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Abstract 

Effective and safe delivery of drugs into the body, where it will provide the maximum benefit to 

the patient, is the ultimate treatment goal. Factors such as the drug’s bioavailability and 

pharmacokinetics can lessen efficacy and decrease the safety of these drugs, increasing the cost 

and potential adverse effects. This is a particular problem for small, hydrophobic drugs, which 

make up the majority of existing drugs and newly discovered drug candidates. This drug delivery 

problem is exacerbated for many chemotherapeutics, which have extremely narrow 

concentration windows where they are safe and effective. This makes delivering these drugs 

without systemic side effects very challenging. A number of methods and systems have been 

developed to address this drug delivery limitation, such as controlled release of these drugs from 

polymeric nanoparticles. These particles are inherently safe, being made of biodegradable, 

biocompatible, FDA-approved polymers whose release kinetics are well understood and 

customizable. In addition, more complex designs, such as the core and shell nanoparticle, have 

allowed greater flexibility and customizability of release without sacrificing size or material. 

However, clinical translation of these particles has been limited thus far, with some of the main 

reasons being the lack of control over key performance-defining properties such as size and size 

distribution.  

This research explores synthesis conditions, output parameters, and performance of polymeric 

nanoparticle formation methods. Our goal is to understand synthesis conditions and parameters 

which will allow us to predict and control the formation of polymeric nanoparticles made of 

common and safe polymers: poly (D,L) lactic-co-glycolic acid (PLGA) and poly (L) lactic acid 

(PLLA). To achieve this goal, we analyzed and modeled a common laboratory method for 

producing PLGA nanoparticle cores. Machine learning and component trend analysis were used 
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to develop a practical, scalable model for best control over particle size and size distribution, 

before characterizing the effect on release of model, small drugs. We then investigated different 

methods for coating these cores with a PLLA shell for improved controlled release kinetics and 

flexibility, attempting to find synthesis parameters which maximize formation efficiency and 

allow for control of both the core and shell dimensions. Finally, we analyzed the performance of 

these particles in different formulations of chitosan hydrogel wound dressings. We believe this 

research sets an important foundation for polymer nanoparticle synthesis and small, hydrophobic 

drug release by expanding knowledge on the features and performance of these systems and 

illuminating favorable procedures and methods that optimize their controlled release. This 

includes the main findings: a practical, scalable power law for dimension control of PLGA 

nanoparticles, important insights into a modified emulsion method for core/shell nanoparticle 

production and how it could be further improved for higher formation efficiency, as well as a 

proof of concept for a hydrogel-PLGA nanoparticle system which showed highly variable release 

with controlling swelling and structure.  
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Chapter 1: Introduction 

1.1 Drug Delivery  

Drug development and discovery in modern medicine continues to advance the treatment 

capabilities and survival prognoses of numerous diseases and conditions. Despite these advances, 

the safe and effective delivery of those drugs to the patient remains a complex and challenging 

task. Proper delivery of the desired drug dose relies on numerous factors, dependent on patient 

condition, genetics, and administration route. This chapter will introduce key concepts and 

challenges with drug delivery, before outlining the motivation, targeted application, and 

description of the experimental work laid out in the following chapters. 

1.1.1 Bioavailability and Pharmacokinetics 

The first important factor when considering drug delivery is the route of administration and how 

it affects the drug’s bioavailability and pharmacokinetics. A drug’s bioavailability is the amount 

of active drug available to the body for its intended purpose1. Oral routes such as pills, liquids, or 

tablets are the most common but often lead to the lowest bioavailability due to the extreme 

environments of the gastrointestinal tract and the metabolic barriers necessary for adsorption into 

the system.2 Membranal administration via intranasal, rectal, inhalation, or sublingual routes 

requires transfer across a barrier such as membrane or tissue for systemic distribution, but 

bypasses metabolic pathways leading to overall higher bioavailability.3 Intravenous 

administration or injection results in 100% bioavailability by bypassing any transfer barrier.3,4 

Post-administration, many factors independent of route affect the true bioavailability over time, 

such as lipid solubility, molecular size and charge, patient blood flow, and pharmacologic effect.. 

These factors represent the pharmacokinetics (PK) of the drug, defined by the processing by, 

interaction with, and pharmacologic effect to the body.5 One important interaction is protein 
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adsorption, where drugs may non-specifically bind to plasma proteins such as albumin. This 

binding can be reversible or even act as a sustained release reservoir. However, this binding 

often eliminates free drug available to the body and leads to lower plasma concentration and 

increased drug elimination.6 Ideally, drug-protein interaction should be considered before dosing, 

and often drugs should be protected from this phenomenon. Drug elimination occurs via several 

systems, including the renal and biliary systems, via sweating, saliva, or hair deposition. Drugs 

can also be inactivated via metabolization, although some drugs are activated post-administration 

by interacting with certain enzymes.7 Taken together, the bioavailability from the administration 

route and the specific pharmacokinetics of the drug once in circulation determine the effective 

drug concentration in the plasma and ultimately how effectively a drug can be delivered. 

1.1.2 Therapeutic Effective Window 

The effective dose of an administered drug is often measured by the plasma drug concentration, 

as it is often easier to measure than the drug concentration at the desired site8. Every drug has a 

concentration range for its highest effectiveness and lowest toxicity called the therapeutic 

effective window (TEW). Two concentrations demarcate this range: the minimum effective 

concentration (MEC), below which there is no therapeutic effect, and the minimum toxic 

concentration (MTC), above which systemic toxic interactions dominate, causing harmful side 

effects.9–11 Deviation of drug concentrations outside the TEW results in suboptimal drug 

performance.12  A therapeutic effective window is displayed in Figure 1.1.1, as is the effect of 

different injection administration methods on the drug plasma concentration relative to the TEW. 

The administration route and the pharmacokinetics ultimately determine whether the drug 

plasma concentration remains within the TEW or how severe and long lasting the side effects 

will be, and so are critical when considering drug delivery. 
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Figure 1.1.1: Drug Plasma Concentration vs. Injection Methods, Adapted from Lee et al9 

1.1.3 Single & Multiple Injections 

For highest bioavailability, intravenous injections are the typical administration method. The 

specific injection frequency greatly affects plasma drug concentration relative to the TEW. 

Figure 1.1.1 shows this effect for a single intravenous injection (dotted blue line) and a multiple 

injection regimen (dashed black line). A single injection rapidly raises the concentration above 

the toxic level, causing side effects before quickly being cleared and eliminated from the body by 

various metabolizing and elimination methods9. Delivering multiple injections of smaller doses 

based on the patient’s PK maintains the concentration within the TEW for a longer time. 

However, timing the injections and calculating appropriate dose patient-by-patient for sufficient 

bioavailability is extremely challenging. These parameters will almost certainly change from 

patient to patient  and even in the same patient over time depending on their pharmacokinetic 

factors such as weight, age, hydration etc.11 Perfect maintenance of concentration within the 

TEW therefore is practically impossible for most drugs.  
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1.1.4 Controlled Release 

Properly maintaining a therapeutic effective dose is elusive. Several drug delivery systems were 

developed for controlled drug release over a tunable period of time, as shown in Figure 1.1.213. 

Many act as depots or reservoirs, such as patches, films, wound dressings, and intrauterine 

devices, by slowly releasing a small amount of drug from a large, stored amount while remaining 

embedded in a stationary location, ensuring that enough drug will be bioavailable and therefore 

effective. Other systems are mobile, smaller, and designed to overcome drug solubility or offer 

specific site targeting, such as nanoparticles, conjugates, and cell targeting systems. All these 

systems can ideally be tuned so that their release matches the elimination and metabolization rate 

from the drug’s pharmacokinetics, called controlled release. Represented by the orange solid line 

in Figure 1.1.1,  the level quickly reaches therapeutic levels and holds until the drug is finally 

exhausted. Not only does this release type improve the drug’s efficacy, but the ability to control 

the release timing and rate also has other advantages, such as co-delivery of various payloads. 

Patients are also more likely to comply with this multiple dose single injection type. Due to this, 

controlled release drug delivery systems are highly sought-after to improve the delivery of more 

toxic and less bioavailable drugs.  
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Figure 1.1.2: Drug Delivery Systems Displaying Multiple Strategies for Drug Payload Protection and Release13 

1.2 Challenges and Motivation for Work 

1.2.1 Drug Hydrophobicity and Molecular Weight 

Drugs which are ideal candidates for controlled release drug delivery systems (DDS) are those 

whose bioavailability is low regardless of administration route. This poor bioavailability is most 

commonly due to the lipid solubility characteristics of the drugs, i.e., hydrophobicity. The more 

hydrophobic a drug is the more easily it aggregates upon entering circulation, leading to 

inactivity, rapid clearance, or embolisms14,15. The dosage of these drugs must be increased to 

ensure any therapeutic effect, often exceeding the MTC and causing severe side effects16. This 

inefficiency is prevalent in drug discovery and development, as most drugs are hydrophobic and 

classified as small molecule (< 100 atoms)17. Figure 1.2.1, from Harashima et al17, shows the 

prevalence of small and hydrophobic drugs from FDA new drug reports from 2015 to 201918. 

While hydrophobic drugs are detrimental to bioavailability, small molecule drugs are generally 

preferrable, characterized by predictable pharmacokinetics, simple manufacturing, and higher 

stability than larger drugs like biomolecules19. However, they are also non-targeted, leading to 

systemic toxic effects, especially for small molecule drugs used to treat highly complex diseases 

such as cancer.  
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Figure 1.2.1: Recent Drug Approval Statistics A) Small Molecules vs. Macromolecules 2015-2019 and Distribution 
of MW (B) and hydrophobicity (C) of new drug approvals17 

1.2.2 Cancer & Chemotherapeutics 

Cancer is one of the deadliest diseases today, resulting in roughly 10 million deaths worldwide 

and 19 million new cases in 202020. In the US alone, there will be a projected 2 million new 

cases and over 600,000 deaths attributed to cancer in 202321. The complexity and deadliness of 

cancer lies in its ability to avoid destruction due to its heterogeneity and drug resistance22,23. 

Different antitumor drugs were developed to overcome this resistance, with roughly 89 small 

molecule drugs being approved today for chemotherapy worldwide24. Chemotherapy, a first line 

co-treatment with surgery and/or radiation for most cancers, looks to avoid cancer’s challenges 

by delivering a cocktail of drugs at once. As previously discussed, most drugs are small molecule 

and hydrophobic, and typically intravenously administered, exceeding their narrow TEW and 

causing severe side effects which can themselves be fatal. For example, Doxorubicin (DOX) is a 

common chemotherapeutic used for treating various cancers, including childhood lymphoblastic 
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leukemia25, breast cancer26, ovarian27, and lung cancers28,29. DOX has an extremely small 

therapeutic effective window of roughly 30 mg/m2 to around 45 mg/m2 for cumulative dose 

according to several studies30,31 and its most severe side effect is cardiotoxicity which can lead to 

heart failure28,32. Therefore, the correct dosing of DOX and other similar small hydrophobic 

chemotherapeutics is critical but often very challenging. Instead of using injections, nanoparticle 

(NP) drug delivery systems have emerged as prime candidates for improving the delivery of 

these chemotherapeutics. They have shown a wide range and good customization of controlled 

release, with the ability to efficiently encapsulate and protect small and hydrophobic molecules 

from protein adsorption or clearance.33 Their surface can also be targeted improving the efficacy 

and uptake of encapsulated chemotherapeutics by localizing the drug effects14. In fact, the first 

FDA-approved nanoparticle drug delivery was Doxil, which was a surface-modified liposomal 

DDS for the improved delivery of DOX31,34. Despite this, some challenges remain, such as 

optimized drug loading, control over properties such as size, surface morphology, distribution, 

variable controlled release, and difficulties in scale-up manufacturing, necessary for clinical 

translation.  

1.3 Summary of Chapters 

The following chapters will detail the experimental results and analysis of this research which 

seeks to address some of the challenges remaining for nanoparticle drug delivery systems: size 

control, varied controlled release, and initial investigation for scale-up manufacturing.  

Chapter 2 provides background on controlled release terminology, including release profiles and 

kinetic models and techniques used to characterize nanoparticles, as well as the materials and 

development of two types of nanoparticle drug delivery systems relevant to this work: polymeric 

core nanoparticles and core and shell polymeric nanoparticles.  
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Chapter 3 details the investigation and subsequent modeling of the synthesis method common to 

produce the polymeric nanoparticle cores for both size control and scale-up, as well as the 

experiments for characterizing their release and preservation of size during storage. 

Chapter 4 describes the investigations and optimization experiments for two methods developed 

to produce core and shell polymeric nanoparticles, focusing on synthesis parameters’ effect on 

formation efficiency, particle dimensions, and release kinetics. 

Chapter 5 focuses on a further application of the knowledge and optimization thus far, with the 

initial experimentation of impregnation of polymeric nanoparticles into chitosan hydrogels for 

complex wound treatment and drug delivery.  

Chapter 6 summarizes and concludes the work presented for small molecule, hydrophobic drug 

delivery, and presents future directions for further knowledge and development.    
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Chapter 2: Background 

2.1  Release Behavior and Kinetics 

Here we discuss four release profile types for nanoparticle drug delivery systems. The desired 

profile varies with application and situation; ideally the exact release rate and dosage could be 

tailored on a patient-by-patient basis. This section will introduce each type of release profile so 

we can better understand what controlled release means and the models typically used to 

quantify their kinetics. 

2.1.1 Burst vs. Sustained Release 

The most common type of release is the burst release, characterized by the quick release of most 

of the encapsulated payload in a short time. Burst release is generally undesirable for most 

applications due to the inability to control the release so drug concentration remains in the 

therapeutic effective window. With a burst release, the majority of drug is immediately released 

very early post-administration before full circulation and distribution. This results in extremely 

high local drug concentration. All the drug released at this site is quickly degraded and removed 

from circulation, shortening the drug’s half-life and increasing the number of doses needed and 

thus the cost of the treatment.35  Figure 2.1.1 from Brazel and Huang (2001)35 shows an example 

of a burst release profile compared to a zero-order controlled release. 
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Figure 2.1.1: Burst Release Compared to Zero Order Controlled Release35 

The exact amount of time that qualifies for a burst release is not well defined. However, Brazel 

and Huang36 have defined a Degree of Burst (DB) as the ratio of instantaneous release at a given 

time to the rate the system reaches at steady, generally after a long time.  
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ೄೄ

    ( 1) 

Where 𝑀௜ is the mass released at time t. A DB of 1 means no burst release, and a steady 

sustained release. A DB less than 1 indicates a lag effect while a DB greater than 1 indicates a 

burst effect.  

A burst release can be a desirable profile for certain applications. For example, for complex and 

extensive wounds an immediate delivery of pain medication and antibiotics to the target site is 

necessary for successful treatment. Drugs that have minimal toxic effects and need to be 

delivered quickly are good candidates for burst release, and these would not necessarily benefit 

from polymeric nanoparticles for drug delivery. Other nanoparticle systems however such as 

liposomes can shield drugs from clearance while also providing a burst release.  

Sustained release is the highly sought-after release profile for nanoparticle-based drug delivery. It 

is the release of encapsulated payload at a constant rate over longer periods, usually greater than a 



30 
 

few hours. Sustained and controlled release are often interchangeable in literature, but controlled 

release will be variable sustained release in this dissertation.  

Ideally, sustained release rate would be a linear trend with the slope representing the rate. 

Current research in producing a sustained release almost always shows a small burst release 

followed by a long-sustained release37,38. This small burst is due to drug molecules trapped on or 

near the surface being released almost immediately upon application. An example of this is seen 

in Figure 2.1.2 from Yao et al.39,  where red dye loaded into polymeric microspheres has an 

initial burst release followed by a week of sustained release.  

 

Figure 2.1.2: Example of Sustained Release of Congo Red Dye from PLGA Microspheres39 

2.1.2 Delayed Burst and Delayed Sustained 

Burst and sustained release profiles can be modified by adding a delay time until the release 

begins. This delay time is outlined by the red brackets in Figure 2.1.340 , with examples of 

delayed burst (yellow star) and delayed sustained (green star) release profiles.  
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Figure 2.1.3: Example of Delayed Burst (yellow) and Delayed Sustained Release (green) from PLGA 
Microparticles40 

 

There are a few applications where adding a delay time to nanoparticle release is desirable. A 

delay in release would allow targeted nanoparticles to reach the desired site before release, 

eliminating side effects and improving the drugs’ bioavailability. Additionally, injecting particles 

with different delay times would provide sustained drug concentrations over long periods, 

potentially reducing the number of injections necessary for vaccines or chemotherapies and 

increasing the long-term dosages. The ability to vary this delay and the overall rate is ideal 

controlled release. 

2.1.3 Release Kinetic Models 

There are several models used to model release kinetics of drug delivery systems. These models 

usually correspond to a dominating release mechanism, with different kinetic constants derived 

from fitting these models. The most common models typically used in drug delivery release 

quantification are the following.  
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Korsmeyer-Peppas 

Korsmeyer-Peppas41–44 release is the simplest drug release, described by the following equation: 

ெ೟

ெಮ
= 𝑘𝑡௡     ( 2 ) 

𝑀௧ is the drug release mass at time t, 𝑀ஶ is the total mass released, and 
ெ೟

ெಮ
 is the fraction of drug 

over time t,  𝑘 is the release rate constant and n is the release exponent. This equation is only valid 

for the first 60% of release and one dimensional release44. Once found, n can be used to determine 

the drug transport mechanism. Table 2.1.1 shows the interpretation of release mechanism based 

on the values of n. For swellable polymer systems, n shows the contribution of release of polymeric 

relaxation and Fickian diffusion.43  

Table 2.1.1: Interpretation of Release Exponent n for Korsmeyer-Peppas Model41 

Release Exponent 
(n) 

Drug Transport Mechanism 

0.5 Fickian diffusion 

0.45 < n =0.89 Non-Fickian transport (chain relaxation and diffusion roughly equal) 

0.89 Case II (Swelling Driven) Transport 

>0.89 
Super case II transport (diffusion and chain relaxation/swelling 
relaxation) 

 

 

Peppas-Sahlin 

The Peppas-Sahlin equation is a modification of the Korsmeyer-Peppas42–44 equation. It 

considers contributions from polymeric relaxation and the diffusion contribution on total drug 



33 
 

release by using two separate terms. The drug release fraction 
ெ೟

ெಮ
 over time t can be determined 

by: 

   
ெ೟

ெಮ
= 𝑘ଵ𝑡௠ + 𝑘ଶ𝑡ଶ௠         ( 3 ) 

Where 𝑘ଵ is the Fickian diffusion rate constant, 𝑘ଶ is the polymer relaxation rate constant, and 𝑚 

is the diffusional exponent. The substitution method provides the solution to this equation.43 The 

fraction of mass released at two time points is used to simultaneously solve for both rate 

constants. Once these rate constants are found, we find the diffusion exponent. Comparing the 

rate constants can determine the contributions of individual mechanisms. 

Hopfenberg 

The Hopfenberg model describes drug release from surface eroding polymers: 

            
ெ೟

ெಮ
= 1 − ቀ1 −

௞బ௧

஼ಽ௔
ቁ

௡

          ( 4 ) 

𝑘଴ is the zero-order rate constant, 𝐶௅ is the initial loaded drug concentration, 𝑎 is the system’s 

half thickness (radius for spheres), and n is the geometric exponent. Depending on the geometry, 

n is 1 for a slab, 2 for a cylinder, and 3 for a sphere.41,42,44 It is assumed for this model that the 

release is not influenced by changing diffusion rates and instead is dominated by surface erosion, 

with any secondary surface erosion (from within pores) being neglible.45 

Higuchi 

The Korsmeyer-Peppas can be simplified to the Higuchi model: 

𝑄 = 𝑘ு𝑡଴.ହ        ( 5 ) 

Where 𝑘ு is the Higuchi dissolution constant.41,42,44 This equation can be plotted as the total 

percentage of mass release over time.  
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Weibull 

The Weibull model was developed as a robust fit for most drug release profiles. The model 

advantage is that it takes a lag time into account for the release profile.  

𝑀 = 𝑀଴ ቈ1 − 𝑒
ష(೟ష೅)್

ೌ ቉           ( 6 ) 

Where 𝑀 is the amount of drug dissolved at time t, 𝑀଴ is the total amount of drug released, T is 

the lag time of the dissolution process. The parameters a and b describe the time and shape 

dependence of the curve, respectively.41,44 This equation can be linearized, where b is the slope 

of the line and a is estimated from value at t=1. This model is empiric, and so cannot characterize 

the dissolution mechanism of the drug in matrices.44 However, it has the advantage of including 

a lag parameter which is useful for modeling delayed burst and delayed sustained releases. This 

model is very effective in modeling complicated release from composite polymer matrices of 

different layers, as shown in Hadjitheodorou et al.46 where they used Monte Carlo simulations to 

relate the exponential coefficient b and time parameter a to physical properties of the particle 

itself. They do not consider the degradation mechanism of release in their model, instead just 

modeling the release due to Fickian diffusion. Further work continues modifying this model to 

better relate to physical components.47  

2.2 Nanoparticles for Drug Delivery 

This section will discuss the methods used to characterize polymeric nanoparticles’ size and size 

distribution. It will then discuss the development, evolution, and remaining challenges of the 

single core polymeric nanoparticles and core and shell polymeric nanoparticles. Finally, 

applications that use these types of nanoparticles in bulk systems are discussed for background 

on Chapter 5.  
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2.2.1 Characterization Methods 

Nanoparticles’ size and size distribution is measured using Dynamic Light Scattering (DLS) 

method (Malvern Zetasizer ZS ,Malvern, UK). DLS measures the velocity of nanoparticles moving 

through a fluid via Brownian motion. A 633 nm laser scatters through the sample, creating an 

interference pattern. As the nanoparticles move, the interference pattern changes and correlated 

against an autocorrelation function determined via settings in the program. From this correlation 

function the translational diffusion coefficient 𝐷௧ is calculated. The Stokes-Einstein equation then 

calculates the hydrodynamic radius 𝑅ு of the measured nanoparticle, where 𝑘஻ is the Boltzmann 

constant, 𝑇 is temperature, 𝜂 is absolute viscosity.48  

𝐷௧ =
௞ಳ்

଺గఎோಹ
          ( 7 ) 

By collecting numerous measurements of different particles, a size distribution is found and the 

intensity average (Z-avg) of that distribution is reported with the size distribution width, also called 

the polydispersity index (PDI). Hydrodynamic radius (or diameter, HD) is not the true hard 

diameter of the nanoparticle; it is the hypothetical size of hard sphere which moves at the same 

velocity. Realistically the nanoparticle is often surrounded by a corona of proteins or ions from the 

surrounding fluid, and thus the true size is slightly smaller than what is reported by the DLS.48–51 

Direct visualization of the nanoparticles is accomplished using Scanning Electron Microscopy 

(SEM). Briefly, SEM uses magnetic lenses to focus a beam of electrons onto a sample coated with 

a layer of conductive metal atoms. The electron beam quickly scans across the sample and the 

electrons interact with the sample, releasing and scattering other electrons and X-rays.49,52 These 

scattered electrons are collected by sensors and producing an image.  
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2.2.2 Polymeric Nanoparticles 

Perhaps the largest area of research into controlled release is nanoparticles made from 

biodegradable polymers. As briefly discussed in Chapter 1, this type of system has shown great 

promise in achieving precise customizable controlled release rate, tunable to application needs. 

They can encapsulate small and large molecule drugs, although there is some concern with large 

biomolecules retaining therapeutic activity post-encapsulation. Various polymers have cleared 

FDA approval for drug delivery applications including polyethylene glycol (PEG), poly lactic 

acid, polycaprolactone, poly glycolic acid, poly N-vinylpyrrolidone15. But while many clinical 

trials are underway in different phases, very few polymeric nanoparticle drug delivery systems 

are currently available for clinical use. From Abdellatif et al.53, there are currently 58 approved 

nanoparticle formulations, with roughly 20 of those being polymeric formulations. Figure 2.2.1 

shows the approved types distribution. This clinical translation bottleneck is due to two issues: 

lack of scalable manufacturing54 and batch heterogeneity55.  

 

Figure 2.2.1: FDA-Approved Nanoparticle Formulations, 202153 
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The scalability issue derives from the two diametric manufacturing methods, categorized as top-

down or bottom-up techniques. (Figure 2.2.2, from Operti et al..54) Top-down methods begin 

with pre-synthesized bulk polymer, using various solvent methods to form the chains into 

particles. These methods include emulsion evaporation, diffusion, nanoprecipitation, salting out 

and dialysis, and are lab-scale batch processes. While they can offer good control over different 

properties, they are not easily scalable due to the equipment and mechanisms involved which 

become inefficient or ineffective at larger volumes. Bottom-up methods synthesize the polymer 

chains as required from their monomeric units, and while they offer fine control over polymer 

chain length and are more easily scalable there is less control over batch particle properties such 

as size, shape, and PDI.54  

 

Figure 2.2.2: Top-down and Bottom-up Polymeric Nanoparticle Synthesis Techniques for Polymeric Nanoparticles, 
From Operti et al.54 
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Heterogeneity batch-to-batch has been shown to greatly affect final properties and lead to greatly 

increased cost of downstream processes. For instance, for size-dependent properties such as 

diffusion, degradation, release, cellular uptake, and cellular binding and uptake, even a small 

deviation in radii can have an order of magnitude propagation of change of all these properties.  

 

Figure 2.2.3: Feature Deviation Propagation for Properties based on power of radii (r), from Stavis et al.55 

 

2.2.3 Nanoparticle Properties and Effect on Release 

Several nanoparticle properties influence release kinetics. These can be grouped in three 

categories, seen in Figure 2.2.4.  Physical characteristics include the size (and the size 

distribution when more than one particle), shape, particle stiffness, and any electromagnetic 

properties. The chemical characteristics make up the polymer material properties themselves, 

including the chain length (molecular weight), hydrophobicity, polymer chain degradation 

mechanism, and any responsiveness the polymer may have to external stimuli such as pH, light, 
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heat, or triggering molecules. Finally, the surface properties include the particles’ porosity, 

morphology, surface charge, and any targeting moieties used for active targeting applications56. 

The following sections will examine each category and its properties’ effect, especially on 

particles’ release kinetics.  

 

Figure 2.2.4: Nanoparticle Properties which affect Release and Pharmacokinetics 

 

Physical Properties: Size and PDI 

The size of particle, and the distribution of the sizes of all the particles, quantified by the PDI, 

has shown to be critical to the biodistribution and nanoparticles’ release. Biodistribution studies 

of polymeric nanoparticles 200 nm and greater demonstrate preferential accumulation in the liver 

and the spleen upon intravenous injection57,58.  Below 10 nm the particles are quickly cleared out 

of the body by the kidneys. Therefore, without considering release effects, there is an optimum 

range for nanoparticles of 10nm to 200nm for in vivo circulation.59 When targeting different 

diseases, size also affects targeting effectiveness. For example, many cancer tumors often 
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encourage leaky vasculature in their microenvironment, causing circulating fluid accumulation at 

the tumor site. This “pooling” effect improves circulating tumor site accumulation for average 

nanoparticle diameters of 150-200 nm, a passive targeting phenomenon called the Enhanced 

Permeability and Retention (EPR) effect.33,60   Polymeric nanoparticles’ ability to encapsulate 

drugs also depends on the polymer-drug compatibility and the size of each. The larger the 

particle, the more drug can be encapsulated, or the more efficient it can encapsulate large 

biomolecules or drugs.61 The particle size’s effect on release is also glaring. For eroding 

polymers, a larger size in turn results in a greater surface area exposed to the aqueous 

environment, but the volume change outweighs the surface area change due to the difference in 

power of the radii when calculating each. This is clear when considering the Hopfenberg model; 

that as the particle’s radius increases (a) the term beneath the exponent will cause the percent 

release to change at a slower rate. Therefore, with similar properties larger polymeric 

nanoparticles will degrade and so release at a slower rate than smaller particles with similar 

erosion kinetics. An example of this can be seen in Dawes et al.62, with release of two PLGA 

microparticle sizes, the larger (20 μm) has a more sustained release than the smaller (1 μm) 

particles. 
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Figure 2.2.5: From Dawes et al.62, Size Effect on Release from PLGA Microspheres, 20 μm and 1 μm 

For polymers for whom diffusion release dominates, the size effect is similar. The larger the 

radius increases the diffusion barrier which increases the mass transfer resistance. Thus, the 

release rate for most of the drug will be slower as the radii increases, although if the drug is 

nearer to the surface, a larger radius will result in a larger initial burst release. The size effect 

then translates directly to the size distribution effect, where particles of different radii will give 

different release rates, and the deviation increases as radii increases. For instance, following the 

Hopfenberg model again, a 10% radius increase will result in a smaller release deviation at 

smaller radii than it will at larger radii. This has a compounding effect if the PDI is polydisperse, 

causing the overall release kinetics to be inconsistent and unpredictable.  

Chemical Properties and Degradation Mechanisms 

The chemical properties effects how the polymer chains themselves interact with their 

surroundings and themselves during the release process. Certain polymers, such as PLLA, are 

semi-crystalline, and release is typically slower than amorphous polymer such as PLGA. The 

solubility and hydrophobicity of the polymer, especially in relation to the drug payload, affects 

the release mechanism as well. If the polymer and drug are incompatible, the drug can still be 
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loaded, however there will be cost to loading efficiency. The loading procedure contains the drug 

within an interior fluid region surrounded by the polymer. This results in a burst release, with the 

drug releasing once the interior fluid is exposed to the surroundings. If the polymer and the drug 

are compatible (both hydrophobic or hydrophilic), drug loading is easier, with the drug dispersed 

throughout the matrix. The dispersed drug release can occur by four mechanisms, as seen in 

Figure 2.2.663. If the polymer matrix is porous, the drug can diffuse out as the aqueous 

surrounding penetrates the pores (Figure 2.2.6A). If the polymer is nonporous, the drug can 

diffuse through the polymer itself (Figure 2.2.6B). Release via osmotic pumping can occur for 

materials with a large pore network. Water can be taken into the particle and cause an osmotic 

gradient, driving release out of the particle (Figure 2.2.6C). The final mechanism is erosion 

(Figure 2.2.6D). Erosion is mostly specific to polymeric systems and occurs when the polymer 

chains react to the surroundings and break down into small units, causing the drugs to be 

released. Realistically, true release is often a mixture of two or three mechanisms. In addition, 

each of these can be affected by a wide range of other chemical and surface factors, such as 

interactions between components, temperature, pH, molecular weight, size, and porosity.63  

 

Figure 2.2.6: Mechanisms of Release from Polymeric Nanoparticles63 (A) Pore Diffusion (B) Bulk Diffusion (C) 
Osmotic Pumping and (D) Polymer Erosion 
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Surface Properties 

Along with size, morphology and charge also greatly affect performance. Different morphologies 

and aspect ratios can increase or decrease clearance rates, drug loading capacity, and uptake by 

changing how the particle physically interacts with the cells in the body. Ideally, the charge 

would be cationic or close to neutral.59 If the particle’s charge is too negative, this can interact 

with proteins in the blood or be cleared out very quickly. A slightly positive charge allows the 

particle to attract to the negatively charged cellular membranes and avoid opsonization and rapid 

clearance. Most bare particles aggregate easily, are rapidly cleared, are negatively charged, or do 

not fully protect the drug payloads.  Surface modifications can address all these limitations. 

PEGylation is a common way to add “stealth” to reduce clearance, protein adsorption, and 

improve particle half-life. Targeting moieties can also be attached to the ends of these linkers to 

improve site accumulation. Other polymers can be added within the structure to increase its 

stability in vivo or add a response to different stimuli. The number of manipulatable variables 

allows polymeric nanoparticles to be highly customizable. 

PLGA 

One of the most common materials for polymeric nanoparticles is poly (D,L) lactic-co-glycolic 

acid (PLGA)23 due to its favorable degradation and safety properties, biocompatibility, and 

biodegradability. Due to these properties, it’s one of the few polymers FDA-approved for drug 

delivery applications40. A copolymer of the monomers lactic acid (LA) and glycolic acid (GA) 

(Figure 2.2.7), different ratios of the two monomers can be used to make different forms of 

PLGA. Common formulations range from 50:50 to 85:15 LA:GA, and each ratio has different 

release kinetics, as shown in Makadia et al in Figure 2.1.340. In general, the more glycolic acid, 

the faster the release because adding more glycolic acid decreases the crystallinity and introduces 
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more radical acidic groups thus increasing the polymer backbone’s hydrolyzation. PLGA is 

hydrophobic and has a glass transition temperature around 44°C, meaning it is hard and glassy at 

room temperature. For drug delivery, bare PLGA nanoparticles have some limitations.59 As 

mentioned, the polymer is hydrophobic, meaning it does not disperse easily into biological 

environments without modification. Aggregation in aqueous environments can be a problem, 

affecting the size and size distribution. Many current synthesis techniques produce a 

polydisperse sample of nanoparticles, decreasing the reliability. 

 

Figure 2.2.7: Poly(D,L) lactic-co-glycolic Acid (PLGA) Structure 

 

PLLA 

Poly (L) lactic acid (PLLA) is a chiral isomer of poly lactic acid, made of one of the monomeric 

units of PLGA. Figure 2.2.8 shows its structure. Due to its structural regularity, it is semi-

crystalline and has a glass transition temperature at 53-60°C and a melting temperature at 160°C.23 

This makes it very durable and strong, and thus highly investigated for long-term release for 

biomedical applications. In most applications PLLA or racemic mixtures form implants or 

microparticles.64 Like PLGA, it is also hydrophobic, biodegradable, and biocompatible, and FDA-

approved for drug delivery. Because of the semi-crystalline nature, PLLA nanoparticles’ release 

is much slower than that of PLGA. With no glycolic acid groups to autocatalyze the hydrolysis, 

the release mechanism is more diffusion driven, with a very slow erosion component. 
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Figure 2.2.8: Poly (L) lactic Acid Structure 

 

2.2.4 Core and Shell Polymeric Nanoparticles 

While polymeric nanoparticles have shown great promise in achieving controlled release for long 

periods, as discussed, the size, formulation, or morphology needs to be changed to manipulate 

the release rate effectively. These modifications in turn negatively change the nanoparticle’s in 

vivo behavior, charge, or exceed the size for efficient targeting. Certain modifications introduce 

complex triggering molecules on the surface which further complicates the already challenging 

scale-up and clinical translation. Importantly, there is significant difficulty preventing the initial 

burst release seen in many release studies due to the drug adsorbed on or near the surface.65 This 

burst effect could raise drug concentration above toxic concentrations so different ways to 

eliminate additional surface modification have been investigated. One favorable method because 

of its simplicity and versatility is coating a drug-loaded nanoparticle with another polymer, 

forming a polymer shell. This polymer shell is often made of a slower degrading polymer than 

the core material adding a time delay and eliminating the burst release. There is an added 

advantage of core and shell systems: it introduces another region of the DDS so that multiple 

drugs can be loaded within different components of the particle for simultaneous controlled 

release. This is especially beneficial for combinational therapy, when two drugs can have a 

greater cumulative effect when released together at a site than when delivered alone. This is 

often the case for chemotherapy treatment regimens, where “cocktails” of drugs are administered 
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together for a synergistic effect66. Core and shell polymeric nanoparticles provide an easy way to 

deliver both and tune each release to maximize their therapeutic effect. 

Current Synthesis Methods 

The most common synthesis technique for core and shell polymeric nanoparticles is via coaxial 

electrohydrodynamic atomization (CEDA), also called coaxial electrospray. Figure 2.2.9 shows 

the general process. The core fluid contains the dissolved core polymer and the drug, while the 

outer liquid contains a different immiscible liquid that contains the shell polymer. The two liquids 

are injected or pumped through a dual cone nozzle, where the inner fluid exits into outer fluid flow 

before both exit. The nozzle is electrified with a high voltage to create a potential which accelerates 

the liquids. Immediately after exiting the nozzle, the dual flow passes through a high voltage ring 

and forms what is called a Taylor cone. A Taylor cone forms by the electrical force and forces the 

fluid into a jet resulting in the core and shell droplets spray. These core and shell droplets fall into 

a collection vessel, sometimes containing a stabilizing fluid, until the polymer solvents evaporate, 

leaving the dry core/shell particles. The particles’ size and morphology are altered by changing 

factors such as the two flowrates, viscosities, and voltage. 
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Figure 2.2.9: Coaxial Electrospray Equipment Setup65 

 

Another more recent technique that has become popular is microfluidics. The general process 

involves the flow of two immiscible fluids in which the core fluid droplets pass through a channel 

containing the shell fluid. This channel then diverts so a third immiscible fluid surrounds the core 

and shell droplet and carries it to a collection tube, allowing the core and shell solvents to 

evaporate, leaving the dry polymeric particle. While both techniques have shown excellent ability 

to form core and shell nanoparticles with high loading efficiencies, there are some limitations. The 

equipment is costly and the optimization of all parameters to achieve the desired size, dispersity, 

and morphology can be difficult. CEDA has a high throughput and good scale-up potential. 

However, currently the minimum achievable size is several hundred nanometers and the 

polydispersity is very high, too large for drug delivery.67 Microfluidics can produce nanoparticles 

at a very consistent size distribution; however high throughput and scalability is a challenge that 

will need to be improved.68 For laboratory scales, another less popular technique has been 
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experimented with for core and shell microparticles: the emulsion-solvent evaporation (ESE) 

method.  

Previous Formulations 

Numerous material combinations for core and shell nanoparticles have been tested. Most all 

involve PLGA as one of the components due to its desirable biocompatibility and release. The 

release mechanism of this system follows that of the pure polymeric particles explained 

previously. The shell adds resistance to diffusion and depending on the thickness prevents 

premature core erosion and thus release. This diffusion barrier can result in extremely long 

controlled releases. However, the shell must be uniform and nonporous for predictable 

degradation. Cardoso et al69 investigated the synthesis and release kinetics of PLGA/PLLA 

core/shell particles for controlled release of DOX. Using the solubility difference of PLLA and 

PLGA in dichloromethane (DCM), they created an oil-oil-water emulsion via sonication, 

changing the particle size (and thus the theoretical shell thickness) by changing the mass ratio of 

PLLA to PLGA. The scaled-up microparticle confirmed the core/shell structure with DOX 

distributed throughout primarily the core.  (Figure 2.2.10).  The average diameter of the particles 

confusingly remained roughly constant with additional mass PLLA per mass PLGA, with a 2:1 

ratio resulting in a size range of 450-610 nm but a ratio of 4:1 resulting in a range of 430-480 

nm, before rising to 510-730 nm for 6:1. The expectation would be that for uniform shell 

formation, size would increase with mass ratio, dependent on the number of nanoparticles and 

volume change. The researchers did see a decreasing release rate with increasing mass ratio as 

one would expect (Figure 2.2.11), which is highly desired for customizable controlled and 

sustained release. This work confirms that core/shell PLGA/PLLA particles could be formed 

from a simple emulsion technique; a technique that is well studied for polymeric core 
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nanoparticles. However, the size distribution and lack of control over core and shell dimensions 

leads to concerns for the clinical translation and batch heterogeneity.  

 

Figure 2.2.10: Doxorubicin-loaded in a PLGA/PLLA core/shell Microparticle69 

 

Figure 2.2.11: Release From PLGA/PLLA core/shell Nanoparticles (Sizes >400 nm)69 
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When both materials are polymeric, the ordering and distribution of the polymer layers can result 

in a time delay and burst effect elimination. Figure 2.2.12  shows the release of aspirin from 

microparticles with PLLA as the core and PLGA as the shell from Xiao et al70. The PLGA shell 

caused there to be a long period of no release of the hydrophobic model drug, followed by a 

sustained release for nearly 700 hours. In this case, the PLLA/PLGA nanoparticles were formed 

via the ESE method, taking advantage of dissimilar solubility in certain organic solvents.70,71 

Such a time delay was not seen with the previous example likely due to the PLLA shell not being 

homogenous or equally distributed to all nanoparticles, and so some initial release could be seen. 

 

Figure 2.2.12: Release of Aspirin from PLLA/PLGA Core/Shell Microparticles from Xiao et al.70 

Figure 2.2.13 shows a SEM image of these microparticles from Xiao et al.70., clearly showing the 

differentiation of the two polymer regions whose composition was confirmed via other methods. 

This experiment again proves that particles of two very similar polymers can be formed with 

uniform and distinct regions using a very straightforward method.  
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Figure 2.2.13: SEM: PLLA/PLGA Core/Shell Microparticle formed via Modified ESE from Xiao et al70 

 

Along these same lines and contrary to what was seen in the first example, if the shell thickness is 

controllable the release rate can also be controlled. Figure 2.2.14 shows how the release rate 

decreased significantly by increasing the shell thickness, in this case by several hundred 

nanometers of PLGA on a core of PLGA.72 These particles were synthesized using CEDA. 

Another example is Xia et al73, where PLGA/PLA core/shell microparticles were fabricated using 

CEDA. As the mass ratio of PLA to PLGA increase (from sample B1 to B3 in Figure 2.2.15), the 

shell thickness increases, and the release rate decreases with respect to each other. From Figure 

2.2.15, all release rates of core/shell nanoparticles (B1-B3) are slower than the release from the 

core alone (O). These studies all demonstrate that core and shell polymeric particles with shell 

thicknesses of controlled makeup and thickness can achieve controlled release over long periods. 

This allows the nanoparticles drug release rate to be varied to maintain drug concentration within 

the therapeutic effective window. The question remains whether this dimension control is 

achievable at sizes more relevant to circulating drug delivery (200 nm), which has yet to be proven 

experimentally.  
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Figure 2.2.14: Drug Release with Thin and Thick Shell Thickness of PLGA/PLGA Core/Shell Particles from Yeh et 
al.72 

 

Figure 2.2.15: Cumulative % Release from PLGA/PDLLA Microspheres from Xia et al73 showing slowing release 
with increasing shell to core mass ratio. 

When multiple drugs are loaded into individual components, each component’s release depends 

on the polymer they are encapsulated in and their distance from the surface. An example is seen 

in Figure 2.2.16 also from Yeh et al72. These particles are large (1 micron) and consist of a PLGA 

core and shell of PLGA with a higher molecular weight produced via CEDHA. Both the 

hydrophilic drug Theophylline and the hydrophobic drug Budesonide are encapsulated within the 

core and begin releasing simultaneously at different rates. The faster release rate for the 
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hydrophilic drug (Theo.) is expected due to it being encapsulated in a semi aqueous region of the 

core, while the release of the hydrophobic drug (Bud.) displays an initial fast release from adsorbed 

drug followed by a slow sustained release rate as it is released from the polymer matrix of the core. 

These drugs can be loaded in different regions of the particle and show region dependent release 

as well.72 

 

Figure 2.2.16: Hydrophobic and Hydrophilic Simultaneous Release from PLGA/PLGA Core/Shell NPs (Yeh et al.72) 

 

2.3 Hydrogel Systems for Controlled Release 

Depending on the application, nanoparticles may be an inappropriate system for controlled drug 

delivery. For instance, applications that require a larger surface area than what nanoparticles 

could reasonably cover, such as large surface wounds or topical ocular applications. 

Additionally, hydrogel microparticles encapsulate larger biomolecules or hydrophilic agents 

better than many nanoparticle systems, release at near constant rates74, and often are more stable 

in harsh environments such as the gastrointestinal tract. For these cases, a hydrated material 

capable of complete coverage and sustained doses would be more effective. These materials are 

hydrogels made of interconnected or crosslinked hydrophilic polymer networks which perform 
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with high water content75. There are many types of hydrogels, both natural and synthetic. 

Synthetic polymer hydrogels have emerged as the dominant type due to their structural 

consistency and stability. However, recently hydrogel blends of both naturally derived and 

synthetic monomers have been developed to lower cost but increase swelling, mechanical, and 

release behavior. Forming and loading hydrogels for controlled drug delivery is very simple, 

with the main steps being polymer dissolution, crosslinking, purification, drying, drug loading, 

and processing, as seen in Figure 2.3.1.  

 

Figure 2.3.1: Preparation Technique of Drug-loaded Hydrogel, from Gupta et al.74 
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Crosslinking is a simple process that uses chemical reactions to covalently bond the polymer 

chain network together, increasing mechanical and swelling stability. There are different types of 

crosslinking, such as small molecules (glutaraldehyde), polymer-polymer (hyaluronic acid), or 

stimuli-responsive (acrylate, HRP)76. Crosslinking of any type can improve hydrogels’ 

mechanical strength and stability and change their performance. Hydrogel performance is 

generally quantified using various techniques, as seen in Table 2.3.1.  

Table 2.3.1: Hydrogel Characterization Parameters and Measurement Techniques 

Parameter(s) Measurement Techniques Reference 

Crosslinking 
Mechanical Testing, Polymer solubility, 

Colorimetry 
77,78 

Network Pore Size and 
Surface Area 

BET, Electron Microscope, Porosimetry, 
Equilibrium Swelling 

79 

Degree of Swelling/% Mass 
Change 

Mass/volume change over time, water content 80 

Drug Distribution/Diffusion 
UV-Vis Fluorescent Microscopy, SEM, N-MR 
Controlled Release Experiments, Permeability 

80 

  

The hydrogel release mechanism differs from other previously mentioned polymers and depends 

on the payload type. While erosion and diffusion through the polymer are release components, 

the primary driving factor is polymer swelling due to water intake.81,82 For small molecule free 

drugs, there is a burst release from the surface-adsorbed drug as water or other medium 

penetrates the initially glassy matrix of the dry polymer. Depending on the crosslink density and 

the pore network volume, the medium will penetrate the polymer network at a rate dictated by 

non-Fickian diffusion. The penetration will cause the polymer chains to relax and separate, 

allowing for free drug diffusion out of the matrix in hours or days.74 Depending on the chain 

polymer or medium, simultaneous degradation and relaxation could occur. High loading 

efficiency and a low chance of drug deactivation characterize this release type, and it typically 
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lasts from hours to days76. The drug release mechanism slightly alters for slightly larger payloads 

such as peptides or micro/nanoparticles. Due to the surface charge or characteristics of the 

payloads, localized gelation can occur surrounding them, slowing their release to days or weeks. 

Incorporating polymeric nanoparticles (such as PLGA) into hydrogels can improve the loading 

of hydrophobic payloads, however it can lead to drug inactivation.  

2.3.1 Chitosan Hydrogels 

Chitosan is a polysaccharide commonly used in nanoparticle and hydrogel drug delivery 

systems. It is an aminated cyclic compound similar in structure to glucose (Figure 2.3.2), 

hydrophilic if dissolved in low pH, and mucoadhesive, which increases its ability to target 

mucosal membranes and circulate in vivo.81 It is biodegradable, antibacterial, hemostatic, and can 

easily encapsulate large molecules such as DNA, making it highly promising for biomedical 

applications.83 This includes sutures, wound dressing, cancer therapy, gene therapy, ocular and 

oral delivery, and as a coating on other nanomaterials.23,81  

 

Figure 2.3.2: Chitosan Structure 

Chitosan hydrogels have long been studied for controllable sustained drug delivery.84 For 

instance, chitosan and gelatin crosslinked together in a co-network were used to deliver the drugs 

lidocaine85 and dopamine86 for treating local pain and Parkinson’s disease, respectively. Chitosan 

hydrogels have been a particular interest for the controlled delivery of chemotherapeutics. From 

Chang et al.87, an injectable self-healing chitosan hydrogel coating was loaded with 5-

fluorouracil and showed pH-sensitive controllable release at tumor sites. Zhang et al.88 loaded 
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DOX within a temperature and pH-sensitive chitosan/hyaluronic acid for an injectable drug 

delivery system. Their system demonstrated faster release at more acidic conditions, with 

controllable release as hyaluronic acid content increased (Figure 2.3.3)88. Several more examples 

of chitosan hydrogel drug delivery systems can be found in Peers et al.84 

 

Figure 2.3.3: Chitosan/Hyaluronic Acid  Hydrogel Release of Doxorubicin (DOX) for pH responsive Chitosan, from 
Zhang et al88 

While chitosan clearly has shown great promise for improving the biocompatibility and drug 

delivery of drug delivery systems, there are limitations. Precise release control can be difficult, 

as an initial burst often occurs for bare chitosan, or manufacturing variations lead to 

heterogeneous performance. Chitosan is deemed safe by the US FDA but unapproved for drug 

delivery applications, only approved for wound dressing and dietary applications. Another 

limitation is that chitosan is poorly soluble in neutral to high pH and must be dissolved in acidic 

fluid before forming particles or bandages, but this means any chitosan-based hydrogels tend to 

prematurely break down when taken orally82. As with many nanoparticles, the scale-up and 

feasibility of chitosan coatings for nanoparticles must be addressed.89 Finally, while chitosan 
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hydrogels excel at loading and releasing hydrophilic drugs, it is challenging to load hydrophobic 

or cationic drugs, making it inappropriate for most small molecule drug markets.84 

2.3.2 Nanoparticles-Hydrogel Co-Delivery Systems  

To overcome the poor loading of small molecule hydrophobic drugs, many have investigated the 

incorporation of polymeric particles within the hydrogel polymer chain network. This 

incorporation allows for better hydrophobic loading, but since the hydrogel can encapsulate free 

hydrophilic drugs, multiple co-delivery of drugs is possible. An example of this system was 

developed by Osswald et al.90 for ocular drug delivery. This study suspended PLGA 

microparticles loaded with a model drug ovalbumin throughout a poly(N-isopropyl acrylamide) 

hydrogel network. The PLGA particles’ porosity and LA:GA ratio was varied with a subsequent 

varied release rate, with a faster release with higher porosity morphology and 50:50 ratios (see 

left and center plots of Figure 2.3.4 from Osswald et al.) When embedded within the hydrogel, 

the microparticles showed less burst release, and there was more sustained release for over 180 

days (right plot Figure 2.3.4). The hydrogel network was hypothesized to both slow the particle 

degradation and drug diffusion from particles impregnated within them, improving the sustained 

release of polymeric nanoparticles and allowing for simultaneous hydrophilic release.  

 

Figure 2.3.4: PLGA Microparticle Release with different Evaporation rate (left), LA:GA ratio (center), and within 
Hydrogel (right) 
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Chapter 3: Modeling and Optimization of Synthesis Conditions for Control of 

PLGA Polymeric Nanoparticles 

3.1 Introduction 

Polymeric nanoparticles are able to improve the bioavailability and pharmacokinetics of small 

hydrophobic drugs, such as chemotherapeutics, by releasing them in a controlled and sustained 

rate. The clinical translation of polymeric nanoparticles has been limited, whether core-and-shell 

or single core. This lab-to-clinic bottleneck is partially due to a lack of manufacturing scalability 

and reproducible control of properties such as size and polydispersity. Well-understood, 

predictable, and precise control of the polymeric cores is necessary before the shell formation 

can be optimized and controlled. The work presented in this chapter will describe the analysis of 

a common synthesis method for producing PLGA nanoparticles to determine significant 

parameters controlling the size and PDI and the characterization of the release behavior based on 

these properties. Knowledge gained from the lab scale modeling will then be used to evaluate 

potential scale-up methodology.  

3.1.1 Previous Work 

Several studies have evaluated process parameter’s effect on the average size and PDI of 

particles produced by the emulsion solvent evaporation method. Hernández-Giottonini et al.91 

evaluated the impact of PLGA concentration, polyvinyl alcohol (PVA) concentration, organic 

solvent (volume) fraction, sonication amplitude, and the mixing speed used during the 

evaporation step. Their findings indicated that PLGA concentration within 5–15 mg/mL (0.5–

1.5% w/v) did not significantly change the nanoparticle size or PDI. This result contradicted 

other published findings by Song et al.61 that reported a positive correlation between size and 

PLGA concentration; it was suggested that variation in properties of PLGA used could be a 
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contributing factor to this discrepancy. A positive correlation was also observed in a study 

reported by Halayqa et al.92, who saw an increase in average nanoparticle diameter as PLGA 

concentration increased from 0.8% to 1.3% or 1.6% for two formulations. One of the most 

striking examples of different studies showing conflicting effects on size and PDI can be seen 

when comparing Hernández-Giottonini91 et al., Iqbal et al.93, Song et al.61, and Zambaux et al.94 

studies on PVA concentration versus polymeric nanoparticle size and PDI using the ESE 

method. Figure 3.1.1 shows the comparison of all four, with some showing an increasing trend 

for size (top left), while others show different variations of decreasing trends within similar PVA 

concentration ranges.  

 

Figure 3.1.1: Example of conflicting Size/PDI Effect of PVA Concentration from comparing (top left) Hernández-
Giottonini91et al., (top right) Iqbal et al.93, (bottom left) Song et al.61, and (bottom right) Zambaux et al.94 
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This effect, where the concentrations of both PLGA and PVA components have contrasting 

effects on final nanoparticle size, was hypothesized to occur because it varies the interfacial 

surface tension and the bulk phase viscosity of the emulsion droplets, which changes the droplet 

coalescing stability95. As expected, particle size increased with larger organic-phase volume 

fractions since total surface energy is a function of surface area. It should also be noted that PDI 

increased significantly as the organic volume fraction was increased to 0.500. Hernández-

Giottonini91 et al. also observed that increasing the mixing speed yielded smaller particles, with 

no change to PDI, and increased sonication energy during emulsion formation also decreased 

size. Haque et al.96 developed multiple variations on the emulsion solvent evaporation method by 

changing the surfactant and the emulsification method. They varied the emulsion technique 

between homogenization and sonication for different sizes, with sonication preferred for smaller 

sizes. They reported that at set amplitudes and times, they could achieve good reproducibility for 

sizes from 400 nm to 50 nm using one of the schemes. The PDI for most schemes was above 

0.100, and they did not produce a model for achieving other sizes at lower PDI. However, they 

were able to change the surface zeta potential by changing the surfactants from PF68 (negative) 

to PVA (neutral) to chitosan (positive) but did not wash the particle, which deviated from the 

majority of synthesis schemes. An excellent summary of other attempts to control PLGA 

nanoparticle size is provided by Rao et al.97. The results of these studies, as mentioned, often 

conflict with each other or look at entirely different parameters, which are often difficult to scale 

or replicate with the information given. What is missing is a rigorous, consistent assessment of 

the synthesis parameters, their effect, and their potential use for controlling particle size and 

polydispersity, ideally at different scales and laboratory conditions.  
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3.2 Materials and Methods 

3.2.1 Materials 

Poly (D, L) lactic-co-glycolic acid (PLGA 50:50) (MW: 45kDa) and Polyvinyl alcohol (PVA) 

(MW: 50kDa) were purchased from Sigma Aldrich (St. Louis, MO). Dichloromethane (DCM, 

≥99.5%, Macron Fine Chemicals TM) was purchased from VWR. MISONIX QSonica Q700 

Sonicator with microtip (MISONIX, NY) was used during the emulsion formation. Deionized (DI) 

water was obtained using a PURELAB Flex2 water purifier. All hydrodynamic size and PDI 

measurements were made by DLS with a Malvern Zetasizer Nano ZS (Malvern, UK). Beckman 

Coulter Microfuge 16 Centrifuge was used for all washing and separating. A Zeiss EVO50 

Scanning Electron Microscope was used for all SEM images. 

3.2.2 SEM Sample Preparation 

For SEM analysis, particle samples were redispersed in deionized (DI) water via sonication, after 

which 25 µL pipetted onto an aluminum stub prepped with a small square of double-sided carbon 

tape. The droplet dried overnight, before being gold sputter-coated and observed with SEM under 

15 kV.  

3.2.3 Emulsion Solvent Evaporation Method 

Single Emulsion Method 

The primary method for producing PLGA nanoparticles is via the emulsion-solvent evaporation 

(ESE) method. This well-established method is highly popular for uniform polymeric 

nanoparticle production because it is simple to adjust parameters and can achieve high 

encapsulation efficiencies.98 The method uses the immiscibility of an organic solvent and 

aqueous bulk phase to form an oil-in-water (o/w) emulsion by adding energy into the system via 
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ultrasonication. The chosen polymer (PLGA) is first dissolved in the organic solvent 

(dichloromethane (DCM)). This polymer solution is added to an aqueous phase containing a 

surfactant (polyvinyl alcohol (PVA)). These two phases are then sonicated to produce an 

emulsion where contained polymer-organic phase droplets are stabilized by surfactant 

throughout the aqueous phase. This emulsion is then added to more PVA to ensure emulsion 

stabilization and left to stir for several hours, allowing the organic solvent in the droplets to 

evaporate and the NPs to dry. These nanoparticles are collected and washed via centrifugation. 

Before they are placed in the -80°C freezer, a small sample (50 μL)  is measured in the DLS to 

determine the size and PDI. The remaining nanoparticles are frozen overnight in the -80°C cryo-

freezer and then lyophilized to remove the liquid so that they can be weighed and further 

characterized. This process is seen in Figure 3.2.1. 

 

Figure 3.2.1: Single Emulsion Solvent Evaporation Method 

 

This process slightly varies for hydrophobic and hydrophilic polymers. If the polymer is 

hydrophilic, such as chitosan, the emulsion formed will be a water-in-oil (w/o) emulsion. The 

general steps remain the same, with switching roles between the organic phase and aqueous phase.  
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Drugs or dyes can be encapsulated within these nanoparticles quite easily. If the drug and 

polymer are both hydrophobic or hydrophilic, the drug is added to the same phase as the polymer 

and becomes equally dispersed throughout the nanoparticle. If, however, the drug is insoluble 

with the polymer being used, the process is slightly changed, using a double emulsion method. 

Double Emulsion Method 

To encapsulate a hydrophilic drug in a hydrophobic polymer (or vice versa), we use a double 

emulsion solvent evaporation (DESE) method99. The hydrophilic drug is dissolved in an aqueous 

phase. This phase is combined with the organic/polymer phase and emulsified via sonication to 

form a w/o emulsion. This first emulsion is added to the bulk aqueous-surfactant phase and 

sonicated again to form a final water1-oil-water2 (w1/o/w2) double emulsion. The rest of the 

process is the same as the ESE method. 

3.2.4 Features and Parameters 

For modeling, certain parameters were kept as potential control features. Many are 

interdependently calculated, but each is recorded and designated with unique names to examine 

the potential parameter effect. Table 3.2.1 describes the parameters, tested ranges and units for 

the system analysis. Concentrations were calculated as mass by volume percents for both PLGA 

in DCM and the PVA aqueous phase.  For example, 5 mg PLGA dissolved in 500 μL of DCM is 

0.01 mg/μL or 1% w/v. The total PVA volume (𝑉௧
௉௏஺) is the sum of three steps utilizing PVA: 1) 

used to create the emulsion (𝑉ா
௉௏஺ , “emulsion” PVA),  2) stirred as the bulk aqueous phase to 

which emulsion is added (𝑉௙
௉௏஺, “flask” PVA); and 3) in a wash step of the emulsion tube 

(𝑉௪
௉௏஺,“wash” PVA). The emulsion PVA volume (𝑉ா

௉௏஺) added directly to the DCM phase 

volume (𝑉ா
஽஼ெ) giving the total emulsion volume (𝑉௧

ா௠௨௟௦). The total emulsion volume is divided 
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into the total sonication energy (𝐸, J) to get the specific energy (𝐸௩, J/mL) for a given run. The 

volumes and concentration of the PVA in each step can be changed independently, but the 

typical volume distributions were 43% “flask”, 43% “emulsion”, and 14% wash. The total moles 

of PVA (𝑁௧
௉௏஺) and PLGA (𝑁௉௅ீ஺) and the ratio of the moles (𝑅ே . 𝑅ே

ா  ) were calculated from the 

average molecular weight of the polymers. Some controllable parameters such as stirring and 

washing conditions were kept constant. The emulsion was stirred at 500 RPM under atmospheric 

conditions for at least 3 hours. The solidified particle suspension was centrifuged at 14,800 rpm 

or greater for 30 minutes. Sonication amplitude and time were not designated as separate control 

parameters, instead the total energy was used. This will be discussed in later sections.  

Table 3.2.1: Parameters, Variables, Ranges, and Units for PLGA Nanoparticle Synthesis Modeling via ESEM 

Parameter Variable Range Units 
Controllable Parameters 

PLGA concentration 𝐶௉௅ீ஺ 1-10 % w/v 

Oil Phase (DCM) volume 𝑉ா
஽஼ெ 0.500 mL 

PVA concentration 𝐶௉௏஺ 1-10 % w/v 
Aqueous phase (PVA) total 
volume 𝑉௧

௉௏஺ 0.5-10 mL 

Flask PVA Volume 𝑉௙
௉௏஺ 0.4-8.0 mL 

Emulsion PVA Volume 𝑉ா
௉௏஺ 0.5-10 mL 

Wash PVA Volume 𝑉ௐ
௉௏஺ 0.0-3.0 mL 

Evaporation temperature - 22 °C 

Sonication amplitude - 10-100 % 

Sonication time - 5-1500 s 

Evaporation stirring speed - 500 RPM 

Sonication Energy 𝐸 15-15000 Joules 
Calculated Parameters 

PLGA Moles 𝑁௉௅ீ஺ 0.25-11 x10-7 Moles  

Total PVA Moles 𝑁௧
௉௏஺ 0.5-21 x10-6 Moles 

Flask PVA Moles 𝑁௙
௉௏஺ 0.25-10 x10-6 Moles 

Emulsion PVA Moles 𝑁ா
௉௏஺ 0.1-8 x10-6 Moles 
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Wash PVA Moles 𝑁ௐ
௉௏஺ 0.0-4.2 x10-7 Moles 

Total Emulsion Volume 𝑉௧
ா௠௨௟௦ 1.0-10.5 mL 

Total PVA/PLGA molar ratio 𝑅ே 1.4-198 
Moles PVA/moles 
PLGA 

Emulsion PVA/PLGA molar ratio 𝑅ே
ா  0.4-88.1 

Moles PVA/moles 
PLGA 

Specific Energy  𝐸௩ 10-6400 J/mL 
 

3.2.5 Machine Learning Methodology, Models, and Performance Parameters 

Several computational models were utilized to evaluate the process parameters’ effects on the 

average hydrodynamic size and PDI of synthesized nanoparticles. This machine learning was 

done in collaboration with Dr. Cremaschi’s group by Dr. Samira Mohammadi, who led the 

coding and implementation of the machine learning models data training, testing, and editing. 

These models include a power-law model and six different machine learning techniques – 

Random Forests (RFs), Gaussian process (GP), Artificial neural networks (ANNs), Extreme 

learning machines (ELMs), Support vector machines (SVMs), and Multi-adaptive regression 

splines (MARS). Three performance parameters are used to quantify the most precise and 

accurate model: R2, RMSE, and MAE. R2 determines the goodness of fit, with values closer to 1 

representing a good agreement between regression model predictions and actual measurements. 

Root Mean Square Error (RMSE) gives the mean value over the squared errors in the 

predictions, while the Mean Absolute Error (MAE) gives the average absolute error values of the 

predictions. For both, lower values are preferred. The equations for RMSE and MAE are given 

below.  

𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑ ൫𝑦௝ − 𝑦ො௝൯

ଶ௡
௝ୀଵ         𝑀𝐴𝐸 =  

ଵ

௡
∑ ห𝑦௝ − 𝑦ො௝ห௡

௝ୀଵ        ( 8 ) and ( 9 ) 
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For primary analysis of feature importance, optimization, and prediction modeling, the initial 

experimental data were divided into training (118 points) and testing sets (20 points). Data points 

in the testing set were selected randomly from the 20 equal width bins across the range of sizes 

obtained experimentally. Monte-Carlo cross-validation with 30 replications and 20/80 split was 

implemented for tuning model parameters during training. After the initial round of machine 

learning and analysis, more data was collected for further investigate and attempt to optimize for 

both size and PDI control. We also incorporated a small, hydrophobic dye as a model payload in 

some runs to investigate whether the loading of such payloads influences the size and PDI 

predictions. Including the cohort used in the initial round of analysis, the second set of 

experimental data consisted of 420 points. For the subsequent machine learning, which was not 

as extensive as with the initial (118 points) data set, 30-fold cross validation was performed on 

an 20/80 split for test/train, and the same performance parameters of R2, RMSE and MAE were 

used. 

3.3 Modeling Results and Discussion 

3.3.1 SEM Morphology 

Scanning electron microscopy (SEM) was used on early runs to verify morphology and DLS size 

measurements. Different samples of various average hydrodynamic diameters were selected for 

visual analysis. Figure 3.3.1 shows an example of one image. The nanoparticles showed smooth 

morphology and highly spherical shape. The images also show that the average hydrodynamic 

diameter measured via the DLS is near the hard-sphere diameter of the nanoparticles. The 

images also showed the monodispersity of the nanoparticle samples being produced, confirming 

the PDI measurements from the DLS analysis. Thus, the DLS measurement was used for all 

subsequent data collection. 
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Figure 3.3.1: SEM Images of PLGA Nanoparticles showing smooth and uniform size and morphology. 

 

3.3.2 Energy Input vs. Sonication Amplitude and Time 

As mentioned, sonication amplitude and time were not considered as separate features. In others’ 

studies, these two features were considered as separate factors for controlling the size of 

polymeric nanoparticles.91,92 Observing that these factors together determine the total sonication 

energy input, we initially investigated whether amplitude and time could be combined into one 

parameter, total energy (in Joules). Furthermore, we hypothesized that the specific energy 

density (J/mL) of the emulsion was the main contributing parameter determining droplet size. 

Therefore, we accounted for this by dividing the total energy by the total emulsion volume (mL). 

This simplified approach was validated by running several paired experimental runs, seen in 

Table 3.3.1. Using different emulsion volumes (asterisks in Table 3.3.1), the measured mean 

diameter of the particles was found to be highly similar, while the PDIs were also similar and 

considered monodisperse. A standard t-test between populations was done, with p-value for the 

size being 0.994 and the PDI being 0.525, meaning we fail to reject the null hypothesis that the 

two populations are the same. This is also evident just from visual approximation. Based on 
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these initial investigations, we removed the sonication time and amplitude setting as separate 

parameters and instead considered specific energy, with units of Joules/mL.  

Table 3.3.1: Amplitude/Time Energy Paired Experimental Run Conditions vs. Size and PDI of NPs 

Run Names 
Total 

Emulsion 
Volume (mL) 

Specific 
Energy Used 

(J/mL) 

Amplitudes 
Used 

Average 
Sonication 

Time (s) 

Final 
Measured 

Mean 
Diameter 

(nm) 

 
Final 

Measured 
PDI 

S20 / S26 1.387 / 2.906 56.95 / 53.2 30 / 50 46.5 / 37.5 244.4 / 245.0 0.042 / 0.054 

S27 / S32* 2.473 / 2.380 64.7 / 65.5 50 / 20 36 / 156 262.3 / 252.6 0.062 / 0.109 

S42 / S61* 3.243 / 3.629 75.55 / 75.65 50 / 60 50 / 34 287.6 / 288.5 0.168 / 0.062 

S43 / S58* 3.243 / 2.301 100.22 / 100.37 50 / 40 67 / 84 232.1 / 233.0 0.042 / 0.025 

S66 / S67 2.609 / 2.609 120.4 / 121.7 30 / 60 121.5 / 45 237.4 / 242.0 0.022 / 0.056 

S98/Rep2-6* 4.594 / 2.413 1200 / 1201 80 / 40 492 / 267 150.4 / 151.3 0.012 / 0.040 

CL4/CL6 3.500 / 3.500 950 / 950 50 / 60 655 / 548 168.2 / 170.1 0.145 / 0.144 

cAB12/cAB56 3.500 / 3.500 135 / 135 70 / 30 81 / 236 203.9 / 192.4 0.116 / 0.120 

F9/F13 3.000 / 3.000 300 / 300 50 / 60 256 / 168 182.7 / 193.6 0.030 / 0.150 

D45/S95 3.000 / 3.000 400 / 400 60 / 80 219 / 181 173.6 / 173.5 0.035 / 0.011 

S158/F11* 1.843 / 3.000 600 / 600 75 / 50 188 / 424 170.4 / 174.1 0.027 / 0.098 

 

The total energy reported by the sonicator is the energy required by the instrument to achieve a 

desired amplitude at the tip, which may be an overestimation of actual delivered energy. 

3.3.3 Dye Payload Effect on Size and PDI 

For a larger data set, an additional 300 points were collected, for a total of 410 points. There was 

a focus on capturing data throughout our input parameter ranges that were defined earlier (Table 

3.2.1). Additionally, we also included a small hydrophobic fluorescent green dye, Coumarin 6, at 

different concentrations to investigate whether the use of such dyes, which is commonly done in 
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laboratory applications, would affect size or PDI. For dye effect investigation, 100 of the 

additional 300 points were dyed runs. The left plot on Figure 3.3.2 below shows that little 

difference is seen with dyed vs non-dyed runs for size. However, for the same runs the 

fluorescent dye had a distinct effect on PDI, with a much larger deviation from the non-dyed 

runs and increase towards the more polydisperse. A potential explanation for this asymmetric 

effect is described by Geißler et al.100  Their work discusses that while low fluorescent dye 

concentrations is shown to have little effect on DLS measurement of size and PDI, at higher 

concentrations incident light absorption can lead to decreased correlation coefficients and thus a 

noticeable effect. It is thus hypothesized that in this case, the dye concentrations of “Mod” and 

“ModHi”, corresponding to 0.01 mg dye/mg PLGA and > 0.01 mg dye/mg PLGA respectively, 

is sufficiently high enough to explain this PDI effect. Therefore, so that a more accurate and 

meaningful model can be trained or fitted to this new data set, for all PDI models that are 

discussed in subsequent sections, only non-dyed runs were used. For size models, all data points 

were used due to no effect being seen. 

 

Figure 3.3.2: Effect of Dye on Average Hydrodynamic Diameter (nm) (left) and PDI (right), with red dashed line 
representing threshold on monodispersity (0.1). Specific Energy (x-axis) is scaled to 1400 J/mL to better show dyed 
run distributions 
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3.3.4 Synthesis Effects on Size 

Modeling for size control was done in two stages, as previously mentioned. The initial data set 

had fewer points (118), none of which were dyed, and rigorously fit to machine learning models 

and a power law model to evaluate potential control parameters and prediction power. This was 

done to better understand which features were better for control and if there were further features 

which needed to be explored at different ranges. Once this initial training and feature importance 

was done, a second (full) data set was gathered. This second data set consisted of 300 additional 

points, with 100 of those dyed, for a total of 410. These further points were gathered at a wider 

range of parameters, such as the molar ratios, and introduced more variability for the regression 

model fitting. 

Model Fits and Performance - Size 

The six machine learning models and the power law model were trained to predict the size of the 

nanoparticles with the initial data set. The comparison of the trained machine learning and power 

law models’ performances based on RMSE and MAE is given in Table 3.3.2.  From the initial 

hypothesis and screening runs, the specific energy feature (𝐸௩) showed the highest impact on the 

size. Thus, only this feature was used to fit the power law model. We consider the power law as 

the baseline model for comparison to all machine learning models, as it represents the simplest, 

best linear regression model and thus any machine learning model must exceed its performance 

to be considered. The power fit from this initial data set is shown below, with the performance 

seen in Table 3.3.2. 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  1309.3 𝐸௩
ି଴.ହ଻ହ + 149.15          ( 10 ) 
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Interestingly, this power law suggests that the minimum size that can be achieved via sonication 

of a PVA/DCM system using specific energy (𝐸௩) as the only controlling feature would be 

149.15 nm. However, this “minimum” size is specific to the process parameter ranges that were 

tested and does not take into account changes in the centrifugation collection process, which was 

tested but could affect size. Additionally, changing solvents or surfactants/co-surfactants would 

change the emulsion thermodynamics and could lead to smaller achievable sizes. For example, it 

is reported that using a partially water-miscible solvent such as ethyl acetate could result in much 

smaller achievable diameters.96 

Of the machine learning models, Random Forest (RF) was the best performing for predicting 

size on the initial training and test sets with the lowest RMSE and MAE values. The other 

techniques, generally, overfit the data, yielding lower errors for the training set but higher for the 

test set. This Random Forest model was used to evaluate feature importance regarding the size, 

which will be discussed in the next section.  

Table 3.3.2: Performance of Machine Learning Models for Initial Data Set for NP Size 

Model RMSE-train MAE-train RMSE-test MAE-test 
Power-law 33.41 24.27 37.74 27.06 
GP 34.30 23.39 38.17 27.64 
ANN 21.85 12.71 32.32 24.45 
ELM 28.18 19.34 34.49 24.49 
MARS 20.17 12.18 30.78 19.28 
SVR 27.72 18.51 34.88 24.08 
RF 26.62 21.06 22.19 17.51 
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Using the expanded dataset, we retrained the same model types, with the same 30-fold Monte 

Carlo cross-validation and 20/80 test/train split. Once again, Random Forest performed the best, 

and so we will just display these results for further discussion. In Table 3.3.3, you can see that 

when compared to the performance of the first Random Forest model, the RMSE and MAE 

increased for both the train (26.62 to 43.34, 21.06 to 26.99) and the test (22.19 to 35.64, 17.51 to 

23.03). The new Random Forest model also performed worse than the first power law model for 

the training data but performed slightly better on the test data. As this was the best performing 

machine learning model, the additional data runs introduced enough variability that the machine 

learning algorithms may not result in the most accurate predictions. 

Table 3.3.3: Performance Parameters for Random Forest for Size Control, on Full Data Set 

Random Forest Performance – Size – 2nd Data Set 

 Train Test 

R2 0.57 0.71 

RMSE 43.34 35.64 

MAE 26.99 23.03 

 

Neither Random Forest on the initial data set nor on the full data set performed better than the 

power law fit on the full data set. From Table 3.3.4, the R2 was not calculated for the initial 

machine learning models, but the RMSE is lower (24.4 vs 26.62 for RF1) and the MAE is 

comparable. The power law model also only uses specific energy as the input and is much 

simpler and more practical to use. Thus, it is clearly the preferred model of the ones tested for the 

most accurate size control, using the gathered experimental data. 
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Table 3.3.4: Power Law Regression Fit Size Constants and Performance: Full Data Set 

Power Law Regression Fits 

𝒂 ∗ 𝑬𝑽
𝒃 + 𝒄 Diameter (nm) 

a 403.2 

b -0.2265 

c 78.42 

R2 0.864 

RMSE 24.4 

MAE 29.5 

 

 

Feature Importance - Size 

In the RF model, each feature (i.e., input) can have a different weighted impact on predicting the 

output. A useful feature of RF and other machine learning modeling technique is an embedded 

function that quantifies these impacts via a metric called relative importance.101 Table 3.3.5 

shows the top seven most important features from this relative importance test of the initial data 

set.  

Table 3.3.5: Feature Importance from RF Model (Initial Data Set) Predicting Size 

Size 

Feature Importance 

𝑬𝒗 0.897 

𝑹𝑵 0.041 

𝑵𝒆
𝑷𝑽𝑨 0.021 

𝑵𝑷𝑳𝑮𝑨 0.020 

𝑵𝒕
𝑷𝑽𝑨 0.013 

𝑵𝒇
𝑷𝑽𝑨 0.004 

𝑵𝒘
𝑷𝑽𝑨 0.003 
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Specific energy (𝐸௩) was specified as the most important feature contributing around 90% 

(importance of 0.897 in Table 3.3.5) for size prediction. The molar ratio (𝑅ே) of the PVA to 

PLGA was the second most important feature. The importance of the specific energy (𝐸௩)  and 

molar ratio (𝑅ே) features is expected and significant when considering the thermodynamic base 

of emulsion formation. The work, 𝑊, needed to reduce the size of the droplets can be 

represented simply by below, where 𝛾 is the droplet interfacial tension, ∆𝐴 is the total surface 

area change which is a function of the number of droplets and their average size. 

𝑊 = 𝛾∆𝐴          ∆𝐴 = 𝑛ௗ௥௢௣௟௘௧௦,௜(4𝜋𝑟௜
ଶ) −  𝑛ௗ௥௢௣௟௘௧௦,௙൫4𝜋𝑟௙

ଶ൯        ( 11 ) and ( 12 ) 

 The sonicator tip, via the specific energy (𝐸௩), applies direct work on the droplet. This increases 

the number of droplets and decreases the average radius. The work 𝑊 is not fully captured by 

specific energy because there is some emulsion temperature change and the sonicator tip itself. 

Instead, it is the energy used by the sonicator equipment to maintain desired tip vibrational 

amplitude, and a portion of it will be lost to temperature change as stated as well as translation to 

tip kinetic energy. 

The molar ratio affects the interfacial tension of the emulsion, because as it increases the 

available PVA molecules available to coat the surface of each droplet also increases, which in 

turn decreases the free surface tension of each droplet. However, this also suggests that there is 

limit to the effect this ratio will have, as once each droplet surface is fully coated, any additional 

PVA molecule will not change free surface tension. Combined, the significance of both features 

means they can be used to control size (and PDI) in other systems as well.  
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3.3.5 Synthesis Effect on PDI 

For PDI, there were the same two states of data collection, model fitting, and analysis as for size. 

The initial data set had fewer points (118), none of which were dyed, and rigorously fit to 

machine learning models and a power law model to evaluate potential control parameters and 

prediction power.  

Model Fits and Performance – PDI 

Table 3.3.6 list the performance of models trained to predict PDI, with the last row being the 

performance of the power law linear fit of the initial data set. Random Forest again was the best 

performing model, with the lowest RMSE and MAE for the training data, and reasonably low 

RMSE and MAE for test, meaning that it did overfit the initial training data.  

Table 3.3.6: Performance of Machine Learning Models for Initial Data Set for PDI 

Model RMSE-train MAE-train RMSE-test MAE-test 

GP 0.038 0.026 0.041 0.033 
ANN 0.033 0.021 0.056 0.043 
ELM 0.041 0.029 0.056 0.043 
MARS 0.036 0.023 0.051 0.036 
SVR 0.041 0.025 0.047 0.033 
RF 0.017 0.013 0.042 0.030 
Power 0.035 0.028 0.041 0.032 

 

The same machine learning was performed on the non-dyed data set for polydispersity (PDI), 

with the performance results of the best model, again the Random Forest. Again, the 
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performance of the newly trained model with the expanded data set was worse for both training 

and test data, with RMSE rising from 0.017 to 0.05724 and MAE from 0.013 to 0.039783 for 

training set and 0.042 to 0.04978 and 0.03 to 0.032644 for test set. In contrast, the power law fit 

slightly improved from the initial data set to the full data set. The R2 (not shown) increased, 

meaning the goodness of fit increased. RMSE decreased from 0.035 to 0.031 and MAE increased 

slightly from 0.028 to 0.0369.  

Table 3.3.7: Power Law Regression Fit PDI Constants and Performance: Full Data Set 

Power Law Regression Fits 

𝒂 ∗ 𝑬𝑽
𝒃 + 𝒄 PDI 

a 1.271 

b -0.861 

c 0.03216 

R2 0.814 

RMSE 0.0311 

MAE 0.0369 

 

Based on the performance parameters, the PDI models for more varied full data set had decent 

accuracy and error for PDI control, but the models for PDI were more accurate and gave better 

predictions with using just specific energy as inputs. Technically, PDI control is not the goal, 

rather it is preferable to just ensure that the PDI is minimized. Thus, further analysis was done 

with other input features to optimize the size control and minimize PDI.  

Feature Importance – PDI 

Using the Random Forest model on the initial data set, the relative importance of the synthesis 

parameters on the PDI was determined. Table 3.3.8 shows the ranked importance of the top 

seven features. Once again, specific energy showed the greatest importance, accounting for 
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around 74% (0.744) of the total importance. Total molar ratio (𝑅ே) was again the second most 

important feature, and the importance increased compared to its importance on size, tripling from 

4% to 13%.  Again, the moles of PLGA and PVA (total and in each step) had minimal but 

ranked effect. However, with less predictable control seen for PDI than for size, more analysis 

into how exactly the molar ratios can be used to minimize PDI is needed.  

Table 3.3.8: Feature Importance from RF Model (Initial Data Set) Predicting PDI 

PDI 

Feature Importance 

𝑬𝒗 0.744 

𝑹𝑵 0.130 

𝑵𝑷𝑳𝑮𝑨 0.070 

𝑵𝒆
𝑷𝑽𝑨 0.025 

𝑵𝒕
𝑷𝑽𝑨 0.014 

𝑵𝒇
𝑷𝑽𝑨 0.009 

𝑵𝒘
𝑷𝑽𝑨 0.008 

 

Molar Ratio Trend Analysis and Performance Optimization 

A simple model with one scalable input factor would be more desirable, especially one that 

provides precise control of both size and PDI. We saw with the feature importance analysis that 

other factors influence both outputs. These features were determined to be the molar quantities of 

PVA and PLGA for size and PDI. To maintain the practicality of both power law fits and 

improve them, we desired to find scalable process parameters which could be optimized to 

provide higher prediction accuracy for size and minimize PDI. For this, we chose to analyze the 

effect of the total molar ratio (the total moles of PVA used divided by the moles of PLGA used) 

and the emulsion molar ratio (PVA moles used in the emulsion step divided by PLGA moles). 



79 
 

They are both scalable and can be held constant while still changing the other factors, such as 

PLGA moles or PVA emulsion moles, which were determined to have some importance on size 

and PDI. For this analysis, the data (all data for size, non-dyed for PDI) was grouped in bins of 

molar ratios that contained roughly equal number of points, and the molar ratios were log-scaled 

to distribute more evenly. For the quantification of effect on accuracy, a best fit power law model 

with specific energy was found for the data in each bin, and the adjusted R2 was then plotted vs. 

the natural logarithm of the right edge of each bin. Each bin contained a comparable range of 

specific energies, and so the molar ratios (total or emulsion) which have the best fit and thus best 

prediction can be analyzed. To quantify whether there exists a bin range with higher 

monodispersity, we used the same bins for both total and emulsion molar ratios and calculated 

the percentage of the points in each bin that lie below the monodispersity threshold (≤ 0.1). 

These percentages were then plotted against the natural logs of the bin edges as was done with 

the Goodness of Fit analysis. 

Figure 3.3.3 shows the Adj R2 for both size (green) and PDI (red) for the various total molar ratio 

bin ranges. The prediction accuracy of the size data is poor for very low total molar ratios, but 

quickly improves as it increases into the second bin, with goodness of fit (GoF) about 0.9. There 

is a decrease in GoF as total molar ratio increases from third bin to fourth, but this is likely due 

to the unequal number of points in this one bin, which was a result of the sorting. Beyond this 

one bin, the fit remains above 0.90 for all bins up to ln (𝑹𝑵) of 4.5, before it decreases to 0.7. 

PDI GoF varies more widely with total molar ratio. It is highest in the fifth bin, but no general 

trend can be reliably determined for PDI.  
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Figure 3.3.3: Goodness of Fit (Adj. R2) vs Total Molar Ratio of Size (green) and PDI (red) 

Figure 3.3.4 shows the percent monodispersity across the total molar ratio bins. The lower ranges 

of total molar ratio (bins 1-3) fluctuates in the number of runs which are monodisperse, but at 

Ln(𝑹𝑵) or greater, a high percentage of every run is monodisperse. The points within the sixth 

and seventh bins, particularly, are the highest percentage.  

 

Figure 3.3.4: Percent Monodispersity within each bin for Total Molar Ratio 
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Figure 3.3.5 shows the GoF for size and PDI with respect to the log of the emulsion PVA molar 

ratio (ln𝑅ே
ா). Size control was good after the lower emulsion molar ratios, but PDI showed high 

variability, with the best control in bins 4-6.  

 

Figure 3.3.5: Goodness of Fit (Adj. R2) vs Emulsion Molar Ratio of Size (nm) and PDI 

However, when looking at the percent monodispersity (Figure 3.3.6), a similar trend as for total 

molar ratio is evident. PDI percent fluctuates from bin 1-3 but remains fairly high and constant 

as emulsion molar ratio increases, with highest percentage in bin 6.  
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Figure 3.3.6: Percent Monodispersity within each bin of Emulsion Molar Ratio 

Based on this analysis, the greatest precision for controlling size and highest probability of 

monodisperse nanoparticles occurs at total molar ratios is within bin 5-6. This corresponds to 

total molar ratios of 13.5 to 28. For the emulsion molar ratios, bin 6 also showed the greatest 

GoF for size control combined with the highest percentage monodispersity, corresponding to 

emulsion molar ratios of 6.4 to 11.4.  

We tested the accuracy of the power law model to ten points with which the total and emulsion 

molar ratios were kept within these newly found bin range values. The synthesis conditions for 

these points were specifically set so that different PVA concentrations and volumes were used. 

Roughly equal specific energies were also chosen for each set, concentrated in the lower specific 

energy to test the fit at the most dynamic region of the predicted trend line. In addition, for every 

pair between sets that have the same specific energy, different amplitudes and times were used to 

demonstrate the flexibility for desired power setting to achieve a necessary energy input. These 
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settings can be seen in Table 3.3.9, as well as the measure average diameters and PDI and the 

predicted diameter and PDI from the power law for the desired specific energy.   

Table 3.3.9: Specific Energy, Amplitudes, and Sonication Times for Molar Ratio Power Law Test Points 

Run Names 
Total Emuls 

Vol (mL) 

Specific 
Energy 
(J/mL) 

Amp % 
Sonication 

Time (s) 
Obs HD 

(nm) 

 

Obs PDI 

Predicted 
HD (nm) 
and PDI 

PowerTest1/6 

2.700 / 3.500 

16 / 18 20 / 50 25 / 12 305 / 287 0.216 / 0.213 291   0.149 

PowerTest2/7 30 / 30 30 / 50 41 / 26 244 / 241 0.075/0.102 265   0.100 

PowerTest3/8 50 / 53 30 / 50 76 / 46 221 / 219 0.074/0.074 244   0.076 

PowerTest4/9 251 / 250 50 / 70 208 / 144 188 / 184 0.045/0.057 194   0.043 

PowerTest5/10 450 / 450 70 / 80 213 / 168 179 / 178 0.059/0.042 179   0.039 

 

The resulting measurements were very close to the predictions from the updated power law 

model fit. At both the lower specific energy points (largest sizes) and the higher specific energy 

points (smallest sizes), the difference was the smallest, meaning that the updated power law 

model was better at predicting both parameters at these ranges. It seemed to overpredict size and 

the intermediate specific energies test, and slightly underestimate the PDI for the lowest specific 

energy (see Figure 3.3.7). 
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Figure 3.3.7: Predicted vs. Observed Values for Size (nm) (left) – Polydispersity Index (right) for Molar Ratio Test 

 

We calculated the new goodness of fit, RMSE, MAE, and the number of points which can be 

considered monodisperse with the size control power law model determined in Section 4.5.2. 

The results can be seen in Table 3.3.10. For both size and PDI, all performance parameters 

improved from the training data (Table 3.3.4 and Table 3.3.7). This demonstrates that the 

proposed optimum ranges for total and emulsion molar ratios improved the predictability of 

nanoparticle size within the specific energy ranges tested, with achievable sizes from 300 nm to 

170 nm. It also demonstrated that PDI control could be achieved, with the majority of points 

being monodisperse (≤ 0.100) and all points being less than 0.250, which is often considered 

acceptable for many applications.  

Table 3.3.10: Performance of Molar Ratio Test Points to Power Law Model Fit 

Updated Power Law Model Fit Test Data Performance 

 Size (nm) PDI 

R2 0.9251 0.852 
RMSE 15.4 0.033 
MAE 12.2 0.021 

% Monodisperse 70% 
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3.4 Particle Release Kinetics Fits and Analysis 

Developing a model which uses scalable and variable parameters for size control is the first step 

in achieving controlled release from polymeric nanoparticles. We also much characterize their 

release behavior and mechanism before forming shells around them. The following sections 

summarize this characterization of the release kinetics of the PLGA nanoparticles as well as 

PLLA nanoparticles so that baseline kinetics can be established for the shell material and 

compared to those of core/shell nanoparticles in the next chapter. 

3.4.1 Dye Standard and Quantification Method 

A dye standard was developed for each solvent condition since different mixtures of solvents are 

used for release and loading analysis for each dye. The general protocol is that eleven different 

concentrations of a dye in desired solvent was made using serial concentrations, along with a blank. 

This dye was added to a black 96-well plate and the SpectraMax fluorescent wavelength 

optimization determines the excitation and emission wavelengths for future readings for those 

specific conditions. At least 6 wells of each standard concentration are read at the optimum 

wavelengths. If the trend is linear, then this range is fitted to a linear trend where the y-intercept is 

0 for future loading and release studies. Table 3.4.1 shows a table of linear fits of standards.  

 Coumarin-6 (C6): hydrophobic dye, 350.436 Da 

 5(6)-Carboxyfluorescein (CF): hydrophilic dye, 376.32 Da 

 

Table 3.4.1: Fluorescent Standards 

Standard 𝝀𝒆𝒙𝒄 𝝀𝒆𝒎𝒊𝒔𝒔 m Blank 

CF + 1%PVA + 1M NaOH 465 515 7.7112E-12 22600819.5 
C6 50:50 1X PBS/EtOH 475 515 2.3800E-09 43118.5 

C6 Undissolved + 1X PBS 460 640 5.8600E-09 1981.625 
C6 33% EtOH 475 515 1.2684E-10 38548.125 
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For all release studies, the same general protocol is used. A known mass of lyophilized 

nanoparticles are dispersed in 1mL of 1X PBS (pH 7.4). Equal masses (roughly 1mg) are separated 

into individual microfuge tubes for all the replications, and all are diluted back to 1 mL. All release 

tubes are sonicated briefly and placed in a Rotoflex inside a 37°C incubator and set to rotate. At a 

given time point, every tube is removed from the incubator and immediately centrifuged at 14,800 

RPM for 30 minutes. The supernatants are quickly transferred to fresh microfuge tubes, being 

careful not to disturb the pellet. One milliliter of fresh 1X PBS is added to the pellet microfuge 

tubes and all are sonicated to fully disperse the pellet before they are returned to the incubator 

rotation. For coumarin 6, 0.5 mL of ethanol is added to each supernatant microfuge tubes and the 

tubes are vortexed and left covered overnight to fully dissolve dye. Two 100 μL samples of each 

supernatant are then read in the SpectraMax and calibrated using the relevant standard to determine 

the total mass released at that time point.  

3.4.2 Model Fit Analysis for Release Mechanism 

Eight PLGA nanoparticle formulations and nine pure PLLA nanoparticle formulations were 

loaded with hydrophobic Coumarin-6 (C6) dye as a model for small molecule hydrophobic 

chemotherapeutics. The first four PLGA nanoparticle runs (with PDI > 0.10) had 0.0097 mg of 

C6 per 1 mg of PLGA (0.97% loading capacity), with a loading efficiency on average of 97% ± 

1.2%. The other four PLGA nanoparticles runs (PDI < 0.1) had on average 0.0047 mg C6 dye 

per 1 mg of PLGA (0.47% loading capacity), with an average loading efficiency of 94% ± 2.4%; 

the reason less dye was used was due to decrease the PDI to measure more consistent release. 

The pure PLLA nanoparticle formulations all had similar loading to the monodisperse PLGA, 
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with 0.0049 mg C6 dye per 1 mg of PLLA, with a loading efficiency of 98%. The loading 

efficiency was measured by mass balance, with known mass of dye put in and subtracting the 

total massed release of the known mass of PLGA in the release sample (each around 1 mg) The 

release kinetic models previously discussed were fit to each nanoparticle run. Each model 

assumes different release mechanisms dominate, so the best model’s goodness of fit and kinetic 

constants elucidate what effect, if any, the nanoparticle polymer, size, and PDI have. 

Table 3.4.2 shows the model fits for one PLGA run, representing all runs. The goodness of fit is 

best for the diffusion-driven models, Korsmeyer-Peppas and Peppas-Sahlin, followed closely by 

the Hopfenberg model, the Higuchi, and the Weibull. This result would suggest that the release 

from PLGA nanoparticles is diffusion-driven from initial inspection. Looking at Table 2.1.1, the 

Korsmeyer-Peppas exponent fits the non-Fickian diffusion, with contributions from chain 

relaxation and diffusion equally. The Peppas-Sahlin fit separates these terms into two different 

rate contributions, with k1 being the diffusional contribution which was larger for the PLGA 

release. However, these fits are only valid for the first 60% release, and when looking at the fit of 

the plot (Figure 3.4.1), another mechanism is more appropriate. The Hopfenberg model is a 

better overall fit for the entire release profile, while the diffusion driven models tended to 

underestimate the release at later times. This suggests that the dominant release mechanism is 

surface erosion, not diffusion, especially at later times. For the entire release, diffusion likely 

contributes some early, supported by the close fit of the diffusion driven models early on, before 

the polymer chains hydrolyze and accelerates. This agrees with literature, where PLGA with 

higher GA content hydrolyzes more quickly than one with more LA40, but takes more time to get 

speed up from initial hydration. It is to be noted that the Weibull particularly had both high 

goodness of fit and good overall graphical fit for the release time (not shown). It was not used for 
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mechanism analysis, as it is purely experimental and does not correlate to any physical properties 

of the system.  

Table 3.4.2: PLGA NP Release Kinetic Model Fits 

 

 

 

Figure 3.4.1: PLGA NP Fit Plots – Hopfenberg, Korsmeyer-Peppas, Peppas-Sahlin 

The pure PLLA nanoparticles fit to the models displayed a different dominant release 

mechanism than the PLGA nanoparticles. Korsmeyer-Peppas and Peppas-Sahlin were again the 

best GoF and lowest RMSE (one example seen in Table 3.4.3). The Hopfenberg model was the 

worst fit, and looking at the plots (Figure 3.4.2), did not fit the overall release time as was the 

case for the PLGA nanoparticles. The n exponent from the Korsmeyer-Peppas fit was just over 

0.45, meaning the diffusion match with that of non-Fickian diffusion, but with a slower rate that 

PLGA nanoparticles (0.034 versus 0.068). The rate constants for the Peppas-Sahlin also were 
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lower for PLLA than PLGA, with k1 higher than k2 by an order of magnitude. This first rate 

constant corresponds to the contribution of diffusion over polymer chain relaxation, and so a 

larger rate suggests that the release from PLLA is dominated by non-Fickian (n>0.45) diffusion. 

Table 3.4.3: PLLA NP Release Kinetic Model Fits 

 

 

 

Figure 3.4.2: PLLA NP Fit Plots – Hopfenberg, Korsmeyer-Peppas, Peppas-Sahlin 

3.5 Investigation into Model Adaptation for Scale-Up 

The main barriers to the clinical translation of polymeric nanoparticles are the lack of control and 

scale-up manufacturing. By modeling the ESE method at the lab scale, we determined a 

relationship between size and the scalable parameter, specific energy, achieving a good level of 

control. However, this batch process must be translated into a continuous flow process for 
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realistic scalability. Others, such as Schiller et al.102, have successfully translated the ESE 

method to a larger (2.5 g/batch) scale using contact-free transducers and energy input as the 

controlling parameter of size. However, they do not use an actual continuous process; instead, it 

is a semi-batch process.  We have done initial theoretical modeling for translating the batch size 

power law relationship found in our earlier modeling work to a continuous flow process. To 

retain the same size control, it must deliver the same specific energy into a volume by controlling 

the amplitude power setting and the volumetric flow rate. We have chosen to model this based 

on existing equipment made for this purpose, the QSonica High Volume Continuous Flocell with 

1-inch probe (see Figure 3.5.1 ). 

 

Figure 3.5.1: QSonica High Volume Continuous Flocell Equipment Setup 

The added benefit of this system is the cooling jacket. High amplitudes can raise emulsion fluid 

temperatures in seconds, reaching the boiling point of the organic solvents and destroying the 

emulsion. A jacketed sonication chamber can eliminate this complication.  

To convert the batch specific energy to a continuous energy input per working volume, we used 

the known specifications of the probe tip sonicator and the Flocell probe and vessel. The 1/16 th 

inch probe microtip as well as the 1” Flocell probe vibrates at a known frequency (20 kHz) and a 
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known amplitude, a linear function of the power setting and the maximum amplitude. For 

example, at the 80% amplitude setting, the tip amplitude is 80% of the maximum specification, 

which we call the vibrational distance. During one cycle, the tip travels that distance four times 

(forward and back one direction, then forward and back the other). Therefore, the total 

vibrational distance in one cycle is the vibrational distance times four. Figure 3.5.2 shows a 

simple diagram of this vibration.  

 

Figure 3.5.2: Batch Probe Tip Sonicator Vibration Amplitude Diagram 

Multiplying this vibrational distance by frequency results in the vibrational rate, in cm/s, which 

is a function of the amplitude power setting. For each PLGA data point, we found the vibrational 

rate and multiplied by the total sonication time to determine the total vibrational distance during 

the batch sonication. This total vibrational distance is applied to a certain fluid volume over a 

known length down the probe tip. Therefore, the probe’s characteristic length is the sonication 

volume divided by the probe surface area available for sonication, in units of cm. This is similar 
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to the characteristic length of a cylinder, which we are approximating. We then multiplied by the 

probe’s characteristic length to account for different probe tip surface areas and working 

volumes. In simple terms, we are finding the translational distance of the probe tip necessary to 

achieve a specific energy. This translation is the mechanism by which the specific energy is 

delivered and occurs down the length of the entire probe. A larger probe tip, with more surface 

area, can vibrate less but remain in contact with the emulsion for longer, resulting in the same 

energy delivered per volume. O’Sullivan et al.103 saw this in their work in food-grade emulsion 

batch-to-continuous scaling, where they used different geometries of in-flow sonicators to 

achieve more efficient sonication at lower amplitudes. We calculated the characteristic lengths 

and vibrational rates of the batch probe tip and the continuous flow tip. We used them to convert 

the total vibrational distance to the continuous flow probe tip. We can then find the required 

volumetric flow rate and amplitude power setting to achieve a desired specific energy, which we 

have found is what mainly determines the final nanoparticle size. The PDI can be minimized by 

adjusting the fluid conditions, but O’Sullivan et al.103 saw that evenly-distributed sonication is 

more easily achieved with larger surface area probes. Figure 3.5.3 shows the generated 

calibration chart for achieving specific nanoparticle diameters. Smaller desired diameters require 

much larger specific energies so the volumetric flow rate remains low for all amplitudes to allow 

for complete sonication tip translation. Larger sizes require smaller specific energies, so the 

volumetric flowrate can be quite fast at larger amplitudes. 
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Figure 3.5.3: Continuous ESE Sonication Method Calibration Chart 

Using the PLGA data as a basis, there was an average of 2.5 mg per mL of emulsion volume. If 

the same concentration was used for this system, theoretically this process could produce roughly 

62 mg of 200 nm particles per min if operated at 100% amplitude, which is roughly 90 g/day if 

run continuously for this setup. This drastically improves the scalability of this process, and this 

polymer concentration could be increased. These calculations are preliminary and entirely 

theoretical, and more experiments are needed to test and calibrate the accuracy of these 

predictions. The evaporation process setup is another hurdle, as in the batch system this takes at 

least 30 minutes to an hour per batch. This could be avoided by combining this method with a 

nanoprecipitation step, which would replace the time-consuming evaporation and lead to flash 

drying. Potentially, this could be done with microfluidics to maintain the continuous process 

setup. 
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3.6 Cryoprotectant for Size Retention 

No matter the scale, the nanoparticle size and PDI must be retained post-synthesis to retain the 

desired release behavior. For long-term storage nanoparticles are often lyophilized (freeze-dried) 

until shipment or further modification. Freeze-drying, though, can damage the particles and 

accelerate degradation. The PLGA nanoparticle degradation occurs due to mechanical stress 

from water crystals upon freezing before lyophilization.104 Sugar solutions such as trehalose, 

glucose, fructose, and sorbitol have been used as cryoprotectants to prevent aggregation and 

reduce the stress from ice crystals.105 Cryoprotectant concentrations typically range from 1% to 

10% (w/v), but less cryoprotectant is preferable to not introduce extra mass. For this study, three 

different concentrations (0.5%, 1.5%, 3.0% w/v) of glucose and trehalose were investigated and 

compared to control particles with deionized water. Glucose is a reducing sugar while trehalose 

is non-reducing, with each chosen for comparison. Once synthesized and washed, nanoparticles 

are sized via DLS, with the remainder centrifuged again for at least 30 minutes at 14,800 RPM 

and then resuspended in 1 mL of their corresponding cryoprotectant solution before being frozen 

at -80°C overnight. The particles with cryoprotectants are then lyophilized and stored in different 

temperatures to study the storage stability.  
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Figure 3.6.1: Average Percent Change of Size vs Cryoprotectant Concentration – Room Temperature 

 

 

Figure 3.6.2: Average PDI Change vs Cryoprotectant Concentration – Room Temperature 

For this discussion, only the results for room temperature storage are displayed as at this 

temperature the nanoparticles were the least stable, and all results carry over to lower 

temperatures (Figure 3.6.1 and Figure 3.6.2). The experiment showed that for the tested time (12 

weeks), the average percent change of size with no cryoprotectant was +24.8% for storage at       

-80°C and increased with increasing storage temperature, with +55.5% increase for -4°C and 
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+142% for room temperature storage. PDI did not change at -80°C for the control but also 

increased as storage temperature increased. This result is due to the higher humidity at higher 

temperatures, accelerating polymer hydrolyzation and thus particle degradation, and emphasizes 

the importance of cryoprotectants. Between glucose and trehalose, trehalose showed improved 

storage stability over glucose, which had more variability between samples for both size and PDI 

change at all temperatures. All three concentrations of trehalose showed excellent size and PDI 

retention over the tested time at each temperature. More variation occurred with 0.5% trehalose, 

so 1.5% trehalose was chosen as the cryoprotectant concentration. SEM visualization was done 

on the degraded and cryopreserved particles as well. Figure 3.6.3 shows the control particles’ 

fused morphology and degraded structure, while Figure 3.6.4 shows the retained smooth 

spherical morphology and size distribution of the trehalose-preserved nanoparticles. This further 

demonstrates the need for cryoprotectant for storage of these particles, whether in the lab or 

commercial use.  

 

Figure 3.6.3: PLGA Nanoparticles with Degraded and Aggregated Structure from Storage at -80°C with no 
Cryoprotectant 
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Figure 3.6.4: Intact and Spherical PLGA Nanoparticles Showing Trehalose Cryoprotectant Effect 

 

3.7 Conclusion 

Before investigating how core and shell polymeric nanoparticles can be formed efficiently, we 

required better understanding and control of the cores’ properties. The size and PDI of PLGA 

nanoparticles affect their release and in vivo performance, and so are what we chose to focus on 

controlling. We used machine learning and trend analysis with the most common PLGA NP 

formation methods to find features which could control size and minimize PDI. We found that a 

scalable feature, specific energy, is the dominant factor for controlling size, and determined other 

process parameters could be tuned so that the size distribution was minimized. We characterized 

the nanoparticles’ release and dominant release mechanisms, before doing initial calculations on 

how the model and knowledge we gained about the batch process could be applied to a 

continuous formation process. Finally, we determined the cryoprotectant conditions necessary to 

maintain the size and PDI we achieved in long-term storage, facilitating use for later core and 

shell formation experiments.   
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Chapter 4: Investigation into Core and Shell Synthesis Methods, Efficiency 

and Controlled Release 

4.1 Introduction 

Single polymeric core nanoparticles have many advantages for controlled drug delivery. 

Properties such as polymer makeup, size, and surface characteristics are tunable for high loading 

efficiency and varied controlled release of a wide range of payloads. Specifically, small 

hydrophobic drugs are easily loaded within biocompatible and biodegradable polymers such as 

PLGA and PLLA due to their compatible solubility. This encapsulation significantly improves 

their bioavailability and residence time within the TEW. We have shown in the previous chapter 

that we can use scalable synthesis features to reasonably control the size and PDI of PLGA 

nanoparticles, which can then effectively tune the release rate. However, this tuning has its 

limitations. There often is an optimum nanoparticle size range based on the application. 

Circulating nanoparticles’ diameters meant to target solid tumors, for instance, should remain 

between 150 to 200 nm to utilize the EPR effect and reduce their in vivo clearance.33,60 Single 

polymer nanoparticles’ size can only be tuned within this range to vary the release rate, limiting 

their variable range. Additionally, PLGA nanoparticle cores often still have a period of burst 

release from near-surface drugs, causing off-target systemic effects69. One solution is introducing 

stimuli-responsive surface ligands that shield the negatively charged particle’s surface.53 These 

molecules limit any initial burst release but introduce materials unapproved by the U.S. FDA, 

require more extensive safety and efficacy testing for clinical translation, and suffer the same 

scalability challenges as polymeric nanoparticles.106 Instead, coating the polymeric cores with 

another degradable polymer can shield the interior encapsulated drug and overcome these 

challenges. Suppose the polymer shell coating degrades relatively slowly. In that case, the 
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necessary shell thickness to slow the overall release rate is reduced, allowing for greater 

variation within the optimum total size range. This advantage is the motivation for using core 

and shell (C/S) polymeric nanoparticles.  

We investigated several polymers with preliminary release experiments (not shown) for the ideal 

core and shell formulation. PLGA seemed the obvious choice for the core. We have already 

demonstrated reasonable size control with good monodispersity, and the baseline release kinetics 

are well understood. When determining an appropriate shell polymer, we investigated several 

materials, including chitosan, polycaprolactone, and poly (L) lactic acid (PLLA). Due to 

electrostatic interactions and hydrophilicity, chitosan demonstrated favorable adhesion to the 

PLGA cores. However, the release kinetics are generally too fast for sustained release at the 

nanoscale, and the hydrophilic nature led to unpredictable swelling in early tests. 

Polycaprolactone (PCL) is FDA-approved and biocompatible but degrades extremely slowly and 

has high mechanical strength, which makes it ideal for implants or depots but makes it difficult 

to combine with PLGA. Poly (L) lactic acid (PLLA), a semi-crystalline conformation of PLA, 

demonstrated the right balance between sustained release kinetics, compatible mechanical 

strength, and solubility for the shell polymer. Therefore, PLLA was chosen as the shell material. 

Previous Work 

Core and shell polymeric particles are synthesized in various ways, including consecutive 

emulsions, dispersions, or multi-step free radical polymerization.107 Free-radical polymerization 

can be highly efficient but time-consuming, difficult to scale, and costly. Emulsion and 

dispersion-based methods can be simple and cost-effective, but lack control over particle 

properties such as size and PDI and are also difficult to scale. Other researchers have 

investigated PLGA/PLLA core/shell particles, and they are typically formed using a top-down 
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method such as electrospraying (CEDA) or the emulsion methods. The emulsion methods, such 

as the method used by Lee et al.108, look to take advantage of the immiscibility of PLGA and 

PLLA when dissolved at high enough concentrations in DCM. Using an ultrasonicator, they 

formed an oil-oil-water emulsion. These PLGA/PLLA core/shell microspheres achieved a 

delayed controlled release profile, as seen in Figure 4.1.1. However, these particles were too 

large (> 10 μm) for cancer targeting, and they could not control the sizes of both the cores and 

the shells. 

 

Figure 4.1.1: Delayed Release from PLGA/PLLA Core/Shell Microspheres, from Lee et al.108 

 

Although simple and translatable from the ESE method, the core/shell emulsion method has been 

limited in its success in producing true nanoscale, monodisperse PLGA/PLLA core/shell 

nanoparticles whose dimensions are well controlled. Another method, developed in the early 

2000s, has grown in prominence for its potential to produce polymeric nanoparticles with 

complex morphologies and monodisperse size distributions: nanoprecipitation. This technique 

uses a combination of solvents and non-solvents to quickly change polymer solubility within 

different solution phases, essentially flash-solidifying droplets as they form. This technique is 
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commonly used to produce nanoparticle cores. For example, Bilati et al.109 used a combination of 

solvents, and non-solvents and stirring to produce sub-400 nm monodisperse PLGA and PLA 

nanoparticles with high entrapment of hydrophilic payloads. Chiesa et al.110 incorporated 

microfluidic platforms with nanoprecipitation and optimized the system to produce PLGA 

nanoparticles ranging from 100-900 nm with high loading of hydrophilic payloads. This process 

substantially improved the core size control and scalability of the process, but the PDI was often 

too high (>0.2) to be considered monodisperse. However, it represents the great potential and 

flexibility nanoprecipitation methods have for producing complex polymeric nanoparticle 

structures. Recently, Yan et al.111 highlighted several efforts of combining different polymers, 

co-polymers, solvents, and non-solvents to form highly complex morphologies, such as stacked 

lamellae, two-faced, swirl-mixed, and core and shell nanoparticles (see Figure 4.1.2). These 

methods generally use the ratios between phases, the volumetric flow rate, or Reynolds number 

for microfluidic methods, to adjust the total core/shell nanoparticle size. They can achieve 

uniform nanoparticles from 50-300 nm by finding the phase compositions where the “Ouzo 

effect” occurs. The “Ouzo effect” is a phenomenon where stable solid particles form 

spontaneously from droplets with no surfactant present112. Liu et al.113 developed a consecutive 

coaxial microfluidic system that was impressively versatile in its ability to form high uniform 

core and shell nanoparticles of a wide range of polymer combinations at a high production rate 

(700 g/day) by remaining in the “Ouzo effect” regime. It was able to achieve high loading of 

small hydrophobic chemotherapeutics such as docetaxel and paclitaxel (PTX) with reproducible 

total diameters of 200 nm and below, within the optimum size range of cancer targeting. 

However, there are several drawbacks to this method. It is often difficult to determine exact 

synthesis conditions (flow rate, Reynolds number, volumetric ratio) for the “Ouzo effect” as it 
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changes for each system composition112. Importantly, independently controlling the core and 

shell dimensions has been limited, and work on this is in its infancy. Individual control of the 

size of the cores and shells would provide stronger rational design and improved performance, 

especially for multimodal controlled release. Additionally, many of the microfluidic systems are 

custom and difficult to scale-up effectively.  

 

 

Figure 4.1.2: Possible Complex Polymeric Nanoparticle Morphology via Nanoprecipitation 

There is high potential for the core and shell nanoparticle system because of the improved 

controlled release of small hydrophobic drugs and optimum size range. Two different synthesis 

methods, the emulsion method and the nanoprecipitation method, have distinct advantages and 

disadvantages associated with them. This chapter outlines our investigations in adapting the 

emulsion method Lee et al.108 and other groups used due to the similarity with the PLGA core 

method we modeled previously. Early experiments were performed with an adapted solvent/non-

solvent precipitation method to form PLGA/PLLA core/shell nanoparticles, but this data is 

preliminary and thus will not be discussed in this document. We seek to combine our knowledge 

gained from the PLGA core synthesis modeling and analysis to produce PLGA/PLLA core/shell 
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nanoparticles with high efficiency and precise and controllable core and shell dimensions, 

something that has been limited thus far in other promising studies. The control of these 

dimensions and the efficiency will attempt to use scalable parameters, as was done for the PLGA 

core synthesis in Chapter 3, to facilitate process scale-up if the processes are capable of 

optimization. 

4.2 Materials and Synthesis Method 

4.2.1 Materials and Equipment 

Poly (L) lactic acid (PLLA) (MW: 90 kDa) was purchased from Polysciences Inc. (Warrington, 

PA). Polyvinyl alcohol (PVA) (MW: 50 kDa) were purchased from Sigma Aldrich (St. Louis, 

MO). Dichloromethane (DCM, ≥99.5%, Macron Fine Chemicals TM) was purchased from 

VWR. MISONIX QSonica Q700 Sonicator with microtip (MISONIX, NY) was used during the 

emulsion formation. Deionized (DI) water was obtained using a PURELAB Flex2 water purifier. 

Coumarin-6 (MW: 350.4 Da) and Rhodamine B (MW: 479.02 Da) were purchased from Acros 

Chemicals and Sigma Aldrich, respectively.  

4.2.2 Modified Emulsion Evaporation Method 

Our method modifies the ESE method to attempt to use similar hydrophobicity of pre-formed 

PLGA cores and dissolved shell polymer to form core and shell nanoparticles. The process can 

be seen in Figure 4.2.1, and is similar to methods used by Xiao et al.70 and Lee et al.108. PLGA 

nanoparticles of known size and PDI are resuspended in PVA via sonication. The PLGA 

nanoparticles PDI should ideally be monodisperse for equal distribution of the shell phase 

around each core. The PLLA shell material is dissolved in the organic solvent (DCM) and these 

two phases are combined and sonicated. This sonication has a dual purpose: simultaneously 
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reducing the PLLA droplet diameter and forcing the pre-formed PLGA cores into the droplets. 

This will ideally form a s/o/w emulsion. After allowing the organic solvent to evaporate, the 

particles are collected, washed, measured, lyophilized, and weighed. With the PLGA synthesis 

modeling as a basis, the same features were recorded for trend analysis, primary component 

analysis, and feature importance ranking using machine learning (Table 4.2.1). Some additional 

features, specific to the core and shell methods, were also recorded.  

Additional features are necessary to capture how the PLLA/DCM droplets are forming around 

the cores. For the modeling, we will use the input features and the measured outputs to estimate 

the efficiency of core/shell nanoparticle formation. This efficiency is dependent on the original 

core sizes and the number of cores available in the system. As we have determined, the core 

diameter is a function of the specific energy used. This is also true for the PLLA/DCM droplet 

which we want to form a shell around the core. We hypothesize that a similar power law 

relationship should exist for the PLLA droplets, so that similar specific energies will result in 

similar average diameters. Therefore, we should expect that using a specific energy much greater 

than the specific energy used for the core will lower the core/shell formation efficiency. We test 

this hypothesis in a later section, but to account for the relationship, we record the core specific 

energy and the ratio between both specific energies. 
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Figure 4.2.1: Modified Core/Shell Emulsion Evaporation Method 

 

Table 4.2.1: Input Parameters, Variables, and Ranges for Core and Shell Formation Modeling and Optimization 

Parameter Variable Range Units 

Core and Shell Specific Input Parameters 

Specific Energy – Core 𝐸௩
௖௢௥௘ 20-650 J/mL 

Average Core Diameter 𝑍௉௅ீ஺ 160-380 nm 

PLGA mass added 𝑚௉௅ீ஺ 0.55-5.5 mg 

PLLA mass added 𝑚௉௅௅஺ 0.6-33.0 mg 

Multiple (mass PLLA/mass PLGA) 𝑀 0.25-10.5 dimensionless 

Specific Energy Ratio 𝐸ோ 0.08-3.8 dimensionless 
Controllable Parameters 

PLLA concentration 𝐶௉௅௅஺ 0.5-7.5 % w/v 

Oil Phase (DCM) volume 𝑉ா
஽஼ெ 0.026-2.0 mL 

PVA concentration 𝐶௉௏஺ 1-6 % w/v 

Aqueous phase (PVA) total volume 𝑉௧
௉௏஺ 2.2-8.2 mL 

Flask PVA Volume 𝑉௙
௉௏஺ 1.00-4.00 mL 

Emulsion PVA Volume 𝑉ா
௉௏஺ 0.75-3.0 mL 

Wash PVA Volume 𝑉ௐ
௉௏஺ 0.0-1.6 mL 

Sonication amplitude - 20-85 % 

Sonication time - 13-360 s 

Sonication Energy 𝐸 25-2000 Joules 
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4.3 Formation Efficiency Modeling Methodology 

The primary method we will analyze is emulsion-based due to the process similarity with the 

PLGA core synthesis. We hypothesize will allow us to translate the size and PDI control. We 

gathered 101 points for the emulsion-based method, with parameters and variables within the 

ranges defined in Table 4.2.1.  

4.3.1 Particle Population Theory and General Equations 

Ideally, upon mixing and sonication, both polymers’ entire mass would produce core and shell 

nanoparticles of uniform core and shell dimensions (left side, Figure 4.3.1). When others have 

studied this method, a 100% formation efficiency has been assumed69. In our experience, based 

on these results, this is an inaccurate assumption. Inefficiencies with both the PLGA and PLLA 

distribution could occur. Not all the PLGA cores could gather shells, and not all PLLA could go 

on to form shells, instead forming solid cores all on their own. This creates a mix of three 

particle types: pure PLGA nanoparticles, pure PLLA nanoparticles, and core/shell nanoparticles 

(right side, Figure 4.3.1).  

Calculated Parameters 

PLLA Moles 𝑁௉௅௅஺ 0.6-37 x10-7 Moles  

Total PVA Moles 𝑁௧
௉௏஺ 0.45-4.5 x10-6 Moles 

Flask PVA Moles 𝑁௙
௉௏஺ 0.2-1.8 x10-6 Moles 

Emulsion PVA Moles 𝑁ா
௉௏஺ 0.15-2.7 x10-6 Moles 

Wash PVA Moles 𝑁ௐ
௉௏஺ 0.0-4.4 x10-7 Moles 

Total Emulsion Volume 𝑉௧
ா௠௨௟௦ 1.0-5.0 mL 

Total PVA/PLLA molar ratio 𝑅ே 4.0-333 
Moles PVA/moles 
PLGA 

Emulsion PVA/PLLA molar ratio 𝑅ே
ா  1.6-131 

Moles PVA/moles 
PLGA 

Specific Energy  𝐸௩ 19-600 J/mL 
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Figure 4.3.1: Ideal Core and Shell Formation vs Realistic Formation Case – Modified ESEM 

Optimizing this system toward the ideal case requires defining the efficiency parameters and the 

methodology for estimating those parameters. We also want to ultimately control the core and 

shell dimensions by controlling a scalable synthesis parameter with high or ideal efficiency. A 

typical scalable parameter used in core/shell emulsion and nanoprecipitation methods is the ratio 

(molar or mass) between the shell polymers and the cores. We define this term as the multiple 𝑀, 

or the PLLA mass divided by the PLGA mass.  

𝑀 =  
௠ುಽಽಲ

௠ುಽಸಲ
            ( 13 ) 

Our goal is to solve for and maximize the efficiency, quantified by how many of the total 

particles remaining post-synthesis are our desired core/shell. Therefore, knowing the shell 

thickness and the number of core/shell nanoparticles would be beneficial. Unfortunately, we 

cannot solve directly for the shell thickness, nor can we measure the core/shell diameter. We also 

do not know how many of each type of particle is being made. However, we can measure the 

average diameter of the mixture of three particles post-synthesis using DLS, and we also know 

(or can reasonable estimate) the size and PDI of the pure PLGA and pure PLLA particles 

remaining. Thus we want to use the known information (mixture, pure PLGA, pure PLLA sizes 

and PDIs) to solve for how many particles of each type we are left with and the size and PDI of 
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any core/shell particles being produced. The number fraction of core/shell particles to the total 

number of particles is the quantification of the core and shell formation efficiency. The general 

equation for this is a weighted average of the average diameters (𝑍௜) of each different population 

of nanoparticles: (1) pure PLGA nanoparticles (2) pure PLLA nanoparticles (3) Core/Shell 

(PLGA/PLLA) nanoparticles. 

𝑍௠௜௫ = 𝑓௉௅ீ஺𝑍௉௅ீ஺ + 𝑓௉௅௅஺𝑍௉௅௅஺ + 𝑓஼/ௌ𝑍஼/ௌ         ( 14 ) 

Where 𝑓௉௅ீ஺, 𝑓௉௅௅஺, and 𝑓஼/ௌ are the number fractions of each particle type, adding up to 1. 

𝑓
𝑃𝐿𝐺𝐴

+ 𝑓
𝑃𝐿𝐿𝐴

+ 𝑓
𝐶/𝑆

= 1         ( 15 ) 

We can assume the particle distribution is normally distributed around the Z-average mean 

reported by the DLS. This assumption is valid based on typical DLS results, showing single 

normal peaks for the data runs. We can then use a sum of a mixture of normally distributed 

random variables to relate this mixed diameter to the individual particle diameters. Since we are 

assuming a normal distribution for each particle population, we can also introduce the size 

distribution (PDI) as a separate equation dependent on the weighted average of the sum of the 

variances for each particle population. The variance can be found by using the relationship 

between PDI and average diameter to find the standard deviation (sigma), and then squaring the 

sigma.  

𝜎௜ = 𝑍௜√𝑃𝐷𝐼          ( 16 ) 

𝜎௠௜௫
ଶ = 𝑓௉௅ீ஺𝜎௉௅ீ஺

ଶ + 𝑓௉௅௅஺𝜎௉௅௅஺
ଶ + 𝑓஼/ௌ𝜎஼/ௌ

ଶ          ( 17 ) 

General Equations Test with Particle Mixing 

We tested the accuracy of these mixture equations with PLGA/PLLA nanoparticle mixture 

studies, using two populations of particles with known properties instead of three for simplicity. 
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PLGA particles of known size and PDI were mixed in known ratios with one of three samples of 

PLLA nanoparticles with known sizes and PDIs. The combined Z-average (𝑍௠௜௫) was measured 

and compared to the model prediction. Figure 4.3.2 shows the model size predictions versus 

what was measured. There was good agreement for two samples, using PLLA NPs that were 216 

nm and 201 nm and monodisperse (PDI < 0.08). When the larger PLLA NPs were used (PLLA 

1, 268 nm, 0.076), there was a greater deviation from the predicted mixture diameter. This is 

explained by the variance, which is a function of the PDI and the average diameter. This group’s 

(PLLA1) variance was the highest (5471), nearly double the variances of the other two (2654 and 

3859). This affected the variance prediction as well, as seen in Figure 4.3.3. Therefore, using 

monodisperse particles and synthesis conditions (specific energy and molar ratios) that minimize 

each particle’s PDI will decrease the variance and lead to better predictions especially at larger 

mean sizes.   

 

Figure 4.3.2: Predicted Diameter vs Observed Diameter for Mixture Study 
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Figure 4.3.3: Predicted Variance vs. Observed Variance for Mixture Study 

PLLA Nanoparticle Size and PDI Prediction 

We know the sizes of the cores (𝑍௉௅ீ஺) from measuring them prior to core/shell formation, but 

we need to estimate the size and PDI of the pure PLLA nanoparticles (𝑍௉௅௅஺). We performed a 

power law model fit on 36 runs of pure PLLA nanoparticles to estimate 𝑍௉௅௅஺, using the specific 

energy as the input as was done in Chapter 3 for the PLGA core synthesis. The best fit can be 

seen below, with R2 and Adj. R2 of 0.8904 and 0.8826, with RMSE of 7.0339.  

𝑍௉௅௅஺ = 1724(𝐸௩
ି଴.଼଺଻଺) + 173.7          ( 18 ) 

With the specific energy known, we want also to estimate the pure PLLA nanoparticles PDI and 

use it to calculate the sigma and variance of the particle distribution. These parameters can be 

combined with the known mu’s and variances of PLGA nanoparticle cores put into the system 

and compared to the final mixture mu and variance to estimate the core/shell diameter and 

number fractions of each type of particle (Eqns 14 and 17). To predict the PLLA variance, we fit 

a power law to the PDI as we did with the PLGA cores, with the best fit shown below.  

𝑃𝐷𝐼௉௅௅஺ = 551(𝐸௩
ିଶ.ସଷଵ) + 0.05902           ( 19 ) 
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The RMSE is 0.0352, which is reasonable. However, the R2 and Adj. R2 did not show a high 

GoF (0.1655,0.1059), likely due to the presence of dye affecting the PDI, the number of points 

run, and the spread of PDIs seen over the specific energies tested. Therefore, use of the PDI 

model will likely introduce some error for calculating the variance for the solution method.  

Model Assumptions 

Two assumptions were necessary to solve this system of equations for core/shell dimensions and 

efficiency:  

1) The densities of both polymers are constant and can be estimated using known 

literature values. 

2) The shell thickness around the core/shell nanoparticles distributes so that the size 

distribution is a normal distribution.  

The densities must be known to estimate the masses and volumes of the nanoparticles and were 

estimated as the bulk polymer density. Calculating individual shell thicknesses for all possible 

scenarios would introduce more unknown variables. The shell thickness distribution should 

follow the observed normal size distribution curves of the PLGA nanoparticles and the mixture 

of nanoparticles when measured via DLS.   

4.3.2 Core and Shell Mixture Solution Method 

Distribution Curve Gaussian Mixture Model Method 

The complexity of solving for the actual solution is high because, as a system, it is underdefined, 

with 4 independent unknowns and two general equations. For both general equations listed above 

(Equation 14 and 17), we must solve for at least two number fractions and the core/shell 

diameter and variance. There are many possible solutions for number fractions and 
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diameters/variances which the weighted sum would give the same mixture diameter and 

variance. We want to solve for the size distribution curve (mu and sigma) of the most probable 

core/shell particle being formed for each data point (the black dashed line in Figure 4.3.4 as an 

example). In the figure below, the amplitudes of each peak are controlled by the weights given to 

each particle population, corresponding to the number fractions of each particle population, 

which we also need to solve for. 

 

Figure 4.3.4: Mixture of Size Distribution Curves Showing Possible Core/Shell Solution for Mixture 

To do this, we use a distribution fitting algorithm that will find the most probable solution called 

the Gaussian Mixture Model (GMM).  GMM is often used in engineering and research to 

analyze highly complex clusters of data , such as patient charts114, soil samples115, and air 

particulates116 , to reveal hidden subgroups. The general form for a GMM is below. 

𝐺𝑀𝑀 𝑃𝐷𝐹 =  ∑ 𝑁𝑓௠(𝑥; 𝜇௠𝜎௠)௡
௠ୀଵ           ( 20 ) 

Where the GMM probability density function is assumed to be a normal distribution (𝑁) made 

up of a number (m) of other normal distributions defined by the weights (𝑓௠), mean (𝜇௠), and 
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covariance (𝜎௠). The size distribution data in this system is univariate, consisting of size 

distribution in one dimension and defined by the mu and the variance, which is calculated from 

the PDI equation (Eqn. 16). The algorithm uses the expanded form of the Gaussian density 

function to calculate the solutions117. The differentiated linearized form of this equation allows 

us to solve for the Maximum Likelihood Estimate or our most probable solution. In essence, the 

GMM determines how the probability that independent random observation falls into one of 

several distributions, leading to clusters of points centered around different means at different 

variances.118 It then finds the most probable clustering by maximizing the total probability across 

all the points. We will use this method in a slightly different way, by generating three 

distribution curves from the individual particle dimensions and fractions (PLGA, PLLA, C/S) 

and comparing them to a regression GMM that is solely based on the mixture measurement. 

These represent solving both sides of Equations 14 and 17 twice, once using only the number 

fractions and individual particle dimensions and once using only the mixture measurements. The 

final solutions will be the convergence of these two solutions, if there is convergence.  

Our first step is to use our known mixture measurements to generate an unbiased most probable 

solution. We start by generating 2000 random points that are normally distributed around the 

mixture mu and variance which we measured post-synthesis (𝑍௠௜௫ and 𝜎௠௜௫). We then specify a 

GMM to find three “subcurves” which when added together will give the initial mixture curve. 

This results in a solution of three most probable weights (number fractions, 𝑓௜) and mean sizes 

and variances, which we call GMMix. We hope that the means and variances of two of these 

curves correspond to the known values that pure PLGA and pure PLLA should have based on the 

specific energy used, but these are not inputs and so they may not.  
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We want to see if the three curves found by GMMix correspond to our other known values for 

pure PLGA and PLLA. If they converge, then this will allow us to know the most probable 

particle numbers as well as the core/shell dimensions. But since we only know the PLGA and 

PLLA dimensions, we need to generate all possible solutions for the core/shell dimensions, 

based on the constraint that the number fractions must sum to one and the weighted sums must 

be the mixture diameter and variance. Therefore, we use a new GMM to generate all possible 

core/shell diameters and variances for each data point based on these constraints, as can be seen 

in Figure 4.3.5. We do this via the brute force method: using the sum of weighted sizes and 

variances equations above we input the known PLGA and PLLA sizes and variances together 

with all combinations of 𝑓௜ that add up to one (4873 combinations for hundredths precision) and 

solve for the required core/shell diameter at those fractions and core and PLLA dimensions. 

Some of these core/shell “solutions” are unrealistic; the solution to the general equations could 

solve for a negative core/shell diameter or one smaller than the smallest core size. We filter these 

solutions out to reduce iterations in later steps. Before filtering, however, these 4873 possible 

solutions make up a matrix we call GM1. We can reasonably assume that the actual solution to  

what is actually occurring in our system post-synthesis, is one of these 4873 solutions. To narrow 

down these to one, most probable solution, we compare each to the three curves that are 

generated by GMMix. The heights (weights), mu’s, and variances of these three curves should 

closely match one of our possible solutions for us to feel confident in determining the actual 

solution. We quantify this by calculating the solution which gives the minimum sum of 

differences, which is calculated after sorting the GMMix solutions and the GM1 solutions each 

from smallest to largest, and subtracting each of the 9 total values (mu’s, variance’s, and 

fractions for three particle types) from each other. This gives us 9 differences, and we add these 
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up and find which solution has the lowest overall difference, closest to zero. This gives the most 

likely solution. We will then use these predictions to compare input parameters and analyze 

whether we can optimize the system for maximum core/shell formation and predict the shell 

thickness.  

 

Figure 4.3.5: Brute Force Solution of All Possible Core/Shell Diameters and Variances 

 

4.3.3 Fluorescent Dye Experiment Methodology 

The predictions from the GMM method are decent estimations of the efficiencies and the 

resulting particle dimensions. It is important to remember that the estimations are just that; they 

are the most probable solutions based on the defined particles’ size distribution means, variances, 

and synthesis inputs such as specific energy and polymer masses. Direct visualization of the 

polymer distribution would be highly beneficial in determining the true accuracy of the model 

predictions. A fluorescent dye tagging procedure was developed to attempt this visualization. 
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The technique uses two fluorescent dyes, Coumarin-6 (green) and Rhodamine B (red), to tag the 

individual polymers pre-synthesis. PLGA will be loaded with Coumarin 6, while Rhodamine B 

will be covalently conjugated to the PLLA chains using EDC/NHS chemistry. After using one of 

the core/shell methods with these tagged polymers, we will analyze the particle mixture under 

fluorescent microscopy. Core and shell nanoparticles will produce a yellow core surrounded by a 

red shell, while the pure PLGA and pure PLLA nanoparticles will just be green and red, 

respectively. A representation of this can be seen in Figure 4.3.6. 

 

Figure 4.3.6: Fluorescent Dye Overlay – Core/Shell Polymer Distribution 

Multiple images of the fluorescent nanoparticle slide will be taken to achieve a representative 

sample of the total particles. Then, these images are processed through a MATLAB image 

processing program, which finds and counts each particle. It measures the RGB values at the 

center of each found particle and sorts them into “green”, “red”, and “yellow” by RGB value 

boundaries. From these counts, each particle’s number fractions are calculated and saved for 

comparison to the model predictions. Any particles or false positives found that fall outside these 

category bounds will be discarded from the count.  

There are limitations to this method. Firstly, the fluorescent microscope used for imaging has a 

magnification limit, restricting the practical resolution per pixel. The MATLAB imaging 

program can find particles of around 5 pixels in diameter at the minimum, corresponding to a 

diameter of around 380 nm. These particles are by design sub-300 nm, exceeding this resolution 

limit. The counting is therefore biased towards the more easily counted larger particles which 
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exist due to the size distribution spread. There is a slight “corona” effect which makes particles 

appear larger due to the fluorescent light, which can make the smaller particles somewhat easier 

to count. 

Additionally, the ability to find and count the particles is dependent on the image quality and the 

brightness of both dyes. Carboxylic acid groups are more limited on the PLLA polymer 

backbone than on PLGA so there will likely always be less Rhodamine B dye per polymer 

molecule and the PLGA/green will often out-fluoresce the PLLA/red. This bias can be somewhat 

corrected by lowering the exposure and light to the green filter during imaging, but some bias 

towards more of the green dye and the particles that contain green dye (pure PLGA and 

core/shell) will be difficult to avoid.  

4.4 GMM Method Efficiency Predictions Trend Analysis 

The GMM method successfully found the most probable solutions for 97 out of 101 total points 

using the emulsion-based method. The four missing points were unable to converge and resolve 

an answer. All four had very close predicted PLGA core and PLLA nanoparticle sizes, used very 

low volumes of PLLA/DCM (< 40 μL), and were dyed, which could have introduced too much 

error to solve. Likely, there could have been an error during the mixture measure, as the mixture 

diameters of all four were below that of the PLGA cores and PLLA nanoparticles, which is 

unrealistic. However, we have analyzed the solutions of the remaining points for optimizable 

parameters for efficiency and core/shell dimensions, if they exist.  

Core and Shell Formation Efficiency 

For the most probable solution, the solutions from the GMM method should match the known 

sizes of the PLGA cores, the predicted size of the PLLA nanoparticles from the power law, and 

mixture diameter should match if the solutions sizes and fractions are recombined. Below, in 
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Figure 4.4.1, we see excellent agreement between the experimental measurements and the GMM 

solutions, with correlation being >0.99 for both PLGA cores and pure PLLA particles, with two 

outliers.  

 

Figure 4.4.1: Measured/Power Law Predicted Diameter vs. GMM Solution Diameter for PLGA (left) and PLLA 
(right) 

When we look at the GMM solutions for the mixture diameter vs the DLS measured mixture 

diameter (Figure 4.4.2), there is linear agreement, with slight underprediction of total mixture 

diameter at greater sizes. Still, the correlation is 0.902, sufficiently accurate to analyze the 

efficiency trends with respect to the various input parameters.  

 

Figure 4.4.2: Measured Mixture Diameter vs. GMM Solution Prediction Diameter 
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The highest predicted core/shell efficiency found by the GMM method was 0.667, with an 

average of about 0.32 with a standard deviation of 0.10. This suggests that, in general, this 

process does not preferentially form core/shell nanoparticles within the tested parameter ranges 

over the other undesired populations, with our highest efficiency lying outside the standard 

deviation of all solutions.  

Certain features did show tendency towards the higher efficiency range for core/shell formation, 

such as PLLA concentration and molar ratio. This matches literature, as others’ emulsion-based 

methods have looked to take advantage of the immiscibility of PLGA and PLLA phases when 

both were dissolved in DCM at high concentration70,108. Therefore, we would expect the 

core/shell efficiency to increase as PLLA concentration increased, while the other two number 

fractions (efficiencies) decrease.  

 

Figure 4.4.3: PLLA Concentration vs. Particle Efficiency from GMM 
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Figure 4.4.3 shows the relationship between the predicted particle efficiencies and the PLLA 

concentration. We do see slight trends corresponding to our hypothesized behavior. At low 

concentrations, there is large spread for all efficiencies, with a higher prevalence for the 

formation of pure PLLA particles over core/shell nanoparticles. The PLLA efficiencies reach as 

high as 90% for concentrations less than 0.02 and remain high (>60%) until 0.04 mg/μL. At the 

higher tested concentration (0.075), PLLA efficiency decreases to an average of 0.40, while 

core/shell efficiency increases to an average of about 0.40. This is a modest increase for 

core/shell efficiency; however, the smaller spread and overall higher average efficiency leads us 

to conclude that higher PLLA concentration had a slight positive effect on core/shell efficiency. 

PLGA efficiency also significantly decreases at this higher concentration, further suggesting that 

higher PLLA concentrations increase the likelihood of core/shell formation around PLGA cores. 

Future tests that test even higher PLLA concentrations would be beneficial to observe any 

continued efficiency change.  

Similar to what was seen for PLGA core synthesis modeling, the PVA to PLLA molar ratio (total 

PVA moles and emulsion PVA moles) had an effect on the nanoparticle formation efficiencies. 

However, the general trend was a little surprising. Figure 4.4.4 shows the number 

fractions/efficiencies of each particle population versus the total molar ratio. The emulsion molar 

ratio shows the same trend.  
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Figure 4.4.4: Total Molar Ratio vs. Particle Efficiency from GMM 

At low total molar ratios (total moles PVA to moles PLLA in the process), we see a wide 

distribution of efficiencies for all particle types, with a decrease in PLGA and core/shell 

efficiency has molar ratio increases. PLLA efficiency remains consistently high (>60%). This 

suggests that higher PVA molecules per droplet of dissolved polymer (PLLA in this case) 

decrease the preference of the system to form core/shell nanoparticles. In contrast, for PLGA 

core synthesis higher PVA moles per mole of dissolved PLGA increased droplet stability and 

improved size control and monodispersity up to a certain range. For the core/shell emulsion 

method, an aqueous phase containing less PVA molecules seems to facilitate the formation of 

PLLA oil droplets around the PLGA cores. This makes sense, because as the PVA moles 

increase, the aqueous phase viscosity is higher and thus requires more energy to force the PLLA 

droplets past the dissolved PVA molecules. Additionally, more PVA molecules then can adsorb 

onto the surface of the PLGA cores, masking the cores and preventing core/shell formation. This 

masking hypothesis is supported because more efficient core/shell formation is seen closer to the 
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“Ouzo effect” regime that contains no surfactant for nanoprecipitation methods112,119. For 

emulsion methods some surfactant is necessary to stabilize the PLLA droplets, and so this will 

inherently decrease the efficiency of the method. As a result, the molar ratio trends suggests that 

the nanoprecipitation method will result in inherently higher efficiency, especially if turned to 

the “Ouzo effect” regime.  

The final parameters we will discuss for core/shell formation efficiency are the specific energy 

and the specific energy ratio and their effects on the formation efficiencies. The plots for both 

can be seen in Figure 4.4.5. 

 

Figure 4.4.5: Particle Efficiencies vs. Specific Energy (left) and Specific Energy Ratio (right) 

We would expect that as specific energy increased so would core/shell efficiency since the PLLA 

droplet would be decreasing in size as more energy is added to force the droplets. Ideally, this 

energy would also force more droplets around the PLGA cores. Instead, we only see a slight 

increase core/shell efficiency with a specific energy increase, with more variation seen below 

200 J/mL. This trend was also seen for the PLGA synthesis size modeling, where the size and 

PDI variation greatly decrease past a specific energy of about 230 J/mL. It is unknown if this 

specific energy marks a thermodynamic threshold, above which the emulsion stabilizes, and this 
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is unreported elsewhere in literature. Due to the power law relationship between size and specific 

energy for both PLGA and PLLA, we would also expect that as the specific energy used for the 

core/shell formation approaches the specific energy used to produce the core that the core/shell 

efficiency would increase. This hypothesis is based on the change in droplet size reducing so to 

only allow for a single core per droplet. This would be until the specific energy then exceeds the 

required amount to reduce PLLA droplet size below the PLGA core size, which would then 

reduce efficiency and promote pure PLLA nanoparticle formation. However, we do not observe 

this trend, as the efficiencies are generally spread for all specific energy ratios. It could be that 

the presence of surfactant and the PLLA concentration dominates the core/shell efficiency, as 

those trends were more easily seen. Since the maximum estimated core/shell efficiency was 

lower than expected (0.667) and no specific conditions (other than general trends) were 

discovered to optimize the efficiency, this unfortunately suggest that the emulsion-based method 

modeled here may be insufficiently efficient for the reliable production of polymeric 

PLGA/PLLA core/shell nanoparticles.  

Shell Thickness Control 

Despite the low efficiency, we would like to analyze whether shell thickness could be controlled 

at higher efficiencies. Using the scalable Multiple parameter previously defined, we can solve for 

the ratio of shell thickness to core radius to provide a relationship between the mass ratio and 

scalable shell formation on a adjustable core diameter.  

𝑀 =
௠ುಽಽಲ

௠ುಽಸಲ
=  

ఘುಽಽಲ௏ುಽಽಲ
ೞ೓೐೗೗

ఘುಽಸಲ௏೎೚ೝ೐
= ቀ

ఘುಽಽಲ

ఘುಽಸಲ
ቁ

௏಴/ೄି௏೎೚ೝ೐

௏೎೚ೝ೐
=  𝜌ோ(

௏಴/ೄ

௏೎೚ೝ೐
− 1)     ( 21 ) 

Solving the basic definition of Multiple, assuming ideal core/shell formation, allows to find the 

below non-linear expression. Of the three roots for the expression solution, one is real. The real 
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root of the expression can be plotted against the density-scaled multiple to have the ideal 

relationship between shell-to-core ratio and multiple. The multiple here is divided by the ratio of 

the polymer densities (shell/core polymer), allowing us to customize the solutions in the future if 

different densities or polymers are used.   

ெ

ଷఘೃ
=

ଵ

ଷ
ቀ

௑

ோ೎೚ೝ೐
ቁ

ଷ
+ ቀ

௑

ோ೎೚ೝ೐
ቁ

ଶ
+ ቀ

௑

ோ೎೚ೝ೐
ቁ    ( 22 ) 

Each run was sorted into different bins for analysis. The bin names and ranges can be seen below 

in Table 4.4.1. 

Table 4.4.1: Efficiency Bin Names and Corresponding Bins for Shell Control 

Efficiency Ranges f_CS Values 
Low Efficiency 0 – 0.14 

Mid-Low Efficiency 0.14 – 0.28 
Mid-Hi Efficiency 0.28 – 0.42 

High Efficiency >= 0.42 
 

Figure 4.4.6 shows the distribution of core/shell efficiency versus the density-scaled multiple. 

The lower efficiency runs (<0.28) expectantly formed much smaller shells per core radii than the 

ideal case (dashed line). The runs which had the higher efficiencies (>0.28) showed more runs 

closer to forming ideal shell thicknesses per core radii. Note: this does not mean that run is 

somehow ideal, since a small fraction of particles can form core/shell nanoparticles with ideal 

shell thickness per core radius. Therefore, without maximizing the efficiency, we cannot hope to 

have full control over the shell thickness. This is independent of control over the core 

dimensions, which we demonstrated in Chapter 3.  
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Figure 4.4.6: Multiple vs. Shell Thickness/Core Radius  

 

4.5 Fluorescent Dye Tagging Results & Discussion 

Direct visualization of polymer distribution was successfully performed on 10 emulsion-based 

core/shell runs. For each run, 15-25 images were used for counting. Table 4.5.1 shows the 

comparison of the GMM predicted particle number fractions versus the number fractions of the 

counted particles from the images.  
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Table 4.5.1: Fluorescent Image Tagging Experiment, Predicted – Measured via Counting 

 

For the set of ten runs, the GMM model was more accurate in predicting the number fractions of 

the core/shell particles (𝑓஼/ௌ) of the counted particle populations and a poor predictor of the other 

two. The model tended to overpredict the core/shell NP efficiency by an average of about 0.179 

± 0.11, which is relatively close for the most important efficiency. The model severely 

underpredicted the fraction of PLGA nanoparticles, while overpredicting the PLLA 

nanoparticles. This could be due to the green bias discussed in the method section for this 

experiment. The limited presence of red dye compared to the high presence of green dye would 

biased the counting towards the pure PLGA particles and away from the pure PLLA particles. 

This in turn would result in an underestimating of the number of pure PLGA and overestimating 

of the pure PLLA, which is what we observe.  

Looking at an example of one of the fluorescent images below in Figure 4.5.1, we can see just 

how prevalent and bright the PLGA nanoparticles are (green) along with the core/shell particles 

(yellow/red). The sizes are also difficult to accurately estimate due to the “corona” effect visible 

around many of the brighter particles.  
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Figure 4.5.1: Example Fluorescent Image of Particle Distribution 

When zooming into a cluster of particles in the middle of the example image (Figure 4.5.2), we 

can attempt to estimate the sizes of each type of particle and compare them to the prediction 

from the GMM method. The large core/shell particle in the middle has an estimated diameter of 

1.62 μm, much larger than the GMM predictions. The reddish PLLA particle to the right of the 

core/shell is roughly 700 nm, while the small, faint green particles immediately surrounding the 

core/shell particle have an estimated diameter of 300-400 nm. From the GMM, the average 

diameters of the PLGA particles should be 220 ± 100 nm, which is in line with measurements. 

The average diameter of pure PLLA particles via GMM should be 205 ± 54 nm, much smaller 

than what is seen in this image. The smaller particles are approaching the resolution limitation of 

the optical microscope. We are unable to ascertain whether these measured diameters are truly 

measuring the particle diameter or just the radius of the fluorescent corona. Additionally, the dye 
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brightness for particles any smaller than around 300 nm would be difficult to observe. DLS 

measurements and previous SEM images confirm the presence of nanoparticles of agreeing size 

ranges. It is to be concluded, then, that the fluorescent imaging technique developed here is 

unable to confirm or validate the GMM predications, nor can it generate predictions on its own. 

The resolution limitation, dye brightness bias, and image quality limit the qualitative data that 

can be gathered. However, we can visually confirm each of the hypothesized three particle 

populations, rejecting the assumptions of previous researchers that this type of method produces 

solely core/shell nanoparticles69.   

 

 

Figure 4.5.2: Optical Zoom of Core/Shell Nanoparticle Populations 
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4.6 Core and Shell Release Experiments 

Based on the GMM prediction trend analysis and fluorescent imaging, we can speculate that the 

emulsion-based method for producing core and shell PLGA/PLLA nanoparticles is not as 

efficient in the ranges tested as we would desire for ideal controlled release of small, 

hydrophobic payloads such as chemotherapeutics. Despite the low efficiency, we will look to 

characterize the release from several core/shell nanoparticles to compare the release kinetics with 

bare nanoparticles and with the estimate shell thicknesses and shell-to-core ratios. In the 

following runs, we measured the total mass and percent release of hydrophobic coumarin-6 

which was only loaded within the PLGA cores prior to the emulsion-based method. The PLLA 

was not dyed, and we calculated the release with the same general protocol as before. The PLGA 

cores contained a mean mass of 0.0049 mg C6 per 1 mg PLGA (0.49% loading capacity, with a 

loading efficiency of 98%). 

Each release profile was fit to the release kinetic models as before. Table 4.6.1 shows a fit table 

for one such core/shell release profile. The models with the best GoF, expectantly due to the 

majority presence of PLLA, were the diffusion driven models (Korsmeyer-Peppas and Peppas-

Sahlin). The exponent fit interpretation suggests non-Fickian transport, where chain relaxation 

and diffusion are roughly equal contributors. The erosion driven model (Hopfenberg) was a poor 

fit, indicating that the release was dominated by the PLLA and not the bare PLGA cores, 

especially in the first 60% of release. This is supported by the fact that the KP and PS models are 

only valid for the first 60% of release and fit the profiles extremely well over that time (for plots, 

see Appendix 3). Immediately after, the release profile shifted to a long and sustained release, 

with a total release time longer than pure PLLA of similar sizes. The release cannot be solely 

driven by either the PLGA because it is too long and diffusion driven. Nor can it be driven by 
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only the pure PLLA, since no dye was loaded into these particles and the release kinetics do not 

match earlier characterization. This transition period from diffusion driven to a sustained release 

which is a poor fit to the diffusion model marks the transition from the PLLA shells release to 

that of the PLGA cores which had been previously coated. Prior to this point, the release is 

shared by both the PLLA shells and uncoated PLGA cores, and so is a mixture of diffusion and 

erosion driven, dependent on the number fractions of each type of particle. 

Table 4.6.1: Release Kinetic Fit of Core/Shell Nanoparticles – P24 

 

The release profiles’ change with respect to the estimated shell thickness and ratio also supports 

the formation of core/shell nanoparticles near the expected efficiencies and dimensions. Table 

4.6.2 shows the samples and their dimensions estimated via GMM, while Figure 4.6.1 shows the 

release profiles relative to each other. There is a clear correlation between the expected shell 

thicknesses (and ratios) and the controlled release. The PLGA cores were all roughly the same 

size with PDIs ranging from 0.11 to 0.18, likely due to the presence of dye.  

Table 4.6.2: Core and Shell Estimated Efficiency and Dimensions for Release 

Sample 
Core Diameter 

(nm) 
f_CS 

Shell Thickness 
(nm) 

X/Rcore 

P24 176.7 0.406 4.7 0.0535 
P13 188.1 0.399 5.8 0.0624 
P16 184 0.317 10 0.1080 
P17 182.9 0.335 19.55 0.2163 
P18 183.7 0.334 26.95 0.3078 

CoreShell-3 - P24 - 99.5 nm Cumulative Release Kinetic Model Fit Results:
Model Constants R2 Adj R2 RMSE

Korsmeyer-Peppas(n,k): 0.5398 0.0286 0.9958 0.9957 0.0115
Peppas-Sahlin(k1,k2,m): 0.0287 7.72E-10 0.5391 0.9958 0.9957 0.0115

Higuchi(n,k): 0.5 0.0254 0.725 0.725 0.1485
Hopfenberg(k0): 2.40E-22 0.4439 0.4354 0.2096
Weibull(a,b,T): 0.0194 6.81E-01 0 0.9958 0.9958 0.0184
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P20 187.7 0.333 33.3 0.3529 
 

The inset in Figure 4.6.1 shows a close up of the initial 60% release whether the diffusion driven 

models showed excellent fit. The stratification of release profile in the same general order as 

shell thickness is evident, and the duplicates showed excellent agreement. All runs were roughly 

equal core/shell efficiency (about 0.3-0.4), facilitating an easier comparison between the 

samples. The Korsmeyer-Peppas kinetic rate constant (k) decreased linearly with increasing 

shell-to-core ratio with a slope of about -0.102, while the exponent linearly increased with 

increasing shell-to-core ratio at a rate of 0.6253. This trend is encouraging, as it shows the 

potential of a higher efficiency process to achieve controlled sustained release of many days to 

weeks. From the analysis of the emulsion-based method, a different method such as a 

nanoprecipitation-based method will likely be required to achieve this higher efficiency for better 

controlled release of small hydrophobic payloads.  
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Figure 4.6.1: Core and Shell Nanoparticle Release Profiles, with increasing estimated Shell Thickness 

 

4.7 Conclusion 

Core and shell polymeric nanoparticles can offer more versatile controlled release than single 

polymeric cores for small, hydrophobic payloads. Altering the core and shell materials and 
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dimensions allows improved control over release kinetics without sacrificing for larger, less 

optimum sizes or use of unapproved triggering molecules. Many different methods have been 

investigated for reliably producing this core and shell structure including emulsion-based 

methods and nanoprecipitation microfluidic methods. Each has its advantages and disadvantages. 

However, we sought to use our understanding and control over the emulsion method gained from 

PLGA core synthesis to optimize the formation of core and shell nanoparticles. Contrary to 

other’s work on similar methods, we did not assume 100% efficiency of the method, instead we 

sought to understand how different synthesis parameters could potentially be used to control the 

efficiency. The goal of this chapter’s work was to achieve high efficiency core/shell formation 

and independent control over the shell dimensions around the core.  

Using a statistical modeling method called the Gaussian Mixture Model (GMM) as well as 

general mixture equations based on normal distributions, we estimated the most probable 

efficiencies of the three hypothesized particle types formed with this method. We were able to 

determine a few parameters which changed the predicted efficiency in different ways. The PLLA 

phase concentration was hypothesized to increase efficiency at higher concentrations, but it was 

unknown what concentration would be most beneficial. We tested concentrations up to 7.5% 

(w/v) and found that the efficiency did increase and become more consistently high. This is 

likely due to the reported immiscibility between PLGA and PLLA at higher polymer 

concentrations. In contrast, the total and emulsion molar ratios both showed lower efficiencies at 

higher PVA molar ratios. It is theorized in literature that this is due to a shielding effect that PVA 

could be having around the PLGA cores, preventing shell formations. Finally, we had predicted 

that the ratios of specific energies used to form both the cores and core/shells would have a great 

effect on the overall efficiency. We proposed there would be an optimum range less than 1 which 
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would provide the highest efficiency, but the data did not show this trend. Instead, efficiency had 

some correlation to just the core/shell specific energy, and no correlation for the specific energy 

ratio. It is likely that other parameters such as the molar ratios are overcoming any specific 

energy effect. Overall, despite these trends, we were unable to achieve our goal of high 

efficiency core/shell formation within the tested parameter ranges, with the single highest 

predicted efficiency of 67%, with an average of only 32%. We compared these predictions with 

visually counted images of fluorescently tagged nanoparticles. Although we were able to confirm 

the three particle types being formed, the predictions and the counting did not match for all 

efficiencies.  

We also measured the release of six core/shell particles which had similar sized cores, similar 

efficiencies, and increasing shell thickness. Encouragingly, even at unideal conditions, we saw 

varied release kinetics corresponding to the increasing shell thickness, as predicted for the 

core/shell design. Additionally, we saw evidence of the regions within the release time which 

were dominated by the shell release and then the core release due to the kinetic model fits and 

rate comparisons to pure polymer releases. This is encouraging, as it provides proof that these 

types of systems offer the highly versatile and sustained controlled release they promise. More 

work to increase efficiency is needed to fully unlock this promise. Potentially, an emulsion-based 

method could be used with nanoprecipitation. This could combine the advantages of both 

systems and offer better customizability of the core and shell than what currently exists. We 

believe the work presented in this chapter offers some guidance and knowledge to combine such 

a process.  
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Chapter 5: Alternate Applications: Polymeric Nanoparticle-Impregnated 

Chitosan Hydrogel for Multiple Regime Release 

5.1 Introduction and Motivation 

Controlled release from circulating polymeric nanoparticle formulations is a unique challenge, 

and such delivery systems can address a variety of disease states and conditions. However, some 

medical applications require different release performances, which are inappropriate for 

nanoparticles alone. Complex wounds are one such application. Depending on the healing 

progression, wounds can be categorized as acute or chronic. Chronic wounds typically stall 

within one healing stage and are treated differently than acute wounds. Acute wounds include 

traumatic and complex wounds from accidents, combat, or surgery and readily progress through 

the four stages of healing: hemostasis, inflammation, proliferation, and remodeling120. Recent 

global combat has led to a rise in acute, traumatic, and complex injuries. While modern 

equipment and medical treatment have improved the survivability of these wounds, casualties 

remain a concern121,122. Most combat casualties are caused by improvised explosive devices 

(IEDs) or gunshot wounds affecting various body parts with different severity levels and 

coverage requirements.123 Regardless of severity, treatment must address four complications that 

roughly correspond to the stages of healing, occurring at different times: hemorrhage, infection, 

pain management, and tissue regeneration120,124. Typical wound dressings address the 

hemorrhage and may protect against infection with proper and immediate application. An ideal 

wound dressing would address all four complications: being sterile, biocompatible, oxygen-

permeable, and retaining a moist environment to encourage angiogenesis, epidermal migration, 

and tissue regeneration125. Currently, no commercial or military wound dressings are hemostatic, 

antimicrobial, pain relieving, and promote healing126. We hypothesize that a single system 
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addressing all complications can significantly improve wound treatment. It can do this with 

simultaneous, controlled delivery of standard administered drugs to give continuous and 

successive treatment for all stages of wound healing. This work investigates different 

formulations of a common wound dressing polymer, chitosan. We tested different drying and 

crosslinking effects on the swelling and release kinetics so that they can be tuned for different 

pain and antimicrobial/antifungal drugs. We also introduced PLGA nanoparticles into the 

chitosan hydrogel formulations, which offer a more sustained release of pain management, 

infection prophylaxis, and tissue growth factors. These are initial investigations, with dyes used 

as model payloads in place of the drugs but demonstrate the proof-of-concept for this combined, 

multimodal controlled release system. An example of this type of release timing regime they 

would address is seen in Figure 5.1.1. 

 

Figure 5.1.1: Proposed Multimodal Release Regime for Chitosan Hydrogel Wound Dressing 

5.2 Chitosan Hydrogel Material and Methods 

Chitosan (99% deacetylation, Low MW: 120 kDA) was purchased from Sigma Aldrich (St. 

Louis, MO) while High Molecular Weight (MW: 200 kDA) was purchased from Acros Organics 
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(Morris Plains, NJ).  Acetic acid (glacial) was purchased from Macron Fine Chemicals 

(Allentown, PA). Glutaraldehyde (25% concentration) was purchased from Sigma Aldrich (St. 

Louis, MO). Tween80 was purchased from Amresco (Dallas, TX). A Labconco FreeZone 4.5 

was used for all lyophilization, with access provided by Dr. Ed Davis and Dr. Virginia Davis, 

Auburn University. 

5.2.1 Formation and Crosslinking 

Chitosan was dissolved in 2% (v/v) acetic acid under vigorous stirring at 50°C until 

homogenous. Small drops of 0.1% Tween80 were added to prevent clumps. If large clumps 

persisted, the solution was filtered before crosslinking. Glutaraldehyde (GTA, 1%) was added to 

the stirring mixture at a desired volume to give a mass ratio of GTA:Chit. The recorded crosslink 

density is the mass ratio times 1000. Glutaraldehyde acts as a chemical crosslinker, reacting with 

the primary amine on the chitosan backbones to covalently bond two polymer backbones (see 

Figure 5.2.1). The glutaraldehyde and chitosan were allowed to react for 15 minutes before 

pouring into molds that contained 0.1 M NaOH to neutralize the solution. If necessary, more 

dilute NaOH was added to the mold to complete the neutralization. The crosslinking reaction 

causes a noticeable color change, from yellowish white for uncrosslinked to dark orangish-brown 

as the crosslink density increases. This color change is the formation of chitosan-Schiff-bases 

(CSBs) from aldehydes' reactions to the chitosan backbones' primary amines. CSBs have many 

positive effects on chitosan systems’ properties used for biomedical applications. CSB-forming 

crosslinking has been shown to increase the mechanical strength of chitosan hydrogels127 and 

introduces self-healing mechanisms when hydrated.128,129 While chitosan has shown to be 

inherently hemostatic due to its charged functional groups, the addition of CSBs has shown to 

add antibacterial and antifungal activity128,129, with Omer et al.130 showing that CSB formation 
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inhibited E. coli (Gram-negative) and Staphylococcus aureus (Gram-positive) growth. They also 

demonstrated that CSBs encourage anti-diabetic enzymatic activity and inhibited cancer 

proliferation in limited tests, and they showed effective encapsulation of different cells and drugs 

to promote tissue regeneration130,131. However, developing bacterial resistance to CSBs has been 

observed.132 Therefore, the proposed addition of controlled multi-release of other antibiotics and 

antifungals is likely necessary as more bacterial and fungal strains develop resistance.  

 

Figure 5.2.1: Glutaraldehyde Chitosan Crosslinking Mechanism with Schiff Base Formation131 

5.2.2 Drying Method 

Once poured into the molds and neutralized, we used two drying methods to produce different 

dried hydrogel formulations. For the air-drying method, the molds are placed in the fume hood, 

and the acidic fluid is allowed to evaporate over at least two days before being neutralized. The 

samples can be placed in a 40-50°C oven to accelerate the drying without negative effects. This 

method forms thin plastic-like sheets. The uncrosslinked samples are more transparent, flexible, 

and a slight brownish yellow, but as the crosslink density increases the color darkens and 

becomes semi-opaque due to CSB formation. The samples become more rigid as well. For the 

freeze-drying method, after pouring into the molds the samples are immediately placed in the -

80°C cryofreezer and left overnight to ensure complete freezing. The frozen samples are then 

placed in a lyophilizer under vacuum and left to dry fully for at least 24-48 hours.  
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5.3 Endpoint and Kinetic Swelling Behavior 

Multiple release regimes will require fine control of release kinetics; these are controlled by the 

hydrogel swelling characteristics which are controlled by the polymer chain network structure 

and crosslinking. The general method for quantifying the swelling is the percent change in mass. 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑀𝑎𝑠𝑠 =  
ௐ௘௧ ெ௔௦௦ି஽௥௬ ெ௔௦௦

஽௥௬ ெ௔௦௦
∗ 100%        ( 23 ) 

It is also desirable for hydrated wound dressings to expand into the wound site to increase 

contact and pressure on the wound for hemorrhage control, protection, and hydration. This 

quality will be quantified by the percent change in surface area (in the x-y direction) and the 

percent change in volume, which measures the vertical change. Endpoint and kinetic swelling 

characterization are typical tests to quantify swelling. Endpoint swelling measures the max 

swelling and is measured by placing the hydrogel or dressing samples in a plastic Petri dish and 

hydrating with 25 mL of DI water for 30+ minutes. The samples are then taken out and weighed 

and measured. Kinetic swelling measures the rate of change in mass over time; the samples’ 

masses are measured at set time points to understand how quickly swelling occurs. It is often 

difficult to accurately measure surface area and volume during kinetic studies, so only the 

percent change in mass is recorded in this work. 

5.3.1 Commercial Wound Dressing Swelling 

Before analyzing how chitosan molecular weight, drying method, or crosslinking density affects 

swelling and release, it is necessary to compare typical swelling characteristics of commercially 

available gauze products. These materials were provided by a collaborator, David Crumbley 

(MSN, RN, CWCN), as products commonly used in hospitals. Mepilex is a silicone foam 

absorbent dressing with variations that have an adhesive border (“Brder”) or silver nanoparticles 
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for antibacterial effects (“Ag”). The base Mepilex has the highest swelling of the three 

variations, peaking at a +1200% change in mass. Melgisorb, an alginate-cellulose absorbent 

dressing, had the most significant swelling of all products tested, surprisingly exceeding the 

Xtrasorb polymer-silicone foam swelling behavior. Only QuikClot Gauze, a cloth gauze 

impregnated with a hemostatic inorganic mineral, showed any other significant swelling. 

DuoDerm showed no real change, while MediHoney degraded over time. The main takeaway is 

that while most commercial products tested showed decent swelling (>300% change in mass), 

only Xtrasorb showed any significant dimension change, nearly tripling its height. Again, this 

type of swelling helps hemorrhage control and improves contact, so not seeing this for most 

products was surprising.  

 

Figure 5.3.1: Endpoint Swelling Behavior of Commercial Wound Dressings 

5.3.2 Endpoint Swelling Chitosan Hydrogel Formulations 

For simplicity, we use a three-letter code to designate formulations for all following experiments 

and plots. Low molecular weight (120 kDa) will begin with an “L” and high molecular weight 
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(200 kDa) will begin with an “H”. Next, if the sample is uncrosslinked, there will be a “U” or a 

“C” for crosslinked. Finally, the drying method will be the last letter, with “F” for freeze-dried 

and “A” for air-dried. For the crosslink density studies, the number following the code is the 

crosslink density, which is the mass ratio of glutaraldehyde to chitosan times 1000. The mass 

change was measured using a scale, with the dry mass recorded before hydration. After the 

hydration duration, the samples were transferred to a dry tray and lightly shaken to remove no 

absorbed water, before being weighed in another dry tray. The change in surface area was 

measured by hand with a ruler, measuring the change in the x and y direction (horizontal, parallel 

to the benchtop). The thickness (height, z-direction) was also measured to change in volume.  

The first endpoint swelling experiment results for the air-dried formulations in Figure 5.3.2 

compare the difference between molecular weights and uncrosslinked vs. crosslinked. Increasing 

molecular weight for uncrosslinked air-dried samples significantly decreased the swelling, 

especially the mass change. Between the crosslinked samples, molecular weight had little effect, 

except that the lower molecular weight had a more significant vertical change, in the z-direction 

measured by the thickness change. This height change is likely due to the longer polymer chain 

length and greater entanglement for the higher molecular weight chitosan. This leads to reduced 

free movement upon hydration and thus less swelling. Similarly, this is why crosslinked samples 
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had less swelling than uncrosslinked samples, with the crosslinker limiting polymer chain 

relaxation and movement. 

 

Figure 5.3.2: Effect of MW and Crosslinked on Air-Dried CSHG Swelling 

Interestingly, the maximum swelling seen for the air-dried samples exceeded the commercial 

products' swelling capability over a similar time. When comparing the air-dried samples to the 

freeze-dried formulations (Figure 5.3.3), the freeze-dried samples all showed an order of 

magnitude greater mass change for swelling, with the low and high molecular weight 

uncrosslinked freeze-dried samples showed nearly +12500% increase each. There was a slight 

decrease in percent mass change for the crosslinked freeze-dried formulations and a more 

considerable drop for the change in surface area and volume after crosslinking for both air and 

freeze-dried. This again demonstrates that the crosslinked chains create a matrix that can 

encapsulate a large amount of water but sufficiently limit the physical size from changing 

significantly compared to the uncrosslinked formulations. This suggests that the crosslinked 

formulations are more desirable for the proposed multilayer scheme because it introduces 
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mechanical stability and improves swelling over commercial products, while also introducing 

CSBs to introduce additional antibacterial and antifungal properties to the wound dressing. 

However, there is less vertical change with the crosslinked samples tested here, and ideally, the 

crosslink density could be optimized to allow some vertical swelling for wound pressure.  

 

Figure 5.3.3: Effect of Drying, MW, Crosslinking on CSHG Swelling Behavior (note: log y-axis) 

5.3.3 Kinetic Swelling 

The endpoint swelling tests showed that freeze drying significantly increases the max swelling of 

the CSHG, but understanding the kinetics of that swelling will allow better control over the 

release dependent on the swelling. We first looked at the kinetic swelling of the air-dried 

samples, comparing the uncrosslinked and the crosslinked formulations (Figure 5.3.4). 
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Figure 5.3.4: Kinetic Swelling Behavior of Uncrosslinked vs. Crosslinked Air-Dried CSHG 

Crosslinking significantly reduced the time until the air-dried hydrogel reached an equilibrium 

swelling state, remaining stable after about 45 minutes. The uncrosslinked samples had higher 

maximum swelling but continued to increase for the two hours tested, varying much more than 

the crosslinked. This is likely due to the increasing instability of the polymer matrix in the 

uncrosslinked hydrogels. As the polymer chains move apart, any heterogeneity or degradation 

will destabilize the bulk structure and cause variations in the total mass. Similar behavior was 

seen with OU et al.133, where the uncrosslinked chitosan hydrogels did not reach equilibrium 

during the test hour. Introducing crosslinking caused the hydrogels to stabilize within an hour 

and increasing the crosslink density (1.50 to 0.75 in their definition) decreased the total swelling. 

Interestingly, the total swelling they saw for their samples (50-100%) was much less than for our 

samples (500-1500%). This could be due to some unreported differences in processing or 

preparing the hydrogel samples, but the exact reasons is unclear. What is evident is that the 

swelling kinetics of the crosslinked air-dried samples match what is desired for the immediate 

release regimes proposed for the multilayer hydrogel system. The majority of release occurs as 

the swelling rate changes due to increasing diffusion gradient change and opening of the pore 
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network. The uncrosslinked air-dried samples should then show a burst release within the first 5 

minutes of hydration, ideal for rapidly delivering pain management and antimicrobials upon 

wound dressing application. 

 

Figure 5.3.5: Kinetic Swelling Behavior of Uncrosslinked vs. Crosslinked Air-Dried CSHG from OU et al.133 

Literature and other experiments showed that different crosslink densities for the air-dried 

samples did not significantly affect the swelling kinetics. Future experiments may be needed to 

optimize for mechanical strength vs. flexibility, but this is outside this work.  

Figure 5.3.6 shows the kinetic swelling characteristics for low molecular weight freeze-dried 

formulations, increasing crosslink density from uncrosslinked to 14.  
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Figure 5.3.6: Percent Mass Change for Low MW CSHG vs. Crosslink Density 

Crosslink density demonstrated a significant effect and trend of the kinetic swelling behavior for 

LxF samples. The uncrosslinked and 0.5 crosslinked density swelled to about 1500% before 

rapidly degrading at nearly the same rate. After increasing the crosslink density to 2, the kinetic 

swelling increased by nearly 16000%, the highest for any sample so far. Despite the high 

swelling, the crosslinking did not improve mechanical stability. In 15 minutes, the sample had 

broken apart and could not be measured. From CD 5 on, however, the kinetic swelling reached 

stable equilibrium, with the maximum swelling decreasing as CD increased. CD 11 and 14 

showed nearly identical kinetic swelling behavior, likely due to a crosslinking concentration 

limit.  

A similar trend was seen for the high molecular weight freeze-dried formulations, seen in Figure 

5.3.7. The uncrosslinked sample again quickly degraded over an hour, but the HCF0.5 did not 

degrade as quickly, instead swelling to a nearly 30000% increase in mass, the highest seen for 

any experiment. It is clear from these two tests that a very low crosslink density maximizes the 
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swelling capability of freeze-dried samples but is not enough for mechanical stability, as these 

formulations degrade within 15 minutes.  

Increasing the CD to 1.4 improved the stability while slightly decreasing the swelling, but further 

increasing it to 2 resulted in worse mechanical stability and swelling. This shift may represent 

some critical transition region, where crosslink density is sufficient to increase swelling but not 

extensive throughout the polymer chain network to prevent degradation. Both experiments 

suggest the minimum CD needed for a stable freeze-dried hydrogel would be close to 5. For 

crosslink densities five and greater, swelling reached equilibrium and was dependent again on 

the CD, as was seen for the low molecular weight. 

 

Figure 5.3.7: Percent Mass Change for High MW CSHG vs. Crosslink Density 

 

To better see the crosslink density-dependent trends and the comparison between the molecular 

weights, we plotted the maximum % swelling versus the CS in Figure 5.3.8. There was no 

difference seen for the uncrosslinked samples. The polymer chain length would not affect the 



148 
 

swelling and polymer movement with no crosslinker. At low CDs, some freedom of movement 

for the polymer chains results in maximum swelling, with greater swelling occurring for the 

longer polymer chains due to larger gaps between bound crosslinkers. These formulations are not 

stable when hydrated for more than 15 minutes. From CD 2 to 5, swelling is constant and similar 

for both MWs, possibly demarcating the stable CD transition range. At CDs greater than 5, both 

MWs showed a similar linear decrease for swelling characteristics until CD of 9, where crosslink 

saturation looks to have been reached for both MWs. This suggests that the most effective CD 

range for changing release while maintaining stability would be CDs greater than 5 and less than 

11, since little change is seen at greater CDs than 11.  

 

 

Figure 5.3.8: Max Percent Mass Change, MW vs. Crosslink Density 

 

5.4 Release Studies 

In the proposed multilayer chitosan hydrogel scheme, the different layers themselves will handle 

the release of the free drug loaded within. Swelling characteristics contribute to both the 

hydrogel’s mechanical stability as well as the release kinetics. Free fluorescent dye 

(carboxyfluorescein, CF) was used as a model for these drugs to measure the release kinetics 
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more easily. The effect of MW, drying method, and crosslinking density could then be evaluated 

and compared to the trends seen for the swelling so that formulations appropriate to achieve the 

desired loading, release, and mechanical stability could be determined.  

5.4.1 Free Dye Release 

CF Dye was loaded into the hydrogel formulations via swelling. CF was dissolved in ethanol at 5 

mg/mL concentration, and 25 mL of this dye solution was placed in a clean dish. Each sample 

was placed in the ethanol dye solution and left to swell for 5 minutes before being removed and 

placed in a 40°C oven for 2 days to fully re-dry the samples. The dried samples surfaces were 

lightly wiped with a wipe dampened with small volume of ethanol to remove any unabsorbed 

dye on the surface. For the release studies, each dried sample was weighed and measured, then 

placed in 25 mL of 1X PBS (pH 7.45) in a plate stirrer-incubator kept at 37°C. PBS was chosen 

to maintain neutral pH to prevent the degradation seen for the swelling experiments previously. 

At each time point, 1 mL of bulk fluid PBS was removed and replaced with fresh 1X PBS. Three 

samples of 100 μL were then measured via UV-Vis Spectrophotometer and quantified by a pre-

measured standard to determine concentration and mass.  

Table 5.4.1: Loading and Release of Free Dye for CSHG Formulations 

Sample 
mg Dye 

loaded/cm2 
mg Dye 

release/cm2 
Dye released/loaded 

LCA 1.49 0.028 0.017 
HUA 0.40 0.043 0.157 
HCA 0.92 0.024 0.025 
LUF 6.03 1.14 0.188 
LCF 9.32 0.88 0.094 
HUF 9.07 4.85 0.523 
HCF 8.18 0.96 0.117 
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The expected burst release from air-dried samples can be seen in Figure 5.4.1, which matches the 

kinetic swelling seen for both formulations in Figure 5.3.4. There was no visible difference 

between different molecular weights or crosslinking. The brief expansion seen is likely due to 

the compressed and tangled structure of the thin hydrogel. The polymer chains tangle during the 

evaporation process, leading to miniscule gaps within the dried thin hydrogel. Upon exposure to 

fluid, the polymer chain movement is limited due to this tangling. This is true even for 

uncrosslinked formulations. Crosslinking only limits the potential translational distance. This 

explains the higher endpoint and kinetic swelling for uncrosslinked versus crosslinked, as well as 

the limited loading of free dye compared to the freeze-dried samples. Table 5.4.1 shows that the 

air-dried samples had significantly lower loaded dye mass and released only about a small 

fraction of that mass, with the remaining dye being trapped inside. The freeze-dried samples had 

orders of magnitude higher mass loaded and released. A higher fraction of the loaded was also 

released, with the maximum seen was around 50%. The low loading efficiency and dye retention 

of the air-dried samples are not ideal for eventual drug loading and release. For example, if 

similar loading and release was achieved for lidocaine, for a typical topical dose (3 mg/kg) to an 

average male (90 kg), an air-dried layer would need to cover a surface area of 6750 cm2, which is 

too large to be practical. More experiments are needed to improve loading to deliver an effective 

dose.  
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Figure 5.4.1: Free Dye % Release Air-Dried CSHG, with Crosslinking and MW 

Figure 5.4.2 compares the dye release from the freeze-dried formulations. In contrast to the air-

dried samples, the release was much more sustained. The uncrosslinked formulations displayed a 

much slower release rate, driven by higher swelling (+7000%) than the crosslinked formulations 

(+3600%). Contrastingly, within uncrosslinked/crosslinked pairs the formulation that had the 

highest maximum swelling showed the faster release rate when evaluating the effect of 

molecular weight (HCF and LUF), although the swelling differences are small. This 

demonstrates that the crosslinking density is the primary factor for controlling release, followed 

by, and that the polymer chain length has a secondary effect.  
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Figure 5.4.2: Free Dye % Release Freeze-Dried CSHG, with Crosslinking and MW 

The different crosslink densities’ releases for the low molecular weight freeze-dried formulations 

can be seen in Figure 5.4.3. The high molecular weight formulations’ release is not shown but is 

similar. The same trend to what was seen for the kinetic swelling study was measured for the 

release. The uncrosslinked release showed sustained release, but increasing the CD to 2 resulted 

in fast, near-burst release before a second phase after 20-30 minutes of more sustained slow 

release.  Increasing the crosslink density then slowed the release until a CD of 11, where there 

was no significant difference with any further increase of CD. The high molecular weight 

uncrosslinked formulation was also slower than the CD 2, decreasing as well to CD 5, which 

then showed no difference as CD increased to 14. Both of these match the kinetic swelling 

experiments, and other’s studies on glutaraldehyde-crosslinked freeze-dried hydrogels saw the 

exact same trend (Figure 5.4.4). Mirzaei et al.134 hypothesized what we also did: that for the 

uncrosslinked formulations the polymer chains can move more freely and so this introduces 

more surface area and volume. This expansion results in a higher barrier for dye diffusion and 
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release, resulting in a slower release rate. Crosslinking prevents this expansion until it reaches a 

saturation point. Based on the molecular structure of chitosan and known crosslinking 

mechanism, the theoretical maximum crosslinking density is 65. However, the swelling and 

release behavior in our experiments stops changing at roughly 15% of the theoretical maximum. 

This could represent a practical maximum, where the crosslinking forces a porous morphology 

which shields the reactive amines or does not allow them to link to other chains. Regardless, the 

sustained release and sufficient loading (Table 5.4.1) show that the freeze-dried formulations 

have potential for achieving the multi-regime release proposed in the introduction.  

 

Figure 5.4.3: Free Dye % Release of Low MW CSHG vs. Crosslink Density 
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Figure 5.4.4: Kinetic Swelling of Freeze-Dried Chitosan Hydrogels with increasing CD, Mirzaei et al.134 

5.4.2 Nanoparticle Release Studies 

For the proposed multi-regime release wound dressing, the hydrogel swelling properties control 

the release kinetics for the immediate and fast delivery timings. The sustained release requires 

the use of PLGA nanoparticles, as they can release for the days to weeks required. Fluorescently-

dyed PLGA nanoparticles (200 nm) were loaded into the hydrogels prior to loading and 

crosslinking by adding a NP dispersion directly into a room temperature chitosan solution and 

allowing it to stir for 15 minutes at 600 RPM to fully disperse the particles throughout the 

chitosan. The hydrogels were then formed as previously described. The same release protocol for 

PLGA cores and core/shell particles was used. 

Figure 5.4.5 shows the NP release from the air-dried formulations of increasing crosslink 

density. Compared to non-encapsulated PLGA nanoparticles of similar size (black), the chitosan-

impregnated release showed an initial burst release before slowing to a sustained release for 

many hours past that of bare PLGA NPs. The release rate appears to be dependent on the 

crosslink density. As the crosslink density increases, the release rate decreases, except for CA14, 

which had high variability between triplicate samples. This suggests that the chitosan hydrogel 
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effectively bound to the PLGA nanoparticles a little after hydration, possibly after 24-48 hours 

when the rate slowed from the initial burst release. The acidic conditions within the newly 

hydrated interior would accelerate the particles’ degradation somewhat, which could explain why 

initially we see a burst. Electrostatic interactions could then be capturing the PLGA nanoparticles 

to the hydrogel polymer chains, since PLGA is negatively charged and chitosan is positive. This 

binding then immobilized and shielded parts of the PLGA NPs surface, causing the release rate 

to decrease.  

 

Figure 5.4.5: Percent Release from NPs loaded in Air-Dried CSHG vs. Crosslink Density 

If our hypothesis is accurate, then the greater pore volume and porosity of the freeze-dried 

samples as well as the greater swelling should reduce the potential for nanoparticle trapping. 

This would lead to faster degradation from acidic interior. We see in Figure 5.4.6. results that 

follow very closely to this. All formulations showed a burst release compared to the free PLGA 

NP release (black). Uncrosslinked and CF2 and CF5 completely released all their payload within 

50 hours of hydration. We saw in the swelling experiments that these formulations showed the 

highest maximum swelling. Thus, the expanded volume likely sufficiently prevented NP 
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trapping, more so than when CD was increased. At high CDs, swelling is limited, and with a 

decreased in pore volume comes an increased likelihood of PLGA NP trapping. We hypothesize 

that this is what causes a distinct change in release rate for CF7 and above, where at 48 hours the 

rate changes and becomes nearly linear. This sustained release then lasts for many hours after the 

control of PLGA nanoparticles, like what was seen for the air-dried samples. This leads us to 

believe that our hypothesis is supported by these results, and that chitosan hydrogel properties 

can have a significant effect on loaded PLGA nanoparticles’ release.  

 

Figure 5.4.6: Percent Release from NPs loaded in Freeze-Dried CSHG vs. Crosslink Density 

An interesting trend for PLGA nanoparticle loading can be found in Figure 5.4.7. All PLGA 

nanoparticles had roughly the same mass of C6 dye loaded in them and were roughly the same 

average size, and so the total mass released can give us some understanding of how effectively 

they could release the dye. Looking at the plot, it is evident that total mass release is highly 

dependent on the crosslink density and the drying method. For both drying methods, the total 

mass released increased as crosslink density increased.  
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Figure 5.4.7: Total Mass Release (mg) from NPs loaded in Air-Dried and Freeze-Dried CSHG vs. Crosslink Density 

The air-dried samples all released a greater amount of dye than any of the freeze-dried samples. 

The reason for this trend is unclear. We hypothesize that the glutaraldehyde crosslinker or the 

chitosan hydrogel polymer itself has a greater interaction with the dye and PLGA nanoparticles 

than predicted. The PLGA nanoparticles have a negative surface charge, which would be 

attracted to the positively charged chitosan functional groups. The glutaraldehyde crosslinker 

reacts with these chitosan functional groups, which removes the positive amine groups and 

replaces them with a Chitosan-Schiff Base, which is neutral or negative depending on the 

protonation state. Therefore, a higher crosslink density would result in less electrostatic 

interaction with the PLGA nanoparticles. This matches well with the trend we see within the air-

dried and freeze-dried formulations. Additionally, the swellability could provide a rationale for a 

greater release seen for the air-dried formulations versus the freeze-dried formulation. Greater 

swelling would increase the pore volume and specific surface area available for PLGA-Chitosan 

interactions, which would lead to more PLGA nanoparticle “shielding” and less release with the 

higher swelling formulations. The freeze-dried formulations all had much higher swelling than 
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the air-dried, and indeed we do see that all freeze-dried samples had lower release than the air-

dried. 

We saw that the uncrosslinked and low CD samples degraded quickly during the kinetic swelling 

experiments, but not during any of the release experiments. DI water was used as the hydration 

medium for the swelling experiment, while PBS buffer was used for all release experiments. This 

means that the pH likely changed to more acidic during the kinetic swelling, which destabilized 

the hydrogels which were not sufficiently crosslinked. The buffer solution maintained a neutral 

pH, and so all hydrogels remained stable, and allowed the uncrosslinked and low CD hydrogels 

to reach greater swelling than in water. The swelling then, we hypothesize, is the likely answer to 

the difference in total dye released.  

5.5 Morphology and Porosity Investigations 

The swelling and release experiments displayed many trends which we hypothesized were due to 

the polymer chain network structure and morphology. The following sections are our 

characterization of this structure and morphology and the effect of crosslink density using 

Scanning Electron Microscopy and BET Analysis. The SEM was a ThermoFisher Phenom 

Desktop made available by Dr. Symone Alexander. BET was performed on Micromeritics 

TriStar II, operated by Daniel Meadows and made available by Dr. Virginia Davis. BET samples 

were degassed at 180°C for 24 hours prior to BET, where BJH used to calculate specific surface 

area, pore distribution, and pore volume.  

5.5.1 SEM 

Chitosan hydrogels of increasing crosslink densities were visualized under low magnification 

SEM. The air-dried formulations (not shown here) all showed the same smooth, flat morphology, 
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demonstrating compressed non porous sheet that is described in literature135,136. Only on the cut 

edges could any detail of the compressed sheet structure, and so examination was limited. The 

freeze-dried samples, in contrast, showed highly porous and varying morphology and structure. 

Figure 5.5.1 shows the folded sheet-like morphology of the uncrosslinked formulations. This 

structure was also reported by others, such as Zheng et al.137. These uncrosslinked sheets allow 

fluid penetration and can move past each other easily to expand, leading to the high swelling 

seen in earlier experiments. 

 

Figure 5.5.1: SEM Image of Uncrosslinked Freeze-Dried CSHG Sheet Morphology 

 

As crosslink density was increased, the sheet-like morphology was replaced by a more stringy 

and highly folded morphology. Figure 5.5.2 shows the morphology for CF2, which showed high 

swelling but low stability in kinetic swelling tests. You can see on the upper left side of the 

image that the crosslinking has introduced regions where polymer chains have formed an 
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interconnected network. These crosslinked chains allow for more mechanical stability upon 

hydration, preventing or at least slowing full separation of the sheet regions. The prevalence of 

the crosslinked regions increase as the crosslink density increases, until at high CDs, such as at 

CF14 in Figure 5.5.3, the majority of the structure is this highly porous and interconnected 

structure. These images confirm that the crosslink structure is responsible for the swelling 

behavior and thus responsible for the free dye and nanoparticle release performance to be used 

for the multilayer wound dressing.  

 

Figure 5.5.2: SEM Image of CSHG, CF2 Partially Crosslinked Morphology 
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Figure 5.5.3: SEM Image of CSHG, CF14 Fully Crosslinked Morphology 

 

5.5.2 BET 

SEM morphology visualization was a qualitative analysis, as reliably measuring the pore size or 

porosity was difficult with software and sample preparation complexity. Instead, an initial BET 

analysis was performed on a range of crosslinked freeze-dried samples. BET (Brunaeur-Emmet-

Teller) uses Langmuir monolayer atomic adsorption of nitrogen to measure the surface area and 

pore size of highly porous networks, while the Barrett-Joyner-Halenda (BJH) method uses the 

Kelvin equation to calculate pore size distribution138. Often, density functional theory (DFT), 

which uses Monte Carlo molecular simulations on adsorption isotherms to calculate pore size 

distribution, is used in conjunction with BJH to validate results. For this experiment, we used 

BET with BJH and DFT to quantify the specific surface area (SSA), the pore width, the pore 
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volume, and pore size distribution to better understand the relationship between crosslink density 

and pore structure.  

The nitrogen physisorption isotherms can categorized in six categories depending on the pore 

size and type138. The freeze-dried samples isotherms were near linear, with slight curves at the 

high relative pressures, which indicate Type II macroporous structure. Figure 5.5.4 shows the 

calculated SSA (in m2/g) with respect to the crosslink densities. There is a peak SSA at CD of 8, 

at which you would expect the highest swelling with great mechanical stability. We previously 

hypothesized that this peak would lie at a CD of around 5, from the swelling stability transition 

region that was seen during the kinetic swelling experiments. This was based on that a CD of 5 

was the lowest tested crosslink density that remained stable during kinetic swelling and had the 

highest maximum swelling. It is possible that additional crosslinker past CD 5 continues to 

strengthen the pore structure to CD 8, after which more crosslinker starts to constrict the 

hydrogel and reduces the surface area.  

 

Figure 5.5.4: Specific Surface Area (m2/g) vs. CD, Freeze-Dried CSHG 

Pore volume showed the same trend as SSA, with a peak at CD 8. The pore width relationship 

with crosslinking density displays an interesting trend with CD, seen in Figure 5.5.5. Pore width 

increased until CD 5 before remaining constant until CD11. CD11 was the point during the free 
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dye release experiments at which any higher crosslinking resulted in the same release kinetics. 

The pore width peak at CD5 matches what was the expected peak during the kinetic swelling 

experiments but carries on through CD 8 and 11. This could suggest that the pore width is what 

controls the swelling behavior. This could be related to the SSA and pore volume, but it is 

unclear why the pore width suddenly drops at CD11. It could be more duplications are needed, as 

only duplications were run on CD 5-11 samples.  DFT also calculated pore size/volume 

distribution, with mesoporosity and macropores evident. These results support the SEM 

visualization results.  

 

Figure 5.5.5: Pore Width (A) vs. CD, Freeze-Dried CSHG 

5.6 Conclusion 

Though far from complete, we performed initial investigations on chitosan hydrogels 

formulations for multimodal consecutive release as part of a multilayer wound dressing. 

Characterizing the swelling behavior demonstrated how properties such as MW, crosslinking, 

and drying method affected the formulation mechanical stability and swelling. In general, higher 

MW, CDs greater than 2, and freeze-dried formulations had the desirable combination of high 

swelling and stability over the hours tested. Characterizing the formulations’ release. two 

formulations were determined suitable for achieving the “immediate” (seconds to minutes) and 
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“fast” (minutes to hours) release timing. LMW freeze-dried formulations of CD 5 to CD 11 

showed controlled, sustained release over three hours, matching the desired release profile for 

the “fast” timing regime. All air-dried samples had a burst release, and so a high molecular 

weight slightly crosslinked formulation likely wound ensure mechanical stability. However, 

loading and release efficiency remains a concern for air-dried samples, and more experiments are 

needed to determine if the air-dried crosslinked formulations are too rigid for a practical wound 

dressing. Finally, nanoparticles loaded within CSHG formulations all showed the ability to 

achieve “sustained” (hours to days) release. However, nanoparticles loaded within the freeze-

dried samples displayed a “shielding” effect, dependent on the crosslink density and degree of 

swelling. These results were hypothesized to be a result of the pore structure and morphology, 

and this was supported by SEM and BET analysis. This shielding effect will need to be taken 

into account, as it decreases the release efficiency of the drug loaded within the PLGA 

nanoparticles compared to the non-encapsulated PLGA. In summary, in Figure 5.6.1, we propose 

a three-layer CSHG, with layers made of formulations which showed release kinetics appropriate 

to achieve the desired target drugs releases in Figure 5.1.1. 

 

Figure 5.6.1: Updated Multi-layer Chitosan Hydrogel Wound Dressing for Multi-Regime Release 
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Chapter 6: Summary, Significance, and Future Directions 

Controlling a drug’s bioavailability and pharmacokinetics is a particular problem for small 

molecular weight, hydrophobic drugs, as it reduces their efficacy, increases often severe side 

effects and limits their potential for positive treatment. In fact, most drugs’ bioavailability and 

pharmacokinetics are poor due to their small molecular weight and hydrophobicity. Many 

chemotherapeutics are also difficult to deliver at safe doses due to their narrow therapeutic 

effective windows, where they can have therapeutic effect without causing toxic side effects. 

Different systems which can release these drugs into circulation at controlled rates have been 

developed counter these complications. One such system that has shown promise for this type of 

controlled release are PLGA polymeric nanoparticles. These systems’ release and degradation 

kinetics are well understood, and they are proven safe within the body. However, there are size, 

material, and manufacturing limitations which have prevented these highly promising and 

versatile systems from reaching clinical use. One such modification to these systems is coating 

the PLGA core with a thin polymer shell (such as PLLA) which degrades at a slower rate, 

lengthening the time it can offer sustained release without greatly increasing the size. 

Additionally, these core and shell polymeric nanoparticles have other advantages, as they prevent 

premature burst release often seen with cores and offer a multimodal release structure with 

individually controlled components. Therefore, it is the goal of this work to develop improved 

models and methods for controlling PLGA cores and PLGA/PLLA core and shell nanoparticles 

independently, thereby allowing for improved sustained controlled release of small, hydrophobic 

payloads.  

We used several different aspects of chemical engineering to address this goal:  transport and 

thermodynamic phenomena when analyzing the release behavior and emulsion synthesis method 
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of these nanoparticles, statistical modeling and probability algorithms for measuring and 

modeling the effect of synthesis parameters on PLGA core and core/shell properties, as well as 

process design for theoretical scale-up production modeling, as well material science and 

characterization for characterizing the polymeric nanoparticles and hydrogel systems which are 

an additional application of these formulations.  

Chapters 1 and 2 introduce and provide background on the concepts and challenges this 

dissertation addresses, as well as provide literature background on some alternative applications 

of these techniques and systems.  

Chapter 3 focuses on developing a model for the reliable production of PLGA cores. This is to 

establish a baseline method for producing a consistent formulation on which we will attempt to 

form shells at variable thicknesses later. We first captured all controllable synthesis parameters 

as well as the key output features which have been shown to determine release behavior: size and 

size distribution (PDI). We used two rounds of data gathering and machine learning to learn 

about significant features and which algorithms and models led to the best predictions. The 

machine learning model Random Forest gave the best fit of the ML algorithms; however the best 

overall fit was a power law model dependent on a feature which came out of this modeling: 

specific energy. Specific energy is a scalable feature we had hypothesized would be contributor 

to the final size and PDI, but from the machine learning results it had higher importance than 

expected (>95% of variance explained for size, >90% for PDI). To further improve this power 

law model, we used the determined second most important features, the PVA to PLGA molar 

ratios. By binning the data and analyzing how the model goodness of fit and monodispersity 

changed, we were able to determine that there were optimum ranges of around 13-25 for total 

molar ratio and 5-9 for emulsion molar ratio. We also characterized the release kinetics and 
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mechanisms of PLGA cores and found that they were degradation driven while PLLA 

nanoparticles were diffusion driven, agreeing with other literature reports. Finally, we performed 

theoretical calculations to translate this batch model for size and PDI control to a continuous 

process to attempt to address the scale-up limitation of these particles. The future directions of 

this work can be built on the knowledge gained in this chapter. The specific energy power law 

relationship is purely experimental and is valid only for this specific system modeled in this 

work. It would be useful to develop a thermodynamically-based model, which takes into account 

viscosities, densities, and material properties to predict droplet size. This could then be applied to 

a wide range of systems. Even with the chosen materials with this system, more characterization 

and experiments could be done to further optimize and understand it. The effect of PVA 

molecular weight on the emulsion and droplet size, as well optimal washing and collection could 

improve mass yield for smaller sizes or change the effect seen for molar ratios. NMR, FTIR, and 

SEM could be used to quantify PVA adsorption, as well as quantification assays. Additionally, 

more experiments are needed to test the theoretical continuous process and the accuracy of the 

size control model. The release studies used model dye to measure release kinetics, however 

more experiments using drugs, with different sizes and properties, may change release kinetics. 

Also, since PLGA NPs will need to be surface characterized with PEG or another coating to 

neutralize surface charge, this coating’s effect on release compared to bare particles will be 

valuable for clinical translation.  

Having achieved good size and PDI control over the PLGA cores and characterizing their 

release, in Chapter 4 we presented work to add PLLA shells around these cores at thicknesses 

dependent on various synthesis conditions. We proposed an emulsion-based method due to the 

similarity to the core synthesis method and the hope we could control it using similar parameters. 
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We hypothesized this adapted method would produce populations of three types of particles: 

pure PLGA cores, pure PLLA particles, and core/shell particles. The ratios of these particles 

represent the efficiency of the method, which we want to maximize to allow the fine control over 

the shell we desire. We confirmed via fluorescent imaging the formation of these three types. 

However, using estimated efficiencies found via a statistical distribution method, the Gaussian 

Mixture Model, we were unable to determine synthesis parameters which would allow us to 

maximize the efficiency or control the shell thickness. Despite this negative outcome, we did see 

favorable controlled release properties, with varied release kinetics correlating to the estimated 

shell thicknesses. We suggest that for future work building on this chapter, that instead of an 

emulsion-based method to form the core and shell, one is just used to form the core. These cores 

could then be used in a nanoprecipitation-based method, which has been very promising in 

literature for producing uniform core/shells at high efficiency in a continuous microfluidic 

process. If necessary, the GMM algorithm can be improved, with additional optimization and 

modeling to capture the realistic solution could be achieved. Additionally, a new theoretical 

release model should be developed to more accurately describe and predict the release from a 

core/shell nanoparticle. Current models generally assume a single core, and either degradation or 

diffusion dominated release. However, from our initial release experiments, there isn’t a model 

which could capture a change in release from one to the other, depending on the core and shell 

materials as well as the dimensions of both.  

Finally, in Chapter 5 we present work on an alternative controlled release application of 

polymeric nanoparticles. We proposed a polymer chitosan hydrogel system, made of different 

formulations and layers, which could provide multimodal release of multiple drugs as a wound 

dressing for complex wounds. Polymeric nanoparticles could offer a more sustained release 
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which it was suspected that the hydrogels could not achieve. We analyzed the swelling 

characteristics of different formulations, focusing on the effect that drying method, crosslink 

density, and molecular weight had on kinetics and stability. We found that our formulations 

showed greater swelling than commercial wound dressings, and generally reach equilibrium 

within 5-15 minutes of hydration, which is ideal for rapid treatment of complex wounds. The 

freeze-dried formulations showed greater swelling than the air-dried, and crosslinked decreased 

the overall swelling capability but improved stability after a crosslink density of around 5 (mg 

GlA/g chitosan). Further increasing the CD to 11 decreased the maximum swelling capability, 

but CD past 11 did not show any effect. These results were hypothesized to due to the hydrogel 

pore width, structure, and morphology. Addition crosslinkers would stabilize and force the 

hydrogel structure to form wide pores (CD <5), but adding additional crosslinker would start to 

constrict those pores (5 < CD < 11) until the link sites were saturated (CD > 11). These trends 

were confirmed with SEM and BET analysis, which showed changing pore structure from 

lamellar in crosslinked formulations to more interconnected networks, with a specific surface 

area peak at around CD 5-8 and a leveling off of pore width after CD 11. We also investigated if 

we could achieve the proposed multimodal release timing with different formulation. All air-

dried formulations show immediate (< 5 minutes) burst release which is ideal for immediate pain 

and antibiotic delivery, but suffered from poor loading and release efficiency, which will need to 

be addressed in future studies. Freeze-dried formulations showed controlled, sustained release at 

CD greater than 2 to 5, with decreasing rate with increasing CD up to a CD of 11, similar to the 

swelling experimental results. These formulations would be able to delivery multiple drugs 

within minutes to hours of hydration for the second stage of release. We also impregnated these 

hydrogel formulations with PLGA nanoparticles to test its effect on the release. The PLGA 
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nanoparticles showed sustained release over many days, which could improve wound sterility 

and healing if growth factors, antibiotics, and pain medications were loaded within those 

particles. However, there was a “shielding” effect seen, correlating with increasing CD, where 

the nanoparticles seemed to electrostatically attract to the chitosan chains, which varied the 

release efficiency. More work is need to determine the exact layering process and whether actual 

drugs, not model dye, would have a different interaction with the chitosan. Much more work is 

needed to determine exact hydration and hydrogel properties post-drying, as this will have an 

effect on release and swelling. It is still unknown whether the PLGA nanoparticles diffuse out of 

the hydrogels, despite attempted experiments. It would be valuable to measure the true fate of 

these particles, as in some conditions it could be advantageous for the NPs to diffuse out and 

deposit into wounds. Additionally, a formation process which is more easily scaled up should be 

developed.  

In conclusion, we believe the work presented in this dissertation significantly contributes to the 

current knowledge of controlled release systems and offers some solutions and ways forward for 

delivering small, hydrophobic payloads within the body. The majority of the stated future work 

looks to address some limitations of scale-up or to introduce more versatility for performance of 

these polymeric systems. Some represent blind spots in base scientific understanding, which 

would be valuable to illuminate. The work presented here represents many hours and years of 

dedicated effort and drive, and we hope that we have helped the field of nanomedicine and drug 

delivery improve treatments to future patients.  
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Appendix 

Appendix 1: MATLAB Code 

Molar Ratio Analysis 

clc,clear all, close all 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 33); 
 
% Specify sheet and range 
opts.Sheet = "MasterList"; 
opts.DataRange = "A3:AG430"; 
 
% Specify column names and types 
opts.VariableNames = ["RunOrder", "Sample", "PLGACONC", "PLGA_DCMVol", "PLGAMass", 
"PLGAMoles", "PVACONC", "PVAFlaskVol", "PVAEmulsVol", "PVAWashVol", "TotPVAVol", 
"TotEmulsVol", "PVAFlaskMoles", "PVAEmulsMoles", "PVAWashMoles", "TotalPVAMoles", 
"TotPVAMoles_molesPLGA", "EmulsPVAMoles_molesPLGA", "Amp", "Time", "ActEnergy", 
"SonicPower", "SpecEnergy", "TotMolarEnergy", "EmulsMolarEnergy", "TotRatioEnergy", 
"EmulRatioEnergy", "AvgHD", "StDevHD", "AvgPDI", "StDevPDI", "Dyed", "DyeConc"]; 
opts.VariableTypes = ["double", "string", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "categorical", "double"]; 
 
% Specify variable properties 
opts = setvaropts(opts, "Sample", "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, ["Sample", "Dyed"], "EmptyFieldRule", "auto"); 
 
% Import the data 
AllPLGArunsnew = readtable("C:\Users\bkh0003\Documents\Experiments\PLGA 
NPs\PLGA_size_modeling\AllPLGAruns_new.xlsx", opts, "UseExcel", false); 
 
 
% Clear temporary variables 
clear opts 
 
SpEn=AllPLGArunsnew.SpecEnergy; 
TotMolEn=AllPLGArunsnew.TotMolarEnergy; 
EmulsMolEn=AllPLGArunsnew.EmulsMolarEnergy; 
TotRatEn=AllPLGArunsnew.TotRatioEnergy; 
EmulsRatEn=AllPLGArunsnew.EmulRatioEnergy; 
TotMolRatio=AllPLGArunsnew.TotPVAMoles_molesPLGA; 
EmulsMolRatio=AllPLGArunsnew.EmulsPVAMoles_molesPLGA; 
AvgHD=AllPLGArunsnew.AvgHD; 
AvgPDI=AllPLGArunsnew.AvgPDI; 
IsDyed=AllPLGArunsnew.Dyed; 
Amp=AllPLGArunsnew.Amp; 
Power=AllPLGArunsnew.SonicPower; 
PVAconc=AllPLGArunsnew.PVACONC; 
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dyedSpEn=SpEn(IsDyed=="Y"); 
dyedTotMolEn=TotMolEn(IsDyed=="Y"); 
dyedEmulsMolEn=EmulsMolEn(IsDyed=="Y"); 
dyedTotRatEn=TotRatEn(IsDyed=="Y"); 
dyedEmulRatEn=EmulsRatEn(IsDyed=="Y"); 
dyedTotMolRatio=TotMolRatio(IsDyed=="Y"); 
dyedEmulsMolRatio=EmulsMolRatio(IsDyed=="Y"); 
dyedHD=AvgHD(IsDyed=="Y"); 
dyedPDI=AvgPDI(IsDyed=="Y"); 
dyedAmp=Amp(IsDyed=="Y"); 
dyedPower=Power(IsDyed=="Y"); 
 
 
nondyedSpEn=SpEn(IsDyed=="N"); 
nondyedTotMolEn=TotMolEn(IsDyed=="N"); 
nondyedEmulsMolEn=EmulsMolEn(IsDyed=="N"); 
nondyedTotRatEn=TotRatEn(IsDyed=="N"); 
nondyedEmulRatEn=EmulsRatEn(IsDyed=="N"); 
nondyedTotMolRatio=TotMolRatio(IsDyed=="N"); 
nondyedEmulsMolRatio=EmulsMolRatio(IsDyed=="N"); 
nondyedHD=AvgHD(IsDyed=="N"); 
nondyedPDI=AvgPDI(IsDyed=="N"); 
nondyedAmp=Amp(IsDyed=="N"); 
nondyedPower=Power(IsDyed=="N"); 
 
HighPVAAmp=Amp(PVAconc>7 & PVAconc<9); 
HighPVAPower=Power(PVAconc>7 & PVAconc<9); 
 
 
logTotMolRatio=log(TotMolRatio); 
logEmulsMolRatio=log(EmulsMolRatio); 
 
lognondyedTotMolRatio=log(nondyedTotMolRatio); 
lognondyedEmulsMolRatio=log(nondyedEmulsMolRatio); 
 
% Define Edges of bins for equal number of points in each bin 
nbins=7; 
numpointbin_HD=floor(length(logTotMolRatio)./nbins); 
numpointbin_PDI=floor(length(lognondyedTotMolRatio)./nbins); 
 
logTotMol_SpEnHD=[logTotMolRatio,SpEn,AvgHD]; 
logEmulsMol_SpEnHD=[logEmulsMolRatio,SpEn,AvgHD]; 
logndTotMol_SpEnPDI=[lognondyedTotMolRatio,nondyedSpEn,nondyedPDI]; 
logndEmulsMol_SpEnPDI=[lognondyedEmulsMolRatio,nondyedSpEn,nondyedPDI]; 
 
 
logTotMol_SpEnHD=sortrows(logTotMol_SpEnHD,1); 
logEmulsMol_SpEnHD=sortrows(logEmulsMol_SpEnHD,1); 
logndTotMol_SpEnPDI=sortrows(logndTotMol_SpEnPDI,1); 
logndEmulsMol_SpEnPDI=sortrows(logndEmulsMol_SpEnPDI,1); 
 
for i=1:(nbins-1) 
        Edges_HDTotMR(i+1)=logTotMol_SpEnHD(i.*numpointbin_HD); 
        Edges_HDTotMR(nbins+1)=max(logTotMol_SpEnHD(:,1)); 
        Edges_HDTotMR(1)=0; 
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end 
for i=1:(nbins-1) 
        Edges_HDEmulsMR(i+1)=logEmulsMol_SpEnHD(i.*numpointbin_HD); 
        Edges_HDEmulsMR(nbins+1)=max(logEmulsMol_SpEnHD(:,1)); 
        Edges_HDEmulsMR(1)=-1; 
end 
for i=1:(nbins-1) 
        Edges_PDITotMR(i+1)=logndTotMol_SpEnPDI(i.*numpointbin_PDI); 
        Edges_PDITotMR(nbins+1)=max(logndTotMol_SpEnPDI(:,1)); 
        Edges_PDITotMR(1)=0; 
end 
for i=1:(nbins-1) 
        Edges_PDIEmulsMR(i+1)=logndEmulsMol_SpEnPDI(i.*numpointbin_PDI); 
        Edges_PDIEmulsMR(nbins+1)=max(logndEmulsMol_SpEnPDI(:,1)); 
        Edges_PDIEmulsMR(1)=-1; 
end 
 
 
%% Total Molar Ratio Goodness of Fit Effect Analysis  
% make sure to clear variables not found in first section (run first 
% section again) 
clc, close all 
edges_HD=Edges_HDTotMR; 
[Y_all,E_all]=discretize(logTotMolRatio,edges_HD); 
 
for i=1:length(Y_all) 
    HDgroup(i,1)=SpEn(i); 
    HDgroup(i,Y_all(i)+1)=AvgHD(i); 
end 
 
edges_PDI=Edges_PDITotMR; 
[Y_nondye,E_nondye]=discretize(lognondyedTotMolRatio,edges_PDI); 
for j=1:length(Y_nondye) 
    PDIgroup_nondye(j,1)=SpEn(j); 
    PDIgroup_nondye(j,Y_nondye(j)+1)=nondyedPDI(j); 
end 
 
for r1=1:length(Y_all) 
    for c1=1:length(edges_HD) 
        if HDgroup(r1,c1)==0 
            HDgroup(r1,c1)=""; 
        end 
    end 
end 
for r2=1:length(Y_nondye) 
    for c2=1:length(edges_PDI) 
        if PDIgroup_nondye(r2,c2)==0 
            PDIgroup_nondye(r2,c2)=""; 
        end 
    end 
end 
 
numpoints_HDbins=length(HDgroup)-sum(isnan(HDgroup(:,2:end))); 
numpoints_PDIbins=length(PDIgroup_nondye)-sum(isnan(PDIgroup_nondye(:,2:end))); 
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for k=1:nbins 
    try 
    [HDfit_bin,HDgof_bin]=createPowerFit_HD(HDgroup(:,1),HDgroup(:,k+1)); 
    HDBin_R2(k)=HDgof_bin.adjrsquare; 
    close all 
    catch 
    HDBin_R2(k)="NaN"; 
    close all 
    end 
end 
 
for k=1:nbins 
    try 
    
[PDIfit_bin,PDIgof_bin]=createPowerFit_PDI(PDIgroup_nondye(:,1),PDIgroup_nondye(:,k+1
)); 
    PDIBin_R2(k)=PDIgof_bin.adjrsquare; 
    close all 
    catch 
    PDIBin_R2(k)="NaN";     
    close all 
    end 
end 
 
% 
x_all=E_all(2:end); 
x_nondye=E_nondye(2:end); 
 
% 
figure 
plot((edges_HD(2:end)),HDBin_R2,'-*g') 
title('Goodness of Fit - Adj R2 vs Tot. Molar Ratio') 
xlabel('Ln(Total Molar Ratio)') 
ylabel('Goodness of Fit (GOF) Adj. R2') 
ylim([0 1]) 
hold on 
plot((edges_PDI(2:end)),PDIBin_R2,'-*r') 
legend('HD (nm)','PDI','Location','southeast') 
hold off 
 
numpoints_HDbins 
numpoints_PDIbins 
 
%% Emulsion Molar Ratio Goodness of Fit Effect Analysis 
% make sure to clear variables not found in first section (run first 
% section again) 
clc 
 
edges_HD=Edges_HDEmulsMR; 
[Y_all,E_all]=discretize(logEmulsMolRatio,edges_HD); 
 
for i=1:length(Y_all) 
    HDgroup(i,1)=SpEn(i); 
    HDgroup(i,Y_all(i)+1)=AvgHD(i); 
end 
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edges_PDI=Edges_PDIEmulsMR; 
[Y_nondye,E_nondye]=discretize(lognondyedEmulsMolRatio,edges_PDI); 
for j=1:length(Y_nondye) 
    PDIgroup_nondye(j,1)=SpEn(j); 
    PDIgroup_nondye(j,Y_nondye(j)+1)=nondyedPDI(j); 
end 
 
for r1=1:length(Y_all) 
    for c1=1:length(edges_HD) 
        if HDgroup(r1,c1)==0 
            HDgroup(r1,c1)=""; 
        end 
    end 
end 
for r2=1:length(Y_nondye) 
    for c2=1:length(edges_PDI) 
        if PDIgroup_nondye(r2,c2)==0 
            PDIgroup_nondye(r2,c2)=""; 
        end 
    end 
end 
 
numpoints_HDbins=length(HDgroup)-sum(isnan(HDgroup(:,2:end))); 
numpoints_PDIbins=length(PDIgroup_nondye)-sum(isnan(PDIgroup_nondye(:,2:end))); 
 
for k=1:nbins 
    try 
    [HDfit_bin,HDgof_bin]=createPowerFit_HD(HDgroup(:,1),HDgroup(:,k+1)); 
    HDBin_R2(k)=HDgof_bin.adjrsquare; 
    close all 
    catch 
    HDBin_R2(k)="NaN"; 
    close all 
    end 
end 
 
for k=1:nbins 
    try 
    
[PDIfit_bin,PDIgof_bin]=createPowerFit_PDI(PDIgroup_nondye(:,1),PDIgroup_nondye(:,k+1
)); 
    PDIBin_R2(k)=PDIgof_bin.adjrsquare; 
    close all 
    catch 
    PDIBin_R2(k)="NaN"; 
    close all 
    end 
end 
 
% 
x_all=E_all(2:end); 
x_nondye=E_nondye(2:end); 
 
% 
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figure 
plot((edges_HD(2:end)),HDBin_R2,'-*g') 
title('Goodness of Fit - Adj R2 vs Emuls. Molar Ratio') 
xlabel('Ln(Emuls Molar Ratio)') 
ylabel('Goodness of Fit (GOF) Adj. R2') 
 
hold on 
plot((edges_PDI(2:end)),PDIBin_R2,'-*r') 
legend('HD (nm)','PDI','Location','southeast') 
numpoints_HDbins 
numpoints_PDIbins 
 
 
%% Find Fraction of PDI In each Molar Ratio that are "Monodisperse" 
% Run first section before running this so as to clear any dual used 
% variables 
clc, close all 
edgesTot_PDI=Edges_PDITotMR; 
[YTot_nondye,ETot_nondye]=discretize(lognondyedTotMolRatio,edgesTot_PDI); 
for j=1:length(YTot_nondye) 
    PDIgroupTot_nondye(j,1)=SpEn(j); 
    PDIgroupTot_nondye(j,YTot_nondye(j)+1)=nondyedPDI(j); 
end 
 
edgesEmuls_PDI=Edges_PDIEmulsMR; 
[YEmuls_nondye,EEmuls_nondye]=discretize(lognondyedEmulsMolRatio,edgesEmuls_PDI); 
for j=1:length(YEmuls_nondye) 
    PDIgroupEmuls_nondye(j,1)=SpEn(j); 
    PDIgroupEmuls_nondye(j,YEmuls_nondye(j)+1)=nondyedPDI(j); 
end 
 
for r1=1:length(YTot_nondye) 
    for c1=1:length(edgesTot_PDI) 
        if PDIgroupTot_nondye(r1,c1)>0 && PDIgroupTot_nondye(r1,c1)<=0.1 
            MondispersePDI_Tot(r1,c1)=1; 
        else 
            MondispersePDI_Tot(r1,c1)=0; 
        end 
    end 
end 
for r2=1:length(YEmuls_nondye) 
    for c2=1:length(edgesEmuls_PDI) 
        if PDIgroupEmuls_nondye(r2,c2)>0 && PDIgroupEmuls_nondye(r2,c2)<=0.1 
            MondispersePDI_Emuls(r2,c2)=1; 
        else 
            MondispersePDI_Emuls(r2,c2)=0; 
        end 
    end 
end 
 
 
 
for r1=1:length(YTot_nondye) 
    for c1=1:length(edgesTot_PDI) 
        if PDIgroupTot_nondye(r1,c1)==0 
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            PDIgroupTot_nondye(r1,c1)=""; 
        end 
    end 
end 
for r2=1:length(YEmuls_nondye) 
    for c2=1:length(edgesEmuls_PDI) 
        if PDIgroupEmuls_nondye(r2,c2)==0 
            PDIgroupEmuls_nondye(r2,c2)=""; 
        end 
    end 
end 
 
 
numpoints_TotPDIbins=length(PDIgroupTot_nondye)-
sum(isnan(PDIgroupTot_nondye(:,2:end))); 
numpoints_EmulsPDIbins=length(PDIgroupEmuls_nondye)-
sum(isnan(PDIgroupEmuls_nondye(:,2:end))); 
 
fits_Total=sum(MondispersePDI_Tot); 
fits_Emuls=sum(MondispersePDI_Emuls); 
 
PercentMonodisperse_TotRatio=fits_Total(2:end)./numpoints_TotPDIbins; 
PercentMonodisperse_EmulsRatio=fits_Emuls(2:end)./numpoints_EmulsPDIbins; 
 
tiledlayout(2,1) 
nexttile 
plot((edgesTot_PDI(2:end)),PercentMonodisperse_TotRatio,'-*k') 
xlabel('Ln(Total Molar Ratio)') 
ylabel('Percent Monodisperse') 
title('% Monodispersity vs Total Molar Ratio') 
xlim([2 5.5]) 
ylim([0 1]) 
 
nexttile 
plot((edgesEmuls_PDI(2:end)),PercentMonodisperse_EmulsRatio,'-*b') 
xlabel('Ln(Emulsion Molar Ratio)') 
ylabel('Percent Monodisperse') 
title('% Monodispersity vs Emulsion Molar Ratio') 
 
ylim([0 1]) 
 

Batch-to-Continuous Sonication Scale-Up 

SonicationFreq=20000;       %   Hz 
AmpPctSetting=[0:5:100];   % amplitude % setting range 
 
 
% Batch Probe Sonication Specification 
batchprobeDiam=0.16;        % cm 
batchprobeAmp=320*(1E-4);   % cm 
batchprobeHeight=4.8;       % cm 



199 
 

batchprobeSA=batchprobeDiam.*pi()*batchprobeHeight+2*pi()*((batchprobeDiam/2).^2); 
% cm2 
batchprobeTipAmp=(AmpPctSetting./100).*batchprobeAmp;   % cm 
batchVibDistRate=(4.*batchprobeTipAmp).*SonicationFreq; % cm/s 
coefs1=polyfit(AmpPctSetting,batchVibDistRate,1); 
batchprobeVibDis_slope=coefs1(1); 
 
% FlowCell Sonication 
contprobeDiam=2.54;     % cm 
contprobeAmp=35*(1E-4);  % cm 
contprobeHeight=43.18;  % cm 
contprobeSA=contprobeDiam.*pi()*contprobeHeight+2*pi()*((contprobeDiam/2).^2); 
% cm2 
contprobeTipAmp=(AmpPctSetting./100).*contprobeAmp;   % cm 
contVibDistRate=(4.*contprobeTipAmp).*SonicationFreq; % cm/s 
coefs2=polyfit(AmpPctSetting,contVibDistRate,1); 
contprobeVibDis_slope=coefs2(1); 
 
% FloCell Volume Specification 
FlowCellVol=400;        % cm3 
FlowMaxVolRate=333.33;   % cm3/s 
 
 
% Batch Probe Sonication Data 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 29); 
 
% Specify sheet and range 
opts.Sheet = "EnergyRuns"; 
opts.DataRange = "A3:AC366"; 
 
% Specify column names and types 
opts.VariableNames = ["PLGACONC", "PLGA_DCMVol", "PLGAMass", "PLGAMoles", "PVACONC", 
"PVAFlaskVol", "PVAEmulsVol", "PVAWashVol", "TotPVAVol", "TotEmulsVol", 
"PVAFlaskMoles", "PVAEmulsMoles", "PVAWashMoles", "TotalPVAMoles", 
"TotPVAMoles_molesPLGA", "EmulsPVAMoles_molesPLGA", "Amp", "Time", "ActEnergy", 
"SonicPower", "SpecEnergy", "TotMolarEnergy", "EmulsMolarEnergy", "TotRatioEnergy", 
"EmulRatioEnergy", "AvgHD", "StDevHD", "AvgPDI", "StDevPDI"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double"]; 
 
% Import the data 
BatchToContinuous = 
readtable("G:\Dissertation_backupfiles\DataFiles_for_Dissertation\PLGA_size_modeling_
backup\BatchToContinuousCalcs.xlsx", opts, "UseExcel", false); 
 
 
% Clear temporary variables 
clear opts 
batchEmulsAmp=BatchToContinuous.Amp;    % percent 
batchEmulsTime=BatchToContinuous.Time;   % time (s) 
batchEmulsPower=BatchToContinuous.SonicPower;  % power (W) 
batchEmulsSpEn=BatchToContinuous.SpecEnergy;   % J/emulsion volume 
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batchEmulsVol=BatchToContinuous.TotEmulsVol;    % emulsion volume (mL) 
 
 
 
% Probe Vibrational Distance Calculations 
batchEmulsVibRate=batchprobeVibDis_slope.*batchEmulsAmp;    % cm/s 
batchEmulsTotVibDist=batchEmulsVibRate.*batchEmulsTime;     % cm 
batchVibDist_EmulsVol=batchEmulsTotVibDist./batchEmulsVol;  % cm/cm3 
batchVibDistRate_EmulsVol=batchVibDist_EmulsVol./batchEmulsTime;    %cm/s/(cm3) 
 
batchprobe_Lc=batchEmulsVol./batchprobeSA;          % cm3/cm2 = cm 
batchVibDis_Lc=batchEmulsTotVibDist.*batchprobe_Lc;  %cm*cm = cm2 
lnSpEn=log(batchEmulsSpEn); 
 
 
%CREATEFIT(LNSPEN,BATCHVIBDIS_LC) 
%  Create a fit. 
% 
%  Data for 'ExponentialFit' fit: 
%      X Input: lnSpEn 
%      Y Output: batchVibDis_Lc 
%  Output: 
%      fitresult : a fit object representing the fit. 
%      gof : structure with goodness-of fit info. 
% 
%  See also FIT, CFIT, SFIT. 
 
%  Auto-generated by MATLAB on 14-Feb-2023 11:58:50 
 
 
% Fit: 'ExponentialFit'. 
[xData, yData] = prepareCurveData( lnSpEn, batchVibDis_Lc ); 
 
% Set up fittype and options. 
ft = fittype( 'exp1' ); 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts.Display = 'Off'; 
opts.Robust = 'Bisquare'; 
opts.StartPoint = [1.28846584410963e-06 1.01379260254063]; 
 
% Fit model to data. 
[fitresult, gof] = fit( xData, yData, ft, opts ); 
 
FlowCell_Lc=FlowCellVol./contprobeSA;       % cm3/cm2 = cm 
 
 
% Power Law for Specific Energy vs Size and PDI 
DesiredSize=[175 200 225 250 275 300];  % nm 
 
FlowAmplitude=[20 30 40 50 60 70 80 90 100];      % power setting of flowcell probe 
 
for i=1:length(FlowAmplitude) 
    for j=1:length(DesiredSize) 
 
    ReqSpEn=exp((log((DesiredSize(j)-78.42)./403.2))./-0.2265); 
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    lnReqSpEn=log(ReqSpEn); 
    ReqVibDist_Lc=(fitresult.a).*exp(fitresult.b.*lnReqSpEn); 
    ReqFlow_VibDistTot=ReqVibDist_Lc./FlowCell_Lc;      % cm 
    FlowVibRate=FlowAmplitude(i).*contprobeVibDis_slope;   % cm/s at power setting 
    ReqFlow_VibTime=ReqFlow_VibDistTot./FlowVibRate;    % required residence times 
(sec) to achieve total vibrational distance over flowcell probe 
    ReqFlow_VolFlowRate(i,j)=(FlowCellVol./ReqFlow_VibTime)*60; % mL/min 
    end 
end 
 
plot(FlowAmplitude,ReqFlow_VolFlowRate(:,1),'-
r',FlowAmplitude,ReqFlow_VolFlowRate(:,2),'-
g',FlowAmplitude,ReqFlow_VolFlowRate(:,3),'-
b',FlowAmplitude,ReqFlow_VolFlowRate(:,4),'-
c',FlowAmplitude,ReqFlow_VolFlowRate(:,5),'-
m',FlowAmplitude,ReqFlow_VolFlowRate(:,6),'-k'); 
xlim([20 100]) 
ylim([0 350]) 
yticks([0:25:350]) 
 
grid on 
xlabel('Amplitude Power Setting (%)') 
ylabel('Volumetric Flowrate (mL/min)') 
legend('D=175 nm','D=200 nm','D=225 nm','D=250 nm','D=275 nm','D=300 
nm','Location','northwest'); 
 

Release Fitting 

%% Import Release Data 
clc,clear all 
 
 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
 
% Pure PLGA 
clc 
 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 25); 
 
% Specify sheet and range 
opts.Sheet = "PurePLGA"; 
opts.DataRange = "A2:Y19"; 
 
% Specify column names and types 
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opts.VariableNames = ["Timehr", "F12", "Y1", "StdevY1", "F13", "Y2", "StdevY2", 
"F14", "Y3", "StdevY3", "F15", "Y4", "StdevY4", "F16", "Y5", "StdevY5", "F17", "Y6", 
"StdevY6", "F18", "Y7", "StdevY7", "F19", "Y8", "StdevY8"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double"]; 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
Timehr = tbl.Timehr; 
F12 = tbl.F12; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
F13 = tbl.F13; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
F14 = tbl.F14; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
F15 = tbl.F15; 
Y4 = tbl.Y4; 
StdevY4 = tbl.StdevY4; 
F16 = tbl.F16; 
Y5 = tbl.Y5; 
StdevY5 = tbl.StdevY5; 
F17 = tbl.F17; 
Y6 = tbl.Y6; 
StdevY6 = tbl.StdevY6; 
F18 = tbl.F18; 
Y7 = tbl.Y7; 
StdevY7 = tbl.StdevY7; 
F19 = tbl.F19; 
Y8 = tbl.Y8; 
StdevY8 = tbl.StdevY8; 
 
 
% Clear temporary variables 
clear opts tbl 
 
% Data prep for fits 
t=Timehr; 
SampleName=['F12';'F13';'F14';'F15';'F16';'F17';'F18';'F19']; 
Mt_Minf=[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8]; 
D=[F12(1),F13(1),F14(1),F15(1),F16(1),F17(1),F18(1),F19(1)]; 
R=D./2;                         % radii of NPs 
Dye=[F12(2),F13(2),F14(2),F15(2),F16(2),F17(2),F18(2),F19(2)]; 
Co=Dye.*density_PLGA;           % mg dye/nm3 NP 
 
 
clc 
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Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
 
 
%% Pure PLLA1 
clc,clear all 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 16); 
 
% Specify sheet and range 
opts.Sheet = "PurePLLA1"; 
opts.DataRange = "A2:P44"; 
 
% Specify column names and types 
opts.VariableNames = ["Timehr", "PLLA21", "Y1", "StdevY1", "PLLA22", "Y2", "StdevY2", 
"PLLA23", "Y3", "StdevY3", "PLLA24", "Y4", "StdevY4", "PLLA25", "Y5", "StdevY5"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double"]; 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
Timehr = tbl.Timehr; 
PLLA21 = tbl.PLLA21; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
PLLA22 = tbl.PLLA22; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
PLLA23 = tbl.PLLA23; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
PLLA24 = tbl.PLLA24; 
Y4 = tbl.Y4; 
StdevY4 = tbl.StdevY4; 
PLLA25 = tbl.PLLA25; 
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Y5 = tbl.Y5; 
StdevY5 = tbl.StdevY5; 
 
% Clear temporary variables 
clear opts tbl 
 
t=Timehr; 
SampleName=['PLLA21';'PLLA22';'PLLA23';'PLLA24';'PLLA25']; 
Mt_Minf=[Y1,Y2,Y3,Y4,Y5]; 
D=[PLLA21(1),PLLA22(1),PLLA23(1),PLLA24(1),PLLA25(1)]; 
R=D./2;                         % radii of NPs 
Dye=[PLLA21(2),PLLA22(2),PLLA23(2),PLLA24(2),PLLA25(2)]; 
Co=Dye.*density_PLLA;           % mg dye/nm3 NP 
 
clc 
Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
 
 
%% Pure PLLA2 
clc,clear all 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 13); 
 
% Specify sheet and range 
opts.Sheet = "PurePLLA2"; 
opts.DataRange = "A2:M58"; 
 
% Specify column names and types 
opts.VariableNames = ["Timehr", "PPLLA6", "Y1", "StdevY1", "PPLLA7", "Y2", "StdevY2", 
"PPLLA9", "Y3", "StdevY3", "PPLLA10", "Y4", "StdevY4"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double"]; 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
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Timehr = tbl.Timehr; 
PPLLA6 = tbl.PPLLA6; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
PPLLA7 = tbl.PPLLA7; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
PPLLA9 = tbl.PPLLA9; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
PPLLA10 = tbl.PPLLA10; 
Y4 = tbl.Y4; 
StdevY4 = tbl.StdevY4; 
 
% Clear temporary variables 
clear opts tbl 
t=Timehr; 
SampleName=['PPLLA7';'PPLLA8';'PPLLA9';'PLLA10']; 
Mt_Minf=[Y1,Y2,Y3,Y4]; 
D=[PPLLA6(1),PPLLA7(1),PPLLA9(1),PPLLA10(1)]; 
R=D./2;                         % radii of NPs 
Dye=[PPLLA6(2),PPLLA7(2),PPLLA9(2),PPLLA10(2)]; 
Co=Dye.*density_PLLA;           % mg dye/nm3 NP 
 
clc 
Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
%% Chiosan-Shell 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 22); 
 
% Specify sheet and range 
opts.Sheet = "Chit_Shell"; 
opts.DataRange = "A2:V28"; 
 
% Specify column names and types 
opts.VariableNames = ["Timehr", "CHIT1", "Y1", "StdevY1", "CHIT2", "Y2", "StdevY2", 
"CHIT3", "Y3", "StdevY3", "CHIT4", "Y4", "StdevY4", "CHIT5", "Y5", "StdevY5", 
"CHIT6", "Y6", "StdevY6", "CHIT7", "Y7", "StdevY7"]; 
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opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "string", "double", "double", "string"]; 
 
% Specify variable properties 
opts = setvaropts(opts, ["StdevY6", "StdevY7"], "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, ["StdevY6", "StdevY7"], "EmptyFieldRule", "auto"); 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
Timehr = tbl.Timehr; 
CHIT1 = tbl.CHIT1; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
CHIT2 = tbl.CHIT2; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
CHIT3 = tbl.CHIT3; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
CHIT4 = tbl.CHIT4; 
Y4 = tbl.Y4; 
StdevY4 = tbl.StdevY4; 
CHIT5 = tbl.CHIT5; 
Y5 = tbl.Y5; 
StdevY5 = tbl.StdevY5; 
CHIT6 = tbl.CHIT6; 
Y6 = tbl.Y6; 
StdevY6 = tbl.StdevY6; 
CHIT7 = tbl.CHIT7; 
Y7 = tbl.Y7; 
StdevY7 = tbl.StdevY7; 
 
% Clear temporary variables 
clear opts tbl 
 
  
t=Timehr; 
SampleName=['CHIT1';'CHIT2';'CHIT3';'CHIT4';'CHIT5';'CHIT6';'CHIT7']; 
Mt_Minf=[Y1,Y2,Y3,Y4,Y5,Y6,Y7]; 
D=[CHIT1(1),CHIT2(1),CHIT3(1),CHIT4(1),CHIT5(1),CHIT6(1),CHIT7(1)]; 
R=D./2;                         % radii of NPs 
Dye=[CHIT1(2),CHIT2(2),CHIT3(2),CHIT4(2),CHIT5(2),CHIT6(2),CHIT7(2)]; 
Co=Dye.*density_PLGA;           % mg dye/nm3 NP 
 
clc 
Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
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    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
%% HiMWPLLA & PCL 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 13); 
 
% Specify sheet and range 
opts.Sheet = "HIPLLA_PCL"; 
opts.DataRange = "A2:M67"; 
 
% Specify column names and types 
opts.VariableNames = ["Timehr", "HiMWPLLA1", "Y1", "StdevY1", "HiMWPLLA2", "Y2", 
"StdevY2", "PCL1", "Y3", "StdevY3", "PCL2", "Y4", "StdevY4"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double"]; 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
Timehr = tbl.Timehr; 
HiMWPLLA1 = tbl.HiMWPLLA1; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
HiMWPLLA2 = tbl.HiMWPLLA2; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
PCL1 = tbl.PCL1; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
PCL2 = tbl.PCL2; 
Y4 = tbl.Y4; 
StdevY4 = tbl.StdevY4; 
 
% Clear temporary variables 
clear opts tbl 
 
t=Timehr; 
SampleName=['HIPLLA1';'HIPLLA2';'PCLNPS1';'PCLNPS2']; 
Mt_Minf=[Y1,Y2,Y3,Y4]; 
D=[HiMWPLLA1(1),HiMWPLLA2(1),PCL1(1),PCL2(1)]; 
R=D./2;                         % radii of NPs 
Dye=[HiMWPLLA1(2),HiMWPLLA2(2),PCL1(2),PCL2(2)]; 
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Co=Dye.*density_PLGA;           % mg dye/nm3 NP 
 
clc 
Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
%% Core/Shell PLGA/PLLA NPs 
clc, clear all 
density_PLLA=1.15E-18;  % mg/nm3 
density_PLGA=1.28E-18;  %  mg/nm3 
 
%Constants: used for calculations 
MW_Dye=350.46/1000;      % mg/umol 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 19); 
 
% Specify sheet and range 
opts.Sheet = "CoreShell"; 
opts.DataRange = "A2:S69"; 
 
% Specify column names and types 
opts.VariableNames = ["Timehr", "P13", "Y1", "StdevY1", "P16", "Y2", "StdevY2", 
"P24", "Y3", "StdevY3", "P17", "Y4", "StdevY4", "P18", "Y5", "StdevY5", "P20", "Y6", 
"StdevY6"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double"]; 
 
% Import the data 
tbl = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\NPRelease\UpdatedRe
leaseFitData.xlsx", opts, "UseExcel", false); 
 
% Convert to output type 
Timehr = tbl.Timehr; 
P13 = tbl.P13; 
Y1 = tbl.Y1; 
StdevY1 = tbl.StdevY1; 
P16 = tbl.P16; 
Y2 = tbl.Y2; 
StdevY2 = tbl.StdevY2; 
P24 = tbl.P24; 
Y3 = tbl.Y3; 
StdevY3 = tbl.StdevY3; 
P17 = tbl.P17; 
Y4 = tbl.Y4; 
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StdevY4 = tbl.StdevY4; 
P18 = tbl.P18; 
Y5 = tbl.Y5; 
StdevY5 = tbl.StdevY5; 
P20 = tbl.P20; 
Y6 = tbl.Y6; 
StdevY6 = tbl.StdevY6; 
 
% Clear temporary variables 
clear opts tbl 
t=Timehr; 
SampleName=['P13';'P16';'P24';'P17';'P18';'P20']; 
Mt_Minf=[Y1,Y2,Y3,Y4,Y5,Y6]; 
D=[P13(1),P16(1),P24(1),P17(1),P18(1),P20(1)]; 
R=D./2;                         % radii of NPs 
Dye=[P13(2),P16(2),P24(2),P17(2),P18(2),P20(2)]; 
Co=Dye.*density_PLGA;           % mg dye/nm3 NP 
 
clc 
Mvalidrange=Mt_Minf <= 0.6; 
t60=Mvalidrange.*t; 
Mt_Minf60=Mvalidrange.*Mt_Minf; 
 
for r=2:length(t) 
    for c=1:length(D) 
        if t60(r,c) == 0 
            t60(r,c)=""; 
            Mt_Minf60(r,c)=""; 
        end 
    end 
end 
 
%% Release Model Fits 
 
% Korsmeyer-Peppas 
%only accounts for 60% of release 
% Mt/Minf=k*(t^n) 
clc,close all 
 
for i=1:length(D) 
    [KPfit,KPgof]=KorsmeyerPeppasFit(t60(:,i),Mt_Minf60(:,i)); 
 
    kKP(i)=KPfit.kKP; 
    nKP(i)=KPfit.nKP; 
    R2_KP(i)=KPgof.rsquare; 
    AdjR2_KP(i)=KPgof.adjrsquare; 
    RMSE_KP(i)=KPgof.rmse; 
    close all 
end 
 
% Peppas-Sahlin 
for i=1:length(D) 
    [PSfit,PSgof]=PeppasSahlinFit(t60(:,i),Mt_Minf60(:,i)); 
 
    k1PS(i)=PSfit.k1PS; 
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    k2PS(i)=PSfit.k2PS; 
    mPS(i)=PSfit.mPS; 
    R2_PS(i)=PSgof.rsquare; 
    AdjR2_PS(i)=PSgof.adjrsquare; 
    RMSE_PS(i)=PSgof.rmse; 
    close all 
end 
 
% 
% Hopfenberg 
%Mt/Minf=1-(1-k0*t/CLr)^n 
clc 
for i=1:length(D) 
 
    A_Hpf=Co(i).*R(i);    %hopfenberg constant (Co*r) 
    x_Hpf=t(1:end); 
    x_Hpf=x_Hpf'; 
    y_Hpf=Mt_Minf(1:end,i); 
    y_Hpf=y_Hpf'; 
 
    X_Hpf=1-nthroot((1-y_Hpf),3); 
    k_Hpf=(A_Hpf*X_Hpf)/x_Hpf; 
    k_HopfFit(i)=k_Hpf; 
 
 
    f_Hpf=1-((1-((k_Hpf.*x_Hpf)./(A_Hpf))).^3); 
 
    J_Hpf=sum((f_Hpf-y_Hpf).^2); 
    S_Hpf=sum((y_Hpf-mean(y_Hpf)).^2); 
    R2_Hpf(i)=1-(J_Hpf/S_Hpf); 
    AdjR2_Hpf(i)=1-((length(y_Hpf)-1)/(length(y_Hpf)-2))*(J_Hpf/S_Hpf); 
    RMSE_Hpf(i)=sqrt(J_Hpf./length(y_Hpf)); 
end 
 
% Higuchi 
% Mt/Minf = kH(t^0.5) 
for i=1:length(D) 
    [Higfit,Higgof]=HiguchiFit(t,Mt_Minf(:,i)); 
    nHig=0.5; 
    kHig(i)=Higfit.kHig; 
    R2_Hig(i)=Higgof.rsquare; 
    AdjR2_Hig(i)=Higgof.adjrsquare; 
    RMSE_Hig(i)=Higgof.rmse; 
    close all 
end 
 
% Weibull 
% Mt/Minf=[1-exp((t-T)^b/a)) 
for i=1:length(D) 
    [WBfit,WBgof]=WeibullFit(t,Mt_Minf(:,i)); 
 
    a_WB(i)=WBfit.aWB; 
    b_WB(i)=WBfit.b; 
    T_WB=0; 
    R2_WB(i)=WBgof.rsquare; 
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    AdjR2_WB(i)=WBgof.adjrsquare; 
    RMSE_WB(i)=WBgof.rmse; 
    close all 
end 
%% 
close all 
scatter(2.*R,k_HopfFit./Co) 
 
 
 
%% Table of all results once have been run 
clc 
% Print Results and Plot 
    %For copy and paste 
    SampleName=cellstr(SampleName); 
    PolymerName='CoreShell'; 
 
for i=1:length(D) 
    fprintf('%s-%.0f - %s - %.1f nm \tCumulative Release Kinetic Model Fit 
Results:\n',PolymerName,i,SampleName{i},R(i)) 
    fprintf('Model\tConstants\t\t\tR2\tAdj R2\tRMSE\n'); 
    fprintf('Korsmeyer-
Peppas(n,k):\t%4.4f\t%4.4f\t\t%4.4f\t%4.4f\t%4.4f\n',nKP(i),kKP(i),R2_KP(i),AdjR2_KP(
i),RMSE_KP(i)); 
    fprintf('Peppas-
Sahlin(k1,k2,m):\t%4.4f\t%4.4e\t%4.4f\t%4.4f\t%4.4f\t%4.4f\n',k1PS(i),k2PS(i),mPS(i),
R2_PS(i),AdjR2_PS(i),RMSE_PS(i)); 
    
fprintf('Higuchi(n,k):\t%4.4f\t%4.4f\t\t%4.4f\t%4.4f\t%4.4f\n',nHig,kHig(i),R2_Hig(i)
,AdjR2_Hig(i),RMSE_Hig(i));     
    
fprintf('Hopfenberg(k0):\t%4.4e\t\t\t%4.4f\t%4.4f\t%4.4f\n',k_HopfFit(i),R2_Hpf(i),Ad
jR2_Hpf(i),RMSE_Hpf(i)); 
    
fprintf('Weibull(a,b,T):\t%4.4f\t%4.4e\t%4.4f\t%4.4f\t%4.4f\t%4.4f\n\n',a_WB(i),b_WB(
i),T_WB,R2_WB(i),AdjR2_WB(i),RMSE_WB(i));  
end 
 
%% Plots 
close all 
 
for i=1:length(D) 
    for j=1:length(t) 
        fitKP(j,i)=kKP(i).*(t(j).^nKP(i)); 
        fitPS(j,i)=k1PS(i).*(t(j).^mPS(i))+k2PS(i).*(t(j).^(2.*mPS(i))); 
        fitHopf(j,i)=1-((1-((k_HopfFit(i).*t(j))./(Co(i).*R(i)))).^3); 
    end 
    figure(i) 
    plot(t,Mt_Minf(:,i),'*b',t,fitKP(:,i),'-k',t,fitPS(:,i),'-b',t,fitHopf(:,i),'-
r'); 
    xlabel('Time (hr)') 
    ylabel('Percent Release') 
    legend('Release Data','Korsmeyer-Peppas','Peppas-
Sahlin','Hopfenberg','Location','southeast') 
    title(sprintf('%s-%.0f    Radius = %.1f nm',PolymerName,i,R(i))); 
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    xlim([0 max(t)]) 
    ylim([0 1]) 
end 
 
Gaussian Mixture Model Distribution Solution 

clc, clear all, close all 
 
% Import C/S Data Spreadsheet 
 
%Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 53); 
 
% Specify sheet and range 
opts.Sheet = "Sheet1"; 
opts.DataRange = "A3:BA103"; 
 
% Specify column names and types 
opts.VariableNames = ["RunIndex", "CoreRunName", "SpEnCore", "AvgCoreHD", 
"AvgCorePDI", "CSRunName", "Vol_1NP", "Mass1NP", "PLGAMass", "NumPLGANPS", "SA_np", 
"TotSANPs", "PLLAmass", "Multiple", "PLLAmol", "VolDCM", "PLLA_Conc", "FlaskPVAvol", 
"EmulsPVAvol", "WashPVAvol", "TotEmulsVol", "PVAConc", "VolRatio", "FlaskPVAmol", 
"EmulsPVAmol", "WashPVAmol", "TotPVAMol", "TotMolRatio", "EmulMolRatio", "Amp", 
"Energy", "Time", "Power", "SpEn", "SpEnRatio", "CSHD", "CSHDDev", "CSPDI", "CSPDI1", 
"f1_mu", "f1_std", "f2_mu", "f2_std", "f3_mu", "f3_std", "TotEff_mu", "TotEff_std", 
"X_R1_mu", "X_R1_std", "Z3_mu", "Z3_std", "ShellThick_mu", "ShellThick_std"]; 
opts.VariableTypes = ["double", "string", "double", "double", "double", "string", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "string", "string", "string", "string", "string", "string", "string", 
"string", "string", "string", "string", "string", "string", "string"]; 
 
% Specify variable properties 
opts = setvaropts(opts, ["CoreRunName", "CSRunName", "f1_mu", "f1_std", "f2_mu", 
"f2_std", "f3_mu", "f3_std", "TotEff_mu", "TotEff_std", "X_R1_mu", "X_R1_std", 
"Z3_mu", "Z3_std", "ShellThick_mu", "ShellThick_std"], "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, ["CoreRunName", "CSRunName", "f1_mu", "f1_std", "f2_mu", 
"f2_std", "f3_mu", "f3_std", "TotEff_mu", "TotEff_std", "X_R1_mu", "X_R1_std", 
"Z3_mu", "Z3_std", "ShellThick_mu", "ShellThick_std"], "EmptyFieldRule", "auto"); 
 
% Import the data 
PLLACSMethod1SolMethod3 = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\CoreShellModeling\P
LLA_CS_Method1_SolMethod3.xlsx", opts, "UseExcel", false); 
 
% Clear temporary variables 
clear opts 
 
 
 
% Specificy known mu's and sigma's for PLGA and Zmix from the spreadsheet 
PLGAcore_mu=round(PLLACSMethod1SolMethod3.AvgCoreHD,0); 
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PLGAcore_PDI=PLLACSMethod1SolMethod3.AvgCorePDI; 
Mix_mu= round(PLLACSMethod1SolMethod3.CSHD,0); 
Mix_mu_std=PLLACSMethod1SolMethod3.CSHDDev; 
Mix_PDI=PLLACSMethod1SolMethod3.CSPDI; 
Mix_PDI_std=PLLACSMethod1SolMethod3.CSPDI1; 
SpEnCS=round(PLLACSMethod1SolMethod3.SpEn,0); 
 
 
% Import and fit PLLA size and PDI data vs. Specific Energy to calculate 
% the mu's and sigma's for PLLA NPs based on the specific energy used 
% Set up the Import Options and import the data 
opts = spreadsheetImportOptions("NumVariables", 28); 
 
% Specify sheet and range 
opts.Sheet = "Sheet1"; 
opts.DataRange = "A3:AB35"; 
 
% Specify column names and types 
opts.VariableNames = ["Run", "Name", "C6MassIn", "C6MassmgNP", "MassPLLA", 
"PLLA_conc", "DCMVol", "MolesPLLA", "PVA", "PVAFlaskVol", "PVAEmulsVol", 
"PVAWashVol", "TotalPVAVol", "TotEmulVol", "PVAFlaskMole", "PVAEmulsMole", 
"PVAWashMole", "TotalMolesPVA", "molesEmulsPVAmolesPLLA", "molePVAmolePLLA", 
"Energy", "SpecificEnergyJmL", "Amp", "Time", "HD", "StDevHD", "PDI", "StDevPDI"]; 
opts.VariableTypes = ["double", "string", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double"]; 
 
% Specify variable properties 
opts = setvaropts(opts, "Name", "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, "Name", "EmptyFieldRule", "auto"); 
 
% Import the data 
PLLAsizeModelingnew = 
readtable("E:\Dissertation_backupfiles\DataFiles_for_Dissertation\CoreShellModeling\P
LLA_sizeModelingnew.xlsx", opts, "UseExcel", false); 
 
% Clear temporary variables 
clear opts 
 
PLLA_En=PLLAsizeModelingnew.SpecificEnergyJmL; 
PLLAnp_HD=PLLAsizeModelingnew.HD; 
PLLAnp_PDI=PLLAsizeModelingnew.PDI; 
 
% Fit: 'mu'. 
[xData, yData] = prepareCurveData( PLLA_En, PLLAnp_HD ); 
 
% Set up fittype and options. 
ft = fittype( 'power2' ); 
excludedPoints = excludedata( xData, yData, 'Indices', [12 18] ); 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts.Display = 'Off'; 
opts.Lower = [-Inf -Inf 0]; 
opts.MaxFunEvals = 10000; 
opts.MaxIter = 10000; 
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opts.Robust = 'Bisquare'; 
opts.StartPoint = [12720.3214027574 -0.8217093807582 -90.6799628828523]; 
opts.Exclude = excludedPoints; 
 
% Fit model to data. 
[fitresult_PLLAmu, gof_PLLAmu] = fit( xData, yData, ft, opts ); 
 
% Fit: 'PDI'. 
[xData, yData] = prepareCurveData( PLLA_En, PLLAnp_PDI ); 
 
% Set up fittype and options. 
ft = fittype( 'power2' ); 
excludedPoints = excludedata( xData, yData, 'Indices', [12 18] ); 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts.Display = 'Off'; 
opts.Lower = [-Inf -Inf 0]; 
opts.MaxFunEvals = 10000; 
opts.MaxIter = 10000; 
opts.Robust = 'Bisquare'; 
opts.StartPoint = [652.277137131291 -1.71331131389505 -0.262842504769239]; 
opts.Exclude = excludedPoints; 
 
% Fit model to data. 
[fitresult_PLLAPDI, gof_PLLAPDI] = fit( xData, yData, ft, opts ); 
 
PLLANP_mu=round((fitresult_PLLAmu.a).*(SpEnCS.^(fitresult_PLLAmu.b))+fitresult_PLLAmu
.c,0); 
PLLANP_PDI=(fitresult_PLLAPDI.a).*(SpEnCS.^(fitresult_PLLAPDI.b))+fitresult_PLLAPDI.c
; 
 
% Calculate the variance of the PLGA, PLLA, and the Zmix, using the known 
% sigmas and Zaverages of each particle type 
 
% PDI = (sigma/Z)^2 
% sigma=sqrt(PDI)*Z 
% Variance = sigma^2 
 
PLGAcore_sigma=round(sqrt(PLGAcore_PDI).*PLGAcore_mu,0); 
PLGAcore_variance=round(PLGAcore_sigma.^2,0); 
 
PLLANP_sigma=round(sqrt(PLLANP_PDI).*PLLANP_mu,0); 
PLLANP_variance=round(PLLANP_sigma.^2,0); 
 
Mix_sigma=round(sqrt(Mix_PDI).*Mix_mu,0); 
Mix_variance=round(Mix_sigma.^2,0); 
 
% Find possible mu, variance, and sigma of C/S NP for each input (column) 
% at each possible combination of number fractions (f1+f2+f3)=1, 
% represented by f_combo 
f1pos=0:0.01:1;        % number fraction PLGA NPs 
f2pos=0:0.01:1;        % number fraction PLLA NPs 
f3pos=0:0.01:1;         % number fraction C/S NPs 
i=1; 
for i1=1:length(f1pos) 
    for i2=1:length(f2pos) 
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        for i3=1:length(f3pos) 
            numfrac=f1pos(i1)+f2pos(i2)+f3pos(i3); 
            if numfrac==1 
                f_combo(i,1)=f1pos(i1); 
                f_combo(i,2)=f2pos(i2); 
                f_combo(i,3)=f3pos(i3); 
                i=i+1; 
            end 
        end 
    end 
end 
 
% For each combination of fractions (rows) and C/S data points (columns) 
% solves for core/shell NP diameters mu, sigma, and variances 
% If predicted diameters (mu) are less than PLGA core diameter (mu), then 
% discards these by setting terms to 0.  
 
% in matrices, first three columns are f1, f2 , and f3 combinations for 
% reference 
 
for c=1:length(PLGAcore_mu) 
    for r=1:length(f_combo) 
            f1=f_combo(r,1); 
            f2=f_combo(r,2); 
            f3=f_combo(r,3); 
            mu_CS(r,1)=f1; 
            mu_CS(r,2)=f2; 
            mu_CS(r,3)=f3; 
            var_CS(r,1)=f1; 
            var_CS(r,2)=f2; 
            var_CS(r,3)=f3;  
            sigma_CS(r,1)=f1; 
            sigma_CS(r,2)=f2; 
            sigma_CS(r,3)=f3; 
            if f3==0 
 
                mu_CS(r,c+3)=0; 
                var_CS(r,c+3)=0; 
                sigma_CS(r,c+3)=0; 
            else 
                mu_CS(r,c+3)=round((Mix_mu(c)-f1.*PLGAcore_mu(c)-
f2.*PLLANP_mu(c))./f3,0); 
                var_CS(r,c+3)=round((Mix_variance(c)-... 
                    ((f1.^1).*PLGAcore_variance(c))-... 
                    ((f2.^1).*PLLANP_variance(c)))./(f3.^1),0); 
                    sCS=sqrt(var_CS(r,c+3)); 
                    if isreal(sCS)==0 
                    sigma_CS(r,c+3)=0; 
                    var_CS(r,c+3)=0; 
                    else  
                    sigma_CS(r,c+3)=sCS; 
                    end 
                if mu_CS(r,c+3)<=(PLGAcore_mu(c)) 
                    mu_CS(r,c+3)=""; 
                    var_CS(r,c+3)=""; 
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                    sigma_CS(r,c+3)=""; 
                else 
                end 
            end 
 
    end 
end 
 
 
% Use Input Masses and Average Diameters to solve for Shell thicknesses, 
% total numbers of each type of particle (n1, n2, n3) 
 
mPLGA_in=PLLACSMethod1SolMethod3.PLGAMass; 
mPLLA_in=PLLACSMethod1SolMethod3.PLLAmass; 
Multiple_in=PLLACSMethod1SolMethod3.Multiple; 
CoreDiameter=PLGAcore_mu; 
CoreRadius=CoreDiameter./2; 
 
 
%Constants 
dPLGA=1.28E-18;        % Density of PLGA NP (mg/nm3) 
dPLLA=1.15E-18;        % Density of PLLA NP (mg/nm3) 
densityratio=dPLLA./dPLGA; 
V_core=(4/3).*pi().*(CoreRadius.^3);        % core volume, nm3 
m_core=V_core.*dPLGA;                       % core mass, mg 
V2=(4/3).*pi().*((PLLANP_mu./2).^3);               % pure PLLA NP volume, nm3 
m2=V2.*dPLLA;                               % pure PLLA NP mass, mg 
ncores_in=mPLGA_in./(m_core);                % number of PLGA cores in 
maxPLLANPS=mPLLA_in./m2;                    % max # of PLLA NPs 
maxNPs=ncores_in+maxPLLANPS;                   % max # of NPs that could be made 
mTot_in=mPLGA_in+mPLLA_in; 
 
%% 
 
for k=1:length(ncores_in) 
for r=1:length(f_combo) 
    try 
        mu1=PLGAcore_mu(k); 
        sigma1=PLGAcore_sigma(k); 
        mu2=PLLANP_mu(k); 
        sigma2=PLLANP_sigma(k); 
        mu3=mu_CS(r,k+3); 
        sigma3=sigma_CS(r,k+3); 
        r1=mvnrnd(mu1,sigma1,1000); 
        r2=mvnrnd(mu2,sigma2,1000); 
        r3=mvnrnd(mu3,sigma3,1000); 
        X=[r1;r2;r3]; 
        gm1=fitgmdist(X,3); 
        mingm1_place=find(gm1.mu==min(gm1.mu)); 
        maxgm1_place=find(gm1.mu==max(gm1.mu)); 
        placegm1=mingm1_place+maxgm1_place; 
        switch placegm1 
            case 3 
                midgm1_place=3; 
            case 4 
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                midgm1_place=2; 
            case 5 
                midgm1_place=1; 
        end 
        gm1_sol(r,1)=round(gm1.mu(mingm1_place),1); 
        gm1_sol(r,2)=round(gm1.mu(midgm1_place),1); 
        gm1_sol(r,3)=round(gm1.mu(maxgm1_place),1); 
        gm1_sol(r,4)=round(gm1.ComponentProportion(mingm1_place),3); 
        gm1_sol(r,5)=round(gm1.ComponentProportion(midgm1_place),3); 
        gm1_sol(r,6)=round(gm1.ComponentProportion(maxgm1_place),3); 
        gm1_sol(r,7)=round(gm1.Sigma(:,:,mingm1_place),1); 
        gm1_sol(r,8)=round(gm1.Sigma(:,:,midgm1_place),1); 
        gm1_sol(r,9)=round(gm1.Sigma(:,:,maxgm1_place),1); 
 
        muMix=Mix_mu(k); 
        sigmaMix=Mix_sigma(k); 
        rMix=mvnrnd(muMix,sigmaMix,1000); 
        Xmix=[rMix]; 
        gmMix=fitgmdist(Xmix,3); 
        mingmMix_place=find(gmMix.mu==min(gmMix.mu)); 
        maxgmMix_place=find(gmMix.mu==max(gmMix.mu)); 
        placegmMix=mingmMix_place+maxgmMix_place; 
        switch placegmMix 
            case 3 
                midgmMix_place=3; 
            case 4 
                midgmMix_place=2; 
            case 5 
                mingmMix_place=1; 
        end 
        gmMix_sol(r,1)=round(gmMix.mu(mingmMix_place),1); 
        gmMix_sol(r,2)=round(gmMix.mu(midgmMix_place),1); 
        gmMix_sol(r,3)=round(gmMix.mu(maxgmMix_place),1); 
        gmMix_sol(r,4)=round(gmMix.ComponentProportion(mingmMix_place),3); 
        gmMix_sol(r,5)=round(gmMix.ComponentProportion(midgmMix_place),3); 
        gmMix_sol(r,6)=round(gmMix.ComponentProportion(maxgmMix_place),3); 
        gmMix_sol(r,7)=round(gmMix.Sigma(:,:,mingmMix_place),1); 
        gmMix_sol(r,8)=round(gmMix.Sigma(:,:,midgmMix_place),1); 
        gmMix_sol(r,9)=round(gmMix.Sigma(:,:,maxgmMix_place),1); 
    catch 
        gm1_sol(r,1)=""; 
        gm1_sol(r,2)=""; 
        gm1_sol(r,3)=""; 
        gm1_sol(r,4)=""; 
        gm1_sol(r,5)=""; 
        gm1_sol(r,6)=""; 
        gm1_sol(r,7)=""; 
        gm1_sol(r,8)=""; 
        gm1_sol(r,9)=""; 
        gmMix_sol(r,1)=""; 
        gmMix_sol(r,2)=""; 
        gmMix_sol(r,3)=""; 
        gmMix_sol(r,4)=""; 
        gmMix_sol(r,5)=""; 
        gmMix_sol(r,6)=""; 
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        gmMix_sol(r,7)=""; 
        gmMix_sol(r,8)=""; 
        gmMix_sol(r,9)=""; 
    end 
end 
try 
gmComb=gm1_sol-gmMix_sol; 
sumgmComb=sum(gmComb(:,1:3),2); 
minindex=find(sumgmComb==min(sumgmComb)); 
if length(minindex)>1 
    sol_col(k,1)=mean(gm1_sol(minindex,1)); 
    sol_col(k,2)=mean(gm1_sol(minindex,2)); 
    sol_col(k,3)=mean(gm1_sol(minindex,3)); 
    sol_col(k,4)=mean(gm1_sol(minindex,4)); 
    sol_col(k,5)=mean(gm1_sol(minindex,5)); 
    sol_col(k,6)=mean(gm1_sol(minindex,6)); 
    sol_col(k,7)=mean(gm1_sol(minindex,7)); 
    sol_col(k,8)=mean(gm1_sol(minindex,8)); 
    sol_col(k,9)=mean(gm1_sol(minindex,9)); 
else 
    sol_col(k,1)=(gm1_sol(minindex,1)); 
    sol_col(k,2)=(gm1_sol(minindex,2)); 
    sol_col(k,3)=(gm1_sol(minindex,3)); 
    sol_col(k,4)=(gm1_sol(minindex,4)); 
    sol_col(k,5)=(gm1_sol(minindex,5)); 
    sol_col(k,6)=(gm1_sol(minindex,6)); 
    sol_col(k,7)=(gm1_sol(minindex,7)); 
    sol_col(k,8)=(gm1_sol(minindex,8)); 
    sol_col(k,9)=(gm1_sol(minindex,9)); 
end 
catch 
end 
fprintf('Now finished with point %d...\n',k) 
end 
 
 
 
 
%% 
clc 
gmComb=gm1_sol-gmMix_sol; 
sumgmComb=sum(gmComb(:,1:3),2); 
minindex=find(sumgmComb==min(sumgmComb)); 
gm1_sol(minindex,:) 
 
 
%% 
 
k=95; 
for r=1:length(f_combo) 
    try 
        mu1=PLGAcore_mu(k); 
        sigma1=PLGAcore_sigma(k); 
        mu2=PLLANP_mu(k); 
        sigma2=PLLANP_sigma(k); 
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        mu3=mu_CS(r,k+3); 
        sigma3=sigma_CS(r,k+3); 
        r1=mvnrnd(mu1,sigma1,1000); 
        r2=mvnrnd(mu2,sigma2,1000); 
        r3=mvnrnd(mu3,sigma3,1000); 
        X=[r1;r2;r3]; 
        gm1=fitgmdist(X,3); 
        mingm1_place=find(gm1.mu==min(gm1.mu)); 
        maxgm1_place=find(gm1.mu==max(gm1.mu)); 
        placegm1=mingm1_place+maxgm1_place; 
        switch placegm1 
            case 3 
                midgm1_place=3; 
            case 4 
                midgm1_place=2; 
            case 5 
                midgm1_place=1; 
        end 
        gm1_sol(r,1)=round(gm1.mu(mingm1_place),1); 
        gm1_sol(r,2)=round(gm1.mu(midgm1_place),1); 
        gm1_sol(r,3)=round(gm1.mu(maxgm1_place),1); 
        gm1_sol(r,4)=round(gm1.ComponentProportion(mingm1_place),2); 
        gm1_sol(r,5)=round(gm1.ComponentProportion(midgm1_place),2); 
        gm1_sol(r,6)=round(gm1.ComponentProportion(maxgm1_place),2); 
        gm1_sol(r,7)=round(gm1.Sigma(:,:,mingm1_place),1); 
        gm1_sol(r,8)=round(gm1.Sigma(:,:,midgm1_place),1); 
        gm1_sol(r,9)=round(gm1.Sigma(:,:,maxgm1_place),1); 
 
        muMix=Mix_mu(k); 
        sigmaMix=Mix_sigma(k); 
        rMix=mvnrnd(muMix,sigmaMix,2000); 
        Xmix=[rMix]; 
        gmMix=fitgmdist(Xmix,3); 
        mingmMix_place=find(gmMix.mu==min(gmMix.mu)); 
        maxgmMix_place=find(gmMix.mu==max(gmMix.mu)); 
        placegmMix=mingmMix_place+maxgmMix_place; 
        switch placegmMix 
            case 3 
                midgmMix_place=3; 
            case 4 
                midgmMix_place=2; 
            case 5 
                mingmMix_place=1; 
        end 
        gmMix_sol(r,1)=round(gmMix.mu(mingmMix_place),1); 
        gmMix_sol(r,2)=round(gmMix.mu(midgmMix_place),1); 
        gmMix_sol(r,3)=round(gmMix.mu(maxgmMix_place),1); 
        gmMix_sol(r,4)=round(gmMix.ComponentProportion(mingmMix_place),2); 
        gmMix_sol(r,5)=round(gmMix.ComponentProportion(midgmMix_place),2); 
        gmMix_sol(r,6)=round(gmMix.ComponentProportion(maxgmMix_place),2); 
        gmMix_sol(r,7)=round(gmMix.Sigma(:,:,mingmMix_place),1); 
        gmMix_sol(r,8)=round(gmMix.Sigma(:,:,midgmMix_place),1); 
        gmMix_sol(r,9)=round(gmMix.Sigma(:,:,maxgmMix_place),1); 
    catch 
        gm1_sol(r,1)=""; 
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        gm1_sol(r,2)=""; 
        gm1_sol(r,3)=""; 
        gm1_sol(r,4)=""; 
        gm1_sol(r,5)=""; 
        gm1_sol(r,6)=""; 
        gm1_sol(r,7)=""; 
        gm1_sol(r,8)=""; 
        gm1_sol(r,9)=""; 
        gmMix_sol(r,1)=""; 
        gmMix_sol(r,2)=""; 
        gmMix_sol(r,3)=""; 
        gmMix_sol(r,4)=""; 
        gmMix_sol(r,5)=""; 
        gmMix_sol(r,6)=""; 
        gmMix_sol(r,7)=""; 
        gmMix_sol(r,8)=""; 
        gmMix_sol(r,9)=""; 
    end 
end 
gm1_sol=str2double(gm1_sol(:,:)); 
 
gmComb=gm1_sol-gmMix_sol; 
sumgmComb=sum(gmComb(:,1:3),2); 
minindex=find(sumgmComb==min(sumgmComb)); 
if length(minindex)>1 
    sol_col(1,1)=mean(gm1_sol(minindex,1)); 
    sol_col(1,2)=mean(gm1_sol(minindex,2)); 
    sol_col(1,3)=mean(gm1_sol(minindex,3)); 
    sol_col(1,4)=mean(gm1_sol(minindex,4)); 
    sol_col(1,5)=mean(gm1_sol(minindex,5)); 
    sol_col(1,6)=mean(gm1_sol(minindex,6)); 
    sol_col(1,7)=mean(gm1_sol(minindex,7)); 
    sol_col(1,8)=mean(gm1_sol(minindex,8)); 
    sol_col(1,9)=mean(gm1_sol(minindex,9)); 
else 
    sol_col(1,1)=(gm1_sol(minindex,1)); 
    sol_col(1,2)=(gm1_sol(minindex,2)); 
    sol_col(1,3)=(gm1_sol(minindex,3)); 
    sol_col(1,4)=(gm1_sol(minindex,4)); 
    sol_col(1,5)=(gm1_sol(minindex,5)); 
    sol_col(1,6)=(gm1_sol(minindex,6)); 
    sol_col(1,7)=(gm1_sol(minindex,7)); 
    sol_col(1,8)=(gm1_sol(minindex,8)); 
    sol_col(1,9)=(gm1_sol(minindex,9)); 
end  
sol_col(1,:) 
 
%% 
sizerange=0:1:500; 
PLGAnorm=normpdf(sizerange,PLGAcore_mu(78),PLGAcore_sigma(78)); 
PLLAnorm=normpdf(sizerange,PLLANP_mu(78),PLLANP_sigma(78)); 
Mixnorm=normpdf(sizerange,Mix_mu(78),Mix_sigma(78)); 
 
CSnorm=normpdf(sizerange,239.4,118); 
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plot(sizerange,0.5.*PLGAnorm,'-g',sizerange,0.5.*PLLAnorm,'-r',sizerange,Mixnorm,'-
b',sizerange,0.*CSnorm,'--k') 
title('Size Distribution Curves') 
legend('PLGA NPs','PLLA NPs','Meas. Mixture','Proposed Core/Shell') 
annotation('textarrow',[0.785 0.68],[0.5 0.25],'String','Possible Solution?') 
 
%% 
filename='DistCurveworkspaceSaved.mat'; 
save(filename) 
 
%% load workspace again 
 
load(filename) 
 
Fluorescent Image Nanoparticle Counting 

%% Program to process images and count number of red, green, yellow particles in them 
 
clc, clear all,close all 
warning('off','all') 
warning 
%First set which folder you want to analyze, and sample name 
samplename='Z81'; 
path=cd; 
 
 
% Break check before renaming files to make sure correct sample name and 
% folder name is given 
check=1; 
while(check>0) 
    startingFolder=path; 
    folder2read=uigetdir(startingFolder); 
    filePattern=fullfile(folder2read,'*.jpg'); 
    files=dir(filePattern); 
for k=1:length(files) 
    fullFolderName=fullfile(folder2read,files(k).name); 
    fprintf('Now processing file %s...\n',fullFolderName); 
end 
promptMessage=sprintf('Folder: %s \nAll images changed to sample name: %s\nCheck that 
is correct and press Continue or Cancel to abort',... 
    folder2read,samplename); 
button=questdlg(promptMessage,'Continue','Continue','Cancel','Continue'); 
if strcmpi(button,'Cancel') 
    break 
end 
try  
%First will rename all images so that can do batch processing  
% Do NOT have replicate images in folder so that same particles are counted 
% multiple times.  
d=dir(fullfile(folder2read,'*.jpg')); % reads all jpg images in folder   
fileNames={d.name};                  % pulls names of images 
    for iFile=1:numel(d) 
        newName=fullfile(folder2read,sprintf('%s_%02d.jpg',samplename,iFile)); 
        movefile(fullfile(folder2read,fileNames{iFile}),newName); 
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    end 
catch 
 
end 
 
    clc 
    n=numel(d); 
 
cd(folder2read) 
for numImage=1:n 
% filename, can read .jpg or .tif but JPEG seems to work better  
    rgbFilename=sprintf('%s_%02d.jpg',samplename,numImage); 
    rgb=imread(rgbFilename); 
 
 
% Changing radius constraints and sensitivity can reduce false positives 
    rmin=5;        % minimum pixel radius of circle (5 is minimum for function) 
    rmax=50;       % maximum pixel radius of circle 
    Sens=0.92;     % sensitivity of metric (how perfect a circle) 
    try [cb, rb, mb] = imfindcircles(rgb,[rmin rmax],'ObjectPolarity',... 
            'bright', 'Sensitivity',Sens); 
% [cd, rd, md] = imfindcircles(rgb,[rmin rmax],'ObjectPolarity','dark', ... 
%     'Sensitivity',Sens); 
 
%Remove any circles found due to scale bar at 100x magnification 
%coordinates of edges of scale bars and numbers 
        leftsidescale=[1049.3,854.8772]; 
        rightsidescale=[1173.6,855.5498]; 
        numberscale1=[1100.3,872.779]; 
        numberscale2=[1121.6,874.2996]; 
        radiusscale=8; 
 
    for scalei=1:length(cb) 
            difleftx=abs(cb(scalei,1)-leftsidescale(1)); 
            diflefty=abs(cb(scalei,2)-leftsidescale(2)); 
            difrightx=abs(cb(scalei,1)-rightsidescale(1)); 
            difrighty=abs(cb(scalei,2)-rightsidescale(2)); 
            difnum1x=abs(cb(scalei,1)-numberscale1(1)); 
            difnum1y=abs(cb(scalei,2)-numberscale1(2)); 
            difnum2x=abs(cb(scalei,1)-numberscale2(1)); 
            difnum2y=abs(cb(scalei,2)-numberscale2(2)); 
        if difleftx<radiusscale && diflefty<radiusscale || ... 
            difrightx<radiusscale && difrighty<radiusscale || ... 
            difnum1x<radiusscale && difnum1y<radiusscale ||... 
            difnum2x<radiusscale && difnum2y<radiusscale 
                cb(scalei,:)=0; 
        end 
    end 
 
    numbercirclesfound=length(cb);       % determines number of cirlce found 
    pixelRGB=impixel(rgb,cb(:,1),cb(:,2));          % finds RGB value of center of 
each circle found and populates n x 3 matrix 
% NPcount=zeros(numbercirclesfound,length(numImage));    % creates empty matrix for 
counting particles in for loop 
 



223 
 

        for index=1:numbercirclesfound 
        % Determines if particle is red, green, or yellow (at center) 
        redvalue=pixelRGB(index,1); 
        greenvalue=pixelRGB(index,2); 
        bluevalue=pixelRGB(index,3); 
        r2g=redvalue./greenvalue; 
        g2r=greenvalue./redvalue; 
        r2b=redvalue./bluevalue; 
        g2b=greenvalue./bluevalue; 
     
    % Based on looking at rgb scale and subjective point at where 
    % transition is 
            if r2g>=2 
                NPcount(index,numImage)=2; % red particles are labeled 2 
            elseif g2r>=1.30 
                NPcount(index,numImage)=1; % green particles are labeled 1 
            elseif r2g<2 && g2r<1.30 
                NPcount(index,numImage)=3; % yellow particles are labeled 3 
            elseif redvalue<75 && greenvalue<75 && bluevalue<75 
                NPcount(index,numImage)=6; % if black then false positive and labeled 
0 
            else 
                NPcount(index,numImage)=5; % if other color, then label 5 to analyze 
later 
            end 
        end 
 
% Takes count of every type of particle counted 
% Column Order: (1) Green (2) Red (3) Yellow (4) Black (5) Other 
    CountNPs(numImage,1)=sum(NPcount(:,numImage)==1); 
    CountNPs(numImage,2)=sum(NPcount(:,numImage)==2); 
    CountNPs(numImage,3)=sum(NPcount(:,numImage)==3); 
    CountNPs(numImage,4)=sum(NPcount(:,numImage)==6); 
    CountNPs(numImage,5)=sum(NPcount(:,numImage)==5); 
    CountNPs(numImage,6)=sum(CountNPs(numImage,:)); 
 
    catch 
% If no circles found, will catch error and popular image's count with 0's 
% and moves onto the next image 
% Column Order: (1) Green (2) Red (3) Yellow (4) Black (5) Other 
        CountNPs(numImage,1)=0; 
        CountNPs(numImage,2)=0; 
        CountNPs(numImage,3)=0; 
        CountNPs(numImage,4)=0; 
        CountNPs(numImage,5)=0; 
        CountNPs(numImage,6)=0; 
        continue 
    end 
 
    fprintf('Processing image: %s_%02d.jpg\n',samplename,numImage); 
end 
 
 
% Once finished with all images, Writes NP count and calculation to excel file 
folder=folder2read; 
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if ~exist(folder,'dir') 
    mkdir(folder); 
end 
baseFileName=sprintf('%scount.xlsx',samplename); 
fullFileName=fullfile(folder,baseFileName); 
 
GreenNPs=sum(CountNPs(:,1)); 
RedNPs=sum(CountNPs(:,2)); 
YellowNPs=sum(CountNPs(:,3)); 
FalseNPs=sum(CountNPs(:,4)); 
OtherNPs=sum(CountNPs(:,5)); 
TotalValidNPs=GreenNPs+RedNPs+YellowNPs; 
TotalFound=TotalValidNPs+FalseNPs+OtherNPs; 
f1meas=GreenNPs./TotalValidNPs; 
f2meas=RedNPs./TotalValidNPs; 
f3meas=YellowNPs./TotalValidNPs; 
SumNPs=[GreenNPs,RedNPs,YellowNPs,FalseNPs,OtherNPs,TotalFound]; 
 
ArrayNPs=[CountNPs;SumNPs]; 
fNPs=zeros(n+1,1); 
fNPs(1,1)=f1meas; 
fNPs(2,1)=f2meas; 
fNPs(3,1)=f3meas; 
ArrayNPs=[ArrayNPs,fNPs]; 
 
dnew=dir(fullfile(folder2read,'*.jpg')); % reads all jpg images in folder   
ImageNames={dnew.name,'Sum'}; % Last one must be "Sum" 
Tnps=array2table(ArrayNPs,'VariableNames',{'Green','Red','Yellow','False 
+','Other','Circles/Image','f_meas'}); 
Tnps.Properties.RowNames=ImageNames; 
Summary=summary(Tnps); 
 
recycle on %send old excel file to recycle bin 
delete(fullFileName); %Delete old excel file in folder 
writetable(Tnps,fullFileName,'WriteRowNames',true) 
 
 
fprintf('Finished.\n'); 
% End for break check, must be at very end of all code 
check=0; 
end 
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Appendix 2: Protocols 

Polymeric Nanoparticle Synthesis: Emulsion Solvent Evaporation Method 

Preparation of Variables:  

Total number of runs:                 * usually each desired size is unique run       

To determine mass of particles after freeze drying, weigh empty collection tube prior to use 

Tube Mass (w/ lid):                     mg 

Organic Phase:  PLGA Polymer dissolved in organic solvent (dichloromethane, DCM) 

PLGA Conc. (mg/uL):                 mass PLGA/run:               mg        Vol 
DCM/run:   uL  

*Note: PLGA% = PLGA conc. (mg/uL) x 100%, typical ranges: Conc: 1-5%, Mass: 5 mg, Vol: 
500uL 

* If loading hydrophobic drug/dye, dissolve directly with PLGA in DCM 

* if drug/dye is hydrophilic, use double emulsion evaporation method (see end) 

Water Phase: DI Water with Poly vinyl alcohol (PVA) surfactant dissolved 

PVA Conc. (g/mL *100):               PVA Flask Vol (mL):                   mL    PVA EmulsionVol 
(mL):                   mL  

*Note: Typical ranges: PVA conc: 2-3%, PVA Flask Vol: 3-6 mL, PVA Emulsion Vol: 3-4 mL 

Total Emulsion Vol (mL) = Vol DCM/run (mL) + PVA Emulsion Vol (mL) =                    mL                                 

Energy: Total Energy  from sonicator (Joules) divided by Total Emulsion Vol: = Specific 
Energy (J/mL) 

Particle Diameter (nm) = 403.2*(Specific Energy^ -0.2265)+ 78.42 R2: 0.9347   RMSE: 26.71 

1. Weigh out total PLGA needed for all runs, add required total volume DCM, let dissolve with 
light vortexing for 5-10 minutes until no polymer crystals are visible. 

2. Place a round bottom flask on plate stirrer, with crosshead magnetic stirrer. Add Flask 
Volume PVA to this flask, and begin stirring at 500 rpm.  

3. In a 15 mL conical tube, add Emulsion Volume PVA, then once PLGA is fully dissolved, 
add volume of PLGA/DCM per run to each emulsion tube. DCM phase will be immiscible 
and separate at the bottom of the tube under the PVA phase.  

4. Prepare ice or water bath that will cover total volume in emulsion tube.  
5. Set sonicator amplitude (%) and increase set time above required sonication time.  
6. Lift sonicator probe tip and insert into PVA/DCM liquid, around a third of the way from the 

top of the combined liquids. Be careful to not touch the probe tip to the tube sides or the 
bottom at any time.  
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7. Turn on sonicator by pressing START, and then move probe tip up and down throughout the 
entire liquid for initial emulsion is evenly distributed. Do this until about 100 J or 30 seconds 
if time allows. For shorter sonication times/energies, make sure emulsion is fully milky white 
throughout for better particle size distribution.  

8. Press PAUSE at 100 J/30 second time, and re-position sonicator so that the emulsion tube is 
in the ice bath and will not move or shift. Once set, press RESUME on the sonicator.  

9. Sonicate the emulsion for required total energy (J) required. If amplitudes >=60 are being 
used, pause around every 100 J/30 seconds to keep temperature controlled for at least 1 
minute before pressing RESUME.  

10. At the desired total energy (J), press pause, and record the time and actual energy (J) 
attained.  

11. Transfer the emulsion from the emulsion tube to the PVA in the round bottom flask under 
stirring using a pipette. 

12. Let emulsion stir at room temperature for at least 2 hours and until the milk white color as 
cleared somewhat.  

13.  After evaporation time, transfer liquid in the flask to a pre-weighed conical tube (it can be 
same one used as emulsion tube). Dilute with DI water. 

14. For multiple simultaneous runs, weigh each tube and add DI Water to balance all tubes’ 
masses, before placing in centrifuge.  

15. Centrifuge at high speed (17,000 xg) for at least 30 minutes, until pellet is collected near the 
bottom of each tube.  

16. Carefully pour out liquid into sink, and add DI water to each tube. Sonicate each pellet 
separately at low amplitude (30%) for about 1 minute until the pellet is broken up and 
redispersed into the water.  

17. If the tubes are still balanced, place all back into the centrifuge and centrifuge again for 30 
minutes at high speed (17000 xg).  

18. Dispose of the water in each tube, and refill with fresh DI Water. Redisperse each pellet with 
same parameters as in step 16. Particles are ready for DLS sizing. *Note: if higher PVA conc 
is used, more than one wash step might be necessary. Repeat steps 16-18 for each wash 

Double Emulsion:  

For hydrophilic payloads: 

1) Dissolved hydrophilic payload in DI water/buffer to be used at known concentration. 
This is water phase 2.  

2) Add volume of water phase 2 to desired volume of PLGA/DCM. * The volume of water 
phase 2 must be less than the volume of DCM/PLGA.  

3) Sonicate this mixture for desired energy and time, until a water-in-oil emulsion is formed. 
Recommend using low amplitude (20-40%) 

4) Add this primary emulsion to emulsion PVA and follow steps 3-18 the same.  

 

Core/Shell Synthesis Method 1: Modified Emulsion Solvent Evaporation 

This method looks to take advantage of the hydrophobicity similarity of the pre-formed PLGA 
core and the PLLA/DCM phase that we want to form around each core. Basically, we are using 
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sonication to force a hydrophobic PLGA nanoparticle into a hydrophobic liquid droplet in which 
PLLA is dissolved and trying to optimize synthesis parameters to only form core/shell particles. 
On the figure below, the left image is an idealized case, where every PLGA nanoparticle we add 
forms one core/shell particle, with no polymer waste. Realistically, depending on what 
conditions we use, three types of particles are made: 1) PLGA nanoparticles (with no shell), 2) 
PLLA nanoparticles (no core), and 3) core/shell nanoparticles (right image in figure). After 
synthesis, we will use DLS measurements, fluorescent microscopy, and model calculations to 
estimate the core/shell formation efficiency, or how close to the idealized case we are (with 1 
being ideal).  

 

Preparation: We must know the size and the total mass of PLGA nanoparticles being used for 
each run to later estimate the core/shell formation efficiency. The PLGA NPs PDI also should be 
known, and as low (monodisperse) as possible.  

PLGA NP Diameter (±StDev):                     nm PLGA Mass:                  mg/run PLGA 
NP PDI:                      . 

We must then specify how much PLLA to use, quantified by the Multiple = mass PLLA/mass 
PLGA, and the concentration and volume of DCM to use to dissolve the PLLA. Note: a higher 
concentration (>0.05 g/mL) is preferred, but more optimization is needed, and may not be 
possible to accurately use a higher concentration.  

Organic Phase:  PLLA Polymer dissolved in organic solvent (dichloromethane, DCM) 

Multiple:                  →PLLA Mass:                   mg/run PLLA Conc:                 
mg/uL→DCM vol:                 uL/run 

Water Phase: DI Water with Polyvinyl alcohol (PVA) surfactant dissolved. 

PVA Conc. (g/mL *100):               PVA Flask Vol (mL):                   mL    PVA EmulsionVol 
(mL):                   mL  

Total Emulsion Vol (mL) = Vol DCM/run (mL) + PVA Emulsion Vol (mL) =                    mL     

Energy: Total Energy from sonicator (Joules) divided by Total Emulsion Vol: = Specific 
Energy (J/mL) 

*Core/shell Specific Energy should be less than the Specific energy used to form the PLGA NPs. 
This is an imprecise measurement and needs further refinement. Typically, multiply specific 
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energy used to produce PLGA NPs by 0.8-0.95 to get desired specific energy for Core/shell 
formation. 

1. Prepare ice or water bath that will cover total volume in emulsion tube. 
2. Place a round bottom flask on plate stirrer, with crosshead magnetic stirrer. Add Flask 

Volume PVA to this flask, and begin stirring at 500 rpm.  
3. Weigh out PLGA NPs for each run into a 15 mL tube which will be the emulsion tube. 

Use desired Multiple to calculate required PLLA needed per run and weigh out 
corresponding PLLA polymer for each run in their own Eppendorf microfuge 1.5 mL 
tube.  

4. Add required DCM volume for desired PLLA concentration to each PLLA tube, and 
vortex until fully dissolved.  

5. To the 15 mL emulsion tube that has the PLGA NPs in them, add the PVA Emulsion 
volume. At amplitude 20-40%, sonicate PVA/NP mixture until NPs are fully dispersed, at 
least 1 minute.  

6. Once PLLA is fully dissolved in DCM, add required PLLA/DCM volume to each 15 mL 
emulsion tube. PLLA/DCM will be immiscible with the PVA and settle at the bottom.  

7. Set sonicator amplitude (%) and increase set time above required sonication time.  
8. Lift sonicator probe tip and insert into PVA/DCM liquid, around a third of the way from 

the top of the combined liquids. Be careful to not touch the probe tip to the tube sides or 
the bottom at any time.  

9. Turn on sonicator by pressing START, and then move probe tip up and down throughout 
the entire liquid for initial emulsion is evenly distributed. Do this until about 100 J or 30 
seconds if time allows. For shorter sonication times/energies, make sure emulsion is fully 
milky white throughout for better particle size distribution. 

10. Press PAUSE at 100 J/30 second time, and re-position sonicator so that the emulsion tube 
is in the ice bath and will not move or shift. Once set, press RESUME on the sonicator.  

11. Sonicate the emulsion for required total energy (J) required. If amplitudes >=60 are 
being used, pause around every 100 J/30 seconds to keep temperature controlled for at 
least 1 minute before pressing RESUME.  

12. At the desired total energy (J), press pause, and record the time and actual energy (J) 
attained.  

13. Transfer the emulsion from the emulsion tube to the PVA in the round bottom flask under 
stirring using a pipette. 

14. Let emulsion stir at room temperature for at least 2 hours and until the milk white color 
as cleared somewhat.  

15.  After evaporation time, transfer liquid in the flask to a pre-weighed conical tube (it can 
be same one used as emulsion tube). Dilute with DI water and. 

16. For multiple simultaneous runs, weigh each tube and add DI Water to balance all tubes’ 
masses, before placing in centrifuge.  

17. Centrifuge at high speed (17,000 xg) for at least 30 minutes, until a pellet is collected 
near the bottom of each tube.  

18. Carefully pour out liquid into sink and add DI water to each tube. Sonicate each pellet 
separately at low amplitude (30%) for about 1 minute until the pellet is broken up and 
redispersed into the water.  

19. If the tubes are still balanced, place all back into the centrifuge and centrifuge again for 
30 minutes at high speed (17000 xg).  
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20. Dispose of the water in each tube, and refill with fresh DI Water. Redisperse each pellet 
with same parameters as in step 16. Particles are ready for DLS sizing. *Note: if higher 
PVA conc is used, more than one wash step might be necessary. Repeat steps 16-18 for 
each wash. 

One-pot Variation: if not using pre-formed PLGA NPs, you can do it all in one step, forming an 
oil-oil-water emulsion.  

1. Dissolve PLGA polymer and PLLA polymer in separate Eppendorf microfuge tubes in 
DCM. Use higher concentrations (>0.05g/mL) since at higher concentrations organic 
phases are immiscible. The volume of PLGA/DCM for each run should be less than 
the volume of PLLA/DCM for proper emulsion.  

2. Combine PLGA/DCM and PLLA/DCM in a single Eppendorf microfuge tube. Sonicate 
at desired amplitude and time until a desired total energy. 
1st Emulsion Volume: PLGA/DCM volume + PLLA/DCM volume 
First Emulsion (O/O) Emulsion Specific Energy:              J/mL (total energy/1st 
emulsion volume) 

3. Add this primary emulsion to PVA Emulsion volume in 15 mL tube. Follow steps 1-20.  

Core/Shell Synthesis Method 2: Solvent/Non-Solvent Method 

This method looks to take advantage of differences in solubilities and the hydrophobicity of 
PLGA/PLLA/DCM/Chloroform to encourage core/shell nanoparticle formation. The PLGA 
cores are formed via sonication using the normal emulsion method. Then, PLLA dissolved in 
chloroform, which is miscible with the PLGA/DCM but not the PVA, is added with sonication to 
the first emulsion. This system is unstable, so then a “non-solvent” is added (methanol or 
hexane), which is miscible with DCM, chloroform, and PVA. However, PLLA is insoluble in 
methanol (and hexane), and so when the concentration of this non-solvent exceeds that of 
chloroform, it flash precipitates the PLLA which is around a still-liquid PLGA/DCM core. The 
chloroform is displaced out of the shell. This method locks the dimensions of the core/shell 
particles, and the whole system is stirred for several hours to allow the DCM, chloroform, and 
the hexane/methanol to evaporate. 
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Organic Phases:  PLGA Polymer dissolved in Dichloromethane (DCM), PLLA dissolved in 
Chloroform 

PLGA Conc. (mg/uL):                 mass PLGA/run:               mg        Vol 
DCM/run:   uL  

Multiple (mass PLGA/mass PLLA):                     . 

PLLA Conc. (mg/uL):                 mass PLLA/run:               mg        Vol Ch/run:  
 uL  

Water Phase: DI Water with Polyvinyl alcohol (PVA) surfactant dissolved 

PVA Conc. (g/mL *100):               PVA Flask Vol (mL):                   mL    PVA EmulsionVol 
(mL):                   mL  

Non-Solvent:  

Non-solvent Volume:                  mL  Time Added:                    minute  

1st Total Emulsion Vol (mL) = Vol DCM/run (mL) + PVA Emulsion Vol (mL) =                    
mL                                  

2nd Total Emulsion Vol (mL) = Vol Ch/run (mL) + Vol DCM/run (mL) + PVA Emulsion Vol 
(mL) =                    mL                                  

Energy: 1st Total Energy  from sonicator (Joules) divided by 1st Total Emulsion Vol: = 1st 
Specific Energy (J/mL) 

2nd Total Energy  from sonicator (Joules) divided by 2nd Total Emulsion Vol: = 2nd Specific 
Energy (J/mL) 

1. Weigh out total PLGA needed for all runs, add required total volume DCM, let dissolve 
with light vortexing for 5-10 minutes until no polymer crystals are visible. 

2. Weigh out total PLLA needed for all runs, add required total volume chloroform, let 
dissolve with vortexing for 15-20 minutes until no polymer is visible. 

3. Prepare ice or water bath that will cover total volume in emulsion tube.  
4. Place a round bottom flask on plate stirrer, with crosshead magnetic stirrer. Add Flask 

Volume PVA to this flask, and begin stirring at 500 rpm.  
5. In a 15 mL conical tube, add Emulsion Volume PVA, then once PLGA is fully dissolved, 

add volume of PLGA/DCM per run to each emulsion tube. DCM phase will be 
immiscible and separate at the bottom of the tube under the PVA phase. 

6. Set sonicator amplitude (%) and increase set time above required sonication time.  
7. Lift sonicator probe tip and insert into PVA/DCM liquid, around a third of the way from 

the top of the combined liquids. Be careful to not touch the probe tip to the tube sides or 
the bottom at any time.  

8. Turn on sonicator by pressing START, and then move probe tip up and down throughout 
the entire liquid for initial emulsion is evenly distributed. Do this until about 100 J or 30 
seconds if time allows. For shorter sonication times/energies, make sure emulsion is fully 
milky white throughout for better particle size distribution.  
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9. Press PAUSE at 100 J/30 second time, and re-position sonicator so that the emulsion tube 
is in the ice bath and will not move or shift. Once set, press RESUME on the sonicator.  

10. Sonicate the emulsion for required 1st total energy (J) required. If amplitudes >=60 are 
being used, pause around every 100 J/30 seconds to keep temperature controlled for at 
least 1 minute before pressing RESUME.  

11. At the desired 1st total energy (J), press pause, and record the time and actual energy (J) 
attained.  

12. Add PLLA/Chloroform volume/run. Set amplitude and adjust time to 2nd emulsion 
desired settings.  

13. Sonicate in same way as PLGA/DCM steps, until 2nd total energy (J) is achieved. Record 
time and actual energy.  

14. Transfer the emulsion from the emulsion tube to the PVA in the round bottom flask under 
stirring using a pipette. 

15. At desired time (variable), add volume of non-solvent, with volume sufficient to displace 
chloroform. Record time and volume of addition.  

16. Let emulsion stir at room temperature for at least 8 hours and until the milk white color is 
cleared.  

17.  After evaporation time, transfer liquid in the flask to a pre-weighed conical tube (it can 
be same one used as emulsion tube). Dilute with DI water and place in balanced 
centrifuge. 

18. For multiple simultaneous runs, weigh each tube and add DI Water to balance all tubes’ 
masses, before placing in centrifuge.  

19. Centrifuge at high speed (17,000 xg) for at least 30 minutes, until pellet is collected near 
the bottom of each tube.  

20. Carefully pour out liquid into sink, and add DI water to each tube. Sonicate each pellet 
separately at low amplitude (30%) for about 1 minute until the pellet is broken up and 
redispersed into the water.  

21. If the tubes are still balanced, place all back into the centrifuge and centrifuge again for 
30 minutes at high speed (17000 xg).  

22. Dispose of the water in each tube, and refill with fresh DI Water. Redisperse each pellet 
with same parameters as in step 16. Particles are ready for DLS sizing. *Note: if higher 
PVA conc is used, more than one wash step might be necessary. Repeat steps 17-22 for 
each wash. 

 

 

 

 

 

 

 



232 
 

Appendix 3: Supplemental Data  

Power Regression Fits and Residuals for Size for Full Data Set 

 

Power Regression Fits and Residuals for PDI for Full Data Set 
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Power vs. Amplitude (%), with Fit and Residuals 

 

Core and Shell Release Profile Fits (KP, PS, and Hopf) 
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Chitosan Hydrogel and Commercial Dressing Properties Table for Endpoint Swelling 
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Chitosan Hydrogel and Commercial Dressing Swelling Performance 

 

 

 

 

 

 

 

 

 

 

Sample
Time 
(min)

AVG % 
Change 

Mass

StDev 
Change 

Mass

AVG % 
Change 

SA

StDev 
Change 

SA

AVG % 
Change 

Vol

StDev 
Change 

Vol

AVG % 
Change 

Den

StDev 
Change 

Den

UNX-L 60 2411% 13% 469% 27% 1038% 54% 121% 9%
UNX-H 60 961% 368% 311% 75% 722% 150% 25% 22%

CX-L 60 677% 200% 328% 117% 1220% 230% -37% 26%
CX-H 60 573% 145% 239% 42% 726% 64% -17% 24%

Uncrosslinked 60 2116% 971% 370% 222% 840% 445% 137% 48%
Crosslinked 60 1148% 259% 132% 93% 365% 187% 187% 48%

UNX4 FD 30 7917% 464% 162% 12% 754% 104% 847% 60%
UNX4 air 30 1322% 1% 143% 34% 491% 37% 141% 15%
UNX5 FD 30 7107% 357% 124% 16% 274% 26% 1842% 232%
UNX5 air 30 931% 8% 258% 68% 615% 136% 50% 30%
CX4 FD 30 3376% 222% 24% 3% 80% 24% 1848% 132%
CX4 air 30 404% 163% 33% 1% 166% 3% 90% 63%
CX5 FD 30 4076% 80% 26% 3% 139% 32% 1681% 270%
CX5 air 30 307% 5% 138% 21% 376% 43% -14% 9%

Mepilex Border 30 1044% 176% 2% 2% 126% 1% 406% 80%
QuikClot Gauze 30 796% 25% 3% 0% 3% 0% 774% 22%

Medihoney 30 -32% 7% -19% 2% -39% 22% 32% 59%
Mepilex Ag 30 683% 12% 18% 5% 84% 13% 326% 24%

Xtrasorb 30 438% 8% 48% 7% 295% 19% 36% 4%
DuoDerm Extra Thin 30 8% 3% 0% 0% 0% 0% 8% 3%

Melgisorb Ag 30 1327% 38% 3% 1% 55% 1% 820% 16%
Mepilex 30 1186% 43% 49% 4% 93% 20% 569% 45%


