetaxel, 

Cabazitaxel Mitoxantrone 

Estramustine 

Used when cancer spreads outside the prostate gland and 

hormone therapy isn’t working 

Hormone therapy: Treatment 

to lower testicular androgen 

levels 

Orchiectomy (surgical 

castration) 

Removal of the testicles, where most of the androgens 

(testosterone and DHT) are made 

 
LHRH agonists: 

Leuprolide, Goserelin, 
Lower the amount of testosterone made by the testicles 

 
LHRH antagonists: 

Degarelix 
Used to treat advanced prostate cancer 

Hormone therapy: Abiraterone 
Blocks an enzyme (protein) called CYP17, which helps stop 

these cells from making androgens. It can be used in men with 

 

Stage 

 

Standard Treatment Options 

 

Under Clinical Trial 

Stage I 

Radical prostatectomy, External-beam radiation therapy (EBRT) 

with or without adjuvant hormonal therapy, Interstitial 

implantation of radioisotopes. 

High-intensity focused ultrasound therapy, 

Photodynamic therapy 

Stage II 

Radical prostatectomy, External-beam radiation therapy (EBRT) 

with or without adjuvant hormonal therapy, Interstitial 

implantation of radioisotopes 

Ultrasound-guided percutaneous cryosurgery, 

Proton-beam radiation therapy, Photodynamic 

therapy, neoadjuvant hormonal therapy 

followed by radical prostatectomy 

Stage III 

External-beam radiation therapy (EBRT) with or without adjuvant 

hormonal therapy, Hormonal manipulations (with or without 

radiation therapy), Radical prostatectomy with or without EBRT 

 

Stage IV 

Hormonal manipulations with or without chemotherapy, 

Bisphosphonates, External-beam radiation therapy, Palliative 

radiation therapy (EBRT) with or without adjuvant hormonal 

therapy, Palliative radiation therapy, Palliative surgery with 

transurethral resection of the prostate (TURP) 
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Treatment to lower androgen 

levels from the adrenal glands 

advanced prostate cancer that is either: High risk or Castration-

resistant 

 Ketoconazole Used to treat men just diagnosed with advanced prostate cancer 

Hormone Therapy: Drugs that 

stop androgens from working 

 

Anti-androgens: Flutamide 

Bicalutamide 

Nilutamide 

 

If orchiectomy or an LHRH agonist or antagonist is no longer 

working by itself, 

Hormone Therapy: Newer 

anti-androgen 

Enzalutamide 

Darolutamide 

Apalutamide 

Men with cancer that has not spread but is no longer 

responding to other forms of hormone therapy (known as non-

metastatic castrate-resistant prostate cancer (CRPC) 

 Abiraterone- acetate 
It's approved for men with advanced prostate cancer who have 

tried other hormone therapies. 

 

1.6.12  Molecular pathogenesis of Prostate Cancer and the role of Androgen 

Signaling Pathway in its development 

 

The androgen signaling pathway is the key regulator in the pathogenesis of prostate cancer. 

Androgen receptor (AR) is a type of nuclear receptor and a member of the steroid receptor 

superfamily NR3C4 (nuclear receptor subfamily 3, group C, member 4). It is a phosphoprotein 

that is composed of four functionally distinct domains: an amino-terminal domain (NTD), a 

carboxy-terminal ligand-binding domain (LBD), a DNA-binding domain (DBD), and a flexible 

hinge region that joins the LBD and the DBD. DBD contains a Zinc finger motif that allows its 

interaction with DNA. 237,238 

  

Androgen (Testosterone and Dihydrotestosterone/DHT) is the steroid hormone that promotes the 

growth of cancer cells. Within the prostate cancer cells, Testosterone gets converted into 

Dihydrotestosterone (DHT) by an enzyme called 5α-reductase.239,240 

 

In the ligand unoccupied state, AR remains localized in the cytoplasm in its inactive form as a 

complex with three heat-shock proteins (HSP90, HSP70, and HSP56), which prevents its 

degradation. Upon phosphorylation, the ligand binding domain becomes available for ligand 

(androgen hormone) binding. When DHT binds to the AR, it becomes activated by 

phosphorylation and gets released from the complex, followed by its nuclear translocation. This 

event also causes its conformational change and subsequent dimerization, which facilitates its 

binding to the androgen response element (ARE) present in the promoter region of its target 



71 | P a g e  

 

genes. AR then recruits transcriptional co-activators such as members of the p160 family (SRC-

1/2, TRAM1), pCAF, and Cyclic adenosine monophosphate Response Element Binding Protein 

(CREB-binding protein) to drive the transcription of specific genes like PSA, FGF8, CDK1/2, 

TMPRSS2 that promote cancer cell proliferation.237–241 

 

Figure 8. Molecular Mechanism of Prostate Cancer Development 
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1.6.13 Stages of Prostate Cancer Progression 
 

i. Localized Prostate Cancer: It is the indolent disease state where the tumor remains localized 

within the prostate gland. This is the early stage of prostate cancer (T1 or T2), where it shows 

very slow growth or no growth at all with a very low risk of spreading. Active surveillance, 

i.e., regular tests to check on cancer and watchful waiting, are the two ways of monitoring. The 

treatment options for localized prostate cancer include radical prostatectomy, external beam 

radiotherapy, and high dose-rate brachytherapy, which are nearly curative with a 5-year 

survival rate of nearly 100%. 241–243 

 

Locally advanced prostate cancer is the disease state where the prostate cancer cells have 

broken through the capsule or covering that surrounds the prostate and start to spread into 

nearby tissue or organs such as bladders and seminal vesicles. According to the classification 

of Malignant Tumors TNM/ tumor (T), nodes (N), and metastases (M) staging, this disease is 

categorized either under T3, where the prostate cancer cells have started or completed the 

rupture of the capsules or T4 where the malignant cells already migrated to the nearby 

organs.242 

 

ii. Metastatic Hormone-Sensitive Prostate Cancer (mHSPC)/ Metastatic Castration-

sensitive prostate cancer (mCSPC): This disease state is defined clinically as where the 

patients show radiographical evidence of cancer spreading to the other parts of the body, yet 

the patients are still either hormone naïve or responsive to the hormone ablation therapy. The 

frontline therapy for mHSPC is either surgical castration (bilateral orchidectomies) or medical 

castration, such as Androgen Deprivation Therapy using Luteinizing hormone-releasing 

hormone (LHRH) agonists.  In some cases, ADT is coupled with Androgen pathway-directed 

therapy (Abiraterone acetate, Apalutamide, enzalutamide or Chemotherapy (Taxanes: 

Docetaxel or Cabazitaxel) or Radiotherapy.241,244 

 

However, most of the patients with mHSPC experience a transition into the metastatic castrate-

resistant (mCRPC) state. In most cases, relapse occurs in response to the initial localized 

treatment, but de novo metastatic condition is also observed in small populations.241,244 

 

iii. Castration-Resistant Prostate Cancer (CRPC)/ Androgen-independent (AIPC)/ 

Hormone-refractory prostate cancer (HRPC): Due to the initial reliance of prostate cancer 

cells on androgens for growth and evading apoptosis, the standard treatment option for early-
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stage PCa is androgen-deprivation therapy (ADT/medical castration) through surgical or 

pharmacological approaches. Most of the early-stage PCa patients who have been treated with 

ADT show good initial responses. However, the vast majority of these men eventually become 

unresponsive towards hormone therapy within the five years of ADT, with more > than 80% 

of cases showing metastases and despite low levels of androgen, patients show signs of 

progression of pre-existing disease condition, i.e., sustained rise in prostate serum antigen 

(PSA) level with/ without metastases even with castration or low testosterone levels (serum 

testosterone < 50 ng/dL or 1.7 nmol/L). This aggressive form of prostate cancer is termed 

Castration-resistant prostate cancer (CRPC).241,245,246 

 

CRPC state can be categorized as either non-metastatic (nmCRPC) or metastatic 

(mCRPC).241,246 

 

Figure 9. Dynamic transition model of prostate cancer clinical states 

 

 
 

a.Non-Metastatic Castrate-Resistant Prostate Cancer (nmCRPC): This is the type of CRPC 

that is characterized by the absence of radiographic evidence of metastases with a minimum 

PSA level of ≥1 ng/mL that shows a continuous trend of rising, i.e., at least 2 ng/mL higher 
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than the nadir PSA which indicates the lowest PSA level after ADT. Treatment options include 

second-generation anti-androgen like Enzalutamide, Apalutamide, and Darolutamide. 246,247 
 

Studies showed that, within five years of diagnosis, >50% of the men with nmCRPC eventually 

progress into metastatic disease state (mCRPC), which is a more aggressive and lethal disease 

state.241 

 

b. Metastatic Castrate-Resistant Prostate Cancer (mCRPC): mCRPC is the advanced form 

of prostate cancer where cancer becomes unresponsive to the hormone ablation therapy, which 

spreads to the other parts of the body such as bones, lymph nodes, bladder, rectum, liver, lungs, 

and brain. This is the lethal disease state with poor prognosis, a median survival of < 3 years, 

and a 5-year survival rate of <30 %.  Most of the patients progress to mCRPC within two years 

from the initiation of ADT. 248–250 

 

The earlier treatment options for mCRPC were mitoxantrone and Estramustine, which have 

failed to improve overall survival. Taxane-based chemotherapy (Docetaxel & Cabazitaxel) is 

the current first line of treatment for the mCRPC. TAX327 & SWOG 9916 trial showed that 

Docetaxel improves median OS by 2-2.9 months, whereas TROPIC trial data revealed that 

Cabazitaxel is effective in improving OS and prolonging treatment-free survival as a second 

line to therapy after Docetaxel.248,251 

 

Apart from the Taxanes, immunotherapy (sipuleucel-T), second-generation anti-androgens/ 

ARSi (Enzalutamide, abiraterone), and Radium, 223 dichloride are the other treatment options 

for mCRPC.252 

 

1.6.14 Taxane for the treatment of mCRPC 
 

Taxane drugs, such as Docetaxel and Cabazitaxel, are FDA-approved drugs for the treatment of 

metastatic castration-resistant prostate cancer. These microtubule targeting agents (MTA), which 

bind to the microtubules and disrupt their normal functions, are the frontline treatment for 

mCRPC. 

 

Taxane exerts its action by binding with the microtubule, a cellular organelle that plays an 

essential role in cell division (mitosis) as well as trafficking vital proteins. It is composed of α- 

and β-tubulin. 4 In prostate cancer, the important androgen receptor (AR) protein is trafficked 

via microtubules from the cell surface into the nucleus, where it binds DNA and leads to cancer 
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cell growth. The binding of Taxane with the tubulin leads to the prevention of the microtubule 

assembly as well as microtubular polymerization and stabilization of these tracks, which 

prevents the AR from moving into the nucleus. As prostate cancer cells rapidly proliferate, the 

effect on microtubule causes cell-cycle arrest in metaphase and, ultimately, apoptosis.253,254 

 

1.6.14.1 FDA-Approved Taxanes for mCRPC treatment 

 

i. Docetaxel: Docetaxel/ Taxotere is the intravenously administered taxoid antineoplastic drug 

that got FDA approval in 2004 as the frontline chemotherapy for the treatment of mCRPC based 

on the TAX327 & SWOG 9916, which showed that Docetaxel is effective in improving the 

median OS by 2-2.9 months.251 

 

However, Docetaxel has a very high adverse effect (AE) profile. The common side effects of 

Docetaxel include neutropenia and anemia.  

 

ii. Cabazitaxel: Cabazitaxel/ Jevtana is the intravenously administered, second-generation taxane 

that has a similar mechanism of action to Docetaxel but has less affinity towards drug efflux 

pump such as P-glycoprotein (P-gp), which makes it more effective in multi-drug resistance 

scenario and have better toxicity profile than Docetaxel.255 

 

In 2014, FDA approved Cabazitaxel as a second line of therapy after Docetaxel in the treatment 

of mCRPC based on TROPIC trial data that revealed Cabazitaxel is effective in improving OS 

and prolonging treatment-free survival.255,256 

 

1.6.14.2 Mechanism of Action of Taxane Drugs 
 

a.Inhibition of microtubular depolymerization: It binds to the polymerized β-tubulin at a site 

within the lumen of the microtubule and promotes and stabilizes microtubule assembly in the 

absence of GTP. This leads to the disruption of microtubule dynamics and subsequent cell 

cycle arrest, followed by activation of the apoptotic pathway within the cells.256,257 

 

b. Inhibition of AR nuclear translocation: Docetaxel can inhibit androgen receptor (AR) 

transcriptional activity by constraining AR expression, blocking AR nuclear translocation, and 

facilitating FOXO1-mediated repression of AR transcriptional activity.257 

 

c. Attenuation of the effect of Bcl-2 & Bcl-xL gene expression: Docetaxel-mediated 

microtubule stabilization induces Bcl-2 phosphorylation, which leads to the loss of Bcl-2 
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antiapoptotic function by decreasing its binding to the proapoptotic Bax protein followed by 

apoptosis. In PC-3 cell lines, it decreases mRNA expression of Bcl-xL.258 

 

1.6.14.3 Table 7 Molecular mechanism of resistance towards Taxane drugs259,260 

 
 

Tubulin alterations Overexpression of βIII sub-unit of tubulin, which has less affinity 

towards taxane binding 

Β-tubulin mutation T26A, A595G, and F270I mutation in the M40 isotype of βI-

tubulin which impairs the taxane-mediated polymerization 

Kinesin Involved in taxane resistance by interacting with microtubule 

filaments. 

AR/AR-variants Androgen receptor variants AR-v7 & AR-v567 promote Taxane 

resistance 

TMPRSS2-ERG 

rearrangement 

ERG fusion protein leads to the induction of Taxane-resistance 

by altering microtubule dynamics 

Cancer stem cells Enriched expression of CD133, CD44, NOTCH & Hedgehog 

signalling promote Taxane resistance   

Multi-drug resistance Over-expression of drug-efflux transporter MDR-1 

PI3K/AKT signaling Dysregulation of PI3K/AKT pathway and up-regulation of 

phosphorylated AKT due to inactivation of PTEN. 

 

1.6.15 Androgen Receptor Signaling Inhibitor (ARSi) for the treatment of mCRPC 
 

Drugs belonging to this class directly target the AR-signaling axis by competitively inhibiting 

the ligand binding to the receptor or by inhibiting the synthesis of androgen and blocking the 

downstream activation and subsequent expression of AR-target genes.261,262 

 

i. Enzalutamide: Enzalutamide/ Xtandi is the orally bioavailable second-generation ARSi that 

got FDA approval as the treatment option from mCRPC patients previously treated with 

Docetaxel based on the AFFIRM clinical trial where it improved median OS by almost five 

months.263,264  

 

Enzalutamide acts as an antagonist of androgen signaling, where it competitively blocks the 

binding of androgen to the androgen receptor in the cytosol and blocks its nuclear translocation 

by preventing intramolecular N–C interaction and subsequent transcription of the target 

genes.263 
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1.6.16 ARnull mCRPC / AR-negative mCRPC and emergence of neuro-

endocrine phenotype: Neuro-Endocrine Prostate Cancer (NEPC) 

 

Taxanes (TX) and the Androgen Receptor Signaling inhibitor (ARSi) are the front line of therapy 

to treat mCRPC. Despite a good initial response, most patients eventually encounter drug 

resistance. Under the treatment pressure of ARSi, ultimately, a subset of mCRPC patients 

progress into a more advanced disease state- an aggressive variant of prostate cancer (AVPCa) 

where the prostate cancer cells undergo de-differentiation that involves lineage plasticity, 

extensive transcriptional reprogramming (SOX2, SOX11), loss of p53 & phosphatase and tensin 

homolog (PTEN), chromatin structure rewiring and ultimately acquire androgen receptor (AR)–

independent phenotype. This ARnull / ARlow/ AR-negative mCRPC is a rapidly progressing, 

hormone therapy unresponsive disease state that has a poor prognosis, mean survival of 1-3 

years, and higher tumor burden. Shows signs of metastasis to the visceral organ such as liver, 

lung, etc., lytic bone lesions in the backdrop of slowly rising PSA-level with limited or no 

therapeutic options. 265–269 

 

Figure 10. The course of clinical progression to ARnull mCRPC 
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In normal prostate tissue, the neuroendocrine (NE) type of epithelial cells is present in very less 

numbers (<1% of the total epithelial cells) as compared to the other two types of prostate 

epithelial cells: basal cells and luminal cells, but its number gets increased significantly in 

prostate adenocarcinoma. AR-negative mCRPC is characterized by the neuro-endocrine 

differentiation of the CRPC adenocarcinoma cells, which are evolved either by divergent clonal 

evolution or trans-differentiation that leads to the loss of luminal and epithelial markers. 

Neuromodulators such as bombesin, serotonin; cytokines (IL-1β, IL-6, IL-8); gene 

rearrangements of ETS transcription factor family member ETG and ARSi mediated AR 

blockade induced downregulation of TMPRSS2-ERG protein expression; amplification of 

Aurora kinase A (AURKA) and N-myc (MYCN); molecular signaling pathways for e.g., Wnt-β 

catenin, PI3K–Akt–mTOR pathway; aberrant expression of EZH2 and downregulation of REST 

(regulator of neuronal gene expression) promote this NE differentiation.266,270,271 

 

Neuroendocrine differentiation is a phenotypic change that occurs in prostate cancer cells in 

which they undergo trans-differentiation and acquire the structural and functional features of 

cells of neuronal, endocrine origin, or a mixture of both. These neuroendocrine (NE) like cells 

are post-mitotic cells characterized by the absence of AR and PSA; they express markers like 

prostatic acid phosphatase, synaptophysin (Syp), E-cadherin(E-cad), K18 and K8 cytokeratins 

(CK), CD56; secrete peptide hormones such as neuron-specific enolase (NSE), chromogranin A 

(CgA) and growth factors that facilitate the growth of the surrounding malignant cells in a 

paracrine manner. De novo origin of Neuroendocrine Prostate Cancer (NEPC) is very rare and 

found it in only <2% of the cases. This histological subtype of pure or mixed small-epithelial 

glandular cells has aggressive clinical manifestations such as disease progression, treatment 

resistance, poor overall survival of <2 years due to its dormant phenotype, and high-level 

expression of anti-apoptotic genes such as Bcl-2, Survivin, etc. Poor therapeutic response due to 

treatment-emergent NEPC (t-NEPC) is primarily observed in CRPC patients (>25% of the total 

CRPC cases), where the emergence of NE-like cells is directly correlated with the treatment 

resistance towards ADT, chemotherapy (Docetaxel, Cabazitaxel), radiotherapy. Previous studies 

also showed that tumors of almost 40% of the patients that are resistant towards ARSi 

(enzalutamide and abiraterone) display this NE phenotype.265–273 
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Pathological classification based on spatial and morphological features classified 

Neuroendocrine differentiation into five types.274,275 

 

i. Small cell carcinoma/ Pure NED: In this type of NED, the tumor is made up of entirely NE 

cells. This is the universal NED which is extremely rare (occurrence rate of < 2%) with poor 

clinical outcome (OS <1 year) and characterized by small-cell carcinoma of the prostate gland 

(SCCP). These tumor cells show a high mitotic index (ki67 index >80%) and nucleus-to-

cytoplasm ratio.266,270,272,276 

 

ii. Prostate adenocarcinoma with focal NED: Focal NED or the mixed tumors that have the 

phenotype of both prostate adenocarcinoma and small-cell carcinoma and display features of 

focal NE, like cells are present either as scattered or in clusters of densely packed cells in 

primary and/or secondary sites. Here, only a subpopulation of tumor cells undergoes NED. 

This is rather more common (5-10% of cases) than Pure NED with better clinical outcomes. 

266,270,276 
 

 

iii. Adenocarcinoma with Paneth cell NED: This distinct sub-type of Neuroendocrine 

differentiation leads to the acquirement of Paneth cell-like change of the prostatic epithelium 

where its resemblance to the Paneth cells of the small intestine is prominent. It is characterized 

by the abundant presence of large eosinophilic granules in the cytoplasm of tumor cells and 

the lack of prominent nucleoli.276 

 

iv. Large cell NE carcinoma (LCNEC): This is a rare, aggressive, high-grade sub-type of NED 

(median overall survival <9 months) characterized by the presence of large tumor cells (larger 

than the SCCP) with a high mitotic rate (Ki67 proliferative index>50%) and abundant 

cytoplasm, vesicular clumpy chromatin, and prominent nucleoli with signs of necrosis. 

LCNEC expressed CD56, CD57, chromogranin A, and synaptophysin and is believed to be 

developed following long-term hormonal therapy.265,266,276 

 
 

v. Mixed (small or large cell) NE carcinoma—acinar adenocarcinoma: This is a biphasic 

carcinoma that exhibits features of both NE (small cell or large cell) carcinoma and 

conventional acinar or ductal adenocarcinoma. Immunohistochemistry analysis shows cells 

are positive for NE markers such as synaptophysin, CD56, and chromogranin. It has a 

characteristic mixed PSA expression that shows a positive expression pattern from the acinar 

adenocarcinoma cells but variable PSA expression from the NE cells.266,276 
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AR-targeted therapy fails to achieve clinical benefits in NEPC patients. Due to its biological 

similarities with Small Cell Lung Cancer (SCLC), the treatment regimen that mainly contains 

platinum-based chemotherapy Cisplatin/ Carboplatin is the front-line treatment option for 

NEPC.267 
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Gap in knowledge 
 

Most advanced state cancer (relapsed/ refractory) are difficult to cure, highly heterogeneous with 

high recurrence rates, and have a poor long-term prognosis.277,278 There are only limited 

therapeutic options available owing to drug resistance, extensive inter-individual variation in 

response, and toxicity profile that limits efficacy in clinical settings. Also, the response toward 

standard-of-care drugs is not durable, and patients who show good initial response often tend to 

progress to a more aggressive or terminal disease state. Once the standard-of-care therapy stops 

working, very few or no therapeutic options are available. Previous studies have shown that 

intra-tumoral heterogeneity due to the presence of treatment-refractory subpopulations or cancer 

stem-like cells (CSCs) drives drug resistance and disease relapse in various cancers. Most 

importantly, no study so far has attempted to develop drugs explicitly targeting these stem-like 

sub-clones. Standard-of-care drugs are mostly ineffective in targeting CSCs.85,215 

 

Therefore, there is an unmet need to discover novel drugs against R/R cancer that also 

specifically target cancer stem-like cells to manage these treatment-resistant malignancies. 

 

Our goal is to identify rational combination therapy with the explicit aim of improving overall 

survival and progression-free survival to improve the quality of life of cancer patients. 
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1.7 secDrug algorithm 
 

Assessing the survival endpoints in clinical applications requires the treatment of a large number 

of patients with these drugs that need to be measured in months to years. Therefore, developing 

prediction algorithms of response can be a long process. One alternative is to use collections of 

human cancer cell lines from patient tumors that represent a broad spectrum of the biological 

and genetic heterogeneity of cancer, commonly known as in vitro modeling of drug response. 

We have compiled a panel of >70 human myeloma cell lines (HMCLs) representing innate and 

acquired PI resistance representing the broad spectrum of biological and genetic heterogeneity 

of myeloma patients. 

 

Our goal was to create a multi-pronged approach/pipeline to discover, validate and characterize 

novel drugs as potential secondary choices for circumventing resistance to primary drugs in 

myeloma and generate better treatment outcomes. 

 

1. We have created a computational pipeline by utilizing a greedy algorithm-based set-covering 

computational optimization method followed by a regularization technique to seek all 

secondary drugs that could kill a maximum number of cell lines of the test disease (B-cell 

malignancies/ Sex hormone-dependent malignancies) resistant to the test drug (Proteasome 

inhibitor/ Immunomodulatory drugs/ Bruton Tyrosine Kinase inhibitor/ Taxanes/ Androgen 

receptor Signaling Inhibitor) in a sequential manner ordered by the number of cell lines 

killed. A greedy algorithm constructs a solution to an optimization problem piece by piece 

through a sequence of choices to find the overall, or globally, optimal solution. 

 

2. Toward this goal, we used the vast array of human cancer cell lines in the Genomics of Drug 

Sensitivity in Cancer (GDSC version GDSC1000) database. The Genomics of Drug 

Sensitivity in Cancer (GDSC1000) resource is the largest public collection of information on 

drug sensitivity in human cancer cells (contains drug-sensitivity data on 265 drugs covering 

a wide range of targets and processes involved in cancer biology on more than 1000 human 

tumor cell lines, representing a wide spectrum of human cancers, along with a wide array of 

genetic information including gene expression analysis data) 
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Figure 11: Schematic diagram of identification, validation, and characterization of 

secDrug predicted novel secondary anti-cancer agents. 
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Hypothesis 

 

We hypothesize that a combination of our predicted secDrugs with standard-of-care drugs will 

be useful in curbing oncogenic progressions in relapsed/ refractory cancer, abrogate drug 

resistance, and specifically target the sub-clones representing cancer stemness. 
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CHAPTER 2 

 

Validation of secondary therapies against 

Multiple Myeloma 
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Abstract 
 

Multiple myeloma (MM) is the second-most common hematological malignancy in the US. MM 

is an incurable, age-dependent plasma cell neoplasm with a 5-year survival rate of less than 50%. 

Extensive inter-individual variation in response to standard-of-care drugs like proteasome 

inhibitors (PIs) and immunomodulatory drugs (IMiDs), drug resistance, and dose-limiting 

toxicities are critical problems for the treatment of MM. Clinical success in anti-myeloma 

treatment, therefore, warrants continuous development of novel combination therapy strategies 

with the explicit goal of improving the therapeutic efficacy by concomitantly targeting multiple 

signaling pathways. 

 

We have created a computational pipeline that uses pharmacogenomics data-driven 

optimization-regularization/greedy algorithm to predict novel drugs (“secDrugs”) against drug-

resistant myeloma. Next, we used single-cell RNA sequencing (scRNA-seq) as a screening tool 

to predict top combination candidates based on the enrichment of target genes. For in vitro 

validation of secDrugs, we used a panel of human myeloma cell lines representing drug-

sensitive, innate/refractory, and acquired/relapsed PI- and IMiD resistance. Next, we performed 

single-cell proteomics (CyTOF or Cytometry time of flight) in patient-derived bone marrow cells 

(ex vivo), genome-wide transcriptome analysis (bulk RNA sequencing), and functional assays 

like CRISPR-based gene editing to explore molecular pathways underlying secDrug efficacy and 

drug synergy. Finally, we developed a universally applicable R-software package for predicting 

novel secondary therapies in chemotherapy-resistant cancers that outputs a list of the top drug 

combination candidates with rank and confidence scores. 

 

Thus, using 17AAG (HSP90 inhibitor) + FK866 (NAMPT inhibitor) as proof of the principle of 

secDrugs, we established a novel pipeline to introduce several new therapeutic options that have 

the potential to revolutionize clinical decision-making by minimizing the number of drugs 

required for discovering successful combination chemotherapy regimens against drug-resistant 

myeloma. 
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Introduction 
 

Multiple myeloma (MM) is the second-most common hematopoietic malignancy in the United 

States.279 MM is an age-dependent plasma cell neoplasm characterized by clonal expansion of 

malignant antibody-producing post-germinal-center B cell-derived plasma cells within the bone 

marrow with significant complexity and heterogeneity at the molecular level.279–281 Proteasome 

inhibitors (PIs) are standard-of-care chemotherapeutic agents for myeloma that impede tumor 

metastasis and angiogenesis by accelerating unfolded protein response (UPR) or the ubiquitin-

dependent proteolysis of critical regulatory proteins involved in key physiological and 

pathophysiological cellular processes in cancer cells and by interfering with the NF-κB-enabled 

regulation of cell adhesion-mediated drug resistance. Bortezomib (Bz/Velcade) was the first PI 

to be approved by U.S. Food and Drug Administration (FDA) for clinical application in 2003 for 

the treatment of relapsed and refractory myeloma.279,282,283 Other examples include second-

generation PIs Carfilzomib (Cz/Kyprolis) and the oral medication Ixazomib (Ix 

/Ninlaro/MLN9708).282–284 PIs are effective anti-MM drugs when used alone or in combination 

with other anti-cancer agents like immunomodulatory drugs (IMiDs), alkylating agents, 

topoisomerase inhibitors, corticosteroids, and histone deacetylase inhibitors (HDACi).279,281 

However, despite these and other recent improvements in therapies, myeloma still remains a 

difficult-to-cure disease with dose-limiting toxicities and drug resistance and a median survival 

rate of only around seven years.285,286 Not all patients respond equally well to treatment, and 

those who do often develop resistance over the course of treatment. Drug resistance may 

therefore be categorized into (1) innate resistance already presents in drug-naive patients who 

never respond to treatment, or (2) emerging/acquired resistance where a patient’s tumor 

ultimately undergoes relapse or “acquires” the ability to resist therapy in the course of treatment 

despite good response to initial treatment.280,286 Therefore, there is an urgent need to search for 

novel secondary therapeutic options where new agents may be combined with standard-of-care 

drugs to achieve synergistic effects for treating drug resistance in myeloma. 

 

Deciphering key features within patients underlying tumor heterogeneity and personalized 

sensitivity to chemotherapy is essential to predict the efficacy of anti-cancer drugs and to prevent 

delay in the selection of more effective alternative strategies.279,280,285–288 However, assessing the 

survival endpoints in clinical applications requires the treatment of a large number of patients 

with these drugs that need to be measured in months to years. Therefore, developing prediction 
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algorithms of response can be a long process. One alternative is to use collections of human 

cancer cell lines from patient tumors that represent a broad spectrum of the biological and genetic 

heterogeneity of cancer, commonly known as in vitro modeling of drug response. We have 

compiled a panel of >70 human myeloma cell lines (HMCLs) representing the broad spectrum 

of biological and genetic heterogeneity of myeloma patients.287 

 

In this study, we have developed a computational method called secDrug for discovering novel 

synergistic secondary drug combinations that may effectively reverse resistance as combination 

regimens and allow for reduced dosing and toxicity of FDA-approved myeloma drugs. Next, we 

introduced single-cell transcriptomics as a novel screening tool for prioritizing secDrug 

combinations based on the sub clonal expression of the drug targets and observed that the 

17AAG + FK866 combination is potentially highly efficacious. 

 

Further, to validate our prediction results, we used our HMCL panel as in vitro model system 

representing inter-individual heterogeneity in drug response/resistance to show that the top 

predicted secondary secDrugs are indeed effective against PI- and IMiD resistance as single 

agents or as a combination. Further, using 17-AAG (an HSP90 inhibitor) as the test secDrug, we 

added functional assays, next-generation RNA sequencing, CRISPR-based gene editing, and 

high-dimensional mass cytometry (CyTOF/cytometry time of flight) in primary bone marrow 

cells (PMCs; ex vivo model system) from myeloma patients to create a multi-pronged 

approach/pipeline to discover, validate and characterize novel drugs as potential secondary 

choices for circumventing resistance to primary drugs in myeloma and to generate better 

treatment outcomes. This also allowed the identification of differentially expressed (DE) genes 

and novel pathways associated with successful drug combinations. 
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Materials and Methods 
 

In silico prediction of secondary drugs 
 

Design and development of the secDrug pipeline are non-trivial and mathematically involved 

(details provided in Supplementary Methods section). Briefly, we utilized we used the vast array 

of human cancer cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC version 

GDSC1000) database and created a pharmacogenomics data-driven greedy algorithm-based set-

covering computational optimization method followed by a regularization technique to seek all 

secondary drugs that could kill the maximum number of cell lines of the test disease (B-cell 

cancers) resistant to the test drug (PI) in a sequential manner ordered by the number of cell lines 

killed. A greedy algorithm constructs a solution to an optimization problem piece by piece 

through a sequence of choices to find the overall, or globally, optimal solution. The GDSC1000 

database is the largest public collection of information on sensitivity to >250 drugs covering a 

wide range of targets and processes involved in cancer biology in >1000 human cancer cell lines  

 

Drugs, reagents, antibodies, and kits 
 

Ixazomib (Ixa) was procured from Takeda (Takeda Pharmaceuticals Inc., Deerfield, IL, USA). 

All other drugs were purchased from Selleck Chemicals (Houston, TX, USA). Drugs were 

dissolved in dimethyl sulfoxide (DMSO) and stored at −20 °C. Recombinant Human IL-6 was 

obtained from PeproTech, Inc. (Cranbury, NJ, US) 

 

Cleaved caspase-3/8/9, HSP90, c-Myc, p65, and IRF4 antibodies were purchased from Cell 

Signaling Technology (Danvers, MA, US). Monoclonal Anti-β-Actin-Peroxidase antibody 

produced in mouse was purchased from Sigma-Aldrich (St Louis, MO, USA). Goat anti-

Mouse/Rabbit IgG (H + L) secondary antibody (HRP conjugated) was obtained from Thermo-

Fisher Scientific (Waltham, MA, USA). DHE (Dihydroethidium) assay kit and JC-1 

Mitochondrial Membrane Potential (MMP) assay kits were purchased from Abcam (Waltham, 

MA, USA). Caspase-Glo 3/7 Assay System and CellTiter-Glo 2.0 Assay were purchased from 

Promega (Madison, WI, USA). 

 

Human myeloma cell lines (HMCLs) 
 

HMCLs generated through the immortalization of primary myeloma cells were used as in vitro 

model systems to screen top secDrugs against sensitive, innate resistant, and acquired (Parental/P 
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vs. clonally-derived resistant/R pairs generated using dose escalation over a period of time) 

myeloma.287 We have also generated in vitro drug response profiles for the four PIs: Bz, Cz, 

Oprozomib (Opz), and Ixa as single agents in all the HMCLs included in the panel. PI-sensitivity 

in these cell lines was highly correlated, which suggests that any of these four PIs could be used 

as surrogates. Therefore, we used Ixazomib as the representative PI in this study. Further, we 

have used machine learning-based computational approaches to derive a gene expression 

signature predictive of baseline PI-response in myeloma.287 The creation of the ANBL6 N-Ras 

(ANBL6/Ras) codon 61 activating mutant cell line has been described earlier.289,290 The IMiD-

resistant cell line, MM1S LenR, was obtained as a gift from Dr. Keith Stewart, Mayo Clinic, AZ. 

All cell lines were authenticated at source and tested randomly at regular intervals at the AU 

Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx) using Gene-Print 24 

System from Promega (Madison, WI, USA). All cell lines are mycoplasma negative. HMCLs 

were maintained in HMCL media supplemented with IL-6. 

 

Human primary myeloma cells (PMCs) 
 

Bone marrow-derived CD138+  patient PMCs were obtained through Mayo Clinic, MN 

following written informed consent and used as ex vivo model systems. Prior IRB approval was 

obtained from the Mayo Clinic review board. Participants were identified by number, not by 

name. 

 

Establishment of RPMI8226 Hsp90 CRISPR-knockout cell line 
 

Chemically-modified synthetic single-guide RNA (sgRNA) was designed to target the 

Hsp90AA1 gene and synthesized by Synthego Corporation (Menlo Park, CA, USA). The 

sgRNAs were required to meet strict off-target requirements of at least two mismatches within 

an early exon and target a common exon present in the majority of annotated transcripts. The 

sgRNAs were complexed together with the spCas9 to form a ribonucleoprotein (RNP). The 

RNPs were then delivered to RPMI8226 cells via an optimized electroporation setting. The 

transfected cells were then recovered for two days before the edits created were evaluated. 

Positive control sgRNA (RELA) was transfected at the same time. The edited site was PCR-

amplified, and Sanger sequencing was performed on the amplicon’s Sequencing data was then 

analyzed using Synthego’s Inference of CRISPR Edits (ICE) software tool to determine the 

percentage of knock-out (KO) sequences of the genetic target.291 ICE identifies the editing 
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frequency and the specific indels present in the pool. Additionally, ICE calculates the frequency 

of the desired KO, reported as the KO score. Finally, once minimum KO editing efficiency was 

confirmed, RPMI8226/Hsp90KO cells were expanded, and QC tested. 

 

In vitro chemosensitivity assays and drug synergy analysis 
 

Cells were treated with increasing concentrations of secDrugs and PIs (represented by Ixazomib) 

or IMiDs (represented by Lenalidomide) as single agents or in combination for 48 h, and 

cytotoxicity assays were performed using CellTiter-Glo® Luminescent cell viability assay 

(Promega Madison, WI). Luminescence was recorded in a Neo2 Microplate Reader (Biotek), 

and half-maximal inhibitory concentration (IC50) values were determined using GraphPad Prism 

software by calculating the nonlinear regression using sigmoidal dose-response equation 

(variable slope). Drug synergy was calculated using Calcusyn software based on Chou–Talalay’s 

combination index (CI) method and the isobologram algorithm (Biosoft, US) [21]. 

 

Apoptosis assays 
 

Caspase-3/7 activity assay was performed on the HMCLs using Caspase-Glo 3/7 luminescent 

assay kit according to the manufacturer’s instructions (Promega Madison, WI) using Synergy 2 

Microplate Reader (BioTek; Winooski, VT, US). Cell death by apoptosis was also measured by 

immunoblotting analysis. 

 

Determination of superoxide levels 
 

Cells were incubated with 5 μM DHE (in RPMI) for 15 min in the dark at 37 °C. Cells were then 

washed once with cell-based assay buffer, and red fluorescence was recorded by Synergy Neo2 

multi-plate reader. 

 

Measurement of mitochondrial membrane potential (MMP) 
 

Cells were incubated with 5 μM JC-1 dye for 15 min in the dark at 37 °C and washed twice in 

PBS, and then analyzed for red and green fluorescence by Synergy 2 Microplate Reader (BioTek; 

Winooski, VT, US). 

Mass cytometry (CyTOF) 
 

Thirty-seven antibody targets directed against cell surface and intracellular markers were utilized 

as Immunophenotyping Panel for CyTOF analysis. The Antibody markers and respective metal 
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conjugates are described in Table 1. Panels were designed using the web-based panel designer 

software: Maxpar Panel Designer (www.fluidigm.com) for optimal signals, minimum 

background due to oxidation, isotopic purity, and sufficient sensitivity for each targeted marker. 

Prelabeled antibodies were purchased from Fluidigm Corporation (South San Francisco, CA, 

USA). Purified antibodies from BioLegend (San Diego, CA, USA) and Santa Cruz 

Biotechnology, Inc. (Dallas, TX, USA) were labeled using an X8 polymer MaxPAR antibody 

conjugation kit (Fluidigm) according to the manufacturer’s instructions. CyTOF analysis was 

performed on PMCs treated with DMSO (vehicle/control), 0.2 µM 17AAG,1 µM 17AAG, and 

5 µM 17AAG. 

 

Table 1: Immunophenotyping panel for CyTOF analysis 

 

A. Cell surface targets 

 
 

SN. Targets Metal Tag Source/Manufacturer Catalog No. 

1. CD45 89Y Fluidigm 3089003B 

2. CD38 114Nd Fluidigm 3144014B 

3. CD138 168Er Fluidigm 3168009B 

4. CD3 141Pr Fluidigm 3141019B 

5. CD56 149Sm Fluidigm 3149021B 

6. CD19 169Tm Fluidigm 3169011B 

7. CD81 145Nd Fluidigm 3145007B 

8. CD20 147Sm Fluidigm 3147001B 

9. CD34 148Nd Fluidigm 3148001B 

10. CD274 159Tb Fluidigm 3159029B 

11. CD27 167Er Fluidigm 3167006B 

12. CD229 174Yb Fluidigm 3174017B 

13. CD16 209Bi Fluidigm 3209002B 

14. CD86 150Nd Fluidigm 3150020B 

15. CD117* 173Yb BioLegend 313223 

16. CD28* 154Sm BioLegend 302937 

17. CD147* 161Dy BioLegend 306206 

18. CD71* 170Er BioLegend 334102 
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B. Intracellular targets 

 
SN. Targets Metal Tag Source/Manufacturer Catalog No. 

1. 1kBα 164Dy Fluidigm 3164004A 

2. pERK 1/2 [T202/Y204] 171Yb Fluidigm 3171010A 

3. pStat3 [Y705] 158Gd Fluidigm 3158005A 

4. IRF4 155Gd Fluidigm 3155014B 

5. IKZF1 143Nd Fluidigm 3143024B 

6. Ki-67 172Yb Fluidigm 3172024B 

7. pS6 [S235/S236] 175Lu Fluidigm 3175009A 

8. MCL 1 163Dy Fluidigm 3163006A 

9. Caspase 3/Cleaved 142Nd Fluidigm 3142004A 

10. pAkt [S473] 152Sm Fluidigm 3152005A 

11. p38 [T180/Y182] 156Gd Fluidigm 3156002A 

12. pRb [S807/811] 166Er Fluidigm 3166011A 

13. pCREB [S133] 165Ho Fluidigm 3165009A 

14. IKZF3 162Dy Fluidigm 3162032B 

15. c-Myc 176Yb Fluidigm 3176012B 

16. Ig kappa/light chain 160Gd Fluidigm 3160005B 

17. Ig lambda/light chain 151Eu Fluidigm 3151004B 

18. BCL-2* 153Eu BioLegend 658702 

19. Cyclin D1* 146Nd Santa Cruz Biotechnology SC-8396 

 

CyTOF data analysis 
 

Cytobank software version 7.3.0 (Santa Clara, CA, USA) was used for the cleanup of cell debris 

and removal of doublets and dead cells. Cleaned .fcs files were further gated and analyzed by 

Cytobank. Plasma cells were identified as CD19−, CD16−, CD3−, CD38+, and kappa OR lambda+ 

(based on each patient’s kappa or lambda restriction from clinical flow data). If the plasma cells 

had diminished surface CD38 expression as a result of previous daratumumab exposure, CD229 

was used as a positive selection marker. T-distributed stochastic neighbor embedding (t-SNE), 

viSNE, and FlowSom plots were generated to visualize the subpopulation architecture based on 

markers of interest. Relative marker intensities and cluster abundances per sample were 

visualized by a heatmap. 

 

Single-cell RNA sequencing (scRNA-seq) 
 

Automated single-cell capture, and cDNA synthesis were performed at ~1500 tumor 

cells/sample using the 10X Genomics Chromium platform from 10X Genomics (Pleasanton, CA, 

USA) that uses droplet-sequencing-based chemistry. Single-cell RNA sequencing was 



94 | P a g e  

 

performed on Illumina HiSeq 2500 NGS platform (Paired-end. 2 × 125 bp, 100 cycles. v3 

chemistry) from Illumina (San Diego, CA, USA) at >50 million reads per sample. 

 

scRNA-seq data analysis 
 

scRNAseq datasets were obtained as matrices in the Hierarchical Data Format (HDF5 or H5). A 

combination of Seurat and Partek Flow software packages was used to pre-process the data and 

perform single-cell transcriptomics analysis. Highly variable genes for clustering analysis were 

selected based on a graph-based clustering approach. The visualization of cell populations was 

performed by t-SNE. 

 

Next-generation RNA sequencing (NGS) 
 

HMCLs were plated at a density of 4 × 105 cells per mL, and 0.5 μM of 17-AAG was added as a 

single agent or in combination with 15 nM of Ixazomib. Baseline (untreated) and post-treatment 

(treated) cells were collected 24 h post-treatment. High-quality RNA was extracted using QIA 

shredder and RNeasy kit (Qiagen). RNA concentration and integrity were assessed using a 

Nanodrop-8000 spectrophotometer (Thermo-Fisher Scientific; Waltham, MA, USA) and 

Agilent 2100 Bioanalyzer (Agilent Technologies; Santa Clara, CA, USA) and stored at −80 °C. 

An RNA integrity number threshold of eight was applied, and RNA-seq libraries were 

constructed using Illumina TruSeq RNA Sample Preparation kit v2 from Illumina (San Diego, 

CA, USA) 

 

NGS Libraries were size-selected, and RNA sequencing (RNAseq) was performed on Illumina’s 

NovaSeq platform using a 150 bp paired-end protocol with a depth of  >20 million reads per 

sample. 

 

RNAseq data analysis 
 

Gene expression data were pre-processed, log2-transformed, and analyzed using a combination 

of command-line-based analysis pipeline (DEseq2 and edgeR) and Partek Flow software to 

identify differential gene expression profiling (GEP) signatures. Genes with mean counts<10 

were removed, and CPM (counts per million) data was used to perform differential expression 

testing to identify GEP signatures. Due to the small sample sizes, we used GSA to perform 

differential gene expression analysis between groups that applies limma, an empirical Bayesian 

method, to detect the DE genes (DEGs). Genes with mean fold-change > |1| and p < 0.05 were 
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considered as the threshold for reporting significant differential gene expression. Heatmaps were 

generated using unsupervised hierarchical clustering (HC) analysis based on the top DEGs. 

 

Pathway analysis 
 

Ingenuity pathway analysis (IPA) software (QIAGEN, Hilden, Germany) was used to identify 

the molecular pathways and upstream regulators predicted to be activated or inhibited in 

response to 17-AAG treatment (single-agent and combination with PIs) based on the list of 

significantly differentially regulated genes. 

 

Western Blotting 
 

HMCLs treated with 17-AAG alone, Ixa alone, or 17-AAG + Ixa combination were harvested, 

washed, and lysed using radioimmunoprecipitation assay (RIPA) lysis buffer containing 50 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP40, 5 mM EDTA, 1 mM DTT, phosphatase, and 

protease inhibitors cocktail (Sigma) and incubated on ice for 15 min. Samples were then 

centrifuged at 14,000 rpm at 4 °C for 30 min. The supernatant was then aspirated and quantified 

using Pierce™ BCA Protein Assay Kit (Thermo-Fisher Scientific; Waltham, MA, USA). 

Samples were solubilized in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample 

buffer, and equal amounts of protein were loaded per lane of 10% sodium dodecyl sulfate-

polyacrylamide gels and transferred onto PVDF membranes (Millipore; Billerica, MA, USA). 

Membranes were blocked in TBS with SuperBlock™ blocking buffer (Thermo-Fisher Scientific; 

Waltham, MA, USA) incubated with primary antibodies and secondary antibodies in TBS with 

0.2% Tween 20 and 2.5% bovine serum albumin. Immunoreactivity was detected by 

chemiluminescent HRP substrate (Bio-Rad Laboratories; Hercules, CA, USA), and the exposed 

image was captured using a ChemiDoc™ MP Imaging System (Bio-Rad). Densitometry analysis 

was performed using Image J software from the National Institutes of Health (NIH; Bethesda, 

MD, USA). 

 

Statistical analysis 
 

All statistical analyses were performed using R (the project for statistical computing and 

graphics) and GraphPad Prism 9.0 software. All tests were two-sided, and p < 0.05 was 

considered statistically significant. 
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Results 

Identification of secondary drugs using the secDrug algorithm 
 

A novel modified greedy algorithm-based set-covering computational optimization-

regularization pipeline was used to identify all secondary drugs that could kill the maximum 

number of cell lines in the GDSC1000 database belonging to the test disease (B-cell cancers, 

including myeloma) and which are resistant to the PI/PI drug Bortezomib (Bz/Velcade; the 

primary anti-myeloma drug). A total of 1091 cell lines were present in the GDSC1000 

database.292,293 The following filtering criteria were applied to select computable B-cell lines: 

target cell—B-cell; cancer type—blood; tissue—blood; histology—

lymphoid_neoplasm/haematopoietic_neoplasm; site—haematopoietic_and_lymphoid_tissue; 

no missing data). A total of 94 cell lines satisfied the above filtering criteria and were selected 

for further analysis. IC50 values were processed, imputed, and categorized as S (PI-sensitive), R 

(PI-resistant), and N (“Neutral”/Intermediate PI IC50 values) prior to analysis. We applied our 

computation algorithm to the GDSC1000 dataset and predicted the top secDrugs that can be best 

combined with PIs to achieve response in N and R lines. The predicted top secondary drug 

combinations in PI-resistant + PI-neutral B-cell cancers with a PI backbone are shown in Table 

2. These include HSP90 inhibitor (17-AAG), Nicotinamide phosphoribosyl transferase or Nampt 

inhibitor (FK866), PIKfyve inhibitor (YM201636), Raf inhibitor (PLX-4720), Bcl2 inhibitor 

(Navitoclax), SB505124 (transforming growth factor-β type I receptor, ALK4, ALK7 inhibitor), 

S6K1-specific inhibitor (PF-4708671), and the neddylation inhibitor (MLN4924). Furthermore, 

when only the top PI-resistant cell lines (R; highest 33% PI IC50) were considered, the following 

drugs were predicted to be highly effective: 17 AAG, PLX4720, YM201636, and the AKT 

inhibitor KIN001.102. 

 

Table 2: Detailed list of top combination treatment regimens with a proteasome inhibitor (PI) 

backbone predicted using the secDrug optimization-regularization computational algorithm. 

Percent coverage (cell lines predicted to be killed by the treatment) of the B-Cell cancer lines 

included in the prediction model is also provided. 
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Sl. No. No-Drug PI only PI + 2 secDrugs PI + 3 secDrugs 

1   PI + FK866 + 17.AAG PI + FK866 + 17.AAG + SB216763 

 0 33.0% 72.2% 82.5% 

2   PI + XAV939 + 17.AAG PI + XAV939 + 17.AAG + VNLG.124 

 0 33.0% 71.1% 83.5% 

3   PI + PF.4708671 + Bleomycin PI + PF.4708671 + Bleomycin + FK866 

 0 33.0% 76.3% 87.6% 

4   PI + Bleomycin + SB505124 PI + Bleomycin + SB505124 + Navitoclax 

 0 33.0% 75.3% 86.6% 

5   PI + PLX4720 + Navitoclax PI + PLX4720 + Navitoclax + Roscovitine 

 0 33.0% 75.3% 84.5% 

6   PI + Afatinib + Navitoclax PI + Afatinib + Navitoclax + MLN4924 

 0 33.0% 72.2% 82.5% 

7   PI + PD.173074 + MLN4924 PI + PD.173074 + MLN4924 + KIN001.055 

 0 33.0% 71.1% 82.5% 

8   PI + SN.38 + SB505124 PI + SN.38 + SB505124 + ATRA 

 0 33.0% 73.2% 85.6% 

9   PI + Bicalutamide + Navitoclax PI + Bicalutamide + Navitoclax + EHT1864 

 0 33.0% 72.2% 82.5% 

10   PI + MLN4924 + PIK.93 PI + MLN4924 + PIK.93 + SB505124 

 0 33.0% 74.2% 84.5% 

11   PI + UNC0638 + 17.AAG PI + UNC0638 + 17.AAG + EHT1864 

 0 33.0% 72.2% 82.5% 

12   
PI + YM201636 + 

Temozolomide 
PI + YM201636 + Temozolomide + AZD8055 

 0 33.0% 72.2% 82.5% 

13   PI + Methotrexate + JW.7.24.1 PI + Methotrexate + JW.7.24.1 + AMG.706 

 0 33.0% 73.2% 84.5% 

14   PI + KU.55933 + GSK269962A PI + KU.55933 + GSK269962A + KIN001.055 

 0 33.0% 72.2% 83.5% 

15   PI + NU.7441 + JQ1 PI + NU.7441 + JQ1 + EHT1864 

 0 33.0% 72.2% 82.5% 
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16   PI + AZD6482 + UNC0638 PI + AZD6482 + UNC0638 + MLN4924 

     

 0 33.0% 74.2% 84.5% 

17   PI + CCT018159 + CP466722 PI + CCT018159 + CP466722 + JQ1 

 0 33.0% 72.2% 82.5% 

18   PI + JQ1 + Doxorubicin PI + JQ1 + Doxorubicin + 17.AAG 

 0 33.0% 74.2% 84.5% 

19   PI + UNC0638 + AS605240 PI + UNC0638 + AS605240 + Roscovitine 

 0 33.0% 74.2% 83.5% 

20   PI + YK4.279 + TL.2.105 PI + YK4.279 + TL.2.105 + Temsirolimus 

 0 33.0% 73.2% 82.5% 

21   PI + AICAR + SN.38 PI + AICAR + SN.38 + SB505124 

 0 33.0% 71.1% 83.5% 

22   PI + Docetaxel + Bleomycin PI + Docetaxel + Bleomycin + Roscovitine 

 0 33.0% 72.2% 83.5% 

23   PI + PD.0332991 + Gefitinib PI + PD.0332991 + Gefitinib + Bicalutamide.1 

 0 33.0% 71.1% 80.4% 

24   PI + AG.014699 + Trametinib PI + AG.014699 + Trametinib + Roscovitine 

 0 33.0% 71.1% 81.4% 

25   PI + GSK269962A + Navitoclax PI + GSK269962A + Navitoclax + Cetuximab 

 0 33.0% 71.1% 81.4% 

26   PI + piperlongumine + CP466722 PI + piperlongumine + CP466722 + MLN4924 

 0 33.0% 72.2% 80.4% 

27   PI + Trametinib + CP466722 PI + Trametinib + CP466722 + SB505124 

 0 33.0% 72.2% 82.5% 

28   PI + KIN001.055 + Temozolomide 
PI + KIN001.055 + Temozolomide + 

Temsirolimus 

 0 33.0% 73.2% 82.5% 
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Top secDrugs induce loss of viability in HMCLs as single-agent treatment 
 

First, we used our panel of HMCLs as in vitro validation screens to evaluate the top predicted 

secDrugs, including 17-AAG, PF.4708671, SB505124, Navitoclax, PLX4720, MLN4924, 

YM201636, FK866, KIN001.002. As shown in Figure 1, the predicted secDrugs showed high 

single-agent in vitro cytotoxicity in our myeloma cell line panel, including innate and acquired 

PI-resistant and IMiD-resistant myeloma cell lines compared to untreated control at increasing 

concentrations of secondary drugs. 

 

Figure 1. secDrugs decrease in vitro cell viability in multiple myeloma. 

 

 
 

Single-agent dose-response plots for secDrugs in HMCLs. 

A 17AAG; B FK866; C SB505124; D Navitoclax; E PLX4720; F MLN4924; G YM201636; 

H PF.4708671; I KIN001.002. 

 

Single-cell transcriptomics (scRNA-seq)-based drug screening predicted 17-AAG + FK866 

as potentially effective against myeloma 

 

Next, we used single-cell RNA sequencing (scRNA-seq) as a novel biomarker-based drug screen 

to identify single-cell sub-clones (represented by t-SNE clusters) that harbor secDrug target 

genes in the untreated/baseline HMCLs representing sensitive or myeloma tumors. Our scRNA-
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seq data in (representative t-SNE clusters shown in Figure 2) demonstrated that the majority of 

the single-cell clusters in drug-sensitive and drug-resistant myeloma have high expression of 17-

AAG target genes HSP90AA1, HSP90AB1, and the FK866 target gene NAMPT indicating that 

17-AAG and FK866 combination may be effective against these subpopulation clusters. The 17-

AAG target gene list was derived from the Harvard Medical School (HMS)’s NIH Library of 

integrated network-based cellular signatures perturbagen database, a publicly available database 

devoted to understanding how human cells respond to perturbation by drugs, the environment, 

and mutation.292,294 

 

Figure 2A. Results from the single-cell RNAseq) analysis on the myeloma cell line pair 

U266-P/VR.  

 

Comparison of the t-SNE/Graph-based clusters between U266P vs. U266VR cell lines 

(U266P—parental/sensitive, U266VR—acquired-resistant). 
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Figure 2B. Results from the single-cell RNAseq) analysis on the myeloma cell line pair 

U266-P/VR. 

Single cells with an enriched expression of the target genes of 17AAG (HSP90AA1, 

HSP90AB1) and FK866 (NAMPT). 

 

 

 

17-AAG shows synergy with PIs, IMiDs, and FK866 
 

We used a sub-panel of HMCLs representing PI-sensitive (FLAM76, KAS6/1, MM1S), innate 

resistance (JIM-3, LP-1; representing refractory disease), and acquired PI/IMiD resistant clonal 

pairs (U266P/VR, RPMI8226P/VR, JJN-3P/VR, and MM1SP/LenR; representing relapse MM) 

to evaluate the effect of the predicted secDrug-based combination regimen, 17-AAG + FK866 
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either as a combination of these two secDrugs or using PIs or IMiDs as the backbone. Cell 

survival curves representing 17-AAG + Ixazomib, 17-AAG + FK866, and 17-

AAG + Lenalidomide combination are shown in Figure 3A–C. We found that 17-AAG not only 

showed synergy with PIs and IMiDs, but the combination of 17-AAG and FK866 also showed 

significant synergy, as depicted by the dose-response curves and CI values representing the 

combination treatments. CI values were consistently less than 1, which indicates synergy.295 In 

addition, FK866 also showed synergy with Ixazomib (Ixa + FK866 survival curves are shown in 

Figure 3D). Cell survival curves representing other top secDrugs + Ixazomib combination in 

innate sensitive, innate resistant, and acquired resistant HMCLs are shown in Figure 3E–I. Figure 

S1: Predicted top secDrugs synergize with Ixazomib (secDrug+ IXA) in myeloma cell lines 

representing innate sensitive, Innate resistance, Parental/sensitive, and clonally-derived acquired 

PI resistance. D) FK866; E) PLX4720; F) YM201636; G) Navitoclax; H) MLN4924; I) 

PF.4708671. 

 

Cell viability was assessed by CellTiter-Glo assay (48h). CI – Combination index calculated 

using Chou-Talalay’s CI theorem). (CI>1 – antagonism; CI=1 – additive; CI<1 – synergism) 

(VR-Velcade/bortezomib/PI-resistant cell lines). 

 

These secDrugs also showed strikingly high synergy with Ixazomib, as depicted by the CI values. 

Further, based on dose reduction index (DRI) values, the IC50 of Ixazomib in myeloma cell lines 

was predicted to be significantly reduced in the presence of these secDrugs.  

 

Figure 3J shows the relative decrease of the predicted effective IC50 (nM concentration) of 

Ixazomib when used in combination with 17-AAG. The DRI values, calculated using the CI 

theorem, demonstrated that 17-AAG improved the therapeutic index of PI and IMiD 

administration to the cells and decreased the amount of PI/IMiD required to achieve effective 

responses295. This points towards the possibility of reducing the dose and, thereby, the toxicity 

of PIs when administered as a 17AAG + PI combination. Drug-induced apoptosis was confirmed 

in HMCLs using Caspase 3/7 activity assays (data not shown). 
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Figure 3A. The secDrug 17AAG synergizes with PIs (17AAG + IXA) 

 

 
 

 

 

Figure 3B. The secDrug 17AAG synergizes with FK866 (17AAG + FK866) 
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Figure 3C. The secDrug 17AAG synergizes with IMiDs (17AAG + Lenalidomide) 

 

 
 

Figure 3D: Predicted top secDrug FK866 synergize with Ixazomib (secDrug+ IXA) in 

myeloma cell lines representing innate sensitive, Innate resistant, Parental/sensitive, and 

clonally-derived acquired PI resistance 

 

 
 

Figure 3E: Predicted top secDrug PLX4720 synergize with Ixazomib in MM cell lines 

representing innate sensitivity/ resistance, Parental/sensitive, and clonally-derived 

acquired PI resistance 
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Figure 3F: Predicted top secDrug YM201636 synergize with Ixazomib in MM cell lines 

representing innate sensitivity/ resistance, Parental/sensitive, and clonally-derived 

acquired PI resistance 
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Figure 3G: Predicted top secDrug YM201636 synergize with Ixazomib in MM cell lines 

representing innate sensitivity/ resistance, Parental/sensitive, and clonally-derived 

acquired PI resistance 

 

 

 

Figure 3H: Predicted top secDrug MLN4924 synergizes with Ixazomib in MM cell lines 

representing innate sensitivity/ resistance, Parental/sensitive, and clonally-derived 

acquired PI resistance 
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Figure 3H: Predicted top secDrug MLN4924 synergize with Ixazomib in MM cell lines 

representing innate sensitivity/ resistance, Parental/sensitive, and clonally-derived 

acquired PI resistance 
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Figure 3J: Predicted decrease in IC50 (nM concentration) in 17-AAG+PI combination. 

Dose reduction index (DRI) values demonstrated that 17-AAG improved the therapeutic 

index of PI and IMiD administration to the cells and decreased the amount of PI/IMiD 

required to achieve a response. 

 

 

In vitro, dose-response plots for secDrug combination treatment in HMCLs representing innate 

sensitivity, innate resistance, Parental/sensitive, and clonally derived PI/IMiD acquired 

resistance. Cell viability was assessed by CellTiter-Glo assay (48 h). CI (combination index) and 

DRI (dose reduction index) values were calculated using Chou–Talalay’s CI theorem. (CI > 1—
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antagonism; CI = 1—additive; CI < 1—synergism) (VR-Velcade/bortezomib/PI-resistant cell 

lines, LenR- Lenalidomide/IMiD-resistant cell line). 

 

CyTOF analysis revealed 17-AAG-induced cell death of PMCs and key changes in 

myeloma-specific proteomic markers 

 

High-dimensional mass cytometry or CyTOF analysis is a deep immunophenotyping method 

that combines flow cytometry and elemental mass spectrometry.296 We performed CyTOF 

analysis on PMCs obtained from myeloma patients (n = 6) to assess 17-AAG-induced cell death 

through apoptosis as well as to evaluate changes in phenotypic and functional markers in MM 

cells at the single-cell/sub-clonal proteomics levels. As shown in Figure 4A, CyTOF analysis 

following exposure to 17-AAG treatment revealed a distinct cluster of cells defined by elevated 

cleaved caspase levels in the primary samples, indicating treatment-induced cell death by 

apoptosis in the cells exposed to 17-AAG. 
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Figure 4. Representative figures showing CyTOF analysis results in patient primary 

multiple myeloma cells. 

 

Figure 4A                                                            
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Figure 4B 

    

 
  

CyTOF analysis was performed on Live cells (n = 6). (A) 17-AAG induces elevated cleaved 

caspase 3 levels. Samples were treated with 17-AAG (2, 5, and 10 μM) or DMSO and Gated on 

LIVE cells. (i) The FlowSOM meta-cluster results were condensed into cc3 positive and negative 

cell subsets based on cc3 expression UMAPs and plotted over CLF dose. (ii) cc3 induction is 

also shown in the violin plots. (B) Downregulation of genes associated with myeloma cell 
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survival. Representative violin plots of CyTOF analysis in patient primary myeloma cells 

showing expression of myeloma markers following 17-AAG treatment, including IRF4, 

pSTAT3, IZKF3, CD138, CD71, pRB, and CD27. 

 

Immunoblotting 
 

Treatment-induced protein expression of the phenotypic/functional markers of myeloma 

(p65/NFκB, IRF4, and cMyc) and markers of apoptosis (including Cleaved Caspase-3, Cleaved 

Caspase-9, etc.) was confirmed using immunoblotting analysis in HMCLs. Figure 5A shows 

representative pre- vs. post- 17-AAG treatment immunoblotting results on these myeloma cell 

survival and apoptotic pathways. Densitometry analysis results are provided in Figure 5A. Our 

results show a substantial decrease in IRF4, p65, and cMyc following 17-AAG treatment and a 

concurrent increase in Cleaved Caspase-3, Cleaved Caspase-9 protein expression, which was 

also confirmed at the mRNA level using pre- vs. post-17AAG-treatment differential gene 

expression (RNAseq) analysis, along with several other myeloma protein/survival markers like 

STAT1, RELB, NFKBIA, NFKB2, and IKZF3. 

 

Figure 5. Immunoblotting analysis results show 17-AAG treatment-induced changes in 

protein markers. 

 

Figure 5A 
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Figure 5B 

 

 

 

(A) Representative western blots confirm the differential expression of proteins involved in 

myeloma cell survival and apoptotic pathways in innate sensitive (FLAM76), Innate resistant 

(LP1), and Clonally-derived acquired resistant HMCLs (U266P/VR, RPMI8226P/VR). (B) 

Densitometry analysis. Beta-actin was used for the normalization of the Western blots. 

 

17-AAG induces apoptosis via a mitochondrial-mediated pathway in myeloma 
 

To investigate if 17-AAG imparts its cytotoxic effects in myeloma by generating reactive oxygen 

species (ROS), particularly super-oxides and hydrogen peroxide (H2O2), cellular superoxide 

anions were measured by using the fluorescent dye DHE. MMP was assessed using JC-1. JC-1 

is a cationic carbocyanine dye that accumulates in mitochondria. The dye exists as a monomer 

(green fluorescence) at low concentrations and changes color from green to red in energized 

mitochondria. 

 

We observed the induction of cellular superoxide anions (Figure 6A) and intracellular ROS 

production (Figure 6B) that causes mitochondrial membrane depolarization following 17-AAG 

treatment in myeloma cells representing sensitive and resistant disease. 
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Figure 6. 17-AAG induces super-oxide levels, intracellular ROS generation, and 

mitochondrial membrane potential (MMP) in myeloma cell lines. 

Figure 6A 

 

 
 

 

Figure 6B 

 

 



115 | P a g e  

 

(A) Super-oxide. Cellular superoxide anions were measured by using the fluorescent dye DHE 

(Abcam), and red fluorescence was detected by the Synergy Neo2 multi-plate reader. (B) 

Mitochondrial membrane potential (MMP) was assessed using JC-1 (Abcam), a cationic 

carbocyanine dye that accumulates in mitochondria. The dye exists as a monomer (green 

fluorescence) at low mitochondrial membrane potential and changes color from green to red in 

energized mitochondria. Cells were incubated with 5 μM JC-1 dye for 15 min in the dark at 

37 °C, washed twice in PBS, and then analyzed for red and green fluorescence by Synergy Neo2 

multi-plate reader. 

 

17-AAG-induced cell death was comparable with Hsp90 knockdown 

 

Next, we compared the effect of Ixa and Ixa+17-AAG combination therapy between wild-type 

and CRISPR-mediated HSP90AA1 gene knockdown cell lines. Dose-response curves in Figure 

7 show that the in vitro cytotoxicity in RPMI8226 cell lines was comparable following HSP90 

inhibition, either through 17-AAG treatment or CRISPR-mediated HSP90 knockdown. This 

points toward an on-target effect of 17-AAG therapy leading to the anti-MM efficacy. 

 

Figure 7: Comparison of Ixazomib dose-response curves and Ixa-IC50 values following 

HSP90 inhibition, either through 17-AAG treatment or CRISPR-mediated HSP90 

knockdown. 

 

Figure 7A 

 

 

 

https://www.nature.com/articles/s41408-022-00636-2/figures/5
https://www.nature.com/articles/s41408-022-00636-2/figures/5
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Figure 7B 

 

 
 

Figure 7C 
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N-Ras mutant HMCL showed high sensitivity to 17-AAG treatment 
 

Finally, the myeloma cell lines ANBL6P, ANBL6VR, and ANBL6 N-Ras mutant were treated 

with single-agent 17-AAG, Ixa, and 17-AAG + Ixa combination. We have described earlier that 

these activating mutations of the Ras oncogenes in ANBL6 (ANBL6 N-Ras) may lead to growth 

factor independence and suppression of apoptosis [18]. Notably, our ANBL6 N-Ras mutant cell 

line showed 20 times greater 17-AAG sensitivity (lower IC50) compared to the ANBL6P or VR 

cell lines. (Figure 8) 

 

Figure 8. Comparison of dose-response curves of PI-sensitive, PI-resistant, and N-Ras 

mutant HMCLs following 17-AAG treatment. 

 

 

 

Gene-expression profiling analysis results 
 

First, we compared the baseline (untreated) bulk mRNA sequencing analysis profiles of the 

HMCLs representing extraordinary responses (top-most sensitive vs. top-most resistant) to 17-

AAG. At p < 0.05, next-generation mRNA sequencing analysis showed 421 genes were DE 

between the 17-AAG-sensitive and the 17-AAG-resistant groups (fold-difference≠1). Among 

these, 360 genes had a fold change difference of >2 or <−2 between sensitive and resistant 

groups. Table 3 shows the top 50 genes (top 25 upregulated + top 25 downregulated) that were 

most DE as signatures of 17-AAG sensitivity in myeloma. IPA analysis revealed B Cell Receptor 

Signaling (p = 1.90E−03), RhoGDI Signaling (p = 1.22E−03), and IL-10 Signaling 

(p = 1.43E−03) as the top canonical pathways associated with 17-AAG sensitivity in myeloma 

based on the genes that were DE. 
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Differential gene expression analysis of kinetic (treatment-induced) changes between baseline 

(untreated) vs. single-agent 17-AAG (0.5 μM) treatment (24 h) in HMCLs representing 

sensitive + intermediate + resistant myeloma showed a total of 1449 genes were DE in response 

to 17-AAG with p-value less than 0.05 (|fold-change | >1). Among these, 865 genes had a |fold-

change | >2. Figure 9A shows a heat map of the top 36 DEGs (|fold-change | >1; false-discovery 

rate (FDR < 0.05)). When single-agent 17-AAG-induced kinetic changes were considered 

separately for each HMCL (RPMI8226, FLAM76, JIM3, U266, and LP1), 422 genes were found 

common between all the Treated vs. Untreated signatures at |fold-change | >2 (p < 0.05), as 

shown in the Venn diagram (Figure 9B). IPA analysis (Figure 9C) based on the DEG signatures 

of 17-AAG single-agent treatment revealed cell cycle control of chromosomal replication (z-

score −4.243; p-value 3.30E−12), EIF2 signaling (2.496; p = 1.12e−04), aryl hydrocarbon 

receptor signaling (z-score −3.464; p-value 1.96E−03), and protein ubiquitination pathway 

(PUP; p = 7.90e−08) as top canonical pathways. Downregulation of CEBPB (z-score −6.670; p-

value of overlap 5.28e−19), ERBB2 (z-score −5.358; p-value 2.57e−08), CSF2 (z-score −4.750; 

p-value 1.24e−05) and CCND1 (z-score −3.707; p-value 2.40e−07) and upregulation of the 

microRNAs let-7 (z-score 5.501; p-value 2.01e−09) were predicted as the top upstream regulator 

based on significantly DEGs (Figure 9D). Interestingly, IPA analysis also showed that gene 

signatures of 17-AAG treatment were positively correlated with that of bortezomib (z-score 

2.048; p-value 1.68e−05) and lenalidomide (z-score 2.774; p-value 2.80e−02), indicating a 

possible basis for 17-AAG + PI and 17-AAG + IMiD synergy. 
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Figure 9. Differential gene expression analysis of 17-AAG single-agent treatment 

 

Figure 9A 

 

 
 

Figure 9B 
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(A) Heatmaps generated using unsupervised hierarchical clustering (HC) analysis showing top 

differentially expressed genes (bulk RNAseq data) that showed significant de-regulation 24 h 

following Single-agent 17-AAG exposure. IPA analysis results show (B) Venn diagram and IPA 

analysis results represent differentially expressed genes from the comparison of single-agent 17-

AAG-induced kinetic changes (Treated vs. Untreated signatures) when each cell line 

(RPMI8226, FLAM76, JIM3, U266, and LP1) were considered separately (|fold-change|>2; 

p<0.05). (C) canonical pathways and (D) graphical summary. Columns represent cell lines, and 

rows represent genes. Prior to Hierarchical clustering, gene expression values were z-score 

normalized. 

 

A total of 3974 genes changed significantly between untreated vs. 17-AAG + Ixa combination-

treated samples (p < 0.05; fold-difference≠1). Among these, 853 genes showed |fold-change | >2 

with an FDR < 0.05. Figure 10A depicts a heatmap of the top 50 genes associated with 17-

AAG + Ixa combination treatment. IPA analysis based on DEGs significantly associated with 

17AAG + Ixa treatment revealed PUP (p = 3.89E−23) as the top canonical pathway (Figure 

10B). Upstream regulator prediction analysis revealed inhibition of the transcriptional regulators 

CEBPB (z-score −8.871; p-value of overlap 1.38e−22), MYC (z-score −6.732; p-value of 

overlap 3.83e−18), as well as VEGF (z-score −6.805; p-value 9.76e−07), HGF (z-score −7.139; 

p-value 2.08e−10), and CSF2 (z-score −6.770; p-value 4.16e−07) following 17-AAG + PI 

combination treatment (Figure 10C). 

 

The Venn diagram in Figure 10D shows 50 genes that were common between the three 

comparisons (17-AAG vs. Control, 17-AAG + Ixa vs. Control, and Ixa vs. control). Further, 

Figure 10D also shows IPA-predicted canonical pathways that these 50 common genes (p < 0.05) 

represent. 

 

Finally, IPA predicted upregulation of the microRNA let-7 (z-score 7.180; p-value 5.02e−12) as 

the top upstream regulator based on significant DEGs (Figure 10E) 
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Figure 10: Differential gene expression analysis of 17-AAG + PI combination treatment 

 

Figure 10A 

 

 

 

Figure 10B 
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Figure 10C 

 

 
 

Figure 10D 
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Figure 10E 

 

 

 

(A) Heatmaps generated using unsupervised hierarchical clustering (HC) analysis showing top 

differentially expressed genes (bulk RNAseq data) that showed significant de-regulation, 24 h 

following 17-AAG + Ixazomib combination treatment. IPA analysis results show (B) the top 10 

canonical pathways and (C) a graphical summary. Columns represent cell lines, and rows 

represent genes. Prior to Hierarchical clustering, gene expression values were z-score 

normalized. (D) Venn Diagram showing genes that were significant (p<0.05) in either 17-AAG 

vs. CON, IXA vs. CON and/or 17-AAG+IXA vs. CON. The image shows the top IPA-predicted 

canonical pathways represented by the 50 genes common to all the subsets. (E) IPA predicted 

upregulation of the microRNA let-7 as the top upstream regulator based on significantly 

differentially expressed genes following 17AAG+Ixa combination treatment. 
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Table 3: Top 50 (25 upregulated + 25 downregulated) differentially expressed genes between 

17-AAG sensitive and resistant HMCLs 

 
Genes Fold change (17AAG_Res vs. 17AAG_Sen) P-value (17AAG_Res vs. 17AAG_Sen) 

PTPRCAP -183.73 2.56E-03 

NAP1L3 -102.49 9.77E-03 

LTBR -97.47 1.46E-03 

PITX1 -88.67 1.81E-04 

GABRB2 -69.98 2.17E-02 

RTKN2 -67.63 4.26E-04 

PCLO -63.18 3.40E-02 

DYNC2H1 -62.76 4.20E-02 

CAPN5 -62.71 1.65E-02 

ARHGEF6 -57.08 4.20E-03 

PLEKHA5 -54.43 1.46E-03 

LGALS3BP -54.04 2.14E-02 

KIAA1549 -51.40 4.35E-04 

CDC42BPA -40.97 1.11E-02 

IGKC -38.91 3.60E-02 

GBP2 -36.97 1.68E-02 

TRIM2 -36.45 2.29E-03 

HSPA12A -33.95 8.10E-03 

EPB41L4A -31.70 4.25E-02 

COL18A1 -29.29 4.75E-02 

WBP5 -26.12 2.41E-02 

CES3 -24.97 1.21E-02 

NRSN2 -24.29 1.76E-02 

DOK2 -19.94 5.93E-03 

SOX4 -19.76 1.16E-02 

HOMER3 15.61 1.38E-02 

ASAP2 19.43 5.38E-03 

PPDPF 19.67 2.41E-02 

NLRP11 19.78 2.01E-02 

ABCG2 21.88 1.12E-02 

CDKN1C 22.68 3.89E-02 

CLEC7A 25.90 1.62E-02 

BIRC3 27.52 2.20E-02 

HERC5 31.88 2.02E-02 

AC005301.5 33.82 5.65E-03 

CD74 40.50 4.40E-02 

CD28 42.10 1.31E-03 
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RP11-844P9.2 48.85 1.69E-03 

BLK 50.65 2.05E-02 

ARL4C 55.17 3.78E-03 

IFIT3 55.20 2.31E-02 

SYNM 59.18 2.55E-02 

HLA-DRA 61.95 2.26E-02 

RGS1 76.85 3.87E-02 

LAPTM4B 125.55 3.13E-02 

FAM64A 156.03 1.54E-05 

KCNK1 250.60 9.67E-03 

RND3 324.32 3.78E-03 

SCML1 788.94 3.19E-04 

IGLC3 818.72 4.82E-03 

 

Creation of secDrug software package 

 

Finally, we developed an R software package based on our secDrug pipeline for predicting novel 

secondary therapies in chemotherapy-resistant cancers. secDrug takes a query of any cancer type 

and any test/primary/standard-of-care drug and outputs a list of the top secondary drug 

combinations with a confidence score and biological pathway visualization. Thus, secDrug has 

potential application in clinical decision-making for discovering resistance-reversing cancer 

chemotherapy regimens. R codes for the package are available at https://github.com/Ujjal-

Mukherjee/secDrug/tree/main/CombinationDrugMyeloma, and the datasets are available at the 

GitHub repository.  

Discussion 
 

Drug resistance is a major obstacle in achieving a complete and sustained therapeutic effect in 

cancer chemotherapy.280,283,297,298 Chemo-resistance may also lead to over-dosing and unwanted 

exposure to ineffective anti-tumor agents, thereby increasing the risk of adverse side effects and 

the cost of drug development.299,300 

 

In this study, we demonstrate the creation of a novel pipeline for drug development/drug 

repurposing that integrates in-silico computational prediction, single-cell multi-omics (single-

cell transcriptomics/scRNAseq and single-cell proteomics/CyTOF analysis) with in vitro and ex 

vivo validation, including the use of whole-genome transcriptomics (RNAseq) and genome 

editing technologies to identify and functionally validate secondary treatment regimens to 

https://github.com/Ujjal-Mukherjee/secDrug/tree/main/CombinationDrugMyeloma
https://github.com/Ujjal-Mukherjee/secDrug/tree/main/CombinationDrugMyeloma
https://github.com/Ujjal-Mukherjee/secDrug
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circumvent drug resistance in myeloma. Notably, we applied the pipeline to predict several drugs 

as potential candidates for anti-MM secDrugs for combining with PIs. These (“top secDrugs”) 

include, HSP90 inhibitor/17-AAG, Nicotinamide phosphoribosyl transferase or Nampt-

inhibitor/FK866, Survivin-inhibitor/YM155, PIKfyve-inhibitor/YM201636, Raf-inhibitor/PLX-

4720, Bcl2-inhibitor/Navitoclax, AKT inhibitor/KIN00102, transforming growth factor-β type I 

receptor, ALK4, ALK7-inhibitor/SB505124, HDAC-inhibitors (Panobinostat, SAHA), S6K1-

specific inhibitor/PF-4708671, and the neddylation-inhibitor/MLN4924. 

 

Further, we performed extensive in vitro, ex vivo, and functional validation in research models 

of refractory and resistant myeloma to validate 17-AAG + FK866, 17AAG + PI, and 17-

AAG + IMID as combination treatment candidates that also served as a proof-of-principle for 

our secDrug pipeline. Overall, our validation results corroborated with our in-silico prediction 

of secondary drugs based on secDrug analysis. 

 

17-AAG/Tanespimycin has previously been shown to work against myeloma, in vitro, in vivo 

(animal studies) as well in clinical studies. 301–303However, to our knowledge, this is the first 

study that evaluates explicitly the use of 17-AAG combination therapy in relapsed and refractory 

myeloma models. Further, in our study, the ANBL6 Ras mutant cell line showed 20 times lower 

17-AAG cytotoxicity compared to the ANBL6P/VR cell lines. An earlier study in metastatic 

malignant melanoma has shown that a patient harboring NRAS-activating mutation exhibited 

disease stabilization for 49 months following the administration of pharmacologically active 

doses of 17-AAG.304 Mutations of NRAS have earlier been shown to be significantly associated 

with lower single-agent PI-sensitivity and shorter time to progression in bortezomib-treated 

myeloma patients.305 Thus, our study points towards a unique niche (N-Ras mutant myeloma) 

where 17-AAG could be highly effective as a single agent as well as in combination with PIs 

and FK866, in addition to relapse and refractory myelomas. Moreover, we evaluated the 

molecular pathways involved in response to the top secondary drugs, which provided additional 

insights into the mechanism of action of 17-AAG as a secDrug. 

 

Myeloma tumor cells have elevated intracellular NAD+ levels that support the high rate of 

energy metabolism for uncontrolled proliferation, tumor cell growth, and survival.306,307 FK866 

is a chemical inhibitor of Nampt (Nicotinamide phosphoribosyl transferase), a key enzyme in 

NAD+ metabolism307. Consequently, FK866 has been shown to reduce myeloma tumor growth 
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in PI-sensitive and PI-resistant myeloma through the activation of autophagy and cell death in 

myeloma cells.308 In this study, we showed that FK866 not only overcomes PI-resistance when 

used as a single-agent or as an Ixa combination, combining 17-AAG + FK866 is highly 

synergistic against our validation models of relapsed/refractory myeloma. 

 

Our study introduces several novel secDrugs as potential synergistic partners of PIs that have 

never been studied as potent single-agent or combination therapy options in myeloma model 

systems, including KIN001-102 (A6730; Akt1/2 kinase inhibitor) and SB505124 (inhibitor of 

transforming growth factor-β type I receptor or ALK4, ALK7 that activates the SMAD2/3 

pathway). These may serve as novel candidates for further studies on the pre-clinical and clinical 

validation in xenograft or mouse models of myeloma. 

 

Although some of the other predicted secDrugs have earlier been shown to be effective against 

myeloma, very few studies have explored their efficacy as drug combinations with PIs/IMiDs in 

models of refractory/resistant myeloma. For example, PF-4708671 is a P70S6K1 isoform-

specific inhibitor that has recently been shown to induce statistically significant apoptosis in 

HMCLs and PMCs in combination with several standard-of-care therapies.309 NEDD8-

activating enzyme/neddylation-inhibitor/MLN4924 has once earlier been shown effective 

against a subset of cell lines represented by cell surface expression of TNFR1.310 PLX4720 (a 

small-molecule, ATP-competitive inhibitor of Mutant BRAF kinase) was earlier shown to have 

a partial single-agent response in patients harboring sub clonal BRAF mutations.311 Our in-silico 

predictions and single-agent cytotoxicity data thus build a strong case to test these drugs as 

secDrug combination regimens in a broader panel of HMCLs representing refractory and 

clonally derived acquired resistant cell lines. Among the other secDrugs, Navitoclax is a high-

affinity small-molecule BH3 mimetic that inhibits Bcl2 and BCL-xL. Navitoclax has been shown 

to inhibit cell proliferation in myeloma leading to the induction of apoptosis.312,313 YM201636 

is an inhibitor of PIKfyve, a mammalian protein involved in the regulation of crucial cellular 

functions, including nuclear signaling and autophagy. Few recent studies demonstrated the 

therapeutic efficacy of PIKfyve inhibitors in myeloma cell lines. 

 

Overall, we present here a unique pipeline that introduces not only novel secDrugs but also 

provides additional niches for secondary drugs that are already under preclinical or clinical 

investigation in relapsed/refractory myeloma.314,315 
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Our findings provide a strong case for combining the top predicted secDrugs with PIs and IMiDs 

to overcome resistance and thereby improve patient outcomes. This potentially introduces many 

more drugs as new and more effective therapeutic options for the management of resistant 

myeloma with a high probability of clinical success that promises to improve the quality of 

treatment, maximize drug efficacy, minimize toxicities and adverse drug reactions from over-

dosing and decrease the rate of mortality in myeloma patients. A logical extension of this pipeline 

would be the development of model systems where a combination of more than two secDrugs 

can be effectively tested. 

 

The integration of in silico modeling-based pipeline with single-cell technologies (scRNAseq 

and CyTOF analysis) introduces an innovative, evidence-based application in clinical decision-

making that will minimize the number of test drugs required for discovering successful 

combination chemotherapy regimens against drug-resistant cancers. 
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CHAPTER 3 

 

Validation of secondary therapies 

against Prostate Cancer 
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Abstract 
 

Prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage 

patients are treated with androgen deprivation therapy/ADT. However, despite a good initial 

response, patients eventually acquire ADT resistance and develop metastatic castration resistant 

PCa/mCRPC, a progressive disease state with poor median survival (<3 years). Metastatic 

castration-resistant prostate cancer (mCRPC) is the most advanced and lethal stage of prostate 

cancer. A subset of advanced CRPC patients eventually develops an aggressive variant of 

prostate cancer (AVPCa), a rapidly progressive disease state with a lack of AR expression (AR-

ve mCRPC) and limited or no therapeutic options. Therefore, there is an unmet need to identify 

novel agents for the management of AVPCa. We have developed a novel in silico algorithm, 

secDrug, that used computational optimization-regularization technique to identify the 

p38MAPK inhibitor, TAK715, as a top secondary drug that can confer a significant clinical 

advantage over TX monotherapy by enhancing the magnitude of therapeutic efficacy and 

reducing the required TX dose. Notably, in CRPC, the MAPK pathway is involved in sustaining 

AR-independent cell proliferation., Using the HMS LINCS database, we identified CSNK1D, 

MAPK14, MAP4K4, and CSNK1A1 (an activator of β-Catenin) as the target genes of TAK715. 

Through using single-cell transcriptomic analysis, we showed that cell subpopulations 

expressing the PCa stemness marker CD44, drug-resistant markers (CXCL8, CDK1), or 

epithelial-to-mesenchymal transition markers (Vimentin, TGFB1) were also a very high 

expression of TAK715 target genes (CSNK1D, MAPK14, MAP4K4) indicating TAK715 is 

potentially effective against treatment-refractory and stem-cell-like subclones. Next, we 

confirmed the efficacy of TAK715 alone and in combination with TXs in human PCa cell lines 

using in vitro cytotoxicity assays. TAK715 displayed high single-agent efficacy and strong 

synergism with TX (combination index/CI<0.7 indicating synergy). Synergy was particularly 

profound in the DUTXR (acquired TX-resistance) and PC3M (high metastatic property) cell 

lines. Notably, the TX+TAK715 combination lowered the effective TX dose required to achieve 

the desired therapeutic response by >10-folds (Dose Reduction Index/DRI 10.62±11.42). 

Further, cell-based phenotypic assays, including caspase 3/7 assay, Annexin-V/PI assay, cell 

cycle analysis, in-vitro live-cell imaging, scratch assay, and clonogenic assay strongly suggested 

that TX+TAK715 combination have higher effectiveness compared to TX alone, and exhibits 

strong synergism, particularly in androgen-independent aggressive mCRPC, possibly involving 
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stem-cell-based TX resistant single-cell subclones. Using a novel microfluidic chip-based 

Confined Cell migration assay, we also showed that the drug combination reduces both confined 

and unconfined migration, indicating potential inhibition of the metastatic potential of PCa. Gene 

expression profiling (mRNA sequencing) followed by Ingenuity pathway analysis (IPA) 

revealed upregulation of mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) 

as the top dysregulated pathways following single-agent and combination treatment, which were 

confirmed by immunoblotting. In vitro ROS generation assay and Mitochondrial membrane 

potential measurement following combination treatment confirmed elevated intra-cellular ROS 

level (≈7 folds, indicating oxidative stress) and membrane depolarization (indicating 

mitochondrial dysfunction), respectively, in mCRPC lines. Furthermore, our IPA causal network 

analysis predicted significant upregulation of microRNA-132 and downregulation of the 

RICTOR pathway, miR-21, in response to combination treatment. Using in silico analysis on 

multiple GEO PCa datasets, we found low expression level of miR-132 was associated with poor 

clinical prognosis, the transition from androgen-dependent (AD) to independent (AI) stage, and 

metastasis. miRNA 21 was significantly up regulated in the GEO PCa datasets. miRNA 21 is an 

AR-regulated miRNA that plays a key role in nullifying the effect of castration, driving 

progression to the androgen-independent stage, TX resistance, and cellular invasiveness through 

down-regulation of tumor suppressor PTEN. 

Together, we conclude that the TAK715+Taxane combination may be useful in curbing 

oncogenic progressions in AVPCa through simultaneous inhibition of multiple oncogenic 

factors/pathways. Our multi-pronged approach towards screening and pre-clinical validation for 

drug re-purposing represents a new paradigm in the management of aggressive treatment-

refractory subtypes of PCa. 
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Introduction 
 

Prostate cancer (PCa) is the second leading cause of non-cutaneous cancer-related deaths in the 

US (www.cancer.org).316 The androgen signaling pathway plays a crucial role in PCa 

development.237,239,262 Therefore, the standard treatment options for PCa are radical 

prostatectomy (RP) or radiation therapy with androgen-deprivation therapy (ADT).234 Most 

early-stage PCa patients (castration sensitive or CSPC) treated with ADT show good initial 

response with a high 5-year survival rate.317 However, a vast majority of these men eventually 

become unresponsive towards hormone therapy, and despite low levels of androgen, the disease 

progresses with continuously rising Prostate Serum Antigen (PSA), eventually developing more 

aggressive forms called Castration-resistant prostate cancer (CRPC).237,241,245,250 Metastatic 

castration-resistant prostate cancer (mCRPC) is the clinically most advanced and lethal disease 

state with signs of metastasis to distant organs like the brain, bone, lung, lymph node, and median 

survival of less than 3 years (5-year median survival rate of 31%).245 Although next‐generation 

AR-targeting chemotherapeutic treatments like abiraterone plus prednisone (AA/P) or 

enzalutamide (ENZ), and combination with taxanes (Docetaxel/DTX or Cabazitaxel/CBZ), 

increase survival rate slightly, eventual development of resistance (acquired resistance) is nearly 

universal where progression-free survival approaches ~0% in 3 years, often with severe side 

effects.318 Chemotherapy options become limited once patients fail DTX therapy. Further, 

neuroendocrine PCa or NEPC (also known as small cell carcinoma) is an intrinsically resistant, 

poorly differentiated aggressive variant of PCa that lacks AR expression266  
 

In addition, several groups, including ours, have shown that the presence of cancer stem-like 

cells (CSCs) like side populations (SPs) and CD133+ cells with self-renewal and differentiation 

(acquisition of mesenchymal phenotype or epithelial to mesenchymal trans-

differentiation/EMT) capacities significantly contribute to tumor aggressiveness and the 

development of drug resistance.28,97,98,216 

 

Drug development for these clinically most-aggressive and lethal variants of PCa (AVPC) thus 

poses a significant challenge with very few therapeutic successes.  

 

Our laboratory has designed a pharmacogenomics data-driven computational pipeline (secDrug) 

that identifies novel secondary drugs (“secDrugs”) for the treatment of drug-resistant advanced-

state cancers.319 
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In this study, we applied the secDrug algorithm to PCa models and identified several novel 

secondary drug candidates for the treatment of AVPC. Next, using single-cell RNA sequencing 

(scRNA-seq), we demonstrated the presence of PCa subclones representing aggressive, TX-

resistant, and cancer stem-like cells. Further, our scRNA-seq data predicted that the secDrug, 

TAK-715 (a p38α MAPK/ MAPK14 inhibitor), is potentially effective against PCa subclones 

with enrichment of treatment-resistant and stem-like genes. We hypothesize that our predicted 

and pre-screened secDrugs would be helpful in curbing oncogenic progressions as single-agent 

or in combination with taxanes in AVPC through simultaneous inhibition of multiple oncogenic 

factors/pathways. Using in vitro model systems of treatment-refractory and treatment-emergent 

AVPC (representing mCRPC, NEPC, and EMT), we demonstrated that the TAK-715 not only 

showed efficacy as a single-agent but also enhanced the efficacy of the taxane drugs DTX and 

CBZ. Further, we performed a sophisticated microfluidic chip-based confined cell migration 

assay that recapitulates diverse micro-environmental cues encountered by cancer cells during 

locomotion (e.g., the dimensionality of pores and 3D longitudinal, channel-like tracks) to 

investigate the effect of TAK-715-based regimens on cancer cell invasion, motility, and 

metastasis. Finally, we demonstrated the impact of TAK-715 in eroding ‘stem-like’ 

subpopulations (including SPs, quiescent/dormant cells, and ALDH1+ cells). 

 

Next, we performed pre- vs. posttreatment bulk and single-cell tumor RNAseq to identify 

differentially expressed genes (DEGs) and potential molecular pathways associated with the 

TAK-715 mechanism of action in AVPC at the tumor and sub clonal levels. Finally, using 

comparative analysis of whole-genome transcriptomics data between clinically sensitive and 

resistant PCa patients, we demonstrated that TAK-715 has the potential to be clinically effective 

based on the reverse matching of GEP signatures and top dysregulated pathways.  

 

Hence, using an innovative approach that integrates single-cell -omics technologies, 

microfluidics, and tumor mRNA sequencing with In vitro studies and patient data-based 

validation, we conclude that TAK-715 has the potential to improve the clinical outcome in 

AVPC chemotherapy by enhancing the therapeutic efficacy and abrogating the possibilities of 

development of bulk and sub clonal drug resistance. Such an evidence-based approach promises 

to minimize the chances of trial failures and improve the probability of clinical success. 
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Materials and Methods 

 

Drugs and Reagents 
 

Drugs, reagents, antibodies, and kits are listed in Table 1 

 

Reagents Manufacturer Location 

Fetal bovine serum (FBS) Hyclone (Thermo-Fisher Scientific Inc.) Rockford, IL, USA 

Trypsin (0.25% w/v) Hyclone (Thermo-Fisher Scientific Inc.) Rockford, IL, USA 

Penicillin-Streptomycin (10,000 U/mL) GibcoTM (Thermo-Fisher Scientific Inc.) Waltham, MA, USA 

Docetaxel Selleck Chemicals LLC Houston, TX, USA 

Cabazitaxel Selleck Chemicals LLC Houston, TX, USA 

TAK-715 Selleck Chemicals LLC Houston, TX, USA 

FITC Annexin V Apoptosis Detection Kit BD Biosciences San Jose, CA, USA 

FxCycle™ PI/RNase Staining Solution kit Thermo-Fisher Scientific Inc Waltham, MA, USA 

RIPA lysis buffer Thermo-Fisher Scientific Inc Waltham, MA, USA 

Protease Inhibitor Cocktail Thermo-Fisher Scientific Inc Waltham, MA, USA 

Phosphatase Inhibitor Thermo-Fisher Scientific Inc Waltham, MA, USA 

Pierce™ ECL Western Blotting Substrate Thermo-Fisher Scientific Inc Waltham, MA, USA 

HES-1 specific primer Hs00172878_m1 Thermo-Fisher Scientific Inc Waltham, MA, USA 

TaqMan Gene Expression Assays Thermo-Fisher Scientific Inc Waltham, MA, USA 

Vybrant™ DyeCycle™ Violet Stain Thermo-Fisher Scientific Inc Waltham, MA, USA 

CM-H2DCFDA (General Oxidative Stress Indicator) Thermo-Fisher Scientific Inc Waltham, MA, USA 

NucBlue™ Live ReadyProbes™ Reagent (Hoechst 

33342) 
Thermo-Fisher Scientific Inc Waltham, MA, USA 

RNeasy Plus Mini Kit QIAGEN Hilden, Germany 

QuantiTect Reverse Transcription Kit QIAGEN Hilden, Germany 

Quick Start Bovine Serum Albumin Standard Bio-Rad Hercules, CA, USA 

Tris Buffer Saline (TBS) Bio-Rad Hercules, CA, USA 

10% Tween 20 Bio-Rad Hercules, CA, USA 

Polyvinylidene fluoride membrane (PVDF) EMD Millipore Billerica, MA, USA 

Bovine Serum Albumin (BSA) VWR Radnor, PA, USA 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) 
Sigma-Aldrich Inc St. Louis, MO, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Inc St. Louis, MO, USA 

2′,7′-Dichlorofluorescin diacetate (DCFDA) Sigma-Aldrich Inc St. Louis, MO, USA 

Bradford Reagent Sigma-Aldrich Inc St. Louis, MO, USA 

JC-1 - Mitochondrial Membrane Potential Assay Kit Abcam Waltham, MA, USA 

HES1 (11988S) Cell Signaling Technology Danvers, MA, USA 

CD44 (3570T) Cell Signaling Technology Danvers, MA, USA 

Cleave-caspase 9 (9505T) Cell Signaling Technology Danvers, MA, USA 

Cleave-caspase 3 (9661T) Cell Signaling Technology Danvers, MA, USA 

Anti-rabbit IgG, HRP-linked Antibody (7074S) Cell Signaling Technology Danvers, MA, USA 

β-actin (A3854) Sigma-Aldrich Inc St. Louis, MO, USA 

 



135 | P a g e  

 

Identification of secondary drugs (secDrugs) 
 

We used a pharmacogenomics data-driven approach to identify potential agents that can be re-

purposed as novel secondary drugs to treat cancers resistant to standard-of-care (primary) drugs 

when used in combination with the primary drug. As the data source, we used the GDSC1000 

(Genomics of Drug Sensitivity in Cancer) database, a large-scale pharmacogenomics database 

of dose-response results (IC50 or AUC) on 265 compounds in >1000 cell lines representing a 

wide spectrum of human cancers320. These 265 drugs cover a wide range of targets and processes 

involved in cancer biology, which include drugs that are either approved and used in the clinic, 

or are undergoing clinical development, or in clinical trials, or are tool compounds in early-phase 

development. For the purpose of this study, we used inclusion criteria to filter cell lines with 

Genito-urinal cancer subtypes. A total of 136 cell lines were selected from the GDSC1000 

database breast (n=52), cervix (n=14), endometrium (n=11), ovary (n=45), prostate (n=8), testis 

(n=3), vulva (n=3).  

First, we assumed that IC50 values of DTX in these lines (including PCa cell lines) were 𝑆𝑏𝑖: 𝑖 ∈

{1, ⋯ , 𝑛}, where there are 𝑛 cell lines. Also, we assumed that there are 𝐾 other drugs, and the IC50 

values of the 𝑛 cell lines for the 𝐾 drugs are given by: 

𝑅𝑘𝑖: 𝑘 ∈ {1, ⋯ , 𝐾}, 𝑖 ∈ {1, ⋯ , 𝑛}. 

Next, we classified the cell lines as sensitive or resistant to DTX using a quantile of the empirical 

distribution of 𝑅𝑘𝑖, and a threshold criterion to achieve the classification. Finally, we identified 

secondary drugs or secDrugs that could kill the maximum number of DTX-resistant cell lines 

based on individual IC50 values. In the case of ties between the top secDrugs, we chose the drug 

with the lower mean IC50 values. 

 

Human Prostate Cancer Cell Lines 
 

AR
lo

 mCRPC/NEPC (PC3, PC3M, DU145) Osteotropic subline C42b. murine prostate gland 

carcinoma cell RM-1 was obtained from the American Type Culture Collection (ATCC) 

(Manassas, VA, USA). The taxane-resistant cell lines PC3-TXR and DUTXR were generated 

using dose-escalation of taxanes over time, as described earlier. The cell lines were authenticated 

at the source and tested randomly at regular intervals for tissue specimen provenance and cell 

lineage at the AU Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx) using 

Gene-Print 24 System (Promega). All cell lines are mycoplasma negative. PC-3, PC-3M cells 
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were maintained in 10% (v/v) (FBS) supplemented in F-12K, DU145 in Eagle's Minimum 

Essential Medium (EMEM). PC3-TXR and DUTXR were maintained in RPMI-1640 media with 

1% Penicillin-Streptomycin at 37°C, 21% O2, and 5% CO2 in a humidified cell culture chamber 

(Heracell™ VIOS 160i CO2; Thermo-Fisher Scientific™).  

 

Patient Samples 

 

Cancer Genome Atlas (TCGA) database: Gene expression on PCa patients was extracted from 

The Cancer Genome Atlas (TCGA) Data Portal Genomic Data Commons (GDCs) server 

(cancergenome.nih.gov). The interactive web-portals UALCAN and Gene Expression Profiling 

Interactive Analysis (GEPIA) were used for in-depth analysis of TCGA gene expression data 

files and to compare transcriptome data on target candidate pathway genes with tumor metastasis 

and patient survival from the prostate expression data matrix321,322. 

 

In vitro cytotoxicity assays and drug synergy analysis  
 

In vitro chemo-sensitivity assays were performed on human PCa cell lines using mitochondrial 

enzyme activity or MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

reagent) assay. Briefly, cells were plated in a 96-well culture plate at 2×103 cells/well and 

incubated for 24 h at 37°C with 5% CO2. Cells were treated with increasing concentrations of 

DTX (0- 2250nM), CBZ (0-2250nM), Enzalutamide (0-5062.5nM), Bicalutamide (0-5062.5nM) 

and TAK-715 (0- 625nM) as a single agent, or the combination of DTX+TAK-715, and 

CBZ+TAK-715. Following 48-hour incubation, the tetrazolium dye MTT was added according 

to the manufacturer’s instructions, and absorbance was measured at 550 nm using Synergy Neo2 

Microplate Reader (BioTek, USA). Percent change relative to untreated controls was calculated 

at each drug concentration, and the effect of drug exposure was determined by constructing 

cytotoxicity (growth) curves. Half-maximal inhibitory drug concentration (IC50) values were 

estimated by nonlinear regression using a sigmoidal dose-response equation (variable slope). 

Drug synergy was calculated by comparing single-agent and combination drug-response data 

based on Chou-Talalay’s combination index (CI) method and the isobologram algorithm 

(CompuSyn software;  Biosoft, US)323. CI values between 0.9-0.3 and 0.3-0.1 signify synergism 

and strong synergism, respectively, between the drugs treated in combination.  

Caspase-3/7 activity assay  
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Cell death by apoptosis was measured using Caspase-Glo 3/7 luminescent assay system kit 

according to the manufacturer’s instructions (Promega Madison, WI). Briefly, 2×103 cells/well 

were seeded into 96-well plates (triplicates) and treated at the estimated single-agent vs. 

combination IC50 values calculated by MTT assay. Following 48 hours of incubation, Caspase-

Glo 3/7 reagent was added and incubated for 2 hours, and luminescence was measured using a 

Synergy Neo2 Microplate Reader (BioTek, USA). The apoptosis level in each treatment group 

was normalized to the control group (no drug treatment with baseline caspase 3/7 assay 

luminescence) for each cell line. 

 

Annexin V and propidium iodide (PI) staining 
 

Annexin V and PI staining was used to assess apoptosis and necrosis by flow cytometry. Briefly, 

cells were seeded in 6 well plates at indicated concentrations and exposed to DTX and TAK-715 

as a single agent and as combinations. After 48h, cells were labeled with binding buffer 

containing annexin V-FITC (25 µg/ml) and PI (25 µg/ml) as well as 10 mM HEPES, 140 mM 

NaCl, 5 mM KCl, 1 mM MgCl2, and 1.8 mM CaCl2 (pH = 7.4), incubated for 10 min., followed 

by three washes in binding buffer. Both detached and attached cells were combined, and staining 

was quantified using a Becton Dickinson FACS Calibur flow cytometer (BD Biosciences, San 

Jose, CA) at 10,000 events per measurement. 

 

Assessment of cellular and nuclear morphology 
 

Cellular morphology, PCa cells were seeded 0.025*106 cells/ml in 6-well plates and exposed 

to TAK-715, either as a single agent or in combination with DTX for 48 h. Three areas with 

approximately equal cell densities were identified in each well, and images were captured with 

an EVOS FL digital cell imaging system (Thermo-Fisher Scientific, Inc.) using a 10X objective.   

 

For nuclear morphology, PCa cells were plated on top of the glass coverslip (1.5*105 cells/ml), 

incubated overnight, and treated with either vehicle or TAK-715 alone or as a combination with 

DTX. After 48h, the cells were labeled with NucBlue Live reagent and incubated for 20 minutes. 

Images were captured using a Nikon Eclipse Ti2 microscope and recorded in bright field and 

phase contrast modes at 20X and 40X magnifications. Images were analyzed using Image J 

software (National Institutes of Health, Bethesda, MD, USA). 
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Z’ LYTE Assay324 
 

The assay was outsourced to Thermo-Fisher Scientific to identify the targets of TAK-715. 

Briefly, 100 nL of 100X Test Compound (for each test concentration) in 100% DMSO was taken 

in a black 384-well plate. 2.4 µL of Kinase buffer was added to each well. 5 µL of 2X 

Peptide/Kinase Mixture (for each of the target kinases) was added to the corresponding wells. 

2.5 µL of 4X ATP Solution was added in each well, followed by a 30-second plate shake. The 

plate was incubated for 60 minutes for Kinase Reaction at room temperature. 5 µL of 

Development Reagent Solution was added, followed by a 30-second plate shake. The plate was 

again incubated for 60 minutes for Development Reaction at room temperature. The fluorescence 

reading was captured in a plate reader, and the data was analyzed. 

 

Assessment of cell cycle 
 

Control (no drug) and post-treated cells were prepared for cell cycle analysis by staining with PI 

(50 µg/ml) in sample buffer [PBS + 1% (w/v) glucose], containing RNase A (100 units/ml) for 

30 min at room temperature and analyzed by flow cytometry using a Becton Dickinson FACS 

Calibur flow cytometer (BD Biosciences, San Jose, CA). Cell cycle data were analyzed using 

CytExpert (Beckman Coulter Inc, Indianapolis, IN). Data are presented as the mean ± SEM of 

three separate experiments (n = 3/study). 

 
 

Determination of intracellular ROS levels (DCFDA assay) and superoxide levels (DHE 

assay) 
 

Cells were plated at a seeding density of 2000 cells/well and incubated overnight at 37°C. After 

24h, 100 ul of 10 uM DCFDA solution was added to each well and incubated in the dark for 45 

minutes at 37°C. DCFDA solution was then discarded and treated with either vehicle (0.5% 

DMSO) or TAK-715 single agent and in combination with DTX. Samples were collected at 

different time points (2, 4, 8, and 24h). Fluorescent intensity was measured on Synergy Neo2 

Hybrid Multi-Mode Microplate Reader, BioTek (Winooski, VT, USA) at excitation - 485nM 

and emission - 535 nm in endpoint mode.   

 

Prostate cancer cells were pre-incubated with 5 μM DHE for 15 min in the dark at 37 °C. Cells 

were then cells treated with TAK-715-based regimens for 24h. After that, cells were washed 
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once with a cell-based assay buffer, and red fluorescence was recorded by Synergy Neo2 multi-

plate reader. 

 

Assessment of Mitochondrial Membrane Potential 
 

Cell lines were treated with DTX, TAK-715, and DTX+TAK-715. Further, 100 μL/well of 

working JC-1 solution was added to the plate and incubated at 37°C for 10 minutes in the dark. 

Read plate endpoint in the presence of compounds and media on a fluorescent plate reader 

Synergy Neo2 Hybrid Multi-Mode Microplate Reader, BioTek (Winooski, VT, USA) at 535 nm.  

 

Assessment of Side Population 
 

A total of 1×106 /ml cells were cultured in 6 well plates and treated with TAK-715 alone or in 

combination with DTX. After 24h, cells were stained with 5 μM Vybrant DyeCycle Violet and 

1 ug of 7-AAD for 30 min at 37°C. Following dye incubation, cells were immediately analyzed 

(10,000 events per measurement) using a Becton Dickinson FACS Calibur flow cytometer (BD 

Biosciences, San Jose, CA). 

 

Colony formation assay 
 

PCa cells were seeded in a 6-well plate at 0.025*106 cells/ml, incubated overnight, and treated 

with DTX and TAK-715 as a single agent or in combination. The cells were then harvested and 

plated in a 24-well plate at a concentration of 1000 cells/well and incubated for 1- 2 weeks. The 

colonies were fixed with 100% methanol and stained with Crystal Violet. Images were taken for 

control, treated cells, and the colonies using an EVOS FL digital cell imaging system (Thermo-

Fisher Scientific, Inc.). Images were recorded in bright field and phase contrast modes at 20X 

and 40X magnifications and analyzed using Image J software. 

 

Cell migration/Scratch Assay 
 

Cells were plated in 6-well plates at 1×105 cells/well and incubated for 48 h to a 95% confluency. 

The monolayer was scratched with an SPLScar Scratcher 6 well Tip at a width of 0.50 mm at 

the center of the well. TAK-715 as single-agent or DTX+TAK-715 combination doses were 

applied to the cells in the respective wells. F-12K culture medium supplemented with 10% FBS 

containing the vehicle (0.05 % DMSO) was added to the cells in the control wells. Micrographs 

of the wound areas were obtained at 0, 24, and 48 hours using an EVOS FL digital cell imaging 
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system (Thermo-Fisher Scientific, Inc.). Images were recorded in brightfield and phase contrast 

modes at 20X and 40X magnifications. The area of the initial wound (at 0 h) and the “gap area” 

were measured at 48 hours with Image J software. 

 

Comet Assay 
 

Comet assay was performed following the manufacturer’s protocol (R&D Systems). Briefly, 

PCa cells were treated with DTX+TAK-715 combination for 48 hours. After that, the cells were 

collected and washed with PBS. Then, the cells were mixed with low-melting agarose and 

immobilized on the Comet slide. Next, the cells were treated with a lysis solution to break open 

the cell membrane, and DNA was denatured under alkaline conditions. Cells were then stained 

with propidium iodide, and Images were captured by Gel Doc EZ Gel Documentation System, 

followed by analysis through ImageJ software. 

 

Microfluidic (μ)-channel Cell Migration Assay 
 

The fabrication of a Polydimethylsiloxane (PDMS)-based μ-channel assay using standard 

multilayer photolithography and replica molding has been demonstrated earlier (Figure 11C). In 

this study, PCa cells were seeded in 6 well plates exposed to TAK-715 as a single agent and 

TAK-715+DTX combinations at indicated concentrations. Next, 1-1.5 x 105 cells were 

introduced into the cell seeding inlet line of the microfluidic channel via pressure-driven flow 

and were allowed to adhere for 30 min at 37oC, 5% CO2. Next, the cell suspension was removed 

and substituted with a serum-free medium. Medium supplemented with 10% FBS was added 

into the chemoattractant inlet line to trigger cell entry into the channels. The devices were placed 

on an automated Nikon Ti2 Inverted Microscope equipped with a Tokai Stage-Top incubator 

unit, which maintained cells at 37 °C and 5% CO2. Cell entry into the channels was recorded via 

time-lapse microscopy. Images were recorded every 20 min for 10 h with a 10x /0.45 NA Ph1 

objective. 

 

Pre- and post-treatment tumor mRNA sequencing (RNA-seq): 
 

The effects of DTX and TAK-715 as a single agent and in combination exposure on gene 

expression in PCa cell lines were assessed using next-generation RNA sequencing of bulk tumor 

cells. Pre- and post- drug-exposure TAK-715 single-agent, TX+TAK-715 combination) tumor 

cells were harvested, and high-quality RNA was extracted using QIAshredder and RNeasy kit 
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(Qiagen) according to the manufacturer’s protocol. RNA concentration and integrity were 

assessed using a Nanodrop-8000 spectrophotometer (Thermo-Fisher Scientific, USA), Qubit 2.0 

Fluorometer (Invitrogen, Carlsbad, CA, USA), and Agilent 2100 Bioanalyzer (Applied 

Biosystems, Carlsbad, CA, USA) and stored at -80°C. An RNA integrity number (RIN) threshold 

>8 was applied, and RNA-seq libraries were constructed using Illumina TruSeq RNA Sample 

Preparation kit v2. Libraries were then size-selected to generate inserts of ~200 bp, and RNA 

sequencing was performed on Illumina's NovaSeq platform using a 150bp paired-end protocol 

with a depth of > 20 million reads per sample. Average quality scores were thoroughly above 

Q30 for all libraries in both R1 and R2. 

 

RNAseq data analysis 
 

RNA-seq data from the cell lines and patient RNAseq data (described above) was pre-processed 

and normalized, and differential expression (DE) analysis was performed using command-line-

based analysis pipeline (DEseq2 and edgeR) and Partek Flow software (Partek, Inc, USA). 

Quality control (QC) check on the RNA-seq raw reads was performed using the FastQC tool, 

followed by read-trimming to remove base positions that have a low median (or bottom quartile) 

score. STAR Aligner tool mapped processed RNA-seq reads to the hg38 human genome build. 

Next, we used GSA that applies limma, an empirical Bayesian method, to perform differential 

gene expression analysis between groups and detect the DE genes. Genes with mean fold-

change>|1| and p<0.05 were considered as the threshold for reporting significant differential gene 

expression. Heatmaps were generated using unsupervised hierarchical clustering (HC) analysis 

based on the differentially expressed genes (DEGs).  

 

Pre- and post-treatment Single-cell RNA sequencing (scRNA-seq) 
 

Automated single-cell capture, and cDNA synthesis were performed on the untreated and 

TAK-715-treated acquired taxane-resistant mCRPC DUTXR using the 10X Genomics 

Chromium platform. Single-cell RNAseq-based gene expression analysis will be performed 

on Illumina HiSeq 2500 NGS platform (Paired-end. 2*125bp, 100 cycles. v3 chemistry) at 

~10 million reads per sample. 
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scRNA-seq data analysis 
 

Single-cell RNAseq datasets were obtained as matrices in the Hierarchical Data Format (HDF5 

or H5). We used CellRanger, Seurat, and Partek Flow software packages will be used to pre-

process the scRNA-seq data and perform single-cell transcriptomics. Highly variable genes were 

selected for clustering analysis based on a graph-based clustering approach. The visualization of 

cell populations was performed by T-distributed stochastic neighbor embedding (t-SNE) and 

UMAP (Uniform Manifold Approximation and Projection) for biomarker-based identification 

of subclones representing TX-resistant cells, potential TAK-715 target subclones, and cancer 

stem cell signatures, as well as TAK-715 treatment-induced erosion of these subclones. 

 

Ingenuity pathway analysis (IPA) 
 

Ingenuity pathway analysis (IPA; Qiagen) analysis was performed using top DEGs to reveal 

molecular pathways/mechanisms, upstream regulator molecules, downstream effects, biological 

processes, and predicted causal networks governing TAK-715 function and successful drug 

combinations in AVPC. 

 

Quantitative Reverse Transcriptase Polymerase chain reaction (qRT-PCR) 

 

Cell lines were plated and treated with TAK-715 alone and in combination with DTX or with 

vehicle (0.5% DMSO) for 24 hours. Total RNA isolation and quantification were performed as 

described above. cDNA was then prepared using a QuantiTect Reverse Transcription kit 

(Qiagen). Following reverse transcription, TaqMan gene expression assay was performed using 

HES-1 specific TaqMan primers (Hs00172878_m1) and TaqMan Fast Advanced Master Mix in 

CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA). 

 

Isolation of the CD44+ population  
 

DUTXR cells were collected and washed with PBS, followed by permeabilization using cold 

methanol. Cells were then washed 2X with PBS and resuspended in 500 ul of antibody dilution 

buffer containing CD44PE-conjugated antibody, followed by 1-hour incubation at room 

temperature in the dark. After that, the cells were washed with PBS 1X and sorted using MoFlo 

XPD Flow Cytometer. The sorted cells were immediately put in culture using DMEM/F12 (1:1) 

basal media containing human epidermal growth factor, basic fibroblast growth factor, and 

recombinant human leukemia inhibitory factor. 
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Measurement of Oxygen Consumption Rate (OCR) 
 

We measured the OCR using the Agilent Seahorse Extracellular Flux (XF) Technology. Briefly, 

DUTXR cells were plated in an XFp plate and treated with vehicle control (0.5% DMSO), 

Docetaxel, and TAK-715 for 24 hrs. On the next day, using the Agilent Seahorse XF Cell Mito 

Stress Test kit, the mitochondrial function was measured by the XFp seahorse analyzer.  First, 

oligomycin and Fluoro-carbonyl cyanide phenylhydrazone (FCCP) were injected sequentially, 

followed by a third injection of a mixture of Rotenone and Antimycin A. Oligomycin inhibits 

ATP synthase and reduces OCR, followed by FCCP that raises OCR to the maximal rate by 

collapsing the inner membrane gradient and increasing the electron transport chain activity. 

Lastly, rotenone and antimycin A, which are complex I and antimycin complex III inhibitors, 

respectively inhibit the electron transport chain and reduce the OCR to a minimal value. 

 

Data were normalized to the protein concentration at the end of each experiment. Data was 

calculated, and graphs were plotted using Agilent Seahorse Wave Desktop software and report 

generator, MS Excel, and GraphPad Prism. 

 

Statistical analysis  
 

All statistical analysis was performed using R (the project for statistical computing and graphics) 

version 4.1.0 and GraphPad Prism v9.0. All tests were two-sided, and p<0.05 to be considered 

statistically significant. We used a non-parametric Wilcoxon rank-sum test for differential 

expression analysis between two groups of cells.  

 

Results 
 

Identification of secondary drugs against aggressive PCa using the secDrug algorithm 
 

A total of 1091 cell lines were present in the Genomics of Drug Sensitivity in Cancer 

(GDSC1000) database. The following filtering criteria were applied to select computable B-cell 

lines: Target Cell - B-Cell; Cancer Type blood; Tissue - blood; Histology - lymphoid_neoplasm 

or haematopoietic_neoplasm; Site - haematopoietic_and_lymphoid_tissue; No missing data). A 

total of 94 cell lines satisfied the above filtering criteria and were selected for further analysis. 

IC50 values were processed, imputed, and categorized as S (PI-sensitive), R (PI-resistant), and N 

(‘Neutral’/Intermediate PI IC50 values) prior to analysis (further details in the Methods section). 

We applied secDrug to cell lines denoted as N and R (PI-resistant and PI-neutral) in this 
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GDSC1000 dataset and predicted the top drugs that can be best combined with a PI backbone to 

achieve a response. The predicted top secondary drug combinations in PI-resistant+ PI-neutral 

B-cell cancers are shown in Table 1. These include HSP90 inhibitor (17-AAG), Nicotinamide 

Phosphoribosyl Transferase or Nampt inhibitor (FK866), Survivin inhibitor (YM155), PIKfyve 

inhibitor (YM201636), Raf inhibitor (PLX-4720), Bcl2 inhibitor (Navitoclax), SB505124 

(transforming growth factor-β type I receptor, ALK4, ALK7 inhibitor), S6K1-specific inhibitor 

(PF-4708671), and the neddylation inhibitor (MLN4924). Furthermore, when the top PI-resistant 

cell lines (R; highest 33% PI IC50), the following drugs were predicted to be highly effective in 

combination with PIs: 17. AAG, PLX4720, YM201636, and the AKT inhibitor KIN001.102. 

 

The top agents predicted by our in silico/secDrug approach as potential novel secondary drugs 

for aggressive variants of TX-resistant PCa include FK866 (a specific inhibitor of NAMPT), 

YM155 (surviving inhibitor), TAK715- a potent p38 MAPK inhibitor, XAV939 -an inhibitor of 

Wnt/β-catenin pathway, and RDEA119 – a non-ATP competitive inhibitor of MEK1/2. 

 

Table 1: Top drugs (‘secDrugs’) derived from our pharmacogenomics data-driven analysis 

 
 

  Drug Name Target Target Pathway 

1 Afatinib ERBB2, EGFR EGFR signaling 

2 AKT inhibitor VIII AKT1, AKT2, AKT3 PI3K/AKT pathway 

3 AMG-706 (Motesanib) VEGFR, RET, KIT, PDGFR RTK signaling 

4 AZD6482 PI3Kβ PI3K/MTOR signaling 

5 Cetuximab EGFR EGFR signaling 

6 CP724714 ERBB2 RTK signaling 

7 FH535 PPARγ, PPARδ Wnt/β-catenin signaling 

8 FK866 NAMPT NAD+ salvage pathway 

9 GSK2126458 (Omipalisib) PI3K (class 1), MTORC1, MTORC2 PI3K/MTOR signaling 

10 GW441756 NTRK1 RTK signaling 

11 KIN001-260 IKKB NF-κB pathway 

12 LY317615 PKCB Other, kinases 

13 MK-2206 AKT1, AKT2 PI3K/MTOR signaling 

14 Navitoclax BCL2, BCL-XL, BCL-W Apoptosis regulation 

15 NSC-87877 SHP-1 (PTPN6), SHP-2 (PTPN11) Other 

16 PD-0325901 MEK1, MEK2 ERK MAPK signaling 

17 PD-173074 FGFR1, FGFR2, FGFR3 RTK signaling 

18 PI-103 PI3Kα, DAPK3, CLK4, PIM3, HIPK2 Other, kinases 

19 RDEA119 MEK1, MEK2 ERK MAPK signaling 
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20 SNX-2112 HSP90 Protein stability and degradation 

21 TAK-715 p38α, p38β JNK and p38 signaling 

22 TL-2-105 C-RAF ERK MAPK signaling 

23 WZ3105 SRC, ROCK2, NTRK2, FLT3, IRAK1 Other 

24 XAV939 TNKS1, TNKS2 WNT signaling 

25 YM155 BIRC5 Apoptosis regulation 

 

scRNA-seq showed ARlow PCa cells with signatures of Epithelial-mesenchymal transition 

(EMT) and cancer ‘stemness’ and reveals  

 

Figure 1A displays t-SNE clusters generated from baseline (untreated) scRNA-seq data in 

mCSPC and mCRPC cell lines. Each dot represents a single cell. Further, the AR status of each 

cell is represented in Figure 1B. Epithelial-mesenchymal transitions have been mechanistically 

linked with the generation and maintenance of stem-like cell populations during tumorigenesis. 

PCa cells that have undergone EMT are phenotypically and genomically similar to stem cells. 

For example, Vimentin is a well-characterized filament protein that is highly expressed in 

mesenchymal cells. Thus, enhanced levels of Vimentin and downregulation of E-cadherin served 

as markers for identifying cells that have undergone EMT. Figures 1C-E demonstrate that the 

ARlow cells (primarily belonging to the mCRPC subtype) show higher expression of several 

mesenchymal gene signatures involved in Epithelial-mesenchymal transition with NEPC 

phenotype, including Vimentin (Figure 1C); N-cadherin (CDH2), Fibronectin (FN1), S100A4, 

Snail (SNAI1), Slug (SNAI2) (Figure 1D); and other major EMT markers CDH11, TWIST1, 

ZEB1 (Figure 1E). Further, Figures 1F-G show upregulation of cancer stemness-related markers 

Urokinase-type plasminogen activator (PLAU), Urokinase-type plasminogen activator receptor 

(PLAUR), and CD44, primarily in mCRPC cells.  

 

Interestingly, signatures of cancer stemness and EMT trans-differentiation were also observed 

in a subgroup of ARlow single cells within the mCSPC cell lines, 22Rv1, LnCaP.  

 

Next, we compared the single-cell gene expression markers between taxane-sensitive (DU145) 

and the clonally derived acquired taxane-resistant mCRPC cell line DUTXR (Figure 2A). We 

observed upregulation of gene signatures association with mesenchymal transition (VIM and 

TGFB1) and downregulation of the epithelial marker epithelial cadherin/E-cadherin (CDH1) in 

the DUTXR cell line compared to DU145 (Figure 2B-D). Further, the taxane-resistant DUTXR 

also showed enrichment of biomarkers that play significant roles in cancer progression, 
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development, and maintenance of cancer stemness (CD44; Figure 2E-F) and drug resistance 

(CDK1, CXCL8; Figure 2G-H), indicating probable involvement in mCRPC development and 

progression.  

 

Figure 1A 

 

 
 

Figure 1B 
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Figure 1C 

 

 

 

Figure 1D 
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 Figure 1E 

   

 
 

Figure 1F 
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Figure 1G 

 

            
 

Figure 1. Single-cell transcriptomics identifies signatures of epithelial to mesenchymal 

transition (EMT) and stemness in metastatic prostate cancer cells. 

 

Single-cell RNA sequencing using the Droplet sequencing method (10X Genomics) was 

performed on the PCa cell lines 22Rv1, LnCAP, DU145, PC3, and PC3M. t-distributed 

stochastic neighbor embedding (t-SNE) plots showing the comparison between the single-cell 

clusters representing A) All cell lines; B) AR Status 

 

Expression of mesenchymal markers involved in EMT trans-differentiation, including 

the C) Vimentin (VIM); D) N-Cadherin (CDH1), Fibronectin (FN1), S100A4, Snail (SNAI1), 

Slug (SNAI2); other major EMT markers E) CDH11, TWIST1, ZEB1. 

 

Expression of genes potentially involved in Cancer stemness F) Urokinase-type plasminogen 

activator (PLAU), and Urokinase-type plasminogen activator receptor (PLAUR); G) CD44 Each 

dot represents a single cell. Contaminated (doublet) cells were not included. 
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Figure 2:  Taxane-resistant DUTXR shows enrichment of biomarkers that play significant 

roles in cancer progression, development, and cancer stemness as compared to DU145 

 

Figure 2A 

 

 

 

Figure 2B 
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Figure 2C 

 

 

 

Figure 2D 
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Figure 2. Comparison of the single-cell gene expression markers between taxane-sensitive 

(DU145) and the clonally derived acquired taxane-resistant mCRPC cell line DUTXR. 1000 

single cells were captured, and RNAseq of each of them was performed. Each dot represents a 

single cell. 4 t-SNE clusters were identified and represented by 4 different colors. 

 

A) All 4 t-SNE clusters, B-D) showing the expression of Vimentin (Vim), TGF-B1, E-cadherin 

(CDH1)  

 

TGF-B1 and Vimentin, which are the marker of aggressiveness and metastasis have more 

enriched expression at the sub-clonal level in DUTXR as compared to DU145. DUTXR has a 

low abundance of E-Cadherin which is a negative regulator of metastasis as compared to DU145. 

 

Pharmacogenomics data-driven algorithm predicted secDrug TAK715 is effective against 

TX-resistant and stem-cell-like sub-clones in lethal PCa 

 

Figure 3. Taxane-resistant DUTXR shows enrichment of biomarkers that play significant 

roles in cancer progression, development, and cancer stemness 

 

To begin with, we used single-cell RNA sequencing (scRNA-seq) as a biomarker-based drug 

screen to identify chemo-resistant, drug-tolerant single-cell sub-clones in mCRPC cell lines that 

harbor secDrug target genes. Our pharmacogenomics data-driven in silico prediction algorithm 

(described in the Methods section) identified several potential agents that can be re-purposed as 

novel secondary drugs (“secDrugs”; Table XX) to treat DTX-resistant Prostate cancer when used 

as single-agent or in combination with the primary drug (Taxanes). These include FK866 

(NAMPT inhibitor), TAK715 (p38 MAPK inhibitor), YM155 (Survivin inhibitor), MK-2206 

(Akt1/Akt2/Akt3 inhibitor), LY317615 (PKCβ inhibitor), XAV939 (Wnt/β-catenin pathway 

inhibitor), RDEA119 (MEK1/2 inhibitor), and WZ3146 (mutant-selective irreversible inhibitor 

of EGFR (L858R)/EGFR (E746_A750)). 

 

Our scRNA-seq data on the untreated acquired taxane-resistant cell line DUTXR showed that 

the majority of t-distributed stochastic neighbor embedding (t-SNE) clusters (Figure 3A) 

representing single-cell subpopulations (subclones) have high expression of genes that play a 

major role in cancer progression, development, and maintenance of cancer stemness (CD44; 

Figure 3B), and drug resistance (CXCL8, Figure 3C),  CDK1 (Figure 3D) indicating probable 
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involvement in mCRPC development and progression. TAK715 target genes were derived from 

the Harvard Medical School (HMS)’s NIH Library of Integrated Network-based Cellular 

Signatures (LINCS) perturbagen database, a publicly available database devoted to 

understanding human cells respond to perturbation by drugs, the environment, and mutation. 

Interestingly, these subclusters also showed high expression potential TAK715 target genes 

MAPK14, MAP4K4, and CSNK1D (Figure 3E), indicating that TAK715 may be effective 

against these taxane-resistant and stem-cell-like subpopulation clusters.  

 

Figure 3A 
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Figure 3B 

 

 

 

Figure 3C 
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Figure 3D 

 

 
 

Figure 3E 

 

 
 



156 | P a g e  

 

Top predicted secondary drugs effectively reduce cellular viability  
 

 

We determined the cytotoxic effects of the top predicted secondary drug, TAK715, on a panel 

of the AR-ve mCRPC cell lines representing by DU145, PC3, the clonally-derived acquired 

taxane-resistant lines DUTXR and PC3-TXR (>50 fold) higher TX IC50 compared to parental 

lines), (Figure 4A-B) and PC3M – the more aggressive and metastatic subline of PC3. Single-

agent survival curves showed that TAK715 worked effectively against all the AR-ve -mCRPC 

cell lines and significantly diminished the viable cell numbers in a dose-dependent manner 

(Figure 4C). Furthermore, single-agent IC50 values of Docetaxel and Cabazitaxel were 

negatively co-related with the IC50 value of TAK715 in these cell lines (at p<0.05). The co-

relation co-efficient is -0.2 for Docetaxel and TAK715 and -0.4 for Cabazitaxel and TAK715.  

 

Figure 4A 
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Figure 4B 
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secDrug: TAK-715 

 

Figure 4C 
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secDrug: FK-866 

 

Figure 4D 

 

 

 

secDrug: RDEA-119 

 

Figure 4E 
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secDrug: Navitoclax 

 

Figure 4F 

 

 

 

secDrug: Venetoclax 

 

Figure 4G 
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secDrug: S63845 

 

Figure 4H 

 

 

 

Figure 4.  Dose-response curves represent in vitro cytotoxicity of (A) Docetaxel, (B) 

Cabazitaxel, (C) TAK-715, (D) FK-866 (E) RDEA-119 (F) Navitoclax, (G) Venetoclax, (H) 

S63845 single agent treatment in mCRPC cell lines.  

 

Dose-response curves representing in vitro cytotoxicity of the FK866 drug combination in 

metastatic PCa cell lines. 

 

Next, we evaluated the cytotoxic effect of different secDrug in different treatment combinations 

with either Taxane drugs (Docetaxel/ Cabazitaxel) or Androgen receptor signaling inhibitor 

Enzalutamide. The dose-response curves for the drug combinations and CI values indicated high 

synergy, which was even more profound (CI between 0.2-0.37) in the TX-resistant lines (Figure 

3E).  
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Docetaxel + secDrugs combination therapy exhibits synergy in mCRPC cells 

 

Docetaxel+ secDrug TAK-715 

 

Figure 5A 
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Figure 5B 
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Docetaxel+ secDrug FK-866 

 

Figure 5C 
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Docetaxel+ secDrug RDEA-119 

 

Figure 5D 
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Docetaxel+ secDrug Navitoclax 

 

Figure 5E 
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Docetaxel+ secDrug Venetoclax 

 

Figure 5F 
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Docetaxel+ secDrug S63845 

 

Figure 5G 
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Cabazitaxel + secDrugs combination therapy exhibits synergy in mCRPC cells 

 

Cabazitaxel+ secDrug TAK-715 

 

Figure 5H 
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Cabazitaxel+ secDrug FK-866 

 

Figure 5I 
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Cabazitaxel+ secDrug RDEA-119 

 

Figure 5J 
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Enzalutamide + secDrugs combination therapy exhibits synergy in mCRPC cells 

 

Enzalutamide+ secDrug FK-866 

 

Figure 5K 
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Figure 5L                                                                   Figure 5M 

           
 

Figure 5N 

 

 
 

Figure 5. in vitro cell viability profile of mCRPC cell lines treated with (A-G) different 

combinations of Docetaxel+ secDrugs (H-J) different combinations of Cabazitaxel+  secDrugs 

(K) different combinations of Enzalutamide+ secDrug (L-N) Combination Index and Dose 

reduction index calculated using Chou-Talalay’s combination index (CI) method and the 

isobologram algorithm (CompuSyn software; Biosoft, US)(Chou, 2011). CI values between 0.9-

0.3 and 0.3-0.1 signify synergism and strong synergism, respectively, between the drugs treated 

in combination.   
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TAK-715 inhibits multiple Kinases 

 

Figure 6 

 

 

 

Target IC
50 

(nM) 

CSNK1D (CK1 Delta) 1190 

CSNK1E (CK1 Epsilon) 1610 

MAP4K4 677 

MAPK14 606 

 

Figure 6. Invitrogen (Madison, WI, USA) Z’LYTE Kinetic study of TAK-715 with varied 

concentrations to determine IC50 against different target kinases. The data showed it has the most 

efficient inhibitory activity against MAPK14/ p38α 
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Docetaxel/TAK715 combination enhances apoptosis in ARnull mCRPC cell lines 

 

The impact of TAK715 on cellular apoptosis as a single agent and in combination with Taxanes 

was assessed through Caspase 3/7 Glo Assay. We observed significantly elevated levels of 

Caspase 3/7 activity following treatment, indicating higher apoptosis, which was more profound 

when the drugs were used in combination compared to individual single-agent treatments (Figure 

7A-D).  

 

Figure 7 
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Figure 7. Caspase-3/7 activity assay of Docetaxel and TAK715 single agent and 

combination-treated ARnull mCRPC cell lines. The data shows a higher level of induction of 

apoptotic pathway in combination treatment compared to single-agent treatment (Significance 

P-value * = p ≤ 0.05). This was further confirmed by Annexin V-FITX/PI-based flow-cytometric 

apoptosis analysis (8A-B) 

 

 
 

Figure 8. Quantitative measurement of the % of the apoptotic ARnull mCRPC cell lines 

(Annexin-V positively stained) exposed to TAK715 single agent and Docetaxel+TAK715 

combination treatment. The data shows higher apoptosis in combination treatment compared 

to single-agent treatment (Significance P-value * = p ≤ 0.05) 

 

Co-treatment of Docetaxel & TAK715 significantly affects cellular and nuclear 

morphology 

  

To further validate the synergism of TAK715+Docetaxel, we performed live cell imaging to 

monitor the change in morphology and live cell count. Cells were treated with Docetaxel and 



177 | P a g e  

 

TAK715 alone or as a combination of the two drugs for 48 hours. We observed that the 

combination of IC25 doses of both drugs reduced the average live cell count by 76±9% compared 

to the control and 52±17% as compared to docetaxel single agent treatment (Figure 9). Further, 

the average reduction in live cell count for the combination treatment with IC50 doses of both 

drugs was 86±4% compared to the control and 73±8% compared to the IC50 dose of Docetaxel 

as a single-agent treatment. Dose-dependent cell shrinkage or decrease in cell volume was also 

observed, which is a ubiquitous feature of programmed cell death. 

 

 

 

Figure 9. Assessment of cellular morphology: I-III. Representative figures show the effect of 

the primary (DTX) and secondary (TAK-715) drugs on cell count and cell morphology of 

mCRPC cells. The images were captured on the PC3-Luc cells before (0h) and after (48h) TAK-

715 treatment either as a single agent or in combination. Microscopy results show significantly 

higher cell death in combination treatment compared to single-drug treatment for all cell lines; 

IV. ImageJ data analysis showed a significant difference in cell density for both TAK-715 single-

agent and DTX+TAK-715 combination treatments. Results show significantly higher cell death 

in combination treatment at combination dose compared to single-drug treatment for PC3cell 

lines (Significant value * = p ≤ 0.05). 

 

Further, an assessment of the nuclear morphology of attached cells using NucBlue staining, a 

reagent frequently used to distinguish condensed nuclei in apoptotic cells, suggested TAK-715-

induced morphological changes like nuclear fragmentation and chromatin condensation, which 

are indicative of apoptosis (Figure 10). In addition, our results showed even higher cell death 

and more nuclear damage in the TAK-715+DTX combination treatment compared to the TAK-

715 single drug treatment. 
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Figure 10. Assessment of nuclear morphology. Representative figures showing the TAK-715- 

based treatment (single-agent and combination with DTX) on cell nucleus morphology of 

mCRPC cells. NucBlue Live reagent is frequently used to distinguish condensed nuclei in 

apoptotic cells. The microscopy images were captured on the PC3-Luc cells before (0h) and after 

(48h) following treatment. Microscope images showing treatment effect on the cell lines PC3. 

Similar results were obtained for all mCRPC lines.  

 

A microfluidic screen showed TAK-715 is potentially effective against EMT trans 

differentiation and metastasis in treatment-refractory aggressive subclones 

 

A Polydimethylsiloxane-PDMS-based μ-channel assay served as a physiologically relevant in 

vitro metastasis model for screening our top secDrugs. This allowed us to study the effect of our 

drug combination on tumor cell motility through μ-channels of dimensions that mimic the size 

of channel-like tracks encountered by migrating cells in vivo (Paul et al., 2017; Weigelin et al., 

2012). Briefly, we fabricated a PDMS-based μ-channel assay using standard multilayer 

photolithography and replica molding as previously demonstrated (Mistriotis et al., 2019; 

Wisniewski et al., 2020; Wong et al., 2019). The device consisted of an array of parallel channels 

of variable width (3-50 μm) and fixed length (200 μm), and height (10 μm). Perpendicular to the 

μ-channels were two larger 2D-like channels that served as cell seeding and chemoattractant 

inlet lines. Prior to cell seeding, the μ-fluidic devices were coated with 20 μg/mL rat tail collagen 

type I (Corning) for 1 hour at 37 oC to facilitate cell adhesion. 1-1.5 x 105 vehicle or TAK-715-

treated mCRPC cells were introduced into the cell seeding inlet line via pressure-driven flow 

and allowed to adhere for 30 min at 37 oC, 5% CO2. Next, the cell suspension was removed and 

substituted with a serum-free medium. Medium supplemented with 10% FBS was added into the 
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chemoattractant inlet line to trigger cell entry into the channels. The devices were placed on an 

automated Nikon Ti2 Inverted Microscope equipped with a Tokai Stage-Top incubator unit, 

which maintains cells at 37 oC and 5% CO2. Cell motility was recorded via time-lapse 

microscopy. Images were taken every 20 min for 10 hours with a 10x /0.45 NA Ph1 objective. 

To assess the migration efficiency of drug-treated mCRPC cells compared to the control, we 

calculated the percentage of cell entry into the microfluidic channels defined as the total number 

of cells entering the channels divided by the total number of cells seeded within 50μm diameter 

from the μ-channel entrances. Because our prostate cancer cells did not frequently enter narrower 

microchannels (≤10 μm), we focused our analysis on wider channels (≥20 μm).  

 

Our microfluidic-based cell migration assay revealed that our TAK-715 single-agent and DTX+ 

TAK-715 combination treatment reduced cell entry into 50 and 20 μm wide channels, suggesting 

that these interventions may potentially suppress prostate cancer cell invasion and possibly 

metastasis (Figure 11A). 

 

Figure 11A 
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Figure 11B 

 

 

 

Figure 11C325 

 

 

 

Figure 11. TAK-715 reduces cell migration and is potentially effective against metastasis 

and EMT trans differentiation in lethal PCa. TAK-715 single-agent and combination therapy 

with DTX reduces the entry of lethal PCa cells PC-3 and PC-3M into 50 and 20 μm wide μ-



181 | P a g e  

 

channels, indicating a potential role of TAK-715 in abrogating the metastatic potential. n≥3 

experiments (Significance P-value * = p ≤ 0.05 relative to control).  

 

(C) Schematic representation of the Microfluidics-based cell Migration/Motility assay device 

 

To confirm the effect of TAK715 on mCRPC cells’ motility and migration, we performed a 

wound-healing assay. A scratch was made in the cell monolayer, and the cells were treated with 

TAK715 and Docetaxel single-agent and in combination. Images were captured at the beginning 

and at regular intervals (24 and 48 hours for all treatments). Image analysis of the scratches using 

the ImageJ software showed an average reduction of 60±13% in the wound area in the cells of 

the control well after 24 hours, whereas it was only an 8.5±2.5% reduction in the drug 

combination-treated cells. After 48 hours, it was 81±2% and 18±8%, respectively (Figure 12).  

 

Thus, we can conclude that combination treatment (FK866+DTX) had a higher effect in reducing 

cell migration in PCa cell lines compared to treatment with FK866 alone (p<0.05) 

 

Figure 12A 
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Figure 12B 

 

 

 

Figure 12. Representative plots show results of wound healing (Scratch) assay using (A) 

PC-3 and PC-3M cells. Cell migration after 24 and 48h TAK-715 single-agent and TAK-

715+DTX combination was assessed by measuring the scratch size. Images were captured before 

(0h) and after (24 hours and 48 hours) drug treatments (Significance P-value * = p ≤ 0.05). (B) 

Bar graphs showed a significant reduction in cell migration (wound healing) following TAK-

715-based single agent and combination treatments. 

 

Docetaxel + TAK715 combination shows impaired Clonogenic properties of mCRPC cells. 
 

Furthermore, we investigated the efficacy of our drug combination on the reproductive health of 

the cells by colony formation assay. Cells were treated with a single agent or combination for 24 

hours and incubated for 2 weeks, followed by staining with crystal violet. We observed a 

significantly lower number of colonies in TAK715 single-agent and combination-treated wells 

compared to the no-treatment (Figure 16). 
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Figure 13. Effects of the Docetaxel+TAK715 combination on the Clonogenic formation of PC3 

cells were evaluated by a colony formation assay. 

 

Gene expression profile reveals the mechanism of synergistic drug action of DTX+TAK715 

combination. 

 

Next, we performed whole-transcriptome profiling by bulk tumor RNAseq to compare changes 

in gene expression induced by TAK-715 in ARnull mCRPC cell lines in order to elucidate the 

mechanism of drug action. GEP data were normalized to baseline (no treatment). Heatmaps were 

generated following differential gene expression analysis (Figure 14A). Volcano plots in Figure 

14B show differentially expressed genes (DEGs) following DTX, TAK-715 single-agent or 

combination treatment in ARnull mCRPC cell lines.  
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Figure 14A 

 

 

 

Figure 14B 

 
 

 

 

A total of 35 genes were uniquely differentially expressed above the significance threshold 

(p<0.05) at 48hr post-TAK-715 single-agent treatment, while 21 and 49 genes were differentially 

expressed following DTX single-agent and DTX+ TAK-715 combination treatments, 

respectively (Figure 14C). 

 

Combination-treated cells have 143 uniquely differentially expressed genes as compared to DTX 

single-agent treatment (p<0.05; fold-difference ≥ 2) (Figure 14D) 
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The top down-regulated genes are HES-1, SRSF5, TSPYL2, and TSPYL4. The top up-regulated 

genes are Cyclin B1, CHAC2, and SSBP1. 

 

Figure 14C 

 

 

 

Figure 14D 

                            

 

 

Figure 14. Differential gene expression profiling analysis results 

 
 

(A) Heatmaps representing top differentially expressed genes (DEGs) following DTX, TAK-715 

single-agent, or DTX+TAK-715 combination treatments in ARnull mCRPC cell lines (n = 3), 

24h following drug exposure. I) DTX single-agent treatment II) TAK-715 single-agent 

treatment. II) DTX+TAK-715 combination treatment. Log2 ratios are depicted in a color scale 
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where red represents upregulation and green represents downregulation. Columns represent 

cell lines, and rows represent genes. Prior to hierarchical clustering, gene expression values 

were filtered (samples with max TPM < 1 were removed), and the z score was normalized.  

 

(B) Volcano plots representing differentially expressed genes (DEGs) following DTX, TAK-715 

single-agent or combination treatment in human mCRPC cell lines 24 h following drug 

exposure(|fold-change|> 2, and p < 0.05). Log2 ratios are depicted in a color scale where RED 

represents upregulation and BLUE represents downregulation. I) DEGs for DTX treatment 

for PCa cell lines. II) DEGs for TAK-715 treatments for PCa cell lines. III) DEGs for 

DTX+TAK-715 treatments for PCa cell lines. 

 
 

(C) Venn diagrams representing unique and common DEGs (p<0.05) between DTX, TAK-715, 

and DTX+TAK-715 treatments in ARnull mCRPC cell lines (n=3). 

 

(D) Venn diagrams representing unique and common DEGs (p<0.05) between DTX and 

DTX+TAK-715 treatments in ARnull mCRPC cell lines (n=3). 

 

Figure 15. Ingenuity Pathway Analysis (IPA) shows top pathways activated in response to 

different treatment  

 

(A) IPA analysis based on the top DEGs associated with Docetaxel single-agent treatment, TAK-

715 single-agent treatment, and DTX+TAK-715 combination treatment revealed 

mitochondrial dysfunction, oxidative phosphorylation, and cell cycle arrest at the G2/M 

phase as the top differentially regulated pathways. 

 

(B) A detailed heatmap comparison among differentially regulated pathways in Docetaxel 

single-agent treatment, TAK-715 single-agent treatment, and DTX+TAK-715 combination 

treated cells. The data shows Cell cycle-G2/M damage, mitochondrial dysfunction, 

oxidative phosphorylation, and protein ubiquitination are the top differentially regulated 

pathways among the  3 treatment groups 
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Furthermore, Causal Network Analysis, a component of IPA advanced analytics, predicted 

significant upregulation of microRNA-132 and downregulation of miR-21 in response to 

combination treatment.  

 

In silico analysis on multiple GEO PCa datasets showed the low expression level of miR-132 

was associated with poor clinical prognosis, the transition from androgen-dependent (AD) to 

independent (AI) stage, and metastasis.  

 

miR-21 was significantly up-regulated in the GEO PCa datasets. miR-21 is an AR-regulated 

miRNA that plays a key role in nullifying the effect of castration, driving progression to AI stage, 

TX resistance, and cellular invasiveness through down-regulation of tumor suppressor PTEN. 
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Figure 16A 
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Figure 16B 

 

 

 

Figure 16. Comparison of causal networks associated with each treatment group and its 

validation using in silico database analysis 

 

(A) Causal network analysis based on the expression of the genes predicted the up-regulation of 

miR-132 and the down-regulation of the RICTOR pathway as the top upstream regulator. 

 

(B) GEO prostate cancer dataset (GSE21032) has shown that prostate cancer tissue has a low 

abundance of miR-132 compared to normal prostate tissue. 

 

Combination of Taxane and TAK715 significantly down-regulated HES1- a transcriptional 

repressor associated with cancer stemness and multi-drug resistance. 

 

Among the top DE genes in RNAseq data, HES1 was downregulated in all treatment groups, 

with the highest level of downregulation (~ 9-fold) following combination treatment  

 

To investigate the clinical implications of HE1 in the context of prostate cancer, we performed 

in silico analysis using the prostate cancer adenocarcinoma database (PRAD) in the Oncomine 

database and TCGA portal.  The Oncomine database suggests HES1 expression is elevated in 

Prostate cancer tissue as compared to normal prostate tissue (Figure 17A). TCGA database 

analysis shows that HES1 expression is associated with the Gleason score, which measures the 
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severity and risk of prostate cancer (Figure 17B). TCGA database analysis also shows that 

expression of HES1 gets significantly elevated as metastasis progresses. It gets upregulated 

substantially in nodal metastasis compared to no-nodal metastasis (Figure 17C). Next, we 

validated the dependency of cancer cells on HES-1 for proliferation and survival from the 

DepMap portal. DepMap portal is an ongoing project to uncover these gene dependencies in 

hundreds of cancer cell lines by Broad Institute. Distributions like the one shown for HES1 are 

an example of cell lines exhibiting strongly selective dependency on a gene. Here, we see many 

cell lines for which HES1 perturbation has little effect on survival (those centered around a gene 

effect score of 0 or more), as well as a number of cell lines that are strongly dependent on HES1, 

with negative scores. The Chronos score for HES1 perturbation in the DU145 cell line is -0.178. 

A negative score signifies that DU145 is dependent on HES1 for proliferation. 

 

Figure 17A 
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Figure 17B 

 

 

 

Figure 17C 
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Figure 17D 

 

 

 

We further validated the downregulation of the HES1 gene in response to our combination 

treatment by quantitative real-time PCR. The data shows, indeed, our drug combination is 

downregulating HES1 both in taxane-sensitive ARnull mCRPC cell lines (±80%) and taxane-

resistant ARnull mCRPC cell lines cells (± 40%). (Figure 17D) We also validated the down-

regulation of HES-1 at the protein level by western blot analysis. (Figure 17F) 

 

Figure 17E 
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Figure 17F 

 

 

 

Figure 17: In silico analysis of HES1 expression and its impact in prostate cancer followed 

by in vitro validation 

 

(A) HES 1 expression in Normal vs. Prostate tumor tissue (Oncomine database) 

 

(B) Effect of HES1 expression level & Gleason Score on PRAD patient survival (TCGA 

database). Gleason score levels 6, 7-9, 10 

 

(C) The expression level of HES1 in PRAD in the different stages of nodal metastasis 

 

(D) DepMap dependency portal data of the effect of HES-1 expression in DU145 cell line. 

 

(E) Quantitative measurement of HES-1 expression in Control vs. DTX+TAK-715 combination 

treated ARnull mCRPC cell lines. 

 

(F) Immunoblotting analysis of HES-1 expression in Control, single agent DTX, single agent 

TAK-715, and DTX+TAK-715 combination treated ARnull mCRPC cell lines. 

 

Docetaxel-TAK715 combination significantly upregulated cellular ROS generation 
 

To validate the mechanism of action of the drug combination, we quantified the intracellular 

ROS level in the pre-and post-treatment condition of TAK-715 as a single-agent vs. combination 
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with DTX using the fluorogenic probe 2,7- dichlorofluorescein diacetate (DCFDA), a cell-

permeable non-fluorescent probe that shows fluorescence when it is oxidized. Cellular 

superoxide anions were measured by using the fluorescent dye DHE. Figure 18 depicts 

significant ROS generation following 2, 4, 8, and 24hr DTX or TAK-715 single agent and 

DTX+TAK-715 combination treatments. Further, combination treatment exhibited higher ROS 

generation than single-agent treatment and control in Acquired taxane-resistant AI-mCRPC 

(DUTXR) cell lines (p ≤ 0.05). 

 

Figure 18              
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Figure 18. DCFDA assay to measure cellular ROS level in Control (0.5% DMSO), TAK715 

single agent, and DTX+TAK715 combination treated ARnull mCRPC cell lines after 2 

hours, 4 hours, 8 hours, and 24 hours 

 

Cellular superoxide anions were also measured by using the fluorescent dye DHE (Sigma)     

 

Figure 19              

 

 

 

Figure 19. DHE assay to measure cellular ROS level in Control (0.5% DMSO), TAK715 single 

agent, and DTX+TAK715 combination treated ARnull mCRPC cell lines (DUTXR) after 24 

hours 

 

A combination of Docetaxel and TAK-715 reduced the mitochondrial membrane potential 

in ARnull mCRPC cell lines 

 

To investigate if TAK715 induces its cytotoxic effects through the mitochondrial-mediated 

pathway, we measured the mitochondrial membrane potential using JC-1 dye (Abcam). JC-1 is 

a cationic carbocyanine dye that accumulates in mitochondria. The dye exists as a monomer 

(green fluorescence) at low concentrations and changes color from green to red in energized 

mitochondria. The cells were treated with either a single agent or in combination for 24 hours. 

We observed a significant shift from red fluorescence to green fluorescence (Figure 20). The 
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decrease in the red/green fluorescence indicated mitochondrial depolarization, which caused the 

JC-1 dye to become monomers from its aggregates form. 

 

Figure 20 

 

 

 

Figure 20. TAK-715 treatment-induced mitochondrial dysfunction was measured by JC-1 

Assay 

 

Docetaxel and TAK715 combination exert synergistic drug action by arresting the cells in 

the G2/M phase 

 

To identify the mechanism of drug action of the Docetaxel-TAK715 combination, we measured 

the distribution of different phases of the cell cycle by Propidium Iodide (PI). The cells were 

treated with either a single agent or in combination for 48 hours, followed by staining with PI 

and flow cytometric analysis. We observed a significantly higher percentage of the cells are 

arrested at G2/M phases in response to the combination treatment as compared to the single agent 

treatment (Figure 21). 
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Figure 21A 

 

 
 

Figure 21B 

 

 
 

Figure 21. TX+ TAK715 combination leads to the cell cycle arrest at the G2/M phase in 

ARnull mCRPC cell lines  

 

(A-B)Propidium Iodide-based Analysis of the distribution of different phases of the cell cycle in 

Control (0.5% DMSO), TAK-715 single agent, and DTX+TAK-715 combination treated ARnull 

mCRPC cell lines (DU145). 

 

TAK715, in combination with Docetaxel, elevated DNA damage in ARnull mCRPC cell lines  
 

Next, to check the extent of DNA damage, we performed a Comet assay. Comet assay is a 

technique to measure DNA damage in cells. Undamaged DNA remains in the nucleus, and the 

damaged, fragmented DNA migrates through the cavity. The shape looks like a comet with a 

circular head corresponding to undamaged DNA, and the tail represents the damaged DNA. So, 
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the longer and brighter the tail, the higher the level of damage. The olive moment is tail length 

* % of DNA in tail length. From the comet assay data, we observed in our combination treated 

cells both % of DNA in tail and tail length has increased considerably, indicating that our drug 

combination enhances DNA damage. (Figure 22).  

 

Figure 22 

 

 

 

Figure 22. Comet assay to measure the extent of DNA damage in AI-mCRPC cells (DU145) 

post-Docetaxel-TAK715 combination treatment. We treated the cells with DTX+TAK715 

combination for 48 hours and measured the extent of DNA damage induced by TAK715 

treatment using Comet Assay. We observed a significant increase in DNA % in the tail and as 

well as in Olive moment (DNA % in tail x tail length), which indicates enhanced DNA damage 

in response to our drug combination 

 

TAK715 diminished the side population load in taxane-resistant ARnull mCRPC cell lines. 
 

We next gated and selected side population (SP) cells from main populations (MP) using 

DyeCycle violet, pre- and post- TAK-715 treatment. We found that baseline % SP is higher in 

resistant cells as compared to parental cells (data not shown here). Notably, TAK-715 alone or 

in combination (Docetaxel+ TAK-715) reduced SP in taxane-resistant ARnull mCRPC cells 
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(Figures 23A-C). Our data showed that TAK715 has significantly reduced the side population 

load (±30%) in taxane-resistant ARnull mCRPC cells (DUTXR). 

 

Figure 23. DyeCycle Violet mediated measurement of side population in taxane resistant 

ARnull mCRPC cell (DUTXR) post TAK715 combination treatment. (A) Control (B) TAK-

715 treated (C) DTX+TAK-715 treated (D) Positive Control  

 

 
 

 

 

Figure 23A 

 

Figure 23B 

 

Figure 23C 

 

Figure 23D 
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TAK-715 has a significant cytotoxic effect on the CD44+ population in ARnull mCRPC cells 
 

Previous studies reported that in prostate cancer cells, the CD44+ population represents stemness, 

i.e., they are a marker of cancer stem cells or cancer-initiating cells and promote ADT resistance 

as well as tumor recurrence. To study the effect of our secDrug TAK-715 on this cancer stem-

cell population, we first sorted out the pool of  CD44+ population from DUTXR cell lines and 

treated it with two different doses of TAK-715.  

 

Our data (Figure 24) shows TAK-715 was effective in depleting the population of CD44+  in 

DUTXR cells. Next, we performed a Caspase 3/7 activity assay on sorted-out CD44+ cells. The 

data showed dose-dependent induction of apoptosis by TAK-715 as compared to the untreated 

cells induced in this stem-like cell population. We further validated the effect of our secDrug on 

the isolated CD44+ population cells by in-vitro cytotoxicity assay, which showed significant 

dose-dependent down-regulation in cell viability in response to TAK-715 treatment. 

 

Figure 24A 
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Figure 24B 

 

 

 

Figure 24C 

 

  
 

                

Figure 24: Effect of TAK715 on the CD44 population 

 

(A) TAK-715 depletes CD44+ population in ARnull mCRPC cells 

 

(B) TAK-175 induces apoptosis in CD44+ cells 

 

(C) TAK-715 reduced the cell viability of CD44+ cells 
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TAK715 erodes sub-clones responsible for drug resistance and stemness 

 

Figure 25A 

 

 

 

Figure 25B 
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Figure 25:  TAK-715 treatment leads to the depletion of clusters expressing oncogenes. 

TAK715 was effective in targeting the sub-clonal clusters with the enriched expression of 

oncogenic factors while inducing the expression of pro-apoptotic factors, thereby exerting its 

anti-tumorigenic activity. 

 

TAK-715 targets the sub-clones involved in drug resistance and cancer stemness in taxane-

resistant ARnull mCRPC cell line DUTXR. TAK-715 treated cells show erosion of Cluster 2, 3, 

4, 5 and enrichment of cluster 6, while Cluster 1, 7, 8, and 9 are TAK-715 induced de novo. 

Gene expression analysis on these eroded clusters shows they are characterized by the expression 

of genes responsible for tumor aggressiveness and disease progression. 

 

Cluster 2 has enriched expression for KRT8/ Cytokeratin 8, a cytoskeletal protein, and its 

expression is reported to be directly correlated with tumor metastasis, where it promotes tumor 

cell migration by up-regulating MMP2, MMP9, and TGF‐β signaling. It is also an independent 

risk factor for poor clinical prognosis, i.e., patients with high KRT8 expression tend to show 

unfavorable treatment outcomes. KRT8 is also involved in the development of chemoresistance 

through activating STAT3 signaling pathways. 

 

CENPO (Centromere protein O) is another gene in Cluster 2 that is responsible for promoting 

cancer metastasis through modulating the expression of the genes responsible for EMT, such as 

N-cadherin, Vimentin, and Snail. It also induces oncogenic events by activating MAPK and 

PI3K/AKT signaling pathways. 

 

The other significant genes expressed in the TAK-715-induced eroded clusters are NOP16 and 

Sorcin. NOP16 (Nucleolar Protein 16), is a c-Myc target gene that has been reported to play a 

role in cancer progression and adverse treatment outcomes. SRI/ Sorcin (Soluble Resistance-

related Calcium-binding proteIN), an oncoprotein, is found to be frequently over-expressed in 

many cancers, including prostate cancer, and is associated with poor clinical outcomes. It is 

closely related to the MDR, where it shows co-amplification with the ATP-dependent efflux 

transporter ABCB1. Its expression confers resistance towards taxane drugs and platinum-based 

drugs, whereas its down-regulation restores the sensitivity. Sorcin also promotes EMT through 

activating the expression of matrix metalloproteinases 2 and 9 (MMP2, MMP9) and drives tumor 

progression by inducing oncogenic transcription factors such as STAT3 as well PI3K/ 
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Akt/mTOR pathway. Targeting Sorcin restores the p53 function by preventing its MDM2-

mediated ubiquitination and causes G2/M arrest and apoptosis in cancer cells. 

 

Another TAK-715-driven eroded cluster, Cluster 4 has expression of PSAT1, RAD21, and 

CNBP1. Phosphoserine aminotransferase 1 (PSAT1) is involved in the emergence of 

chemoresistance in many cancers, including the colon and breast. Cellular nucleic acid-binding 

protein (CNBP), on the other hand, acts as a transcriptional factor to transcriptionally activate 

the genes involved in the proliferation, invasion, and migration of tumor cells, such as c-Myc, 

MMP-2, MMP-14, and E2F2. RAD21, a DNA double-strand-break repair protein and a member 

of the cohesion complex, is reported to be over-expressed in cancers like ovarian cancer, and its 

expression is associated with treatment relapse and chemotherapy resistance. Patients with high 

RAD21 expression develop resistance towards many classes of drugs, such as DNA-damaging 

agents and PAPRP inhibitors, and exhibit poor prognosis. It also promotes the expression of 

MMP-2 and MMP-9, the other two oncogenes involved in metastatic progression. 

 

Caprin-1 also promotes cell growth by facilitating the cell cycle through c-Myc and Cyclin D1. 

IPO-7, TWF-1, MYOF, FGD6, and MAP4 are the other top significantly expressed genes present 

in the TAK-715 eroded clusters, which have reported oncogenic influences in the cancer cells. 

 

TAK-715 reduces the oxygen consumption rate (OCR) in MCL cells 
 

Previous studies have shown that cancer cells have high levels of oxidative phosphorylation, 

which directly correlates with stemness. To characterize mitochondrial bioenergetics in taxane-

resistant ARnull mCRPC cells (DUTXR) and the effect of TAK-715 on it, we measured the 

oxygen consumption rate (OCR) directly proportional to the oxidative phosphorylation using 

Seahorse Extracellular Flux Technology.  

 

Figure 25 showed that TAK-715 was significantly more effective in reducing the OCR in 

DUTXR cells than Docetaxel which may indirectly abrogate the hypoxia-mediated drug 

resistance. 
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Figure 26 

 

 

 

                

Figure 26. TAK-715 reduces Mitochondrial respiration (measured by Oxygen 

Consumption rate) in DUTXR cells. OCR measurement by Seahorse extra-cellular flux 

technology reveals that TAK-715 was effective in reducing mitochondrial respiration-a 

characteristic feature of cancer cells and chemoresistance. 

 

Validation of TAK-715 treatment-induced gene signatures using Patient datasets  
 

We used reverse-matching using patient cohort datasets to show that TAK-715 treatment has the 

potential to reverse PCa lethality. RNAseq data on PCa patients were obtained from the Gene 

expression omnibus database. The dataset includes 100 PCa patients (49 with BCR, 51 with no 

BCR) from the Atlanta VA Medical Center, Moffitt Cancer Center, and Sunnybrook Health 

Science Center. First, we performed differential gene expression analysis between patients with 

or without biochemical recurrence (BCR). The left image shows the top pathways that were 

significantly different between BCR vs. no-BCR based on DEGs with p<0.05. Next, as a reverse-

matching approach, we compared the list of shared dysregulated (down or upregulated) genes 

with our list of top TAK-715-treatment-induced DEGs. The right image shows that several TAK-

715 treatment-induced pathways were significantly downregulated in PCa patients with BCR. 

Pathway analysis was performed based on the top DEGs in A) PCa patient cohort; B) Top TAK-
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715 treatment-induced downregulated pathways that were significantly upregulated in PCa 

patients with biochemical recurrence (BCR). 

 

Figure 27 

 

  

 

Figure 27.  KEGG pathway enrichment analysis provides mechanistic insights into TAK-

715 drug action in MCL cells. Comparison of Pathway enrichment analysis of the GSE54460 

dataset that contains expression data from PCa patients with or without biochemical recurrence 

(BCR with TAK-715 gene signature shows a high degree of similarities indicating TAK-715 as 

a potent drug to curb resistance. 

 

Validation of TAK-715  treatment-induced gene signatures using Patient datasets with 

biochemical recurrence 

 

Next, we did validation using TCGA’s prostate adenocarcinoma (PRAD) GEP dataset: The top 

genes that were significantly upregulated in patients and showed significant downregulation 



208 | P a g e  

 

following TAK-715 treatment in PCa cell lines were LTB4R, MAN2C1, SPTBN2. Kaplan-

Meier Curves showed that these genes were significantly associated with disease-free survival. 

 

Figure 28 

 

 

 
Figure 28.  TAK-715 treatment induced differential regulation of genes associated with 

disease free survival in PCa patients. LTB4R, MAN2C1 & SPTBN2 were significantly over-

expressed in PCa patients. Their high expressions are co-related with poor disease-free survival. 

TAK-715 treatment was effective in down-regulating these genes in PCa cells. 

 

Discussion 
 

Drug development for aggressive and/or lethal treatment-resistant PCa poses a significant 

challenge with very few therapeutic successes. In this study, we introduced a pipeline that 

integrated a pharmacogenomics data-driven approach with a scRNAseq-based rapid drug 

screening method and identified TAK-715 as a proof-of-concept secondary drug (‘secDrugs’) 

against lethal PCa, including aggressive, acquired taxane resistant and stem-like cell types 

representing NEPC and stem-like (EMT) phenotypes. Notably, we used scRNA-seq as an 

innovative approach to demonstrate that a subset of ARlow PCa cells in metastatic prostate cancer, 

including castration-sensitive and castration-resistant tumors, harbored signatures of Epithelial-

mesenchymal transition (EMT) and cancer ‘stemness’ which we also showed as targets of TAK-

715. 

 

TAK-715 is a p38 MAPK inhibitor for p38α. It has been observed that in PC, both upstream (α-

PAK, MEK-6) and downstream (Elk-1, ATF-2) components of the p38 are over-expressed, 
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resulting in enhanced cell proliferation and survival.326 p38 is involved in IL-6 mediated 

androgen-independent prostate cancer cell proliferation and phosphorylated and activates key 

transcription factors (ATF2, Elk-1), which in turn up-regulate cell cycle regulators (CCND1) 

and other genes related to cellular proliferation.327,328 p38 also inhibits apoptosis through NF-κB 

activation. It also stabilizes androgen receptors (AR), independent of androgens, by involving 

chaperons (HSP27).329,330 Activation of p38MAPK may thus promote aggressive growth of 

prostate cancer cells and aberrant AR activity in the absence of androgens which may promote 

the onset of androgen independence. Hypoxia-associated p38-MAPK Mediated AR activation 

and increased Hif-1α Levels contribute to the emergence of an aggressive phenotype in PC.331,332 

Inhibition of p38 decreases IL-1-induced cell proliferation and increases TNF-α-induced cell 

death.333 It has also been found that Docetaxel (DTX) upregulates p53 and p21 in a p38-

dependent manner to desensitize PC cells.334 Increased p38MAPK activity is associated with 

DTX resistance in Docetaxel-resistant cell lines. Thus, p38MAPK appears to be a potential drug 

target for mCRPC treatment. Moreover, TAK715, by cross-reacting with CKIδ/€, also inhibits 

Wnt/β-catenin signaling, which is involved in cancer cell proliferation and drug resistance in 

metastatic castration-resistant prostate cancer. So, TAK715, in combination with Docetaxel, is 

an effective alternative approach to treating aggressive prostate cancer. 

 

Since TAK-715 is a kinase inhibitor, we confirmed that TAK-715 inhibits multiple kinases, 

including MAPK14, MAP4K4, CSNK1D, and CSNK1E. Further, we combined a novel micro-

fluidic-based cell migration assay, genome-wide bulk inter-tumor (RNAseq), and single-cell 

transcriptomics (scRNA-seq) analysis to elucidate in detail the treatment-induced genes and 

molecular pathways/networks underlying TAK-715 mechanism of action and its potential 

impact on tumor metastasis, migration, invasion, intracellular ROS activity, and most 

importantly, ‘cancer stemness,’ in ARnull mCRPC cells. 

 

We found HES1 (Hes Family BHLH Transcription Factor 1)– a transcriptional repressor that has 

a significant role in cancer stemness, metastasis, antagonizing drug-induced apoptosis, and 

multi-drug resistance to be significantly downregulated in our combination treatment 

group.335,336 It is extremely relevant as cancer stem cells also contribute to the development of 

Taxane resistance in mCRPC.337 So, to understand its biological implication in prostate cancer 

drug resistance, further investigation is required. CD133, CD44, ALDH, and α1β2 integrin have 
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all been associated biomarkers for stemness in prostate cancer and new evidence suggests 

resistance to taxane therapy in prostate cancer is at least partially derived from the formation of 

cells with some or all of these markers. It is reported that the expression level of Hes1 in CD133+ 

cells is significantly elevated. Knockdown of Hes1 in CD133+ positive cells significantly 

decrease its colony-forming ability as well as depletion in number.335,336 

 

RICTOR, or Rapamycin-Insensitive Companion Of mTOR, is an essential subunit of the 

mTORC2 complex that is inappropriately overexpressed across numerous cancer types, and this 

is associated with poor survival. RICTOR enhances angiogenesis in prostate cancer, and its 

downregulation impairs the proliferation of prostate cancer cells.338,339 RICTOR gene 

amplification is associated with many types of cancers, and it drives its oncogenic effect by 

inducing Akt 473 phosphorylation.338 DTX+TAK-715 combination significantly down-

regulated the RICTOR pathway in ARnull mCRPC cells. 

 

BACH1 or BTB Domain And CNC Homolog 1 is a transcription factor that is highly expressed 

in mCRPC cell lines, and by up-regulating MMP, it promotes metastasis in prostate cancer. 

BACH1 promotes the progression of colorectal cancer and enhances the invasiveness and 

metastasis in pancreatic cancer and lung cancer. 340,341 

 

The expression of SRSF5 (Serine And Arginine Rich Splicing Factor 5), which is responsible 

for functional silencing of androgen inactivating enzyme HSD17B2 and TSPYL2 & TSPYL4 

(Testis-Specific Y-Encoded-Like Protein 2 & 4), the transcriptional inducer of CYP17A1 which 

synthesizes DHEA, a major source of intra-tumor androgen, were inhibited by Docetaxel-TAK-

715 combination treatment.342,343 

 

In prostate cancer, the low miR-132 expression seems to signify a poorer clinical prognosis. 

miR-132 decreases cellular adhesion and consequently increases cell death. HB-EGF (heparin-

binding epidermal growth factor), a pro-survival factor, has increased expression in androgen-

independent PCa cell lines and contributes to the transition from an androgen-dependent to an 

androgen-independent state. It is a direct target of miR-132, which causes down-regulation of its 

expression. Reduction in miR‐132 in prostate cancer cells enhances aerobic glycolysis by 

regulating Glut1 expression, thus promoting cell proliferation. 344–346 
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NFE2L2/NRF2 or Nuclear Factor, Erythroid 2 Like 2 is a transcription factor that suppresses 

prostate cancer cells' growth and migration. NRF2 is negatively regulated by BACH1.  NRF-2 

suppresses the transactivation of AR.  Loss of NRF-2 expression leads to a predisposition to 

tumorigenesis. TAK715, in combination with Docetaxel, was effective in suppressing the 

expression of BACH and up-regulated the expression of NRF-2. 347 

 

Cyclin B1 is reported that Increased expression of cyclin B1 sensitizes prostate cancer cells to 

apoptosis induced by chemotherapy by decreasing Bcl-2 and increasing p53.348 CHAC2 (ChaC 

Cation Transport Regulator Homolog 2) acts as a tumor suppressor by inducing mitochondrial 

apoptosis and autophagy simultaneously through UPR. SSBP1 (Single-Stranded DNA Binding 

Protein 1) acts as a tumor suppressor.349 All these genes were up-regulated by a TAK-715-based 

treatment regimen. Ephrin Receptor Signalling: Eph1, Eph5, and Eph7 are down-regulated in 

prostate cancer and co-related to higher Gleason scores and shorter survival time. TAK-715 

stimulated this signaling pathway.350 

 

Defective Oxidative Phosphorylation is known to be one of the critical reasons for the attenuation 

of apoptosis in cancer cells. Anticancer agents enhance OXPHOS function causing elevation of 

mitochondrial ROS, which activates inflammatory response leading to mitochondria dysfunction 

and apoptosis.351,352 ROS is a by-product in OxPhos and plays a role in the alteration of 

mitochondrial dynamics.353 p38α MAPK mediates Cell Survival in Response to Oxidative Stress 

via the induction of Antioxidant Genes like superoxide-dismutase 1 (SOD-1), SOD-2.354  But, 

TAK715 is a p38α MAPK inhibitor which prevents the expression of anti-oxidant genes. This 

leads to excessive oxidative stress, which can cause further dysfunction of mitochondrial 

proteins, leading to augmented production of ROS, creating a vicious cycle of mitochondrial 

damage and oxidative stress. This will eventually lead to the collapse of the mitochondrial 

membrane potential, permeabilization of the membrane, and induction of apoptosis.  

 

TCGA’s prostate adenocarcinoma (PRAD) GEP dataset analysis showed the top genes that were 

significantly upregulated in patients and showed significant downregulation following TAK-715 

treatment in PCa cell lines were LTB4R, MAN2C1, SPTBN2. The previous study has suggested 

that LTB4R or leukotriene B4 receptor 2 is significantly over-expressed in androgen-

independent samples as compared to androgen-dependent samples.355 In Clear Cell Renal Cell 

Carcinoma, LTB4R Promotes the Occurrence and Progression by Regulating the AKT/mTOR 
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Signaling Pathway.356 α-mannosidase 2C1 or MAN2C1 inhibits PTEN function in prostate 

cancer (PC) cells and activates AKT.357 Patients with elevated levels of MAN2C1 appear to be 

at greater risk for aggressive disease.357 SPTBN2 is highly expressed in lung adenocarcinoma, 

positively correlated with poor prognosis, and can promote the proliferation, migration, and 

invasion of lung adenocarcinoma cells.358 It also promotes endometrial cancer metastasis via 

PI3K/AKT pathway in Endometrial Cancer.359 

 

Thus, our multi-pronged approach towards screening and pre-clinical validation for drug re-

purposing represents a new paradigm in the management of aggressive treatment-refractory 

subtypes of PCa. Together, we conclude that the TAK715+Taxane combination may be useful 

in curbing oncogenic progressions in AVPCa through simultaneous inhibition of multiple 

oncogenic factors/pathways. 
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Proposed mechanism of action of TAK-715 in ARlow mCRPC cells 

 

 

 

Defective Oxidative Phosphorylation is known to be one of the key reasons for the attenuation 

of apoptosis in cancer cells.360 Anticancer agents enhance OXPHOS function causing elevation 

of mitochondrial ROS, which activates inflammatory response leading to mitochondria 

dysfunction and apoptosis.361–363 IPA analysis showed TAK-715 upregulates Oxidative 

phosphorylation. ROS is a by-product of OxPhos. ROS scavenging enzymes such as Super-oxide 

dismutase 1/2 help in reducing oxidative stress and impart cytoprotective effects.364 p38α MAPK 

mediates cell survival in response to oxidative stress via the induction of antioxidant Genes like 

superoxide-dismutase 1 (SOD-1) and SOD-2.365 But, TAK715 is a p38α MAPK inhibitor, as a 

result, it inhibits p38α MAPK-induced expression of the anti-oxidant genes. On the other hand, 

bulk RNAseq data shows TAK715 also down-regulates Nrf-2 expression. Nuclear factor-E2-

related factor 2 (Nrf2) is a redox-sensing transcription factor, governing antioxidant response 

element (ARE), that drives an adaptive cellular defense in response to oxidative stress by driving 

the expression of numerous cytoprotective genes involved in antioxidant responses such as 
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superoxide dismutase.366,367 Previous studies have suggested that p38MAPK signaling activates 

Nrf-2.368 So, Nrf-2 downregulation leads to an enhanced accumulation of ROS that causes 

oxidative stress. This causes an alteration of mitochondrial dynamics that leads to the collapse 

of mitochondrial membrane potential due to oxidative stress and the release of cytochrome C 

from the mitochondria. This leads to the activation of the intrinsic pathway of apoptosis. 

Excessive oxidative stress also causes DNA damage that leads to cell cycle arrest and 

apoptosis.369 On the other hand, TAK-715 inhibits the phosphorylation-mediated ATF-2 

activation, which causes its ubiquitination-mediated degradation and prevents its nuclear 

translocation. HES-1 has an ATF-2 binding site on its promoter. So, the down-regulation of 

ATF-2 may lead to the transcriptional down-regulation of HES-1, which ultimately leads to the 

depletion of stem-like cells. 
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CHAPTER 4 

 

Validation of Secondary Therapies 

Against Mantle Cell Lymphoma 
 

 In silico Prediction Followed By In Vitro 

validation Identifies a Survivin Inhibitor and 

an MCL-1 Inhibitor As Potent Secondary 

Drug Against Refractory or Relapsed Mantle 

Cell Lymphoma 
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Abstract 
 

Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm that develops from malignant 

B-lymphocytes in the outer edge or mantle zone of a lymph node. This is a sub-type of B-cell 

non-Hodgkin lymphoma characterized by rapid clinical progression and poor response rate to 

conventional chemotherapeutic drugs with recurrent relapse resulting in a short estimated 5-year 

overall survival (OS) of 2-5 years depending on the clinical risk. Combination therapies such as 

R-CHOP, R-DHAP, Hyper-CVAD, and VcR-CAP constitute the front-line chemotherapeutic 

treatment landscape for MCL. Despite good initial responses to the combination regimens, all 

patients develop resistance over time. The Bruton's tyrosine kinase inhibitor (BTKi) Ibrutinib 

and the proteasome inhibitor (PI) Bortezomib are FDA-approved therapies for refractory or 

relapsed (R/R) MCL with demonstrated high initial response rates in clinical trials. However, 

highly variable treatment response along with dose-limiting toxicities has limited the efficacy in 

real-world settings with the median progression-free survival (PFS) of <15 months and Over-al 

of 1-2 years. 

 

Thus, the identification of novel drugs that function either alone or as a combination to curb the 

oncogenic progression as well as to reduce drug-associated toxicities is of high clinical 

significance. 

 

We have designed a novel optimization-regularization-based computational prediction algorithm 

called “secDrug” that uses large-scale pharmacogenomics databases like the GDSC1000 to 

identify novel secondary drugs for the management of treatment-resistant B-cell malignancies. 

We hypothesize that a combination of our predicted secDrugs with BTKi/ PI will be useful in 

curbing oncogenic progressions of R/R MCL and abrogate drug resistance through simultaneous 

inhibition of multiple oncogenic factors/pathways. When applied to BTKi/PI-resistant R/R 

MCL, the top predicted secondary drugs (secDrugs) were YM155 (Survivin inhibitor) and 

S63845 (selective MCL-1 inhibitor). Interestingly, both Survivin and MCL-1 are reported to be 

over-expressed in MCL, and their expression is strongly correlated with the oncogenic 

progression and survivability of the patients. 

 

To validate our in-silico predictions, we performed in vitro cytotoxicity assays with the top 

predicted secDrugs (YM155 and S63845) as single agents (IC50 for YM155 4.87±0.66 nM, for 
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S63845 0.9±1.1 uM) as well as in combination with BTKi/PI against a panel of MCL cell lines 

representing PI/BTKi sensitive, innate resistant (representing refractory MCL) and clonally-

derived acquired resistant (representing relapsed MCL). Our results showed that the YM155 and 

S63845 exhibited significant synergistic cell killing activities (Combination index/ CI value of 

0.31±0.49 as calculated using Chou-Talalay's CI theorem, C.I>1 depicts synergism) alone and 

in combination with Bortezomib (PI) and Ibrutinib (BTKi), especially in R/R MCL cell lines. 

Further, our results also showed that both YM155 and S63845, in combination with BTKi/PI 

were able to significantly lower the effective dose of both BTKi/PI required to achieve desired 

therapeutic response by >12 times (Dose Reduction Index or DRI for YM155 in the combination 

is 15.87±4.93; DRI for S63845 in combination is 12.34±2.67), thereby making the cell lines 

relatively more BTKi/PI sensitive. Next, we performed next-generation RNA sequencing 

analysis to identify mechanisms of secDrug action and synergy. Our Gene expression profiling 

and Ingenuity pathway analysis of the RNAseq data among YM155-treated MCL cell lines 

revealed eIF4-p70S6K signaling and mTOR signaling as the top canonical pathways. 

 

Our study thus identified YM155 and S63845 as potential novel candidates for repurposing as 

secondary drugs in combination with BTKi/PI for the treatment of R/R MCL.  
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Introduction 

 

Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm that develops from malignant 

B-lymphocytes in the outer edge or mantle zone of a lymph node.178 MCL is a sub-type of B-

cell non-Hodgkin lymphoma characterized by rapid clinical progression & poor response rate to 

conventional chemotherapeutic drugs with recurrent relapse resulting in a short estimated 5-year 

overall survival (OS) of 2-5 years.176,193,195 Combination therapies such as R-CHOP, R-DHAP, 

Hyper-CVAD, and VcR-CAP constitute the front-line chemotherapeutic treatment landscape for 

MCL. Despite good initial response to the combination regimens, all patients develop resistance 

over time.179,185 The Bruton’s tyrosine kinase inhibitor (BTKi) Ibrutinib and the proteasome 

inhibitor (PI) Bortezomib (BTZ) are FDA-approved therapies for refractory or relapsed (R/R) 

MCL with demonstrated high initial response rate in clinical trials. 163,200 Majority of the patients 

either have an innate resistance to ibrutinib therapy or eventually acquire resistance, thus 

progressing into a more aggressive disease state.192,195 BTZ was the first PI approved by FDA in 

2006 as a second-line treatment for MCL patients. 163 However, the majority of the patients 

eventually develop PI/ BTKi-resistance over the course of treatment. The presence of stem-like 

cells with inherent drug-resistant phenotypes plays a major role in this.213 Thus,  despite the 

recent advancement, currently approved chemotherapeutic drugs have limited efficacy in real-

world settings, thus making MCL an incurable disease with a median progression-free survival 

(PFS) of <15 months.370,371 In this context, the identification of novel drugs that function either 

alone or as a combination to curb the oncogenic progression as well as to reduce drug-associated 

toxicities is of high clinical significance. We have designed a novel optimization-regularization-

based computational prediction algorithm called “secDrug” to identify novel secondary drugs 

for the management of treatment-resistant B-cell malignancies. We hypothesize that a 

combination of our predicted secDrugs with BTKi/ PI will be useful in curbing oncogenic 

progressions of R/R MCL and abrogate drug resistance through simultaneous inhibition of 

multiple oncogenic factors/pathways. When applied to BTKi/PI-resistant R/R MCL, the top 

predicted secondary drugs (secDrugs) were YM155 (Survivin inhibitor) & S63845 (selective 

MCL-1 inhibitor). Interestingly, both Survivin & MCL-1 are reported to be over-expressed in 

MCL & their expression is strongly correlated with oncogenic progression & survivability of the 

patients. 
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Results 

Single Cell transcriptomics (scRNAseq)-based secDrug screening 
 

We used scRNAseq as a novel biomarker-based drug screen to identify single-cell sub-clones 

(represented by t-SNE clusters) in the untreated drug-sensitive and BTKi-resistant MCL cell 

lines representing sensitive, relapse, and/or refractory MCL that harbor secDrug target genes.  

 

Figure 1 shows a representative figure for the Mino sensitive/resistant pair where our scRNAseq 

data demonstrated that the majority of the single-cell clusters have high expression of YM155 

target gene Survivin (BIRC5) and the S63845 target gene MCL1 indicating that the secDrugs 

YM155 and MCL1 may be effective against these subpopulation clusters. 

 

YM155 & S63845 inhibit human MCL cells proliferation 

 

First, we evaluated the in vitro cytotoxic effect of YM155 & S63845 as single-agent against 

MCL cell lines representing drug-sensitive (JEKO1, MINO-P), PI-resistance (Mino-VR) and 

BTKi-resistance (Z-138) as in vitro model systems. We found that both YM155 & S63845 

effectively reduced cell viability in all four MCL cell lines irrespective of PI/BTKi 

sensitivity/resistance. The median half-maximal inhibitory concentration (IC50) of single-agent 

YM155 & S63845in human MCL cell lines were 4.87±0.66 nM, S63845 0.9±1.1 uM, 

respectively. 
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Figure 2A 
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Figure 2B 
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Figure 2C 

 

 

 

Figure 2D 
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Figure 2. Single-agent cytotoxicity assay with PI & BTKi mirrors the extensive inter-

induvial variation in drug response in the MCL cell line panel.   

 

Dose-response curve reveals a wide range of drug sensitivity towards (Figure 2A) PI 

(Bortezomib/ BTZ) and (Figure 2B) BTKi (Ibrutinib/ IBR). MINO-VR has approx. 70 folds 

higher IC50 value for Bortezomib than its parental cell line MINO-P. Z-138 has approx. 2.5 folds 

higher IC50 value for Ibrutinib than MINO-P and JEKO-1. (Figure 2C) in vitro cell viability 

profile of YM155 single agent treatment in MCL cell lines. (Figure 2D) in vitro cell viability 

profile of S63845 single agent treatment in MCL cell lines. Both YM155 & S63845 showed high 

single-agent in vitro cytotoxicity in our MCL cell panel, including PI- resistant and BTKi-

resistant MCL cell lines. 

 

YM155 & S63845 synergize with Proteasome inhibitors and BTK inhibitors 
 

Next, we investigated the impact of different concentrations of YM155 & S63845 in combination 

with an increasing range of Bortezomib (PI) or Ibrutinib (BTKi). We observed that all the 

combination treatment regimens showed higher cytotoxic effects compared to single-agent PI or 

BTKi treatment. 

 

For drug synergy analysis, Combination Index (CI) values were calculated in Calcusyn Software 

by using the Median Effect methods as described in Chou-Talalay’s CI theorem combination 

index (C.I) theorem. The Combination Index (CI) value < 1 depicts synergism, CI value = 1 

refers to additive effect, and CI value > 1 depicts antagonism for the drugs in combination. 

 

Our results showed that the YM155 and S63845 exhibited significant synergistic cell killing 

activities (Combination index/ CI value of 0.31±0.49 as calculated using Chou-Talalay's CI 

theorem, C.I>1 depicts synergism) alone and in combination with Bortezomib (PI) and Ibrutinib 

(BTKi), especially in R/R MCL cell lines. Most of the combinations have shown synergy (i.e., 

C.I value<1.0). Synergistic effects were particularly profound in MINO-VR & Z-138. This 

observation is particularly relevant as they represent the acquired PI resistance and innate BTKi 

resistance. Similar data were obtained when we combined another BTKi (Acalabrutinib) with 

CLF. 

 

Further, our results also showed that both YM155 and S63845 in combination with BTKi/ PI 

were able to significantly lower the effective dose of both BTKi/PI required to achieve desired 
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therapeutic response by >12 times (Dose Reduction Index or DRI for YM155 in the combination 

is 15.87±4.93; DRI for S63845 in combination is 12.34±2.67), thereby making the cell lines 

relatively more BTKi/PI sensitive. 

 

Figure 3A 
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Figure 3B 

 

 
 

Figure 3C 

 

 



226 | P a g e  

 

Figure 3D 

 

 
 

Figure 3E 
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Figure 3F 

 

                           

 

Figure 3. YM155 & S63845 synergistic cell killing activity with PI & BTKi. Figure 3A-D 

represents in vitro cell viability profile of MCL cell lines, including PI- resistant and BTKi-

resistant MCL cell lines treated with different combinations of YM155 & S63845 with PI/ BTKi. 

All the combinations showed significant improvement in lowering cellular proliferation as 

compared to the effect of PI/ BTKi alone, which indicates drug synergy. We further quantitate 

the extent of synergistic action by Calcusyn Software (BioSoft, USA) that calculates 

Combination Index (C.I) as a function of fraction affected based on Chou-Talalay’s Combination 

Index (C.I) theorem. Most of the combinations have shown synergy (i.e., C.I value<1.0). 

Synergistic effects were particularly profound in MINO-VR & Z-138. This observation is 

particularly relevant as they represent the acquired and innate resistance, respectively. (Figure 

3E-F) 

 

YM155 & S63845 down-regulate Survivin & Mcl-1 respectively in MCL cells 
 

Next, we validated the on-target effect of YM155 and S63845 in MCL cells by western blot. We 

observed that YM155, which is a known Survivin inhibitor, indeed down-regulates the 
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expression of Survivin in resistant MCL cell line Mino-VR. S63845 also suppresses the 

expression of its target, Mcl-1. This proves that these two drugs exert their anti-cancer effect by 

targeting their respective target in MCL cells. 

 

 Figure 4A                                                          Figure 4B 

 

        

 

Figure 4. YM155 & S63845 drug target validation. YM155 & S63845 significantly down-

regulate Survivin and Mcl-1 expression respectively, in MCL cells (Z-138) 

 

YM155 & S63845 combination has a synergistic effect in resistant MCL cell line 
 

Further, we explored whether these two secDrugs have any synergistic cell-killing action in MCL 

cells by in-vitro cytotoxicity assay and then calculated the synergy score using the Bliss 

independence model. We observed that in BTKi-resistant cell line Z-138, the constant ratio 

combination of YM155 and S63845 shows significant synergy (Bliss synergy score 12.915±0.9), 

which further validates Survivin and Mcl-1 targeting approach for the management of drug-

resistant MCL. 

 

Figure 5 
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Figure 5. Visualization of the interactive analysis of multi-drug combination (YM155 & 

S63845) profiling data. The significance of the YM155 & S63845 drug combination was 

measured using the Bliss independence model. From our data, it is evident that the YM155-

S63845 combination has synergistic activity (>10  Bliss synergy score signifies synergistic drug 

action) in resistant MCL cells Z-138 (representative Figures). 

 

Top predicted secDrugs augment apoptosis in sensitive as well as resistant MCL cells 
 

The quantitative analysis of the extent of apoptosis in Mantle Cell Lymphoma cells in response 

to CLF single agent-treatment and CLF+PI/BTKi treatment was done using Fluorescein 

isothiocyanate (FITC) conjugated Annexin-V staining followed by flow cytometry. The data 

shows a significantly higher population of cells are Annexin-V positive, which is an indicator of 

apoptosis in combination treatment as compared to single agent treatment in sensitive cell line 

Mino-P as well as in PI-resistant cell line Mino-VR (Figure 6A-B) and BTKi-resistant cell line 

Z138 (Figure 6B-C) indicating a significantly elevated level of induction of apoptosis in those 

cells. This further proves the synergistic activity of the drug combination. 

 

Figure 6A 
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Figure 6B                                                                      

 

 

 

Figure 6C 
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Figure 6D 

 

 

 

Figure 6. Quantitative measurement of the % of the apoptotic MCL cells (Annexin-V 

positive) exposed to secDrug (YM155) single agent and secDrug+ BTKi combination 

treatment by flow cytometry. Figure 6A-C shows a significantly higher population of cells 

that are Annexin V positive in combination treatment as compared to single agent treatment 

indicating an elevated level of induction of apoptosis which was further confirmed by elevated 

cleaved caspase 3/ 7 activity (Figure 6D). This suggests that the drug combination worked in 

synergy to induce apoptosis. 

 

YM155 reduces the adhesion of MCL cells to bone marrow stromal cells 
 

Previous studies have reported that bone-marrow stromal cells have a protective effect on the 

MCL cells against the chemotherapeutic agent. So, we check whether our top secDrugs are able 

to inhibit the adhesion of MCL cells to the bone marrow stromal cells. We did a co-culture of 

bone marrow stromal cells HS-5, and calcein AM stained MCL cells. MCL cells were pre-treated 

with YM155 for the indicated period of time before seeding on the top of HS-5 cells. Then, we 

washed out any loosely attached cells and took the reading of the bound cells. Data shows 
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YM155 was more effective than PI in inhibiting cellular adhesion of resistant MCL cells to HS-

5 cells. 

 

 

 

 

 

Figure 7. YM155 inhibits cellular adhesion of MCL cells to the bone marrow stromal cells 

(HS-5). We co-cultured bone-marrow stromal cells HS-5 and Calcein AM stained MCL cells. 

MCL cells were pre-treated with YM155 for an indicated period before seeding on the top of 
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HS-5 cells. Data shows YM155 was more effective than PI & BTKi in inhibiting cellular 

adhesion of resistant MCL cells to HS-5 cells. 

 

YM155 targets cancer stem cells in MCL and reduces their ALDH activity 
 

As both YM155 and S63845 have reported activity against cancer stem-ness, we further 

investigated the effect of our novel drugs on the cancer stem-like cells (CSCs) in MCL, which 

have a potential role in treatment resistance. ALDH (aldehyde dehydrogenase) is an intra-cellular 

detoxification enzyme frequently over-expressed in CSCs and involved in drug resistance. We 

observed >4 times higher ALDH activity in the PI and BTKi-resistant MCL lines (MINO-VR – 

11.7% ALDH activity, data not shown here and Z-138 – 10.4%, respectively) compared to the 

drug-sensitive MCL lines (Figure 8A, 8C). YM155 single-agent treatment led to a considerable 

decrease in ALDH activity in both MINO-VR (data not shown here) and Z-138 cells (Figure 8B-

C) (approx. 68% and 91% reduction, respectively, as compared to the control).  

 

Figure 8A 
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Figure 8B 

 

 
 

Figure 8C 
 

 

 

Figure 8. Measurement of Aldehyde dehydrogenase (ALDH) activity in drug-resistant 

MCL cells. Very low ALDH activity was observed in the PI/ BTKi sensitive cell line MINO-P 

(Figure 8A). It is found to be considerably higher in the innate BTKi-resistant Z-138 cell line 

(Figure 8B) & clonally derived PI-resistant MCL cell line MINO-VR (data not shown here), 

indicating the presence of a ‘stem-like phenotype.’ YM155 as a single agent led to a significant 

decrease in ALDH activity (>90%) in drug-resistant cells as compared to the Bortezomib single 

agent treatment (data not shown here) and Ibrutinib single agent treatment ( ∼ 29%) (Figure 8B). 
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Gene expression profile reveals the mechanism of action of YM155 in MCL cells 

 

Differential gene expression analysis (ANOVA) of YM155 treatment-induced changes (baseline 

(untreated) vs. single-agent YM155 drug treatment) in PI-sensitive and PI-resistant MCLs 

showed a total of 143 genes were differentially expressed (DE) with (p<0.05; fold-difference≠1). 

Among these, 38 genes had a |fold-change|≥2. 233 genes were common between the Treated vs. 

Untreated signatures at |fold-change|>1 (p<0.05). Figure 9A shows a heat map of the top DE 

genes. The Venn diagram (Figure 9B) shows the single-agent Bortezomib and YM155-induced 

kinetic changes separately for sensitive-resistant cell line pair Mino-P and Mino-VR. The Venn 

diagram (Figure 9C) shows the single-agent Ibrutinib and YM155-induced kinetic changes 

separately for sensitive-resistant cell line pair Mino-P and Mino-VR. 

 

Figure 9A 
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Figure 9B                                                                   

                       
 

 

 

Figure 9C 

 

 

 

Figure 9. Heat map of the differential gene expression profile obtained from NGS-based 

RNA-seq analysis of the YM155 treated  MCL cell lines to elucidate the underlying 

mechanism of drug action. YM155 treated cells have 143 uniquely differentially expressed 

genes (p<0.05; fold-difference ≥ 2) as compared to the untreated cells (baseline expression). 
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IPA reveals top differentially regulated canonical pathways in YM155-treated MCL cells 
 

Ingenuity pathway analysis revealed YM155-treated MCL cell lines revealed eIF4-p70S6K 

signaling and mTOR signaling as the top canonical pathways. The other top differentially 

regulated pathway was mitochondrial dysfunction which we have validated by measuring the 

mitochondrial membrane potential using JC-1 dye. JC-1 is a cationic carbocyanine dye that 

accumulates in mitochondria. The dye exists as aggregates at higher potential. A decrease in the 

red/green fluorescence indicates mitochondrial depolarization, which causes the JC-1 dye to 

become monomers from its aggregate form. We observed a significant shift from red to green 

fluorescence in response to YM155 single-agent treatment as well as in combination with 

Bortezomib indicating enhanced mitochondrial dysfunction or mitochondrial depolarization due 

to loss of mitochondrial membrane potential 

 

        

 

Figure 10. Ingenuity pathway analysis (IPA) of YM155-induced differentially expressed 

genes. IPA reveals YM155-induced key canonical pathways such as mTOR signaling & 

Mitochondrial dysfunction (Figure 10A), which was further validated by measuring the 

mitochondrial membrane potential post-YM155 treatment (Figure 10B). The increase in JC-1 

monomer intensity suggests mitochondrial depolarization that leads to mitochondrial 

dysfunction. 
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Top differentially expressed genes have a significant association with Overall survival and 

Disease-Free Survival 

 

Next, we validated the top DE genes expressed in YM155 treated vs untreated control cells using 

TCGA’s Diffuse Large B-Cell Lymphoma (DLBC) GEP dataset Kaplan-Meier Curves showed 

that the top DE genes DNTT (Figure 11A) and AK8 (Figure 11B) were significantly associated 

with clinical outcome, i.e., overall survival and disease-free survival. YM155 up-regulates the 

expression of the DNTT gene and down-regulates the expression of the AK8 gene. 

 

Figure 11A                                                                          Figure 11B 

                         

                                  
                         

 

Figure 11. YM155 treatment induced differential regulation of genes associated with 

patient survival. DNTT (DNA nucleotidylexotransferase) & AK8 (Adenylate Kinase 8 ) are 

up-regulated in response to YM155. It is reported that all cases of mature B-cell malignancies 

are DNTT negative. On the other hand, AK8 is associated with metabolic signaling in cancer 

cells. 

 

Validation of YM155 treatment-related gene signatures using patient cohort datasets 
 

Reverse-matching using patient cohort datasets show that YM155 treatment has the potential to 

reverse MCL lethality. Pathway analysis was performed based on the top DEGs in the Ibrutinib-

sensitive and resistant MCL patient cohort (Figure 12A), and Top YM155 treatment-induced 

upregulated pathways (Figure 12B) that were significantly downregulated in Ibrutinib-resistant 

MCL patients. 



239 | P a g e  

 

Figure 12A 
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Figure 12B 

 

 

 

Figure 12. KEGG pathway enrichment analysis provides mechanistic insights into YM155 

drug action in MCL cells. Comparison of Pathway enrichment analysis of GSE141335 dataset 

that contains expression data from clinically Ibrutinib responsive and unresponsive patients with 

YM155 gene signature shows a high degree of similarities indicating YM155 as a potent drug to 

curb resistance. 
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Discussion 
 

The target of one of our secDrugs, YM115, is Survivin which is a member of the inhibitor of 

apoptosis (IAP) protein family that inhibits caspases and blocks cell death.372 

 

It is highly expressed in most cancers and fetal tissue but is entirely absent in terminally 

differentiated cells. Survivin expression is associated with a poor clinical outcome as it promotes 

angiogenesis and acts as a resistance factor in anticancer therapies. Survivin has been shown to 

inhibit apoptosis through caspase-dependent and independent pathways.373 Survivin is also 

found in approximately 50% of high-grade non-Hodgkin's lymphomas.374 This is an adverse 

prognostic factor for survival in diffuse large B-cell lymphoma patients as high Survivin 

expression correlated with shorter survival of the patients. So, Survivin is a promising 

therapeutic target in the management of R/R MCL. 

 

Our study thus identified YM155 and S63845 as potential novel candidates for repurposing as 

secondary drugs in combination with BTKi/PI for the treatment of R/R MCL. Our results showed 

that YM155 & S63845 exhibited significant synergistic cell-killing activities alone & in 

combination with Bortezomib (PI) & Ibrutinib (BTKi), especially in R/R MCL cells. Further, 

our results also showed that both YM155 and S63845, in combination with BTKi/ PI, were able 

to significantly lower the effective dose of both BTKi/PI required to achieve desired therapeutic 

response, thereby making the cell lines relatively more BTKi/PI sensitive. We also found YM155 

and S83845 combination has synergism in resistant MCL cell lines. As both YM155 & S63845 

have reported activity against cancer stem-ness, we further investigated their effect on the cancer 

stem-like cells (CSCs) in MCL, which have a potential role in treatment resistance. YM155 was 

remarkably effective in reducing ALDH activity, a hallmark of CSCs, in resistant MCL cells.375 

Previous studies have reported that bone-marrow stromal cells have a protective effect on the 

MCL cells against the chemotherapeutic agent.376 From our data, it is evident that YM155 

inhibits the adhesion of MCL cells to the bone marrow stromal cells. Next, we performed next-

generation RNA sequencing analysis to identify mechanisms of secDrug action & synergy. Gene 

expression profiling & IPA of the RNAseq data of YM155-treated MCL cell lines revealed 

down-regulation of the pro-survival pathway and genes, also up-regulation of pro-apoptotic 

markers. 
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Thus, the secDrug algorithm promises to serve as a universal prototype for the discovery of novel 

drug combination regimens for treatment outcomes in any cancer type by enhancing sensitivity 

or overcoming resistance to standard-of-care drugs. 
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Abstract 
 

Mantle Cell Lymphoma (MCL) is a difficult-to-cure, highly heterogeneous, and aggressive form 

of non-Hodgkin lymphoma comprising roughly 7% of all cases with a high recurrence rate and 

poor long-term prognosis. The reported progression-free survival is about 1-2 years, and the 

median overall survival/OS is < 3 years. Current first-line MCL therapies include combination 

regimens like R-CHOP, R-DHAP, Hyper-CVAD, VcR-CAP, etc. However, although patients 

respond well to initial treatment, most eventually progress to relapsed disease state. BTKis 

(Bruton's tyrosine kinase inhibitors), such as Ibrutinib, are standard targeted therapeutic options 

for refractory or relapsed (R/R) MCL. The proteasome inhibitor (PI) drug 

Bortezomib/Velcade/Bz is another FDA-approved targeted drug for R/R MCL. However, 

despite these recent advances in the treatment landscape, R/R MCL still remains incurable with 

limited therapeutic options and a median OS<10-15 months. Therefore, there is an unmet need 

to discover novel drugs against R/R MCL. 
 

Previously, we have demonstrated that Clofazimine (CLF), an anti-leprosy drug, could 

potentially be repurposed for the treatment of chronic myeloid leukemia and PI/IMiD-resistant 

multiple myeloma that also targets subclones representing putative stem-like-cells (CSCs). 

Notably, using single-cell analysis and high dimensional immunophenotyping or CyTOF 

(Cytometry Time of Flight), we have also identified molecular networks underpinning CLF+PI 

synergy. We hypothesize that CLF has strong potential to be repurposed as a novel anti-MCL 

drug, particularly in a relapsed/refractory setting. 
 

For this purpose, we used MCL cell lines representing drug-sensitive (JEKO1, MINO), innate 

PI/BTKi-resistance (Z138; representing refractory patients), and clonally-derived acquired 

PI/BTKi-resistance (MINO-R; representing relapse patients) as in vitro model systems and 

showed i) the efficacy of CLF as a single agent (IC50= 6.9±3.6 uM) and ii) in combination with 

PIs (Bz) and BTKis (Ibrutinib, Acalabrutinib) against innate and acquired resistant MCL (Figure 

1), as well as iii) the unique targeting of putative CSCs by CLF. Remarkably, CLF+BTKi/PI 

combination lowered the effective BTKi, and PI doses required to achieve desired therapeutic 

response by >10-folds (estimated dose reduction index for BTKi and PI were 12.43 and 10.99, 

respectively). Further, mRNA-sequencing followed by differential gene expression analysis 

using DESeq2 and EdgeR revealed that the top significantly upregulated genes following 
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PI+CLF treatment were GSR, DAP3, and DOK1, which have reported anti-tumorigenic activity. 

The top significantly downregulated genes EHD1, CBX8, DDX17, SOX12, and COMMD3 have 

reported pro-survival function. Ingenuity pathway analysis revealed protein ubiquitination 

pathway and cell cycle arrest at the G2/M phase as the top canonical pathways. Causal network 

analysis showed synergistic drug action significantly elevated the levels of oxidative stress and 

unfolded protein response. Additionally, the PI+CLF combination potentiated AMPK-mediated 

down-regulation of the mTOR signaling pathway, which further led to a direct reduction of 

Cyclin D1 (aberrantly expressed in MCL) and the downregulation of eIF4-p70S6K signaling. 

The synergistic drug activity also led to the downregulation of oncogenic pathways like p38 

MAPK and NF-kB signaling. 

 

Recent studies have indicated that intra-tumor heterogeneity due to the presence of stem-like 

cells in MCL (MCL-CSCs), including CD45+CD19- MCL-initiating cells (MCL-ICs), relatively 

quiescent-highly clonogenic aldehyde dehydrogenase (ALDH)+ cells and side populations (SP) 

may drive drug resistance and disease relapse. Notably, we found that several of the differentially 

regulated genes are critical for the maintenance and functioning of CSCs. For example, the 

PI+CLF combination downregulates Wnt/β catenin signaling, which is found to be frequently 

overexpressed in MCL-ICs. HIPPO, another signaling pathway involved in the maintenance of 

cancer stem-ness and emergence of drug resistance, was also down-regulated. Currently, we are 

validating the specific targeting of putative MCL-CSCs by CLF. Next, we plan to replicate our 

findings using PDX models of MCL. 

 

CLF is an FDA-approved drug as well as on WHO's List of Essential Medicines. Thus, our study 

introduces CLF as a novel, safe, and inexpensive therapeutic option for the management of R/R 

MCL. 
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Introduction 
 

Mantle cell lymphoma (MCL) is rare cancer with an incidence rate of 1 per 200,000 each year. 

It is typically a difficult-to-cure, highly heterogeneous, and aggressive form of non-Hodgkin 

lymphoma, comprising roughly 5%-7% of all cases with a high recurrence rate and poor long-

term prognosis.177,178,192 The reported progression-free survival is about 1-2 years, and median 

overall survival (OS) is <3 years. MCL is predominant in an older population, and many affected 

individuals are diagnosed at approximately 60 to 70 years old (median age of diagnosis >60 

years).179,192 It has been seen that the incidence rate in men is nearly twice as high as that in 

females. 177 Reports suggest that most individuals with MCL have advanced (i.e., stage III or 

stage IV) disease at diagnosis. Further, potential exposure to Agent Orange increases 

susceptibility to MCL in U.S. veterans with a prevalence of ~10 cases and incidence of 0.6-2.6 

cases per 100,000.177–179 
 

Current first-line MCL therapies include combination regimens like R-CHOP (rituximab plus 

cyclophosphamide, doxorubicin, vincristine, and prednisone), BR (bendamustine and 

rituximab), rituximab, bendamustine and cytarabine (R-BAC), R-DHAP (Rituximab 

(Rituxan®), Dexamethasone (Decadron®), High-dose Ara-C (Cytarabine), CisPlatin), Hyper-

CVAD (cyclophosphamide, vincristine sulfate, doxorubicin (Adriamycin), dexamethasone), 

VcR-CAP (bortezomib (Velcade), rituximab (Rituxan), cyclophosphamide, doxorubicin 

(Adriamycin), prednisone), etc.176,185,190 Although patients respond well to initial treatment, most 

eventually progress to relapsed disease state. Immunomodulatory agents refer to drugs that alter 

the functioning of the immune system and include Revlimid (lenalidomide).166 Targeted 

therapies are agents that target a specific protein and stop signals in cancer cells responsible for 

growth and survival.377 Food and Drug Administration (FDA) approved targeted agents in 

refractory or relapsed (R/R) MCL include BTKi (Bruton’s tyrosine kinase inhibitors) such as 

Imbruvica (ibrutinib), Calquence (Acalabrutinib), and Brukinsa (Zanubrutinib).206 BTK is a non-

receptor tyrosine kinase that serves as a critical component of the B-cell receptor signaling 

pathway responsible for cellular proliferation and is found to be frequently over-expressed in 

MCL.197,198 The proteasome inhibitor163 (PI) drug Bortezomib/Velcade/Bz is another FDA-

approved targeted drug for R/R MCL.378 However, despite these recent advances in the treatment 

landscape, R/R MCL remains incurable with limited therapeutic options owing to drug 

resistance, extensive inter-individual variation in response, and toxicity profile that limits 
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efficacy in clinical settings and a median OS<10-15 months.370 Therefore, there is an unmet need 

to discover novel drugs against R/R MCL. 

 

Recent evidence indicates that intra-tumor heterogeneity due to the presence of treatment-

refractory subpopulations or cancer stem-like cells (CSCs) drives drug resistance and disease 

relapse in various cancers.85,98,218 These putative stem-like cells in MCL include CD45+CD19- 

cells/ MCL-initiating cells (MCL-ICs), relatively quiescent-highly clonogenic aldehyde 

dehydrogenase (ALDH)+ cells, and side populations (SP).213,214,216 Once ibrutinib stops working, 

only one-third of patients respond to their following line of treatment; those who do respond 

experience only brief remissions and have poor outcomes, irrespective of stem cell 

transplantation. Ibrutinib is ineffective in targeting MCL-CSCs.370 

 

Previously, we have demonstrated that Clofazimine (CLF), an anti-leprosy drug, could 

potentially be repurposed for the treatment of chronic myeloid leukemia (CML) and multiple 

myeloma (MM) that specifically targets subclones representing stemness in PI-resistant 

patients.379,380 CLF, which is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist 

binds to PPARγ that results in modulation of its transcriptional as well as E3 ubiquitin ligase 

activity.381 This increased ubiquitin ligase activity of PPARγ induces proteasomal degradation 

of p65 (RelA), which in turn results in sequential transcriptional downregulation of MYC and 

PRDX1, resulting in the cellular effects of CLF, including regulation of cellular ROS levels.380 

CLF also leads to the transcriptional down-regulation of Signal Transducer and Activator of 

Transcription 3 (Stat3) and Hypoxia-inducible factor 1 (HIF-1α)-the two reported oncogenes 

with reported involvement in cancer progression and stemness.380 Furthermore, we compared 

the efficacy of CLF with that of other PPARγ agonists, such as-rosiglitazone and pioglitazone. 

Single-agent CLF was found to be the most potent among all the PPARγ ligands tested. (data 

not shown here). 

 

Notably, using single-cell analysis and high dimensional immunophenotyping, we have also 

identified synergistic down-regulation of p65/NF-kB/IRF4/Myc signaling cascade-the molecular 

networks underpinning CLF+PI synergy.379 

 

Therefore, we hypothesized that CLF has strong potential to be repurposed as a novel anti-MCL 

drug in combination with PIs and BTKi through the synergistic down-regulation of multiple key 

pathways critical for the maintenance and functioning of CSCs. We also investigated the intra-
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tumor heterogeneity of the aggressive forms of MCL at the sub-clonal/single-cell level using 

single-cell transcriptomics. Furthermore, our study will also enable single-cell biomarker-based 

quantification of the contribution of MCL-CSC subclones toward drug resistance and tumor 

aggressiveness. This will serve as a prototype for future therapeutic applications to identify sub-

clonal stemness and resistance in patient samples. 

 

Material and Methods 
 

Drugs and Reagents 
 

Drugs, reagents, antibodies, and kits are listed in Table S1. All the drugs were dissolved in 

dimethyl sulfoxide/ DMSO (Sigma-Aldrich; St. Louis, MO, US) and stored at -20ºC. 

Recombinant Human IL-6 was obtained from PeproTech, Inc. (Cranbury, NJ, US) 

 

Cell culture 
 

Human MCL cell lines MINO, JEKO1, and Z-138 were obtained from ATCC (Manassas, VA, 

USA). All the cell lines were cultured in the media as recommended by the supplier and were 

maintained in an incubator at 37°C with 5% CO2. The cell lines were authenticated at source and 

at regular intervals and tested randomly at regular intervals for mycoplasma negativity. 

 

Creation of clonally-related PI-resistant MCL cell line 
 

Bortezomib-resistant MINO (MINO-VR) was created from the clonally-related parental PI-

sensitive MINO-P MCL cell line by dose escalation. Briefly, the Mino-P cell line was subjected 

to pulses of once-weekly Bortezomib treatment. Bortezomib concentrations were doubled after 

every three weeks of treatment. The process of dose escalation continued for 6 months. Cultures 

were removed from bortezomib for 14 days or 6 months before analysis and cultured in a manner 

consistent with the parental lines. 

 

In vitro chemosensitivity assays and drug synergy analysis 
 

MCL cell lines were treated with increasing concentrations of CLF, PIs (represented by BTZ), 

and BTKis (represented by Ibrutinib and Acalabrutinib) as single agents or in combination for 

48h, and cytotoxicity assays were performed using CellTiter-Glo® Luminescent cell viability 

assay (Promega Corporation, Madison, WI, USA). Luminescence was measured by Synergy 2 

Microplate Reader (BioTek; Winooski, VT, US). Half-maximal inhibitory concentration (IC50) 
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values were determined by calculating the nonlinear regression using a sigmoidal dose-response 

equation (variable slope).  

 

For combination therapy, cell lines were treated with an indicated concentration of PI and BTKi, 

and 2.5, 5, and 10 μM CLF for 48 hours. The combination Index (CI) of each treatment was 

calculated in Calcusyn Software (Biosoft, USA) using Chou-Talalay’s Median Effect method. 

CI value < 1 depicts synergism, CI = 1 refers to additive effect, and CI > 1 depicts antagonism 

among the drugs in combination. 

 

Apoptosis assays 
 

Human Mantle Cell Lymphoma cells treated with single-agent PI, BTKi, and CLF as well 

combination of drugs (PI+CLF, BTKi+CLF), then harvested and washed, followed by staining 

in the dark with Annexin V-FITC and Propidium Iodide according to manufacturer’s protocol 

(BD; Franklin Lakes, NJ, USA). Data was acquired by BD LSR II flow cytometry (BD; Franklin 

Lakes, NJ, USA) and analyzed in FlowJo™ Software (Ashland, OR, USA). 

 

Caspase-3/7 activity assay was performed on the MCL cell lines using Caspase-Glo 3/7 

luminescent assay kit according to the manufacturer’s instructions (Promega Corporation, 

Madison, WI, USA). Luminescence was measured using Synergy 2 Microplate Reader (BioTek; 

Winooski, VT, US).). The caspase activity was normalized to the untreated controls, and the area 

under the relative caspase activity curve (AUC) was calculated by the trapezoidal method using 

the GraphPad Prism software (LaJolla, CA, USA). 

 

Mitochondrial transmembrane potential measurement (ΔΨ m) 
 

Mitochondrial membrane potential was measured using JC-1 - Mitochondrial Membrane 

Potential Assay Kit by following the manufacturer’s protocol (Abcam, Cambridge, UK). Briefly, 

the cells were plated in a 96-well black plate and treated with 0.5% DMSO or the drugs (PI, 

BTKi, CLF- single agent and combination of drugs - PI+CLF, BTKi+CLF). Following 

incubation, the cells were stained with JC-1 dye, and fluorescence was recorded in a Synergy 2 

Microplate Reader (BioTek; Winooski, VT, US). 
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Side population Assay 
 

Side population cells in PI/BTKi resistant MCL cell lines will be investigated using DyeCycle 

Violet/DCV (Thermo-Fisher Scientific; Waltham, MA, US) assay according to manufacturer’s 

instructions using flow cytometry. Briefly, MCL cells were treated with either CLF alone and/or 

in combination with the PI/BTKi for the indicated time. Next, cells were stained with Vybrant 

DyeCycle Violet stain and with 7-AAD (Thermo-Fisher Scientific; Waltham, MA, US) for the 

recommended time. Following dye incubation, cells were washed with ice-cold PBS and were 

immediately analyzed by flow cytometry. The sample incubated with Verapamil (Sigma-

Aldrich; St. Louis, MO, USA) for the recommended time was used as the positive control. 

 

Aldefluor activity assay 
 

Aldehyde dehydrogenase (ALDH) activity was assessed using the Aldefluor assay kit according 

to the manufacturer’s instructions (Stem Cell Technologies; Vancouver, Canada). Briefly, CLF 

single agent and CLF+ BTKi/PI treated MCL cells were harvested and resuspended in Aldefluor 

assay buffer containing the ALDH substrate, BODIPY-amino acetaldehyde (BAAA). Negative 

control samples were treated with diethylamino benzaldehyde (DEAB) - an inhibitor of ALDH1 

enzymatic activity. Then, the MCL cells were suspended in ALDEFLUOR™ assay buffer, and 

the brightly fluorescent ALDH+ cells were detected by BD LSR II flow cytometer (BD; Franklin 

Lakes, NJ, USA) and analyzed using FlowJo™ Software (Ashland, OR, USA). 

 

Cellular viability measurement in the presence of tumor microenvironment 
 

MCL cell lines Mino-P and Mino-VR were plated in the normal cell culture media and also with 

15% and 30% conditioned media derived from bone marrow stromal cells HS-5. The cells were 

then treated with increasing concentrations of PI (Bortezomib) and CLF as single agents for 48h, 

and a cytotoxicity assay was performed using the method mentioned above. 

 

Measurement of Oxygen Consumption Rate (OCR) 
 

We measured the OCR using the Agilent Seahorse Extracellular Flux (XF) Technology. Briefly, 

we have coated the XFp plate with Poly-D-Lysine to make it compatible to use for the suspension 

cells. Then, Mino-VR cells were plated and treated with vehicle control (0.5% DMSO) and CLF 

(10 uM) for 24 hrs. On the next day, using the Agilent Seahorse XF Cell Mito Stress Test kit, 

the mitochondrial function was measured by the XFp seahorse analyzer.  First, oligomycin and 
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Fluoro-carbonyl cyanide phenylhydrazone (FCCP) were injected sequentially, followed by a 

third injection of a mixture of Rotenone and Antimycin A. Oligomycin inhibits ATP synthase 

and reduces OCR, followed by FCCP that raises OCR to the maximal rate by collapsing the inner 

membrane gradient and increasing the electron transport chain activity. Lastly, rotenone and 

antimycin A, which are complex I and antimycin complex III inhibitors, respectively inhibit the 

electron transport chain and reduce the OCR to a minimal value. 

 

Data were normalized to the protein concentration at the end of each experiment. Data was 

calculated, and graphs were plotted using Agilent Seahorse Wave Desktop software and report 

generator, MS Excel, and GraphPad Prism. 

 

Whole-transcriptome gene expression analysis 
 

MCL cells were plated and incubated overnight at 37 °C in a 6-well plate, followed by treatment 

with CLF single agent and CLF+ BTKi/PI. After 24 hours, cells were harvested, and high-quality 

RNA was extracted using QIAshredder and RNeasy kit (Qiagen; Hilden, Germany) and stored 

at -80°C. RNA concentration was measured using a Nanodrop-8000 spectrophotometer 

(Thermo-Fisher Scientific; Waltham, MA, US), and RNA integrity was assessed using Agilent 

2100 Bioanalyzer (Agilent Technologies; Santa Clara, CA, US).  An RNA integrity number 

(RIN) threshold >8 was applied, and RNA-seq libraries were constructed using Illumina TruSeq 

RNA Sample Preparation kit v2 (Illumina; San Diego, CA). Libraries were then size-selected, 

and RNA sequencing was performed on Illumina's NovaSeq platform using a 150bp paired-end 

protocol with a depth of > 20 million reads per sample. 

 

RNAseq data analysis 
 

RNA-seq data was pre-processed, genes with mean counts<10 were removed, and differential 

gene expression analysis was performed between two groups of RNAseq datasets (e.g., treated 

vs. untreated) using a combination of command-line based analysis pipeline (DEseq2 and edgeR) 

and Partek Flow software (Partek, Inc; St. Louis, MO, US). We used GSA to perform differential 

gene expression analysis between groups that applies limma, an empirical Bayesian method that 

increases statistical power, to detect the differentially expressed (DE) genes. Mean fold-

change>|1| and p<0.05 was considered as the threshold for reporting significant differential gene 

expression. Further, Analysis of Variance (ANOVA) was used for continuous outcomes, 
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followed by post-hoc analysis using an unpaired two-tailed Student’s t-test. Multiple testing was 

performed using Benjamini–Hochberg method. Genes with significant levels (p<0.05) were 

considered DEGs. Heatmaps were generated using unsupervised hierarchical clustering (HC) 

analysis based on the top DE genes (DEGs). 

 

Ingenuity pathway analysis (IPA) 
 

The most significant differentially expressed genes (DEGs) were used to perform pathway 

analysis using the IPA (Qiagen; Hilden, Germany) software to identify the most significantly 

affected molecular pathways, upstream regulator molecules, downstream effects and causal 

networks predicted to be activated or inhibited in response to single-agent and combination 

treatment. 

 

Cell Cycle Analysis 
 

Human Mantle Cell Lymphoma cells were treated with vehicle (0.5% DMSO), PI, BTKi, CLF- 

single agent, and a combination of drugs (PI+CLF, BTKi+CLF). Cells were harvested and 

washed with PBS, followed by fixation by adding ice-cold 70% ethanol for 30 minutes at 4 °C. 

Methanol was removed and washed twice with cold PBS. 0.5 ml of PI/RNase staining solution 

was added to each sample and incubated for 30 min at room temperature in the dark. Data was 

acquired by BD LSR II flow cytometry ((BD; Franklin Lakes, NJ, USA) at 488 nm wavelength 

and analyzed in FlowJo™ Software (Ashland, OR, USA). 

 

Pre- vs. post-treatment single-cell gene expression analysis 
 

Untreated and CLF-treated MinoP and Mino-VR were subjected to automated single-cell capture 

and cDNA synthesis using 10X Genomics (Pleasanton, CA, US) Chromium platform. Single-

cell RNA sequencing (scRNA-seq-based gene expression analysis) was performed on Illumina 

HiSeq 2500 Next-generation sequencing platform (Paired-end. 2*125bp, 100 cycles. v3 

chemistry) at ~5 million reads per sample.  

 

scRNAseq datasets were obtained as matrices in the Hierarchical Data Format (HDF5 or H5). 

We used a combination of Seurat, Cell Ranger software, and Partek Flow software packages to 

pre-process scRNA-seq data and perform single-cell gene expression analysis for biomarker-

based identification of PI/BTKi-resistant single-cell subpopulations subclones expressing cancer 

stem-like signature, as well as secDrug treatment-induced erosion of these subclones. Highly 
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variable genes will be selected for clustering analysis based on a graph-based clustering 

approach. t-distributed stochastic neighbor embedding (t-SNE), and UMAP (Uniform Manifold 

Approximation and Projection) plots were generated to visualize the cell subpopulation 

architecture based on markers of interest 39. Highly variable genes for clustering analysis were 

selected based on a graph-based clustering approach. Relative marker intensities and cluster 

abundances per sample were visualized by a heatmap. 

 

Western Blotting 
 

Top differentially expressed genes (DEGs) genes were evaluated using Immunohistochemistry 

and densitometry analysis. Cells were treated with CLF, as a combination with PI or BTK, total 

protein was isolated, and immunoblotting assays were performed using the following antibodies 

from Cell Signaling Technology (Danvers, MA, US). Immuno-reactivity was detected by 

Chemiluminescent HRP Substrate (Bio-Rad Laboratories; Hercules, CA, US), and the exposed 

image was captured using a ChemiDoc™ MP Imaging System (Bio-Rad). Densitometry analysis 

was performed in triplicates using Image J software. 

 

Patient data 
 

Further, a novel reverse-match approach was used to identify small molecule signatures that 

reverse the input signature (drug-induced gene expression profiles). Using this, we identified i) 

the most significantly affected molecular pathways; upstream regulator molecules; iii) 

downstream effects and biological processes; and iv) causal networks; predicted to be activated 

or inhibited in response to AKM1 & AKM2 treatment based on the most significant biomarkers. 

Thus, this biomarker-based method has also served as a novel tool to screen additional secondary 

Drugs against the aggressive single-cell subclones. 
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3.1.4 Results 

 

CLF inhibits cell proliferation in human MCL cell lines 
 

First, we evaluated the in vitro cytotoxic effect of CLF as a single agent against MCL cell lines 

representing drug-sensitive (JEKO1, MINO-P), PI-resistance (Mino-VR), and BTKi-resistance 

(Z138) as in vitro model systems. We found that CLF was effective in reducing cell viability in 

all four MCL cell lines irrespective of PI/BTKi sensitivity/resistance (Figure 1). The median 

half-maximal inhibitory concentration (IC50) of single-agent CLF in human MCL cell lines was 

6.9±3.6 uM. 

 

Figure 1. Single-agent cytotoxicity assay with PI & BTKi mirrors the extensive inter-

induvial variation in drug response in the MCL cell line panel.   

 

Dose-response curve reveals a wide range of drug sensitivity towards (1A) PI (Bortezomib/ 

BTZ) and (1B) BTKi (Ibrutinib/ IBR). MINO-VR has approx. 70 folds higher IC50 value for 

Bortezomib than its parental cell line MINO-P. Z-138 has approx. 2.5 folds higher IC50 value for 

Ibrutinib than MINO-P and JEKO-1. (1C) in vitro cell viability profile of Clofazimine (CLF) 

single agent treatment in MCL cell lines. CLF showed high single-agent in vitro cytotoxicity in 

our MCL cell panel, including PI- resistant and BTKi-resistant MCL cell lines. 

 

Figure 1A 
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Figure 1B 

 
 

   
 

 

Figure 1C 

 

 

 

CLF synergizes with Proteasome inhibitors and BTK inhibitors 
 

Next, we investigated the impact of three different concentrations of CLF (2.5, 5, and 10 µM) in 

combination with an increasing range of Bortezomib (PI) or Ibrutinib (BTKi). We observed that 

all the combination treatment regimens showed higher cytotoxic effects compared to single-

agent PI (Figure 2A) or BTKi treatment (Figure 2B). 
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For drug synergy analysis, Combination Index (CI) values were calculated in Calcusyn Software 

by using the Median Effect methods as described in Chou-Talalay’s CI theorem combination 

index (C.I) theorem. The Combination Index (CI) value < 1 depicts synergism, CI value = 1 

refers to additive effect, and CI value > 1 depicts antagonism for the drugs in combination. 

 

Most of the combinations have shown synergy (i.e., C.I value<1.0). Synergistic effects were 

particularly profound in MINO-VR & Z-138. This observation is particularly relevant as they 

represent the acquired PI resistance and innate BTKi resistance. Similar data were obtained when 

we combined another BTKi (Acalabrutinib) with CLF. 

 

Figure 2. CLF shows synergistic cell-killing activity with PI & BTKi 

 

(2A-B) represents in vitro cell viability profile of MCL cell lines, including PI- resistant and 

BTKi-resistant MCL cell lines treated with different combinations of CLF & PI/ BTKi. All the 

combinations showed significant improvement in lowering cellular proliferation as compared to 

the effect of PI/ BTKi alone, which indicates drug synergy. We further quantitate the extent of 

synergistic action by Calcusyn Software (BioSoft, USA) that calculates the Combination Index 

(C.I) as a function of fraction affected based on Chou-Talalay’s Combination Index (C.I) 

theorem. Most of the combinations have shown synergy (i.e., C.I value<1.0) (2C-D). Synergistic 

effects were particularly profound in MINO-VR & Z-138. This observation is particularly 

relevant as they represent the acquired and innate resistance, respectively. 
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Figure 2A 

 

 

 

Figure 2B 
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Figure 2C 

 

 

 

Figure 2D 

 

 
 

CLF, in combination with PI & BTKi, augments apoptosis in MCL cell lines 
 

The quantitative analysis of the extent of apoptosis in Mantle Cell Lymphoma cells in response 

to CLF single agent-treatment and CLF+PI/BTKi treatment was done using Fluorescein 

isothiocyanate (FITC) conjugated Annexin-V staining followed by flow cytometry. The data 

shows a significantly higher population of cells are Annexin-V positive, which is an indicator of 
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apoptosis in combination treatment as compared to single agent treatment in sensitive cell line 

Mino-P as well as in PI-resistant cell line Mino-VR (Figure 3B) and BTKi-resistant cell line 

Z138 (Figure 3C) indicating the significantly elevated level of induction of apoptosis in those 

cells. This further proves the synergistic activity of the drug combination. 

 

Figure 3. CLF+PI & CLF+BTKi enhance apoptosis in drug-resistant MCL cells 

 

Quantitative measurement of the % of the apoptotic MCL cells (Annexin-V positive) exposed to 

CLF single agent and CLF+ PI/ BTKi combination treatment by flow cytometry. The data shows 

a significantly higher population of cells are Annexin-V positive in combination treatment as 

compared to single agent treatment indicating an elevated level of apoptosis which further proves 

the synergistic activity of the drug combination. 

 

Figure 3A 
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Figure 3B 

 

 

 

 
 

Figure 3C 
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A combination of CLF and PI/BTKi induces a mitochondrial pathway of apoptosis 
 

To evaluate the effect of the CLF -PI/BTKi combination on apoptosis, we performed a 

luminescence-based Caspase 3/7 Glo Assay. We observed elevated levels of Caspase 3/7 activity 

in combination-treated cells as compared to single-agent PI and BTKi treatment (Figure 4A).  

 

The results were also confirmed by immunoblotting analysis that shows up-regulation of cleaved 

caspase 3 and 9 in response to CLF treatment (Figure 4B), indicating that CLF induced apoptosis 

through the mitochondria-mediated pathway. 

 

Moreover, immunoblotting data also showed a decrease in the expression of anti-apoptotic 

proteins such as Bcl-2 and an increase in the expression of pro-apoptotic protein Bax (Figure 

4B). 

 

Previous studies have shown that CLF exerts its anti-bacterial activity by producing reactive 

oxygen species (ROS) that lead to mitochondrial depolarization. To investigate if CLF also 

generates ROS in the MCL cells, we measured cellular superoxide anions. An increase in DHE 

fluorescence indicates an increased accumulation of ROS in response to single-agent CLF 

treatment, which is further augmented when combined with Ibrutinib (Figure 4C) 

 

Further, we measure the mitochondrial membrane potential using JC-1 dye. JC-1 is a cationic 

carbocyanine dye that accumulates in mitochondria. The dye exists as aggregates at higher 

potential. A decrease in the red/green fluorescence indicates mitochondrial depolarization, which 



263 | P a g e  

 

causes the JC-1 dye to become monomers from its aggregate form. We observed a significant 

shift from red to green fluorescence in response to CLF single-agent treatment as well as in 

combination with Bortezomib, indicating enhanced mitochondrial dysfunction or mitochondrial 

depolarization due to loss of mitochondrial membrane potential. 

 

Figure 4. CLF activates the mitochondrial-mediated pathway of apoptosis in MCL cells. 
 

(4A) CLF activates Caspase 3/ 7 in apoptotic MCL cells. The data shows significantly elevated 

Caspase 3/7 activity in combination-treated cells as compared to control, and single-agent 

treatment suggests that the drug combination worked in synergy to induce apoptosis. (4B) The 

data shows significant up-regulation of the Cleaved Caspase 3 and 9 expressions indicating that 

CLF-induced apoptosis was dependent on the mitochondria-mediated pathway. (4C) The data 

shows a significantly higher level of Dihydroethidium (DHE) fluorescence intensity in 

combination-treated cells as compared to single-agent treatment indicating enhanced cellular 

ROS production. (4D) The data shows the measurement of treatment-induced change in 

mitochondrial membrane potential. CLF alone and, in combination, a decrease in the red/green 

fluorescence indicates mitochondrial depolarization, which causes JC-1 dye to become 

monomers from its aggregates form.  

 

Figure 4A 
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Figure 4B 

 

 

 

Figure 4C 
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Figure 4D 

 
 

 

 

CLF reduces the stem-cell load in MCL: CLF eroded side population cells and inhibited 

Aldefluor activity 

 

ALDH (aldehyde dehydrogenase) is an intra-cellular detoxification enzyme that is frequently 

over-expressed in CSCs and involved in drug resistance. We observed > 4 times higher ALDH 

activity in the PI and BTKi-resistant MCL lines (MINO-VR – 11.7% ALDH activity and Z-138 

– 10.4%, respectively) compared to the drug-sensitive MCL lines (Figure 5A, 5D). CLF single-

agent treatment led to a considerable decrease in ALDH activity in both MINO-VR (Figure 5B, 

5D) and Z-138 cells (Figure 5C, 5D) (approx. 64% and 71% reduction, respectively, as compared 

to the control). When we combined CLF with PI and BTKi, we observed ALDH activity was 

further reduced to the level corresponding to that of the sensitive cell lines (Figure 5A). 

 

Figure 5. CLF erodes cancer stem cells in MCL 
 

CLF reduces side-population load in drug-resistant MCL cells. DyeCycle violet-based side 

population (SP) analysis following CLF single agent and combination treatment in sensitive and 

drug-resistant MCL cell lines reveals that resistant cells harbor a significantly higher % side 
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population as compared to sensitive cells (Figure 5A & 5D). Notably, CLF alone or a 

combination of CLF+ PI in PI-resistant MCL cell line (MINO-VR; Figure 5B) and a combination 

of CLF+ BTKi in BTKi-resistant MCL cell line (Z-138; Figure 5C) were able to the reduce the 

load of the side population. 

 

Figure 5A 
 

 

 

Figure 5B 

 

 
 

Figure 5C 

 

 



267 | P a g e  

 

Figure 5D 

 

 

 

Side populations (SP) cells are a subset of hematopoietic stem cells that possess several stem-

cell-like features like high in vivo tumorigenicity and self-renewal capability. SPs are 

characterized by the ability to efflux DNA-binding dye via an ATP-binding cassette (ABC) 

transporter. We gated and selected side population/SP cells from main populations (MP) using 

DyeCycle violet, which is a cell-permeable DNA-binding dye, pre- and post- CLF treatment as 

single-agent and in combination with PI/ BTKi. Our results showed that at baseline (no 

treatment), both the resistant cells MINO-VR (Figure 6B, 6D) and Z-138 (Figure 6C-D) harbor 

considerably higher % SP compared to the sensitive cell lines Mino-P (Figure 6A, 6D) (>11 

folds in MINO-VR and > 24 folds in Z-138 as compared to MINO-P). Further, CLF, as a single-

agent treatment, eroded the SP by more than 52% in MINO-VR and 63% in Z-138 (Figure 6B-

D). The combination of CLF with PI and BTKi resulted in a more profound effect, and ALDH 

activity was further reduced to the level corresponding to that of the sensitive cell lines. 
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Figure 6. CLF erodes cancer stem cells in MCL 
 

CLF reduces Aldefluor activity- a hallmark of cancer stem-ness implicated in drug resistance in 

MCL cells. Measurement of Aldehyde dehydrogenase (ALDH) activity in PI/ BTKi sensitive, 

PI-resistant & BTKi-resistant MCL cell lines showed very low-level ALDH activity in the PI/ 

BTKi sensitive cell line MINO-P. It is found to be considerably higher in clonally derived PI-

resistant MCL cell line MINO-VR & in innate BTKi-resistant Z-138 cell line, indicating the 

presence of a ‘stem-like phenotype.’ CLF as a single agent and, in combination, caused a 

significant decrease in ALDH activity in drug-resistant cells. 

 

Figure 6A 

 

 

Figure 6B 
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Figure 6C 

 

Figure 6D 

 

 

 

CLF alleviates the effect of the tumor microenvironment on the drug sensitivity of the MCL 

cells 
 

The tumor microenvironment (TME) provided by the bone marrow stromal cells (BMSCs) has 

a protective effect on the MCL cells. Interaction between BMSCs secreted factors and MCL cells 

help the latter to evade the cytotoxic effect of the chemotherapeutic drugs, which is one of the 

major reasons behind the treatment failure in R/R MCL. To check if CLF can negate this TME-

induced drug resistance, we measured the IC50 of Bortezomib and CLF in the presence of BMSC-

conditioned media (CM). The data showed that in the presence of CM, the IC50 of Bortezomib 

increased significantly (Figure 7A), indicating resistance, whereas, in the case of CLF, it didn’t 

show significant change and remained more or less similar (Figure 7B) as compared to the 
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control media. This data suggests that CLF was more effective in nullifying the effect of TME 

than Bortezomib. 

 

Figure 7. in vitro cell viability profile of CLF single agent treatment in the presence of HS-

5 (bone marrow stromal cell) conditioned media.  

 

CLF showed high single-agent in vitro cytotoxicity even in the presence of the resistance-

inducing medium. 

 

Figure 7A 

 

 

 

Figure 7B 
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CLF reduces the oxygen consumption rate (OCR) in MCL cells 
 

Previous studies have shown that cancer cells have high levels of oxidative phosphorylation, 

which directly correlates with stemness. To characterize mitochondrial bioenergetics in resistant 

MCL cells and the effect of CLF on them, we measured the oxygen consumption rate (OCR), 

which is directly proportional to oxidative phosphorylation, using Seahorse Extracellular Flux 

Technology. The data showed that CLF was able to reduce the OCR in Mino-VR cells 

significantly, which may indirectly abrogate the hypoxia-mediated drug resistance. 

 

Figure 8. CLF reduces Mitochondrial respiration (measured by Oxygen Consumption 

rate) in MINO-VR cells. 

 

OCR measurement by Seahorse extra-cellular flux technology reveals that CLF was effective in 

reducing mitochondrial respiration-a characteristic feature of cancer cells and chemoresistance. 

 

 

 

Gene expression profiling revealed the potential mechanism of action and drug synergy in 

MCL cells 

 

Differential gene expression analysis (ANOVA) of CLF-treated Mino-P, Mino-VR, and Z-138 

vs. Control Mino-P, Mino-VR, and Z-138 showed a total of 9 genes that were commonly 

differentially expressed (DE) with (p<0.05; fold-difference≠1)  (Figure 9B). Figure 9A shows 
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the heatmap of single-agent CLF-induced kinetic changes separately for each MCL (Mino-P, 

Mino-VR, Z-138). 

 

Differential gene expression analysis (ANOVA) of CLF treatment-induced changes (baseline 

(untreated) vs. single-agent CLF drug treatment) in PI-sensitive and PI-resistant MCLs showed 

a total of 267 genes were differentially expressed (DE) with (p<0.05; fold-difference≠1). Among 

these, 38 genes had a |fold-change|≥2. 233 genes were shared between the treated vs. Untreated 

signatures at |fold-change|>1 (p<0.05). Figure 9C shows a heat map of the top DE genes.  

 

Differential gene expression analysis (ANOVA) of CLF+BTZ combination-treated PI-sensitive 

and PI-resistant MCL cells vs. baseline (untreated) showed 4811 genes changed significantly 

(p<0.05; fold difference≠1). Among these, 2350 genes showed |fold-change|≥2 with a false 

discovery rate (FDR<0.05). Figure 9D depicts a heatmap of the top 50 genes associated with 

CLF+PI combination treatment. The top significantly upregulated genes following PI+CLF 

treatment were GSR, DAP3, and DOK1, which have reported anti-tumorigenic activity, whereas 

the top significantly downregulated genes were EHD1, CBX8, DDX17, SOX12, and COMMD3.  

 

In Mino-VR cells, 1390 unique genes changed significantly (p<0.05; fold-difference≠1) 

following CLF+BTZ treatment as compared to baseline (untreated), whereas single-agent BTZ-

treated cells and single-agent CLF-treated cells showed 363 and 118 uniquely differentially 

expressed genes respectively. Among the 1390 genes, 454 genes showed |fold-change|≥2 with a 

false discovery rate (FDR<0.05) (Figure 9E). 

 

CLF+BTKi combination treatment (p<0.05; fold-difference≠1) in Z-138 cells showed 143 

uniquely differentially expressed genes as compared to the baseline (untreated) (Figure 9F). 

 

Ingenuity pathway analysis revealed protein ubiquitination pathway and cell cycle arrest at the 

G2/M phase as the top canonical pathways (Figure 9G).  

 

Causal network analysis (Figure 9H) showed synergistic drug action significantly elevated the 

levels of oxidative stress and unfolded protein response. Additionally, the PI+CLF combination 

potentiated AMPK-mediated down-regulation of the mTOR signaling pathway, which further 

led to the direct reduction of Cyclin D1 (aberrantly expressed in MCL) and the downregulation 

of eIF4-p70S6K signaling. The synergistic drug activity also led to the downregulation of 

oncogenic pathways like p38 MAPK and NF-kB signaling. PI+CLF combination downregulates 
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Wnt/β catenin signaling, which is found to be frequently overexpressed in MCL-ICs. HIPPO, 

another signaling pathway involved in the maintenance of cancer stem-ness and emergence of 

drug resistance, was also down-regulated.  

 

 Figure 9A 

 

 

 

Figure 9B 
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Figure 9C 

 

 

 

Figure 9D 
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Figure 9E 

 

 
 

Figure 9F 
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Figure 9G 

 

 
 

Figure 9H 
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CLF down-regulates genes associated with poor disease-free survival  
 

Next, we validated the top DE genes expressed in CLF treated vs. untreated control cells using 

TCGA’s Diffuse Large B-Cell Lymphoma (DLBC) GEP dataset Kaplan-Meier Curves showed 

that the top DE genes SNHG1 (Figure 10A), EHD1 (Figure 10B) are significantly associated 

with the disease-free survival whereas another top DE gene GPER1 are significantly associated 

with the over-all survival (10C). CLF down-regulates the expression of the SNHG1 gene and 

EHD1 gene, whereas it up-regulates GPER1 expression. 

 

Finally, immunoblotting results validated the down-regulation of Cyclin D1 in response to CLF 

treatment (Figure 10D). 

 

Figure 10. CLF down-regulates genes and pathways responsible for poor clinical outcome  

 

Figure 10A 
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Figure 10B 

 

 
 

Figure 10C 
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Figure 10D 

 

 

 

CLF and PI/BTKi combination synergistically arrest MCL cells in the G2/M phase 
 

Since cell cycle arrest at the G2/M phase was predicted to be the top canonical pathway through 

IPA analysis, we investigated the distribution of different phases of the cell cycle by Propidium 

Iodide (PI). We observed a significantly higher % of the cells were arrested at G2/M phases in 

response to combination treatments compared to the single-agent treatments (Figure 11). 

 

Figure 11. CLF+ PI combination leads to the cell cycle arrest at the G2/M phase in MCL 

cells  
 

Propidium Iodide (PI) based analysis of the distribution of different phases of the cell cycle in 

Control CLF single agent and CLF+PI combination treated MCL cells (MINO-VR). The data 

shows a significantly higher percentage of cells in the G2/M phase in combination-treated cells 

as compared to the control cells. 
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Single Cell transcriptomics (scRNA-seq) revealed single-cell sub-clusters killed by CLF 
 

Finally, we used single-cell RNA sequencing (scRNA-seq) to identify CLF-induced changes in 

single-cell sub-clonal architecture (represented by t-SNE and UMAP clusters) in the drug-

resistant Mino-VR cell lines. Our scRNA-seq data (Figure 12) showed erosion of the single-cell 

cluster #3 following CLF treatment. Cluster #3 is represented by the enrichment of expression 

of the following genes, indicative of CLF-induced death of MCL cells: 

 

Figure 12. scRNA-seq data of Pre- & Post- CLF treated Mino-VR cells.   

 

CLF-treated MINO-VR shows erosion of Cluster 1 & 2 and enrichment of cluster 3, whereas 

cluster 4 remains more or less the same.  

 

Figure 12A 
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Figure 12B 

 

 

 

Figure 12C 

 

 

 

CLF reduces MYC and CCND1 expression in MCL-Initiating cells involved in relapse 

and chemo-resistance 

 

Interestingly, in CD45high CD19low cells, CLF induces the down-regulation of MYC (Figure 13A) 

and CCND1 (Figure 13B) expression. As these CD45high CD19low cells represent stem-ness in 

MCL and both MYC and CCND1 play a pivotal role in stem cell maintenance, their down-

regulation indicates CLF’s efficacy against CSCs. 
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Figure 13A 

 

 

 

Figure 13B 

 

 
 

Validation of CLF treatment-related gene signatures using patient cohort datasets 
 

Reverse-matching using patient cohort datasets shows that CLF treatment has the potential to 

reverse MCL lethality. Pathway analysis was performed based on the top DEGs in the Ibrutinib-

sensitive and resistant MCL patient cohort (Figure 14A), and Top CLF treatment-induced 

upregulated pathways (Figure 14B) that were significantly downregulated in Ibrutinib-resistant 

MCL patients. 
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Figure 14A 
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Figure 14B 

 

 



286 | P a g e  

 

 
 

Figure 14. KEGG pathway enrichment analysis provides mechanistic insights into CLF drug 

action in MCL cells. Comparison of Pathway enrichment analysis of GSE141335 dataset that 

contains expression data from clinically Ibrutinib responsive and unresponsive patients with CLF 

gene signature shows a high degree of similarities indicating CLF as a potent drug to curb 

resistance. 
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Discussion 
 

Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm that develops from malignant 

B-lymphocytes in the outer edge or mantle zone of a lymph node.179 This is a sub-type of B-cell 

non-Hodgkin lymphoma characterized by rapid clinical progression and poor response rate to 

conventional chemotherapeutic drugs with recurrent relapse resulting in a short estimated 5-year 

overall survival (OS) of 2-5 years depending on the clinical risk.192,195 Combination therapies 

such as R-CHOP, R-DHAP, Hyper-CVAD, and VcR-CAP constitute the front-line 

chemotherapeutic treatment landscape for MCL.190 Despite promising initial responses to the 

combination regimens, all patients develop resistance over time.371 The Bruton's tyrosine kinase 

inhibitor (BTKi) Ibrutinib and the proteasome inhibitor (PI) Bortezomib are FDA-approved 

therapies for refractory or relapsed (R/R) MCL with demonstrated high initial response rates in 

clinical trials.194,195,370 However, highly variable treatment response along with dose-limiting 

toxicities has limited the efficacy in real-world settings with the median progression-free survival 

(PFS) of <15 months and overall of 1-2 years.194,370 Once ibrutinib stops working, only one-third 

of patients respond to their next line of treatment; those who do respond experience only brief 

remissions and have poor outcomes, irrespective of stem cell transplantation.195  

 

To address this outstanding issue, we have designed a novel optimization-regularization-based 

computational prediction algorithm called “secDrug” that uses large-scale pharmacogenomics 

databases like the GDSC1000 to identify novel secondary drugs for the management of 

treatment-resistant B-cell malignancies.  One of the top-predicted drugs was Clofazimine. 

Previously, we have demonstrated that Clofazimine (CLF), an anti-leprosy drug, could 

potentially be repurposed for the treatment of chronic myeloid leukemia and PI/IMiD-resistant 

multiple myeloma that also targets subclones representing putative stem-like-cells (CSCs).380 

CLF, which is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist, binds to PPARγ, 

which results in modulation of its transcriptional as well as E3 ubiquitin ligase activity.380 This 

increased ubiquitin ligase activity of PPARγ induces proteasomal degradation of p65 (RelA), 

which in turn results in sequential transcriptional downregulation of MYC and PRDX1, resulting 

in the cellular effects of CLF, including regulation of cellular ROS levels.379–381 CLF also leads 

to the transcriptional down-regulation of Signal Transducer and Activator of Transcription 3 

(Stat3) and Hypoxia-inducible factor 1 (HIF-1α)-the two reported oncogenes with known 

involvement in cancer progression and stemness.380 Notably, using single-cell analysis and high 
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dimensional immunophenotyping, we have also identified molecular networks underpinning 

CLF+PI synergy.  

 

Recent evidence indicates that intra-tumor heterogeneity due to the presence of treatment-

refractory subpopulations or cancer stem-like cells (CSCs) drive drug resistance and disease 

relapse in Mantle Cell Lymphoma.97,98 These putative stem-like cells in MCL include 

CD45+CD19- cells or MCL-initiating cells (MCL-ICs), relatively quiescent-highly clonogenic 

aldehyde dehydrogenase (ALDH)+ cells, and side populations (SP).213,214,216,375 Ibrutinib is 

ineffective in targeting MCL-CSCs.208,370  Therefore, there is an unmet need to discover novel 

treatment strategies against refractory/relapsed (R/R) MCL. 

 

For this purpose, using a panel of MCL cell lines as in vitro model systems, we have tested the 

efficacy of CLF as a single agent and in combination with the FDA-approved therapy for R/R 

MCL, i.e., PI (Bortezomib) and BTKi ((Ibrutinib, Acalabrutinib). We found that CLF effectively 

reduces the cell viability of innate and acquired resistant MCL cell lines where CLF+BTKi/PI 

combination lowered the effective BTKi, and PI doses required to achieve desired therapeutic 

response by >10-folds. We found that CLF+BTKi/PI combination induces apoptosis by arresting 

the cells in the G2/M phase. The drug combination also increases the intracellular ROS reactive 

oxygen species (ROS) production for, e.g., cellular superoxide anions followed by the collapse 

in mitochondrial membrane potential depolarization or depolarization that ultimately leads to the 

activation of the Caspase 3, 7- mediated intrinsic pathway of apoptosis.  

 

Furthermore, Clofazimine also explicitly targets the putative CSCs. CLF as a single agent and in 

combination with the PI/ BTKi leads to the depletion of the side-population (SP) cells as well as 

reduces the ALDH activity, which is present at a high level in resistant MCL cells indicating the 

presence of stem-cell pools. 

 

mRNA-sequencing followed by differential gene expression analysis gave us the mechanistic 

insights of the drug action where it showed simultaneous up-regulation of several anti-

tumorigenic genes and down-regulation of pro-survival genes. Ingenuity pathway analysis 

followed by causal network analysis revealed the molecular network behind the synergistic drug 

actions. The drug combination led to the inhibition of critical oncogenic signaling pathways 

along with Cyclin D1, which is essential for the survival of MCL cells. 
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EHD1, a member of the EPS15 homology (EH) domain-containing proteins family, was found 

to be downregulated in response to PI+CLF treatment. EHD1 is involved in the endocytic 

recycling of the membrane and cell-surface receptor proteins, such as the Epidermal growth 

factor receptor (EGFR).382 Previous studies have suggested that EHD1 has a positive correlation 

with disease progression and poor treatment outcomes in other cancers, such as cutaneous T-cell 

lymphoma and non-small cell lung carcinoma.382–384 TCGA database analysis on the Diffuse 

Large B-cell lymphoma (DLBC) dataset, another sub-type of Non-Hodgkin Lymphoma) 

revealed that enhanced expression of EHD1 is significantly associated with low disease-free 

survival. 

 

Long non-coding RNAs (lncRNA) are the transcripts that do not code for protein but instead act 

as an epigenetic modifier to control gene expression.385 Due to their involvement in chromatin 

remodelling as well as regulating transcriptional and post-transcriptional processes, their role in 

oncogenesis is gaining importance.386  Several cancers, like glioblastoma, colorectal carcinoma, 

etc., have reported dysregulation of lncRNA expression, leading to drug resistance and 

oncogenic progression.387,388 In our study, we found that the PI+CLF combination down-

regulated SNHG1 (Small Nucleolar RNA Host Gene 1), a lncRNA. In colorectal cancer cells, 

SNHG1 is found to be over-expressed, where it interacts with the Wnt-β catenin signaling 

pathway to promote migration and invasion.389 SNHG1 has also been implicated in the 

development of drug resistance and tumor progression in hepatocellular carcinoma and glioma, 

respectively.390,391 TCGA database analysis of SNHG1 on the DLBC dataset showed that 

SNHG1 expression is negatively correlated with disease-free survival. 

In the Z-138 cell line, the combination of Ibrutinib and CLF enhanced the downregulation of 

MYC as compared to single agent Ibrutinib treatment. MYC drives cancer stemness in various 

cancer and chemoresistance in various cancers.392 It also promotes resistance towards Ibrutinib 

in MCL. 393 

SOX12, another known oncogene expression also found to be downregulated in response to 

BTKi+CLF treatment.394 BTKi+CLF treatment also suppressed the expression of HK2, CCNF, 

NOTHC1, and DDX21. All of these genes are tumor progression, poor prognosis, and 

proliferation of the cancer cells.395–398 
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Finally, single-cell transcriptomic analysis (scRNA-seq) further elucidated the molecular 

mechanism of drug action at a single-cell resolution. We found that CLF eroded the drug-

resistant sub-clones in clonally derived PI-resistant MCL cells. CLF-treated MINO-VR shows 

erosion of Cluster 1 & 2 and enrichment of cluster 3, whereas cluster 4 remains more or less the 

same.  

 

Cluster 1 is characterized by the following genes which have reported activity in oncogenesis: 

 

i. ESCO2 (Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2) is highly 

expressed in aggressive melanomas and breast cancer.  In gastric cancer, ESCO2 promotes 

cell proliferation by modulating the p53 and mammalian target of rapamycin (mTOR) 

signaling pathways. 399 

 

ii. Topoisomerase II alpha (TOP2A) is a proliferation marker with a positive association with 

tumor grade and Ki67 index.400 DNA topoisomerase IIα (TOP2A) encodes DNA 

topoisomerase, which during DNA replication and transcription, releases torsional stress.401 

TOP2A actively participates in cellular proliferation and acts as a critical gene in breast, 

endometrial, colon, and ovarian cancer. 400 

iii.  Previous studies have shown that enhanced CDK1 expression is a key factor in the oncogenic 

progression of colorectal cancer, liver cancer, and lung cancer, where it causes reduced 

survival time. 402 

 

iv. KIF2C is abnormally expressed in multiple types of cancer, such as lung cancer and glioma, 

and is associated with poor prognosis. KIF2C is critical for the regulation of microtubule 

dynamics and stabilization. 403 

 

v. Upregulated expression of NDC80 has been observed in human pancreatic cancer tissues, 

and its down-regulation leads to the inhibition of cell cycle progression. 404 

 

vi. Abnormal spindle-like microcephaly-associated (ASPM), is a protein crucial for the 

normal functioning of the mitotic spindle during cell replication. Enhanced expression of the 

ASPM gene is linked with aggressive cancer progression and poor treatment outcomes in 

bladder cancer & prostate cancer. 405 

 

vii. GTSE1 could promote breast cancer cell growth by activating the AKT pathway and enhance 

metastasis by regulating the Epithelial-Mesenchymal transition (EMT) pathway. 
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Furthermore, it could cause multidrug resistance in breast cancer cells. GTSE1 mRNA and 

protein levels are found to be upregulated in PCa, and the mRNA level is negatively associated 

with patient prognosis. GTSE1 can promote PCa cell proliferation via the SP1/FOXM1 

signaling pathway, which facilitates tumorigenesis and progression. 406 

 

viii. Several cancers, like renal cell carcinoma & prostate cancer, display high NCAPG 

expression, which is responsible for poor patient disease-free and overall survival. 407 

 

Cluster 2 is characterized by the following genes which have reported activity in oncogenesis: 

 

i. CRIP1 activates the Wnt/β‑catenin signaling pathway and induces cell migration and 

invasion through EMT in cervical cancer. 408 

 

ii. Increased T-cell leukemia/lymphoma 1A (TCL1) expression has been identified in B-cell 

non-Hodgkin's lymphoma, where it plays a pivotal role in B-cell survival.408  

 

iii.  CD79b, a component of the B-cell receptor (BCR), is expressed in over 90% of B-cell NHL 

malignancies. 409 

 

OAS1 gene is expressed in cluster 3. It has tumor-suppressor activity in breast cancer. 410 

 

From the molecular signature of CLF action, we found that it has potential application in clinical 

settings. Pathway enrichment analysis of the GSE141335 dataset that contains expression data 

from clinically responsive and unresponsive patients showed strikingly similar to that of the 

CLF-induced pathway enrichment data indicating that CLF could be helpful in clinical settings. 

It is reported that enrichment of mTOR, NF-kB, and E2F signaling pathways, as well as MYC, 

are hallmarks of Ibrutinib resistance based on the patient samples data.  Interestingly, the 

molecular signature of CLF action, as evident from the KEGG pathway enrichment analysis, 

shows enrichment of mTOR signaling, which we further investigated through causal network 

analysis in IPA and found to be downregulated to a much greater extent in BTZ+CLF 

combination treatment than treatment with BTZ alone.  The causal network also predicts a 

similar trend for NF-kB signaling. Enrichment of metabolic pathways such as Oxidative 

phosphorylation was also observed in the Ibrutinib-resistant patients as well as in CLF-treated 

cells. The previous study has shown upregulation of the OXPHOS pathway is associated with 

ibrutinib resistance. In our study, causal network analysis shows a significantly higher level of 
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OXPHOS inhibition in combination treatment as compared to single-agent standard-of-care drug 

treatment.411 

 

To summarize, we can conclude that CLF is effective as a single agent as well as in combination 

in R/R MCL cells, including the ones that are unresponsive to the standard-of-care drugs for R/R 

MCL, i.e., BTKi and PI. As it is FDA-approved and is on WHOS’s list of essential medicine412 

with a well-tolerated safety profile, CLF has the strong potential to be repurposed as a novel, 

safe, broad spectrum therapeutic option for the management of advanced stage R/R MCL. 
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CHAPTER 5.2 

 

Repurposing Clofazimine As a Novel Drug 

For The Treatment of PI-Resistant Stem 

Cell-like Subclones in Multiple Myeloma 



294 | P a g e  

 

Abstract 
 

Multiple myeloma (MM) is an incurable plasma cell malignancy with dose-limiting toxicities 

and inter-individual variation in response/resistance to the standard-of-care/primary drugs, 

proteasome inhibitors (PIs), and immunomodulatory derivatives (IMiDs). Although newer 

therapeutic options are potentially highly efficacious, their costs outweigh their effectiveness. 

Previously, we have established that clofazimine (CLF) activates peroxisome proliferator-

activated receptor-γ, synergizes with primary therapies, and targets cancer stem-like cells (CSCs) 

in drug-resistant chronic myeloid leukemia (CML) patients. In this study, we used a panel of 

human myeloma cell lines as in vitro model systems representing drug-sensitive, 

innate/refractory, and clonally-derived acquired/relapsed PI- and Cereblon (CRBN)-negative 

IMiD-resistant myeloma and bone marrow-derived CD138+ primary myeloma cells obtained 

from patients as ex vivo models to demonstrate that CLF shows significant cytotoxicity against 

drug-resistant myeloma as single-agent and in combination with PIs and IMiDs. Next, using 

genome-wide transcriptome analysis (RNA-sequencing), single-cell proteomics (CyTOF; 

Cytometry by time-of-flight), and ingenuity pathway analysis (IPA), we identified novel 

pathways associated with CLF efficacy, including induction of ER stress, autophagy, 

mitochondrial dysfunction, oxidative phosphorylation, enhancement of downstream cascade of 

p65-NFκB-IRF4-Myc downregulation, and ROS-dependent apoptotic cell death in myeloma. 

Further, we also showed that CLF is effective in killing rare refractory subclones like side 

populations that have been referred to as myeloma stem-like cells. Since CLF is an FDA-

approved drug and also on WHO’s list of safe and effective essential medicines, it has strong 

potential to be rapidly re-purposed as a safe and cost-effective anti-myeloma drug. 
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Introduction 
 

Multiple myeloma (MM) is an incurable neoplasm characterized by clonal expansion of 

malignant antibody-producing post-germinal-center B-cell-derived plasma cells within the bone 

marrow.125,280 Myeloma is the second-most common hematopoietic malignancy in the United 

States, with an estimated 34,920 new cases and 12,410 deaths in 2021. Proteasome inhibitors 

(PIs; bortezomib/Bz/Velcade, carfilzomib/Cz, and Ixazomib/MLN9708/Ix) are standard-of-

care/primary chemotherapeutic agents for relapsed and refractory myeloma that impede tumor 

metastasis and angiogenesis by accelerating unfolded protein response (UPR) and by interfering 

with the NF-κB-enabled regulation of cell adhesion-mediated drug resistance.171,296158 

Combination therapy regimens incorporating PIs and immunomodulatory drugs (IMiDs; 

Lenalidomide/Revlimid, Pomalidomide) as backbone have significantly improved treatment 

responses, including progression-free survival (PFS) and overall survival (OS). However, 

despite these and other recent improvements in therapies, myeloma remains a difficult-to-cure 

disease with dose-limiting toxicities and drug resistance and a median survival rate of only 

around 7 years. Moreover, a recent study on the cost-effectiveness of anti-myeloma drugs 

suggested that although the current therapeutic regimens, including novel treatments (like 

monoclonal antibodies and Chimeric antigen receptor or CAR-T-cell therapy), are highly 

promising, the costs outweigh the effectiveness based on willingness-to-pay thresholds. 

Therefore, our goal was to search for new secondary therapeutic options with lower costs and 

higher cost-effectiveness to treat drug resistance in myeloma. 

 

Previously, we have demonstrated that Clofazimine (CLF), an anti-leprosy drug, activates 

peroxisome proliferator-activated receptor-γ and synergizes with the standard-of-care drug 

imatinib for the treatment of chronic myeloid leukemia (CML). Although two studies have 

shown the efficacy of CLF treatment in multiple myeloma, none of these have explored the 

synergistic effect of CLF in combination with PI or IMiD therapy or the impact of CLF-based 

therapy using model systems representing the wide inter- and intra- tumor heterogeneity in 

myeloma drug response. Further, the potential mechanisms underpinning CLF as an anti-

myeloma drug have not been understood fully so far. Therefore, in this study, we used a diverse 

panel of human myeloma cell lines and patient-derived primary myeloma cells to investigate the 

potential of CLF as an anti-myeloma drug against inter-tumor and intra-tumor heterogeneity in 

PI and IMiD-resistant myeloma. Furthermore, using genome-wide transcriptomics (tumor 
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mRNA-sequencing) and single-cell proteomics (CyTOF or Cytometry by time-of-flight), we 

also identified several genes and potential molecular networks involved in the CLF mechanism 

of action and drug synergy with PIs and IMiDs. 

 

Drug resistance is a manifestation of significant complexity and heterogeneity at the molecular 

level. In addition, the presence of rare subpopulations of tumor cells with stem cell-like 

properties, like greater clonogenicity, self-renewal, and differentiation capacities, are believed 

to significantly contribute towards treatment-refractory phenotypes in various cancers, including 

myeloma.55,57,98,217,218 Since our previous study had shown that CLF erodes quiescent stem-cell 

populations (CD34+CD38-, CFSEbright) in drug-resistant CML patients, we also showed that CLF 

kills quiescent/dormant cells, ALDH+ cells, and side populations (SPs), collectively referred to 

as putative stem-like cells in myeloma, with treatment-refractory phenotypes.380 We propose 

clinical efficacy studies in relapsed/refractory myeloma using clofazimine-based drug 

combination regimens. 

 

CLF Induces Loss of Viability in HMCLs and PMCs 
 

First, we evaluated the single-agent in vitro cytotoxicity of CLF for anti-myeloma activity in our 

HMCL panel, representing a wide variation in PI and IMiD responses (IC50) (Figure 1A). We 

found that CLF alone showed very potent inhibition of cell viability in HMCLs representing 

sensitive as well as innate and clonally-derived resistant HMCLs. The single-agent IC50 (48h) 

values of CLF were between 0.2µM- 20.5µM. Next, we compared the link between CLF IC50 of 

the myeloma cell lines and MM molecular/cytogenetic abnormalities. Our results showed no 

significant association of CLF response with cytogenetic abnormalities (data not shown). 

 

Figure 1. CLF decreases the in vitro and ex vivo cell viability in multiple myeloma. (A) 

Response to single-agent CLF treatment in HMCLs (human myeloma cell lines). (B) 

Representative ex vivo CLF dose-response plots in patient bone marrow-derived primary 

myeloma cells. 
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Figure 1A 

 

 
 

Figure 1B 

 

 
 

Further, bone marrow-derived CD138+ PMCs were obtained from patients (n=12) at Mayo 

Clinic and used as ex vivo model systems. Using our established direct-to-drug screening assay, 

we screened each patient’s tumor in a Phase 0 assay for drug sensitivity to single-agent CLF. 

The ex vivo CLF EC50 values (1-15 µM; minimum EC50 1052.1nM, maximum EC50 15210nM, 

median EC50 2408.7nM) were within the in vitro IC50 range. Figure 1B shows representative 

CLF single-agent ex vivo cytotoxicity plots in myeloma patients. 
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CLF Shows Synergy with Proteasome Inhibitors and IMiDs 
 

Next, we tested the cytotoxicity of CLF in combination with PIs (represented by Ixazomib; 

Figures 2A–C) or IMiDs (represented by Lenalidomide; Figures 2D, E) in HMCLs representing 

innate-sensitive (FLAM76, KAS6/1, MM1S), innate-resistance (JIM-3, LP-1), and acquired- PI 

or IMiD resistance (U266 P/VR, RPMI8226 P/VR, JJN-3 P/VR, and MM1S P/LenR). The 

CLF+PI and CLF+Len combination index (CI) values calculated using the Calcusyn program 

were consistently less than 0.9 (Figure 2D-E), indicating synergy (26). Further, CLF improved 

the therapeutic index of PI and IMiD administration to the cells and decreased the amount of 

PI/IMiD required to achieve effective responses, as indicated by dose reduction index (DRI) 

values and predicted decrease in IC50 (nM concentration). 

 

Figure 2. Clofazimine synergizes with Proteasome inhibitors and Immunomodulatory drugs 

(IMiDs) in multiple myeloma. CLF + PI (represented by Ixazomib) treatment in (A) Innate-

sensitive myeloma cell lines; (B) Innate-resistant myeloma cell lines. (C) Parental and clonally-

derived acquired resistant myeloma cell lines. CLF + IMiD (represented by Lenalidomide) 

treatment in (D) Parental and clonally-derived acquired PI-resistant myeloma pairs; and (E) 

IMiD sensitive/resistant pair. (CI – Combination index calculated using Chou-Talalay’s CI 

theorem). (F-G) Demonstration of drug synergy using combination index (CI) values: (F) 

CLF+PI; (G) CLF+ IMiD 

 

Cells were treated as a combination, and CI values were calculated for each fraction affected 

(FA; a fraction of cells affected/ killed)) using Calcusyn Software that applies a method proposed 

by Chou and Talalay.  C.I value of less than 0.9 indicates synergism. 

 

Figure 2A 
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Figure 2B 

 

 
 

Figure 2C 
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Figure 2D 

 

 
 

Figure 2E 

 

 
 

Although the CLF doses used in combination treatments were in the micromolar concentration 

range, this is within the safe dose range of 0.84-8.4µM, corresponding to human plasma Cmax 

of 0.4-4mg/L. 
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Figure 2F                                                                Figure 2G 

 

          

 

CyTOF analysis reveals CLF-induced key proteomic changes at bulk and sub-clonal level 
 

We performed Mass Cytometry (CyTOF) analysis to assess CLF-induced changes in phenotypic 

and functional markers in myeloma cells on a single-cell level and identify unique subgroups 

that change in relation to disease progression. CyTOF analysis was performed on 77 total 

samples across 7 Experiments/Batches. This included four isogenic sensitive/acquired PI and 

IMiD resistant pairs (U266, MM1S, RPMI8226, JJN3), eight innate-sensitive cell lines, and 

seven innate-resistant HMCLs. The batch correction was performed for combining samples. 

Similar clusters across all samples were grouped to compare sub-populations and to calculate 

the proportion of cells with increases or decreases in markers for each sample. CyTOF analysis 

revealed a distinct cluster of cells defined by elevated cleaved caspase levels in all cell lines and 

primary samples, which was enriched for cells exposed to high-dose CLF. 

 

Figure 3. CyTOF analysis in multiple myeloma cell lines (representing sensitive, PI-resistance 

and IMiD-resistance) and primary patient cells. (A) CLF induces elevated cleaved caspase 3 

levels. Samples were treated with CLF or DMSO and Gated on LIVE cells. Each ‘column’ 

represents a cell line pair (except for KP6, which is just the parental). The first three ‘rows’ are 

UMAP plots colored by cell line, CLF dose, and cc3 expression. For the final ‘row’, the 

FlowSOM meta-cluster results were condensed into cc3 positive and negative cell subsets based 

on cc3 expression UMAPs and plotted over CLF dose. cc3 is induced in all lines. (B) CLF 
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treatment results in the downregulation of genes associated with myeloma cell survival. A 

representative heatmap for CyTOF analysis is shown for sensitive and PI-resistant, IMiD-

resistant, and primary patient cells showing expression of the complete panel. A heat plot was 

generated in Cytobank displaying the transformed ratio normalized to the first column (DMSO 

control) of the median of each marker. CyTOF analysis shows shifts in a number of myeloma 

cell survival markers following clofazimine treatment (10uM), including IRF4, IKZF1 (Ikaros), 

IKZF3 (Aiolos), CD229, CD27, pS6, pERK, and IκBa. CLF acts as a PPAR-gamma agonist that 

synergizes with PIs to enhance the downstream cascade of p65/NFκB/IRF4/Myc downregulation 

followed by ROS-dependent apoptotic cell death. (C) Western blotting. Representative figure 

showing pre- vs. post-treatment (24hr) immunoblotting analysis of proteins involved in the 

p65/NFκB/IRF4/Myc axis and ROS-dependent apoptotic pathways. Beta-actin was used for the 

normalization of the Western blots. (D) Densitometry analysis showing relative band densities 

between untreated vs. treated cell lines. Band densities were compared to Beta-actin. 
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Figure 3B 

 

 
 

Figure 3C 
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Figure 3D 

 

 
 

Myeloma cells are addicted to several proteins like c-Myc, IRF4, and IKZF1. Our pre- vs. post-

treatment differential expression analysis using CyTOF (Figure 3B) and immunoblotting (Figure 

3C) revealed shifts in most of these markers following clofazimine treatment, including IRF4, 

IKZF1, IKZF3, CD229, CD27, pS6, pERK, and IκBa. 

 

Furthermore, we had earlier found that CLF also suppresses STAT expression in CML and 

consequently downregulated stem cells maintenance factors like hypoxia-inducible factor-1α 

and -2α and Cbp/P300 interacting trans-activator with Glu/Asp-rich carboxy-terminal domain 2 

(CITED2). Concurrently, we also showed the downregulation of STAT5 and HIF-1α in myeloma 

following CLF treatment (Figure 3D). 

 

Discussion 
 

Drug resistance in multiple myeloma is attributed mainly to tumor heterogeneity and inter-

individual variations in response to treatment, limiting therapeutic efficacy in myeloma patients. 

We have earlier demonstrated that wide inter-individual variation exists in response to PI 

treatment in a panel of HMCLs and PMCs representing the broad spectrum of biological and 

genetic heterogeneity of myeloma. Here, we show significant in vitro and ex vivo cytotoxicity 

of CLF against these PI- and IMiD-sensitive and resistant myeloma, both as a single agent and 

in combination with PIs and IMiDs. Further, we performed RNAseq-based next-generation 

tumor gene expression profiling, single-cell proteomics (CyTOF) analysis, and immunoblotting 
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analysis to identify genes and molecular networks involved in CLF mechanism of action and 

drug synergy in human myeloma. 

 

Taken together, we conclude that CLF has potent single-agent cytotoxicity and the potential to 

increase the therapeutic efficacy of standard-of-care drugs (PI and IMiDs) in myeloma, including 

treatment-resistant and putative stem-like subclones. 

 

Since CLF is FDA-approved, safe (FDA recommended dose is 100mg/day), well-tolerated in 

patients, and is on the WHO’s List of Essential Medicines with low manufacturing cost, re-

purposing CLF as a novel clinical trial-ready anti-myeloma agent is an attractive approach for 

fast and cost-effective drug development.412 
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Summary 
 

To summarize, clinical success in anti-cancer treatment warrants a continuous search for novel 

secondary therapeutic options where new agents may be combined with standard-of-care drugs 

to achieve synergistic effects for treating drug resistance. However, assessing the survival 

endpoints in clinical applications requires the treatment of a large number of patients with these 

drugs that need to be measured in months to years. Thus, Our multi-faceted approach that 

includes in vitro, ex vivo, and in vivo model systems, cell-based assays, flow cytometry, mRNA 

sequencing, single-cell transcriptomics, and microfluidics chip-based assays will serve as an 

efficient pre-clinical model for cancer drug discovery with high predictive value to validate and 

characterize novel secondary therapies in chemotherapy-resistant cancers to circumvent 

resistance, by incorporating all the aspects of human-tumor biology and its inherent dynamic, 

deterministic, and stochastic nature and opens up a new paradigm in the management of 

advanced state human cancers. 
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