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Abstract

In smart manufacturing, data management systems are built with a multi-layer archi-

tecture, in which the most significant layers are the edge and cloud layers. The edge layer,

not surprisingly, renders support to data analysis that genuinely demands low latency. Cloud

platforms store vast amounts of data while performing extensive computations such as ma-

chine learning and big data analysis. This type of data management system has a limitation

rooted in the fact that all data ought to be transferred from the equipment layer to the edge

layer in order to perform thorough data analyses. Even worse, data transferring adds delays

to a computation process in smart manufacturing. In the first part of the dissertation stud-

ies, we investigate an offloading strategy to shift a selection of computation tasks toward

the equipment layer. Our computation offloading mechanism opts for smart manufactur-

ing tasks that are not only light weighted but also do not require saving or archiving at the

edge/cloud. We demonstrate that an edge layer is able to judiciously offload computing tasks

to an equipment layer, thereby curtailing latency and slashing the amount of transferred data

during smart manufacturing. Our experimental results confirm that the proposed offloading

strategy offers the capability for data analysis computing in real-time at the equipment level

- an array of smart devices are slated to speed up the data analysis process in semiconductor

manufacturing. With collected data, we apply the empirical results as training and testing

data to construct a machine learning model that recommends whether it is advantageous to

offload computation from the edge layer to the equipment layer based on the current system

status.

In the second part of the dissertation, we elaborate on a novel scheduler – a schedul-

ing algorithm that allocates edge computing resources with awareness of workload at the
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equipment layer. Our edge scheduling algorithm is adroit at determining the most appro-

priate scenarios to offload computing tasks from edge to equipment, thereby maximizing

throughput while meeting the priority requirements of the tasks. A limitation of current

research on edge scheduling is that available resources from the equipment layer were not

used to achieve maximum throughput. The main difference between our scheduling algo-

rithm and the other edge scheduling techniques is that we use available resources at the

equipment layer. Other State-of-the-Art scheduler algorithms are not considering using re-

sources at the equipment level. By using additional resources at the equipment level, our

experimental results shows that the total computation time has been shortened by 27.75%

and the throughput has increased by 38.45% comparing to Hybrid Computing Solution or

HCS scheduling performance, a State-of-the-Art scheduling algorithm.

Moreover, to enable offloading computation tasks from the edge layer to the equipment

layer, the edge layer ought to be able to assign specific computation tasks to the equipment.

In semiconductor manufacturing, the host computer located at the edge layer communicates

to the equipment through SECS/GEM communication protocol. As the last piece in this

dissertation, we design an advanced protocol on the SECS/GEM interface to facilitate the

transfer of computational tasks from the edge to the equipment. Current research on Equip-

ment level Fault Detection and Classification (FDC) suggested to build a software module

at the equipment layer to perform computation. The limitation of this technique is that it

requires software modification every time the computation logic changes. Furthermore, this

technique is not flexible to allow the equipment to perform any other computation tasks be-

sides FDC. With the new protocol in place, the host has the capability to dynamically assign

data analysis tasks to the equipment. Additionally, the protocol also offers a mechanism for

the equipment to report back the analysis results to the host.
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Chapter 1

Introduction

1.1 Background

With the fast development of information technology, cloud computing, machine learn-

ing, natural language processing, arti�cial intelligence, modern production and manufactur-

ing of the semiconductor industry have relied on smart manufacturing systems to achieve

high productivity, cost reduction, e�ciency in production control, and early detection of

production issues [13, 26, 29, 30, 34]. In semiconductor manufacturing, monitoring and

analyzing process data is critical and indispensable to bolster productivity [32, 69]. Data

analysis techniques such as machine learning, deep learning, statistical process control (SPC),

fault detection and classi�cation (FDC), and advanced process control (APC) are deployed

for the purpose of defect prediction, maintenance recommendations, and resource alloca-

tion [4, 8, 11, 22, 41, 59].

In the process of semiconductor manufacturing, production data from semiconductor

equipment is collected and transferred to an edge layer and a cloud layer for further analysis

and storage. Real-time computing in smart manufacturing is performed at the edge layer

[21, 58]. If production data ought to be stored or archived, data will be transferred and

inserted into cloud databases [38, 78].

Most data management systems for manufacturing are built with two computing layers:

the cloud layer and edge layer [35, 40, 61]. The cloud layer, in a growing number of cases, are

applied to store a large amount of data and to support complicated computing tasks that

require abundant computing resources. These computing tasks include, but are not limited

to, arti�cial intelligence algorithms, big data applications, machine learning algorithms, and

deep learning networks [5, 12, 19, 49]. The cloud layer, with its rich resources, can be
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bene�cial for big data tasks as well as long-term data storage [53, 23, 14]. The edge platform,

which is closer to the devices and equipment, is used for low-latency computing tasks that

are critical for the early detection of fault processes [65]. One example is using the edge

platform to perform and orchestrate data analyses. A holistic combination of cloud and

edge computing in data management systems helps to curb the latency in real-time data

analysis computation. In a wide range of these systems, data analysis computing is pushed

from the cloud level to the edge level with the hope to reduce the latency of data transferring

and analysis computing [25, 33, 45, 46, 67].

Figure 1.1: An Example of Computing Time in Semiconductor Processing

1.2 Motivations and Research

1.2.1 Why this dissertation research is important?

We can see from Fig. 1.1 that data analytic computing tasks are frequently and repeat-

edly performed during semiconductor manufacturing. The computing tasks may be simple

tasks such as process data monitoring, statistical process control, resource allocation, or

complex algorithms for early failure prediction and other purposes [16, 32]. Data analy-

sis in smart manufacturing, especially in semiconductor manufacturing, is vital to achieve

high product quality [2, 30]. Reducing data analysis computation latency is desirable for

increasing production throughput [9, 45].
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As chip size is reduced to the single-digit nanometer level, the amount of processing data

that is needed for analysis signi�cantly increases [7, 17]. Performing data analysis at the

edge layer or the cloud layer requires a vast amount of data to be transferred from equipment

[65, 66]. Accordingly, the latency of data analysis and the computing process is enlarged.

Network bandwidth, of course, is likely to be overloaded and saturated by delivering too much

data from thousands of equipment in the factory to the edge layer [45, 67]. Furthermore,

handling all types of computing tasks at the edge layer inevitably faces the grand challenge

of system complexity: it is obliged to perform data management and analysis on all di�erent

data types from heterogeneous equipment types in semiconductor processing [47, 60]. These

problems motivate us to propose an o�oading method, for smart manufacturing in the

semiconductor industry, to judiciously shift a selection of computing tasks from the edge

layer to the equipment layer.

1.2.2 Dissertation Statement

The primary goal of this dissertation study is to reduce the latency of computation

tasks in semiconductor smart manufacturing environment when the amount of data increases

from 2000 data points to 50000 data points per wafer. We aim to solve this issue with

three main tasks: analyzing the performance of o�oading computation tasks from the edge

layer to the equipment layer, designing a scheduling algorithm to support o�oading, and

proposing a protocol to provide a mechanism for dynamically assigning computation tasks

to the equipment.

1.2.3 Research Questions

To achieve the aforementioned overarching goal, we will address the four following in-

triguing research questions through the dissertation.

ˆ Research Question 1: What is the key performance discrepancy between edge-based

computing and equipment-based computing?
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ˆ Research Question 2: How to determine the tasks that should be o�oaded from the

edge layer to the equipment layer to enhance the performance of smart manufacturing

systems?

ˆ Research Question 3: How to incorporate task-o�oading into edge resource scheduling?

ˆ Research Question 4: How to apply o�oading tasks to semiconductor manufacturing

environments?

1.3 Bene�ts and Contributions

In this dissertation, we propose a judicious method of selecting computing tasks that

can be o�oaded to the equipment level to achieve the lowest computing latency for smart

manufacturing. With this approach in place, some computing tasks are performed at the

edge level while the other selected tasks are running at the equipment layer where the data

is originated.

Our empirical study in the arena of smart manufacturing in the semiconductor industry

demonstrates three-fold strengths of our computation o�oading mechanism. An immediate

bene�t of our new design is a reduction in the overhead of handling data for computing

tasks at the edge level, including storing data into temporary storage at the edge for com-

putation. Another advantage is curbing computing latency for smart manufacturing tasks:

our o�oading mechanism enables smart manufacturing systems to detect defective materials

early in a manufacturing process. As a third good point, our o�oading mechanism plays a

vital role in smart manufacturing because each piece of equipment produces a di�erent type

of data, including the format of data and the meaning of data [66]. Our o�oading method

reduces the development time to build a data management system that needs to handle a

wide variety of data types and all computing tasks at the edge layer. The aforementioned

new bene�ts o�ered by our o�oading mechanism are tabulated below.
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ˆ Bene�t 1. Reducing the overhead of handling data for computing tasks at the edge

level.

ˆ Bene�t 2. Curbing computing latency for smart manufacturing tasks.

ˆ Bene�t 3. Shortening the development time spent in building a data management

system.

We systematically conduct a performance comparison on edge-layer-based computing

against its equipment-layer-based counterpart. The comparison study weighs in multiple

factors, including algorithmic complexity, data size, CPU utilization, and computer type

- edge servers or equipment nodes. On the basis of this empirical study, we propose an

algorithm to select tasks that can be o�oaded to the equipment layer, aiming to immensely

shorten processing latency.

Moreover, we propose a resource scheduling algorithm that takes into account the total

resources from both the edge and the equipment. In doing so, this novel resource scheduling

algorithm can o�oad computing tasks to the equipment layer.

Furthermore, to enable o�oading computing tasks from the edge layer to the equipment

layer in semiconductor manufacturing, we proposed a protocol for the edge to send requests

to the equipment. In semiconductor industry, SECS/GEM interface has become a dominant

method for the host computer on the edge layer to communicate with the equipment by

sending commands and requesting data and status [44, 81]. Therefore, we build our protocol

based on the format of SECS/GEM interface. Powered by this protocol, the host computer

on the edge can de�ne computing tasks on the equipment. The host can also de�ne the events

to trigger computing tasks to be executed. Additionally, the host can request computing

results from the equipment.

The contributions of this research are summarized as follows.

ˆ Contribution 1. We conduct a performance comparison between edge-based computing

and equipment-based computing.
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ˆ Contribution 2. We propose a computation o�oading mechanism to cut back the

latency of smart manufacturing tasks.

ˆ Contribution 3. We propose a machine learning model to generate computation of-


oading (yes/no) recommendations.

ˆ Contribution 4. We propose a resource scheduling that enables o�oading computing

tasks from the edge layer to the equipment layer.

ˆ Contribution 5. We propose a communication protocol for the edge layer to communi-

cate with the equipment layer to de�ne computing tasks, trigger computing tasks, and

collect computing results.

1.4 A Roadmap

Chapter 2 reviews related works about edge computing for the smart manufacturing

environment. Chapter 3 explains our proposed system for o�oading computing tasks from

the edge layer to the equipment layer. The section 3.1 describes the model we use for

calculating total computation time at the edge layer and the equipment layer. After that,

in section 3.2 we describe the system settings we used for experiments and the factors that

can a�ect the experimental results. Then the results of our experiments are reviewed and

discussed in section 3.3. Based on the results, we propose a selection method for o�oading

computing tasks to the equipment level. This section also introduces several machine learning

models that we used for evaluating our experimental results. Section 3.4 explains in detail

the evaluation of experimental results with various machine learning models and selects

the best model for o�oading decisions. In chapter 4, we propose an algorithm for our

novel resource scheduler that can be applied to a pool of resources from both the edge

layer and the equipment layer. We also run experiments and compare our results with

a State-of-the-Art scheduling from [33]. Chapter 5 discusses in detail our new protocol

for communication between the edge layer and the equipment layer. The new protocol is

6



designed to allow the host computer on the edge layer to dynamically assign computing tasks

to the equipment. Chapter 6 gives conclusions and discusses additional research directions

on o�oading computing tasks from the edge layer to the equipment layer.
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Chapter 2

Related Works

This chapter presents research that is related to our studies. The chapter is organized

as follows. Section 2.1 discusses previous research on smart manufacturing systems based

on edge and cloud layers. Section 2.2 presents research related to o�oading computation to

equipment. Finally, section 2.3 walks through research on resource scheduling on the edge

layer.

2.1 Smart Manufacturing Systems with Cloud-Edge

Edge computing has evolved as an important technique for enterprise data management

systems [6, 39, 50, 79]. Data generated in manufacturing has increased in both volume and

complexity [2, 42, 51]. Building an e�ective system architecture for data management and

analysis is vital for smart manufacturing, especially in time-sensitive environments such as

semiconductor processing [18, 47].

Umpteen attempts have been made to design system architectures to slash the comput-

ing time for real-time applications [15, 48, 72, 75]. Proposed system architectures tried to

reduce latency in data analysis computing by creating multi-layer systems which collaborate

between the cloud and edge layers [24, 52]. Latency is one of the most important metrics

for computing performance evaluation. The computing performance can be achieved by

o�oading computing tasks from the cloud to the edge where it is closer to the data [20, 57].

In [33], the authors proposed a hybrid computing framework to support various real-time

requirements in smart manufacturing supported by edge computing. This hybrid architec-

ture system includes the following elements: cloud server, device computing layer, software

de�ned network layer, and edge computing layer. In this architecture, the device computing
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layer is responsible for driving mechanical devices. On the other hand, the edge servers are

used for real-time computing tasks in the edge layer since this layer is close to the device

layer where the data is produced. In the cloud layer, the servers are used for computation-

ally intensive tasks such as AI and machine learning. Lastly, the software-de�ned network

is used for coordination among di�erent computing layers for resource scheduling to achieve

low latency.

Figure 2.1: A Typical Edge-Cloud System Architecture

The authors in [71] proposed an edge-supported cloud computing platform speci�cally

for smart manufacturing. This platform includes three modules: the edge production module,

the edge metrology module, and the cloud module. The edge metrology module is used for

quality control, while the edge production module aids in continuous process control. The

cloud is used for AI-assisted decision-making to support smart manufacturing. The edge
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computing layer combines the edge metrology module and the edge production model. In

this platform, defective chips can be detected early in the edge computing layer leading to

improvement in product quality and reduction in production costs.

In [51], the authors introduced a hierarchical architecture that includes the cloud, the

fog, and the edge. The cloud is utilized for big data analysis and storage in this architecture.

It also supports large-scale collaboration among the layers within the architecture. The fog

computing layer is considered as an extension of cloud computing and provides computing

services closer to the devices. Edge computing also supports computation like fog computing,

but it is closer to data sources. In this architecture, fog computing utilizes interconnection

capabilities among nodes, and edge computing is performed in isolated edge nodes.

The authors in [62] proposed using cloud only, without the edge layer, to support data

analytic in semiconductor manufacturing. In this design, data from the equipment layer

is transferred through the cloud gateway to the cloud infrastructure, beyond the facility's

�rewall. A software application will be installed on the cloud to perform data storage and

analysis. Fault detection and classi�cation (FDC) is performed at the cloud layer. The

software on the cloud will send noti�cation back to the system if it detects any issues.

Similarly, multiple cloud-edge systems have been proposed in [3, 31, 40, 54, 74, 64, 73].

The overall architecture of those systems can be summarized as shown in Fig. 1.

There are four common points in the proposed cloud-edge architecture.

1) Moving time-sensitive computing tasks from the cloud layer to the edge layer in order to

achieve low latency and early detection of defects.

2) The physical device layer produces and sends the data to the edge layer for computing.

This layer includes machines, sensors, cameras, motors, industrial PCs, and other mechanical

and electrical devices.

3) An algorithm exists to coordinate and schedule computing tasks in the edge layer.

4) The systems were built to support smart manufacturing.
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The above architecture faces the issue of longer time requirement to transfer data from

the device layer to the edge layer because the amount of data produced by the device layer

is increasing signi�cantly. Although computing tasks have been pushed down from the cloud

to the edge, which is closer to the data, latency in computing at the edge layer increases

when the amount of data increases. Furthermore, the local bandwidth from the device layer

to the edge layer will become a bottleneck with the increase in the amount of data that needs

to be transferred from equipment to the edge layer.

2.2 O�oading Computation Tasks

Some signi�cant e�orts have been made to perform data analysis at the equipment

level. In [28], the authors introduced the Equipment level Fault Detection and Classi�cation

(FDC) System to perform optimization and anomaly detection of semiconductor equipment.

In this design, the equipment transfers some data to the Equipment level FDC System

locally instead of the host. The Equipment Level FDC System can perform data analysis in

a shorter time since it does not add data transfer latency into the analysis process and can

react faster to any issues in material processing.

In [36], the authors proposed a system that can be mainly used in mobile communication.

The system includes three layers: cloud computing layer, edge computing layer, and end

device layer. In this system, the edge layer includes edge servers and edge devices. Edge

servers are deployed on the edge network and act as bridges between edge devices and

the cloud. The end device layer includes mobile servers and mobile devices. Mobile servers

provide computing services for the assign tasks. Mobile devices are end devices that generate

tasks and can choose to process tasks locally or o�oad the tasks to the edge servers for

computing or scheduling to other mobile servers for computing.

In an e�ort to reduce computation latency, other studies have been conducted to try to

o�oad computation tasks from the edge to other available resources such as local servers,

other mobile devices, or nearby smart vehicles on freeway [27, 68, 77].
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2.3 Resources Scheduling

With the rapid development of cloud-edge systems, scheduling resources to perform

computing tasks became a critical process for e�ciently managing system resources. In [33],

the authors proposed a scheduling algorithm to select an edge server that can satisfy the

condition that the queued time is less than the required time. If there are multiple edge

servers that satisfy the condition, the algorithm will randomly choose an edge server to

perform the task. In [1], the authors proposed a hybrid work
ow scheduling on cooperative

edge cloud computing. This cooperative edge cloud computing includes three layers. Layer

1 is IoT devices. Layer 2 is cooperative edge nodes which consists of edge devices and edge

data centers. Layer 3 is multi-cloud Services. Layer 3 consists of powerful resources to

carry out extensive computing tasks such as machine learning, business intelligence, and

interactive visualization. In this cooperative edge-cloud computing system, the scheduling

method estimates and plans resources based on QoA (Quality of Service) parameters and

is responsible for selecting optimal virtual machines for task execution. There are many

research on scheduling for cloud-edge or cloud-fog-edge systems [10, 37, 43, 63, 70, 76], task

scheduling on the edge and fog layer has been developed and discussed to support smart

manufacturing.
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Chapter 3

From Edge to Equipment: Design and Implementation of a Machine-Learning-Enabled

Smart Manufacturing System

This chapter presents our studies on o�oading computation tasks from the edge layer

to the equipment layer and is organized as follows. Section 3.1 presents how we model

computation time at the edge layer and the equipment layer. Next, section 3.2 explains

the setups for our experiments, followed by experimental results in section 3.3. Section 3.4

discusses in detail how we apply machine learning models based on our collected data. The

summary of this chapter is outlined in section 3.5.

3.1 Modeling Computation Time at the Edge and Equipment Layers

We develop a simple yet e�ective computation time model with respect to two cases,

which facilities making decisions of o�oading computation from the edge layer to the equip-

ment layer.

3.1.1 Computing Time on the Edge Layer

In this scenario, data analytic is carried out at the edge layer. To this end, characteristics

data of each processed material (e.g., wafer) and the information of equipment statuses must

be transferred to the edge layer for computation. One common method in the semiconductor

industry for transferring data from the equipment layer to the edge layer is �le transfer. More

speci�cally, the control system running on the equipment computer �rst writes processed data

to a �le during material processing. Next, after the material processing is �nished, the control

system sends the data �le to the edge. Then, the edge performs analytical computations to

check the system status and determine if the product quality is normal for the process to
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continue. The computing time on the edge layer can be expressed as:

TEd total = TEq write + Ttransfer + TEd read + TEd comp; (3.1)

whereTEd total denotes the total time to perform computations on the edge server;TEq write

denotes the total time to write all process data or test data for material to data �les;Ttransfer

denotes the total time to transfer data �les for material from the equipment layer to the edge

layer; TEd read represents the time for the edge server to read material data �les; andTEd comp

is the time for the edge server to perform computing tasks on the data set.

Assuming there areN process steps in total, and process stepi th hasM i data �les, the

total time for an equipment computer to write all process data or test data to data �les is

computed as follows:

TEq write =
NX

i =1

M iX

j =1

tEq write;i;j ; (3.2)

wheretEq write;i;j denotes the time to write data to output data �le j th at process stepi th .

The total time to transfer data �les from the equipment layer to the edge layer is

calculated as:

Ttransfer =
KX

k=1

t transfer;k ; (3.3)

whereK represents the number of �les to be transferred, andt transfer;k denotes the time for

transferring �le kth .

And K can be computed as:

K =
NX

i =1

M i ; (3.4)

whereM i is the number of data �les that are produced at process stepi th .

3.1.2 Computing Time on the Equipment layer

In the scenario of performing analytical computing at the equipment layer, there is no

need to transfer data �les from the equipment layer to the edge layer. In particular, data
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produced at the equipment layer is saved to local data �les. After the material processing

is completed, the control system running on the equipment computer reads the data �le to

perform analytical computations. Then, based on the calculation result, the control system

determines whether the semiconductor manufacturing system proceeds to the next process.

Accordingly, the computing time on the equipment layer can be formed as:

TEq total = TEq write + TEq read + TEq comp; (3.5)

where TEq total denotes the total time to perform computations on the equipment layer;

TEq write denotes the total time for an equipment computer to write all process data or test

data for material processing to data �les, which is calculated according to Equation (3.2);

TEq read is the time for the equipment computer to read the local data �les; andTEq comp

represents the time for the equipment computer to perform computing tasks on the data set.

3.1.3 Machine Learning Models

After collecting experimental data, we �t our data set into machine learning models to

evaluate the model that can be a good �t for computation o�oad recommendation.

Logistic Regression Classi�cation Model

The logistic function has the following form:

p(x) =
1

1 + e� (x � � )=s
(3.6)

Where � is a location parameter (p(� ) = 1/2) and s is a scale parameter.

Our data set will have multiple features,p1, p2, ..., pn , the logistic function can be

rewritten as follows:

p([x1; x2; :::; xn ]) =
1

1 + e� ([x1 ;x2 ;:::;x n ]� � )=s
(3.7)
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Figure 3.1: Dimensionality Reduction in LDA: Data set with 2 features

Figure 3.2: Dimensionality Reduction in LDA: Project data to X Axis
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Figure 3.3: Dimensionality Reduction in LDA: Project to X Axis Result

Figure 3.4: Dimensionality Reduction in LDA: Project data to New Axis
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Figure 3.5: Dimensionality Reduction in LDA: Project to New Axis Result

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a dimensionality reduction technique for super-

vised classi�cation problems. Dimensionality reduction is a process of reducing the number

of features in a data set by removing redundant and dependent features. Dimensionality

reduction is important for better understanding and presentation of a data set. Dimension-

ality reduction also enhances the performance of classi�cation process. Figure 3.1 shows a

data set with 2 featuresx1 and x2 and 2 classes green and red. Figure 3.2 shows a projection

of this data set to x1 axis. This method doesn't clearly distinguish data into two classes as

shown in Figure 3.3. This approach ignores useful information from featurex2. Figure 3.4

shows that LDA �nds a new axis for projecting data set and achieves a good result as shown

in Figure 3.5.

LDA algorithm performs classi�cation by maximizing the separability between classes,

i.e. the distance between the mean of di�erent classes, and minimizing the variation within

each class.

Suppose the data set has C classes,� i is the mean vector of class i,M i is the number

of samples within class i, i = 1,2,3...,C , M is the total number of samples in the data set,

and � is the mean of the entire data set.

M =
CX

i =1

M i (3.8)

18



� =
1
C

CX

i =1

� i (3.9)

The separability between classes, or between-class matrix is calculated as in Equation

3.10.

Sb =
CX

i =1

(� i � � )( � i � � )T (3.10)

The within-class matrix is calculated as shown in Function 3.11.

Sw =
CX

i =1

M iX

j =1

(x i;j � � i )(x i;j � � i )T (3.11)

K-Nearest Neighbors (KNN)

K-Nearest neighbors algorithm is a "lazy learning" model due to the fact that this model

only stores training data. There is no actual training stage in this model. When a prediction

needs to be performed, the model will use stored training data for computing k-nearest

neighbors around the point being classi�ed. K and distance metrics will need to be de�ned

for computing k-nearest neighbors. Then the majority class of k-nearest neighbors will be

used to determine the class of the query point. The followings are the most commonly used

distance metrics.

ˆ Euclidean distance is calculated as below:

d(X; Y ) =

vu
u
t

nX

i =1

(x i � yi )2 (3.12)

ˆ Manhattan distance is calculated as below:

d(X; Y ) =
nX

i =1

jx i � yi j (3.13)
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ˆ Minkowski distance is calculated as below:

d(X; Y ) = (
nX

i =1

jx i � yi j
p)(1=p) (3.14)

ˆ Hamming distance is used when comparing two binary strings with the same length.

The Hamming distance between two binary strings is the number of bit positions where

the bits are di�erent.

Figure 3.6: An Example of Decision Tree Classi�er

Decision Tree Classi�er

Decision tree classi�er is a supervisor machine learning algorithm that simply makes a

classi�cation decision based on a set of rules on features of input data. During training stage,

a decision tree is generated from training data. Figure 3.6 shows an example of a decision

tree classi�er with 3 features and 2 classes.
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Figure 3.7: Random Forest Concept

Random Forest

Random forest is a supervisor machine learning algorithm that can be used for both

classi�cation and regression problems. Random forest algorithm contains multiple decision

trees. Each decision tree takes a subset of a given data set and produces a predicted output.

The random forest algorithm takes the predicted output from each decision tree and votes for

majority to produce a �nal prediction. The concept of random forest algorithm is illustrated

in Figure 3.7.

Support Vector Machines

Support vector machines (SVM) is a machine learning algorithm that is a supervised

machine learning algorithm used for classi�cation and/or regression. SVM is used to �nd a

hyperplane that classi�es the type of data. When the number of features is 2, the hyperplane

is a line. When the number of features is 3, the hyperplane is a plane. Figure 3.8 illustrates
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hyperplanes in SVM. The objective of SVM is �nding a hyperplane such that the margin is

maximized. With a large margin, future data points can be classi�ed with more accuracy.

Figure 3.9 illustrates small vs. large margin in SVM.

3.2 Experimental Setup

We implemented the proposed method of o�oading computation from the edge layer to

the equipment layer. We conducted a series of experiments with di�erent factors that can

have bearing on the performance of computation at the equipment layer. Then we compared

the performance at the equipment layer with that at the edge layer.

To carry out experiments, we set up a system that includes a server for edge computing

and a computer for equipment computing. The edge computer has an AMD Threadripper

Pro 3975WX 3.5 GHz 32 cores processor, 512 GB memory, 2TB SSD NVMe for the operating

system, and 2TB SSD SATA for data. The operating system on the edge server is Ubuntu

20.04. The equipment computer is a regular computer with Windows 10 Professional, Intel

i7 8 cores 2.80 GHz CPU, 16GB memory, and 1TB hard drive.

The experiments aim to determine the factors or combination of thereof that can deliver

better performance at the equipment layer.

ˆ Data size: the number of data points which are produced for each material (for example,

wafer) during processing. The data size we used for experiments range from 2000 data

points to 50000 data points.

ˆ CPU utilization: the current utilization of the CPU during analytic computation (ex-

cluding the utilization that is used for performing analytic computation).

ˆ Algorithm complexity: We conducted the experiments with di�erent algorithmic com-

plexities: O(n), O(nlogn), and O(n2)

ˆ Edge or Equipment: We performed experiments on the edge server and equipment

computer and compared the results.
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(a) SVM Hyperplane With 2 Features

(b) SVM Hyperplane With 3 Features

Figure 3.8: SVM Hyperplane
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(a) Small Margin

(b) Large Margin

Figure 3.9: SVM Margin
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For each algorithmic complexity, we measured computing time with di�erent data sizes,

from 2000 data points to 50000 data points. The experiments were conducted on the edge

server and on the equipment computer. For the equipment computer, we measured comput-

ing time with di�erent percentages of CPU utilization. Total computing time is measured

for each test case.

3.3 Experimental Results

We conduct extensive experiments to evaluate the performance and e�ectiveness of our

o�oading strategy. In this part of the study, we shed light on the impacts of numerous

factors on computing performance. In particular, we �rst investigate the impacts of the

algorithmic complexity of computing tasks. Then, we examine the in
uence of the CPU

utilization of equipment computers, followed by the examination of the performance factor

of data size[80]. Finally, we present a computing o�oad algorithm that takes into factors

algorithmic complexity, CPU utilization, memory usage to make o�oading decisions, thereby

minimizing computing time.

3.3.1 Algorithmic Complexity of Computing Tasks

In the �rst group of experiments, we investigate the impacts of the time complexity

(i.e., Big O) of computing tasks on computing time. We study three computational tasks

with di�erent time complexities, namely, O(n), O(nlogn), and O(n2). We compare the

computing time of the three computational tasks running on the edge layer against that on

the equipment layer. To thoroughly study the equipment performance, we vary the CPU

utilization of the equipment computer when performing the computational tasks.

Computational Tasks with O(n)

Fig. 3.10 shows the computing time for O(n) tasks running on the device computer and

the edge server with respect to di�erent numbers of data points. It indicates that performing
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O(n) computing tasks on the equipment computer saves more time than performing the tasks

on the edge server. These results are expected. The reason is that O(n) computing tasks can

be completed in a very short time. For example, with 2000 data points, O(n) computing tasks

can be done in 0.0214 seconds on the equipment computer even when the CPU utilization

is as high as 99%. In contrast, data needs to be transferred from the equipment layer to the

edge layer �rst in order to perform computing tasks on the edge layer. In this case, data

transfer contributes most of the latency in edge computing due to the short computation

time of O(n) tasks.

Figure 3.10: O(n) Performance
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Figure 3.11: O(nlogn) Performance

Computational Tasks with O(nlogn)

The experimental results of the O(nlogn) case plotted in Fig. 3.11 are similar to the

results illustrated in Fig. 3.10. That is, the computing time of the O(nlogn) computa-

tional tasks running on the equipment computer is shorter than that running on the edge

server. Although the computing time of the O(nlogn) computational tasks increases slightly

compared to the O(n) tasks, data transfer from the equipment layer to the edge layer still

dominates the total computing time. For example, even when the CPU utilization is 99%,

the computing time is still under one second.

Computational Tasks with O( n2)

However, when it comes to the computational tasks with the time complexity of O(n2),

the edge server outperforms the equipment computer in terms of computing time (see Fig.
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Figure 3.12: O(n2) Performance

3.12). There exists two main reasons behind this observation. First, it takes much longer time

for O(n2) computational tasks to be completed. Second, when performing O(n2) tasks, the

number of data points plays a signi�cant role in computing time. Speci�cally, the computing

time increases exponentially as data size increases. Unlike the O(n) and O(nlogn) cases

above, data transfer from the equipment layer to the edge layer in this case becomes an

insigni�cant factor in computing time.

Performance Comparison Between Tasks of O(n), O(nlogn), and O( n2)

To investigate the impacts of CPU utilization on computing time, we compare the com-

puting performance between tasks of O(n), O(nlogn), and O(n2) on the equipment computer.

Fig. 3.13 shows the comparison in computing time between O(n) and O(nlogn) tasks, O(n)

and O(n2) tasks, and O(nlogn) and O(n2) tasks, running on the equipment computer with
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its CPU utilization set to 1%. It demonstrates that the computing time of both O(n) and

O(nlogn) tasks goes up linearly as the data size increases. However, the total computing

time is still very small. On the other hand, the computing time of O(n2) tasks grows expo-

nentially as the data size increases. We can see the same trends when CPU utilization is set

50%, 90%, and 99% in Fig. 3.14, Fig. 3.15, and Fig. 3.16 respectively.

3.3.2 CPU Utilization

In this set of experiments, we evaluate the impacts of CPU utilization on computing

time. We measure the computing time of O(n), O(nlogn) and O(n2) tasks under di�erent

CPU utilization. We set the number of data points at 10000, 30000 and 50000.

Fig. 3.17 plots the computing time of O(n), O(nlogn) and O(n2) tasks with respect

to di�erent CPU utilization. It shows that when the CPU is busy for other tasks, it takes

a longer time for the computational tasks to complete. And in the case of 10000 data

points shown in Fig. 3.17a, the computing time increases exponentially after CPU utilization

becomes higher than 50%. We also see similar trends in the 30000 and 50000 data point cases

(see Fig. 3.17b and Fig. 3.17c). That is, the computing time rises sharply when the CPU

utilization reaches 75% in both Fig. 3.17b and 3.17c. These ascending trends in computing

time are expected and exist for two main reasons. First, when the CPU utilization of the

equipment computer is high, the CPU must switch to other tasks and cannot focus on the

computational tasks, thereby taking a longer time for the CPU to perform the computational

tasks. Second, with more data points fed to the CPU, the size of the data becomes larger,

and thus, leading to a longer time to process the data. In short, CPU utilization has a

signi�cant impact on determining whether to o�oad computing tasks from the edge layer to

the equipment layer.
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(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.13: The impact of algorithmic complexity on performance of equipment computer
with 1% CPU utilization
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(a) Performance O(n) vs O(nlogn)

(b) Performance O(n) vs O(n2)

(c) Performance O(nlogn) vs O(n2)

Figure 3.14: The impact of algorithmic complexity on performance of equipment computer
with 50% CPU utilization
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