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Abstract

This thesis investigates applying statistical learning techniques to a tapered grain solid

rocket motor simulation. Tapered grain solid rocket motors (SRMs) have application in both

defense and space industries. Tapered grain geometries offer an alternative to complex cross

sections to control the thrust profile of the solid rocket motor. New analytical methods were

developed to accurately model tapered solid rocket motor grain geometries. A tapered grain

solid rocket motor internal ballistics code was developed in FORTRAN using Lagrangian grain

regression assumptions, 1D flow assumptions, and new analytical methods developed as part of

this work. This code can accurately model the internal ballistics of tapered grain motors, specif-

ically for circular perforated and star grain geometries. This thesis will explore the development

of analytical equations for tapered grains, the implementation into a code, and accompanying

machine learning techniques and results. The SRM internal ballistics code was used to develop

large databases for statistical learning. The SRM code contains a Monte Carlo simulation us-

ing a Latin Hypercube distribution that allows the user to robustly generate a multitude of SRM

designs, and the resultant thrust-time profile based on desired inputs. Once large databases of

performance data were generated, statistical learning methods such as regression analysis and

neural networks were used to provide regression analysis and surrogate modeling capabilities.
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Chapter 1

Introduction

Solid rocket motors have been used extensively both in space and military applications. Larger

solid rocket motors such as the ASRM [1] and others mentioned in Reference [2] have been

developed for space applications. These large solid rocket motors produce a relatively high

amount of thrust used to propel launch vehicles into space. For military applications, solid

rocket motors have been used to propel missiles, rockets, and anti-tank weapons [3, 4, 5, 6,

7, 8]. The solid rocket motor allows the payload to be accelerated at a high speed towards

a target, or desired location. An integral part of the design process of solid rocket motors is

choosing the correct grain design. The grain design of the solid rocket motor affects the burn-

back characteristics of the motor. These characteristics effect the thrust-time profile of the

motor, as well as the specific impulse, chamber pressure, and overall performance of the flight

vehicle being propelled by the solid rocket motors. CP grains tend to burn in a more progressive

manner, while the star grain can have regressive, neutral, and progressive burn phases.

The grain design of a solid rocket motor can be tailored to fit the requirements that the

solid rocket motor must meet. The Space Shuttle solid rocket booster thrust profile is a relevant

example [9] of a specific thrust profile that must be met. Optimization schemes such as ge-

netic algorithms [10, 11] and particle swarm methods [12, 13, 14] have been developed to help

optimize the performance of solid rocket motors given design constraints. In previous efforts,

level set methods were also developed [15] to model grain geometries such as circular perfo-

rated, star, and wagon wheel grain designs [16, 17]. The majority of these works were focused

on straight SRM grains. Oftentimes, the solid rocket motor grain has multiple sections with

unique grain designs. In practice, these grain sections can be either straight, or tapered [18].
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Solid rocket motors that make use of tapered grains include, and are not limited to the Titan IV,

Ariane, Castor, along with other solid rocket boosters [19]. These tapered grains are used to

control the thrust-time profile, while also limiting erosive burning [19, 20, 21]. For this reason,

it is important that an internal ballistics tool be developed capable of modeling this feature of

SRMs.

To accurately model tapered grain geometries, new analytical methods were developed to

accurately model the tapered SRM grain. These methods make use of the designs proposed

by Barrere [22] and Hartfield et al. [16, 17]. The methods proposed in this thesis offer an

alternative to the methods developed by Ricciardi for tapered grains [23]. Once developed,

these analytical methods were integrated into a 1D internal ballistics code to produce SRM

performance data. Star grains and circular perforated (CP) grain designs are supported with this

internal ballistics code. Building from legacy code that had been previously developed [11, 16,

17, 24, 25, 26, 27] this tapered solid rocket motor code could successful be developed. During

the process of development, a Monte Carlo [28, 29, 30] scheme was integrated into the internal

ballistics code so that large databases of SRM performance data could be produced. This Monte

Carlo scheme allows the user of this 1D internal ballistics code to generate randomly sampled

SRM designs, provided a range of inputs. The output of interest for this study were the thrust-

time curves of a solid rocket motor. Figure 1.1 shows a sample thrust vs. time curve for a solid

rocket motor.

Figure 1.1: Sample Thrust vs. Time Curve
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With large databases of thrust-time curves generated for both star grain and circular per-

forated grain designs, machine learning techniques could then be implemented to help analyze

and model the thrust-time profiles, along with modeling SRM performance parameters. The

two basic uses of machine learning for this effort were to first to be used to analyze the solid

rocket motor data via regression analysis. Both traditional linear regression techniques and

neural networks were used to perform this analysis. Once the regression analysis had been per-

formed, neural networks were trained to act as surrogate models for the internal ballistics code.

These networks are trained to predict, or produce, the thrust-time profiles that are generated

with the internal ballistics code. Python packages such as SHAP [31] were used to help un-

derstand these machine learning models, specifically for the regression analysis. Finally, these

neural networks could be tuned [32] to find the optimal hyper-parameters used to create the

optimal neural networks.

In summary, the goals of this thesis are as follows: (1) develop and integrate methods to

accurately model tapered SRM grain designs into an internal ballistics tool, (2) generate large

databases of thrust-time data to be used for analysis, and (3) use machine learning techniques

to analyze and model the solid rocket motor performance data. These three main goals were

accomplished and can be further explained in the upcoming chapters of this thesis.
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Chapter 2

Physics Modeling of Solid Rocket Motors

It is important to first understand the physics needed to properly model the internal ballistics

of a solid propellant rocket. To solve this internal ballistics problem, it is imperative that the

burn area of the solid rocket motor is properly modeled. To produce outputs such as thrust and

chamber pressure, the burn area first must be modeled. Before considering any advances in

grain geometry let us consider the schematic shown below, to get an understanding of how the

thrust equation for solid rockets is developed.

Figure 2.1: Solid Rocket Motor Control Volume [33]

The control volume above is important to understand when developing the equations for

thrust of a solid rocket motor. The solid rocket motor exhausts into the ambient atmosphere

surrounding the rocket body. This ambient pressure changes based on the location of the rocket

in the atmosphere. The internal pressure is known as the chamber pressure of the solid rocket

motor. Looking at the control volume shown in Fig. 2.1 we can see that the only place where
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we have fluid exiting the control volume is at the exit plane of the nozzle. To solve this problem,

we will apply the momentum equation, shown in Eq. 2.1.

d

dt

∫∫∫
V

ρu⃗dV +

∫∫
S

u⃗(ρu⃗ · n⃗)dA =
∑

F (2.1)

The forces that we consider is this solution are the external pressure forces and the thrust.

This simplification can be seen in Eq. 2.2

d

dt

∫∫∫
V

ρu⃗dV +

∫∫
S

u⃗(ρu⃗ · n⃗)dA = Ft + Fpressure (2.2)

With our external forces defined, we now need to begin to apply the assumptions of this prob-

lem. In applying the conservation of momentum above, we assume that we are dealing with

1-D steady flow. This assumption allows us to drop the time dependent term, resulting in the

following form of Eq. 2.1.

∫∫
S

u⃗(ρu⃗ · n⃗)dA = Ft + Fpressure (2.3)

We can also expand the pressure force term shown on the right hand side of Equation 2.3.

Equation 2.4 shows the resultant pressure forces that act on the control volume.

Fpressure = PaAe − PeAe (2.4)

The final step in this analysis is to apply the surface integral term of Equation 2.3 to the

exit plane of the solid rocket motor nozzle. When applying the Equation 2.3 and applying what

we know from Equation 2.4 we obtain the following simplified equation.

Ft = ρeAeu
2
e + Ae(Pe − Pa) (2.5)

Simplifying further using mass conservation we can obtain the commonly used thrust

equation shown in Equation 2.6.
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Ft = ṁue + Ae(Pe − Pa) (2.6)

Equation 2.6 shows the basic version of the thrust equation that adequately models the

thrust produced by a solid rocket motor. When modeling the solid rocket motor, the most

important parameter to model is the burn area. The burn area is directly related to the chamber

pressure of the rocket, which in turn effects the thrust produced by the solid rocket motor.

Equations 2.7 and 2.8 show the relationship between the burn area (Ab) and chamber pressure

(Pc) having a direct impact on the thrust. Modeling burn area as a function of time leads to

results of chamber pressure and thrust as a function of time.

Pc = (
Ab

A∗aρbc
∗)

1
1−n (2.7)

Ft = λ(PcA
∗Cf ) + AePe (2.8)

In order to model the burn area, we have to make assumptions about the burn rate. The

tool developed for this work makes 1-D flow assumptions, and uses a bulk burn rate model.

Equation 2.9 shows how the burn rate (r) was modeled with this tool.

r = aP n
c (2.9)

In Equation 2.9, a represents the burn rate coefficient, Pc represents the chamber pressure,

and n represents the pressure exponent. Both the burn rate coefficient and the pressure exponent

are unique to the solid rocket fuel chosen to be modeled with the internal ballistics tool. Sutton

provides a good overview of these values for typical solid propellants [34]. Now that we have

derived the equations needed to develop thrust of the solid rocket motor, we can see what is

needed to obtain a solution. With the basics developed, a more detailed explanation can be

provided for the development of grain geometry equations. Sections 2.2, 2.3, and 2.5 provide

the equations and analytical methods used to model the burn area for the SRM.
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Accurately modeling the burn area of a solid rocket motor is not a trivial task. Effects

such as ignition, along with 2-D and 3-D flow effects are not modeled in this thesis. For more

detailed modeling of solid rocket motor performance, CFD codes may need to be used. Tools

such as FlightStream® also exist that have been shown to be capable of modeling the internal

ballistics of solid rocket motors [35, 36]. For this thesis we will be working with a 1-D internal

ballistics code using a bulk burn rate model and uniform grain regression assumptions [16, 17].

2.1 Performance Metrics and Equations

With equations for thrust and chamber pressure developed, it is important to introduce some

of the performance metrics used for this thesis. The first two metrics we will introduce are the

maximum thrust and the average thrust of the solid rocket motor. Once the thrust-time curve has

been generated, the maximum value and average value can easily be calculated. Simple Python

functions have been developed and implemented to use the output data files from the solver to

calculate the maximum thrust and average thrust for each solid rocket motor thrust-time curve.

The final two performance metrics we will analyze are the burn time and the total impulse

of the solid rocket motor. For the work done in this thesis, the burn time will be defined as the

total time that the solid rocket motor is burning. Other sources such as Sutton [34] may define

this metric in different ways. The total impulse is essentially the area under the thrust-time

curve. Equation 2.10 and 2.11 show the important equations used for the calculation of total

impulse.

I =

∫ tb

0

Ft dt (2.10)

I = F̄ttb (2.11)

In Equation 2.11 I represents the total impulse, tb represents the burn time, and F̄t repre-

sents the average thrust produced by the SRM. Equation 2.10 could be applied to a thrust-time

curve like the one seen in Fig. 1.1 to see that all it is calculating is the area under the curve.

The SRM performance metrics used for this thesis can be summarized below in Table 2.1.
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Table 2.1: Solid Rocket Motor Performance Metrics

Performance Metric Name Units
Maximum Thrust MAX THRUST lbf
Average Thrust AVG THRUST lbf
Burn Time BURN TIME seconds
Total Impulse TOTAL IMPULSE lbf − sec

2.2 Star Grain Equations

As mentioned above, the star grain geometry design follows the work of Barrere [22] and

Hartfield et al. [16, 17]. Figure 2.2 provides a schematic of the star grain geometry used for

this work. A review of this method with the addition of short spoke wagon wheel designs can

be found in Refs. [16, 17].

Figure 2.2: Star Grain Geometry

The port area and more importantly the burn area equations can be developed by taking

advantage of the geometry provided in Figure 2.2. When calculating the burn areas, we will

establish two unique geometries, Phase I and II, the first phase takes place while the burn

distance (y) is less that first web thickness (web1), the second burning phase begins when the

burn distance is greater than the first web thickness (web1). To calculate the burn area, the
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burn perimeter must be calculated given S1, S2, and S3. First for phase I, the following burn

perimeter equations are developed [17].

S1 =
H1

sin θ
2

− (y + f) cot
θ

2
(2.12)

S2 = (y + f)(
π

2
− θ

2
+
πϵ

nsp

) (2.13)

S3 = (Rp + y + f)(
π

nsp

− πϵ

nsp

) (2.14)

In Equations 2.12, 2.13, 2.14 the values for H1 and θ/2 are derived in the following two

equations.

H1 = Rp sin
ϵπ

nsp

(2.15)

θ

2
= arctan

H1 tan
ϵπ
nsp

H1 −Ri tan
ϵπ
nsp

(2.16)

With these equations developed, the total burn perimeter can now be solved for along with

the phase I burn area.

S = 2(nsp)(S1 + S2 + S3) (2.17)

Ab = S(GL) (2.18)

Now that the phase I star grain burn area equations have been developed, the port area

equations for phase I can similarly be developed. Looking at Figure 2.2, the the port area

sections are labeled as Ap1 , Ap2 , and Ap3 . The following four equations are used to find the

total port area.

Ap1 =
1

2
H1[Rp cos

ϵπ

nsp

+H1 tan
θ

2
]− 1

2
S2
1 tan

θ

2
(2.19)

Ap2 =
1

2
(y + f)2(

π

2
− θ

2
+
ϵπ

nsp

) (2.20)

Ap3 =
1

2
(Rp + y + f)2(

π

nsp

− ϵπ

nsp

) (2.21)

Ap = 2(nsp)(Ap1 + Ap2 + Ap3) (2.22)

9



The phase II burn equations can be simplified from the phase I equations because the S1

perimeter is burnt out when using the phase II geometry. The logic to switch between phase I

and phase II geometry is when the burn distance is greater than the phase I web thickness. The

equation for the phase I web thickness (web1) can be seen below in 2.23. The equations for the

total web thickness and phase II web thickness can be seen below as well in Equations 2.24 and

2.25.

web1 =
H1

cos θ/2
− f (2.23)

web = Ro −Rp − f (2.24)

web2 = web− web1 (2.25)

Now that we have distinguished between the web thicknesses, two new parameters β and γ

are defined to simplify the arithmetic for the phase II equations. Figure 2.3 shows a schematic

of the phase II burn geometry with γ included. Figure 2.3 shows that as the burn distance

increases, the value for γ changes.

β = (
π

2
− θ

2
+
ϵπ

nsp

) (2.26)

γ = arctan

√
(y + f)2 −H2

1

H1

− θ

2
(2.27)

Now that these new parameters have been defined, the phase II burn area equations can be

developed as follows.

S2 = (y + f)(β − γ) (2.28)

S3 = (Rp + y + f)(
π

nsp

− ϵπ

nsp

) (2.29)

S = 2(nsp)(S2 + S3) (2.30)
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Figure 2.3: Phase II Geometric Design

Equation 2.18 can now be applied again to obtain the burn area for the phase II burn.

Finally the port areas can be defined for the phase II burn with these three remaining equations.

Ap1 =
1

2
H1[Rp cos

ϵπ

nsp

+
√

(y + f)2 −H2
1 ] (2.31)

Ap2 =
1

2
(y + f)2(β − γ) (2.32)

Ap3 =
1

2
(Rp + y + f)2(

π

nsp

− ϵπ

nsp

) (2.33)

Equation 2.22 can now be applied to the phase II equations to find the total port area for

phase II burning. These equations are applied until the maximum value of y , ymax, is reached.

Equation 2.34 shows the equation defining the maximum value of burn distance.

ymax =

√
(Ro −Rp cos

πϵ

nsp

)2 +H2
1 − f (2.34)

After the value of ymax is reached, the SRM burn enters into the tail-off period. The tail-

off is modeled used a exponential decay that resembles Ce−αt, where C and α are constants

[33]. The grain design equations developed above are implemented into the solid rocket code
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and propagated through time. If the burn area can be accurately modeled, the thrust and the

pressure time curves can be developed from the burn area propagation.

2.3 Circular Perforated Grain Equations

The second geometry that is modeled with the tapered grain solid rocket code is the circular

perforated or CP grain design. The code models the CP grain as a special case of the star grain

when the angular fraction (ϵ) is very small. A good value to use for the angular fraction is about

0.01 in the snglerun.dat file. Figure 2.4 shows the schematic of the important design parameters

used when modeling a CP grain.

Figure 2.4: Schematic of a Circular Perforated Grain

The burn area equations can be easily developed using the geometric relationships seen in

Figure 2.4. The burn area can be calculated as the following.

Ab = 2π(Ri + y)(GL) (2.35)

The port area for the circular perforated grain can also be calculated as follows.

Ap = π(Ri + y)2 (2.36)

Now that the grain design equations for both star and CP grains have been developed, it

is important to cover the logic used for extending these designs to support tapered solid rocket

motor grains.
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2.4 Tapered Grain Implementation

This section will cover the work done to extend the methods developed by Barrere [22] and

Hartfield et al. [16, 17] for tapered grain solid rocket motors. Ricciardi proposed a method for

tapering by adding longitudinal grain sections together [23]. The method that will be covered

in this thesis is an alternative method to what is developed by Ricciardi [23]. Due to the taper

of the solid rocket motor grain, new phases of the burn needed to be developed from what had

been previously developed in References [16, 17, 22].

For this thesis, only a positive taper will be considered. This is the prevalent kind of

tapering in solid rocket motor grain design. By positive taper, we are saying that the hold in

the solid rocket motor grain grows towards the aft end of the grain section. The equations

developed for this work allow for the tapering of five geometric grain parameters. Table 2.2

show the grain parameters that can be modified with the proposed method.

Table 2.2: Tapered Grain Parameters and Description

Parameter Description
Ri Inner Grain Radius
Ro Outer Grain Radius
Rp Propellant Grain Radius
f Fillet Radius
ϵ Angular fraction

The taper ratio is implemented into the 1D internal ballistic code using the following

method. The user can define the taper ratio for any of the parameters shown above in Table

2.2. The taper ratio represents the percent increase of the geometric parameter of choice (see

Table 2.2). Equation 2.37 shows the basic equation used to calculate the forward and aft end

parameter sizes.

Pa = Pf + Pf ∗ TR (2.37)

In Equation 2.37, the TR represents the user defined taper ratio, Pa represents the aft end

parameter, and Pf represents the forward end parameter. The forward or aft end parameter can

be any of the parameters described in Table 2.2. Typically theRp andRi are the parameters that
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are tapered for this work. The analytical methods developed as part of this work assume linear

taper between the forward and aft ends and only models positive tapering. The positive taper is

commonly seen in space and defense solid rocket motors, along with being the prevalent taper

design seen in the literature. It is important to note that when applying the taper, the design at

the forward and aft end must be a CP or Barrere star [22] design. Depending on the forward end

star grain, it is possible that certain taper ratios lead to a non-viable aft end star grain design.

With this covered, we can now move into the methods implemented to model the tapered solid

rocket motor grain. These analytical methods build on the work of Barrere [22] and Hartfield

et al. [16, 17]. New burn phases and analytical methods for tapered solid rocket motor grains

were developed as part of this thesis.

2.5 Analytical Methods for Tapered Grain Solid Rocket Motors

To model the tapered grain solid rocket motor, the basic grain design proposed by Barrere [22]

is considered. An image of this grain design can be shown in Figure 2.2. We will only consider

the star grain geometry in this derivation since the CP grain is a special case of the star grain

when the angular fraction (ϵ) is small. The grain parameters shown in Table 2.2 are defined

at the forward end of the solid rocket motor grain, a taper ratio is then defines that allows the

parameters to be defined at the aft end as well.

The burn perimeters S1, S2, and S3 will first be discretized into Cartesian coordinates at

the forward and aft end of the solid rocket motor grain. To accomplish this, five coordinates

are defined in the XY plane of the solid rocket motor, the origin of this frame can be seen in

Figure 2.5. These coordinate points make the discretization of the burn perimeters simple and

easy to implement into a program. The Z component is essentially defining the grain length,

at the forward end the Z component will be 0 and at the aft end it will be equal to the grain

length. Eventually when the star points begin to reach the wall the Z component will need to be

decremented for each coordinate, more will follow about that logic in the following sections.

Figure 2.5 shows an image of the star grain with the five way points included.

To develop these Cartesian coordinates, the following equations are used to find points

1-5.
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Figure 2.5: Star Grain Design with five supplementary points

(x1, y1) = (Ri +
f

sin θ/2
, 0) (2.38)

(x2, y2) = (x1 + S1 cos θ/2, S1 sin θ/2) (2.39)

(x3, y3) = (Rp cos
ϵπ

nsp

, Rp sin
ϵπ

nsp

) (2.40)

(x4, y4) = (x3 + f cos
ϵπ

nsp

, y3 + f sin
ϵπ

nsp

) (2.41)

(x5, y5) = ((Rp + f) cos
π

nsp

, (Rp + f) sin
π

nsp

) (2.42)

Now, with Equations 2.38-2.42 developed we can begin to explain how the burn perimeters

were discretized. The total burn perimeter is discretized with the same number of points on the

forward and aft end of the solid rocket motor grain. This will ensure an equal number of points

that can be used to eventually calculate the burn area during the different burn phases SRM

simulation.
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2.5.1 Burn Area Implementation

The goal of breaking up the burn perimeters into Cartesian coordinates is to be able to calculate

the burn area of small panels, defined by four points in 3D Cartesian space, and then sum those

areas up to find the burn area of the solid rocket motor. This method makes use of the fact that

there are the same number of coordinates on the forward end and aft end of the SRM grain.

Knowing each point and the distance between them, small differential areas can be created

and then added together to calculate the burn area. Figure 2.6 shows an image of the aft and

forward end half star point with lines connecting them. These lines help show the differential

areas dAB′s that are calculated and used to find the burn area of the SRM.

Figure 2.6: Image of Half Star Point

Figure 2.6 shows image of the discretized aft and forward end half star points. The red

lines represent the aft end, the blue lines represent the forward end, and the shaded in section

represents the outer wall of the solid rocket motor grain. In this case the SRM is tapered, so the

aft end (red) star point is slightly larger than the forward end star point. Figure 2.7 helps show

the difference in size of the star points. The aft end star in Figure 2.7 is larger than the forward

end star, this represents a positive tapering of the solid rocket motor. Figure 2.6 is essentially

showing a discretized 3D image of Figure 2.5. This 3D image shown in Figure 2.6, is what this

internal ballistics code is modeling as a function of burn distance and time.
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Figure 2.7: Tapered Grain Star Point Comparison

Now we can connect each of the points to form quadrilateral shapes that represent dAB′s

of burn area, these dAB′s can be seen in Figure 2.6 by looking at the grey lines connecting

the forward and aft end grain faces. By discretizing the burn perimeter with more points we

can more closely approximate the curved surface of the star grain with dAB′s. Figure 2.6

shows only a few dAB′s, when in reality there are typically more than a hundred dAB′s that

represent one half of the star point. Once the dAB′s have been created, we can split them into

two triangles per rectangular shape (dAB), similar to what it shown in Figure 2.8.

Figure 2.8: Schematic of a Rectangle/Quadrilateral Used to Calculate Burn Area

Now, the area of this quadrilateral, Ar, can be solved for as follows by using the cross

product. Equation 2.43 shows the implementation of the equation mentioned above.
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Ar =
1

2
|A⃗C × A⃗D|+ 1

2
|D⃗A× D⃗B| = dAB (2.43)

In practice, the vectors A⃗C and B⃗D may not be the same length. When the aft end begins

to burn out, these lengths will change between each coordinate point. More information on

that will be introduced in the following sections, specifically the section covering the final burn

phase, Phase D. With the logic to find the area for one quadrilateral shape introduced, we can

see how burn area is calculated as follows in Equation 2.44.

Ab = 2nsp

n∑
i=1

Ari (2.44)

The discretization only covers one half of one star grain, similar to what is shown in

Refs. [16, 17, 22] for this reason the summation must be multiplied by 2 ∗ nsp. The value

nsp represents the number of star points and the number two is included to make up for the

half angle discretization. Equation 2.44 is another form of Equation 2.18 shown in the section

covering the basic star grain equations. In Equation 2.44, the parameter n represents the total

number of discretized points for one half of a star point. Note: When the burn area is being

calculated, the first point used is Point 1 (or Point 2) depending on the burn phase, and the

Cartesian coordinates are ordered to where the last point is Point 5. The order of burn area

calculation is shown below in Figure 2.9 with the black arrow.

Figure 2.9: Burn Area Coordinate Path
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Figure 2.9 shows the black arrow starting at the first point (i = 1) and ending at the last

point (i = n), here n is equal to the total number of points for a grain face. Using sets of points

on the forward and aft end a differential burn area (dAB) can be calculated that then leads to

the total burn area by using the equations shown above.

Now that we have talked about the logic to calculate the burn area, we can discuss a bit

more the burn phases and how to obtain the Cartesian coordinates needed for each phase of the

burn. In past work for modeling star grain motors, there have been three burn phases [16, 17]

this work introduces a new burn phase when the larger end of the SRM begins to burn at the

wall. For the purpose of this work we will introduce four new burn phases. These burn phases

will be known as Phase A, B, C, and D. This helps us distinguish between the Phase I and

II geometric equations developed by Barerre [22], with work added by Hartfield [16]. When

talking about the phases of the burn the letters A, B, C and D are used, but when talking about

the geometric equations and shape of the star grain Phase I and II will be used.

2.5.2 Phase A

The logic used to develop the equations for phase A of the burn is the same as what is shown in

[16] and [22] in their work on star grain methods. The motor is burning in phase A as long as

there is some length to S1 or more easily shown when the value of y is less than the value of the

first web thickness for the forward end (web1f ). The equations shown for the five way points

will be modified to now take into account the changing burn distance (y). Equations 2.45 - 2.49

show the way points for Phase A of the burn. These points will be known as Points 1 - 5. For

this phase of the burn, Phase A, the design of the forward and aft end stars will be modeled

with the Phase I geometry introduced by Barrere [22], along with work from Hartfield [16, 17].

(x1, y1) = (Ri +
f + y

sin θ/2
, 0) (2.45)

(x2, y2) = (x1 + S1 cos θ/2, S1 sin θ/2) (2.46)

(x3, y3) = (Rp cos
ϵπ

nsp

, Rp sin
ϵπ

nsp

) (2.47)
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(x4, y4) = (x3 + (f + y) cos
ϵπ

nsp

, y3 + (f + y) sin
ϵπ

nsp

) (2.48)

(x5, y5) = ((Rp + f + y) cos
π

nsp

, (Rp + f + y) sin
π

nsp

) (2.49)

Now that the way points have been developed in Cartesian coordinates in the XY plane,

the burn perimeters S1, S2, and S3 and be discretized. The calculation of the points for the S1

and S3 perimeters is quite straightforward, while the calculations for the coordinated in the S2

arc are a bit more involved. Figure 2.10 shows the paths (red arrows) used to discretize each

burn surface for Phase I. The S1 arc starts at Point 1 and moves up until it reaches the S2 arc.

The calculation of the S2 arcs start at a middle point that is easily defined from Point 3 and

move away from that middle point until they reach either the S1 or S3 arc, depending on if you

are above or below that middle point. This middle point can be defined below.

(xmiddle, ymiddle) = (x3 + f + y, y3) (2.50)

The S3 points start at Point 5 and move down until they reach Point 4. Once all of these

points have been discretized, they are then sorted in a new vector that starts at Point 1 and ends

at Point 5.

Figure 2.10: Schematic of a Star Grain - Phase I discretization
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For the S1 section, the burn perimeter is discretized into a select number of coordinates.

This is done by calculating S1 as follows in Equation 2.51. In equation 2.51, θ is the star point

angle, and H1 is calculated using equation 2.15.

S1 =
H1

sin θ/2
− (y + f) cot θ/2 (2.51)

After S1 is calculated, the line can be divided into multiple sections. Once the lines are

divided up, the angle θ/2 can be used to calculate the coordinates along the line. Keep in mind

that these methods apply for discrete values of burn distance (y), so at each value of y, the value

of S1 is calculated and discretized. Now that we have talked about how to break up the S1 burn

section. We can quickly show the equations used to calculate the x and y coordinates along the

S1 line. The aforementioned equations can be seen below in Equation 2.52.

xS1i
= xS1i−1

+ dS1 cos (θ/2)

yS1i
= yS1i−1

+ dS1 sin (θ/2)

(2.52)

In Equation 2.52 the value of i goes from 1 to the number of times the S1 line is discretized.

The formula must be initialized, and the first values of x and y on the S1 arc can be easily seen

from Figure 2.5 as Ri + (f + y)/ sin θ/2 for x and 0 for y. Also, from Equation 2.52, dS1 can

be defined below as the following.

dS1 =
S1

ndx

(2.53)

where ndx represents the number of times that the S1 arc is discretized. Now that we have

discussed how to calculate the coordinated along the S1 perimeter, we can move on to the S2

arc.

To discretize the S2 arc we will break it into two smaller arcs. If we reference Figure 2.5

we can see that if you draw a horizontal line through (x3, y3) the S2 arc will be intercepted.

This will be our dividing line for discretization of the S2 arc. We will call the bottom arc S2b

and we will call the top arc S2a . The angle that makes up the bottom arc will be β − πϵ
nsp

while

the top angle will be πϵ
nsp

. These two angles will be broken up into smaller arcs and then the
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XY coordinates can be calculated. The following equations will be used to calculate the XY

coordinates for S2b and S2a , respectively.

xS2b i
= x3 + (f + y) cos (dψ ∗ (i− 1))

yS2b i
= y3 − (f + y) sin (dψ ∗ (i− 1))

(2.54)

xS2ai
= x3 + (f + y) cos (dχ ∗ (i− 1))

yS2ai
= y3 + (f + y) sin (dχ ∗ (i− 1))

(2.55)

In Equations 2.54 and 2.55 the values ψ and χ are defined as follows, and the value of i is

the counter of the do loop that goes from 1 to ndx for each section. Like mentioned earlier, ndx

is the number of times each burn perimeter section is discretized.

dψ =
β − πϵ

nsp

ndx

(2.56)

dχ =

πϵ
nsp

ndx

(2.57)

Now that the discretization for S1 and S2 has been explained, the equation for how the S3

arc is discretized can be explained for Phase A. We will be discretizing an arc through an angle

that is defined as π/nsp − πϵ/nsp. This angle will be called ϕ. Now that we have defined ϕ the

equations can be shown to calculate the values of x and y for the S3 arc.

xS3i
= (Rp + f + y) cos (

π

nsp

− (dϕ ∗ (i− 1)))

yS3i
= (Rp + f + y) sin (

π

nsp

− (dϕ ∗ (i− 1)))

(2.58)
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In Equation 2.58, dϕ is defined below in Equation 2.59 and again i is the counter in the do

loop going from 1 to ndx. It is worth to mention that the first value for the S3 discretization is

essentially (x5, y5) from Figure 2.5.

dϕ =
ϕ

ndx

(2.59)

Now the equations and methods have been developed for discretization of the burn perime-

ters described and shown in Figure 2.10. We now have 4 ∗ ndx coordinate pairs that define this

star grain design. Using the methods shown previously to calculate the burn area we now can

get burn area as a function of y while the motor is in Phase A. It is important to notice that we

have only defined the XY coordinates for Phase A of the burn. For Phase A, the Z component

is equal to zero at the forward end, and equal to the grain length GL at the aft end. Figure

2.11 shows the geometry of the star points at the forward and aft end during Phase A. Table 2.3

helps give a better understanding of the Phase A burn and required geometry.

Figure 2.11: Phase A Burn Schematic

Table 2.3: Phase A Summary

Grain Face Geometric Design Z Component
Forward Phase I 0
Aft Phase I GL
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2.5.3 Phase B

Phase B begins when the burn perimeter S1 burns out for the forward end of the SRM grain.

To model this we will need to introduce a new set of equations at the forward end of the SRM,

these equations are the Phase II geometric equations proposed by Hartfield et al. [16, 17]. The

aft end of the SRM will use the Phase I geometry. The schematic of a Phase B burn can be see

in Figure 2.12.

Figure 2.12: Phase B Burn Schematic

Looking at Figure 2.3 this shows a schematic of a the Phase B burn. For the Phase B burn,

the forward end geometry is defined with Phase II geometry while the aft end is still defined

with Phase I geometry. Figure 2.3 shows the aft end star point (red) still has a straight section

S1, while the forward section (blue) has no S1.

The logic to make sure that the burn is in Phase B is as follows. If the value of burn

distance (y) is greater than the forward end web thickness for Phase I geometry (web1) and less

than the aft end web thickness for Phase I geometry (web1), we are in what we will define as

Phase B. The equation for web thickness for a Phase I star grain geometry is as follows.

web1 =
H1

cos (θ/2)
− f (2.60)
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By bookkeeping the burn distance (y) we can easily tell what phase of the burn we are in.

Like mentioned in the previous paragraph, the forward end star design is what is changing for

this phase. The forward end of the grain is calculated using the Phase II geometric equations.

Now that the logic had been explained to get to Phase B of the burn we can show the equations

needed for Phase B. For the Phase II geometric discretization, the S1 has burnt out, now we only

need to worry about modeling the S2 and S3 arcs. Figure 2.13 shows the process of discretizing

the burn perimeter used for the Phase II equations.

Figure 2.13: Schematic of a Star Grain - Phase II discretization

Looking at Figure 2.13, the blue arrows represent the Phase II discretization path. As

mentioned previously, the S1 arc is now burnt out. This simplifies our process slightly. Just

like shown for Phase I, the S2 arc is broken up into a top and bottom arc. These arcs begin at a

middle point that can be defined as follows.

(xmiddle, ymiddle) = (x3 + f + y, y3) (2.61)

The top arc goes until it meets Point 4 and the bottom arc goes until it meets the wall,

which in this case will be where Point 2 is located during Phase II. The S3 arc is discretized

following the arrow from Point 5 until it reaches Point 4. Just like is done in Phase I, after the
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points have been discretized for the grain face, the points are organized to trace from Point 2

up to Point 5. This is done for uniformity between the burn phases.

The S3 arc is calculated the same way as it was done in Phase I, for completeness the

Equation will be shown again in Equation 2.62.

xS3i
= (Rp + f + y) cos (

π

nsp

− (dϕ ∗ (i− 1)))

yS3i
= (Rp + f + y) sin (

π

nsp

− (dϕ ∗ (i− 1)))

(2.62)

In Equation 2.62, dϕ is defined in Equation 2.59 and again i is the counter in the do loop

going from 1 to ndx. Now that we have shown how the equation for S3 is discretized, we can

now move on to the calculation and discretization of the S2 arc. Figure 2.3 shows an image of

what the S2 arc looks like for the Phase II geometry of a star grain. Looking at Figure 2.3, we

can see that eventually the the S1 arc will burn out and we will only be left with S2 and S3.

The Phase II geometry of the burn also introduces a new angle γ. We can define γ below in

Equation 2.63. Figure 2.3 in Section 2 gives an image of the Phase II geometry with γ included.

γ = arctan

√
(y + f)2 −H2

1

H1

− θ

2
(2.63)

Now that γ has been defined we can go ahead and develop the equations needed for the

discretization of S2 for the Phase II geometry. Again we will break up the S2 arc up into two

smaller arcs S2a and S2b . The dividing line for these arcs a horizontal line thought the point

(x3, y3) from Figure 2.5. The equations for the top arc S2a are the same as they were for a

Phase I star geometry, there is a slight change in the S2b equations, these sets of new equations

will be shown below.

xS2b i
= x3 + (f + y) cos (dψ′ ∗ (i− 1))

yS2b i
= y3 − (f + y) sin (dψ′ ∗ (i− 1))

(2.64)
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xS2ai
= x3 + (f + y) cos (dχ ∗ (i− 1))

yS2ai
= y3 + (f + y) sin (dχ ∗ (i− 1))

(2.65)

In Equations 2.64 and 2.65 the values ψ′ and χ are defined as follows, and the value of i

is the counter of the do loop that goes from 1 to ndx for each section. Like mentioned earlier,

ndx is the number of times each burn perimeter section is discretized.

dψ′ =
β − γ − πϵ

nsp

ndx

(2.66)

dχ =

πϵ
nsp

ndx

(2.67)

Looking at Equations 2.64, 2.65, 2.66, and 2.67 we can see that the main difference be-

tween Phase I and Phase II geometries for the S2 arc is the inclusion of γ into the angle defining

the S2 arc. Now that the coordinates have been defined for a phase II geometry we again have

4 ∗ ndx coordinate pairs. The S1 points are still defined as the point shown as point 2 in Figure

2.5, for a Phase II geometry (x2, y2) would lie on the x-axis. Again we have described the

process of calculating the XY coordinates for the second burning phase, Phase B. Just like for

the Phase A burn the Z component must be defined. Again, the forward end Z component will

be defined as 0 and the aft end Z component will be set to the grain length. Table 2.4 gives and

overview of the geometry used in Phase B of the SRM burn.

Table 2.4: Phase B Summary

Grain Face Geometric Design Z Component
Forward Phase II 0
Aft Phase I GL

2.5.4 Phase C

The SRM enters Phase C of the burn when the S1 arc has been burnt out for both the forward

and aft end of the solid rocket motor, phase C ends before the aft end star reaches the outer

grain limit. The logic for Phase C is as follows: when the burn distance is greater than web1
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for the aft end, but less than the value of the total web thickness for the aft end. At this phase

of the burn, both the forward end and the aft end of the solid rocket motor are designed using

the Phase II geometric equations. Due to the fact that we are only modeling a positive taper

ratio and we are assuming uniform grain regression, we know that the aft end star will burn out

before the forward end star does. The visualization of Phase C can be seen below in Figure

2.14.

Figure 2.14: Phase C Burn Schematic

Figure 2.14 shows the forward and aft end burn faces for Phase C of the SRM burn.

During Phase C of the burn, the star points are modeled using a discretized Phase II geometry.

The process of discretizing the phase II geometric equations was developed in Section 2.5.3.

Looking at Figure 2.14, it can be seen that the aft end star is beginning to approach the wall.

Once this aft end star hits the wall (when y is greater than the aft end web thickness) the burn

Phase will switch to Phase D. While still in Phase C the Z component of the coordinate points

is defined the same as Phase A and B. Table 2.5 shows the geometric model used for Phase C.
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Table 2.5: Phase C Summary

Grain Face Geometric Design Z Component
Forward Phase II 0
Aft Phase II GL

2.5.5 Phase D

The addition of the Phase D burn phase for the tapered star grain is one of the major additions

to the literature on tapered grains. Phase D must consider what happens if the aft end of the

star grain begins to reach the wall before the forward end does. Since we are assuming uniform

burn distance (y), with a tapered grain the aft end will burn out before the forward end does.

To accurately model the tapered grain, we must account for the new effective grain length, or

what we can call the burn length. This new burn length will be used when calculating the burn

area of the SRM. A schematic a Phase D can be seen below in Figure 2.15.

Figure 2.15: Phase D Burn Schematic

The equations used to discretize the burn perimeter are the discretized Phase II geometric

equations shown in Section 2.5.3. As the phase II grain shape burns thought outer grain wall,

some points will be outside the grain perimeter, it is grain length of those points that will be

corrected for accurately model the burn area. Figure 2.16 gives a better image of the aft end
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star design burning through the grain boundary. The grain boundary is shown in the dark grey

in Figure 2.16.

Figure 2.16: Phase D with points outside grain wall

To find the new grain length for each side of a dAB we will first need to define the line

connecting the forward and aft end points in 3D space. An image of this can be seen in Figure

2.17. Figure 2.17 shows a limited number of lines connecting the forward and aft points.

Figure 2.17: Phase D Burn with points outside grain wall (lines included)
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To properly define the line in 3D space, we define the following three equations.

x = x0 + at

y = y0 + bt

z = z0 + ct

(2.68)

These three equations shown together in Equation 2.68 represent the parametric equations

for defining a line in 3D space. Using what we know about the problem and how the coordinate

frames have been applied, we can change the equations to what is seen in Equation 2.69

x = xf + (xa − xf )t

y = yf + (ya − yf )t

z = (GLi)t

(2.69)

Because the number of coordinates is the same for the forward and aft sections, we can

just use the index of the coordinates to ensure we are connecting the proper points in Cartesian

coordinate space. The subscript a and f represent x and y coordinates in on the forward and

aft section of the SRM grain, and the parameter GLi is the initial grain length. Looking at the

equations shown in 2.69, we still have one unknown t. The goal of this burn phase method is to

find t, and using t we can then calculate a new value of z which will become for us the effective

grain length that we will use in our burn area calculation.

To correctly find t, we can use what we know about the problem. We know that the points

that will fall outside the wall us when the magnitude of the x and y is greater than the outer

grain radius Ro. The logic can be seen below in Equation 2.70. Looking at Equation 2.70 we

can see that the outer grain radius (Ro) acts as a bound to check if the coordinates are outside

of the outer grain radius, Ro.

Ro =
√
x2 + y2 (2.70)
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We can set up a numerical scheme to find the value of t that comes from the above men-

tioned logic. Equation 2.71 shows the equation that will be used to find t. A bisection scheme

is used to solve Equation 2.71 for t. It is worth noting that this method converges very quickly

and is very fast as it was integrated into the Fortran code used to build and model these grains

[37].

dr =
√
((xa − xf )t+ xf )2 + ((ya − yf )t+ yf )2 −R0 (2.71)

The bisection method is a common root finding and typically converges quickly. The

algorithm will try and search for the value of t that makes the absolute value of dr less than the

error tolerance chosen for the bisection method. The error tolerance for this method was set to

around 1e-8. Once the bisection method converges on the correct value for t, that value can be

plugged into the z equation from Equation 2.69 to obtain the new effective grain length to be

used in the calculation of burn area for each panel. The bisection method is essentially finding

the Z component of the location where a line connecting the points crosses the grain boundary,

seen in Figure 2.17.

Table 2.6: Phase D Summary

Grain Face Geometric Design Z Component
Forward Phase II 0
Aft Phase II GLit

Now that we have discussed the new burn phases A-D, we can summarize with the tables

below. Table 2.7 shows the logic used to switch between the burn phases, while Table 2.8 shows

the grain geometry for each of the new burn phases. With these new burn phases developed,

they can be integrated into the 1D internal ballistics tool used for this work.

Table 2.7: Summary of Burn Phase Logic

Phase Logic
A y ≤ web1f
B y ≤ web1a
C y ≤ (web1a + web2a)
D y ≤ ymaxf
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Table 2.8: Burn Phase Summary

Phase Grain Face Grain Design Z Component
A Forward Phase I 0
A Aft Phase I GL
B Forward Phase II 0
B Aft Phase I GL
C Forward Phase II 0
C Aft Phase II GL
D Forward Phase II 0
D Aft Phase II GLit

2.5.6 Geometric Verification

To verify the assumptions of this model, we will perform a simple case study to calculate the

initial burn area of the tapered SRM grain. For this case we will look at the simple star grain

design shown in Figure 2.18.

Figure 2.18: Star Grain Verification - Forward Grain Design

This star grain design has the following design parameters that can be seen below in Table

2.9. Using these parameters, we will geometrically verify the equations and methods developed

in this section.

Looking at the parameters defined in Table 2.9, we can calculate the burn area in two

ways. The first way is to solve for the burn area while calculating the forward and aft end
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Table 2.9: Star Grain Verification Designs Parameters

Parameter Value
Rpf 5.29178 ”
Rpa 6.35014”
Ri 0.8292 ”
Ro 8.9643 ”
f 0.6879 ”
GL 72.255 ”
ϵ 0.8885
nsp 7

burn perimeter. With these two parameters we can estimate the burn area using the following

equation.

Ab =
1

2
(Sf + Sa)GL =

1

2
(Abf + Aba) (2.72)

Equation 2.72 states that the burn area (initial) is equal to the average of the forward burn

perimeter (Sf ) and the aft burn perimeter (Sa) times the length of the grain. This is essentially

the surface area of a frustum with a star design instead of a rectangle or circular design. To

calculate the Sa and the Sf we can use the phase I burn area equations shown in Section 2.2.

We can then compare the hand calculated value with the value of the initial burn area that is

generated from the SRM internal ballistics tool when the burn distance (y) is equal to 0. The

results of this comparison are shown below in Table 2.10.

Table 2.10: Star Grain Verification Results

Method Result
Code Calculation 5109.51 in2

Hand Calculation 5110 in2

Percent Error 0.009 %

Looking above at Table 2.10, we can see the values calculated with the code, and by

hand for the simple star frustum type shape. These differences could even be attributed to

rounding errors in calculation methods, especially the hand calculation. Regardless, this case

study shows that our method predicts the burn area with less than one percent error for this

simple case study. This case study shows that our predictions for burn area, and in return

chamber pressure and thrust are verified conceptually.
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Chapter 3

Solid Rocket Motor Internal Ballistics Tool

A tapered grain solid rocket motor internal ballistics tool was developed for this thesis. Based

on legacy FORTRAN code that was used in previous work [11, 24, 25, 27], an updated FOR-

TRAN tool was developed for this effort. The newest version of this code can support tapering

of the solid rocket motor grain for both CP and star grain solid rocket motor designs. The user

can define the grain geometry at the forward end of the grain, while also defining if the grain

should be tapered or straight by setting the taper ratio for the grain design parameters.

Intel FORTRAN makes it easy to run this solid rocket motor tool. To use this tool, the

Intel oneAPI Base Toolkit and the Intel oneAPI HPC Toolkit must be installed. The author

recommends using Microsoft Visual Studio as the IDE when developing and running the code.

Figure 3.1: Flowchart for SRM Tool

Figure 3.1 shows the flowchart of the subroutines used when running the solid rocket

motor internal ballistics tool. First, the input file is generated from the user for the single run

35



mode, the input file is snglerun.dat, and for a Monte Carlo run, the input file is gannlDIST.dat.

Both of these files are essentially the same, except the gannlDIST.dat file is used within the

Monte Carlo algorithm. Once the input file is modified the main.for file is called. The main

file reads in all of the required inputs and then calls the setup FORTRAN file. Once the setup

subroutine is called, the stage subroutine can be called which is only used as a first stage

rocket for this analysis. After the stage subroutine, the SRM subroutine is called within the

SRM subroutine the new tapered grain thrust subroutine (thrusttg.for) is called. From these

subroutines the simulaiton can output pressure, burn area, and thrust as a function of time or

burn distance.

Many of the subroutines used for this analysis are part of legacy solid rocket motor codes

that have been developed in previous work [11, 16, 17, 24, 25, 27]. The work of this thesis

mainly focused on the modification of some of the legacy codes, as well as the development of

a new thrust subroutine that can support tapered CP and star grain designs.

3.1 Validation with Legacy Code

To insure conceptual accuracy of the code, a simple test case was used to compare the legacy

codes [11, 16, 24, 25] with the new code that includes a new thrust subroutine. This validation

case uses a simple straight grain to ensure that the new code can model the basics of solid

rocket motor performance. Figure 3.2 shows the results of the new 1D internal ballistics code

plotted against the legacy SRM internal ballistics code known as AUSRC [27].

Due to the time constraints of this work, a full validation case was not able to be performed.

Based on the validation shown in this section, and the verification shown in Section 2.5.6 it is

assumed that the 1D internal ballistics code is able to produce conceptual design level thrust-

time curves.
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Figure 3.2: Validation Case for Star Grain Design

3.2 Subroutine thrusttg

Subroutine thrusttg is the subroutine that was added to the legacy 1D internal ballistics code to

properly model tapered solid rocket motor grains. This subroutine takes in burn distance along

with geometric parameters and calculates burn area, chamber pressure, and thrust as a function

of both time and burn distance. The subroutine thrusttg uses the following subroutines to

accurately model the tapered solid rocket motor grains. This subroutine includes the logic

needed to switch between burn phases as the motor simulation progresses. Algorithm 1 shows

the logic used to switch between burn phases for this simulation.

Algorithm 1 Algorithm for Burn Phase Switching
Require: y

while y ≤ ymaxf do
if y ≤ web1f then

Ab ← Phase A
else if y ≤ web1a then

Ab ← Phase B
else if y ≤ (web1a + web2a) then

Ab ← Phase C
else if y ≤ ymaxf then

Ab ← Phase D
end if

end while
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3.2.1 Subroutine star coords

Subroutine star coords takes in the grain design in one of the four burning phases and returns

the discretized Cartesian coordinates. This subroutine is called for the forward and aft end

coordinates. The number of Cartesian coordinates is user defined, and as a default is set to

one-hundred per section for a total of four hundred coordinates. The star coords subroutine

is the main application and implementation of the analytical methods that were developed in

Section 2.5 of this thesis.

3.2.2 Subroutines section area and cross prod

Subroutines section area and cross prod work together to calculate the burn area of the ta-

pered SRM. The way that the area is calculated for the tapered solid rocket motor grains is

to first form small quadrilateral type shapes by connecting the points of the aft end with their

respective points from the forward end of the solid rocket motor. Once all of the quadrilaterals

have been developed, the quadrilateral can be broken down into two triangles per quadrilateral,

by connecting the opposing points with a line. These subroutines mentioned in this section are

the practical implementation of the methods shown in Section 2.5.1. Algorithm 2 shows the

practical implementation of subroutines section area and star coords. Algorithm 2 show how

the geometric designs are assigned for each phase.

3.2.3 Subroutine find dr

Subroutine find dr is the subroutine that is along with a bisection method algorithm to calculate

the effective grain length that needs to be used once the star grain shape is outside the radius

of the solid rocket motor grain. The subroutine is essentially the following equation (seen in

Equation 3.1) that is used with the bisection method for solve for the value of t.

dr =
√

((xa − xf )t+ xf )2 + ((ya − yf )t+ yf )2 −R0 (3.1)

Using Equation 3.1 and a bisection method algorithm, the value for t could be quickly

calculated and plugged back into the parametric equations for a line in 3D to obtain the new
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Algorithm 2 Algorithm for Burn Phase Calculations
Require: y

while y ≤ ymaxf do
if y ≤ web1f then

XY Zf ← call star coords(I) ▷ Phase I Geometry
XY Za ← call star coords(I)
Ab ← call section area(XYZ) ▷ Uses forward and aft end coordinates

else if y ≤ web1a then
XY Zf ←call star coords(II) ▷ Phase II Geometry
XY Za ←call star coords(I)
Ab ← call section area(XYZ)

else if y ≤ (web1a + web2a) then
XY Zf ← call star coords(II)
XY Za ←call star coords(II)
Ab ← call section area(XYZ)

else if y ≤ ymaxf then
XY Zf ← call star coords(II)
XY Za ← call star coords(II)
Ab ← call section area(XYZ)

end if
end while

grain length for that section of the solid rocket motor grain. Once the new effective grain length

has been calculated, the section area subroutine can be used to calculate the burn area for one

half of the star point. With that area calculated, the whole SRM burn area can be calculated

using Equation 2.44. In Equation 2.44, the value ARi
is what is returned from subroutine

section area. The application of subroutine find dr as part of subroutine thrusttg is shown

below in Algorithm 3.

39



Algorithm 3 Bisection Implementation for Finding Burn Length with Tapered SRMs

Require: y ≥ (web1a + web2a) & y ≤ ymaxf
while y ≤ ymaxf do

r ←
√
x2a + y2a

if r is greater than Ro then
for j = 1, max iterations do

∆r0 ←call find dr(t0)
∆r1 ←call find dr(t1)
if |∆r0| ≤ tol then

t← t0
else if |∆r1| ≤ tol then

t← t1
else

t← t0+t1
2

∆r ← find dr(t)
if (∆r0∆r) < 0 then

t1← t
else

t0← t
end if

end if
end for
Z ← GLi ∗ t

else
Z ← GLi

end if
end while

Now that the important new subroutines have been explained, example thrust-time curves

can be shown in the next section of this thesis.

3.3 Internal Ballistics Results

The purpose of this section is to show the variety of the results that can be generated with the

internal ballistics tool developed for this work. This solid rocket internal ballistics tool can

model both star grain and CP grain designs. The purpose of this section is to show possible

designs and thrust time curves that can be generated with this code. Figures 3.3 - 3.6 show a

few of the thrust-time profiles that can be generated with this internal ballistics code.
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Figure 3.3: 5-point Star Grain Thrust-Time Curves

Figure 3.4: 7-point Star Grain Thrust-Time Curves

Figures 3.3-3.6 show the thrust-time curves for a fixed grain geometry with different num-

ber of star points. The orange curve represents the thrust-time curve for the straight grain,

and the blue curve represents the tapered grain thrust-time curves. For each of these runs, the

RP TR was set to 0.2, so a twenty percent increase in Rp as the motor goes aft. The effects of

that tapering can be seen in Figures 3.3-3.6.
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Figure 3.5: 9-point Star Grain Thrust-Time Curves

Figure 3.6: 11-point Star Grain Thrust-Time Curves

3.4 Solid Rocket Motor Data Generation

The data that is covered in this section will be used for the remainder of the thesis. For this

work two main data sets were developed, one for CP grains and one for star grains. The solid

rocket motor internal ballistics tool has a Latin Hypercube sampling scheme that can be called

by the 1D internal ballistics code [38]. The user defines and maximum and minimum for the
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input geometry, along with a desired number of samples and the code will produce that number

of thrust-time curves. As shown above, the data generated for this thesis are thrust-time curves

for various solid rocket motors. These thrust-time curves are written to a .dat file where the

Jupyter Notebooks developed for this thesis are then used to read in and analyze the thrust-time

curves. Figure 3.7 shows the full thrust-time curves generated for both the CP and star grain

data. The SRM internal ballistics tool has filters to make sure that the code only produces

possible thrust-time curves. Grain errors and other performance related issues are filtered out

before the data is written. This is not unexpected due to the design space used with the Monte

Carlo algorithm. It is possible that the SRM grain generated is not a viable design depending

on the various inputs. Cervantes talks more about these errors and the filtering in Ref. [27].

(a) Tapered CP Grain (b) Tapered Star Grain

Figure 3.7: SRM Thrust Curves

3.4.1 CP Grain Data

The first set of data generated for this thesis was the circular perforated or CP grain data. These

solid rocket motors typically produce a more progressive thrust-time curve. When developing

the data set for the CP grain motors, the body diameter, the throat diameter ratio, and the the

grain radius taper ratio were all varied using the Latin Hypercube scheme. Table 3.1 shows the

parameters that were varied using the internal ballistics tool for the CP grain data.

For the CP grain data, 500 unique thrust-time curves were ran using the internal ballistics

tool. The maximum thrust, average thrust, burn time, and total impulse were all calculated
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Table 3.1: Circular Perforated Grain Design Parameter Variation

Parameter Description Min Max
Body Diameter Body diameter of the rocket (meters) 0.4 0.6
Non-dimensional throat diameter Throat Diameter/Body Diameter 0.30 0.36
Propellant Grain Radius Parameter (Rp + f)/DBODY 0.4 0.5
Propellant Grain Radius taper ratio Parameter affecting the taper of the solid grain 0.0 0.50

when post processing the data with Python. With that being said, the main output of choice for

the solid rocket motor tool was the thrust-time curve data file (thrustcurve.dat).

3.4.2 Star Grain Data

The other grain design used for this analysis is the star grain design. As mentioned previ-

ously, the star grain design used with our tool follows the geometry introduced by Barrere [22].

The star grain solid rocket motors will typically burn in a more neutral and even a regressive-

progressive manner depending on the other grain parameters. For the generation of the star

grain data set, one new parameter was added to the analysis, that being the propellant inner

radius taper ratio (RI TR). This taper ratio effects the parameter Ri. Table 3.2 shows the pa-

rameter variation for the star grain data set.

Table 3.2: Star Grain Design Parameter Variation

Parameter Description Min Max
Body Diameter Body diameter of the rocket (meters) 0.4 0.6
Non-dimensional throat diameter Throat Diameter/Body Diameter 0.3 0.33
Propellant Radius Parameter (Rp + f)/DBODY 0.45 0.5
Inner Grain Radius taper ratio Parameter affecting the taper of the solid grain 0.0 0.10
Propellant Grain Radius taper ratio Parameter affecting the taper of the solid grain 0.0 0.40

For the star grain data set, the number of star points was fixed to 7. The internal ballistics

tool was ran in Monte Carlo mode, using the Latin hypercube scheme, to generate 500 unique

thrust-time curves for the 7 point star grain design. Figure 3.7b shows the star grain thrust-time

curves.
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Chapter 4

Statistical Learning Background and Application

Machine learning techniques have been shown to be applicable for work similar to what is

covered in this section [27, 39]. The majority of statistical learning results covered in this

thesis will be using both traditional and advanced machine learning methods to model, predict

and analyze tapered grain solid rocket motor performance metrics. The Python programming

language was used for the analysis part of this thesis, and Jupyter Notebooks were developed

to complete these tasks. Scikit-Learn [40] was used to develop the linear regression models,

while the TensorFlow package [41] was used to develop and train the neural networks. After the

development of initial neural networks, the Keras Tuner [32] was used to find neural networks

with optimal hyper parameters.

4.1 Linear Regression

The first method used in the analysis of solid rocket motors is basic linear regression. The most

basic linear regression model can be shown below in Equation 4.1.

y = β0 + β1X + ϵ (4.1)

Equation 4.1 represents the simple linear regression model that is covered in most intro-

ductory statistics courses. The β0 represents the intercept of the linear regression model, while

the β1 represents the slope if the linear regression line. In this model shown in Equation 4.1,

ϵ represents the normally distributed noise that is assumed for the model. Equation 4.1 shows

the basic linear regression model for a response variable (Y ), with one predictor variable (X).
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For this thesis, linear regression models were developed for multiple response variables such

as maximum thrust, average thrust, burn time, and total impulse of the various solid rocket

motors. These predictor variables require more than one predictor variable to insure a good

model fit. For the CP grain data, typically four predictor variables were used and for the star

grain data five predictor variables were used. Equation 4.2 and 4.3 show the form of the linear

regression models used for CP and star grain data respectively.

ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + β̂4X4 (4.2)

ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + β̂4X4 + β̂5X5 (4.3)

The equations above are first order models. It is sometimes necessary to use higher order

models to better model the response variable of interest. The higher order models include

interaction terms that are the product of predictor variables. The second or third order model

will not only include the interaction terms, but will include the squared and cubed predictor

values. Equation 4.4 shows a second order model for the response variable when two predictor

variables are used and the interaction terms are included.

ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X1X2 + β̂4X
2
1 + β̂5X

2
2 (4.4)

Like mentioned above, for the data used for this thesis uses four or five predictor vari-

ables. So we can see from Equation 4.4 that for a higher order regression model with multiple

predictor variables the equation can become very large.

4.2 Neural Networks

Neural networks have become very popular for uses where traditional regression method fail to

accurately predict the response variable. Neural networks can also be trained to act as surrogate

models. A surrogate model is defined as a model that can predict a complex function based on

a set of training points [42]. For this thesis the neural networks will be used for two main tasks
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(1) act as a regression method to accurately predict the regression response variable and (2) act

as a surrogate model for solid rocket motor thrust-time curves.

Before continuing with the application, it is important to understand the basics of a neural

networks and how it can be applied to solve the problems encountered in this work. Neural

networks have great predictive power [43], this fact will be leveraged to use neural networks

to predict and act as a surrogate model for thrust-time curves. For this work, we will be using

multiple layer feed-forward neural networks. Due to the previously stated fact, all uses of the

word neural network will be referring to a feed forward neural network.

The neural networks first takes in an input X and develops a nonlinear function to model

the output Y [44]. We can consider the values of X to be predictors and the values of Y to be

the response, similar to what was shown in the section introducing linear regression. Figure 4.1

sourced from [44], provides a great image of a single layer neural network.

Figure 4.1: Example Feed Forward Neural Network [44]

The neural network model ends up taking the form of the nonlinear function shown below

in Equation 4.5. These equations follow the derivation shown in [44].
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f(X) = β0 +
K∑
k=1

βkAk (4.5)

where

Ak = g(wk0 +

p∑
j=1

wkjXj) (4.6)

Equation 4.6 shows what is called the activation for the neural network. In Equations 4.5

and 4.6 the Ak stands for the activation, while the g stands for the activation function. The

location of the activation within the neural network can be seen above in Figure 4.1. The

activation is made up of the activation function g(X), a nonlinear function that is defined by

the user. The activation function uses the weights and the predictor value to come up with an

activation. The number of activations and units per layer are defined by the user of the neural

network. Some common activation functions are ELU, RELU, and tanh. For more information

on activation functions see Refs. [43, 44]. The neural network shown above in Figure 4.1

shows a fairly simple neural network. In reality, the neural networks developed for this work

will be even more complicated than what is shown below in Figure 4.2. The neural network

shown below takes in six inputs, passes them though three hidden layers of fourteen units each

to predict one output. The neural networks that have been created using TensorFlow [41] for

this work often have three hidden layers, with much greater than fifteen units per layer. Some

of the neural network designs have up to one hundred units per layer.
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Figure 4.2: Example Feed Forward Neural Network

These neural networks will be trained on both the thrust-time curves produced by the 1D

internal ballistics code, but will also be trained on the output performance parameters for a

separate analysis. Once these models have been trained, they can be analyzed and then used in

the future as a model to either predict performance parameters, or act as a surrogate model to

the 1D internal ballistics code to predict and replicate thrust-time curves for SRMs. Like shown

above in Figure 4.2, these networks can get increasingly complicated. The SHAP package has

been developed and to help interpret machine learning models [31]. The following section on

the application will talk more about how the SHAP package [31] is used along with TensorFlow

[41] to better understand the effects that inputs X have on the model output Y .
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4.3 Applications

These techniques can be applied similarly to the process shown in Figure 4.3. This figure

shows the flowchart of the machine learning goals of this thesis. The goal of the thesis is to

better understand and model tapered grain solid rocket motors, seen as the blue arrow in Fig.

4.3.

Figure 4.3: Flowchart for Statistical Learning Techniques

The first goal of the thesis was to develop and validate the models used for the tapered grain

solid rocket motors, as shown in Chapters 2 and 3. Once the tool was validated, large data sets

could be generated. These data sets are explained in detail in Section 3.4 of this thesis. With

the required data sets were developed, the machine learning application could begin. There

were two main applications of machine learning for this thesis (1) to use traditional regression

techniques and neural networks to understand the effect that input parameters have on response

variables and (2) train neural networks to act as surrogate models for thrust-time curves.

The first application is using traditional regression methods to model and predict the re-

sponse variables from solid rocket motor simulation data. The response variables are maximum

thrust, average thrust, burn time, and total impulse. The regression methods used are linear re-

gression methods and neural networks trained to act as regression models for the solid rocket

motor data set. The regression models will be looking to see the effect of the inputs of choice

on the response variables of maximum thrust, average thrust, burn time, and total impulse of

the tapered grain SRMs. The linear regression models are created using Scikit-Learn [40].
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Once the models have been created, the regression coefficients and standardized regression co-

efficients can be used to better understand the model. The Seaborn package [45] is used to

generate heat maps that are helpful when visualizing the regression coefficients.

When looking at the neural network regression model, created using Tensorflow [41], one

does not have the luxury of interpretation with regression coefficients. Neural networks are

inherently complicated, especially networks with multiple hidden layers with many units per

layer. These larger, more complicated neural networks are known as deep neural networks.

Due to the fact that neural networks are harder to interpret, the SHAP package will be used to

better interpret and understand these machine learning models [31]. The SHAP package uses a

game theory approach to help understand the effects that models have on the response variables

[31]. The output of interest from the SHAP package is the SHAP value, specifically the mean

absolute SHAP value. Again, the Seaborn [45] heat map will be used to visualize the SHAP

values for the neural network regression models.

The SHAP package is commonly used by many for machine learning interpret ability. In

the aerospace community, the following works have made use of the interpretability that the

SHAP package provides [46, 47, 48]. Researchers have also used the SHAP package for work

in traffic engineering [49], structural engineering [50, 51], along with numerous other machine

learning applications [52, 53, 54, 55, 56, 57, 58].

The second application of machine learning for this thesis is the development of surrogate

models used to predict thrust-time curves. Neural networks developed and trained using Ten-

sorFlow [41] is used to create these surrogate models. Surrogate models have been applied for

numerous aerospace application such as the following works [59, 60, 61, 62, 63, 64, 65]. Car-

penter and Hartfield have used similar methods to predict thrust-time curves for straight SRM

grains [66] and similar work has been published for tapered grains [18]. This work extends the

analysis of [18] to a more advanced data set, improving the capabilities of the modeling and

simulation effort.

For the surrogate modeling effort, the data is split into training and testing data. This

testing and training split is defined by the user, typically it is beneficial to train on more data

than you are testing with. Typically for this work, the training percentage is somewhere around
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70-90 percent with the testing data being around 30-10 percent. The data set that is used for

the surrogate modeling comes into effect as well. As mentioned in [42] the surrogate model,

or neural network in this case, is essentially just fitting the data provided. Keep in mind that

the surrogate model is only going to be as good as the data it is trained with, the model is not

expected to accurately predict far outside the bounds of the data trained on.

To apply the neural networks to the data set to act as a surrogate model, we need to first

define the inputs and outputs of the surrogate model. The inputs and outputs of a surrogate

model can be thought of as the predictor and response variables from a linear regression model.

For the thrust-time curves the inputs to the neural network surrogate model will be the time,

and any of the input variables that were varied using the Latin Hypercube distribution. For

the data sets shown in Section 3.4, the inputs are DBDODY, RPVAR, RP TR, DENSITY and

THROAT for the CP grain and for the star grain the parameter RI TR is included with that list.

The output of the model is the thrust, keep in mind that this output of thrust is at each individual

time step.

To check the accuracy and capabilities of the surrogate model, the testing data or the hold-

out data from Figure 4.3 is used. The thrust-time curves can be plotted together to see the

predicted curve vs. the true thrust-time curve. In this case, the truth data is the data that comes

from the 1D internal ballistics code. Just visualizing the thrust-time curves is not enough to

show the ability of the model, we will also look at the residuals in thrust to see how well the

neural network does at modeling the thrust-time curves. The R2 is not used for this analysis

due to the fact that the surrogate models are fitting a large number of data points, and typically

haveR2 values greater than 0.98. For this reason theR2 is not a very informative metric for this

surrogate modeling task. Plots of the residuals in thrust can be very informative when trying to

better understand the performance of the model. For these plots, the residual is simply defined

as shown in Equation 4.7.

r = ypred − ytruth (4.7)
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In Equation 4.7, shown above, ypred represents the thrust predicted from the neural network

surrogate model, while ytruth represents the thrust values from the thrust curves generated by

the 1D internal ballistics code. An example plot for residuals should look like what is seen in

Figure 4.4 residual.

Figure 4.4: Example Residual Plot [67]

Figure 4.4 shows what an example of residuals. The residuals of the response should be

centered around zero. With a perfect predictor all of the residuals would lie on the horizontal

line at zero. Obviously, there is going to be error in the model that leads to the residuals being

greater than zero. Nonetheless, we should still want to see the residuals centered around the

horizontal line at zero.

In an effort to improve the initial surrogate models, the Keras Tuner [32] will also be used

for the surrogate modeling task. The Keras Tuner develops and trains more optimal neural

network designs given the input data. After the initial models have been developed for the
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surrogate modeling task, the Keras Tuner will be used to produce models that will be compared

against the original models. Now that we have discussed and explained the statistical learning

techniques to be used in this paper, we can now show and explain the results in the next chapter.
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Chapter 5

Statistical Learning Results

To begin the machine learning analysis, large databases of data were generated for this project.

Section 3.4 provides a detailed overview of the data that is used for this thesis. It is important

to note that the statistical learning results will be a result of the data that is chosen for the

project. To develop different results, it is important to consider what data the statistical learning

techniques have been applied to. The data that we will be looking at for this thesis is the

tapered star grain SRM data that was explained in Section 3.4. Like previously mentioned, the

statistical learning goals of this thesis are to (1) perform a regression analysis on performance

metrics using linear regression techniques and neural networks, and (2) train neural networks

to act as surrogate models for the 1D internal ballistics code. The SHAP package [31] will be

used to help interpret these machine learning models developed for the regression task.

5.1 Regression Analysis and SHAP

The first results that will be shown as part of this thesis is the regression analysis section and

applications of the SHAP package. This is a regression analysis for the response variables of

maximum thrust, average thrust, burn time, and total impulse. The results for the CP grain

SRM data will be shown first, followed by the star grain results.

5.1.1 CP Grain Results

The first section of results for this thesis will be on the regression analysis and the use of SHAP

[31] to help interpret the regression models for the CP grain SRM data. The regression model
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will be trying to predict the performance values of maximum thrust, average thrust, burn time,

and total impulse. The first results we will look at are the first order regression results. Table

5.1 shows the R2 scores for the models developed on the CP grain data set. Table 5.1 shows

that for each of these models, the R2 scores are all high. Of course the R2 improves from first

order to second, and then from second order to the neural network. There are circumstances

when the first and second order models may not perform this well, these upcoming sections

will discuss the results for each model as well as explaining what is gained with each model.

Table 5.1: Circular Perforated Grain Model Summary

Model Type R2

First Order 0.981
Second Order 0.993
Neural Network 0.997

First Order Regression

Like mentioned previously, the response variables of choice for this work are the maximum

thrust, average thrust, burn time, and total impulse. The first order linear regression model was

developed in Scikit-Learn [40]. The output of the linear regression function developed for this

work is the intercept, regression coefficients, and standardized regression coefficients. For the

regression modeling we will focus on showing the standardized regression coefficients, these

are free of units and thus easier to interpret. Figure 5.1 shows a heat map of the standardized

regression coefficients for this first order model.
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Figure 5.1: 1st Order Standardized Regression Coefficients

Looking at Figure 5.1, we can see that the body diameter (DBODY) has the largest effect

on the response variables of maximum thrust, average thrust, burn time, and total impulse for

these tapered SRMs. The parameter DBODY also positively effects the response variables for

this data set. Looking at Figure 5.1 we can also see the effects of the other predictor variables,

on the response variables for this data set. The propellant radius taper ratio (RP TR) has a large

negative effect on the response values for the data set. The parameter THROAT has the largest

impact on the model when looking at maximum thrust, the impact is negative and shows that

the increase in the THROAT parameter leads to a decrease in maximum thrust. The THROAT

parameter also has a positive impact on the BURN TIME, this shows that the increase in the

throat area leads to longer burns. Again, this this makes physical sense, a larger throat area will

lead to lesser chamber pressures (on average) and that leads to lesser burn rates. The predictor

variable RPVAR, the parameter controlling the size of Rp has a negative effect on the four
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response variables. This shows that larger Rp can lead to smaller thrust, total impulse, and

burn rate. The larger Rp means there is typically less propellant to burn, so assuming constant

inputs, it is expected to see the trend shown above.

After looking at the standardized regression coefficients for the first model, shown in Fig-

ure 5.1 we can check plots to see how well the data is being fit. Figure 5.2 shows the predicted

vs. actual plots for the first order CP grain regression model.

(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.2: Predicted vs. Actual for CP Grain First Order Linear Regression Model

Looking at Figure 5.2 there is some curvature on the total impulse plot. The fits for the

thrusts and for the burn time could also be better. We can now move on to a second order
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regression model, the second order model will include interaction terms giving us a better

understanding of the physics taking place. The second order model should also improve the

predicted vs. actual plots shown in Figure 5.2.

Second Order Regression

Now that we have shown the results for the first order regression, we will look to improve the

model by using second order regression. The second order regression will be used to develop

models for maximum thrust, average thrust, burn time, and total impulse for solid rocket mo-

tors. The full regression equations will not be written out due to the length, but the regression

coefficients will be shown below. Again, like when we looked at the first order model we

will again look at the standardized regression coefficients. Figure 5.3 shows the standardized

regression coefficients for the second order regression model.

Figure 5.3: 2nd Order Standardized Regression Coefficients
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Looking at Figure 5.3 we can see the standardized regression coefficients for the second

order model. The output of maximum thrust has been sorted in order of importance, this may

throw off the ordering for the magnitude of the impact for other response variables.

First looking a the maximum thrust of the CP grain SRM. A new predictor variable com-

bination has shown to be the most important in affecting the model. The combination of DEN-

SITY and DBODY has the largest impact on the maximum thrust. That combination is followed

by the body diameter and the RP TR on the impact of the model. One thing to note is that the

DBODY now has a negative impact on the maximum thrust of the SRM for this second order

model. For the other three response variables, the impact is still positive when considering

DBODY. The predictor variable that has the largest impact on the average thrust is the RPVAR

parameter. The combination of DENSITY and RP TR has the largest impact on the burn time

of the SRM, and the body diameter (DBODY) has the largest effect on the total impulse.

Figure 5.3 gives us insight about the model that was unavailable when just considering

the first order regression model. The second order model showed the important interactions

between density and geometric parameters that have an effect on the SRM performance. Now

that we have shown the second order regression model we can move on to the final model, a

neural network model. Figure 5.4 shows the predicted vs. actual plots for the second order

regression data. We can see that some of the curvature shown in Figure 5.2 has been eliminated

with the second order model shown in 5.4. To try and improve the model fit even more, a neural

network will be trained as part of this regression analysis.

Neural Network

Now that we have looked at regression models, in an effort to develop a better model, we can

show the results of the neural network that was trained on the CP grain results. Table 5.2 shows

the neural network architecture used in TensorFlow to create this model.

Table 5.2: Circular Perforated Grain Neural Network Architecture

Design Parameter Value
Hidden Layers 2
Units Per Layer 100
Epochs trained 5000
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(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.4: Predicted vs. Actual for CP Grain Second Order Linear Regression Model

Using the neural network architecture proposed in Table 5.2 a model for the CP grain

response variables was developed and trained. The activation function used was Exponential

Linear unit, or ELU. The network was trained by minimizing the validation loss, and the loss

metric was the mean absolute percentage error (MAPE). The deep neural network is often

times though of as a so called black-box, for this reason SHAP values [31] are helpful when

interpreting these machine learning models. Figure 5.5 shows the SHAP values for the CP

grain neural network model.
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Figure 5.5: CP Grain SHAP Heatmap

For the neural network architecture, we have to rely of the SHAP values as a way to inter-

pret the machine learning model. The linear regression models benefit from having standard-

ized regression coefficients that can easily be interpreted to show the effect that the predictor

variables have on the response.

Looking at Figure 5.5, we can see that across the board that the parameter DBODY has the

largest effect on the outputs of maximum thrust, average thrust, burn time, and total impulse.

This makes physical sense, we expect that rockets with larger diameters to produce more thrust,

burn for longer, and as a result have larger total impulse. When looking at most of the response

variables, the RPVAR has a low impact, but for the burn time the RPVAR plays a large role.

This makes sense when considering the grain design, the larger the bore through the center of

the grain is, the shorter burn time can be expected.
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(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.6: Predicted vs. Actual for CP Grain Neural Network Model

Figure 5.6 shows the predicted vs. actual plots for the CP grain neural network model. The

predicted vs. actual plots are best when looking at the neural network compared with the linear

regression model. The results of the CP grain analysis show that the neural network model

produces the best fit while also having a slightly better R2 score. For this CP grain regression

analysis, the neural network is the top performer.
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5.1.2 Star Grain Results

Now that the regression analysis results have been shown for the CP grain data, the results

from the star data can be shown in the following sections. A first and second order model

will be developed, and finally a neural network will be trained to act as a regression model for

maximum thrust, average thrust, burn time and total impulse. Table 5.3 shows the R2 scores

for each of the models developed in this section. The R2 improves from first to second order,

and then from the second order model to the neural network model. Regardless, the R2 scores

show that each of these three models predict the variability in the data set well. These following

sections will focus on explaining what can be gained with each model, and comparing results

between the models.

Table 5.3: Star Grain Model Summary

Model Type R2

First Order 0.979
Second Order 0.981
Neural Network 0.996

First Order Regression

The first model that is considered for the modeling of the star grain data set is a first order

regression model for the response variables of maximum thrust, average thrust, burn time, and

total impulse. The star grain results section will follow the same procedure as shown in the CP

grain results section. For the star grain data set, a new predictor variable, RI TR, was included

in the data set. Figure 5.7 shows the first order standardized regression coefficients for this data

set.

Looking at Figure 5.7, the standardized regression coefficients are shown. Like was shown

for the CP grain data set, the DBODY has the largest effect on the response variables for this

data set. The tapering parameters RP TR and RI TR play a smaller role in the effects that

have on the response variables. The density has the largest effect on the maximum thrust when

comparing it with other response variables. Now that the first order regression model has been

developed and shown, a second order model was developed to capture any interaction effects
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Figure 5.7: First Order Standardized Regression Coefficients

not seen in the first order model. Figure 5.8 shows the predicted vs. actual plots for the first

order star grain data. Looking at Figure 5.8 some curvature can be seen for the total impulse,

average thrust, and even the slightly for the maximum thrust. The burn time does not seem to

show any curvature, but the fit is not as tight. To try and attempt to remove the curvature from

the model, a second order linear regression model will be used.
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(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.8: Predicted vs. Actual for Star Grain First Order Linear Regression Model

Second Order Regression

Like mentioned above, the second model shown for the star grain data was a second order

linear regression model. The second order model includes interaction terms that are not seen in

the first order model. Figure 5.9 shows the standardized regression coefficients for the second

order model.

Looking at Figure 5.9, the predictor variables are sorted as their order of importance for

maximum thrust. Looking at the first column of the heat map, the most important predictor for
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Figure 5.9: First Order Standardized Regression Coefficients

the response is the interaction between density and body diameter. This interaction could not

be seen with the first order model alone. The interaction between propellant density and the

body diameter is followed by DBODY and THROAT for the maximum thrust. When looking

at the average thrust, the important parameters to consider are the interaction between density

and DBODY, the THROAT parameter, and the interactions of density with both RPVAR and

THROAT. These responses would have been unseen if only investigating the first order model.

The star grain results show the THROAT having a larger impact when compared to the CP

grain results shown in Figure 5.3. This seems to show that for a similar sized body rocket, the

throat area (or area ratio in this case) seems to be more sensitive for a star grain when compared

to a CP grain. Figure 5.10 shows the results of the predicted vs. actual for the second order

star grain regression model. The second order model still shows some curvature for the total

impulse and the average thrust. To look at improving these results, a neural network model
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is trained to solve this regression problem. The neural network model is shown in the next

section.

(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.10: Predicted vs. Actual for Star Grain Second Order Linear Regression Model

Neural Network

The final model that we will consider for the regression analysis is a neural network model. A

neural network was developed and trained in TensorFlow [41] to predict the response variables,

given the predictor variables. Table 5.4 shows the architecture that was used for the neural

network model.

68



Table 5.4: Star Grain Model Architecture

Design Parameter Value
Hidden Layers 2
Units Per Layer 50
Epochs trained 5000

Looking at Table 5.4 we can see that this network has been developed with two hidden

layers, with 50 units per layer. Since this network was a little smaller it was trained for 5000

epochs. The ELU activation function was used for both layers, and the mean squared error was

the loss metric to be minimized. The SHAP values for this neural network model can be see

below in Figure 5.11.

Figure 5.11: Star Grain SHAP Heatmap

Figure 5.11 shows the SHAP values for the star grain data set generated for this work. Like

shown for the earlier regression models, the predictor variable DBODY has the largest impact
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on the response values of maximum thrust, average thrust, burn time, and total impulse. The

color bar on the right shows the impact that the predictors have on the model. When looking

at the maximum thrust, the DBODY is followed by DENSITY and RP TR in terms of order of

importance. When looking at the average thrust, the DBODY is followed by the DENSITY and

RPVAR in order if model importance. The burn time shares the same order of importance as

with the maximum thrust. Finally, when investigating the total impulse of the star grain SRM

designs, it is seen that following the DBODY, RP TR and RPVAR have the largest impact on

the total impulse. This gives us some inclination of the effect that tapering has on the response

variables for solid rocket motor simulation.

Figure 5.12 shows the predicted vs. actual plots for the star grain regression model. Look-

ing at the figures below, the curvature has been eliminated up with the neural network model.

The predicted vs. actual plot for burn time still shows a bit of a spread, but we can still consider

this a good prediction.
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(a) Maximum Thrust (lbf) (b) Average Thrust (lbf)

(c) Burn Time (sec) (d) Total Impulse (lbf − sec)

Figure 5.12: Predicted vs. Actual for Star Grain Neural Network Model

5.2 Surrogate Modeling of Thrust-Time Curves

Now that the results of the regression analysis have been shown for this work. We can move

on to the use of neural networks as surrogate models for thrust-time curves. TensorFlow [41] is

used to develop and train neural networks on the output of the 1D SRM internal ballistics code.

The results of this section follows the statistical learning methods shown in [18], with changes

made to the internal ballistics solver and the resultant data set.
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5.2.1 CP Grain Results

Now that we have discussed the first task of the regression analysis, we can move on to the sec-

ond task of developing the surrogate models for the SRM thrust-time curves. Neural networks

for exclusively used for the task of developing and training these models. Table 5.5 shows the

neural network architecture that was used to develop the tapered CP grain surrogate model.

This neural network was trained my minimizing the validation loss, and the loss metric used

here was the mean squared error (MSE). The mean squared error was chosen for this neural

network, since the MAPE can have issues with convergence when data values are near zero.

Some of the thrust-time curve data points can take on small values, so the MSE was chosen as

the loss metric for this model. The exponential linear unit activation was used for this neural

network architecture.

Table 5.5: Circular Perforated Grain Surrogate Model Architecture

Design Parameter Value
Hidden Layers 3
Units Per Layer 100
Epochs trained 1000

To train the neural network model, training data was set aside to split the data set into

test data and training data. One-hundred thrust-time curves were held out of the training set

to act as testing data. Because the model was trying to predict the full thrust-time curves, it is

important that the time series data was kept in the correct order.

The inputs to the neural network model were the SRM code inputs that had been varied

using the Latin hypercube scheme, along with the time vector at a uniform time step. The

outputs that the network was trained on was the thrust at resultant time step. Once the model

was trained using TensorFlow, the testing data set could be used to see how well the model

performed. Figures 5.13 and 5.14 show some of the thrust-time curves that were used to test

the neural network model. Figures 5.13 and 5.14 show the results of the model when predicting

inputs from the testing data. These curves shown below are part of the testing data, and were

not trained on when developing the model.
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Figure 5.13: CP Grain SRM Modeling Results

Figure 5.14: CP Grain SRM Modeling Results
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Visually inspecting Figures 5.13 and 5.14 it seem that a good surrogate model has been

generated. Inspecting the R2 scores of the testing data shows that nearly each of these thrust-

time curves has an R2 greater than 0.98. Just inspecting the models visually that is not enough

to say that this is a good surrogate model. Figure 5.15 shows the residuals in thrust for this CP

grain surrogate model. The residual plot shows in greater detail the error between our model

and the truth data.

Figure 5.15: Residual Plot for CP grain data

Looking at Figure 5.15, we can see that the majority of the residuals in thrust seem to

lie near zero. There are a few outliers in thrust, these are likely due to temporal shifts when

predicting the thrust-time curves. A small temporal shift in the predicted curve could lead to

large residuals in thrust due to the shape of the thrust-time curve, especially near the peak.

Regardless, we are still able to capture the physics of the tapered grain CP SRM data with

this surrogate model. Figure 5.16 shows an example prediction that could have lead to larger

residuals for the CP grain surrogate model. Inspecting the end of the prediction shown in

Figure 5.16, one can see that there is a slight mismatch between the neural network model and

the truth curve. Regardless, the physics of the thrust-time profile is still captured with this CP

grain surrogate model.
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Figure 5.16: CP Grain SRM Modeling Result with larger residual

After developing this first surrogate model, the Keras Tuner [32] was used to find optimal

hyper-parameters for another CP grain surrogate model. The Keras Tuner [32] can be used with

TensorFlow [41] to find optimal hyper-parameters given a design space. Table 5.6 shows the

hyper-parameters developed for this model when using the Keras Tuner.

Table 5.6: Tuned Circular Perforated Grain Surrogate Model Architecture

Design Parameter Value
Hidden Layers 3
Units Per Layer 1 45
Units Per Layer 2 35
Units Per Layer 3 5
Epochs Trained 1000

To develop this model the Keras Tuner was used with the random search algorithm to find

the optimal hyper-parameters for this model. The random search algorithm tested 30 unique

neural network designs while monitoring the validation loss. The loss function used for the

network was the mean squared error (MSE). The networks developed from the random search

algorithm were trained on for 100 epochs to find the optimal hyper-parameters for the given

design space. The design shown in Table 5.6 shows the results of the Keras Tuner random

search algorithm. The activation function for the first two layers was exponential linear unit

(ELU), while the activaton function used for the thrid layer was the rectified linear unit (RELU).

Figure 5.17 and 5.18 shows the modeling results when the Keras Tuner was used on the CP

grain data set. Figures 5.17 and 5.18 show the results of the model when predicting inputs from
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the testing data. These curves shown below are part of the testing data, and were not trained on

when developing the model.

Figure 5.17: CP Grain SRM Modeling Results - Keras Tuner

Looking at Figure 5.17 and 5.18 above, the Keras Tuner [32] model seems to adequately

model the thrust-time curves generated for the tapered CP grain SRM design. Like previously

mentioned, just showing the images of the fitted thrust-time curves for a limited number of

cases is not adequate to show that the model is good. To get a better understanding of the

performance of the neural network model will look at the residual plot shown in Figure 5.19.

Figure 5.19 shows the residuals in thrust for the Keras Tuner network trained on the tapered

CP grain data. Looking above most of the residuals in thrust lie near zero. There are a few data

points that are outliers, and these are likely due to a temporal shift in the prediction of the

thrust-time curve. Figure 5.20 shows an thrust-time curve prediction that could have lead to a

larger residuals in thrust for both a tuned and untuned model.

Looking at Figure 5.20, near the end of the burn it can be seen that the neural network

prediction stops early. This could cause large residuals due to the temporal shift in the truth
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Figure 5.18: CP Grain SRM Modeling Results - Keras Tuner

Figure 5.19: Residual Plot for CP grain data - Keras Tuner

data compared with the prediction from the neural network model. Even with the results of the

residuals shown in Figure 5.19 this model does well predicting the thrust-time curves for the

CP grain data.

Comparing Figure 5.19 with Figure 5.15 we can see the residuals for the tuned model

compared with the first model developed. The results shown in the first neural network seem

to be favorable when comparing Figures 5.19 and 5.15. This result is not entirely surprising.
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Figure 5.20: CP Grain SRM Modeling Results - Keras Tuner with larger residual

When using the Keras Tuner, the model will only find the local optimum. What that means is

based on the Tuner constraints, it will find the best model. For the CP grain data set, the better

model may be the model trained with 3 layers and 100 units per layer. Regardless, both models

are good choices for predicting CP grain thrust-time curves. Now that the models developed for

the CP grain data set have been shown, the star grain surrogate modeling results can be shown

in the next section.

5.2.2 Star Grain Results

Now that the results have been shown for the CP grain SRM data, we will move on by now

looking at tapered star grain designs. These star grain designs follow the data introduced in

Section 3.4. To accurately model and predict these thrust-time curves, a neural network was

developed and trained using TensorFlow [41]. The training-test data split was 80-20. 80 percent

of the data went to training, while 20 percent went to testing. For this data set, that meant the

network was trained with 400 thrust curves, while 100 curves were set aside for testing. Table

5.7 shows the architecture of the neural network developed to model these star grain thrust-time

curves.

Table 5.7: Star Grain Surrogate Model Architecture

Design Parameter Value
Hidden Layers 3
Units Per Layer 100
Epochs trained 1000
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Table 5.7 shows that the neural network model has 3 hidden layers, with 100 units per

layer. The activation function used for each layer was ELU, or exponential linear unit. The

neural network was trained by trying to minimize the mean squared error (MSE). After this

model was trained, the testing data could be used to check the performance of the neural net-

work model. Figures 5.21 and 5.22 show some of the results of the model at predicting these

thrust-time curves.

Figure 5.21: Star Grain SRM Modeling Results
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Figure 5.22: Star Grain SRM Modeling Results

Visually inspecting the results shown above in Figures 5.21 and 5.22 we seem to match

the thrust-time profiles for this star grain data set quite well. Just showing a sample of results

does not suffice to say a good model has been created. To further investigate the performance

of the model, the residual will be plotted for the thrust. Figure 5.23 shows the residual plot for

the star grain data.

Figure 5.23: Star Grain Residual Plot
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Looking at Figure 5.23 it is seen that most of the residuals lie near zero, or are centered

around zero. There are a few outliers, but these points only represent single points along the

thrust-time curve. This shows us that very few points are off, and if so they should not have a

large effect on the overall thrust-time curve prediction. Slight temporal shifts in the predicted

vs. actual thrust-time profile can lead to these larger residuals. Figure 5.24 show some of the

star grain predictions that could have lead to these larger residuals shown in Figure 5.23. In-

specting the ends of the thrust-time curves shown in Figure 5.24, the neural network prediction

seems to stop early. This difference in the actual vs. predicted curves leads to larger residuals

shown in Figure 5.23. Regardless, these curves with larger residuals still predict the majority

of the star grain thrust-time profile.

Figure 5.24: Star Grain SRM Modeling Results with larger residuals

After the development of the star grain neural network model, the Keras Tuner [32] was

again used to find optimal hyper parameters for the star grain data set. Using the random search

algorithm within Keras Tuner, 30 unique network deigns were trained until an optimal design

was found. The objective function used was the validation loss. Each of these neural networks
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was trained for 200 epochs to figure out the optimal combination of hyper-parameters. After

the optimal network design was found, that network was trained for longer to develop the

thrust-time curve model. Table 5.8 shows the resultant neural network design for the star grain

model.

Table 5.8: Tuned Star Grain Surrogate Model Architecture

Design Parameter Value
Hidden Layers 3
Units Per Layer 1 35
Units Per Layer 2 35
Units Per Layer 3 25
Epochs Trained 1000

Table 5.8 shows the results of the Keras Tuner for the star grain data set. The model has

three layers, with 35, 35, and 25 units per layer. The first two layers use the ELU activation

function, while the third layer used the RELU activation function. This model was trained my

minimizing the mean squared error (MSE). The results of this network are shown below in

Figures 5.25 and 5.26.

Figure 5.25: Star Grain SRM Modeling Results - Keras Tuner
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Figure 5.26: Star Grain SRM Modeling Results - Keras Tuner

Like seen before, these results match the truth quite well. The Keras Tuner neural network

provided a simpler network design that was able to still accurately predict the thrust-time curves

for this star grain design. Figure 5.27 shows the residual plot of thrust to help understand the

performance of the model.

Figure 5.27: Star Grain Residual Plot - Keras Tuner

Looking at Figure 5.27 we can see the residuals for thrust for the Keras Tuner. Again,

the residuals lie along zero for the thrust. This figure shows that the neural network does well
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predicting the thrust-time curves. The residuals shown in Figure 5.27 seem to be similar to

what was shown in Figure 5.23. Figure 5.28 shows some examples of the thrust-time curves

with larger residuals.

Figure 5.28: Star Grain SRM Modeling Results - Keras Tuner with larger residuals

Figure 5.28 shows some of the thrust-time results that contributed to the larger residuals

in thrust shown in Figure 5.27. Inspecting the end of these thrust-time curves, a difference in

the truth and neural network prediction can be seen. The neural network solution seems to stop

predicting early. This difference could lead to larger residuals when calculated. Regardless,

these predictions still capture the physics of the thrust-time curves, even with these differences

the model still performs well.
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Chapter 6

Conclusion and Recommendations

The analytical methods developed for this work provide a new capability in modeling tapered

grain solid rocket motors. New analytical methods and burn phases have been developed as the

SRM modeling and simulation part of this thesis. The new analytical methods and burn phases

allow for the modeling of tapered grain solid rocket motors that was not capable previously.

These methods have been developed for CP and star grain designs. The analytical methods

developed as part of this work were integrated into a 1D internal ballistics code that uses 1D

flow assumptions and uniform burn rate assumptions to produce conceptual design level thrust-

time curves. With the new modeling and simulation capabilities, the internal ballistics code can

now model both straight and tapered CP and star solid rocket motors.

The results of this thesis show how machine learning can be used to analyze tapered grain

solid rocket motors from a performance standpoint. Using machine learning techniques, the

performance metrics of solid rocket motors can be successfully modeled and understood. Re-

gression models were created for both the CP grain and star grain data sets. There regression

models were able to accurately predict the maximum thrust, average thrust, total impulse, and

burn time for these SRM deigns. After the regression analysis, neural networks were trained to

act as surrogate models for the full thrust-time profile. The analysis used here could be applied

to more accurate solid rocket motor data sets. If raw test data was available for large numbers

of solid rocket motor designs, it is possible the machine learning applications used in this thesis

could be used on the data. Due to the requirement of a larger data set, simulation results are

typically more useful.
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Future work in the analytical methods could include the implementation of the taper-

ing methodology to more advanced grain designs such as short spoke and long spoke wagon

wheels. The similar methodology could be applied to the wagon wheel geometries proposed

by Hartfield et al. [16, 17] to be able to model tapered wagon wheel geometries. Further

work could be done to ensure the efficiency and the accuracy of the 1D internal ballistics code

that was generated for this work. This new tapered geometry could be used to generate rocket

classes that could then be used to create a classification problem [68, 69, 70] for new solid

rocket motor geometries. Machine learning techniques, similar to what is shown in this the-

sis could be used to solve this classification problem. More research into advanced machine

learning algorithms and methods of interpretation could be more beneficial for similar research

problems.
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