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Abstract

With the rapid advancement of technology, the amount of available data for extracting int-

teresting insights and meaningful patterns has grown exponentially, resulting in a significant

increase in the dimensionality of datasets. However, high-dimensional data can be easily

contaminated by outliers or errors with heavy-tailed distributions, rendering many conven-

tional methods inadequate for analysis. Consequently, there has been a growing interest in

applying robust methods to analyze high-dimensional data, with Huber regression with regu-

larization being a popular choice. Existing robust methods are primarily used for parameter

estimation and variable selection, and there has been a lack of tools for statistical inference in

high dimensions. To overcome this challenge, researchers have incorporated techniques such

as lasso in statistical inference. Specifically, they have used such shrinkage penalty as a tool

for variable selection and applied ordinary least squares on the selected variables to construct

confidence intervals and p-values. However, this approach results in statistical inference that

is not valid because it fails to account for all the variability in the selection process. The

generalized lasso problem is one of the most commonly used convex optimization problems,

therefore, in this dissertation, I will focus on developing conditional statistical inferential

tools in high dimensions using Huber regression with a generalized lasso as the regulariza-

tion term (gl-huber). To address this problem, I will follow a framework that characterizes

the distribution of a post-selection estimator that is conditioned on the selection process.
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Specifically, I will characterize the conditional distribution of the gl-huber post-selection es-

timator while conditioning on both variable selection and outlier identification events by first

demonstrating that the event of variable selection and outlier detection can be represented

as an affine constraint in the response variable y (a polyhedron). Using this approach, I

will then show that the conditional distribution of a linear combination of responses is a

univariate truncated normal distribution in cases where the random error is normal. In

cases where the distribution of random error is not normal, I will show that the asymptotic

distribution is still truncated normal under certain weak conditions. This will enable the de-

velopment of valid post-selection conditional p-values and confidence intervals that account

for the variability in the selection process and satisfy all necessary frequency properties. To

further improve the procedure’s performance, I propose incorporating randomized responses.

To validate the efficacy of the proposed methods, both theoretical properties and compu-

tational algorithms are investigated, and their practical utility is demonstrated through a

range of simulation and real-world examples.
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Chapter 1

Introduction

In this chapter, we will introduce the problem discussed in this dissertation. We will discuss

the motivation of my research, review some literature, and explain my contribution.

Consider a linear regression setup, with an outcome vector y ∈ Rn and a matrix of predictor

variables X ∈ Rn×p related by

y = Xβ + ε, ε ∼ N(0, σ2In×n) (1.1)

High-dimensional data analysis (p > n) often seeks to identify a subset of important

features, and further assess the effects of these identified features on the outcome variable.

Traditional statistical inference procedures based on standard regression methods often fail

in the presence of high-dimensional features. Recently, regularization methods have quite

shown to be promising tools for analyzing high-dimensional data, for example, the lasso (Tib-

shirani (1996)), the adaptive lasso (Zou (2006)), the Elastic Net (Zou and Hastie (2005), Zou

and Zhang (2009)), one-step local linear approximation (Zou and Li (2008)), SCAD (Fan

and Li (2001)), etc. These methods simultaneously identify informative variables and pro-

duce stable coefficient estimates for the selected variables to induce a model for prediction

(variable selection and estimation). Although these regularization methods are very effec-

tive for variable selection and stable parameter estimation, but they yield estimators whose
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sampling distribution is difficult to obtain, hence constructing interval estimators for the re-

gression parameters will be difficult in finite samples. Take for instance the lasso, lasso-type

estimators have a nonstandard limiting distribution that depends on which components of

the coefficient vector are 0. Because the lasso estimator does not have explicit solution, the

limiting distribution cannot be estimated directly. Furthermore, standard bootstrap meth-

ods fail when the true coefficient vector is sparse (Fu and Knight (2000)). Over the years,

these regularization methods have been mainly studied under the following criteria;

• the correct recovery of the support set S = {j ∈ {1, 2, . . . p} : βj 6= 0} of the model

coefficients β for a linear model (1.1)

• lq estimation errors ||β̂ − β||qq, especially l1 & l2 where β̂ is the estimate of β

• prediction error ||Xβ̂ −Xβ||22

but there are never enough discussions on inferential tools (confidence intervals and p-values)

for these regularization methods until recently. Although most of the theoretical work on

high-dimensional linear models focuses on consistency, recently, Lee et al. (2016) and Tib-

shirani et al. (2016) described a general scheme to perform valid inference after any selection

event (like the lasso, stepwise selection, etc) that can be characterized as the response y

falling into a polyhedral set. This framework can be used to conduct post selection inference

while conditioning on the variable selection event. Another class of approaches are by Zhang

and Zhang (2014), Van de Geer et al. (2014), and Javanmard and Montanari (2014b), these

approaches are based on debiasing or denoising a regularized regression estimator, like the

lasso. We will dive deep later in this chapter via an extensive literature review to compare

2



and contrast these various frameworks.

In this dissertation, we will discuss robust techniques like Huber loss for handling out-

liers in high dimension, and we seek to establish inferential tools (confidence intervals) for

the Huber loss function with a generalized regularization term while conditioning on the

outlier identification event and the variable selection event. The idea is to condition any

inferences on the components of the data used to generate the hypotheses, thus preventing

information in those components from being used again. We will now give more context

to the terminologies and ideas mentioned above by discussing the problem of regression in

high dimension in section 1.1, some regularization methods and their theorietical results in

section 1.2, some robust regression techniques for errors with heavy tails (outliers) in section

1.4, then we discuss the two broad frameworks of inference in high dimensional regression

models in section 1.3, before we narrow down to the problem we are trying to consider in

section 1.5, alongside the philosophical discussions of our approach.

1.1 High Dimensionality Problem

In the past couple of decades, data acquisition technologies have rapidly evolved, enabling

devices to gather vast amounts of data simultaneously. As a result, high-dimensional data has

emerged, where the number of features can surpass the number of observations. For example,

gene expression studies using micro-arrays can contain hundreds of samples, each with tens

of thousands of genes, leading to millions of possible gene combinations for one individual.

Similarly, other fields such as finance, high-resolution imaging, and website analysis generate
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large-scale datasets. While having access to massive data may seem like an advantage,

analyzing high-dimensional data presents significant challenges. Distinguishing meaningful

signals from noise is often a formidable task, and traditional statistical techniques developed

in the 20th century may not be suitable for such scenarios. Classical statistical inference,

for instance, is often not efficient for high-dimensional problems, and standard methods like

ordinary least-squares fitting of a linear model with more predictors than observations can

be ill-posed, i.e., let X ∈ Rn×p, y ∈ Rn, the least squares coefficients can be defined as the

solution of the optimization problem

min
β

1

2
||y −Xβ||22

If rank(X) = p, i.e, the predictors are linearly independent, and the null space of X, null(X)

contains only the zero vector, and XTX is positive definite which implies invertibility, then

the above least squares problem has a unique solution, which is β̂ = (XTX)−1XTy. Now,

when p > n, which implies that rank (X) < p, the least squares problem will have infinitely

many solutions, i.e., given one solution β̂, the quantity β̂ + γ is also a solution for any γ ∈

null(X), since the dim(null(X)) = p−n, therefore interpretation will almost be impossible.

Also, supposing OLS estimates are obtained in the above case, they will be poor (low bias

& high variance). Most of the classical statistical theory provides results for the asymptotic

setting where the number of parameters is fixed and the sample size goes to infinity. This

asymptotic theory is very useful for analyzing data for large n while p is small and fixed,

but it can give misleading results for modern high-dimensional data, this can clearly be

seen in Portnoy (1986). Analyzing “large p” data therefore requires some new inferential
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tools. In a way of summary, let’s say that traditional methods and theory are not applicable

or computationally infeasible to handle these high dimensional data, hence there is a great

appeal for novel statistical models and methods and it has given rise to a huge effort from the

statistical and data analyst community for developing new tools. Assuming certain notions

of sparsity, there has been a revolution of methodological, computational and mathematical

advances which allow for high-dimensional statistical inference. For example, the sparsity

assumption that the health status of a person is depending only on a few among several

thousands of biomarkers appears much more realistic than considering a model where all

the thousands of variables would contribute in a smooth way to the state of health, see

Bühlmann and Van De Geer (2011). Else where, other researchers have tried to reduce the

dimension of the data matrix using some of popular dimension reduction techniques, prior

to the regression modelling. It is safe to discuss that high dimension data for supervised

learning (regression & classification methods), or unsupervised learning (clustering, etc), and

without any form of further assumptions (like penalization from the field of machine learning

which have proven to be more flexible), will still be ill posed.

1.2 Regularized Regression Methods

Irrespective of the linear model assumption, linear regression has some short comings like,

predictive ability - the fit often has low bias but high variance when there are too many

predictors, etc. In a high dimensional setting where the number of predictors p exceeds the

number of observations n, these short comings become a major problem. As a matter of

fact, in such settings, the linear regression estimate is actually not well-defined. However, pe-

nalized regression models are seemingly more adaptable to high-dimensional data compared
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to traditional statistical regression approaches for estimating linear regression parameters.

Also, an important topic in linear regression analysis is variable selection, variable selection

is particularly important when the true underlying model has sparse representation. By

shrinking estimates to zero, regularization can reduce the variability in estimates of regres-

sion coefficients, thereby improving the predictive error. Some classical examples are:

Consider ||β||0 =
∑p

j=1 1{βj 6= 0}, ||β||1 =
∑p

j=1 |βj|, ||β||2 = (
∑p

j=1 β
2
j )

1/2

We put the methods in constrained form as below, where k, t ≥ 0 are tuning parameters.

min
β∈Rp
||y −Xβ||22 subject to ||β||0 ≤ k (Best subset selection) (1.2)

min
β∈Rp
||y −Xβ||22 subject to ||β||1 ≤ t (lasso regression) (1.3)

min
β∈Rp
||y −Xβ||22 subject to ||β||2 ≤ t (Ridge regression) (1.4)

The above problems can be formulated in penalized form as follows:

min
β∈Rp

1

2
||y −Xβ||22 + λ||β||0 (Best subset selection) (1.5)

min
β∈Rp

1

2
||y −Xβ|22 + λ||β||1 (lasso regression) (1.6)

min
β∈Rp

1

2
||y −Xβ||22 + λ||β||2 (Ridge regression) (1.7)

where λ ≥ 0 is the regularization parameter. (1.4) and (1.7) are equivalent, i.e., for any

λ ≥ 0 and a solution β̂ in (1.7), there is a corresponding value t ≥ 0 such that β̂ solves (1.4)

and vice versa, likewise (1.2) and (1.5), (1.3) and (1.6). Because of the wonderful theory of

convex duality and optimality, any local mininmizer is a global minimizer. Amongst other
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things, convex optimization problems appear to be more interesting. The lasso and ridge

regression problems are convex optimization problems. Best subset selection is no way near

being convex. The lasso regression and best subset selection induces sparsity, ridge regression

doesn’t. The ridge regression is always strictly convex, and hence will always have a unique

solution, while the lasso regression is not always strictly convex, therefore it need not have

a unique solution, although this can be mitigated by using the elastic net Zou and Hastie

(2005). Elastic net applies a penalty of the form λ1||β||1 + λ2||β||22.

1.2.0.1 lasso

As in (1.6), because of the penalty term ||β||1, the lasso solution is usually sparse when a

large λ is used, the lasso method is a shrinkage approach that avoids over-fitting, identi-

fies the true signals (informative predictors) from a pool of candidate variables, with low

variability and an increase in bias, the lasso estimates model parameters, i.e., it does both

parameter estimation and variable selection simultaneously. λ can be chosen using cross

validation. If X has columns in general position, then we’ll have uniqueness of the lasso

solution, (Tibshirani, 2013). Since this is a convex optimization problem, it can easily be

solved using optimization packages like CVXR, Gurobi, etc. However, Efron et al. (2004)

introduced an efficient algorithm called Least Angle Regression (Lars), and this package is

available in the R package for computing the entire path solution at a fair computational

cost. lasso has some limitations:

• Because of the nature of convex optimization problem lasso tries to minimize, the lasso

selects at most n variables in the case where the number of predictors is larger than

the number of observations (n << p). This is called sparsity limitation.
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• For most real world datasets, usually there is a group of variables among which the

pairwise correlations are very high , then lasso tends to arbitrarily select only one vari-

able from the group. This situation is not ideal, especially in gene selection problems,

for example; the ideal gene selection method in gene expression is group selection which

is eliminating the trivial genes and automatically include whole groups into the model

once one gene among them is selected. Elastic net is better suited here.

• Though ridge regression won’t help in feature selection and model interpretability is

low, if there is high correlation between the predictors especially in high dimensional

data, ridge regression has better prediction power than the lasso.

1.2.0.2 Theoretical Results for lasso

There is a large body of theoretical work on the behavior of the lasso (1.6). It is largely

focused on consistency of the parameter estimates in l2 or some other norm, prediction

error consistency, and recovery of the nonzero support set of the true regression parameters,

sometimes called sparsistency. For MSE consistency, if β and β̂ are the true and lasso

estimated parameters respectively, it can be shown that as p, n→∞

||X(β̂ − β)||22/n ≤ C||β||1
√

log(p)/n

with high probability (Bühlmann and Van De Geer (2011), Chapter 6). Hence the lasso

is consistent for prediction. The result only assumes that the design X is fixed and has

no other conditions on X. However, estimation error and correct support recovery requires
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more stringent assumptions.

Bounds on lasso l2-Error

We mention some conditions on the model matrix X that are needed to establish bounds on

l2-error for the lasso. The intuition behind these conditions can be explicitly found in Hastie

et al. (2015) and the references therein. The condition we need here is strong convexity of the

least-square loss, and the least-squares loss is strongly convex if and only if the eigenvalues of

the p×p positive semidefinite matrix XTX are uniformly bounded away from zero. However,

it is easy to see that any matrix of the form XTX has rank at most min{n, p}, so it is always

rank-deficient—and hence not strongly convex whenever n < p. So, we relax the strong

convexity condition and require restricted strong convexity (see Bühlmann and Van De Geer

(2011)), which is in turn equivalent to lower bounding the restricted eigenvalues of the model

matrix for the case of linear regression, see Bühlmann and Van De Geer (2011). Suppose

that the model matrix X satisfies the restricted eigen value bound with parameter γ > 0

and the regularization parameter is chosen as λn ≥ 2||XT ε||∞/n > 0, then an estimate β̂

from the regularized lasso (1.6) satisfies the bound

||β̂ − β||2 ≤
3

γ

√
s0λn

where s0 = |S0|, S0 = {j : βj 6= 0, j = 1, ; . . ., p}, see Hastie et al. (2015). For the case

of classical linear Gaussian model, for which the observation noise ε ∈ Rn is Gaussian with

i.i.d N (0, σ) entries, and the design matrix X is fixed. Then, the above bound reduces to
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||β̂ − β||2 ≤ c
3

γ

√
τs0 log p

n

with probability at least 1− 2e−
1
2

(τ−2) log p, for some τ > 2 and an appropriately chosen con-

stant c. Negahban et al. (2012) made use of restricted strong convexity of the cost function

and decomposability of the regularizer, and the authors provided a general framework for

analyzing the estimation error ||β̂−β||2 for the family of M -estimators, which includes lasso

as a special case. For more theoretical results addressing error bounds for lasso estimates,

the reader may consult any of the following (Bickel et al. (2009), Bunea et al. (2007a),

Bunea et al. (2007b), Candes and Tao (2007), Meinshausen and Yu (2009), Van De Geer

and Bühlmann (2009), Zhang and Huang (2008)).

More theoretical results on prediction error consistency for lasso can be found here

(Bunea et al. (2007a), Greenshtein and Ritov (2004), Van De Geer and Bühlmann (2009),

Zhang and Huang (2008)), and theoretical results for exactly recovery can be found here

(Meinshausen and Bühlmann (2006), Wainwright (2009), Zhao and Yu (2006)).

1.2.0.3 Adaptive lasso

Zou (2006), and some references therein stated that the lasso does not have oracle properties

(i.e., doesn’t identify the right subset of true variables and doesn’t have optimal estimation

rate). They claimed that there are cases where a given λ that leads to optimal estimation

rate ends up with inconsistent selection of variables. Also, there are cases with the right

selection of variables but showing biased estimates for large coefficients, thereby leading to
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sub-optimal prediction rates. For a suitable choice of λ, adaptive lasso is a refinement of

the lasso that has the oracle properties. It has the same advantage as the lasso, i.e., it

shrinks some of the coefficients to zero, thereby performing selection of variables with the

regularization. Also, as regularization technique, adaptive lasso avoids over-fitting penalizing

large coefficients. Adaptive lasso replaces the l1 penalty by a re-weighted version.

β̂adapt(λ) = argmin
β

(
1

n
||y −Xβ||22 + λ

p∑
j=1

|βj|
|β̂init,j|

)

where β̂init is an initial estimator and if β̂init,j = 0 =⇒ β̂adapt,j = 0. The lasso estimator

can be used as an initial estimator.

The design matrix satisfying the neighborhood stability or irrepresentable condition is a

necessary and sufficient condition for the lasso to achieve a consistent variable selection in

a linear model. These condition(s) might be unrealistic in practice. For the adaptive lasso,

assuming compatibility conditions on the design matrix are sufficient to achieve consistent

variable selection, and these conditions are weaker than that of the lasso, hence the adap-

tive lasso selects the true set of nonzero coefficients with probability tending to one. See

Bühlmann and Van De Geer (2011), Zou (2006) for an in-depth treatment of these termi-

nologies.

1.2.0.4 Other Non-Convex Regularization Methods

It has been well known that convex penalties introduce non negligible estimation biases.

To eliminate the estimation bias, a family of folded-concave penalties was introduced, which

includes the smooth clipped absolute deviation (SCAD) Fan and Li (2001), minimax concave

11



penalty (MCP) Zhang (2010), etc. Compared to their convex counterparts, these non-

convex penalties eliminate the estimation bias and attain more refined statistical rates of

convergence. However, it is more challenging to analyze the theoretical properties of the

resulting estimators due to non-convexity of the penalty functions.

Figure 1.1: Plots of various Penalties
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1.3 Inference for High-Dimensional Regression Models

It is widely recognized that modern statistical problems are increasingly high-dimensional,

i.e., require estimation of more parameters than the number of observations/samples. Ex-

amples abound from signal processing to genomics, collaborative filtering and so on. A

number of successful estimation techniques have been developed over the last the years

to tackle these problems, but fitting high-dimensional statistical models often necessitates

more complex computational algorithms, and explicit solutions for the estimate may not

exist. As a consequence, it is generally impossible to obtain an exact characterization of

the probability distribution of the parameter estimates. This in turn implies that it is

extremely challenging to quantify the uncertainty associated with a certain parameter es-

timate. Concretely, there hasn’t been enough literature on computing classical measures

of uncertainty and statistical significance as confidence intervals or p-values for these high

dimensional models. We now discuss two broad frameworks for statistical inference for

high dimensional linear regression under Gaussian noise. The first framework is “Post

- Selection Inference Methods” or “Selective Inference methods” as championed by Lee

et al. (2016) and Tibshirani et al. (2016), the R package selectiveInference provides their

implementation alongside other similar methods, see https://cran.r-project.org/web/

packages/selectiveInference/index.html. The second framework is “High Dimensional

Inference” as championed by Zhang and Zhang (2014) and Van de Geer et al. (2014), the

R package hdi provides their implementation alongside other similar methods, see https:

//cran.r-project.org/web/packages/hdi/.
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1.3.1 Post - Selection Inference

In classical statistics, a model and a corresponding set of parameters are assumed to be cho-

sen independently of the data that is subsequently used for statistical inference. However, in

practice, data analysts often examine the data to inform their model and parameter choices.

Ignoring this adaptivity can lead to flawed conclusions and loss of inferential guarantees.

While instructing analysts to avoid such exploration is not practical or recommended, it has

led to an effort in the statistical community to develop tools for selective inference. This

effort has been driven by a realization of the replication problem in science and a desire to

address it. These tools aim to perform inference while accounting for the effect of data-

dependent model selection and/or target parameter selection. The field of post selection

inference provides a formal framework for addressing such issues by constructing valid sta-

tistical procedures that account for the adaptive nature of the inference process. One such

approach is to condition on the event of selection, which can be described by a set of in-

equalities that constrain the selection event. In this way, one can adjust the p-values and

confidence intervals to ensure that the resulting inferences are valid, even in the presence of

data-dependent selection. The field of of post selection inference is still evolving, and there

are many open questions and challenges in constructing and implementing valid selective

inference procedures. However, the development of such methods is crucial to ensuring the

reliability and reproducibility of scientific findings.

In recent years, there have been several studies on post-selection inference using various

approaches and frameworks, including Berk et al. (2013), Fithian et al. (2014), and Lee and
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Taylor (2014). Here, we will focus on a general approach to performing reliable inference af-

ter model selection, which was originally developed by Lee et al. (2016) and Tibshirani et al.

(2016). Their approach characterizes the distribution of a post-selection estimator condi-

tional on the variable selection event, where the selection event is hypothesized to partition

the sample space into at least convex or polyhedral sets. This methodology can be applied to

many widely used automatic model selection procedures, such as marginal screening, lasso,

and forward-selection. In practical terms, let us consider a linear regression scenario with

unknown coefficients to be estimated, represented by β ∈ Rp. The proposed framework can

accommodate any procedure for which the selection events can be characterized by a set of

affine inequalities in the response variable, denoted by y. The selection event can be expressed

as Ay ≤ b, where A is a matrix and b is a vector that can be computed from the data. Then,

the distribution of any estimator β̂ that is selected based on this event can be represented

as a truncated normal distribution with a mean and estimable covariance matrix. Explicit

formulas for the matrix A and vector b can be found in Lee et al. (2016). This framework is

also applicable to successive steps of the LAR algorithm and can provide a finite sample form

of the covariance test. This methodology holds considerable practical significance due to its

ability to address post-selection inference challenges as it can yield exact p-values and confi-

dence intervals in the Gaussian case, that account for the uncertainty introduced by model

selection. This method can also be applied to forward stepwise regression, and to the lasso at

a fixed choice of the regularization parameter λ. Please refer to Chapter two for more details.

15



Post-selection inference has the advantage of not assuming that any of the candidate

models is correct. Subsequently, Tian and Taylor (2017), Tibshirani et al. (2018), and Tib-

shirani et al. (2016) addressed issues related to post-selection inference: In these papers,

confidence sets for the selected variables are considered to have a guaranteed coverage prob-

ability conditionally on the event that a particular model has been selected by the model

selection procedure, hence False Coverage rate (FCR) is controlled at a nominal level of α.

1.3.2 High Dimensional Inference

For the lasso, in particular, a de-sparsifying method has recently been developed by Belloni

et al. (2014), Van de Geer et al. (2014), and Zhang and Zhang (2014), these papers and

the references therein are about confidence intervals and p-values for coefficients in high

dimensional linear models based on the lasso estimator while controlling the resulting type

I error, they do not address post-selection inference; their target is β, the coefficients in

the true model (1.1), rather than β̂E, the coefficients in the selected model where βÊ =

argminβ E||y − XEβ||2 and E is the model selected by the lasso estimator. Although in-

ference for β is appealing, it requires a lot of assumptions like, correctness of the linear

model assumption, compatibility or incoherence-type assumption, etc, which for the most

part might be unrealistic in practice.

Let us describe the method by Zhang and Zhang (2014), for high dimensional case

in (1.1) with p > n, the idea is to pursue a regularized projection. Instead of ordinary

least squares regression, we use lasso regression of the jth column X(j) versus the remaining
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columns X(−j), with corresponding residual vector Z(j): such penalized regression involves

a regularization parameter λj for the lasso, and hence Z(j) = Z(j)(λj). For any vector Z(j),

we immediately obtain

Y T Z(j)

(X(j))T Z(j)
= βj +

∑
k 6=j

Pjkβk +
εT Z(j)

(X(j))T Z(j)
, Pjk = (X(k))T Z(j)/(X(j))T Z(j) (1.8)

Note that in the low-dimensional case with Z(j) being the residuals from ordinary least

squares, due to orthogonality, Pjk = 0. When using the lasso-residuals for Z(j), we do not

have exact orthogonality and a bias arises. Thus, we make a bias correction by plugging in

the lasso estimator β̂ (of the regression y versus X): the bias-corrected estimator is

b̂j =
Y T Z(j)

(X(j))T Z(j)
−
∑
k 6=j

Pjkβ̂k

Using (1.8), we have

√
n(b̂j − βj) =

n−1/2εT Z(j)

n−1(X(j))T Z(j)
+
∑
k 6=j

√
nPjk(βk − β̂k)

The second term on the right is negligible under the following assumptions:

1. The design matrix X has compatibility constant (see Bühlmann and Van De Geer

(2011), page 106) bounded away from zero, and the sparsity is s0 = o(
√
n/ log(p)). Where

s0 = |S0|, S0 = {j : βj 6= 0, j = 1, ; . . ., p}

2. The rows of X are fixed realizations of i.i.d random vectors ∼ Np(0,Σ), and the minimal

eigen value of Σ is bounded away from zero. Σ is the variance covariance matrix.
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3. The inverse Σ−1 is row-sparse with sj =
∑

k 6=j I((Σ−1)jk 6= 0) = o(n/ log(p))

Van de Geer et al. (2014), and Zhang and Zhang (2014) then showed that for a linear model

as in 1.1 with fixed design and Gaussian errors, assumming 1,2 & 3 above, we have;

√
nσ−1

ε (b̂− β) = W + ∆, W ∼ Np(0,Ω), Ωjk =
n(Z(j))T Z(k)

[(X(j))T Z(j)][(X(k))T Z(k)]

||∆||∞ = op(1)

which asymptotically imples

σ−1
ε Ω

−1/2
jj

√
n (b̂j − βj)→ N (0, 1),

from which we can immediately construct a confidence interval or hypothesis test by plug-

ging in any consistent estimator σ̂ε of σε.

Javanmard and Montanari (2014a) claimed that the methods of Zhang and Zhang (2014)

can be sub optimal, because it requires the design to be generated from a population dis-

tribution whose inverse covariance matrix is sparse. The authors went ahead and con-

structed a de-biased estimator from the lasso solution and their approach applies to gen-

eral covariance structures. Their de-biased estimator was given by the simple formula

β̂D = β̂+ (1/n)M XT (Y −Xβ̂), where M is an estimator of Σ−1. Their basic intuition was

that XT (Y − Xβ̂)/(nλ) is a subgradient of the l1 norm at the lasso β̂. By adding a term

proportional to the above subgradient, the procedure compensates the bias introduced by l1

penalty in the lasso. The authors proved that β̂D is approximately Gaussian, with mean β
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and covariance σ2(MΣ̂M)/n, where Σ̂ = (XTX/n) is the empirical covariance of the feature

vectors, this result allows to construct confidence and p-values in complete analogy with clas-

sical statistics procedures, i.e., letting Q ≡MΣ̂M, [β̂Di −1.96σ
√
Qii/n, β̂

D
i +1.96σ

√
Qii/n]

is 95% confidence interval. The noise standard deviation can be replaced by an consistent

estimator σ̂. The matrix M was to primarily decorrelate the columns of X, the authors

constructed M by solving a convex program that aims at optimizing two objectives, i.e.,

control the non-Gaussianity and bias of β̂D by controlling |MΣ̂− I|∞, and also control the

variance of β̂Di by minimizing [MΣ̂M ]ii for each i.

Other methods for high dimensional inference here includes “Multi sample-splitting”

by Meinshausen et al. (2009), “Ridge projection and bias correction” by Bühlmann (2013),

etc. See Dezeure et al. (2015) and the references therein for an in-depth summary of these

methods.

Summary Table for the Two Approaches

* High Dimensional Inference (hdi) Exact Post Selection Inference

Main Idea confidence intervals and p-values for

β, i.e., full model inference

confidence intervals and p-values for

β̂E, the coefficients in the selected

model

Mathematical Tools correctness of the linear model, com-

patibility condition on X and beta-

min condition, sparsity assumption of

β

Affine selection procedure, σ2 is

known, y ∼ N (µ(X), σ2In).
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Pros Computes robust unconditional full

model inference (confidence intervals

and p-values).

Does not require correctness of the lin-

ear model which might be unrealistic

in practice.

Cons Computationally expensive for large

p, Ridge projection does not reach

the asymptotic Cramér–Rao efficiency

bound, desparsified lasso requires in-

verse covariance matrix to be sparse,

and beta-min assumption is not ideal.

The strength of the signal affects the

width of confidence intervals. Condi-

tioning on both the model and coeffi-

cient signs reduces power, while con-

ditioning only on the model increases

statistical efficiency but reduces com-

putational efficiency.

1.4 Robust Regression Methods

The ordinary least squares estimate for linear regression is sensitive to errors with large

variance. It is not robust to heavy-tailed errors or outliers, which are commonly encountered

in applications, especially in this era of big data, hence the OLS performance will be poor.

Rousseeuw and Leroy (2005) explicitly defined some three types of outliers as;

• Vertical outliers: observations that are not outlying in the explanatory variables but

have outlying values in the response variable. Their presence affects both OLS estimate,

especially the estimate of the intercept.
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• Good leverage points: These are observations that are located fairly close to the re-

gression line and they are outlying in the explanatory variables. Their presence affects

only the standard errors, but not the estimates.

• Bad leverage points: these are observations that are far from the true regression line,

and are outlying in both explanatory variables and the response variable. They tremen-

dously affect the OLS estimates (both the slope and the intercept).

We know that the breakdown point of the sample mean is almost 0 which is very low, hence

in linear regression, the breakdown of the OLS estimator is analogous to the breakdown

of the sample mean: a few extreme observations (vertical outliers) can largely determine

the value of the OLS estimator, therefore researchers have considered many different loss

functions to replace the squared error loss in least squares estimate to achieve robustness.

Some of the proposed loss functions are, Huber’s M-estimators Huber (1964), MM-estimators

Yohai (1987), Least Median of Squares estimators and Least Trimmed Squares estimators

Rousseeuw (1984), S-estimators Rousseeuw and Yohai (1984) and quantile regression meth-

ods Koenker and Bassett Jr (1978). Amongst all of those, the most common general method

of robust regression is M-estimation, which is regarded as a generalization of the maxi-

mum likelihood estimation, hence the name M. Huber defined the ’plain vanilla’ regression

M-estimates as :

β̂ = min
β

p∑
j=1

ρ(yi − βTxi)

or after taking derivatives:
p∑
j=1

ψ(yi − β̂Txi)xi = 0
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with ρ′(.) = ψ(.). If ρ(.) is convex, the two approaches are essentially equivalent. It appears

that M-estimates offer enough flexibility and are by far the easiest to cope with, simultane-

ously, with regard to computation, asymptotic theory, and intuitive interpretation, also it is

the only robust regression estimate whose asymptotic behavior are believed to be understood

in fair detail. The objective function ρ(.) is an outlier resistant function with some known

properties;

• Always non negative, ρ(u) ≥ 0

• Symmetric, ρ(−u) = ρ(u)

• ρ(0) = 0

• Monotone in |ui|, ρ(ui) ≥ ρ(u′i) for |ui| ≥ |u′i|

Some of the import cases of ρ(.) are;

1. ρ(u) = u2, which gives the OLS estimator.

2. Huber estimator Huber (1981)

ρM(u) =


1
2
u2 |u| ≤M

M |u| − 1
2
M2 |u| > M

(1.9)

for a user-specified constant M. Here, ρ(.) = ρM(.) which is clearly convex and differentiable.

This function is a hybrid of a quadratic function for small values and a linear function for

large values. The constant M is viewed as a shape parameter that controls the level of trade-

off between efficiency and robustness, where a smaller value of M leads to better robustness

and a larger value of M corresponds to better efficiency. The shape parameter is always set
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to be M = 1.35 following the recommendation in Owen (2007), Ronchetti and Huber (2009),

Lambert-Lacroix and Zwald (2011).

3.

ρM(u) =


1− [1− ( u

M
)2]3 |u| ≤M

1 |u| > M

This gives the Tukey Biweight estimator, where M is usually chosen to be 4.685 Bai (2014)

4.

ρθ(u) =


θu u ≥ 0

−(1− θ)u u < 0

This corresponds to quantile regression Koenker and Bassett Jr (1978) where 0 < θ <

1. Clearly, you can see that when θ = 0.5, ρ0.5(u) = |u| gives least absolute deviations

regression (LAD) or the median regression. In some other literature, a weight matrix was

introduced to reduce the influence of outliers and iterative algorithm was used to solve

problem, and this is the called Iteratively Reweighted Least-Squares (IRLS) algorithm.

The asymptotic properties (normality) of M estimators have been investigated both the-

oretically and empirically, see Huber (1964), Anscombe (1967), Relles (1968), Huber (1972),

Andrews and Hampel (2015), Huber (1973), Yohai (1974), Bickel (1975), Bickel (1984), Port-

noy (1984), Portnoy (1985), Portnoy (1987), Mammen (1989), Ronchetti and Huber (2009).

The asymptotic properties are derived when assuming p is fixed and n diverges to infinity.

However, in practice, p and n tend to become large simultaneously; in crystallography, where

some of the largest least squares problems occur (with hundreds or thousands of parameters),
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Figure 1.2: Plots of various loss functions, observe that LAD loss is the quantile loss when
θ = 0.5

according to Huber (1973) we find the explicit recommendation that there should be at least

five observations per parameter, this suggests that a meaningful asymptotic theory should

be in terms of p/n→ 0 or in terms of h→ 0, where h is the maximal diagonal element of the

hat matrix. Hence we’ll talk about the asymptotic theory of these estimators for the cases

of p fixed and p → ∞. The proof for the case of fixed p is a consequence of Bickel (1975).

In the case of p→∞, it is assumed ψ has a bounded derivative, Yohai and Maronna (1979)

required that p
3
2h → 0, which improves an analogous result by Huber (1973) who required
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p2h→ 0. An overview of articles connected with asymptotics of M-estimators in linear mod-

els with increasing dimension is contained in Portnoy (1984). Portnoy (1985) assumed that

the dimension of p grows with n in such a way that: p
3
2 (log n)

3
2/n→ 0 as n→∞, and this

condition was relaxed by Mammen (1989). Overall, for p → ∞, p tends to infinity slower

than n (hence, n will be sufficiently larger). In addition, since biases caused by asymmetric

error distributions exist and can cause havoc within the asymptotic theory, although for

most practical purposes, they will be so small that they can be neglected, Huber (1973) gave

a procedure for computing the estimated covariance matrix with a correction factor. Boos

(1980) proposed a method of constructing approximate confidence intervals for M-estimates

for the special case of monotone non-decreasing right continuous ψ functions. El Karoui

et al. (2013) recently discussed M-estimators for the case when p/n does not go to zero. It

is worth noting that robust regression and outlier detection (using residuals from a robust

regression estimate to identify outliers, so as to counter the issue of masking & swamping)

are two closely related but not quite identical problems. There is a connection between the

so called mean shift model and the Huber’s M-estimates, see She and Owen (2011).

1.4.0.1 Penalized Huber Regression

In recent years, there has been a growing interest in applying robust methods to analyze

high-dimensional data. One such method is regularized Huber-loss regression. Owen (2007)

studied Huber-loss regression with a reversed Huber penalty, while Lambert-Lacroix and

Zwald (2011) examined Huber-loss regression with an adaptive lasso penalty and obtained

the estimate’s asymptotic properties. These methods obtain estimators which are robust
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against outliers and also enjoys a sparse representation. Here we consider the methods

discussed above but replacing the least square loss with the huber loss ρM(.) as in (1.1);

• Huber loss with l1 penalty: minβ
∑p

i=1 ρM(yj − βTxi) + λ||β||1

• Adaptive lasso penalty: minβ
∑p

i=1 ρM(yj − βTxi) + λ(
∑p

j=1
|βj |
|β̂init,j |

)

• SCAD penalty: minβ
∑p

i=1 ρM(yj − βTxi) +
∑p

j=1 penλ,a(βj)

• MCP penalty: minβ
∑p

i=1 ρM(yj − βTxi) +
∑p

j=1 penMCP, λ, a(βj)

1.4.0.2 Some Simulation Study

Next, we do some simulation studies to demonstrate the performance of model selection

of these methods. In all computations, the problems were solved using Iterative Local

Adaptive Majorize-Minimization (I-LAMM) Algorithm for Nonconvex Regularized Robust

Regression as introduced by Pan et al. (2021). The software is available online: https:

//github.com/XiaoouPan. We set up the experiment as follows, randomly generate a de-

sign matrix of dimension n × p, the rows of X are independently sampled from a mul-

tivariate normal distribution with mean 0 and covariance matrix with entries 0.5|i−j| for

i, j = 1, 2, . . . , p. Take n = 400, p = 100 and calculate the response as y = Xβ + ε where

β = (3, 1, −1, 2, −0.5, 0, 0, 0, 0, 0, . . . , 0)T with only the first five components taken to

be non zero, i.e., s = 5, hence β is sparse. Three different distributions will be considered

for the random error ε, namely, N (0, 0.5), the students’s t with degress of freedom 1.5,

and mixed-normal distribution N (0, 0.5) +N (0, 2). Both t and mixed-normal distributions

are heavy-tailed, and produce outliers with high chance. The tuning parameter λ and the
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robustification parameter M were all chosen implicitly in the algorithm using cross valida-

tion, as Pan et al. (2021) pointed out that with a properly chosen robustification parameter,

calibrated by the noise level, sample size and parametric dimension, the effects of the heavy-

tailed noise can be removed or dampened, see also Sun et al. (2020). We ran the simulation

repeatedly (100 replications) and took the average of the summary statistics. The perfor-

mance of the methods above were summarized with a table including True Positive (TP),

which is the number of signal variables that are selected; False positive (FP), which is the

number of noise variables that are selected; True Positive Rate( TPR), and False Positive

Rate (FPR), are defined, respectively, as the ratio of true positive to s and the ratio of false

positive to p−s. l1 error and l2 estimation error was also reported for more context. For the

heavy tailed distribution, we can see that Huber-MCP & Huber-SCAD outperformed the

rest, with fewer spurious discoveries (false positives), and smaller estimation errors. The per-

formance of these methods are fairly similar for normal error as expected. Overall, methods

with Huber loss outperformed methods with least square loss as it’s evident in the estima-

tion errors. This agrees with the fact that the use of Huber loss is particularly suited for

heavy-tailed problems in both low and high dimensions, see (1.6)

1.5 Contribution / Thesis Outline

In recent years, there has been a growing interest in developing post-selection inference meth-

ods for high-dimensional data, particularly for linear models with sub-Gaussian errors. A lot

of effort has been put into studying post-selection inference based on least squares estimation

for these models. Specifically, Lee et al. (2016) derived closed-form confidence intervals and

p-values by fitting the lasso with a fixed value of the regularization parameter. Similarly,
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Taylor et al. (2014) provided similar results for forward stepwise regression and least angle

regression (LAR), also see Tibshirani (2013) and Tibshirani et al. (2016). It is noteworthy

that these results are non-asymptotic and hence applicable for any sample size n. However,

one limitation of these methods is that they utilize the squared loss function, which are not

robust to outliers and heavy-tailed errors. In addition, the sub-Gaussian assumption, which

is made for technical convenience, may not be realistic in many practical situations, espe-

cially for data with heavy-tailed errors that are commonly observed in finance and economics.

In this dissertation, I will propose to use a Huber loss function with a generalized lasso

penalty (gl-huber), and establish a finite sample conditional post-selection inferential tools

for gl-huber while simultaneously conditioning on the outlier identification event and the

variable selection event. Chapters 2 and 3 will present a comprehensive overview of the

developed methodology, including its intricate details. Mainly, there three contributions of

this dissertation:

• First, the proposed methodology employs a generalized lasso penalty that permits a

broad range of penalization techniques, encompassing the usual lasso, adaptive lasso,

and fused lasso as special cases. This approach offers superior flexibility and adapt-

ability compared to other penalization methods.

• Secondly, the developed methodology characterizes the conditional distribution of the

post-selection gl-huber estimator, while accounting for both variable selection and out-

lier identification events. This novel approach enables the development of valid con-

ditional post-selection confidence intervals and p-values in high dimension that take
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into account the variability in the selection process and satisfies all necessary frequency

properties in the presence of heavy tailed error distribution / outliers. This contributes

significantly to the statistical inference literature, particularly in the context of robust

high-dimensional data analysis.

• Thirdly, in Chapter 4, this dissertation investigates the integration of a randomization

technique from differential privacy with the developed methodology. The incorporation

of this technique leads to a significant boost in the power of post-selection inferences

made using the model.

The justification for using this conditional approach stems from the fact that researchers

typically employ data to produce compelling hypotheses, and then conduct statistical infer-

ence on those hypotheses. In order to properly account for this exploratory data analysis,

p-values and confidence intervals must be adjusted. One effective method for accomplishing

this is to condition any inferences on the specific data components that were used to gener-

ate the hypotheses. This prevents the information contained within those components from

being utilized again.

The dissertation is organized into five chapters. In Chapter 2, the focus is on post-selection

inference, discussing methods for valid inference after model selection, with a particular

emphasis on the general framework of post-selection inference by Lee et al. (2016) and Tib-

shirani et al. (2016). Chapter 3 addresses the problem of post-selection inference for robust

regression techniques using Huber-loss regression with a generalized lasso penalty and heavy-

tailed error distribution. Chapter 4 discusses post-selection inference after randomization.
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Finally, Chapter 5 provides a summary of the conclusions drawn from the previous chapters

and discusses the future work and importance of the topic.
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1.6 Tables for Chapter 1 Simulations

ε ∼ N(0, 0.5), sim = 100, n = 400, p = 100

Method lasso MCP SCAD Huber-

lasso

Huber-

MCP

Huber-

SCAD

TP 5 5 5 5 5 5

TPR 1 1 1 1 1 1

FP 12.39 0.75 1.44 12.10 0.71 1.33

FPR 0.130 0.007 0.015 0.127 0.007 0.014

l1 - error 0.507 0.156 0.164 0.506 0.157 0.164

l2 - error 0.168 0.077 0.077 0.169 0.077 0.078

Table 1.2: Summary table for ε ∼ N(0, 0.5), sim = 100, n = 400, p = 100

(a) boxplot

Figure 1.3: l1 error plot for ε ∼ N(0, 0.5), sim = 100, n = 400, p = 100
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ε ∼ t1.5, sim = 100, n = 400, p = 100

Method lasso MCP SCAD Huber-

lasso

Huber-

MCP

Huber-

SCAD

TP 4.07 3.71 3.93 4.92 4.81 4.87

TPR 0.814 0.742 0.786 0.984 0.962 0.974

FP 12.84 3.57 6.11 7.30 1.51 4.23

FPR 0.135 0.037 0.064 0.076 0.015 0.044

l1 - error 3.429 2.624 2.815 1.676 1.042 1.117

l2 - error 1.411 1.272 1.277 0.556 0.408 0.421

Table 1.3: Summary table for ε ∼ t1.5, sim = 100, n = 400, p = 100

(a) boxplot

Figure 1.4: l1 error plot for ε ∼ t1.5, sim = 100, n = 400, p = 100
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ε ∼ N (0, 0.5) +N (0, 2), sim = 100, n = 400, p = 100

Method lasso MCP SCAD Huber-

lasso

Huber-

MCP

Huber-

SCAD

TP 3.34 2.66 3.14 3.94 3.18 3.44

TPR 0.668 0.532 0.628 0.788 0.636 0.688

FP 12.02 2.68 6.56 11.40 1.26 3.76

FPR 0.127 0.028 0.069 0.120 0.013 0.039

l1 - error 6.645 4.868 5.243 5.056 3.088 3.404

l2 - error 2.211 2.045 1.998 1.724 1.4669 1.522

Table 1.4: Summary table for ε ∼ N (0, 0.5) +N (0, 2), sim = 100, n = 400, p = 100

(a) boxplot

Figure 1.5: l1 error plot for ε ∼ N (0, 0.5) +N (0, 2), sim = 100, n = 100, p = 100
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Chapter 2

Post Selection Inference

Conducting a valid statistical inference after model selection is currently a very active area

in research. Here, we discuss a general approach to valid inference after model selection. For

convenience of presentation, we restate the model as follows. The vector of responses y ∈ Rn

is related to the design matrix X ∈ Rn×p via a linear model.

y = Xβ + ε,

Many researchers incorporate lasso in statistical inference by a two-step procedure.

1. Use lasso as a tool for variable selection, that is, fit lasso to y and X to get the lasso

solution β̂. Define the active set as Â = {k : β̂k 6= 0}, which contains the indexes of

variables with nonzero coefficients.

2. Apply the ordinary least squares to y and XÂ, where XÂ contains the columns cor-

responding to the indexes in Â. The usual statistical inference, such as confidence

interval and p-value, can be conducted based on the selected variables.

However, this two-step procedure ignores the fact that Â is computed from the data using

lasso and is therefore subject to randomness. As a result, the statistical inference based on

the selected variables may not be valid because it fails to account for all the variability in the
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variable selection process. The selective inference formulates this problem as a conditional

inference, conditional on the variables selected in the first step. The justification for using

this conditional inference approach stems from the fact that researchers typically employ

data to produce compelling hypotheses, and then conduct statistical inference on those

hypotheses. In order to properly account for this exploratory data analysis, p-values and

confidence intervals must be adjusted. One effective method for accomplishing this is to

condition any inferences on the specific data components that were used to generate the

hypotheses. This prevents the information contained within those components from being

utilized again. We formally state the problem following the notations introduced in Tian

and Taylor (2018). Let us assume that yi|xi ∼ G(µ(xi), σ
2(xi)), where xi is the ith row of the

matrix X. We then apply a feature selection procedure to choose a subset E ⊂ {1, . . . , p},

and the goal of the analysis is to infer the subset {βEj , j ∈ E}, where βEj is the coefficient

for feature j in the linear regression model using only the features in E, i.e.,

βE = arg min
b
E‖y −XEb‖2

Supposing we are interested in inference for the first component of βE, that is, eT1 β
E. Its

estimate is eT1 β̂
E = ηTy, where η = eT1 (XT

EXE)−1XT
E and e1 is a vector with 1 at the

first coordinate and 0 elsewhere. Standard theory tells us what to do when the sampling

distribution of the data is Gaussian (y ∼ N(µ, σ2In×n)) and η is pre-specified: the Z-statistic

Z =
ηTy − ηTµ
σ||η||2

∼ N (0, 1) (2.1)
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is a pivot from which we can derive p-values and confidence intervals that will satisfy the

desired frequency conditions. However, this theory does not hold because our η depends on

the data through E, i.e., η = η(E) and upon substituting this into the above expression, the

pivotal relationship no longer holds since the OLS estimator ηTy = eT1 (XT
EXE)−1XT

Ey is no

longer univariate Gaussian. Hence, the key is to derive the conditional distribution of ηTy

for some vector η, conditionally on the variables selected by lasso.

2.1 Polyhedral Method

Definition 2.1.1 Define an affine selection procedure:

E∗ : Rn × Rn×p → S, where S is a finite set of models, S = {E1, . . . , E|S|} and for each

potential model to be selected E ∈ S,

{E∗(z,X) = E} = {A(E , X)z ≤ b(E , X)}, (z,X) ∈ Rn × Rn×p, A ∈ Rk×n b ∈ Rk, k ∈ N.

There are several affine selection procedures that use different algorithms to select a set

of variables, denoted by E, based on the data and other information. Some examples of

these procedures include selecting E as the active set of the lasso solution at a fixed λ,

selecting E as the first variable to enter the lasso or LARS path, or selecting E as the

k variables included at the kth step of forward stepwise selection. After solving the lasso

objective function, variable selection output can be described as E, which is the set of indexes

corresponding to non-zero components of β̂, sE ∈ {±1}|E| are their signs. The works of Lee

et al. (2016) aim to derive the conditional distribution of ηTy by conditioning on the active

set E and sE, also known as the selection event. This selection event {E, sE} is an affine

selection procedure as defined above, so Lee et al. (2016) and Tibshirani et al. (2016) showed
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a simple characterization of the selection event as follows

{E∗(y,X) = E} = {A(E , X)y ≤ b(E , X)},

where E∗(y,X) = β̂Ej , j ∈ E. The RHS above is a polyhedral region in outcome space

(the exact form for the matrix A(E , X) and vector b(E , X) can be derived from the KKT

conditions at the solution).

Lemma 2.1.2 (Lee et al. (2016), Tibshirani et al. (2016))

{A(E , X)y ≤ b(E , X)} = {LE(z) ≤ ηTy ≤ UE(z)} (2.2)

LE(z) ≡ max
j:(A(E,X)c)j<0

bj(E , X)− (A(E , X)z)j
(A(E , X)c)j

UE(z) ≡ min
j:(A(E,X)c)j>0

bj(E , X)− (A(E , X)z)j
(A(E , X)c)j

z ≡ (In − cηT )y, c ≡ Ση(ηTΣη)−1, Σ = σ2In

ηTy and (LE(z), UE(z)) are all statistically independent since LE(z), UE(z) are all functions

of z only, z can be defined as a nuisance statistics which corresponds to nuisance parameters,

i.e., all directions orthogonal to the our direction of interest η. From lemma 2.1.2, we can see

that the selection event {E∗(y,X) = E} = {A(E , X)y ≤ b(E , X)} is equivalent to the event

that ηTy falls into a certain range LE(z), UE(z), a range that depends on A(E , X) and b(E , X).
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2.2 Normal case

Lee et al. (2016) obtained the conditional distribution of ηTy when the errors are nor-

mally distributed, that is, y|X ∼ G(µ(X), σ2(X)) ≡ N (0, σ2In×n). The following summary

presents their result, which is non-asymptotic and applicable to any n. From (2.2), Lee

et al. (2016) established the conditional distribution of ηTy given {A(E , X)y ≤ b(E , X)} to

be equivalent to

[ηTy | {A(E , X)y ≤ b(E , X)}] d
= [ηTy | {LE(z) ≤ ηTy ≤ UE(z)}]

Lemma 2.2.1 (Lee et al. (2016), Tibshirani et al. (2016))

[ηTy|A(E , X)y ≤ b(E , X), ℘⊥η y = z] ∼ T N (η(E , X)Tµ, σ2||η(E , X)||2, LE(z), UE(z))

where T N (·, ·, ·, ·) is the truncated normal distribution on the interval [LE(z), UE(z)]. There-

fore we have that, the distribution of ηTy conditioned on the selection event and on the

nausiance statistics (℘⊥η y is the piece of y orthogonal to η), follows a univariate truncated

normal, with LE(z), UE(z) explicitly computed from data. Using the probability integral

transform, we can get a pivot as follows:

Theorem 2.2.2 (Lee et al. (2016), Tibshirani et al. (2016)) Let F
[a,b]

µ,σ2 denote the CDF

of a N (µ, σ2) random variable truncated to the interval [a, b], that is,

F
[a,b]

µ,σ2(x) =
Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ)
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and Φ represents the cumulative distribution function of a standard normal distribution.

Then, marginalizing over the selection procedure E∗, we have the following

F
[LE∗ (z),UE∗ (z)]

η(E∗)Tµ, σ2||η(E∗)||2(η(E∗)Ty) | {A(E∗, X)y ≤ b(E∗, X)} ∼ U(0, 1) (2.3)

where LE∗ and UE∗ are defined in 2.1.2.

We obtain confidence intervals by inverting the pivotal quantity (2.3). For a 1− α interval,

we find the largest and the smallest ηTµ such that the value of pivotal quantity remains in

the interval
[
α
2
, 1− α

2

]
. It is worth noting that we can condition on either {E, sE} or E, and

according to Lee et al. (2016), there are advantages and disadvantages to conditioning on

either E, sE or just E. It’s important to consider the tradeoffs associated with each option.

2.3 Non-normal case

If we remove the assumption that the error is Gaussian, then (2.3) will be false, and sub-

sequently, the conclusion of Theorem 2.2.2 does not hold anymore. The best we can hope

for is a weak convergence result that the same pivotal quantities (2.3) would converge to

U(0, 1) (as n → ∞). Tian and Taylor (2017) relaxed the Gaussian assumption and showed

that the conclusion of theorem 2.2.2 is true asymptotically when the error is not necessarily

Gaussian. Their approach was to compare the distribution of the pivots (2.3) under a non-

Gaussian error distribution denoted as L(y|X) with under Gaussian distribution denoted as

L(Y|X), and this requires some conditions on both the distribution L(y|X) and the selection

procedure E∗ as established by Tian and Taylor (2017).
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Assumption 1 (Tian and Taylor (2017)) Suppose we have Xn ∈ Rn×pn, and yn ∈ Rn

(conditional on Xn) has some distribution, and Yn is generated independently (conditional

on Xn) from N(µ(Xn),Σ(Xn)) a Gaussian distribution with the same means and variances.

We have affine selection procedures such that E∗ = E∗n. Here we assume there exists γn → 0

P(UE∗(yn)− LE∗(yn) < γn)→ 0,

P(UE∗(Yn)− LE∗(Yn) < γn)→ 0,

P(min(|UE∗(yn)|, |LE∗(yn)|) > 1/γn)→ 0,

P(min(|UE∗(Yn)|, |LE∗(Yn)|) > 1/γn)→ 0,

Tian and Taylor (2017) imposed conditions on (γn,M(E∗n, ηn), r(E∗n), |Sn|) to ensure the con-

vergence of the pivot (2.3). Where S = {E1, . . . , E|S|} is a finite set of models as in 2.1.1,

M(E∗, η) = max
E∈S

M(E , η), where

M(E , η) = max
1≤i≤nrow(A(E))

1≤j≤n

A(E)ij
(A(E)Ση(E))i

+ ||η(E)||∞,

r(E) = nrow(A(E)), r(E∗) = max
E∈S

nrow(A(E)).

The conditions are choosing an appropriate γn for Assumption 1, bounding |Sn|, M(E∗n, ηn)

and r(E∗n).

Theorem 2.3.1 (Tian and Taylor (2017)) (Convergence of pivot)

Suppose we have a sequence of yn generated with means µn = µ(Xn), and variances Σn =
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Σ(Xn) and have finite third moments. We also assume Assumption 1 is satisfied with a

sequence of γn. Furthermore, let E∗n be a sequence of affine selection procedures, ηn = η(E∗n),

and the corresponding M(E∗n, ηn), r(E∗n) and Sn are properly defined. Then if

1

γ6
n

·M(E∗n, ηn)3 · n[ log(r(E∗n)) + log(|Sn|)] 4 → 0, as n→∞

we have

P (ηTn yn; ηTnΣnηn, η
T
nµn, LE∗n , UE∗n)

d−→ U(0, 1), n→∞ (2.4)

where P (x;σ2,m, a, b) = 2 min(F
[a,b]

m,σ2(x), 1− F [a,b]

m,σ2(x)) is the two sided pivot.

2.4 Limitations

The method presented in Lee et al. (2016) and Tibshirani et al. (2016) enables precise

conclusions to be drawn following the use of the lasso (or any other method whose selection

event is polyhedral) to formulate hypotheses. Nevertheless, it is not flawless:

• The intervals condition on (E, sE) rather than just E. This would be appropriate if

we also used information in the signs when forming our hypotheses. For example, we

might test against a one sided alternative, H1 : β
(E)
j > 0, if the sign of the jth variable is

positive. However, in most applications, the signs are not used in hypothesis generation,

hence we have thrown away unused information by conditioning on sE. As a result,

the intervals tend to be quite long.
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• Lee et al. (2016) made mention of the point above and showed how to condition only

on E by an enumeration of all possible sign vectors. Their enumeration method is

intractable when |E| is large as there are 2|E| possible sign vectors.

• Kivaranovic and Leeb (2020) proved that the expected length of the above intervals

are infinite. They showed that if the truncation limits are bounded either from above

or from below, i.e., ∀ z, −∞ < LE∗(z) or UE∗(z) < ∞ or both, then the expected

length will be infinite. This intuitively stems from the fact that one expects confidence

intervals to be wide if you condition on a bounded set because extreme values cannot be

observed on a bounded set and the confidence intervals have to take this into account,

see Kivaranovic and Leeb (2020).

But these are not quite surprising since Lee et al. (2016) mentioned that if the observed

statistic is too close to either end of the truncation interval V − and V +, then one or possibly

both endpoints of the interval of desired coverage cannot be computed, and default to +/-

∞. The fairly lengthy confidence intervals which in turn implies slight loss of power is a

necessary price to be paid for better justification of statistical inference in the context of

the pre-inferential liberties taken in today’s data-analytic practice. There are many related

researches in the literature, which may inspire ideas for further improvement in power, Tian

and Taylor (2018) introduced a randomization scheme in linear regression that involves

additive noise.

42



2.5 Randomization

As discussed earlier in this chapter, the approach developed by Lee et al. (2016) for post

selection inference is based on truncating the generative law of the data to realizations that

lead to a selection event. However, Kivaranovic and Leeb (2020) showed that the expected

length of confidence intervals based on this method is typically infinite. To address this issue,

there have been ongoing developments in post selection inference, which can be roughly di-

vided into two main categories: (1) post selection inference based on a minimal conditioning

set and (2) introducing randomized procedures to improve inferential power. In the second

category, the authors found that randomized response result in significantly shorter intervals

than those based on the polyhedral method alone. The randomized response involves adding

a noise term to the response variable in the model, and it yields more powerful statistical

tests while only incurring a small cost in terms of the quality of the selected models. The

inclusion of a small amount of randomization has a minimal impact on the model selection

process but results in a significant increase in the power of inferences made using the model,

and this is due to the concept of leftover Fisher information. This section provides an in-

depth discussion of post-selection inference after randomization.

2.5.1 A natural Gaussian Randomization Scheme

If you consider the response variable y ∈ Rn as in (1.1), partition y into selection and

inference data sets y1 and y2, containing n1 and n2 = n − n1 data points respectively.
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Data splitting procedure uses the lasso on y1 to select the model and y2 for inference. Post-

selection inference for data splitting relies only on the data y2, and fails to utilize any left-over

information from the selection data y1. A solution for valid post-selection inference, namely

carving Fithian et al. (2017), is an efficient alternative to data splitting: because carving

eliminates the information used in selection instead of discarding the selection data all at

once, i.e., data carving uses the lasso on y1 to select the model, and y2 and whatever is

left over of y1 for inference. The polyhedral lemma by Lee et al. (2016) applied to carving

immediately yields a carved pivot which is then inverted to produce confidence intervals. The

length of resulting 100(1−α)% confidence intervals are shorter than those by Lee et al. (2016)

and they aim to control a false coverage proportion post-selection. Carving can be perceived

as the best of the two worlds, i.e., the best of data splitting and method by Lee et al. (2016),

and in this section, we intend to show that data carving is actually asymptotically equivalent

to randomizing with Gaussian Noise.

As in (1.1), y ∈ Rn, X ∈ Rn×p, then the mathematical formulation of the randomization

scheme with Gaussian noise for the case of lasso is given by adding a noise term drawn from

Gaussian distribution which is linear in the parameter β, i.e.,

min
β

1

2
||y −Xβ||22 + λ||β||1 − ωTβ ω ∼ N (0, τ 2Ip) (2.5)

where ω is regarded as the noise term, randomization term or perturbation term. In the

differential privacy literature, the objective function above (2.5) is termed ‘objective per-

turbation’, and it also holds true when you replace the squared loss with any other loss

function and the l1 penalty with any other penalty. Observe that τ 2 is independent of the
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data distribution, and we can fix the scale of τ 2 however we want to depending on the extent

we want to randomize our objective. To show the equivalence of carving and randomization,

let yn1

(1), X
n1×p
(1) be n1 randomly chosen samples, the lasso objective for data carving becomes,

lasso : min
β

1

2ρ
||y(1) −X(1)β||22 + λ||β||1

where ρ is the fraction of the data we are using for selection and can be explicitly determined,

here ρ = n1

n
, and if we are using 50% of the data for selection, then ρ = 1

2
. We can write the

lasso objective as an objective on the entire data, i.e.,

min
β

1

2
||y −Xβ||22 −

{
1

2
||y −Xβ||22 −

1

2ρ
||y(1) −X(1)β||22

}
+ λ||β||1 (2.6)

now, the gradient of the second term with respect to β can be taken as the randomization

term, which can be shown to be asymptotically Gaussian,

ω = ∇
{

1

2
||y −Xβ|22 −

1

2ρ
||y(1) −X(1)β||22

}
≈ N (0,Σ) (2.7)

where Σ is some covariance matrix that depends on the splitting fraction ρ. We have rewrit-

ten the lasso objective function for data carving as a randomization perturbed objective, and

the randomness here is coming from the split, the fact that we have randomly chosen a split

of the data in which we have conducted the selection. The noise ω in (2.7) having asymptotic

Gaussian distribution is general in nature and does not depend on the lasso procedure, i.e., it

holds true when you replace the squared loss with any other loss function and the l1 penalty

with any other penalty. There is a direct relationship between ρ in (2.6) and τ 2 in (2.5), both
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are independent of the data distribution and be explicitly determined. Also, there is a huge

trade-off between model selection and inference after selection, for (2.5), we control the scale

of τ 2 because we don’t want to randomize our objective to a great extent that we lose all

the signals and report completely different findings that we would have gotten without the

noise, hence we don’t have to add too much noise that we get a completely noisy selection.

Similarly, for (2.6), we don’t want to carve the data in a way that we will fail to detect the

true signals during selection. In a way of summary, the Gaussian randomization scheme is

very natural and it comes from the data carving idea.

2.5.2 Post selection Inference with Randomization Responses

We formally state the problem as follows, consider solving the lasso at a fixed λ

min
β

1

2
||y −Xβ||22 + λ||β||1 (2.8)

we incorporate randomness into (2.8), in particular, we consider solving

min
β

1

2
||y −Xβ||22 + λ||β||1 − ωTβ +

ε

2
||β||2 (2.9)

where ω ∼ G is a random vector independent of (X, y), whose distribution is chosen by

the data analyst, hence known. Here, we will assume that G is supported on all of Rp

with density g. The ridge term with small parameter ε ensures the problem above has a

solution, and this is the ridge term in the elastic net as established by Zou and Hastie (2005).

Randomized convex programs are a type of optimization method that have been examined

46



in Tian and Taylor (2018). To conduct post selection inference after randomization, suppose

we solve the randomized lasso (2.9) to obtain a selection (E, sE), where E ⊂ {1, . . . , p} is

the candidate set of variables and sE ∈ {±1}|E| are their signs. The selection event consists

of all data and randomization pairs such that solving the randomized lasso above for that

pair gives the same (E, sE):

S(E,sE) = {(X ′, y′, ω′) : β̂−E(X ′, y′, ω′) = 0, sign(β̂E(X ′, y′, ω′)) = sE}

The selection S(E,sE) is an affine selection procedure, hence it’s equivalent to the selection

region S(E,sE) ≡ {y : Ay+ ω ≤ b}, which is again a set of polyhedral constraints except that

selection is now defined in both the response y and randomization ω, where A and b are

functions of the selection of E, i.e., functions of the coefficient of the active set. In order to

conduct inference, the underling question is how do we calibrate the right law for the OLS

estimator ηTy =
(
XT
EXE

)−1
XT
Ey given that η =

(
XT
EXE

)−1
XT
E depends on the selection

event E. Without randomization (that is setting the scale of randomization to zero), Lee

et al. (2016) showed that

L(ηTy|Ay ≤ b, ℘⊥η y = z) ∼ T N (ηTµ, σ2||η||2, L(z), U(z))

i.e., the distribution of ηTy conditioned on the selection event and on the nausiance statistics,

follows a univariate truncated Gaussian, with L(z), U(z) explicitly computed from data, see

(2.2.1). Lee et al. (2016) calculated the pivot by applying the CDF transform of a univariate

truncated Gaussian law to the target statistic, and the confidence intervals are then obtained
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by inverting a pivotal statistic based on the truncated law. However, with randomization,

the same law of our naive statistics ηTy in a particular direction (say the first coordinate of

the OLS estimator we obtained by refitting our data our selected subspace XE) conditioned

on the polyhedra event Ay + ω ≤ b and the nausiance statistic ℘⊥η y is no longer Guassian,

i.e.,

L(ηTy|Ay + ω ≤ b, ℘⊥η y) 6= TRUNCATED GUASSIAN

making the pivots to be intractable. To see why it is not so, if we have this polyhedral

selection at a fixed realization of ω say ω1 (such as the one shown in the left of the figure

above), then by also conditioning on the nausiance statistics we can see that ηTy would be

restricted between γ− and γ+. However, the selection is not a fixed realization of ω instead

it is marginalizing over these ω’s, i.e., the selection probability that we are computing here is

randomizing both over the data as well as the ω’s, so if we compute at a different realisation
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of ω say ω2, we’ll get ηTy to be restricted between a different ray α− and α+ as in the figure

on the right. Therefore, ηTy|Ay + ω ≤ b is no longer restricted to a single ray γ− and γ+

as we had in the polyhedral lemma of Lee et al. (2016), since γ− and γ+ are now random

quantities which vary as we vary different realizations of ω which is a random quantity, i.e.,

{ηTy|Ay + ω ≤ b} 6= {γ− ≤ ηTy ≤ γ+}

which in turn implies that L(ηTy|Ay+ω ≤ b, ℘⊥η y) 6= TRUNCATED GUASSIAN, hence we

cannot proceed with polyhedral lemma by Lee et al. (2016). Tian and Taylor (2018) also

pointed out that the exact forms of ηTy|Ay + ω ≤ b cannot be computed. Here, γ−, α−

denote different lower limits L(z)’s, while γ+, α+ denote different upper limits U(z)’s.

Now, we don’t have an exact pivotal quantity anymore since the polyherdral lemma of Lee

et al. (2016) no longer apply, what might seem natural is to run a sampler from the joint

law L(ηTy, ω) of data and randomization truncated to the selection region which is basically

a polyhedral region.

2.5.3 MCMC Approach

First, let us try to understand L(ηTy, ω), as in (1.1), let y = µ + ε, ε ∼ N (0, σ2In) and

consider an adaptive target bE =
(
XT
EXE

)−1
XT
Eµ which is the population least square co-

efficient (the projection of the true mean µ on to the selected subspace of X), with first

coordinate b = eT1 bE which is the target we want to infer about, and a target statistic which
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is the OLS estimator T = eT1
(
XT
EXE

)−1
XT
Ey.

If we take ω ∼ N (0, τ 2Ip), the pre-selection joint density of (T, ω) at (t, w) is proportional

to

exp(−(t− b)2/2σ2)× exp(−||w||2/2τ 2)

and we know that selection constraints both data and randomization to lie in the polyhedral

region S(E,sE) defined above, which is described in terms of data and randomization. Now,

the selection adjusted joint density of (T, ω) at (t, w) is proportional to the same density

truncated to the selection region S(E,sE), and the selection region S(E,sE) is determined by

the selection we carried out on the randomized version of our data. Hence, the joint density

becomes,

exp(−(t− b)2/2σ2)× exp(−||w||2/2τ 2)× I(t,w)∈S(E,sE)
(2.10)

If we run a sampler, say a Monte Carlo sampler, what a sampler will do is to simply

sample t and w from density (2.10), and discard the samples of randomization w since

they are not used for inference, and hence can use the samples of the data t to proceed in

conducting inference for b. The approach outlined in references Fithian et al. (2014) and

Tian and Taylor (2018) involves selecting samples from a restricted area within the sample

space as in (2.10). Both studies employ the hit-and-run algorithm to generate distributions

within this subset of the space. The constrained subsets outlined in references Fithian et al.

(2014), Tian and Taylor (2018), Lee et al. (2016), and Taylor and Tibshirani (2018) can be

intricate and specific to the loss function in use. While algorithms that don’t use MCMC,

like those in references Lee et al. (2016) and Taylor and Tibshirani (2018), are less affected
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by this problem as they only require calculating the boundary once, methods in references

Fithian et al. (2014) and Tian and Taylor (2018) require recomputing the boundary at

each step of the simulation, resulting in a significantly higher computational cost. The

complexity and specificity of the constrained region S(E,sE) to the loss function makes it a

challenging aspect for sampling. However, by using a reparametrization technique, we can

express the constrained region as a simple set that is unrelated to the loss function. To

do that, define the optimization variables O =

 β̂E

µ−E

 where µ−E being the subgradient

vector for the penalty corresponding to inactive variables. Denote the observed data vector

D =

 DE

D−E

 =

 β̄E

XT
−E(y −XEβ̄E)

, where β̄E =
(
XT
EXE

)−1
XT
Ey. By applying the KKT

conditions on our objective function (2.9), Harris et al. (2016) defined a linear map between

randomization and the augmented vector (D,O), called randomization reconstruction as

ω = ω(D,O) = A0D +BO + γ (2.11)

where A0 =

 XT
EXE 0

XT
−EXE Ip−|E|

, B =

XT
EXE + εI|E| 0

XT
−EXE λIp−|E|

 are fixed matrices, and

γ =

sE
0

 is a fixed vector. The authors showed that the selection event (E, sE) from

the solver in (2.9) is now described by the map ω(D,O) where optimization variables O are

constrained to the region

K = {o ∈ Rp : sign(oE) = sE, ||o−E||∞ ≤ λ} (2.12)
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hence, selective inference will now be based on the joint law of data and randomization

(D,ω), conditional on the event that constrains the optimization variables O to lie in K, and

a change of measure formula from the space (D,ω) to that of (D,O) will enable sampling

to be done from a density supported on the much simpler constraint region K. Using the

change of measure trick of Harris et al. (2016), the truncated joint of (D,O) at (d, o) becomes

fD(d)× g(w(d, o))× Io∈K (2.13)

where fD(d) is the pre-selection density of D, g(.) is the density of the randomization ω.

Sampling from (2.10) and (2.13) are comparable, but (2.13) is much simpler and nicer set

than (2.10) as it only requires oE to be in a certain quadrant and ||o−E||∞ ≤ λ. Another

related literature is Markovic and Taylor (2016), where the authors constructed confidence

intervals via Monte Carlo sampling in the randomized setting.

2.6 Recent Advancements

The exact post-selection inference discussed above, and also exact post-selection inference

for sequential regression have been further studied. For the existing frameworks, we have

two main assumptions, and they are (i) the variance of the responses, σ2, is known, and

(ii) the response y follows a Gaussian distribution. Tian and Taylor (2018) addressed first

assumptions by applying the exact post-selection inference to square-root lasso for inference

on selected submodel after model selection, where an estimate for σ2 is derived based on

the square-root lasso. While alternatively, Tibshirani et al. (2018) constructed a computa-

tionally efficient bootstrapped version of the truncated normal statistics in 2.2.1 which does

52



not depend on σ2. For the second assumption, if we remove the assumption that y follows

a Gaussian distribution, the conclusion of 2.2.2 will be false. Tian and Taylor (2017) and

Tibshirani et al. (2018) examined large sample conditional framework of exact post-selection

inference, both of their works show that under certain conditions on the distribution of

y, selection procedures and unknown regression coefficients, the pivotal quantity in (2.3)

converge (n → ∞, p constant) to the uniform distribution, hence subsequent construction

of post-selection confidence interval can be conducted in the same fashion. Further explo-

ration into the asymptotic aspects of exact post-selection inference can be found in Taylor

and Tibshirani (2018) and the references therein, Taylor and Tibshirani (2018) showed that

the exact post-selection inference framework can be generalized for statistical inference of

a large class of l1-penalized regression models, including generalized linear models, Cox’s

proportional hazards model, and the graphical lasso. Zhao et al. (2022) applied the ex-

act post-selection inference approach in a two-stage proposal for solving effect modification

problem, where they showed that this method is asymptotically valid, both theoretically

and via simulations. Hyun et al. (2021) studied post-detection inference of change point

problems, the authors first characterised the change point detection as polyhedral selection

events, and applied the exact post-selection inference framework to obtain p-values for the

hypothesis testing of interest. Jewell et al. (2019), Mehrizi and Chenouri (2021), and the

references therein, studied different variants of point change problem and applied the exact

post-selection inference framework to obtain p-values and confidence intervals. To test the

significance of a difference in the means of two connected components obtained from the

graph fused lasso, Chen et al. (2022) applied the exact post-selection inference framework,

their method conditions on less and was shown to be powerful. Gao et al. (2022) considered
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testing for a difference in means of a pair of clusters identified via a data-dependent proce-

dure. The authors first showed that sample splitting is not a valid procedure in this case,

and they proposed an exact post-selection inference method that conditions on the selected

clusters and a truncated chi-squared counterpart is obtained in the computation of p-values.

Their R package clusterpval computes valid p-values for a difference in means by correcting

for double dipping (generating a hypothesis based on your data, and then testing the hy-

pothesis on that same data). Neufeld et al. (2021) applied the exact post-selection inference

framework on inference associated with the Classification and Regression Tree (CART) al-

gorithm. Specifically, the authors obtain an exact post-selection inference based p-values for

testing a difference in the mean response between a pair of terminal nodes and confidence

interval for the mean response within a single terminal.
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Chapter 3

Post Outlier & Variable Selection Confidence Intervals for Regularized

Regression with Huber Loss

In (1.4), it was discussed that heavy-tailed errors or outliers are frequently encountered in

applications, whether in response variables or predictors. The objective of this chapter is

to utilize penalized Huber regression as a robust regression estimate to detect outliers and

subsequently condition on both the outlier identification and variable selection events during

inference. As far as we know, no previous research has addressed the issue of building condi-

tional confidence intervals for generalized penalized Huber regression estimates that account

for both outlier identification and variable selection events simultaneously. To formally de-

fine the problem, let us consider the Huber-loss regression model with a generalized lasso

penalty, where we seek to minimize the objective function given by:

min
β

p∑
i=1

ρM(yi − βTxi) + λ||Dβ||1 (3.1)

where ρM(.) is the Huber function defined earlier, λ ≥ 0 is a tuning parameter, ||.||d is the ld

- norm of a vector, D ∈ Rm×p. We may obtain adaptive lasso penalty, fused lasso penalty, or

other penalty functions by appropriately choosing the matrix D. Let V = {i : v̂i 6= 0}, A =
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{k : Dkβ̂ 6= 0} be the solutions obtained by solving (3.1) and

βA = arg min
b

E(||y−V −X−V,Ab||2)

suppose that we are interested in a component of βA, that is, eTk β
A. Its estimate is

eTk β̂
A = eTk (XT

−V,AX−V,A)−1XT
−V,Ay−V . Hence, the key is to derive the conditional distri-

bution of ηTy−V for some vector η, conditionally on the variables selected by generalized

lasso A, and on the selected non-outlying observations Vc.

The outline of this chapter is as follows. Section 1 derives the KKT conditions of the

Huber gl-lasso and introduces two active sets V ,A. Section 2 contains our core results,

lemma 3.2.1 and Theorems 3.2.2 - 3.2.3 entails our main findings when the error distribution

is Gaussian. Section 3 discussed heavy tailed distribution in the context of our problem

(non-Gaussian case). Simulation studies are reported in Section 4 and a real data example

is discussed in Section 5. Section (3.6) is the appendix

3.1 Preliminaries

Generally, Dk means the kth row of matrix D. Given an index set A, DA is the matrix

obtained by selecting the rows of D corresponding to the indexes in A. Similarly, D−A is

the matrix obtained by selecting the rows of D corresponding to the indexes not in A. The

same rule applies to other matrices and index sets, unless otherwise stated. For a matrix A,

col(A) denotes the column space of A and null(A) means the null space of A. For the sake of
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simplicity in notation, the symbols −V and Vc are utilized interchangeably to indicate the

complement of V .

KKT Conditions

Here we derive the subgradient conditions that characterize the solution of the generalized

Huber - lasso. The Moreau-Yosida regularization of the absolute value function gives us the

Huber function Lambert-Lacroix and Zwald (2011). Mathematically, the Huber function is

ρM(u) = min
z∈R

1

2
(u− z)2 +M |z|,

where the minimizer is z = 0 if |u| ≤M and z = u− sign(u)M if |u| > M . Hence, problem

(3.1) is equivalent to

min
β∈Rp

min
v∈Rn

n∑
i=1

{1

2
(yi − βTxi − vi)2 +M |vi|

}
+ λ||Dβ||1

where v = (v1 , . . . , vn)T . Writing in a compact form, we have

min
β,v

1

2
||y −Xβ − v||22 +M ||v||1 + λ||Dβ||1 (3.2)

To derive it’s Karush-Kuhn-Tucker (KKT) conditions, (3.2) was formulated as a quadratic

programming problem. Refer to Liu et al. (2021) for some details. Notice that Liu et al.

(2021) considered the problem with linear constraints. Here, for simplicity, we ignore the

linear constraints. Use the same notations as in Liu et al. (2021). Let β̂ and v̂ be the

57



minimizer to the above optimization problem (2.3). Define index sets

V = {i : v̂i 6= 0}, A = {k : Dkβ̂ 6= 0}.

v̂i =


0, i ∈ −V

ri − sign(v̂i)M i ∈ V

where V is the set of indexes corresponding to non - zero components of v̂, A is the set

of indexes corresponding to non-zero components of Dβ̂. Since V contains the indexes

of observations with large residuals ri = yi − β̂Txi satisfying |ri| > M , i.e., the indexes of

observations with large residuals. Liu et al. (2021) established that y−V explicitly contributes

to the estimate β̂, but yV does not, and the dependence of β̂ on yV is implicit via the sign of

v̂V , which overall implies that the estimate β̂ does not directly depend on yV to some extent.

This explains why the Huber - loss regression is robust to heavy-tailed errors and outliers,

see Liu et al. (2021) for more technical details.

3.2 Main Results

Here we propose a method to construct valid confidence intervals for (3.1) while condition-

ing on the outlier-identification event and the variable selection event. The robustification

parameter M is chosen adaptively as recommended by Sun et al. (2020), Pan et al. (2021),

and the references therein.
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3.2.1 Affine selection procedure

We will show in theorem 3.2.2 that the joint selection event {A,Vc} alongside their corre-

sponding signs {sA, s−V} is an affine selection procedure as defined in definition 2.1.1. To

see this, from KKT conditions for (3.1), we have

XT
−VX−V β̂ +XT

VXV β̂ +XT
V v̂V +DT

−Aû−A = XT
−Vy−V +XT

V yV − λDT
AsA

XV β̂ + v̂V = yV −MsV

D−Aβ̂ = 0.

where

sA = sign(DAβ̂),

sV = sign(v̂V) = sign(yV −XV β̂),

v̂−V = 0,

v̂V = rV − sVM,

ûA = λsA,

||û−A||∞ ≤ λ.

We can eliminate v̂V and get the following, which is exactly equation (9) in Liu et al. (2021).

XT
−VX−V β̂ +DT

−Aû−A = XT
−Vy−V − λDT

AsA +MXT
V sV (3.3)
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We need to get an explicit expression for β̂. Notice that

XT
−VX−V DT

−A

D−A 0

( β̂

û−A

)
=

(
XT
−Vy−V − λDT

AsA +MXT
V sV

0

)
.

Applying the formula for inverse of a block matrix, we know that

β̂ = ((XT
−VX−V)−1 − (XT

−VX−V)−1DT
−A(D−A(XT

−VX−V)−1DT
−A)−1D−A(XT

−VX−V)−1)

· (XT
−Vy−V − λDT

AsA +MXT
V sV)

and

û−A = (D−A(XT
−VX−V)−1DT

−A)−1D−A(XT
−VX−V)−1(XT

−Vy−V − λDT
AsA +MXT

V sV).

To ease the notation, introduce

H−V,−A = (D−A(XT
−VX−V)−1DT

−A)−1D−A(XT
−VX−V)−1

P−V,−A = (XT
−VX−V)−1 − (XT

−VX−V)−1DT
−A(D−A(XT

−VX−V)−1DT
−A)−1D−A(XT

−VX−V)−1

= (XT
−VX−V)−1 − (XT

−VX−V)−1DT
−AH−V,−A

and write β̂ and û−A as

β̂ = P−V,−A(XT
−Vy−V − λDT

AsA +MXT
V sV)

û−A = H−V,−A(XT
−Vy−V − λDT

AsA +MXT
V sV).
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Notice that P−V,−A and H−V,−A are matrices depending on X, D, V , and A. Right now,

we assume that all matrix inversions in calculating P−V,−A and H−V,−A are well defined and

thus P−V,−A and H−V,−A are unique.

We want to derive the confidence intervals conditionally on (A,Vc, ŝA, ŝ−V). This event in-

cludes the collection of y such that the corresponding β̂ and û leads to eligible solutions.

Lemma 3.2.1 Let A,Vc, sA, s−V be properly defined as above, then we have

{(A,Vc, ŝA, ŝ−V) = (A,Vc, sA, s−V)} = {‖û−A‖∞ ≤ λ, ‖y−V −X−V β̂‖∞ ≤M, sign(DAβ̂) = sA,

sign(yV −XV β̂) = sV}

PROOF. Follows from KKT conditions.

Theorem 3.2.2 Let A(A,Vc, sA, s−V) and b(A,Vc, sA, s−V) be the matrix and vector result-

ing from the subgradient inequalites in Lemma 3.2.1, then

{(A,Vc, ŝA, ŝ−V) = (A,Vc, sA, s−V)} = {A(A,Vc, sA, s−V)y ≤ b(A,−V , sA, s−V)}
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i.e.,



0 I −X−VP−V,−AXT
−V

0 −I +X−VP−V,−AX
T
−V

0 H−V,−AX
T
−V

0 −H−V,−AXT
−V

0 −diag(sA)DAP−V,−AX
T
−V

−diag(sV) diag(sV)XVP−V,−AX
T
−V



(
yV
y−V

)
≤



M1−X−VP−V,−A(λDT
AsA −MXT

V sV)

M1 +X−VP−V,−A(λDT
AsA −MXT

V sV)

λ1 +H−V,−A(λDT
AsA −MXT

V sV)

λ1−H−V,−A(λDT
AsA −MXT

V sV)

−diag(sA)DAP−V,−A(λDT
AsA −MXT

V sV)

−diag(sV)XVP−V,−A(λDT
AsA −MXT

V sV)−M


PROOF. Our approach is to work out each term in lemma 3.2.1 separately.

• ‖û−A‖∞ ≤ λ

This immediately implies −λ ≤ H−V,−A(XT
−Vy−V − λDT

AsA + MXT
V sV) ≤ λ holds

componentwise, or

H−V,−AX
T
−Vy−V ≤ λ1 + λH−V,−AD

T
AsA −MH−V,−AX

T
V sV

−H−V,−AXT
−Vy−V ≤ λ1− λH−V,−ADT

AsA +MH−V,−AX
T
V sV

• ‖y−V −X−V β̂‖∞ ≤M

For the residuals not in V , this immediately implies −M ≤ y−V − X−V β̂ ≤ M holds

componentwise or by substituting for β̂ and simplifying to have

y−V −X−VP−V,−AXT
−Vy−V ≤M1− λX−VP−V,−ADT

AsA +MX−VP−V,−AX
T
V sV

−y−V +X−VP−V,−AX
T
−Vy−V ≤M1 + λX−VP−V,−AD

T
AsA −MX−VP−V,−AX

T
V sV
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• sign(DAβ̂) = sA

This immediately implies diag(sA)DAβ̂ ≥ 0 or by substituting for β̂ and simplifying

to have

diag(sA)DAP−V,−A(XT
−Vy−V − λDT

AsA +MXT
V sV) ≥ 0

which in turn implies

−diag(sA)DAP−V,−AX
T
−Vy−V ≤ −diag(sA)DAP−V,−A(λDT

AsA −MXT
V sV)

• sign(yV −XV β̂) = sV

This immediately implies diag(sV)(yV −XV β̂) ≥ 0 or by substituting for β̂ and simpli-

fying to have

diag(sV)yV − diag(sV)XVP−V,−A(XT
−Vy−V − λDT

AsA +MXT
V sV) ≥ 0

which in turn implies

−diag(sV)yV + diag(sV)XVP−V,−AX
T
−Vy−V ≤ −diag(sV)XVP−V,−A(λDT

AsA −MXT
V sV)

3.2.2 Gaussian errors

To compute the desired confidence intervals, we’ll first try to find the distribution for ηTy−V

conditional on (A,Vc, ŝA, ŝ−V) when the error is Gaussian, where η ∈ Rn is some direction of
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interest. From theorem 3.2.2 above, we have written our selection event {(A,Vc, ŝA, ŝ−V) =

(A,Vc, sA, s−V)} as affine inequality in y, therefore we have from lemma 2.1.2 that

{A(A,Vc, sA, s−V)y ≤ b(A,Vc, sA, s−V)} = {L(z) ≤ ηTy ≤ U(z)}

and, from lemma 2.2.1, the distribution of ηTy−V conditioned on the selection eventA(A,Vc, sA, s−V),

follows a univariate truncated gaussian, with L(z), U(z) as truncation limits. Therefore, we

can now make conditional inference on the population regression coefficients of y−V on X−V,A,

i.e., we can construct exact and valid confidence intervals for the parameters of the active

set in the Huber gl-lasso solution at fixed λ, with correct coverage conditional on the active

sets and their signs. Our result is summarized in the next Theorem.

Theorem 3.2.3 (Main result1) Let A, Vc be active sets for (3.1) with signs sA, s−V

when the error is Gaussian, where λ is fixed and M is chosen adaptively. Let η = ejXA,−V(XT
A,−VXA,−V)−1,

then [L∗, U∗] is a (1−α) confidence interval for βj = ηTy−V conditional on {(A,Vc, ŝA, ŝ−V) =

(A,Vc, sA, s−V)}, i.e.,

P (βj ∈ [L∗, U∗] | Â = A, V̂c = Vc, ŝA = sA, ŝ−V = s−V ) ≥ 1− α

where L∗ & U∗ are unique values satisfying

F
[L(z),U(z)]

L∗, σ2||η||2(η
Ty−V) = 1− α

2
, F

[L(z),U(z)]

U∗, σ2||η||2(η
Ty−V) =

α

2
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3.3 Generalizing to heavier tailed distributions (non-Gaussian errors)

As we mentioned in 2.3, if we remove the assumption that the error is Gaussian, then (2.3)

will be false, and subsequently, the conclusion of Theorem 2.2.2 does not hold anymore. The

best we can hope for is a weak convergence result that the same pivotal quantities (2.3)

would converge to U(0, 1) (as n→∞). Our main goal in this section is to show that given

L(y|X) ≡ errors that are heavy tailed distributed with bounded (1 + δ)-th moment for any

δ > 0, that the conclusion of Theorem 3.2.3 still holds true.

We want to apply Theorem 2.3.1 to perform post selection inference after solving the

huber-lasso (3.2) with heavy tailed error distribution, take D = Ip×p in (3.2) for simplicity.

To use the framework of Tian and Taylor (2017), we will explain why the selection procedure

is affine, state the distribution L(yn|Xn) and the quantities (γn,M(E∗n, ηn), r(E∗n), |Sn|). We

suppress the dependencies on n when possible to help ease notations.

3.3.1 Affine selection precedure

Consider (3.2), where

E(εi|xi) = 0, vi,δ = E(|εi|1+δ) <∞ (3.4)

i.e., L(y|X) ≡ errors that are heavy tailed distributed with bounded (1 + δ)-th moment for

any δ > 0, we solve to obtain the active sets V ,A . Define E = {Vc,A}, and the signs

zE = {sA, s−V}, where XE implies rows of X not in V and columns of X in A, and β̂E is

β̂ restricted to the set E, which can be taken as β̂A, i.e., β̂ restricted to the set A. We
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showed in section (3.2.1) that such selection procedure is equivalent to the affine constraints

A(E, zE)y ≤ b(E, zE), where A(E, zE) and b(E, zE) are explicitly given in Theorem 3.2.2.

3.3.2 Bounding |S|

The collection of possible interesting questions alongside the collection of possible non-

outlying observations are

S = {(Vc, A) : Vc ⊂ {1, . . . , n},A ⊂ {1, . . . , p}}

We want to ensure |S| is polynomial in p with high probability. We begin by rewriting (3.2)

as

min
β̃

1

2
||y − X̃β̃||22 + λ̃||β̃||1 (3.5)

where

X̃ =

X
I

 , β̃ =

β
v

 , λ̃ =

 λ

M

 , and define ε̃ =

ε
0

 .

Definition 3.3.1 (Restricted strong convexity Negahban et al. (2012), Compatibility condi-

tion Bühlmann and Van De Geer (2011)). We say X ∈ Rn×p satisfies the restricted strong

convexity condition or compatibility condition for the set A with constant m > 0 if

||Xv||22 ≥ m||v||22,

for all v ∈ {∇ ∈ Rp : ||∆Ac||1 ≤ 3||∆A||1}
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To establish a bound for all the possible subsets of S, we make the following assumptions,

Assumption 2 X̃ satisfies the restricted strong convexity condition or compatibility condi-

tion for A = supp(β̃) with constant m, where supp(β̃) = supp(β)∪supp(v), and φmax, the

biggest eigenvalue of X̃T X̃ is bounded by a constant Q

Assumption 3 The signal is sparse, i.e., k = |supp(β̃)| is bounded by a constant K, where

k = s1 + s2, and s1 = |supp(β)|, s2 = |supp(v)|

Assumption 4 εi is as defined in (3.4)

Following Negahban et al. (2012) and Tian and Taylor (2017), we have the following Lemmas

Lemma 3.3.2 With Assumptions 2 - 4, if we solve (3.5) with the appropriate λ̃ and get an

active set E1, then,

|E1| ≤ Q2c

Observe that E1 ≡ {V ,A} which has a one-to-one correspondence with {Vc,A}, therefore,

there is a bound for all the possible subsets of {Vc,A}, hence

|S| ≤ K, for some K.

3.3.3 Bounding M(E∗, η)

Lemma 3.3.3 Consider the matrix A(A,Vc, sA, s−V) in (3.2.2), then for some constant C

max
i,j
|[A(A,Vc, sA, s−V)]i,j| ≤ C ·max

i,j
|Xi,j|
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3.3.4 Choice of γn in Assumption 1

Suppose we normalize the columns of X to have norm 1 and, take t = (1 + c) log p for c >

0, λ = O((log p)min{ 1
1+δ

, 1
2
}). Then we assume that Assumption 1 is satisfied with γn =

O(((log pn)min{ 1
1+δ

, 1
2
})−1−ω), for any small ω > 0.

Lemma 3.3.4 We assume that zE = 1 and the matrix (XT
EXE)−1 is equicorrelated, i.e.,

((XT
EXE)−1)ii = ((XT

EXE)−1)jj = τ1 > 0,

ρ =
((XT

EXE)−1)ii
((XT

EXE)−1)jj
> 0,∀i, j ∈ E, i 6= j.

For any ω > 0, Assumption 1 is satisfied with γn = O(λ−1−ω
n ), provided ||β̃n||∞ = O(λn)

Theorem 3.3.5 (Main Result2) Suppose we solve the Huber - lasso problem (3.2) with

M = C( log p
n

)min{δ/(1+δ),1/2}, λ ≥ C( log p
n

)min{δ/(1+δ),1/2} and C > 0, Assumptions 1 - 4 are

satisfied, and γn in Assumption 1 is chosen as ((log pn)min{ 1
1+δ

, 1
2
})−1−ω, and if we also assume

max |Xij| = O(n−1/2), ||β||∞ = O((log p)min{ 1
1+δ

, 1
2
}), there exists ω > 0 such that

n−1/2[ log(2pn) + log pKn ]4[(log pn)min{ 1
1+δ

, 1
2
}]6+6ω → 0

then the conclusion of theorem 3.2.3 holds true.

3.4 Simulation Study

Design of Experiment

To conduct our experiment, we will perform the following steps:
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The first step of our experiment will involve randomly generating a design matrix of dimen-

sion n × p. This design matrix will be used to generate a response vector y, which we will

use to evaluate the performance of our proposed method. To generate the design matrix, we

will use a multivariate normal distribution, where each row of the matrix is independently

sampled with a mean of zero and covariance matrix with entries 0.5|i−j| for i, j = 1, 2, . . . , p.

Once we have generated the design matrix, we will use it to calculate the response vector y

as y = Xβ + ε. Here, β is a vector with only five non-zero values at the 1st, 2nd, 6th, 7th, and

8th components, with values (1, 1.5, 0, 0, 0, -1, -1.5, 2, 0, . . . , 0). The random error term ε

will be generated using three different distributions, namely Normal distribution, Student’s

t distribution with a small degrees of freedom, and Mixed normal distribution. By using

different error terms, we will test the robustness of our proposed method and compare its

performance with the existing method. The next step will involve choosing the values of λ

and M according to the method outlined in Sun et al. (2020). To evaluate the performance

of our proposed method, we will track a metric that best demonstrates its superiority. After

extensive literature review, we have chosen to track the Average Coverage Probability. This

metric provides an overall measure of how well the method performs in constructing confi-

dence intervals for the coefficients. We will compare this metric for our proposed method and

the existing method presented in Lee et al. (2016) to evaluate the performance of both meth-

ods. We will also report the average interval length accompanied by its standard deviation,

highlighted in orange.

Based on the tables presented above, our method, Huber-Cond, outperformed the method

proposed by Lee et al. (2016) in terms of coverage probability, particularly for heavy-tailed

errors such as t1.5 and Mix-Normal. This improvement can be attributed to the fact that
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Table 3.1: (n, p) = (400, 10)

Huber-Cond lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

t1.5 95.8% 5.89 1.15 92% 3.23 1.06

Mix-Normal 95.2% 4.78 1.11 89.1% 2.90 1.10

Normal 95.01% 2.347 0.76 95% 2.233 0.73

Table 3.2: (n, p) = (4000, 10)

Huber-Cond lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

t1.5 94.92% 4.02 0.83 94.4% 3.67 0.81

Mix-Normal 95.4% 2.066 0.86 93.8% 1.226 0.62

Normal 95.02% 1.0324 0.54 95.01% 1.0323 0.48

Huber-Cond conditions on both the variable selection event and the outlier selection event.

The Huber-Cond method has a slightly larger average interval length than the lasso-Cond

method. This difference in length is due to the fact that the former also conditions on

the non-outlying observations and their signs, resulting in a slight reduction in its power.

However, increasing the sample size, n, led to a substantial enhancement in the performance

of our method, especially in terms of the average interval length. On the other hand, for

large values of p in table 3.3, the methods were distorted, particularly for heavier tailed

errors. Nevertheless, our method, Huber-Cond, still performed better in terms of generating

confidence intervals.
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Table 3.3: (n, p) = (100, 400)

Huber-Cond lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

t1.5 91.7% 6.01 1.92 89.3% 4.31 1.97

Mix-Normal 93.4% 5.23 1.69 92.1% 3.64 1.77

Normal 94% 1.76 0.92 94.7% 1.52 0.82

3.5 Real data analysis

In this section, we apply the proposed conditional adaptive Huber regression method to an-

alyze data on the relationship between Information and Communication Technology (ICT)

and bank performance. To demonstrate the robustness of our proposed method in the pres-

ence of outliers, we compare it with the conditional lasso and naive OLS methods. The

banking industry plays a crucial role in driving economic growth and development as it

serves as a hub for resource pooling in many societies. Given the fast-changing business

environments, ICT has offered tremendous opportunities for the banking industry to scale

up, innovate, and respond to these changes, thereby improving service delivery and increas-

ing accessibility to financial services. However, compared to other regions of the world, the

banking industry in Sub-Saharan Africa (SSA) has one of the least ICT penetration indices,

possibly due to factors such as corruption and under-development. In this study, we aim to

investigate the relationship between ICT and bank performance in SSA. We collected our

data from the Financial Development and Structure Dataset (FDSD), Financial Access Sur-

vey (FAS), and the World Development Indicators (WDI) published by the World Bank and

the International Monetary Fund (IMF). The dataset spans 15 years, from 2004 to 2018, with

71



a total of n = 525 samples from 35 Sub-Saharan African countries. The response variable

Y is the Return on Assets (ROA), and the explanatory variables include a set of proxies for

measuring ICT: Return on Equity (X1), No of ATM (X2), Net Interest Margin (X3), Capital

Ratio (X4), Liquid Asset Ratio (X5), ATMs per 100,000 adults (X6), ATMs per 1000, , km2

(X7), Inflation (X8), GDP (X9), log of GDP (X10), and log of Number of ATM (X11). To

demonstrate the performance of our proposed method, we artificially increased the values of

some large observations of Y and decreased the values of some small observations of Y by a

factor. We then compared our proposed method with the conditional lasso and naive OLS

methods in terms of their ability to handle outliers in the response variable.

In comparing different variable selection techniques, we found that the lasso method selects

a model with 11 variables, while the adaptive Huber technique selects a model with all

variables except for X10. Our proposed method involves constructing confidence intervals

that condition on both the outlier selection event and the variable selection event, and

it identifies X2, X3, X4, and X11 as significant based on their corresponding confidence

intervals. In contrast, the lasso method conditioned on the variable selection event alone,

as introduced in Lee et al. (2016), identified X2, X3, X4, X11, and X5 as significant. To

assess the performance of these methods, we refitted our data Y to the selected subspace of

X, which corresponds to XA, where A is the active set obtained from fitting the adaptive

Huber regression. Naive confidence intervals declared X2, X3, X4, X11, X5, and X1 as

significant. However, our proposed method, which accounts for both the outlier selection

event and the variable selection event, performed the best, given the presence of outliers in

our data. Lee’s method, which only accounted for the variable selection event, performed
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better than the naive confidence intervals, but still resulted in costly false positives, as X5

was incorrectly identified as significant. Without accounting for both the outlier selection

event and the variable selection event, X5 and X1 would have been incorrectly identified as

significant, resulting in costly false positives in this context. To provide additional context,

the association between the number of ATMs per 100,000 adults (X5) and Return on Assets in

sub-Saharan Africa may be highly dependent on a range of contextual factors. These could

include the regulatory environment, consumer preferences, and infrastructure availability,

all of which could play a significant role in determining the impact of ATM accessibility on

Return on Assets in the region. For example, the cost of establishing and maintaining ATMs

could be a significant financial burden for financial institutions, particularly in areas with

limited infrastructure and high operating costs. If banks and other financial institutions

are required to make substantial investments in ATM infrastructure to meet regulatory

requirements or meet customer demand, they may be compelled to divert resources away from

other areas of the business, such as marketing, customer service, or new product development.

Likewise, with regards to Return on Equity (X1), banks and financial institutions in sub-

Saharan Africa may prioritize maximizing returns for their shareholders, potentially leading

to less investment in areas such as research and development or customer service, which could

ultimately result in higher costs and reduced profitability. This could be especially pertinent

in sub-Saharan Africa, where operating costs and infrastructure costs can be considerable,

and customers may be less loyal to a particular institution. Thus, it is important to recognize

that the significance of X5 and X1 in relation to Return on Assets cannot be confidently

declared.
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3.6 Appendix

Definitions

1. Compatibility condition (Bühlmann and Van De Geer (2011), page 106). Consider a

fixed design matrix X. We define the following:

The compatibility condition holds if for some φ0 > 0 and all β satisfying ||βsc0||1 ≤ 3||βs0||1,

||βs0||21 ≤ βT Σ̂βs0/φ
2
0, Σ̂ = n−1XTX. (3.6)

The number φ0 is called the compatibility constant.

2. A function f satisfies strong convexity at β1 with respect to C if there is a constant

γ > 0 such that

νT∇2f(β)ν

||ν||22
≥ γ for all nonzero ν ∈ C (3.7)

and for all β ∈ Rp in a neighborhood of β1. In the case of linear regression, this reduces to

lower bounding the restricted eigenvalues of the model matrix, i.e.,

1
n
νTXTXν

||ν||22
≥ γ for all nonzero ν ∈ C (3.8)

where C(S, α) := {ν ∈ Rp | ||νSc||1 ≤ α||νS||1} for some α ≥ 1

3.6.1 Proof of Theorem 3.2.3

The proof is by directly applying polyhedral lemma from Lee et al. (2016)
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3.6.2 Proof of Lemma 3.3.2

Assume λ̃ ≥ 2||X̃ε̃||∞ and according to KKT conditions,


x̃Tj (ỹ − X̃ ˆ̃β) = λ̃sign( ˆ̃β) if j ∈ E1

|x̃Tj (ỹ − X̃ ˆ̃β)| ≤ λ̃ if j /∈ E1

For any j,

x̃Tj (ỹ − X̃ ˆ̃β) = x̃Tj (X̃β̃ − X̃ ˆ̃β + ε̃)

= x̃Tj X̃(β̃ − ˆ̃β) + x̃Tj ε̃

≥ x̃Tj X̃(β̃ − ˆ̃β)− λ̃

2

From the proof of lemma 1 in Tian and Taylor (2017), thus for j ∈ E1, we have

||X̃T X̃( ˆ̃β − β̃)||22 ≥
λ̃2

4
|supp( ˆ̃β)|

Also,

||X̃T X̃(β̃ − ˆ̃β)||22 ≤ ||X̃T X̃||22||
ˆ̃β − β̃||22

≤ 1

n2
||X̃||22 ·Oλ̃

≤ φ2
max ·Oλ̃

where || ˆ̃β − β̃||22 ≤ Oλ̃, and the bound Oλ̃ depends on λ̃ ≥ 2||X̃ε̃||∞

Combining the two inequalities, we have that

|supp( ˆ̃β)| ≤ φ2
max ·Oλ̃

λ̃2
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3.6.3 Proof of Lemma 3.3.3

Recall that

H−V,−A = (D−A(XT
−VX−V)−1DT

−A)−1D−A(XT
−VX−V)−1

P−V,−A = (XT
−VX−V)−1 − (XT

−VX−V)−1DT
−AH−V,−A

Then, we have

D−A(XT
−VX−V)−1DT

−A = D−A

XT
−V,−AX−V,−A XT

−V,−AX−V,A

XT
−V,AX−V,−A XT

−V,AX−V,A


−1

DT
−A

Applying the formula for inverse of a block matrix and rearranging the matrix D−A as an

appropriate block matrix, we have

(D−A(XT
−VX−V)−1DT

−A)−1 = (XT
−V,−AX−V,−A)−XT

−V,−AX−V,A(XT
−V,AX−V,A)−1XT

−V,AX−V,−A

So, therefore H−V,−A becomes

H−V,−A =
[
(XT
−V,−AX−V,−A)− (XT

−V,−AX−V,A)(XT
−V,AX−V,A)−1(XT

−V,AX−V,−A)] D−A(XT
−VX−V)−1
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To ease notations, we suppress indexes where possible, keep in mind that here, H = H−V,−A,

P = P−V,−A, and A = A(A,V , sA, sV). Therefore,

||H||max = ||
[
(XT
−V,−AX−V,−A)− (XT

−V,−AX−V,A)(XT
−V,AX−V,A)−1(XT

−V,AX−V,−A)] D−A(XT
−VX−V)−1||max

≤ ||
[
(XT
−V,−AX−V,−A)− (XT

−V,−AX−V,A)(XT
−V,AX−V,A)−1(XT

−V,AX−V,−A)] D−A(XT
−VX−V)−1||2

≤ ||(XT
−V,−AX−V,−A)− (XT

−V,−AX−V,A)(XT
−V,AX−V,A)−1(XT

−V,AX−V,−A)||2||D−A(XT
−VX−V)−1||2

Applying triangular inequality, we have

≤
[
||(XT

−V,−AX−V,−A)||2 + ||(XT
−V,−AX−V,A)(XT

−V,AX−V,A)−1(XT
−V,AX−V,−A)||2

]
||D−A(XT

−VX−V)−1||2

which implies

max
i,j
|Hi,j| = ||H||max ≤ N1

where N1 comprises of values from the euclidean norm of the individual terms.

Similarly, we have

max
i,j
|Pi,j| = ||P ||max ≤ N2

77



where N2 comprises of norm of terms in P .

Now, we try to bound the leading terms in A, we have

||I −X−VP−V,−AXT
−V ||max ≤ ||I||max + ||X−VP−V,−AXT

−V ||max

≤ 1 + ||X−V ||2||P−V,−A||max||XT
−V ||max

=
mini,j |Xi,j|
mini,j |Xi,j|

+ ||X−V ||2||P−V,−A||max||XT
−V ||max

≤ maxi,j |Xi,j|
k

+ B1N2 max
i,j
|Xi,j|

=

(
1

k
+ B1N2

)
max
i,j
|Xi,j|

where mini,j |Xi,j| ≥ k > 0, ||X−V ||2 = B1, and ||XT
−V ||max ≤ maxi,j |Xi,j|.

||H−V,−AXT
−V ||max ≤ N1 max

i,j
|Xi,j|

||DAP−V,−AXT
−V ||max ≤ ||DA||max||P−V,−AXT

−V ||max

≤ N2 max
i,j
|Xi,j|

||XVP−V,−AXT
−V ||max ≤ ||XV ||2||P−V,−AXT

−V ||max

≤ B2N2 max
i,j
|Xi,j|, where ||XV ||2 ≤ B2.
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Therefore,

max
i,j
|Ai,j| = ||A||max ≤ Cmax

i,j
|Xi,j|

where C = max{N1,N1, (
1
k

+ B1N2),B2N2}

3.6.4 Proof of Lemma 3.3.4

See proof of Lemma 3 in Tian and Taylor (2017)

3.6.5 Proof of Theorem 3.3.5

From Lemma 3.3.2 we have

|Sn| ≤ Kn

Let E∗n be a sequence of affine selection procedures. From Lemma 3.3.3 we have that

M(E∗n, ηn) ≤ C ·max
i,j
|Xi,j|, max

i,j
|Xi,j| = O(n−1/2) and ηn = XEn(XE

T
nXEn)−1e

choose γn = ((log pn)min{ 1
1+δ

, 1
2
})−1−ω for Assumption 1. Also, we have that r(E∗n) ≤ 2(n+p) <

2(2p). Then 1
γ6n
·M(E∗n, ηn)3 ·n[ log(r(E∗n)) + log(|Sn|)] 4 → 0, as n→∞ (2.3.1) simplifies to

n−1/2[ log(2pn) + logKn]4[(log pn)min{ 1
1+δ

, 1
2
}]6+6ω → 0

hence from Theorem 2.3.1, the proof is complete.
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Chapter 4

Post Selection Inference With Randomization

The randomization technique involves adding a noise term to the response variable in the

model, specifically, we draw ω ∼ Q and use the randomized response y∗(y, ω) = y + ω for

selection, where Q can be gaussian, logistic, etc, while inference based on the selected model

is performed with the original data (data without randomization). The use of a randomized

response variable for selective inference has several benefits. These procedures tend to yield

more powerful statistical tests, while only incurring a small cost in terms of the quality

of the selected models. In other words, the inclusion of a small amount of randomization

has a minimal impact on the model selection process but results in a significant increase

in the power of inferences made using the model. One reason for the improved power of

these procedures is the concept of leftover Fisher information which was first introduced by

Fithian et al. (2017). This concept refers to the additional information about the parameters

of a statistical model that is gained through the use of a randomized response variable. By

incorporating this additional information, inferences made using the model are more accurate

and reliable. Overall, the use of a randomized response variable in linear regression analysis

can enhance the validity and precision of statistical inferences. In this chapter, we will

formulated the randomized version of (3.1), and then establish the technique for conditional

post selection inference.
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4.1 Selective Inference for Randomized Huber Regression

Recall that, from the Moreau-Yosida regularization of the absolute value function, problem

(3.1) is equivalent to

min
β∈Rp

min
v∈Rn

n∑
i=1

{1

2
(yi − βTxi − vi)2 +M |vi|

}
+ λ||Dβ||

where v = (v1 , . . . , vn)T . Writing in a compact form, we have

min
β,v

1

2
||y −Xβ − v||22 +M ||v||1 + λ||Dβ||1 (4.1)

For simplicity, we take D = I, the randomized version of (4.1) becomes

min
β,v

1

2
||y −Xβ − v||22 +M ||v||1 + λ||β||1 − ωTβ +

ε

2
||β||2 (4.2)

In this problem, ω represents the added randomization, which is modeled as a random

variable drawn from a known distributionN (0, τ 2Ip). After solving the randomized objective

(4.2), variable selection output can be described as E : Ê(y, ω) = E, sE ∈ {±1}|E| are their

signs, which is the set of indexes corresponding to non-zero components of β̂. And the outlier

selection output can be described as V : V̂(y, ω) = V , zV ∈ {±1}|V| are their signs, which

is the set of indexes of observations with large residuals. To conduct valid post selection

inference for (4.2) conditional on both the variable selection event and the outlier selection
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event, S = {E, sE,V , zV}, as discussed in (2.5.3), we employ the pull-back measure technique

developed by Harris et al. (2016) to simplify the representation of a complex set of constraints

S. This involves introducing optimization variables, which are natural random variables in

the problem, to describe the selection region in conjunction with the data. By doing so, we

can re-parameterize the selection region in terms of these optimization variables and sample

from a simpler region that only imposes constraints on the optimization variables. This

approach allows us to streamline the sampling process by avoiding the need to sample from

the more complex original region S. First, we define the randomization reconstruction affine

map (2.11) for (4.2).

Lemma 4.1.1 Given the randomized objective (4.2), a linear map between randomization

and the augmented vector (D,O), called randomization reconstruction is given by

ω = ω(D,O) = A0D +BO + γ (4.3)

where, the optimization variables O =

 β̂E

µ−E

, the observed data D =

 β̄E

XT
−V, E(y−V −X−V, Eβ̄E)

,

and we take β̄E =
(
XT
−V, EX−V, E

)−1
XT
−V, Ey−V to be the MLE for the unpenalized regression

with only variables in E and observations in Vc. A0, B are fixed matrices and γ is a fixed

vector.

PROOF. To do this, apply the KKT conditions on (4.2) and using equation (3.3) from

section (3.2.1), we have

−XT
−Vy−V +XT

−VX−V β̂ −MXT
V zV + λs+ εβ̂ − ω = 0
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By partitioning according to E and −E we have

−XT
−V, E(y−V −X−V, Eβ̂E)−MXT

V, EzV + λsE + εβ̂E − ωE = 0

−XT
−V,−E(y−V −X−V,−Eβ̂−E)−MXT

V,−EzV + λµ−E − ω−E = 0

µ−E is the subgradient vector for the penalty corresponding to inactive variables.

Simplifying and concatenating the two equations above gives:

ω = −XT
−Vy−V +

XT
−V, EX−V, E + εI|E|

XT
−V,−EX−V, E

 β̂E + λ

 sE

µ−E

−MXT
V zV

Rearranging to have

ω = −

 XT
−V, EX−V, E 0

XT
−V,−EX−V, E Ip−|E|


 β̄E

XT
−V, E(y−V −X−V, Eβ̄E)

+

XT
−V, EX−V, E + εI|E| 0

XT
−V,−EX−V, E λIp−|E|


 β̂E

µ−E

+ λ

sE − M
λ
XV, EzV

−M
λ
XV,−EzV



with sign(β̂E) = sE, ||µ−E||∞ ≤ λ, sign(yV − XV β̂) = zV , and ||y−V − X−V β̂||∞ ≤ M . The

optimization variables are chosen such that we can recover ω by the sub-gradient equation
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of our objective function (4.2).

Therefore, we have

ω = ω(D,O) = A0D +BO + γ

where A0 =

 XT
−V, EX−V, E 0

XT
−V,−EX−V, E Ip−|E|

 , B =

XT
−V, EX−V, E + εI|E| 0

XT
−V,−EX−V, E λIp−|E|

, and γ =

sE − M
λ
XV, EzV

−M
λ
XV,−EzV

.

From lemma (4.1.1) and a change of measure from (D,ω) to (D,O) as introduced by Harris

et al. (2016), the selection event S = (E, sE,V , zV) from the solver in (4.2) is reparametrized

and now S is described by the map ω(D,O) where optimization variables O are constrained

to the region

K = {o ∈ Rp : sign(oE) = sE, ||o−E||∞ ≤ λ, and sign(yV−XV β̂) = zV , ||y−V−X−V β̂||∞ ≤M}

(4.4)

Therefore, selective inference will now be based on the joint law of data and the optmiza-

tion variables (D,O), conditional on the event that constrains the optimization variables O

to lie in K. The truncated joint law of (D,O) at (d, o) becomes

fD(d)× g(w(d, o))× Io∈K (4.5)

where fD(d) is the pre-selection density of D and D is asymptotically normal, g(.) is the

density of the randomization ω. The method of changing variables explained above addresses
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the sampling difficulties that arise when dealing with the selective density of data conditional

on a randomized selection region. Additionally, there is another computational hurdle of

sampling the relevant section of the data vector that corresponds to the selected parameter

of interest, while conditioning on the section of the data vector that pertains to the nuisance

parameters. We circumvent this hurdle through linear decomposition as follows, in testing

the hypothesis H0 : βE = θ, we utilize ||T − θ||22 as the test statistic, where T = β̄E is

referred to as the target statistic. In order for this test to be valid while treating E as non-

random (pre-selection), we employ the asymptotic normality of T to establish a reference

distribution. However, for post-selection, we must base our inference on the post-selection

distribution of T . Notably, we can perform inference for any parameter θ if the pre-selection

Central Limit Theorem (CLT) holds for the target statistic T and the data vector D:

T
D

→ N

 θ

µD

 ,

 ΣT ΣT,D

ΣD,T ΣD


 as n→∞

To obtain the post-selection distribution of the target statistic T under the null hypothesis,

we perform a decomposition of the affine map (4.3). Let F = D − Σ̂D,T Σ̂−1
T T , where Σ̂D,T

and Σ̂T are the corresponding covariance estimates. By decomposing D into F + T and

conditioning on F , it is sufficient to sample (T, β̂E, µ−E). The plugin sampling density of

(T, β̂E, µ−E) is proportional to this distribution

φ(θ,Σ̂T )(T )× g(AT +BO + C)× IO∈K (4.6)
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where A = A0Σ̂D,T Σ̂−1
T , C = γ + A0F and φ(·,·) represents the density of the multivariate

normal distribution with the mean and covariance matrix specified in the subscript. The

estimation of ΣD,T and ΣT can be achieved using pairs bootstrap.

Even though we can effectively compute the selective pivot to construct p-values and

confidence intervals by sampling from the density in (4.6) to obtain samples of (T, β̂E, µ−E),

performing multiple tests simultaneously requires running a separate sampler for each test.

For instance, to provide selective confidence intervals for all the chosen coefficients βE·j, j ∈

E, we must run |E| samplers and set the target T for each one to be β̄E·j, j ∈ E. To enhance

efficiency, we utilize the weighted optimization sampler that is described below. By sampling

the optimization variables from the selective density that fixes the data at its observed value,

we can reuse the same optimization samples across different tests. Consequently, we can run

the sampler only once while still delivering inference for multiple tests at the same time.

Overall, the use of the weighted optimization sampler and selective density in this manner

enables us to reduce computational inefficiency and enhance the efficiency of multiple testing

procedures.

Steps for constructing the selective pivot.

1. To sample the optimization variables (β̂E, µ−E) given the observed data vector D = Dobs,

we use a density proportional to

g(ω(Dobs, β̂E, µ−E))
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with sign(β̂E) = sE, ||µ−E||∞ ≤ λ, sign(yV − XV β̂) = zV , and ||y−V − X−V β̂||∞ ≤ M . We

denote the resulting samples as (β̂sE, µ
s
−E), where s = 1, 2, . . . , S, and S represents the sample

size.

2. To obtain samples for the target, we sample from its pre-selection normal distribution,

resulting in samples T s ∼ N (0, Σ̂T ), where s = 1, 2, . . . , S.

3. To compute the selective pivot, we first combine the samples (T s + θ, β̂sE, µ
s
−E), where

s = 1, 2, . . . , S, obtained from the first and second steps. We then weight and tilt each of

these triples (T s + θ, β̂sE, µ
s
−E) using importance sampling with the ratio

w(T s, β̂sE, µ
s
−E) =

g(A(T s + θ) +BOs + C)
g(A0Dobs +BOs + C)

where Os =

 β̂sE

µs−E

. We then compute the selective pivot as the weighted sum of the

indicator function of the condition ||T s||2 ≤ ||T obs − θ||2, normalized by the sum of the

importance weights:

S∑
s=1

I||T s||2≤||T obs−θ||2 ·
w(T s, β̂sE, µ

s
−E)∑S′

s′=1 w(T s, β̂sE, µ
s
−E)

If the target T is one-dimensional and we want to compute a confidence interval, we need

to repeat the third step for different values of θ to invert the pivot. In the case of multiple

tests, we need to repeat the second and third steps above.
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Having reviewed the discussions above, we can now present our main findings in the form of

a theorem:

Theorem 4.1.2 (Main Result3) If E and sE are the model and the corresponding signs

selected from the randomized procedure (4.2) with E ⊇ supp(β), and V is the outlier selection

output with corresponding signs zV , where ω ∼ N (0, τ 2Ip) independent of (X, y). While

conditioning on (E, sE,V , zV), samples (T, β̂E, µ−E) from the joint distribution of (D,O) as

in (4.5) are used for inference for βE by approximating the selective pivot

P =
S∑
s=1

I||T s||2≤||T obs−θ||2 ·
w(T s, β̂sE, µ

s
−E)∑S′

s′=1w(T s, β̂sE, µ
s
−E)

A two sided p-value can be computed as Pval = 2 ·min(P , 1−P). The 100(1−α)% two sided

confidence intervals can be computed by inverting the approximate selective pivot P.

4.2 Simulation

In this experiment, we have adopted the same structure as in (3.4) for our design. In addition

to that, we have introduced two new parameters, namely ω and ε. The former is sampled

from a normal distribution, i.e., ω ∼ N (0, 2.2 ∗ Ip). The latter is set to a fixed value of 3.1.

To evaluate the effectiveness of our methodology, we have compared two versions of it. The

first one is the randomized version, which was discussed earlier in this Chapter. The second

version, which we referred to in Chapter 3, does not involve randomization. The purpose

of this comparison is to demonstrate the improved inferential power that randomization

provides in terms of average interval length. The average interval length is accompanied by

its standard deviation, highlighted in orange.
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Table 4.1: (n, p) = (400, 10), ω ∼ N (0, 1.1 ∗ Ip), ε = 3.1

Huber-Cond Rand-Huber-Cond Rand-lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

Coverage
Prob

Ave
Length

t1.5 95.8% 5.89 1.15 95% 1.0 0.55 94.2% 2.70 0.94

Mix-Normal 95.1% 4.78 1.11 94.92% 1.05 0.58 94.7% 1.22 0.66

Normal 95.01% 2.34 0.76 94.89% 0.92 0.51 94.97% 0.72 0.40

Table 4.2: (n, p) = (1000, 10), ω ∼ N (0, 1.1 ∗ Ip), ε = 3.1

Huber-Cond Rand-Huber-Cond Rand-lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

Coverage
Prob

Ave
Length

t1.5 95.5% 3.72 0.92 95.02% 0.91 0.49 94.4% 2.01 0.89

Mix-Normal 95.02% 2.97 1.08 94.93% 0.94 0.51 94.82% 0.98 0.53

Normal 94.99% 1.26 0.73 94.92% 0.90 0.53 95.01% 0.71 0.40

Upon examining the tables above, it is evident that all methods exhibit good coverage

probability. It is worth mentioning that when considering the conditional confidence intervals

for Rand-Huber-Cond, which were discussed and developed earlier in Chapter 4, we have

conditioned on both the variable selection event and the outlier identification event. However,

a notable reduction in the average interval lengths is observed when a small amount of

randomization is introduced, particularly when comparing Huber-Cond from Chapter 3 and

Rand-Huber-Cond. This outcome underscores the substantial inferential power associated

with randomized procedures. In comparison to the randomized lasso (Rand-lasso-Cond)

method introduced by Tian (2018), our method (Rand-Huber-Cond) demonstrates superior

performance in terms of shorter interval lengths when the errors are heavy-tailed as seen in
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Table 4.3: (n, p) = (2000, 10), ω ∼ N (0, 1.1 ∗ Ip), ε = 3.1

Huber-Cond Rand-Huber-Cond Rand-lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

Coverage
Prob

Ave
Length

t1.5 95.3% 2.13 0.78 95% 0.88 0.48 94.8% 1.79 0.90

Mix-Normal 95.01% 1.94 0.97 94.98% 0.85 0.45 94.9% 0.93 0.47

Normal 95% 1.02 0.57 94.97% 0.79 0.41 95.1% 0.68 0.34

Table 4.4: (n, p) = (100, 200), ω ∼ N (0, 1.1 ∗ Ip), ε = 3.1

Huber-Cond Rand-Huber-Cond Rand-lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

Coverage
Prob

Ave
Length

t1.5 92.4% 5.97 1.93 94.94% 2.29 0.89 94.51% 3.87 1.18

Mix-Normal 93.9% 5.04 1.54 94.96% 1.97 0.61 94.87% 2.72 0.92

Normal 94.37% 2.48 0.87 94.97% 1.17 0.54 94.98% 0.98 0.51

Tables 4.1 - 4.3. In Table 4.5, a very small randomization scale was taken into consideration

which resulted in a decrease in power when measured by the average length of intervals,

in comparison to the results obtained from Tables 4.1-4.3. This finding is unsurprising as

the addition of such a minute amount of noise has limited potential to significantly enhance

inferential power. Furthermore, we conducted experiments by varying the randomization

scale but the results remained largely consistent. Furthermore, as demonstrated in Table

4.5, our method exhibited superiority when applied to large values of p.
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Table 4.5: (n, p) = (400, 10), ω ∼ N (0, 0.1 ∗ Ip), ε = 3.1

Huber-Cond Rand-Huber-Cond Rand-lasso-Cond
Errors Coverage

Prob
Ave
Length

Coverage
Prob

Ave
Length

Coverage
Prob

Ave
Length

t1.5 95.82% 5.15 1.10 95.1% 2.07 0.76 94.62% 2.94 0.91

Mix-Normal 95.21% 3.82 1.06 94.97% 1.46 0.63 94.83% 2.19 0.87

Normal 95.03% 2.23 0.73 94.94% 1.07 0.57 94.8% 0.87 0.49

4.3 Real data analysis (Acute Lymphocytic Leukemia)

Acute lymphocytic leukemia (ALL) or acute lymphoblastic leukemia is a type of cancer

affecting white blood cells known as lymphocytes. ALL is characterized by the rapid pro-

duction of immature lymphocytes in the bone marrow, which can cause anemia, infection,

and bleeding. Although it is the most common type of cancer in children, ALL can also

affect adults. The exact causes of ALL are not fully understood, but it is believed to result

from genetic mutations in developing lymphocytes. Symptoms of ALL include weakness,

fever, infections, bleeding, and bone pain. Diagnosis usually involves a combination of blood

tests, bone marrow biopsy, and imaging studies. Treatment typically involves chemother-

apy, radiation therapy, and bone marrow transplant, depending on the patient’s age, overall

health, subtype, and stage of the disease. Modern treatment approaches have significantly

improved the prognosis for ALL, with survival rates of up to 90% in children and 40-50% in

adults. However, prognosis depends on various factors, such as age, extent of the disease, and

specific genetic mutations involved. Analyzing gene expression data, also known as omics

data, can provide insights into the biological mechanisms underlying ALL. For example, gene

expression profiling can identify molecular subtypes of ALL, which can inform personalized
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treatment strategies. In addition, gene expression data can be used to identify specific genes

or pathways that are dysregulated in ALL, which can be targeted with new therapies. For

example, BCL2L1 has been identified as a potential therapeutic target in ALL based on its

role in promoting disease progression and drug resistance. BCL2L1 is a gene that plays a

critical role in promoting cell survival by inhibiting apoptosis. It is commonly overexpressed

in many types of cancer, including ALL, and has been implicated in disease progression and

resistance to chemotherapy. High expression of BCL2L1 is associated with poor prognosis

in ALL patients, indicating its role in disease severity and progression. BCL2L1 promotes

the survival of leukemia cells by preventing apoptosis in response to chemotherapy, leading

to drug resistance and reduced treatment efficacy. Additionally, BCL2L1 contributes to the

maintenance of leukemia stem cells responsible for disease relapse and progression. Targeting

BCL2L1 could sensitize leukemia cells to chemotherapy and prevent disease relapse.

In this study, we aim to identify genes that play a significant role in dysregulation

(overexpression or underexpression) of the BCL2L1 gene in acute lymphocytic leukemia

patients. We utilize gene expression levels from the leukemia dataset, originally introduced

by Golub et al. (1999), which can be accessed at https://hastie.su.domains/CASI_files/

DATA/leukemia.html. The dataset includes 47 patients with acute lymphocytic leukemia,

and genetic activity was measured for a panel of 3,571 genes. Based on a thorough review

of the relevant literature, we selected a subset of 306 genes that are known to be involved

in the pathogenesis of acute lymphocytic leukemia. We apply our developed methodology,

the randomized Huber-lasso, to identify potential genes that may explain variation in the

expression of BCL2L1. To measure the strength of the association between each potential
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gene and BCL2L1, we computed conditional confidence intervals. Our results show that

several genes were identified as being significantly associated with dysregulation of BCL2L1

expression in acute lymphocytic leukemia patients, including genes involved in the regulation

of apoptosis, cell proliferation, and cell differentiation. Our approach is compared to the

vanilla randomized lasso, and the results of our analysis are presented below.

Figure 4.1: Selective intervals with
randomized lasso

Figure 4.2: Selective intervals with
randomized huber-lasso

To include outliers in the response variable, we identified the smallest three observations

of BCL2L1 and decreased their values by 10, and similarly, we identified the largest three ob-

servations of BCL2L1 and increased their values by 10. Using the randomized lasso technique

by Fithian et al. (2017), we selected 35 genes and found 5 to be statistically significant, as

shown in Table 4.1. However, this method failed to select the RUNX1 and SHB genes, which

are known to play a role in regulating BCL2L1 expression in leukemic cells, as discussed in

Mercher et al. (2001) and Thiriet and Thiriet (2013), respectively. Additionally, the random-

ized lasso method failed to establish the significance of SOX4, CDK9, and SPIN21, despite
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Figure 4.3: Average Length of the Selective Intervals

previous evidence linking them to BCL2L1 dysregulation in acute lymphocytic leukemia. For

instance, CDK9 has been shown to promote the survival of leukemic cells by upregulating

BCL2L1 expression (see Huang et al. (2014)), SPIN2A has been implicated in regulating

BCL2L1 splicing (see Shaw et al. (2021)), and SOX4 can directly bind to the BCL2L1 pro-

moter and activate its expression in leukemic cells, contributing to BCL2L1 dysregulation

(see Puissant et al. (2014)). In contrast, our developed method, the randomized Huber loss,

selected RUNX1 and SHB and declared SOX4, CDK9, and SPIN21 statistically significant,

as shown in Table 4.2. Our method found 30 of the 35 selected genes to be significant, and

the conditional selective confidence interval is shorter and more precise, as also shown in

Table 4.2. Furthermore, our method has a significantly shorter average interval length, as

demonstrated in figure 4.3. These results highlight the trustworthiness and superiority of

our method in the presence of outliers or heavy-tailed errors.
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Chapter 5

Future Works

In our research, we plan to explore several other scenarios and problems in the future. First,

we aim to extend our approach of conditional confidence intervals, as proposed in Chapter 3,

to other robust penalized regression models in high dimensions. We will conduct simulations

to determine the effectiveness of the approach on other models and make any necessary

revisions. One of the models we plan to investigate is the penalized quantile regression,

which is widely used in survival analysis, especially when the survival data is skewed or

censored, and traditional methods like Cox regression may not provide accurate results.

Additionally, it is used in pharmaceutical research to model the relationship between drug

dose and response and estimate the median effective dose (ED50) or other quantiles of the

dose-response curve. This is important for optimizing drug dosing and minimizing adverse

effects, especially when the dose-response relationship is non-linear or heterogeneous. Next,

we aim expand the methodology presented in Chapter 4 to develop a Monte Carlo-free

approach for post-selection inference following randomization, since as explained in section

2.5.3, our focus is on making inferences about the parameter b, and we can obtain the

marginal density of data conditional on the selection event, T |(T, ω), by marginalizing over

the randomization part. This can be achieved by integrating over the ω’s, resulting in the

expression exp(−(t− b)2/2σ2)×P ((T, ω) ∈ S(E,sE), |, T = t). Here, P ((T, ω) ∈ S(E,sE), |, T =

t) is the probability of randomization landing in the selection region S(E,sE) conditional on the
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data T . Instead of using a sampler to estimate this intractable probability, we aim to obtain

a good approximation of P ((T, ω) ∈ S(E,sE), |, T = t). Also in Chapter 4, we observed that

making a trade-off between model-selection power and subsequent inference power can lead to

a considerable improvement in the latter. In our ongoing research, we aim to further enhance

the reliability of our statistical inferences by theoretically analyzing the expected length of

the randomized procedure for the penalized Huber regression, as discussed in Chapter 4. By

determining the expected length, we can gain a more comprehensive understanding of the

precision of our estimates and the potential impact of sample size on statistical power.
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Meinshausen, N., L. Meier, and P. Bühlmann (2009). P-values for high-dimensional regres-

sion. Journal of the American Statistical Association 104 (488), 1671–1681.

Meinshausen, N. and B. Yu (2009). Lasso-type recovery of sparse representations for high-

dimensional data. The annals of statistics 37 (1), 246–270.

Mercher, T., M. B.-L. Coniat, R. Monni, M. Mauchauffé, F. N. Khac, L. Gressin,
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