
The Utilization of Geometric Hashing Techniques for Feature Association during
Ground Vehicle Localization

by

Michael Sprunk

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 5, 2023

Keywords: geometric hashing, feature-based localization, feature-based maps, map integrity,
data association

Copyright 2023 by Michael Sprunk

Approved by

David M. Bevly, Chair, McNair Endowed Distinguished Professor of Mechanical Engineering
Scott Martin, Assistant Research Professor of Mechanical Engineering

Luke Oeding, Associate Professor of Mathematics and Statistics

Abstract

This thesis presents a new approach to laser-based robot localization using the concept of

geometric hashing. The technique operates on an a priori feature map representing the navi-

gation environment by recording all possible feature combinations as transformation-invariant

sets. Each combination can be defined by an implementation-specific geometric basis, and

then hashed in order to promote rapid parallelizable search conditions and easily encode large

quantities of information.

The primary focus of this work is centered on the individual component of map data as-

sociation within the much larger localization pipeline. At this step, the navigation system

is generally required to provide a correct association between features extracted in real-time

from the environment and their corresponding a priori mapped counterparts. In addition to

the main concerns of accuracy and reliability, this thesis addresses several other relevant chal-

lenges present in feature-based localization such as time complexity, sensitivity to noise, and

the detection of map symmetries.

The concept of using geometric hashing for laser-based localization consists of three

phases: the training phase, screening phase, and recognition phase. Within this work, each

phase is thoroughly defined and analyzed. Particular attention is given toward the utilization

of cylindrical-like features found predominantly in urban environments for use during local-

ization. A simulation was developed to test and verify geometric hashing localization in both

unique and ambiguous environments. The results validated that geometric hashing localization

can provide sub-meter level accuracy even in the presence of ambiguous geometries so long as

sufficient information is present. To test the approach on time-critical scenarios, an implemen-

tation of the data association algorithm written C++ was integrated into an existing localization

framework deployed on a vehicle. Results showed that the positioning solution is capable of

providing sub-meter accuracy at 20 Hz update rates driving through urban environments.

ii

Acknowledgements

Diese Diplomarbeit wäre ohne das RD/ASF der Daimler AG nicht möglich gewesen.

Mein herzlichster Dank gilt dem Team der Fahrzeugpositionierung für all ihre Hilfe und Un-

terstützung. Ich bin dankbar, dass ich während meiner Zeit in Stuttgart die Gelegenheit hatte,

zusammenzuarbeiten und so viel zu lernen.

In particular, I would like to thank my supervisors Isabell Hofstetter and Florian Ries. It

was a pleasure working together on this topic and I really appreciate all the guidance, patience,

and encouragement. In addition, I would like to thank several members of the MRT group

from the Karlsruhe Institute of Technology for providing this work with the prior software

framework, generous amounts of data to work with, and taking the time to answer questions

when needed.

I’d like to acknowledge my committee members: Dr. David Bevly, Dr. Scott Martin, Dr.

George Flowers, Dr. Luke Oeding, and Dr. John Hung (who has retired before I could finish

writing). Each of you have played an important role in my academic growth at Auburn. I am

grateful to have studied under each of you and thank you for supporting me during my time in

the GAVLAB. I would personally like to thank my committe chair, Dr. Bevly, for allowing me

the opportunity to not only the study in the GAVLAB at Auburn, but also intern with Daimler

AG. Dr. Bevly has had the most profound impact on my current career direction and passion

for robotics, and I am eternally grateful for all the experiences I have gained studying under his

leadership.

I’d also like to thank all the members of the GAVLAB who I have interacted with over the

years. I am so grateful to have met and worked with so many of you and I am thankful for all

the bonds we share through late nights and hard work. In particular, I would like to thank Ryan

Shaw and Ethan Edwards for their relentless encouragement and support to finish this effort.

Without either of them, I would not be the person I am today.

iii

Lastly, I would like to thank my parents, Joanne and Erwin Sprunk. Both of you have

played a foundational role in my interest in engineering and desire to study at the highest

level of education. Thank you both for giving me the opportunity to exercise my passion and

constantly equipping me with the tools I need to achieve my goals. I love you both very much.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Figures . ix

List of Tables . xiii

List of Keywords . xvi

1 Introduction . 1

1.1 Background on Feature-based Localization . 2

1.1.1 Model-based Recognition . 3

1.2 Prior Work . 6

1.3 Contributions . 7

1.4 Outline . 8

2 Geometric Hashing . 10

2.1 Basis Formulation . 10

2.2 Hashing Functions . 14

2.3 Invariant Matching . 18

2.4 Other Characteristics of Geometric Hashing 23

2.4.1 Concurrent Processing . 23

2.4.2 Sensitivity to Noise . 24

v

2.4.3 Non-uniform Hash Distribution . 26

2.4.4 Detection of Feature Symmetries . 27

3 Detecting Ambiguities in Feature Maps . 28

3.1 Feature Extraction . 29

3.1.1 Map Generation . 31

3.2 Map Symmetries . 31

3.2.1 Detecting Similarities . 34

3.2.2 Forming Constellations . 37

3.3 Insight on Map Integrity . 38

4 Geometric Hashing in Localization . 40

4.1 Offline Processing . 40

4.1.1 The Training Phase . 41

4.1.1.1 Basis Parameters . 41

4.1.1.2 Quantization and Hashing 43

4.1.1.3 Collision Filtering . 44

4.1.1.4 Algorithm: Training . 46

4.1.2 The Screening Phase . 47

4.1.2.1 Congruent Bases . 47

4.1.2.2 Algorithm: Screening . 48

4.2 Localization Pipeline . 51

4.2.1 The Recognition Phase . 51

4.2.1.1 Noise Mitigation . 53

4.2.2 Candidate Selection Methods . 54

4.2.2.1 Algorithm: Recognition . 60

4.2.3 Verifying the Association . 60

vi

5 Simulation and Experimental Test Design . 63

5.1 Hardware Setup . 63

5.2 The Reference Solution . 66

5.3 Mapped Circuits . 67

5.3.1 Sindelfingen Route . 67

5.3.2 Karlsruhe Route . 68

5.4 Simulation Framework . 73

5.5 Localization Framework . 75

6 Experimental Results . 77

6.1 Simulation . 77

6.1.1 S-bend East – No Ambiguities . 79

6.1.2 Ambiguity Analysis – Longer S-bend East 85

6.1.3 Discussion of Results for S-bend East 99

6.2 Integrated Localization Solution . 101

6.2.1 Sindelfingen . 103

6.2.1.1 Fine Resolution – Sifi5 . 103

6.2.1.2 Coarse Resolution – Sifi20P 112

6.2.1.3 Discussion of Sindelfingen Results 121

6.2.2 Karlsruhe . 127

6.2.2.1 Fine Resolution – KIT5 . 128

6.2.2.2 Course Resolution – KIT20 138

6.2.2.3 Discussion of Karlsruhe Results 147

7 Conclusion and Future Work . 153

7.1 Conclusions on Geometric Hashing . 153

7.2 Future Work . 155

vii

7.2.1 Additional Primitives and Descriptors 155

7.2.2 Integrity Risk Monitor . 156

References . 157

Appendices . 161

Appendix A . 163

viii

List of Figures

2.1 Model of extracted point features . 12

2.2 Creation of Invariants through Rigid Transformation 13

2.3 Quantization of invariants with qpose = 1 . 16

2.4 ”Stacking” of bases to form layers . 19

2.5 Scene of local environment containing extracted point features 20

2.6 Rigid transformation of local scene . 21

2.7 Recognition of model within the scene . 22

3.1 Sample feature map with symmetry . 32

3.2 Highlighting a symmetric polygon in feature map 33

3.3 Layer comparison in the basis domain for bucket b 35

4.1 Hash Collision Resolution Methods - Bin Size: 0.5m 45

4.2 Model example depicting congruent base scenario 48

4.3 Congruent bases formed via two overlapping basis origin points 49

4.4 Geometric hashing localization flowloop . 52

5.1 BerthaOne robotic vehicle depicting computing hardware configuration [1]. . . 64

5.2 BerthaOne sensory field of view and layout [1]. 65

5.3 Driven route in Sindelfingen, Germany . 68

5.4 Extracted cylinders from Sindelfingen route 69

5.5 Derived speed of vehicle with smoothing . 70

5.6 Driven route in Karlsruhe, Germany . 70

5.7 Extracted cylinders from Karlsruhe route . 71

ix

5.8 Derived speed of vehicle with smoothing . 72

6.1 SENA: Overlay of odometry with map of landmarks 80

6.2 SENA: Planar position, heading, and velocity of the vehicle over time 81

6.3 SENA: Error between reference solution and odometry 82

6.4 SENA: Missed and Incorrect associations at each observation event 83

6.5 SENA: Detections, Associations, and Verifications at each observation event . . 84

6.6 SELA: Overlay of odometry with map of landmarks 86

6.7 SELA: Planar position, heading, and velocity of the vehicle over time 87

6.8 SELA: Error between reference solution and odometry 88

6.9 SELA: Missed and Incorrect associations at each observation event 89

6.10 SELA: Detections, Associations, and Verifications at each observation event . . 90

6.11 SELA: Snapshot of an observation frame where an incorrect association occurred 91

6.12 SELA: Heatmap representing ambiguous constellation density (by centroid)
over mapped area . 92

6.13 SELA: View all ambiguous constellations of 6 vertices 93

6.14 SELA: View all ambiguous constellations of 3 vertices 94

6.15 SELA: Heatmap representing translational error from ambiguous features over
mapped area . 95

6.16 SELA: Heatmap representing rotational error from ambiguous features over
mapped area . 96

6.17 SELA: Probability of correct association given ambiguous features 97

6.18 SELA: Probability of correct association given layer candidates 98

6.19 SIFI5: Overlay of odometry with map of landmarks 104

6.20 SIFI5: Breakdown of X position with update availability 105

6.21 SIFI5: Breakdown of Y position with update availability 106

6.22 SIFI5: Breakdown of heading with update availability 107

6.23 SIFI5: Planar position and heading of the vehicle over time 108

x

6.24 SIFI5: Error between reference solution and odometry 109

6.25 SIFI5: Measurement correction availability during the drive 110

6.26 SIFI5: Processing time for each detection during the drive 111

6.27 SIFI20: Overlay of odometry with map of landmarks 113

6.28 SIFI20: Breakdown of X position with update availability 114

6.29 SIFI20: Breakdown of Y position with update availability 115

6.30 SIFI20: Breakdown of heading with update availability 116

6.31 SIFI20: Planar position and heading of the vehicle over time 117

6.32 SIFI20: Error between reference solution and odometry 118

6.33 SIFI20: Measurement correction availability during the drive 119

6.34 SIFI20: Processing time for each detection during the drive 120

6.35 SIFI5: Heatmap representing ambiguous constellation density (by centroid)
over mapped area . 122

6.36 SIFI5: View all ambiguous constellations of 3 vertices 123

6.37 SIFI5: Heatmap representing translational error from ambiguous features over
mapped area . 124

6.38 SIFI5: Heatmap representing rotational error from ambiguous features over
mapped area . 125

6.39 Incorrect feature association caused by ambiguous geometry 128

6.40 KIT5: Overlay of odometry with map of landmarks 130

6.41 KIT5: Breakdown of X position with update availability 131

6.42 KIT5: Breakdown of Y position with update availability 132

6.43 KIT5: Breakdown of heading with update availability 133

6.44 KIT5: Planar position and heading of the vehicle over time 134

6.45 KIT5: Error between reference solution and odometry 135

6.46 KIT5: Measurement correction availability during the drive 136

6.47 KIT5: Processing time for each detection during the drive 137

xi

6.48 KIT20: Overlay of odometry with map of landmarks 139

6.49 KIT20: Breakdown of X position with update availability 140

6.50 KIT20: Breakdown of Y position with update availability 141

6.51 KIT20: Breakdown of heading with update availability 142

6.52 KIT20: Planar position and heading of the vehicle over time 143

6.53 KIT20: Error between reference solution and odometry 144

6.54 KIT20: Measurement correction availability during the drive 145

6.55 KIT20: Processing time for each detection during the drive 146

6.56 KIT5: Heatmap representing ambiguous constellation density (by centroid)
over mapped area . 149

6.57 KIT5: View all ambiguous constellations of 3 vertices 150

6.58 KIT5: Heatmap representing translational error from ambiguous features over
mapped area . 151

6.59 KIT5: Heatmap representing rotational error from ambiguous features over
mapped area . 152

A.1 Example structure of Hash Table . 164

A.2 Example structure of Layers Database . 165

xii

List of Tables

2.1 Structure of hash entries . 17

3.1 Generated Similarity Sets for layers 2 and 4 36

3.2 Ambiguous Constellations for bucket b . 39

6.1 Simulated Vehicle Parameters . 78

6.2 Simulated LiDAR Parameters . 78

6.3 Kalman Filter Parameters . 78

6.4 SENA: Parameters . 79

6.5 SELA: Parameters . 85

6.6 SENA: Error metrics . 99

6.7 SELA: Error metrics . 99

6.8 SENA: Result statistics . 99

6.9 SELA: Result statistics . 100

6.10 SIFI5: Parameters . 103

6.11 SIFI20: Parameters . 112

6.12 SIFI5: Error metrics . 121

6.13 SIFI20: Error metrics . 121

6.14 SIFI5: Result statistics . 126

6.15 SIFI20: Result statistics . 127

6.16 KIT5: Parameters . 129

6.17 KIT20: Parameters . 138

6.18 KIT5: Error metrics . 147

xiii

6.19 KIT20: Error metrics . 147

6.20 KIT5: Result statistics . 148

6.21 KIT20: Result statistics . 149

xiv

List of Algorithms

4.1 Training Phase . 46

4.2 Screening Phase . 50

4.3 Associate Features 1 . 55

4.4 Associate Features 2 . 56

4.5 Associate Features 3 . 57

4.6 Associate Features 4 . 58

4.7 Associate Features 5 . 59

4.8 Associate Features 6 . 59

4.9 Recognition Phase . 61

xv

List of Keywords

Similarity Set a set of invariant features that is geometrically congruent across multiple bases

Ambiguous Constellation a unique similarity set within a bucket

Primitive a feature defined by fundamental geometries such as points, edges, and curves

Model a collection of semantic features constituting an object or image desired to be recog-

nized

Hash Function an algorithm that maps arbirarily-sized data to a fixed-size

Hash Code a uniquely deterministic fixed-sized output from a hash function

Geometric Basis a coordinate frame defined by primitive features

Invariant a feature that remains geometrically congurent after applying a transformation

Bucket a data structure containing information relating to a hash code

Hash Entry a key-value pair consisting of a hash code and a bucket

Hash Table a data structure consisting of hash entries

Basis Congruency A phenomenon where the quantized basis origin of two layers overlap

along with all quantized invariants

Bin a discrete quantity containing continuous data

Feature Map a collection arbitrary features and their positions relative to an origin

Hash Collision a phenomenon in which two independent features hash to the same value

Layer an individual geometric basis within a collection of bases

xvi

Neighborhood a proximity group of hash entries within the hash table

Probe the creation of a geometric basis for model matching during recognition

xvii

Chapter 1

Introduction

The rapid growth and development of technology in our society today has led to an in-

creased inclusion of autonomous systems into a wide variety of applications. As such, with

each new application there exists a fresh set of challenges that must be considered and under-

stood in order to develop safe, reliable, and efficient solutions. In many cases, the investigation

of these challenges drive research efforts to continue the cycle and further push the limits of

cutting-edge technology. Other scenarios express a need for the creation of original solutions to

meet the often unique demands of application-specific requirements. One of the most recurring

challenges spanning over many different autonomous applications is the task of localization, or

in other words, the autonomous system understanding it’s own position and orientation.

Although there are many localization approaches that exist in both research and industry

today, this thesis addresses the numerous challenges associated with feature-based localiza-

tion. In particular, the thesis will discuss the approach and implementation of a model-based

technique called geometric hashing for use in the real-time localization of ground vehicles.

This approach of geometric hashing requires a priori information of the environment and seeks

to provide an association of features gathered from a local scene to a corresponding location

within the mapped environment. By obtaining a correct association, the precise position and

orientation of the system is theoretically known, and localization can successfully be achieved.

However, previous research suggests that this task is often not trivial and has high potential

to provide misleading information to the system [2]. Further, many applications are unable to

detect the presence of misleading information until after it is wrongfully utilized. For safety-

critical applications, the inclusion of misleading information is particularly hazardous and the

consequences could lead to system damage, serious injury, or even death. With this information

in mind, a need arises to compute, monitor, and incorporate the risk of misleading information

before providing candidate associations.

1

1.1 Background on Feature-based Localization

Feature-based Localization is a specific flavor among various navigation techniques that

utilize visual-based sensory information to define features, often called “landmarks”, from the

surrounding environment. These features are selected such that they could be easily recognized

at a later time and provide positional information to a system within the bounded environment.

Typically, systems that employ feature-based localization approaches obtain visually dense in-

formation from cameras or LiDAR. However, prior research has also investigated the use of

RADAR and SONAR for feature-based applications [3, 4].

As the title ”feature-based” suggests, applications of these techniques are inherently de-

pendent on prior information about the entities to be recognized. Each contribution of prior

information gathered should provide, at a minimum, a distinguishable feature to be recognized

as well as positional information indicating where the feature is relative to an arbitrary origin.

The process of collecting information from an environment or region is typically referred to as

Map Generation, and the data structure representing the aggregation of all informational pieces

is known as a feature map. There are numerous techniques and challenges associated with

generating maps and collecting high fidelity map features, but many of these are too complex

to introduce here and are considered outside the scope of this work.

A well studied alternative to feature-based mapping approaches is using occupancy grid

structures to aggregate a model of the world during online operation. In the research commu-

nity, these approaches are typically used to solve the Simultaneous Localization and Mapping

(SLAM) problem [5]. Several noteworthy differences from feature-based approaches are that

SLAM typically does not require an a prior process in that both the map generation and lo-

calization are performed together online. However, this can introduce the problem of large

memory requirements and low update rates due to the computational complexity of building

the maps [6].

A typical scenario highlighting the framework of feature-based localization could be a car

driving through an arbitrarily bounded urban region containing a series of intersections. Each

intersection within the region provides a rich set of interesting features to capture such as signs,

2

street lights, and curbs. A feature map, or database of features, could be generated on an initial

route through the region using a set of user-defined qualities of interest and positional metrics.

On subsequent routes around the region, new features extracted via the same methods used to

generate the map can be correlated with existing features in the database to provide a mapping

between the vehicle’s current field of view and the position of the vehicle within the mapped

region.

In general, the Feature-based approach can be summarized into a four-step process: [7]

• Data Acquisition - receive a new batch of visual data

• Feature Extraction - define and extract features of interest

• Feature Association - correlate these features with prior features

• Verification - verify the correlation is correct

This work will focus primarily on the details and challenges of the feature association step of

the procedure. However, some discussion of feature extraction and verification will also be

provided throughout the thesis.

1.1.1 Model-based Recognition

Widening the scope beyond mobile platform localization, at the heart of the feature extrac-

tion and association steps lie the concept of model-based recognition. The use of model-based

techniques to recognize simple objects has been gaining significant popularity for a wide va-

riety of applications among the research community and autonomous system localization is

not exempt from these. In general terms, recognition algorithms are considered to be model-

based if they utilize previously obtained information, or models, to identify matching objects

in a given scene. The definition of a model can vary among applications, but typical examples

consist of one or a collection of semantic features that uniquely define an object or context

to be recognized. Upon detecting these features, they can be decomposed into a collection of

primitive geometries, such as points, edges, or curves, and then stored in a database [8, 9].

3

If executed properly for the given scenario, these model primitives can then be used to corre-

spond with live sensory detections and relative transformation data can be obtained. However,

this task is not always simple. Consequently, the majority of research suggests that there are

four overarching challenges common to all variations of model-based recognition techniques:

4

• objects that have undergone various types of geometric transformations,

• objects that move or change frequently,

• objects that are partially occluded from view and,

• objects that are large in number or geometric complexity.

Each of these issues influence feasibility of using model-based techniques for reliable recogni-

tion requirements. Relating back to feature-based localization, each issue has a particular effect

on the feature extraction and data association steps highlighted in Section 1.1.

Taking a look at each item individually, if an object in a scene is rotated or disfigured

in a way that deviates significantly from the model, detection algorithms may be unable to

extract the necessary features to provide the desired association. Further, even if the object was

successfully detected, it still carries an increased likelihood to be mistaken with another feature,

or remain unassociated on grounds that it is too different from the existing models. Similar

phenomena can occur for moving and partially occluded objects as well, which necessitates the

verification step following each association. Objects that occur too frequently, especially when

in close proximity to one another, have a saturation effect during recognition. In other words,

they introduce an ambiguity which all detection instances provide nearly equal likelihoods

of a correct match with a single instance of a model. On the opposite side, objects that are

geometrically complex have a tendency to be ”too unique” and maybe be difficult to detect and

recognize unless very specific criteria are met.

Additionally, as the number of models increases within the database, the ability to search

for the correct match becomes an increasingly relevant concern [10]. To minimize complica-

tions from these challenges, a unique approach to searching for and compartmentalizing models

is necessary. In order to solve the problem holistically, this approach would be tasked with ac-

commodating all four challenges for any possible scenario. Fortunately, the geometric hashing

algorithm provides strong foundation to accomplish this task.

5

1.2 Prior Work

During the early stages of computer vision research, the concepts of transformation-

invariant features were first introduced as a recognition algorithm for 2D image objects that

could be either partially occluded or under a geometric transformation [11]. Shortly after, the

topic of object recognition turned towards utilizing model-based techniques. Along with the

trend shift, transformation-invariant recognition was also applied to the model-based approach

thus allowing for the recognition of 3D shapes appearing in 2D images. Amidst the thrust

of research to find more reliable methods to detect and recognize 3D features from images,

the concept of geometric hashing was introduced by Lamdan et al as a promising technique

in the presence of noise and computational complexity [9, 8, 12]. The algorithm utilized a

set of semantically chosen ”interest points” to reliably recognize features that maintain affine

congruency.

Since the initial concept, geometric hashing has been further studied and applied in sev-

eral other works. A few notable examples from Grimson et al and Lamdan et al focus on the

sensitivity of the recognition procedure when afflicted with noisy detections as well as the con-

sequential error brought about by the noise [13, 14]. In his dissertation, Rigoutsos employs

geometric hashing into a large parallel computational framework where features can undergo

rigid, affine, or similarity transformations [7]. In his work, he also employs a Bayesian statis-

tical approach in order to mitigate the affects noisy interest points present during recognition

and obtain a quality metric to each association. Tsai utilizes both geometric hashing and the

Hough Transform to extract line features from noisy images and continues to develop and apply

Bayesian techniques to improve robustness in the presence of outliers [15].

Califano and Mohan compare index-based techniques like geometric hashing and the

Hough Transform to discuss their shortcomings on highly correlated models and proposes us-

ing a higher dimensional approach to robustly recognize sub-components of models and utilize

larger model databases [16]. Gilbert and Bowden construct a neural network based approach

to marry the concept of geometric hashing with machine learning in attempt to reduce the

combinatorial complexity of basis selection [17].

6

All of the prior art mentioned above focuses exclusively within the domain of recognizing

features from imagery, yet there is not much research on using geometric hashing techniques

with 3D LiDAR data. Further, none of the above present an application of the recognition

approaches on a time and safety critical system. Tomono presents an effort to utilize geomet-

ric hashing techniques as a scan matching approach for mobile robot global localization and

greatly benefits from avoiding a feature extraction algorithm since each laser return is used as

a feature [18]. However, this approach is mainly suited for planar Laser Range Finders (LRF)

and will become too computationally expensive working with the data throughput of modern

3D LiDAR sensors. Lastly, in his work, Joerger presents a thorough investigation of how to ap-

ply the model-based feature recognition approach to safety-critical applications by computing

the probability of Hazardous Misleading Information (HMI) online [2]. Joerger’s work serves

as a cornerstone for the further research presented in this thesis on map integrity.

1.3 Contributions

This thesis presents a laser-based localization approach utilizing the techniques of geomet-

ric hashing. Since the aim of this thesis is to address the challenges of model-based recognition

and fit within the framework of feature-based localization, careful analysis will be provided to

show how these challenges can be overcome using geometric hashing. As part of this tech-

nique, a new approach to quantifying feature map symmetry will be introduced. This concept

of obtaining such a metric identifies a small research gap within the community of model-

based techniques. With prior identification of problematic regions within a model, recognition

algorithms can appropriately analyze the risk of corresponding with the perpetrating features.

In addition to the challenges presented above, geometric hashing localization will also

address several other challenges associated with real-time autonomous systems such as the

”Kidnapped-robot” problem. A simulation using Ackermann-like kinematics was developed

as an initial proof-of-concept. To verify the feasibility of the approach under strict time-

demanding conditions, the algorithm was implemented into an existing localization pipeline

running on a Mercedes E-class coupe. To summarize, this thesis contributes to the following

key points:

7

• Development of a parallelizable laser-based data association technique immune to partial

object occlusion and rotation

• An offline analysis framework to determine the integrity of feature maps

• An online risk reporting approach for feature associations paired with maximal error

bounds

• Localization using efficient map/database memory footprints

• Integration of the data association algorithm into an existing localization framework re-

quiring time-critical updates

1.4 Outline

The remainder of this thesis will transition through phases beginning with general theory

and ending with a practical real world implementation. Chapter 2 will begin by introducing

geometric hashing as it exists today within the research community. A simulated example will

assist in demonstrating how the algorithm works as well as highlight the strengths and weak-

nesses under certain conditions. To close up the chapter, prior contributions utilizing geometric

hashing will be presented and discussed. Chapter 3 will discuss in further detail one of the

critical problems plaguing Model-based Recognition: Map Ambiguity. The process of feature

extraction will be introduced briefly in order to generate feature maps. After providing an ex-

ample of how prevalent map ambiguity can be, a deterministic approach to detecting symmetry

among features using the geometric hashing framework will be presented. Chapter 4 will tran-

sition toward an implementation of geometric hashing as a positioning solution for laser-based

ground vehicles. The algorithms that exist as part of the implementation will be explained

along with several practical considerations. Chapter 5 will introduce the test environment used

to generate results for the implementation. This will involve a description of the routes driven

by the test vehicle, the on-board sensor suite that provided the data, and the generated require-

ments and conditions for the experiment to be weighed against. Chapter 6 will present and

discuss results from the experiments designed in Chapter 5. Finally, Chapter 7 will conclude

8

this work by reflecting on geometric hashing as a possible localization solution for laser-based

ground vehicles and present avenue for further research.

9

Chapter 2

Geometric Hashing

In order to clearly understand how geometric hashing can function as a valid real-time

localization technique, a background of the theory behind the approach must first be presented.

In general, the underlying concept of geometric hashing is a modified application of a multi-

purpose algorithm known as a hash function. The primary directive of this genre of algorithms

is to map arbitrarily-sized data to a fixed length, resulting in an indexable hash code. The mod-

ification of this algorithm to encode geometric information is what provides the technique with

the model-based characteristics necessary for feature recognition. Akin to other model-based

approaches, the procedure for geometric hashing is separated into two phases. The first phase,

known colloquially as the Training Phase, employs a series of setup tasks that are performed

offline. These steps calculate and build the database of models that are later used for recogni-

tion. The second phase of geometric hashing, known as the Recognition Phase, is conducted

online and contains the model matching algorithm used for object recognition.

The contents of this chapter will expand further on the directive of hash functions and de-

scribe how they can be used together with model-based techniques. Over the next few sections,

a derivation of geometric hashing will be presented to clarify how it seeks to overcome the four

challenges plaguing model-based recognition as introduced in the previous chapter. After the

derivation, a discussion of additional unique characteristics belonging to geometric hashing are

provided within the context of localization. Finally, the chapter will close with a summary of

several relevant applications of this technique within the research community.

2.1 Basis Formulation

The first challenge in model-based recognition, locating objects that have undergone ge-

ometric transformations, can be eliminated by re-defining each model as a collection of trans-

formation invariant features. Geometric hashing easily accomplishes this task by defining a

10

geometric basis comprised of an arbitrary k-tuple of primitive features from a given model.

In mathematical terms, k is called the cardinality of the basis and represents the number of

elements that belong to a set. After this, the position of each remaining primitive feature in

the model can be represented in the newly-defined geometric basis. Now, the position of each

primitive will be preserved, even if the object matching the model is seen from a different point

of view. Since the primitives here are definitively invariant to geometric transformations, they

can henceforth be called invariants. This concept is easily demonstrated through the notion

that each primitive is now defined relative to a location on the model instead of a global frame.

Before providing a specific example of this, it is important to note that there are several

different classifications of geometric transformations:

• Isometric - preserves distances and angles,

• Similarity - preserves ratios of distances and angles,

• Affine - preserves parallelism between geometries.

• Projective - preserves collinearity between geometries.

With each class, a different formulation of the basis is required to grant transformation invari-

ance of the same class. Since the scope of this work requires an exact (i.e. rigid) matching of

primitive features, it is undesirable to allow scaling and shearing in transformations. Therefore,

we will only investigate the derivation of the isometric, or rigid, transformation in this chapter.

Using a simple example, the steps to derive a geometric basis for the rigid case as stated

in Rigoutsos’s work will be restated [7]. Figure 2.1 depicts a model M consisting of several

primitive features in two dimensions. The position vector of each primitive relative to the model

origin is represented as ~p i ∈ R2, where i = 1,2, ...,5. In many cases, additional information

about each primitive, such as attributes or descriptors, are also contained in the model. To begin,

first select any arbitrary k-tuple of features from the model. Given the desired constraints for

rigid transformations, it is only necessary to select two features to define our basis (i.e. k = 2).

Assuming the selection of ~p1 and ~p2, the x-axis of the basis~bx can now be defined as the vector

11

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

OM

1
2

3

4

5

X

Y

Model Origin
Features

Figure 2.1: Model of extracted point features

from ~p1 to ~p2. Likewise, an orthogonal vector~by can also be defined to represent a right-hand

coordinate frame.

~bx =
~p2−~p1

||~p2−~p1||
=

 x2−x1√
(x2−x1)2+(y2−y1)2

y2−y1√
(x2−x1)2+(y2−y1)2

 (2.1)

~by =
(~p2−~p1)

⊥

||~p2−~p1||
=

 y1−y2√
(x2−x1)2+(y2−y1)2

x2−x1√
(x2−x1)2+(y2−y1)2

 (2.2)

The definition of the basis origin is subjective and can vary depending on the application.

Nevertheless, for the simplicity of this derivation, the origin ~po will be defined as the midpoint

between ~p1 and ~p2 as shown in Figure 2.2a.

12

−10 −5 0 5 10
−10

−5

0

5

10

OM

12

3

4

5

(a) Basis defined via features 1 and 2

Features
Basis Frame

−10 −5 0 5 10

OM

1 2

3

4

5

(b) Features after rigid transformation

⇒

Invariants
Basis Frame

Figure 2.2: Creation of Invariants through Rigid Transformation

~po =

xo

yo

=

x1+x2
2

y1+y2
2

 (2.3)

Next, each of the remaining position vectors ~p3, ~p4, and ~p5 must be transformed into

the newly defined coordinate frame. Since~bx and~by are known, it is possible to re-define the

position of each primitive as a linear combination of each basis vector scaled by some constants

µ and ν . From this, Equation (2.4) is obtained. Solving Equation (2.4) for the constants µ and

ν , the formulation for computing the position of rigid-invariant features in the basis domain is

acquired. Now that each of the primitives are defined relative to the basis frame as shown in

Figure 2.2b, their local positions will result in the same values even if the points from Figure

2.1 are seen from different viewpoints.

~p i−~po = µ~bx +ν~by (2.4)

µ

ν

=
1√

(x2− x1)2 +(y2− y1)2

x2− x1 y2− y1

y1− y2 x2− x1

xi− x1+x2

2

yi− y1+y2
2

 (2.5)

13

2.2 Hashing Functions

The second challenge in model-based recognition, pertaining to occluded objects, is also

adequately accounted for in geometric hashing. Using the formulation derived in Section 2.1,

it is possible to collect all possible un-ordered k-tuple combinations of primitives for any given

model. Mathematically, this is equivalent to computing the binomial coefficient of k for n

features.

(
n
k

)
=

n!
k!(n− k)!

(2.6)

By obtaining all possible bases and their respective invariants from a model, the likelihood

that an object will remain distinguishable in the presence of occlusion increases significantly.

For example, in the event that only one basis is created for a given model, it will become nearly

impossible to recognize a corresponding object if one (or both) of the primitives used to create

that basis is occluded. In other words, it is necessary to capture all possible bases for each

model in order to decrease the chance of failure due to occlusion.

Although computing and storing all this information considers one problem, it creates

several more:

• costly computational time,

• machine factorial limits,

• large data storage requirements and,

• searching large data.

For applications that contain a large database of complex models, the computational time re-

quired to cycle through all possible combinations could quickly become impractical. In addi-

tion, as the cardinality of the basis formulation (i.e. k) increases, the computational complexity

will increase exponentially. Luckily, these two issues will not have any effect on our scenario

since this step is performed offline and the formulation only permits rigid transformations of

14

points. However, after completing the database, there still exists a task of searching for the cor-

rect match. This issue contributes toward the necessity of the hashing component in geometric

hashing.

As stated in the introduction of this chapter, geometric hashing utilizes a hash function to

encode arbitrarily-sized information into easily searchable hash codes. This algorithm provides

two major benefits to the application. First, using a hash function enables geometric informa-

tion to be re-mapped to a deterministic value. In other words, a unique input to a hash function

will always produce the same unique output. Here, a short example of how this concept adds

value is presented. Since all bases contain rigid-invariant features, a possible corresponding

geometry in a scene could produce a matching set of rigid-invariant features. In order to deter-

mine if any (or all) features match with the model, a possible approach could be to individually

check each position of the invariants. Even with technology that exists today, this procedure

would be too slow for real-time conditions and cost unnecessary resources. However, since the

directive of the hash function always maps data to a deterministic value, matching the invariants

simply becomes indexing to the correct hash code. The second benefit is the ability to encode

comparatively large information into compact hash codes. This trait enables the ability to store

large amounts of nearly-redundant information in a compact and efficient manner. The data

structure in which hash codes are stored is called a hash table. Each code in the table is paired

with a bucket and together referred to as a hash entry.

In order to ensure the hash function produces desirable results for recognition, it is often

necessary to quantize the invariants over the basis domain. After this process, a series of dis-

crete quantities are created containing the information of the invariants. Each quantity is called

a bin. In some cases after quantization, it is possible for invariants to fall into the same bin. If

left alone, this phenomenon will cause a fault in the algorithm called a hash collision which

eliminates the ability to differentiate between the two invariants during recognition. More in-

formation about hashing collisions as well as the benefits and detriments of quantization will be

discussed later. Since both the quantization parameter and the hash function carry a profound

influence over the structure and content of the hash table, they are both typically reserved as

implementation-dependent parameters.

15

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1

2

3

4

5

bx

b y

Basis Frame
Invariants
Quantized Invariants

Figure 2.3: Quantization of invariants with qpose = 1

16

Continuing on with the example from Section 2.1, it is now desired to apply a hash function

to the set of invariants and construct the hash table. In the previous step, a set of rigid-invariant

features~I r
i , i = 1,2, ...,5 belonging to the basis defined by ~p1 and ~p2 was obtained. Next, the

positions of the invariants are discretized according to a quantization parameter qpose as shown

in Figure 2.3. Within this thesis, this parameter is also called the bin size.

Now, using selected information from the quantized invariants, a hash code can be com-

puted for each invariant in the basis and stored in a indexable list of unique elements. For

example, computing the hash value for the quantized µ and ν components of ~I r
5 could be as

simple as a conversion to a 32-bit, two’s compliment, hexadecimal hash string as shown in

Equation (2.7). Along with the hash code, it is also required to save critical information about

the invariant, such as the model and basis it belongs to as well as an identifier linking the invari-

ant back to the model. This information is generally stored in the bucket of the newly created

hash entry depicted in Table 2.1.

(µ
q
5 ,ν

q
5) = (−9,6)⇒ 0xFFFFFFFA00000006 (2.7)

Table 2.1: Structure of hash entries

Hash Entry
Hash Code Bucket

h(µ,ν) model, layer, feature

After conducting this process for each invariant, it is then necessary to repeat the process

for all subsequent bases feasible within the model. Each basis, as well as the information

owned by it, is called a layer and is stored alongside the list of hash entries within the hash

table. If any invariant should hash to an equivalent hash code belonging to a different layer

or model, the new information is appended to the existing hash entry and will be reconciled

during recognition.

The origin of the layers terminology stems from the matching procedure within the basis

domain. For example, suppose after computing all possible bases for a model, it is desired to

compare this collection of bases with another individual basis computed from a local scene.

17

One possible technique to visualize this comparison is to ”stack” each basis on top of one

another such that the origins overlap and the basis vectors remain aligned. Naturally, this

concept has no practical meaning in the model frame since each basis represents a different

physical location and orientation. However, considering the various bases in a stack enables an

extremely fast computation to find all instances with matching invariant positions to our local

basis. In this sense, each basis represents a ”layer” in the stack, and those instances that contain

matching invariants are listed as candidates for the correct association. A top-view example of

this is shown in Figure 2.4 where each color represents a unique layer in the hash table. This

analogy will be continued during the derivation of the matching procedure in the next section.

2.3 Invariant Matching

Now that a proper overview of hashing transformation-invariant features has been pre-

sented, a gentle introduction to the recognition step can be given. As mentioned earlier in

this chapter, geometric hashing consists of two primary processing phases. The first, encap-

sulating most of the procedure presented thus far, is called the Training Phase and is typically

conducted a priori. As such, the process of generating a hash table can be conducted in an

offline state, so as to avoid the interference with other real-time machine resources and allow

for the greater computational time required to produce high-resolution databases. In contrast,

the second phase of geometric hashing is performed during real-time operation (i.e. online).

The directive of this phase is to utilize the models stored within the a priori hash tables in order

to match with and provide correspondence to their physical counterparts within a scene.

Again, continuing with the example from before, the general procedure for recognizing

models from the hash table will be discussed. Suppose a scene S of the surrounding environ-

ment is captured via an arbitrary sensor and several features of interest are extracted as shown

in Figure 2.5. The position vector of each extracted primitive relative to the scene origin (i.e.

sensor position) is represented as ~ρ j ∈ R2, where j = 1,2, ...,12. Assuming the model from

Figure 2.1 exists somewhere within the scene, it can be concluded that there also exists some

rigid transformation Tr that will satisfy TrM ∈ S. In order to successfully match an object in

the scene with our model, the transformation Tr must be determined.

18

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

bx

b y

Figure 2.4: ”Stacking” of bases to form layers

19

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

OS

1
2

3

4

5

6

7

8
9

10

11

12

X

Y

Scene Origin
Extracted Features

Figure 2.5: Scene of local environment containing extracted point features

20

−14−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

OS

2

9

5

12

7

1

10

48

11

6

3

bx

b y

Basis Origin
Invariants
Quantized Invariants

Figure 2.6: Rigid transformation of local scene

The initial steps for invariant matching follow closely to those performed during the offline

procedure. First an arbitrary combination of k-tuple of features are selected from the extracted

features in order to form a basis. Using the vernacular of model-based recognition, the creation

of this basis with an attempt to match sets of features is called a probe. Just as before, a

geometric basis is computed and all extracted features are transformed into the new domain as

shown in Figure 2.6.

Next, the hash function is applied to each invariant and search for a matching hash code

in the hash table. If a match is found, this indicates that an invariant from the corresponding

layer is geometrically similar to the local scene. In order to acknowledge this, a vote is cast for

each model-layer tuple that exists within the bucket of the hash entry. After cycling through all

invariants within the basis and casting votes, a final tally of the results is performed. In an ideal

21

−14−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

1

2

3

4

5

bx

b y

Basis Origin
Model Invariants
Quantized Model Invariants
Scene Invariants
Quantized Scene Invariants
Matched Quantized Invariants

Figure 2.7: Recognition of model within the scene

scenario, the model-layer tuple receiving the most votes after the tally is deemed the match

and the transformation Tr can be obtained. With this information, the sensor position is now

effectively localized with a model element. Since our example is relatively simplistic, it is easy

to visually determine the position of the model within this scene as shown in Figure 2.7.

In more realistic scenarios which will be discussed in a later chapter, the recognition pro-

cedure is not as trivial and instead requires an additional verification step in order to determine

the most likely association. In some cases, it may be necessary to conduct several probes in

order to build a confidence parameter and provide reliable results.

To summarize, the concept of creating a geometric basis from all possible combinations of

k-tuple primitive features can be thought of as similar to taking a snapshot of the same object

from different angles. In a practical sense, this would significantly increase the probability

22

of recognizing that object in a unknown random environment. As it stands, this technique

provides a quality appeal to several challenges in our list. Creating geometric bases alleviates

issues with transformations, segmenting models into primitive features enables the recovery of

partially occluded objects, and utilizing hash functions promotes efficient data storage and low

resource expenditure. However, there are still several other characteristics to consider before

praising this technique as a practical solution to the challenges.

2.4 Other Characteristics of Geometric Hashing

Since a comprehensive introduction of geometric hashing for general model-based recog-

nition has been presented, it is now desired to understand several critical characteristics of the

technique within the context of real-time localization conditions. This section will introduce

several of these characteristics as well as highlight other works that have contributed to these

topics.

2.4.1 Concurrent Processing

One major advantage of using geometric hashing in time-critical applications is the ability

to utilize concurrency. Depending on the application, both the training and recognition phases

can operate in a parallel fashion within their individual procedures. In the case of both phases,

a set of geometric bases must be created and all remaining primitive features must be trans-

formed into the new frame. In general, this process highlights two distinct steps that could be

computationally parallelized.

The first, is the creation of the basis. Since each geometric basis belonging to a given

model or scene is mutually exclusive, it is possible to compute each basis simultaneously.

From Equation (2.6) presented earlier, the number combinations of features necessary to uti-

lize all possible information from the model or scene can be determined. With the combina-

tions known, each combination can be dispatched to the basis creation procedure on different

processing elements (PE) if available. The second step that could be run concurrently is the

transformation and hashing of each primitive. Since there exists no co-dependency among the

features relative to the basis origin, each transformation and hash function could be performed

23

using parallel logic. However, as with all concurrent processing procedures, it is important to

understand the relationship between parallel logic and the monolithic hash table. Since each

of the concurrent tasks are communicating with the hash table, careful consideration must be

given to avoid collisions between the tasks, and consequently, the loss of information.

An application of parallelization in geometric hashing is presented in great detail within

Rigoutsos’s dissertation [7]. In his work, geometric hashing using large databases of mod-

els in parallel on a Connection Machine is studied and implemented. This application serves

as a perfect example for the necessity of computational concurrency when certain conditions

are present. Rigoutsos has already stated that matching rigid-invariant features operates in

O(S3Mn3) time where S represents the number of bases created from online extracted features

in the scene, M represents the total number of bases create from model features, and n repre-

sents the number of features in the model. Therefore, as the number of models and geometric

complexity increases, the time required for recognition can quickly become impractical. By

utilizing multiple processing elements and concurrent computation, the time required to detect

matches among the multitude of models can be significantly reduced.

2.4.2 Sensitivity to Noise

At this point in the discussion, the performance of geometric hashing within the context

of our specified challenges from Chapter 1 is promising and appears mathematically sound.

However, all of the formulation thus far has been presented under the assumptions of ideal

conditions. In most practical scenarios, noisy measurements provided from sensor data carry

a heavy burden on reliability and efficacy. Geometric hashing is not immune to this burden.

Within the overall procedure, there are two distinct sources of noise that could contribute to

erroneous results: noise introduced via quantization and noise on the position of extracted

primitives.

Looking first at the positional noise of extracted primitives, there has been a considerable

amount of research dedicated towards this issue [19, 13, 14]. The findings show that even small

amounts of noise or uncertainty in the model primitives has an amplifying effect on the trans-

formed invariants. Looking ahead further, applying the hash function to noisy invariants could

24

result in incorporating incorrect hash entries in the table. In turn, this would cause numerous

difficulties during recognition.

In order to mitigate the consequences of this problem, the noise on the extracted features

can be characterized based on the sensors or algorithms that produced them and then an appro-

priate model can be constructed. By modeling the noise, a formulation of the resultant noise

after the transformation can be incorporated into the hash table. Knowledge of this information

enables a proper selection of quantization parameters which can also help alleviate stress on

the recognition side. In a later chapter, knowledge of this issue will enable the derivation of a

model for the noise on extracted model features allowing rigid transformations.

An additional technique could be to select a range, or neighborhood, of hash entries with

in the hash table [14]. Naturally, even though the chance of missing correct hash values is

reduced, this concept also increases computation during the recognition step. If the neighbor-

hood of hash entries becomes too large, the recognition phase will quickly become saturated

with candidates and the correct association may vanish below the noise floor.

During the quantization step, additional error is introduced into the data via round-off

losses. Since each invariant is quantized into an appropriate bin, information on the true po-

sition of the invariant is lost when computing the hash value. This phenomenon introduces a

sophisticated trade-off between large and small bin sizes. For example, quantization is neces-

sary for geometric hashing because it enables the transition of ”continuous” positional values

into discrete locations. If the bin size is increased to a large value, more information will be

lost, chances of a hash collisions grow, and an increasing number of bins will become over-

populated. The one good outcome is that larger bin sizes produce a smaller amount of bins

to search through, but the advantages of this are effectively negated by overpopulation. On

the other end, if the bin sizes are too small, the hash domain will become too sparse and data

storage will become an increasing concern. Some evidence of this can be seen in Figure 2.7

where feature number 5 was not matched. In this case, the continuous space positions of the

feature and detection were closer in proximity than in discrete space.

Apart from the selected bin size, another undesirable trait in the quantization process is

the issue with boundary conditions. Assuming the invariants are quantized isometrically under

25

a user-defined schema, there will always exist scenarios where a boundary condition is met.

In other words, if the schema involves rounding the position of each invariant to the lowest

integer, those invariants that are already extremely close to an integer are considered to be on

the boundary. This implies that the discrete value received from the quantization step has high

potential to flip between bins if other noise is present.

2.4.3 Non-uniform Hash Distribution

Another noteworthy characteristic of geometric hashing is the distribution of hash codes

over the valid region of the hash domain. In general, this trait is considered detrimental to

the recognition step and increases the chance for incorrect associations to occur. Several prior

research efforts have acknowledged this issue [19, 7] and have proposed various techniques to

mitigate errors.

The root of non-uniformity among the hash domain is a direct result of the geometric

spread of features within a given model. For example, looking back at Figure 2.4, it can be

concluded that after quantizing the invariants into equally-spaced bins, the distribution of in-

variants across multiple layers is not uniform. This will result in certain hash entries receiving

multiple layers, while others may receive none at all. Consequently, this phenomenon places a

higher responsibility on the recognition step to decipher which layer is truly the correct associ-

ation even though the candidates are close. Instead, a different approach could be to quantize

the invariants into variably-sized bins following a user specific schema. This could alleviate

the issue of multiple layers falling into the same bin, but the hash space will remain sparse and

additional care must be taken to maintain the appropriate quantization in the recognition steps.

In order to maintain the simplicity of isometric quantization, a different approach must be

taken to reduce the sparsity of the hash domain. One such approach involves a process called

rehashing [7]. The idea rehashing is that the original distribution of invariants can be remapped

into a uniform distribution, which will eliminate sparsity and reduce bins that are excessively

populated. However, in order to do this, the original distribution must first be determined.

26

2.4.4 Detection of Feature Symmetries

The last characteristic to be discussed in this section is the ability to detect regions of

symmetry among, or even within, the various models in the database. A major issue plaguing

feature-based localization is the ability to distinguish certain features from others. In classical

terms, this usually leads to the infamous ”Kidnapped Robot” problem in mobile-base naviga-

tion. However, the procedure of geometric hashing provides an effective way to detect regions

where this could be a problem.

Since the underlying procedure of geometric hashing transforms information into a model-

based coordinate frame, the nature of this problem is slightly different from traditional applica-

tions. In a typical case, certain collections of features may resemble others contained within the

a priori database, thus leading to ambiguities during association. However, for geometric hash-

ing, the resemblance of features exists within the basis domain which provides an additional

ability to detect similar geometries among models under transformation. Much of the ambi-

guity detection process is explored in Hofstetter et al [20] where a database of feature-based

landmarks represented by geometric primitives is found to have a large number of symmetries.

The steps behind this process will be introduced and described in Chapter 3.

27

Chapter 3

Detecting Ambiguities in Feature Maps

In Chapter 2, a comprehensive overview of geometric hashing for general feature recog-

nition was presented. Moving forward, the contents of this chapter will transition toward a

more applied focus using laser-based localization in mobile robot navigation. As stated previ-

ously in the definition of model-based recognition, models are considered to be any collection

of extracted features obtained prior to recognition. In the classical use-case involving cameras

and image processing, an arbitrary number of feature-defining pixels would be selected from

a collection of images based on the needs of the system. Usually, these needs aim to provide

sufficient positioning corrections to a localization solution while achieving a certain robustness

to ambiguities within the working environment. However, since the techniques discussed later

in this thesis utilize a laser scanner, a slightly different approach is needed to accomplish the

task of identifying ambiguous model features and geometries.

Compared to monocular cameras, which provide a dense 2D projection of the scene, laser

scanners produce sparse information within their field of view (FOV). One way they make

up for the lack of dense information is by providing a metric of depth to each reported pixel,

thus giving the consumer a 3D perception of the scene. A collection of laser range measure-

ments, called a point cloud, and the feature models they compose within the geometric hashing

framework are called feature maps. Similar to the image-based definition of a model, a fea-

ture map consists of an arbitrary collection of geometric primitives extracted from the desired

environment. As explained in the previous chapter, obtaining geometric primitives has a dis-

tinct advantage of compacting information into smaller pieces. While this trait is beneficial

to processing and storing information for later, it also creates difficulty during the recognition

phase since information was lost from the compression. In this chapter, the main focus will be

discussing and addressing this loss of information.

28

In the following sections, an overview of the problems resulting from map symmetry are

given within the context of vehicle localization. In addition, a new approach to detecting sym-

metrical or ambiguous regions in feature maps using geometric hashing will be derived. Finally,

the chapter will close with remarks of how detecting ambiguities can provide critical informa-

tion to the localization pipeline in real-time applications.

3.1 Feature Extraction

Within any model-based localization framework, feature extraction plays a critical role in

the overall effectiveness of the recognition solution. Naturally, features must first be reliably

detected and extracted from a scene before they can be associated to a prior model. From this, in

order to achieve the best results, it is imperative to choose features according to the operational

environment of the system. For slow moving systems operating in tighter spaces, choosing

complex models can provide unique, and consequently high integrity, updates since processing

time may be less demanding. Faster moving systems requiring long-life operation will likely

find greater success using more primitive models since they can be detected quicker and require

less memory to store. The previous two examples highlight several factors to consider when

choosing the correct model for a given system:

• Detection Rate - how fast can features be detected that could associate to the correct

model

• Detection Repeatability - how likely is detection of the model across multiple instances/view-

points

• Recognition Rate - how fast can features be associated to the correct model

• Model Similarity - how likely is it to confuse a detection for the wrong model

• Model Size - how much memory does storing a model require

Since the application of Geometric Hashing Localization presented in this thesis involves

long-life driving in urban environments, greater focus is placed on choosing primitive models

29

to provide smaller feature sizes along with higher detection/recognition rates. The downside of

this choice, which will be addressed in this chapter, is model similarity.

The feature extraction pipeline used predominately within this thesis is largely similar

to the process introduced in the work by Stefati et al [21]. In their work, a novel approach to

classifying cylindrical or pole-like objects from LiDAR data is studied and implemented. Given

a point cloud representing a single 3D scan from a LiDAR, the ground plane is first classified

and extracted according to the segmentation and binning method presented in Himmelsbach et

al [22]. Once the ground plane has been identified, the remaining non-ground plane points are

clustered and filtered to prevent over-segmentation. Since the cylindrical objects desired to be

extracted are assumed to be vertical cylinders, the clusters can be tested against the basic circle

equation shown in Equation (3.1) to determine an approximate radius and center point.

(x− cx)
2 +(y− cy)

2 = r2 (3.1)

Reorganizing Equation (3.1) into a linear system of equations of the form Ax = b, a solution

using each laser measurement z for the cylinder radius r and 2D center point (cx,cy) is provided

in Equation (3.2) [21].

A =

1 −x1 −y1

...
...

...

1 −xz −yz

 ,b =

−(x2

1 + y2
1)

...

−(x2
z + y2

z)

 ,x =

−r2 + c2

x + c2
y

2cx

2cy

 (3.2)

To provide greater evidence of cylindricity, the circle fit test from Equation (3.2) is applied

to various horizontal layers of points from the same cluster of points. In addition, an accuracy

metric is obtained for each fit using the root mean square error eRMS between the approximated

radius and the distance from each point to the approximated circle center point [21]. This

method for extracting features from LiDAR point clouds can be used to obtain primitive pole-

like features during both a mapping or an online live run.

30

3.1.1 Map Generation

In order to produce the a priori information needed for the training phase of Geometric

Hashing Localization, features must be extracted and stored in a map prior to running the

localization pipeline. Since the possible use-cases for model-based recognition vary greatly

in nature, the method chosen to generate the map is highly implementation dependent. It is

beneficial however, to use a consistent approach when generating maps and extracting features

to be matched to the map because it promotes the best chance to extract features that already

exist within the map.

With this in mind, along with the feature extraction approach introduced above, the map-

ping procedure utilized in this thesis relies heavily on the methods from Kümmerle et al [23].

Maps are generated using a high fidelity mapping framework called Surround View presented

in another work by Sons et al [24]. Surround View mapping utilizes a vision-only solution

optimized for urban roadways with a diverse range of features. More information on Surround

View will be discussed in Chapter 5.

Over a sequence of feature extraction events, detections representing the same object will

likely overlap. Since this overlap is considered to be redundant information, these detections

are first clustered via a proximity metric and merged into a single feature before getting added

to the map. Clusters that do not have sufficient detections are considered to be outliers and are

often discarded or filtered. This process helps to keep the map memory footprint small while

utilizing the inherent confidence present for features with many overlapping detections.

3.2 Map Symmetries

The presence of map symmetries in mobile robot navigation causes enormous issues

within the localization pipeline and greatly hinders system integrity and reliability. In a more

classical sense, repeated instances of this phenomenon create similar conditions to the ”Kid-

napped Robot” problem from exploratory map learning. In these situations, the robot upholds

a firm belief of the correctly localized position within the map, when in reality the evidence is

considerably similar to another position and a lower degree of confidence should be held [25].

31

−15 −10 −5 0 5 10 15
−5

0

5

10

15

20

25

X

Y

Model Origin
Features

Figure 3.1: Sample feature map with symmetry

The consequences of this condition are extraordinarily detrimental to the integrity of each lo-

calization update and are generally undetectable through standard estimation techniques. As a

result, the problem of map integrity identifies a subtle research gap in the field of probabilistic

robotics using feature-based maps. Unfortunately, as with many other model-based localization

techniques, the construct of geometric hashing is not immune to this phenomenon.

Recall in Chapter 2, it was introduced that geometric hashing operates on groups of fea-

tures by taking advantage of the relative positioning of their members with one another. Be-

cause of this characteristic, the algorithm is inherently capable of observing instances where

two groups of features are similar. With this metric known, additional filtering of information

can be done to ensure that all possible evidence is considered before supplying the localization

solution with a positional belief. Before diving into the steps behind this detection process, it

is first important to understand what defines map symmetry within the context of feature maps.

32

1

2
3

Model Origin
Features
Instance 1
Instance 2
Instance 3

Figure 3.2: Highlighting a symmetric polygon in feature map

Suppose an arbitrary robot collects primitive feature information from a given environ-

ment to create a top-view map as shown in Figure 3.1. Before using this map for localization

purposes, generally it is first desired to obtain information about it’s quality. For simplicity of

the explanation, it is assumed that the feature positions within the map are noise-free and repre-

sent the true locations relative to the map origin. However, as mentioned before, noisy feature

positions are not the only characteristic that contribute to the overall map quality. Looking at

the positions of certain features, it can easily be seen that there exists subtle elements of pe-

riodicity among the features. In many cases, this is a clear indication that map symmetry is

present and could result in the passing of misleading information to the navigation solution.

Particularly within this example, the orientation of the points creates symmetry in higher di-

mensions as well. Since the feature map is defined for R2 space, only lines, curves, and other

2D polygons need to be considered as possibly similar or geometrically congruent.

As shown in Figure 3.2, there are 3 instances of a 3-sided polygon sharing geometric

congruence. This example is particularly egregious because the instances all share the same

33

scale. As an example of how this phenomenon could negatively impact localization, imagine

the robot is placed in the map such that it’s scene (i.e. perceptual field of view) contains only

the three primitives that make up a single instance of the congruent polygon. The robot would

use these features to match with the model and find 3 possible solutions. Assuming naivety,

the robot has a 33% chance to select the correct position. With the techniques described in the

following section, geometric hashing enables these instances of map symmetry to be detected

a priori, thus providing a qualitative value to feature maps [20].

3.2.1 Detecting Similarities

Detecting all possible congruencies within a feature map using geometric hashing is a two

phase process. The first phase involves an exhaustive search through all possible combinations

of the layers stored in each bucket from the hash table. Because this first phase is known to

generate duplicate information, the second phase is then responsible for consolidating all the

evidence gathered from the first phase into a concise format. For maps with a large amount

of features or poor geometry (i.e. dense maps with sequential feature patterns), the search

performed in the first phase can quickly become infeasible. To make this more feasible, several

constraints can be applied to place bounds on the search and reduce the overall computational

complexity of the algorithm. While some of these constraints are considered implementation

dependent, others, such as setting a maximum factorial size, apply generically to almost all

applications and will be discussed further in this section.

To begin the first phase, it is necessary to look into the buckets stored at each hash value

in the table independently. For any bucket that contains more than one layer, there exists

evidence of similar geometry between each basis frame that defines those layers. Proof of

this observation is inherent due to the nature of the recognition phase. Since all recognition

operations are conducted in the basis domain, any invariant that shares the same coordinates

(i.e. the same hash key) as an invariant in another basis necessitates that the two bases are

geometrically similar. In order to visualize this concept, refer back to Figure 2.4 in Chapter 2.

In that figure, all bases are superimposed onto a single grid and aligned accordingly in the basis

34

(a) Layer 2 (b) Layer 4

(c) Layer 7 (d) Layer 10

Figure 3.3: Layer comparison in the basis domain for bucket b

domain. A similarity can be visualized at the coordinate (3,-8) where two points from different

bases quantize to the same value.

Within each bucket containing two or more layers, all combinations of two layers are

computed using the binomial coefficient formula introduced in Equation (2.6). Then, each

combination is compared to determine if any invariants are congruent. This process is best

demonstrated by an example. Suppose an arbitrary bucket b from a given hash table contains

the set of layers Lb = {2,4,7,10} as shown in Figure 3.3. Using all possible unordered 2-tuple

permutations of the layers, the list of unordered combinations is (2,4), (2,7), (2,10), (4,7),

(4,10), (7,10).

Comparing layers 2 and 4 for similarities, it can be seen that 3 invariants are geometrically

congruent between the layers. This subset of features is called a similarity set. In order to fully

capture this information for use during the recognition phase, it is also important to consider

35

all possible k-combinations of this set. Without this consideration, there is risk that ambiguities

will remain undetected if only a subset of the ambiguous features are present online within

our scene. Using the total number of congruent invariants between the layers n, the number of

similarity sets NS is determined by Equation (3.3).

NS = 1+
n−1

∑
k=1

n!
k!(n− k)!

(3.3)

Careful consideration must be given for layer combinations that produce large amounts

of congruent invariants (i.e. n is large). The binomial coefficient equation utilizes a factorial

operation which can produce numbers larger than standard machine address spaces. In addition,

this introduces an O(n!) computational complexity. Applying Equation (3.3) to our example

shows that we should expect 7 similarity sets. A chart illustrating these sets organized by k is

shown in Table 3.1.

Table 3.1: Generated Similarity Sets for layers 2 and 4

Layers 2&4 . . .

.

3
V

er
tic

es

. . .

2
V

er
tic

es

. . .

1
V

er
te

x

. . .

36

3.2.2 Forming Constellations

After indexing through all layer combinations in a bucket, a comprehensive list of con-

gruent features is obtained within the basis domain. Since this list could potentially contain a

large amount of redundant information, it is prudent to consolidate all duplicate instances of

similarity sets. A similarity set is considered to be a duplicate if and only if each invariant

within the set is congruent to an invariant in another set and both sets contain the same number

of invariants. After consolidation, any unique set of invariants is referred to as an ambiguous

constellation.

To begin this second phase, each row of Table 3.1 is searched for unique instances. In

addition to the geometric pattern of the features, each instance of a unique similarity set also

holds statistical information about it’s prevalence within the map. As an example, if the same

similarity set appears twice in Table 3.1, then it should be expected that two instances of this

constellation of features are present in the map. Since positional information about each sim-

ilarity set is available, the relative transformations between each occurrence within the map

can also be computed. Before doing so, it is desired to define a reference datum that is ge-

ometrically consistent between all occurrences of a similarity set. This ensures an unbiased

result when converting positional information from the basis domain back to the map. A good

candidate that satisfies this requirement is the geometric centroid of the invariants.

In order to compute the geometric centroid, the coordinates of each invariant in the map

frame (xi,yi) for i = 1, . . . ,k can be treated as a vertex of an k-sided Euclidean polygon. Then,

the coordinates of the polygon’s geometric centroid in the map frame (Cx,Cy) can be computed

using Equations (3.4-3.5) where the area A of the polygon is determined in Equation (3.6).

Cx =
1

6A

n−1

∑
i=0

(xi + xi+1)(xiyi+1− xi+1yi) (3.4)

Cy =
1

6A

n−1

∑
i=0

(yi + yi+1)(xiyi+1− xi+1yi) (3.5)

A =
1
2

n−1

∑
i=0

(xiyi+1− xi+1yi) (3.6)

37

Notice, the area computed in Equation (3.6) can produce a negative value. In order to

produce a valid area from Equation (3.6), the polygon must be categorized as a simple poly-

gon (i.e. not self-intersecting). Since the polygon is composed of vertices, we can force a

non-intersecting condition by sorting the vertices such that they follow a counterclockwise

orientation. While the exact sorting method to perform this task is typically implementation

dependent, it is only required that the approach produces repeatable results when subject to the

noise on the map features. One such technique used in this thesis is to sort by the 4-quadrant

angle value between the map positive x-axis and a 2D ray from an arbitrary point inside the

polygon to each vertex. In the majority of cases, a point inside the polygon can be obtained

from the pseudo-centroid (C′x,C
′
y) as provided in Equations (3.7-3.8).

C′x =
1
k

k

∑
i=0

xi (3.7)

C′y =
1
k

k

∑
i=0

yi (3.8)

Continuing the example of bucket b from Section 3.2.1, Table 3.2 illustrates the results

of phase 1 and 2 of detecting congruencies where δ and θ represent the magnitude of the

translational and rotational offsets between each occurrence respectively. Once all similarity

sets are recorded for each layer combination within a bucket, this process is repeated for each

remaining entry in the hash table.

3.3 Insight on Map Integrity

Obtaining the geometric transformations between all instances of an ambiguous constel-

lation provides an upper bound on the resultant error should an incorrect instance of the con-

stellation be chosen during recognition. Although this may not directly provide evidence to

help choose the correct association, it enables each match to be paired with a risk metric as

well as the maximal error if the wrong association is chosen. This can provide a downstream

verification step critical information to decide whether to use the match or not.

38

Table 3.2: Ambiguous Constellations for bucket b

Constellation 1 Constellation 2 . . .

Ambiguous Points . . .

Occurrences 2 3 . . .

Transform Data δ1,2 = 0.5 m
θ1,2 = 0.02 rad

δ1,2 = 0.32 m
θ1,2 = 0.01 rad
δ1,3 = 0.76 m
θ1,3 = 3.14 rad
δ2,3 = 0.58 m
θ2,3 = -3.14 rad

. . .

An additional metric available to provide insight about certain regions of the map is to gen-

erate a heat map for both map feature density and any ambiguous constellation occurrences. In

regions of the map where there exists a high density of features there is a greater chance that

the matching step will have sufficient information to produce an association. In contrast, areas

that have very few features can be marked as low-confidence zones during recognition. Simi-

larly, map regions contain a high density of ambiguous constellations will also be problematic.

Because all of this information is known ahead of time, the system should expect the likelihood

of misleading information to increase when traversing through these areas. Additional infor-

mation regarding the data structures used to implement the theory presented in this chapter and

Chapter 2 can be found in Appendix A.

39

Chapter 4

Geometric Hashing in Localization

Within this thesis, previous chapters have introduced several components of Geometric

Hashing individually, but little practical discussion using these pieces together to aide a mo-

bile robot has been provided. The complete procedure for Geometric Hashing consists of three

phases: a Training Phase, a Screening Phase, and the Recognition Phase. Phases one and three

of this process were introduced in an abstract form in Chapter 2 and phase two was defined in

Chapter 3. In this chapter, the underlying procedures and algorithms for geometric hashing in

laser-based localization will be presented. Each phase of geometric hashing will be revisited

in a more condensed, procedure-focused form surrounded by the prerequisite steps to pro-

vide a complete picture of the a priori and online workflows. Lastly, several implementation-

dependent nuances not previously mentioned in the other chapters will be shared.

4.1 Offline Processing

As mentioned previously in Chapter 2, the offline processing phase utilizes a collection of

extracted feature models. For Geometric Hashing Localization, this collection is called a fea-

ture map and the generation of these maps using extracted features from 3D lidar measurements

were covered in Chapter 3. Although numerous geometric primitive types were presented, this

implementation of Geometric Hashing Localization will focus mainly on pole-like features.

Recall, pole-like features, henceforth called cylinders, are represented in the map via two 3D

Cartesian coordinates, indicating the top and bottom of the cylinder, as well as the radius. Us-

ing the two coordinates, several auxiliary descriptors can be determined such as cylinder height,

length, azimuth, and tilt (elevation). Descriptors serve as an additional attribute to disambiguate

potentially similar features during recognition and play a critical role when choosing from sev-

eral candidates. One additional descriptor not mentioned in the prior list is the midpoint ground

40

projection point. The midpoint ground projection point is a special descriptor that enables the

cylinder’s positional information to be condensed into a single 2D point. This attribute is used

to hash the positions of the cylinders into the hash table during the training phase.

4.1.1 The Training Phase

After obtaining the feature map for the intended operational environment, the training

phase must begin by constructing a hash table. As mentioned briefly in Chapter 2, the hash

table contains a list of hash entries, where each entry contains a mapping of hash codes to their

respective buckets. In general, the buckets should contain all pertinent information required

for the recognition phase. For geometric hashing, this boils down to each layer index that

contains an extracted feature with this hash value. Under noisy conditions, it is also possible to

store hash values belonging to the neighboring quantized locations around the hashed location.

Further details on this will be provided later in this chapter.

In addition to the hash entries, the hash table also contains a database of all the basis layers

indexable by a sequential identifier. The nature and ordering of these identifiers is typically

determined by the structure of the feature map. Each layer in the database contains various

meta information that establishes a relation between the real world and the basis domain. One

critical component of this is a list of map feature identifiers that link each invariant in the layer

(i.e. in the basis domain) back to an extracted feature in the map.

4.1.1.1 Basis Parameters

Before generating the hash table, there are several tuning parameters that can be used to

lend flexibly to various operating conditions and environments. The most influential of these

parameters is one that has already been mentioned in previous sections, the bin size qpose. The

bin size most heavily affects all three phases of Geometric Hashing because it determines the

resolution of the hashing process. If a large bin size is chosen, there exists a higher likelihood

of hashing collisions as more precision is lost during quantization. Although this will likely

reduce the overall size of the hash table, it will have a negative impact on the robustness of

the recognition phase due to information loss. Alternatively, choosing a bin size that is too

41

small will create the maximal amount of hash values with minimal collisions. This will give

the hash table a larger memory footprint, but will better enable the recognition phase to select

the best candidates in dense feature areas. However, choosing a bin size that is smaller than the

average positional uncertainty envelope will likely lead to poor performance during recognition

due to features ”bleeding” into neighboring bins at the quantization step. More analysis of how

altering the bin size affects performance will be provided later in this thesis.

Another pair of parameters focus heavily on limiting the scope of possible basis layers

during the layer generation step. These are the maximum basis pair separation blimit and the

invariant inclusion radius rincl . The basis limit establishes a rule that no bases can be created

from a combination of features whose distance apart is greater than a set value. Similarly, the

inclusion radius dictates that no hash values shall be created from invariants in a basis whose

distance from the basis origin are larger than a set value. These parameters help to address

the issue that the mobile platform is only able to see features within a set field of view during

recognition. Since basis layers can only be generated if both points of the basis pair are seen,

it is highly unlikely that any information larger than these parameters would be useful online.

Due to the nature of the layer generation algorithm a limit can be established to enforce this as

shown in Equation (4.1):

blimit ≤ rincl (4.1)

The last parameter, the scaling factor strans, affects the type of geometric transformation

that is permissible during the layer generation step. For scaling factor values 0 ≤ strans < 1,

similarity transformations are permissible. To force rigid transformations only, strans should be

set to 1.

42

4.1.1.2 Quantization and Hashing

As mentioned earlier in Chapter 2, the hashing function selected to hash the invariants is

typically implementation dependent. In general cases, the hash function only needs to reason-

ably guarantee unique hash values for the operational range of input values. For the implemen-

tation of Geometric Hashing Localization presented in this thesis, the range space is bounded

by qpose and rincl . Because of this, the hash function was derived as a function of these two

parameters as well as the quantized positions of the invariants.

The quantization method can be imagined by overlaying a grid structure onto the continu-

ous space in the basis domain. Assuming a perfectly square shape (i.e. length and width contain

the same number of cells), the number of cells in the grid Ng is shown in Equation (4.2).

Ng = (
2rincl

qpose
+1)2 (4.2)

Similarly, the grid cell containing the basis origin Og can also be obtained via Equation (4.3).

Og = ceil(
Ng

2
) (4.3)

Given that each cell is also square and sized via the qpose parameter, continuous space points ~p

can be quantized to fit in a grid coordinate via Equation (4.4) where ~pq is the discrete position.

~pq = sign(~p)∗ ceil(
|~p|

qpose
)∗qpose (4.4)

To reduce ~p p from R2 to a singular value, the hash function provides the method to map the

discrete grid coordinate to a cell index in the grid. This is shown in Equation (4.5) where Sx and

Sy are both scaling factors that provide the boundary constraints from qpose and rincl mentioned

earlier.

Sx

Sy

=

 1
qpose

1
qpose

(2rincl
qpose

+1)

 (4.5)

43

These scaling factors are then used in Equation (4.6) where h is the resultant hash value and µq

and νq are the vector components of pq from Equation (4.4).

h = Og + round(Sxµ
q)+ round(Syν

q) (4.6)

4.1.1.3 Collision Filtering

Before performing the hashing step, it is prudent to filter features that could produce hash-

ing collisions from the map. As mentioned earlier in Section 2.2, hashing collisions result in

two inherently different sources of information becoming indistinguishable from one another

after the hash function is applied. In the case of geometric hashing, this means that two fea-

tures are close enough that they will hash to the same value due to quantization errors. Since

the quantization parameter qpose is an input to the hash table parameters and the cells are known

to be square, the minimum feature separation metric dmin is known as shown in Equation (4.7).

dmin = qpose
√

2 (4.7)

After identifying all 2-tuple combinations of features needed to create bases, each com-

bination should be checked to see if the threshold from Equation (4.7) is violated. For each

violation, there are a few options for how to resolve the collision and each have varying de-

grees of severity. In the most strict case, all features involved in each hashing collision are

removed from the map. This strict filtering method is particularly useful when the magnitude

of positional uncertainty for a given extracted feature overlaps with the other colliding fea-

ture(s). When the aforementioned condition is met, there exists an increasing probability that

the two extracted features correspond to the same object and no definitive conclusion can be

drawn as to which, if either, features accurately represent the object’s true position.

In certain situations however, such as within sparsely populated map regions, removing

all instances of colliding features can create poor feature geometry or dispose of potentially

helpful information. In these cases, a moderate collision filter can attempt to disentangle certain

collisions by throwing away features that belong to more than one collision. For example, given

44

−4 −2 0 2 4 6 8 10

−4

−2

0

2

4

6

8

10

X

Y

Model Origin
No Filter
Strict Filter
Cluster Filter
Moderate Filter

Figure 4.1: Hash Collision Resolution Methods - Bin Size: 0.5m

three extracted features with identifiers mi, where i = 1,2,3, suppose that m1 collides with m2

and m2 collides with m3. If m1 does not collide with m3 and all three features have non-

overlapping positional uncertainty, then the optimal resolution action, in order to maintain the

most information, is to remove m2. In another case, if m1 and m3 also collide, the positions

of all three extracted features could be clustered to form a single map feature with an inflated

positional uncertainty.

An example of each filtering technique is provided in Figure 4.1 given an example scene

and qpose of 0.5 meters. For each extracted feature, the covariance ellipse representing the

positional uncertainty is represented by a translucent light gray circle surrounding the feature.

Further inspecting Figure 4.1, a case where strict filtering is ideal is shown in two instances

where a pair of red features with large uncertainty are close in proximity. The result of this

filter removes all red features from the map. A case for moderate filtering is shown in two

45

instances where three features with non-overlapping uncertainties are in close proximity. In

each instance, the feature shown in green is marked for removal from the map. Lastly, a case

for cluster filtering is shown in one instance where three blue features are depicted. Since these

features all have overlapping uncertainties, the recommended approach is to merge the cluster

into a single feature and inflate the uncertainty to cover the total region of uncertainty before

the merge.

4.1.1.4 Algorithm: Training

In order to consolidate all the steps for the training phase presented in Chapter 2 and earlier

in this chapter, Algorithm 4.1 lays out a process flow in pseudo code. The function ”CREATE

TABLE” requires the complete set of features M from the map and returns a hash table H and

database of layers L.

Algorithm 4.1 Training Phase
1: procedure CREATETABLE(~mi, ~mx, ~my) . Create hash table from set of features M
2: l← 0
3: C← nchoose2(length(~mi)) . Returns a csx2 matrix of combinations
4: for i← 1, length(C) do . Loop through combinations
5: ~c← (C[i][1],C[i][2])
6: δ ← distance(~mx[cx], ~my[cy]) . Get the scalar distance
7: θ ← orientation(~mx[cx], ~my[cy]) . Get the angle of basis w.r.t. model frame
8: if δ < blimit then . Ensure basis pair are within distance threshold
9: l← l +1

10: ~o l ← mid point(~mx[cx], ~my[cy]) . Average the position to get basis origin
11: R← rotmat(θ)
12: for j← 1, length(~mi) do . Loop through all map features
13: ~p← (~mx[j], ~my[j])
14: ~t← ~p−~o l
15: if rincl < distance(tx, ty) then . Ensure point is within inclusion radius
16: ~b← trans f orm(~t,R,strans/δ) . Transform point into basis frame
17: H← hash(~b,qpose, l) . Quantize and hash the transformed point
18: σ ← computeCovar(~b,δ) . Compute transformed covariance ellipse
19: L← updateLayerIn f o(j,~b,σ) . Add helpful info to Layers database
20: end if
21: end for
22: end if
23: end for
24: return H,L
25: end procedure

46

4.1.2 The Screening Phase

Returning to the discussion of notable contents within the hash table, the layers may also

contain reference information to any ambiguous constellations present within that basis. Typi-

cally, this information is stored in a similar database structure elsewhere in the hash table where

each instance is given a sequential identifier. The detection and formulation of these ambigu-

ous constellations is performed offline using the results of the Training phase as a prerequisite.

Because of this, the intermediate process of analyzing the map is appropriately named the

screening phase. For the implementation of Geometric Hashing Localization presented in this

work, the Screening phase begins exactly as described in Chapter 3 with one minor addition

addressed below.

4.1.2.1 Congruent Bases

Certain geometries of features can create a troublesome scenario where all quantized in-

variants from one basis (excluding the basis pair) are identical to those in another basis. This

phenomenon is caused by basis congruency. The consequence of this issue creates a large

number of ambiguous constellations in the hash table that should not be considered ambigu-

ous. The explanation of this is best demonstrated by an example.

Consider a scenario where a group of four features are aligned in one dimension and

equally spaced in another as shown in Figure 4.2. When a basis is constructed by combining

points (5,3) and (8,7), notice that the resulting midpoints (i.e. basis origins) will coincide

at the same location relative to model origin. After transforming the points into the basis

domain, the invariants within each basis will be perfectly geometrically congruent as shown

in Figure 4.3. Since it is known that the model identifiers that correspond to these invariants

are the same between the two bases, this is not considered to be ambiguous even though it

meets the necessary criteria. This phenomenon can be detected and avoided by checking the

difference in position of any two basis origins in the world frame. If the difference is less than

a congruency tolerance threshold, tcong, and all the model identifiers match between the two

47

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

OM

1
2

3

4

5

6

7

8

X

Y

Model Origin
Features

Figure 4.2: Model example depicting congruent base scenario

bases, then the two bases should not be checked for ambiguities. The congruency tolerance is

usually determined as a function of the quantization parameter qpose.

4.1.2.2 Algorithm: Screening

As mentioned in Chapter 3, the screening procedure can be broken down into 3 phases:

identify similarity sets, collate the sets into to unique instances of ambiguous constellations,

then determine relative transformations between each occurrence of the ambiguous constella-

tions within the feature map. Again, these steps are collated into pseudo code in Algorithm 4.2

where the function ”DETECT AMBIGUITIES” consumes a hash table H and layers database

L and provides a database of ambiguities A as a result.

48

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

12

14

16

OB

1

2

3

4

5

6

7
8

X

Y

Basis Origin
Invariants

Figure 4.3: Congruent bases formed via two overlapping basis origin points

49

Algorithm 4.2 Screening Phase
1: procedure DETECTAMBIGUITIES(H,L) . Create database of ambiguous constellations A
2: for i← 1, length(H) do . Loop through all buckets
3: if length(H[i][2])> 1 then . There must be more than one layer in the bucket
4: C← nchoose2(length(H[i][2]))
5: for j← 1, length(C) do . Loop through all layer combinations
6: [lhs,rhs]← L[H[i][2][C[j][1]]],L[H[i][2][C[j][2]]]
7: δ ← distance(olhs,orhs)
8: if δ < tcong then . Check for congruent bases
9: continue

10: end if
11: for k← 1, length(~bq

lhs) do . Loop through keys in this layer
12: X ← f ind(~bq[k],~bq

rhs)
13: end for
14: if length(X)> 0 then
15: k← length(X)
16: repeat
17: Z← nchoosek(length(X),k)
18: for kk← 1, length(Z) do . Loop through permutations
19: W ← updateSimilarityIn f o(k, lhs,rhs,Z,X)
20: end for
21: k← k−1
22: until k < 1
23: end if
24: end for
25: for j← 1, length(W) do . Loop through all similarity sets by vertex count
26: rs← length(W [1])
27: while rs > 0 do
28: A← addConstellation(W [1][1],W [1][2])
29: hs← removeMatchingConstellations(W)
30: for k← 1, length(Alayers) do. Loop through the number of occurrences
31: G← determineCentroids(Amids[k])
32: H← centroidOrientation(G,Amids[k])
33: A← addMetaIn f o(G,H)
34: L[Alayers[k]]← Aid[k]
35: end for
36: Co← nchoose2(Alayers)
37: for k← 1, length(Co) do . Get transform info on each occurrence
38: A← addTrans f orm(A,k)
39: end for
40: rs← rs−hs
41: end while
42: end for
43: end if
44: end for
45: return A
46: end procedure

50

4.2 Localization Pipeline

Before diving into the recognition phase, the logical flow of an example localization

pipeline using Geometric Hashing to associate features should be shown to provide context.

Figure 4.4 shows a possible localization pipeline using the state estimation method. Primi-

tive features are first extracted from the scene using the latest laser measurements and fed into

the hash function. Upon generating local bases, each basis is compared to bases stored in the

hash table to find the best match at the feature recognition step. Once the most likely match is

chosen, the invariants from the matched basis will correspond to model identifiers in the map.

Lastly, resultant feature positions from the matching model identifiers are fed into a measure-

ment model in order to update the vehicle states. Although it is not strictly necessary to use

prior information at the feature extraction step as shown in Figure 4.4, knowledge of prior in-

formation can help reject instantaneous outliers should the incorrect association be chosen. On

the other hand, prior information could also help propagate erroneous associations over time.

4.2.1 The Recognition Phase

With the completion of map generation, analysis and hash table construction, all the col-

lected information can now be used during an online recognition sequence. As discussed in

Chapter 2, the primary goal of the online recognition phase is to find the correct transforma-

tion, if it exists, between the scene features and the models accumulated in the training phase.

This proper transformation can be found by determining correct associations of individual fea-

tures and feature groups from the scene with those in the database. If no possible associations

are determined, then the scene is likely not well represented in the database.

Since the recognition phase begins very similarly to the training phase, many of the same

feature filtering techniques such as feature collision detection and basis limiting are applicable.

Even though some of these techniques can reduce downstream computation, it is still important

to evaluate the trade-offs of applying these techniques and meeting the real-time constraints

of the system. Before diving into semantics with how the scene feature associations are deter-

mined, the role noise plays in the quality of the association step must first be addressed.

51

Local Basis Layer 4

State
Estimation

Feature
Extraction

Measurement
Model

Laser Measurements
z1, z2, ..., zM

Scene Features
s1, s2, ..., sE

Model
Identifiers

mi
1, mi

2, ..., mi
N

Prediction Identifiers
p1, p2, ..., pN

Hash Function

Feature
Recognition

Hash Table Feature Map

Figure 4.4: Geometric hashing localization flowloop

52

4.2.1.1 Noise Mitigation

If the primitive features extracted from each scene are noisy, obtaining a sufficient amount

of features associations at each recognition step becomes difficult. The sensitivity of geometric

hashing that results from noise was briefly discussed in Chapter 2 but no formulation or model

was presented to mitigate the negative effects noise can introduce.

In the work from Isadore Rigoutsos a quantitative characterization of noise was conducted

for invariants that were allowed to undergo similarity or affine transformations (i.e. rotation,

translation, scaling, and shearing) [7]. Because each invariant is defined by a basis, and each

basis by noisy feature positions, Rigoutsos discovered that the resultant uncertainty on the

invariant is ultimately a function of both the type of transformation used as well as the proximity

of the invariant to the basis origin.

Assuming that the noise on each extracted feature is Gaussian white noise, then the re-

sulting noise on each invariant can also be approximated by a Guassian distribution with the

covariance matrix shown in Equation (4.8)

Σs =
(4||(µs,νs)||2 +3)σ2

2||~p2−~p1||2
(4.8)

In Equation (4.8), ~p1 and ~p2 are the extracted feature positions comprising the basis pair, µs and

νs are the similarity transformation invariant positions, and σ is the variance on the extracted

features [26].

Since the contributions of this thesis operate only under rigid transformation invariance

as mentioned in Section 2.1, it is necessary to obtain a similar characterization under these

circumstances. However, when applying the same approach to the rigid formulation, the resul-

tant distribution was found to no longer be Gaussian. Because rigid transformations preserve

scaling, the noisy invariants positions smear in an angular direction more noticeably than the

radial. This results in a new ”curved slot” shaped distribution that represents a smaller subset

of the Gaussian distribution for the similarity transformation. As such, the new distribution can

be over-bounded using Equation (4.8) as shown in Equation (4.9) [26].

53

Σs =
(4||(µs,νs)||2 +3)σ2

2||~p2−~p1||
(4.9)

After obtaining information on the anticipated noise of the invariants, it is also important

to consider how precision lost during the quantization step can also play a critical role during

recognition. For example, if an invariant represented in continuous space is far away from it’s

quantized position and holds a positional uncertainty magnitude close in value to qpose, there

exists a reasonable likelihood that the true position of the invariant is in a neighboring bin. To

incorporate this, a weighting scheme can be applied to the resultant bin and all the neighbors

such that the neighbors receive a lower weight than the center. Then, the neighboring bins can

also be taken in to consideration as candidates for association.

4.2.2 Candidate Selection Methods

Chapter 2 provided a high overview as to how features from the local scene are associated

to their mapped counterparts. However, there was no mention of how to remain robust to

ambiguities and measurement uncertainty or noise. This section provides six different methods,

Algorithms 4.3-4.8, to determine the best probable matches given noisy measurements and

highly ambiguous geometries. The different methods can be split up in two different categories:

feature-matching and basis-matching. In the feature-matching approaches, the best possible

matches are determined on a feature-by-feature instance where certain matches may not be part

of the same basis in the hash table. By contrast, in the basis-matching approaches, the best

possible matches are selected from the basis that obtains the highest voting score.

Algorithm 4.3 is a basis-matching approach that provides a primitive association selection

schema where the resultant features associations are simply taken from the basis layer that

receives the most votes. Algorithm 4.4 is a feature-matching technique where the associations

of each detection are obtained by identifying the most occurring match for each feature (i.e. the

distributional mode). As each candidate layer is checked for associations, a tally is recorded

for each unique feature identifier per detection. Then the feature identifier with the most tallies

is deemed the association. Algorithm 4.5 is another feature-matching approach very similar

54

to Algorithm 4.4. Instead of searching through all candidate layers, only the candidates that

recorded more matches than the upper-third percentile of matches for the set of candidates is

searched. For example, if there are five candidate layers where three contain at least 7 matches

and the other two each contain four matches, the latter two would be omitted from selection

due to insufficient features when compared to the others. Algorithm 4.6 continues to build off

of the approach in Algorithm 4.5. Similarly, Algorithm 4.6 is a feature-matching approach

where candidates are first pruned by the upper-third percentile of matches. However, instead of

taking the most occurring feature as was done in Algorithms 4.4-4.5, the weighting score is used

based on the mahalanobis distance of the detection from the mapped feature. Algorithm 4.7 is a

fusion between the approaches presented in Algorithms 4.5-4.6. While maintaining the feature-

matching approach, associations are instead selected by averaging the weighting scores across

all candidates and selecting the highest value. This approach provides the most flexibility to

quantization loss and noise. Lastly, Algorithm 4.8 presents a basis-matching approach where

the set of associations is determined by the highest sum of weight scores for each candidate

layer.

Algorithm 4.3 Associate Features 1
1: procedure SELECTASSOCIATION(Z) . Select association based on weight score
2: m← 0,mi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: if Z[i][3]> m then . Cache the index with the most matches
5: m← s
6: mi← i
7: end if
8: end for
9: P← Z[mi][1]

10: return P
11: end procedure

55

Algorithm 4.4 Associate Features 2
1: procedure SELECTASSOCIATION(Z) . Select the candidate from the mode of the

distribution
2: m← 0,mi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: if Z[i][3]> m then . Cache the index with the most matches
5: m← s
6: mi← i
7: end if
8: end for
9: for i← 1, length(Z) do . Loop through all candidate matches again

10: Bm← updateBallotList(Z) . Add/update entries in ballot for each feature: update
the tally

11: end for
12: for i← 1, length(Bm) do . Loop through list of ballots
13: w← 0,wi← 0
14: for j← 1, length(Bm[i]) do . Loop through all features in ballot
15: q← Bm[i][j][1]

Bm[i][j][2]
16: if q > w then . Cache the highest weight
17: wi← Bm[i][j]
18: w← q
19: end if
20: end for
21: P← Bm[i][wi]
22: end for
23: return P
24: end procedure

56

Algorithm 4.5 Associate Features 3
1: procedure SELECTASSOCIATION(Z) . Select the upper third percentile of candidates,

then use the distributional mode
2: m← 0,mi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: if Z[i][3]> m then . Cache the index with the most matches
5: m← s
6: mi← i
7: end if
8: end for
9: t← 2∗Z[mi][3]

3
10: for i← 1, length(Z) do . Loop through all candidate matches again
11: if Z[mi][3]≥ t then
12: Bm← updateBallotList(Z) . Add/update entries in ballot for each feature:

update the tally
13: end if
14: end for
15: for i← 1, length(Bm) do . Loop through list of ballots
16: w← 0,wi← 0
17: for j← 1, length(Bm[i]) do . Loop through all features in ballot
18: q← Bm[i][j][1]

Bm[i][j][2]
19: if q > w then . Cache the highest weight
20: wi← Bm[i][j]
21: w← q
22: end if
23: end for
24: P← Bm[i][wi]
25: end for
26: return P
27: end procedure

57

Algorithm 4.6 Associate Features 4
1: procedure SELECTASSOCIATION(Z) . Select the upper third percentile of candidates,

then use the highest weighting
2: m← 0,mi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: if Z[i][3]> m then . Cache the index with the most matches
5: m← s
6: mi← i
7: end if
8: end for
9: t← 2∗Z[mi][3]

3
10: for i← 1, length(Z) do . Loop through all candidate matches again
11: if Z[mi][3]≥ t then
12: Bm← updateBallotList(Z) . Add/update entries in ballot for each feature: use

the max weight value
13: end if
14: end for
15: for i← 1, length(Bm) do . Loop through list of ballots
16: w← 0,wi← 0
17: for j← 1, length(Bm[i]) do . Loop through all features in ballot
18: q← Bm[i][j][1]

Bm[i][j][2]
19: if q > w then . Cache the highest weight
20: wi← Bm[i][j]
21: w← q
22: end if
23: end for
24: P← Bm[i][wi]
25: end for
26: return P
27: end procedure

58

Algorithm 4.7 Associate Features 5
1: procedure SELECTASSOCIATION(Z) . Select the upper third percentile of candidates,

then find the average between mode and mahalanobis distance
2: m← 0,mi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: if Z[i][3]> m then . Cache the index with the most matches
5: m← s
6: mi← i
7: end if
8: end for
9: t← 2∗Z[mi][3]

3
10: for i← 1, length(Z) do . Loop through all candidate matches again
11: if Z[mi][3]≥ t then
12: Bm← updateBallotList(Z) . Add/update entries in ballot for each feature:

sum weights, increase tally
13: end if
14: end for
15: for i← 1, length(Bm) do . Loop through list of ballots
16: w← 0,wi← 0
17: for j← 1, length(Bm[i]) do . Loop through all features in ballot
18: q← Bm[i][j][1]

Bm[i][j][2]
19: if q > w then . Cache the highest weight
20: wi← Bm[i][j]
21: w← q
22: end if
23: end for
24: P← Bm[i][wi]
25: end for
26: return P
27: end procedure

Algorithm 4.8 Associate Features 6
1: procedure SELECTASSOCIATION(Z) . Select association based on weight score
2: w← 0,wi← 0
3: for i← 1, length(Z) do . Loop through all candidate matches
4: s← sum(Z[i][2]) . Sum the weights
5: if s > w then . Cache the index of highest weight
6: w← s
7: wi← i
8: end if
9: end for

10: P← Z[wi][1]
11: return P
12: end procedure

59

4.2.2.1 Algorithm: Recognition

A noteworthy feature of the recognition algorithm given in Algorithm 4.9 is that certain

steps can execute concurrently. This trait can introduce large performance gains particularly

when creating local bases and tallying votes for candidates. If the function ”RECOGNIZE

FEATURES” were to run in a concurrent processing framework, each basis pair could be

checked for matching feature identifiers independently. In other words, the for loop in step

4 could be passed out to a job pool.

4.2.3 Verifying the Association

Since the implementation of Geometric Hashing in this thesis is intended for use in highly

automated driving maneuvers in urban environments, safety is a critical concern. In order to

address this, the last procedural step conducted at each recognition step is to apply some form

of verification that the localization solution update will not introduce Hazardous Misleading

Information (HMI) to the system. Part of this approach was discussed in Section 3.3 where

computing all instances of ambiguous constellations can provide deterministic upper bounds

on possible error which could allow for greater understanding of integrity risk, but this does

not reduce the likelihood of the risk each update.

For this implementation of Geometric Hashing Localization, the previously mentioned

verification is augmented with two additional checks. Even though the algorithm does not

need to rely on prior updates to function properly, the first check introduces this as a weak

dependency by setting a sanity check threshold on max allowable traversal distance since the

last update. This allows the algorithm to throw away updates that attempt to re-position the

vehicle large distances from the previous position. The second check is only valid when using

feature-matching methods. Since the basis-matching approach automatically ensures that all

associated features are within a reasonable proximity to one another, a safety check must be

applied for the feature-matching case. If any associated feature violates a certain proximity

threshold, then it is likely that HMI is present and the association is discarded. For simplicity,

the threshold can easily be determined as a function of the vehicle sensory Field of View (FoV).

60

Algorithm 4.9 Recognition Phase
1: procedure RECOGNIZEFEATURES(H,L,si,sx,sy) . Associate scene features S with those

in the map M
2: l← 0
3: C← nchoose2(length(~si)) . Returns a csx2 matrix of combinations
4: for i← 1, length(C) do . Loop through combinations
5: ~c← (C[i][1],C[i][2])
6: δ ← distance(~sx[cx],~sy[cy]) . Get the scalar distance
7: θ ← orientation(~sx[cx],~sy[cy]) . Get the angle of basis w.r.t. scene frame
8: if δ < blimit then . Ensure basis pair are within distance threshold
9: l← l +1

10: ~o l ← mid point(~sx[cx],~sy[cy]) . Average the position to get basis origin
11: R← rotmat(θ)
12: for j← 1, length(~si) do . Loop through all scene features
13: ~p← (~sx[j],~sy[j])
14: ~t← ~p−~o l
15: if rincl < distance(tx, ty) then . Ensure point is within inclusion radius
16: ~b← trans f orm(~t,R,strans/δ) . Transform point into basis frame
17: Hs← hash(~b,qpose, l) . Quantize and hash the transformed point
18: Ls← updateLayerIn f o(j,~b) . Store all candidate layers
19: Ls← neighborhood(Hc) . Store neighboring bins to account for noise
20: end if
21: end for
22: B← createBallot(Ls) . Key-value pairs of local layers and occurrences
23: [e, t]← maxCount(B) . Find the entry with the most counts
24: if t > 2 then
25: a← round(2t

3) . Capture upper 3rd percentile of max occurrences
26: for j← 1, length(B) do . Loop through ballot
27: if B[j][2]≥ a and B[j][2]> 2 then
28: Lc← B[j][1]
29: end if
30: end for
31: else
32: continue
33: end if
34: for j← 1, length(Lc) do . Loop through candidate layers
35: for k← 1, length(Lc[j]) do . Loop through points in layer
36: [zidx,mmin]← minMahalanobisDist(Lc[j][k],L[j])
37: if mmin > 3 then . Threshold results
38: Z← addMatch(L[j][zidx],

1
mmin

) . Add match and weight
39: end if
40: end for
41: end for
42: end if
43: end for
44: return selectAssociation(Z)
45: end procedure

61

Now with the full suite of algorithms presented in this chapter, experiments can be conducted

to vilify the theory.

62

Chapter 5

Simulation and Experimental Test Design

The first measure taken to verify that Geometric Hashing Localization is a suitable lo-

calization method was to isolate the feature association step from the other aspects of the full

localization update. To accomplish this, a software simulation was developed utilizing gener-

ated wheel speed and steering angle data as an input to simulate driving the system along a path

through a pre-built map. Using the known FOV information from the experimental vehicle, the

simulation can dispense extracted features to the association step without needing to run the full

extraction pipeline. To quantify the results of the data associations produced in the simulation,

the resultant measurement updates can be compared to a reference localization solution.

Following this procedure, in order to further verify the solution is capable of running in

highly time-critical applications, an implementation of Geometric Hashing Localization written

in C++ was integrated into the existing framework presented in Kümmerle et al [23]. Here the

feature association module was replaced with the geometric hashing pipeline introduced in

Chapter 4.

In addition to describing the two frameworks mentioned above, this chapter will also pro-

vide a detailed description of the test environments, the robotic vehicle platform used to collect

data, and the reference solution used to verify the results. Finally, the chapter will close with

several goals and expected outcomes for the experimentation.

5.1 Hardware Setup

In order to collect real world data for use during the experimentation presented in this

thesis, a vehicle platform with a sufficient sensor suite is needed. To fulfill these needs, a

Mercedes-Benz E-Class, with the given name ”BerthaOne”, as depicted in Figure 5.1 was cho-

sen. BerthaOne is a fully robotic vehicle capable of performing highly automated cooperative

63

Figure 5.1: BerthaOne robotic vehicle depicting computing hardware configuration [1].

driving maneuvers and has a long list of accolades from various international robotics chal-

lenges [1]. As shown in Figure 5.2, the vehicle is equipped with a variety of monocular and

stereo gray-scale and color cameras, multi-range radars, and a single long range lidar to provide

sufficient sensory redundancy to the automation software.

BerthaOne contains two on-board computing platforms with designated operational do-

mains. The main autonomy computer consists of a Linux-based server running two Intel Xeon

E5-2640v3 processors each containing 16 cores at 2.6 GHz clock frequencies, 64 GB of RAM,

and a Nvidia GeForce GTX 980 Ti GPU. The motion execution computer consists of a real-time

operating system and is tasked with providing low level control and command to the vehicle

over the CAN bus [1].

For the on-board cameras, five BlackFly PGE-50S5M-C monocular cameras are used sur-

rounding the vehicle. The two side mounted cameras use Lensagon BM2920S118 fisheye

lenses to provide a wide-angle field of view (FoV), while the other three units use Lensagon

BM4018S118 lenses. The two cameras behind the front windshield are used in a stereo con-

figuration to provide depth information to the perception system. The color camera used for

colored object detection mounted in the front of the vehicle is a BlackFly PGE-50S5C-C using

the same Lensagon BM4018S118 lens. The long range lidar is an Ibeo LUX4 which provides

4 layers of ranging information. In addition to perceptive sensors, BerthaOne is also equipped

with an OxTS TR3000 high precision GNSS/INS odometry solution to fuse wheel speed and

steering angle sensors as well as a Ublox C94-M8P dual GNSS receiver for redundancy [1].

64

Figure 5.2: BerthaOne sensory field of view and layout [1].

65

Since the experimentation presented in this thesis is a continuation of the work presented

in Kümmerle et al [23], the hardware and sensory additions to the vehicle since the work of

Tas et al [1] remain in place. Notably, this boils down to the addition of four Velodyne VLP16

lidars with full 360 degree FoV mounted flat on the roof of the vehicle. Since each lidar is

within direct line-of-sight and close proximity with one another, the internally rotating lasers

are time synchronized and phase-locked at different offset so that no laser is ever projected

in the direction of another sensor’s detector. Without this, the sensors are prone to reporting

spurious false detections.

To run the software simulation portion of the experimentation, a desktop computer running

Ubuntu Linux Xenial Xerus (16.04) was used. The system consisted of a single Intel i7-3700K

processor containing 8 cores running at 3.5GHz, 16 GB of RAM, and an Nvidia GeForce GTX

660 GPU.

5.2 The Reference Solution

In order to effectively compare and evaluate Geometric Hashing Localization as a feasi-

ble method for autonomous driving precision and real-time performance, a pre-existing high-

fidelity localization solution was used as a reference. The solution, first mentioned in Chapter

3 called Surround View [24], is a full six degrees-of-freedom (DoF) position update using a

suite of cameras spanning all around the vehicle. Similar to the Geometric Hashing approach,

Surround View also requires an a priori map created from images collected on a previous drive

through an area.

Maps are generated offline by tracking keypoints throughout a sequence of images and

then determining optimal landmark positions and the traveled vehicle path through a bundle

adjustment method. Landmarks for the map are stored alongside the observed image key-

points in a planar grid structure known as the feature grid. When conducting a subsequent pass

through the mapped environment, localization is achieved by providing a set of observations

and landmarks from the feature grid based on the current predicted egopose of the vehicle and

66

associating them with current observations of the scene. After obtaining an initial GNSS posi-

tion and heading, no additional sensors beyond the cameras are required to maintain continuous

solution updates.

Surround View is also optimized to continuously improve the mapping quality by driving

multiple passes through the desired localization region [27]. This helps increase the longevity

of the solution as the physical environment changes over time because maps can be refined and

updated as new features are introduced to the previous set of images.

Even though the path of vehicle during the collection drive is a component of the map,

Surround View can still provide high-fidelity localization updates independent of the direction

driven on subsequent passes [24]. When driving within proximity to the vehicle path from

the mapping drive, Surround View is capable of providing positioning uncertainty under 1 cen-

timeter as well as a rotation uncertainty under 0.2 degrees. These uncertainty values increase

drastically as the vehicle moves away from the mapped vehicle path due to a decreased likeli-

hood of matching keypoints between the map and scene. Given the sensor setup described in

Section 5.1, the BerthaOne platform has a sufficient camera rig to generate a concrete reference

solution required to evaluate Geometric Hashing Localization.

5.3 Mapped Circuits

Data collections using the aforementioned platform were conducted on two urban circuits

within the Baden-Württemburg region in Germany. In this section, each circuit will be intro-

duced as well as the maps generated following the techniques described in Section 3.1.1 for

these areas. The colored routes indicating the path of travel for the experimental vehicle were

collected using the reference solution.

5.3.1 Sindelfingen Route

The first circuit, henceforth known as the ”Sindelfingen Route”, is a rounded trapezoidal-

shaped circuit through a medium-density urban environment located in Sindelfingen, Germany.

The circuit consists of two sharp left turns, one partial left turn, and one roundabout. The

mapped portion of the circuit generated 738 pole-like features over the course of a 10.9 km

67

Figure 5.3: Driven route in Sindelfingen, Germany

drive. During the course of travel, the vehicle performed 1.75 laps of the circuit traveling in the

counterclockwise direction. Figure 5.3 shows the course of travel as well as the starting and

end points of the collection event. Figures 5.4-5.5 depict the positions of the pole-like features

and traversal speed over the mapped area respectively.

5.3.2 Karlsruhe Route

The second circuit, known as the ”Karlsruhe Route”, is a course through a medium-density

urban environment located in Karlsruhe, Germany. The circuit consists of several more com-

plex lane markings over the Sindelfingen route. In addition, the course contains two round-

abouts, one sharp right turn, two sharp left turns, and several lane changes. The mapped portion

of the circuit generated 891 pole-like features over the course of a 12.4 km drive. The vehicle

performed just over one full lap of the route traveling in the counterclockwise direction. Fig-

ure 5.6 shows the course of travel and Figures 5.7-5.8 show the pole-like feature positions and

traversal speed over the mapped area respectively .

68

4.989 4.99 4.991 4.992 4.993 4.994 4.995 4.996 4.997 4.998

Easting [m] 105

5.3948

5.3949

5.395

5.3951

5.3952

5.3953

5.3954

N
or

th
in

g
[m

]

106 UTM Zone 32

Landmarks
Reference
StartPoint
EndPoint

Figure 5.4: Extracted cylinders from Sindelfingen route

69

0 100 200 300 400 500 600

Time [s]

0

2

4

6

8

10

12

14

16
D

er
iv

ed
 S

pe
ed

 [m
/s

]

Figure 5.5: Derived speed of vehicle with smoothing

Figure 5.6: Driven route in Karlsruhe, Germany

70

4.576 4.578 4.58 4.582 4.584 4.586 4.588 4.59 4.592 4.594

Easting [m] 105

5.428

5.4282

5.4284

5.4286

5.4288

5.429

5.4292

5.4294

N
or

th
in

g
[m

]

106 UTM Zone 32

Landmarks
Reference
StartPoint
EndPoint

Figure 5.7: Extracted cylinders from Karlsruhe route

71

0 100 200 300 400 500 600 700

Time [s]

0

5

10

15

20

25

D
er

iv
ed

 S
pe

ed
 [m

/s
]

Figure 5.8: Derived speed of vehicle with smoothing

72

5.4 Simulation Framework

As an initial measure to understand how Geometric Hashing Localization performs as a

viable localization solution, a mock scenario was generated and run through a simulation to test

for accuracy, availability, and robustness to poor map geometry. Because the simulation was

designed to directly evaluate the recognition phase of Geometric Hashing Localization, other

aspects of the full localization pipeline, such as feature extraction, were severely generalized.

For example, rather than simulating a full feature extraction process by working with raw laser

data, feature poses and descriptors in the simulation are directly fed to the data association step

based on the true simulated position of the vehicle and the given sensor FoV.

To setup the simulation, features can either be generated randomly along an arbitrary path

or fed into the simulation from the maps of the two circuits presented above. In the case

that features are generated, first an arbitrary combination of lines and curves are generated

to simulate a vehicle trajectory. Then features are placed at random along various regions of

the trajectory such that at least one feature is always visible anywhere along the path given

an input sensor FoV. In order to simulate vehicle motion, wheel speed, steering angle, and

accelerometer data were generated according to the kinematics of a standard bicycle model and

an input acceleration profile along the trajectory. For non-generated data, these signal streams

are already available in collected data from the BerthaOne vehicle. Lastly, in order to generalize

the feature extraction process, measurements are generated as the vehicle moves along the true

trajectory. At each sampled position, the range and bearing measurements from the vehicle to

each feature in the FoV are then corrupted by Gaussian White Noise to emulate small errors in

a realistic feature extraction procedure.

Following the localization flowchart presented in Figure 4.4 from Chapter 4, an Extended

Kalman filter was developed using a 6 DoF dynamic bicycle model to predict position updates

along the trajectory and fuse in feature association measurements as corrections. The equations

of motion that makeup the model are defined in Equation (5.1) as presented in Pepy et al [28].

73

m(ẍ− vyψ̇)

m(ÿ+ vxψ̇)

Izzψ̈

=

C f vy sinδ

vx
+

C f L f ψ̇ sinδ

vx
−C f δ sinδ

CrLrψ̇

vx
− C f vy cosδ

vx
− C f L f ψ̇ cosδ

vx
− Crvy

vx
+C f δ cosδ

CrL2
r ψ̇

vx
− C f L f vy cosδ

vx
− C f L2

f ψ̇ cosδ

vx
− CrLrvy

vx
+C f L f δ cosδ

 (5.1)

The input parameters in Equation (5.1) are as follows; m is the mass at the vehicle center,

C f and Cr are the front a rear cornering stiffness coefficients respectively, L f and Lr are the

lever arms from vehicle center to tire centers respectively, Izz is the z-axis moment of inertia

about the vehicle center and δ is the steering angle. The model assumes a linear tire model, all

aerodynamic drag forces and suspension dynamics are negligible, and slip angles will always

remain small. The remaining variables used to provide the tracked system states are shown in

Equation (5.2).

Xs =

[
X Y ψ vx vy ψ̇

]T

(5.2)

From Equation (5.2), X and Y are the reference frame horizontal positions with positive X

pointing east and positive Y pointing north, ψ is heading with zero pointing east and counter-

clockwise positive, vx and vy are the horizontal vehicle body velocities where positive vx points

out of vehicle front and positive vy points out of vehicle left, and ψ̇ is the counterclockwise

positive vehicle yaw rate.

The time propagation interval for predicting new vehicle state estimates is explicitly cho-

sen to be misaligned from the measurement sampling rate in order to stress the simulation with

asynchronous prediction and correction updates. At each time propagation (i.e. integration

step), the vehicle states are stepped forward in time using a 4th-order Runge-Kutta integration

by using the vehicle wheel speed and steering angle as inputs to the system. Incoming mea-

surements arriving within each propagation window are fed through the recognition phase to

obtain the correct feature positions from the map. These positions are then evaluated in the

feature observation model using the 2D range-bearing formulation as shown in Equation (5.3).

74

Gs =

 √
(px−X)2 +(py−Y)2

atan2((py−Y),(px−X))−ψ

 (5.3)

In Equation (5.3), px and py are the associated feature poses from the map in the absolute

coordinate frame described above. Careful consideration must be given to ensure the resultant

value for bearing stays within the bounds of [−π,π].

In typical real-world scenarios, new measurements will only produce valid corrections for

the state variables at the time they arrive. Because this mismatch of timestamps will be explic-

itly present in the simulation, an assumption is made that the integration time step is sufficiently

small to account for any errors produced by correcting the state at a future time from when the

measurement arrived. In order to more robustly solve this problem for measurements that are

very delayed, a delayed-state filter could be used to track two copies of the state variables over

time; one with the latest prediction, and the other from measurement signal with the lowest

update frequency.

5.5 Localization Framework

In addition to verifying basic localization requirements of the algorithm using the simu-

lation discussed in the previous section, it was also desired to implement Geometric Hashing

Localization into an existing real-time framework for analysis. As mentioned earlier in this

chapter, Geometric Hashing Localization was integrated into the existing pipeline from the

work presented in Kümmerle et al[23] replacing the data association step with the recognition

phase presented in this thesis.

Before proceeding with online localization, the map generated a priori is first run through

the training and screening phases to generate the appropriate databases needed for recognition.

Afterwards, the new framework is largely similar to the flowchart depicted in Figure 4.4. Each

update cycle begins by conducting the cylindrical feature extraction process as described in

Chapter 3 on a 3D point cloud representing a single revolution worth of laser measurements. If

a sufficient amount of features is successfully extracted, the extracted feature positions and any

75

additional descriptors are handed off to the recognition phase of Geometric Hashing Localiza-

tion. If recognition is successful, the corresponding map feature positions are provided back to

the localization framework. Optionally, an estimate of the system’s prior state can be provided

to the recognition step to serve as a sanity check for the resultant mapped feature positions.

The major difference in this approach from the flowchart presented in Figure 4.4 is in the

Measurement Model update step. The simulation approach introduced in Section 5.4 follows

the flowchart very closely. In the real-time framework however, rather than running the mapped

feature positions through a dedicated measurement model, the feature positions obtained after

the recognition step are instead fed directly into a non-linear optimization framework. The

framework employs a pose graph adjuster, which can adjust a window full of poses based on

optimizing new poses and their respective confidence values with those in the window. The

optimization step utilizes the Levenberg-Marquardt non-linear regression algorithm to deter-

mine the adjustment for the window [23]. Now that both experimental frameworks have been

introduced, a discussion of results can begin in the next chapter.

76

Chapter 6

Experimental Results

In this chapter, an analysis of the results collected from the experimentation described in

Chapter 5 are reported. The results are presented according to the data set used to acquire

them. Each set of results includes two components: an offline collection of parameters, data

structures, and databases, and the online results from the localization loop. First a set of result

figures will be shown for each data set, followed with a brief discussion covering all the data

scenarios for the simulation and the integrated localization solution respectively.

6.1 Simulation

This section covers the experimental results produced from the software simulation de-

scribed in Section 5.4. Although a large variety of simulated scenarios were tested over the

duration of this research, for reasons of brevity, only the most complex scenario was chosen to

be presented in this thesis. The scenario involves a vehicle driving through an ”S” shaped path.

Starting from rest, the vehicle will accelerate linearly until reaching a maximum velocity while

maneuvering through the curvature of the path, then decelerate linearly back to rest. This path

and velocity profile combination was chosen to highlight the Geometric Hashing algorithm’s

ability to produce valid positioning corrections despite the non-linearities in both longitudinal

and lateral motion cases.

The simulated vehicle parameters used to predict motion are shown in Table 6.1 along

with the simulated LiDAR parameters in Table 6.2. The Kalman filter uses an integration time

interval of 0.1 seconds and other filter modeling parameters can be seen in Table 6.3. Using

this configuration, two data sets are reported representing a case where the map consists only

of unique feature geometry and a case where ambiguities are present. Lastly, Algorithm ?? was

used to determine matches during the recognition step for both data sets.

77

Table 6.1: Simulated Vehicle Parameters
Name Value

Vehicle Mass [kg] 1500

Vehicle Length [m] 3

Vehicle Width [m] 1.5

Z-axis MOI [kg ·m2] 1406.25

CG to Front Axle [m] 1.3

CG to Rear Axle [m] 1.3

Front Tire Cornering Stiffness [N
rad] 0.2

Rear Tire Cornering Stiffness [N
rad] 0.2

Table 6.2: Simulated LiDAR Parameters
Name Min Value Max Value

Range [m] 0.5 40

Azimuth [rad] −π π

Table 6.3: Kalman Filter Parameters
Name Value

Horizontal Pos Variance [m2] 0.25

Orientation Variance [rad2] 0.25

Body Velocity Variance [m2

s2] 0.1

Yaw Rate Variance [rad2

s2] 0.05

LiDAR Range Variance [m2] 0.01

LiDAR Angular Variance [rad2] 0.005

Horizontal Pos Process Noise [m2] 0.01

Orientation Process Noise [rad2] 0.001

Body Velocity Process Noise [m2

s2] 0.0001

Yaw Rate Process Noise [rad2

s2] 0.001

78

6.1.1 S-bend East – No Ambiguities

For the scenario representing no ambiguous geometry, the hash table was generated using

a bin size (qpose) of 5 centimeters. In the following, the scenario will be identified as S-bend

East, No Ambiguities (SENA). A table listing the total runtime configuration parameters for

the data set can be seen in Table 6.4. The map used to seed the hash table generation contained

20 cylindrical features each perturbed by zero-mean Gaussian white noise with a variance of

2.25cm2. The perturbation was assumed equal in both the lateral and longitudinal map axes.

Table 6.4: SENA: Parameters
Metric Value

qpose [m] 0.05

qradius [m] 0.05

blimit [m] 30.00

rincl [m] 60.00

strans 1.00

Collision Filtering strict

Descriptors none

Figures 6.1 and 6.2 show the position and heading of the vehicle first from an overhead

view and then as a single dimensional breakdown. From the former, the spread of the landmarks

can be seen in relation to the trajectory of the vehicle. In addition, the last subplot of Figure 6.2

shows the speed profile of the vehicle during the maneuver.

79

0 10 20 30 40 50 60 70 80 90

X Pose [m]

-30

-20

-10

0

10

20

30

40

50

60

Y
 P

os
e

[m
]

Reference
Landmarks
Odometry

Figure 6.1: SENA: Overlay of odometry with map of landmarks

80

0 100 200 300 400 500 600 700
0

50

100
X

 [m
]

0 100 200 300 400 500 600 700
0

20

40

Y
 [m

]

0 100 200 300 400 500 600 700

Measurement Update Iterations [-]

0

0.5

1

H
ea

di
ng

 [r
ad

]

0 50 100 150 200 250 300

Time [s]

0

1

2

S
pe

ed
 [m

/s
]

Figure 6.2: SENA: Planar position, heading, and velocity of the vehicle over time

Figure 6.3 shows the error between the actual vehicle path and the localization solution

for each dimension. The oscillatory behavior seen in the X and Y dimensions indicates the

sampling rate of observations. Figures 6.4-6.5 depict the association results of the data set as

a function of each observation sample. Figure 6.4 indicates the status of each recognition step

where missed associations are the tally for each observation sample of all detections where

no association was found. Incorrect associations represent a tally for each instance where the

wrong association was chosen for a detection per observation sample.

81

0 100 200 300 400 500 600 700
-0.2

0

0.2

0.4

0.6
X

 [m
]

0 100 200 300 400 500 600 700
-0.1

0

0.1

0.2

0.3

Y
 [m

]

0 100 200 300 400 500 600 700

Iterations [-]

-0.02

0

0.02

0.04

H
ea

di
ng

 [r
ad

]

Figure 6.3: SENA: Error between reference solution and odometry

82

0 50 100 150 200 250

Observations [-]

0

0.5

1

1.5

2

2.5

3

3.5

4
C

ou
nt

s
Missed Associations
Incorrect Associations

Figure 6.4: SENA: Missed and Incorrect associations at each observation event

83

0 50 100 150 200 250 300

Iterations [-]

2

3

4

5

6

7

8

9

10

11

12
C

ou
nt

s
Detections
Associations
Verficiation

Figure 6.5: SENA: Detections, Associations, and Verifications at each observation event

In Figure 6.5, the blue triangles represent the number of features detected at the corre-

sponding simulation iteration. Likewise, the red circles and yellow asterisks indicate the num-

ber of associations and verifications, respectively. In the simulation, verifications are deter-

mined from the actual match result that should have taken place. If any feature matches to an

incorrect map element, this feature would fail the verification check. When comparing Figure

6.3 and Figure 6.4, it can be seen that missing associations at a given sample does not signifi-

cantly affect the error. This is only the case because a sufficient amount of correct associations

are still achieved for each of these samples as shown in Figure 6.5.

84

6.1.2 Ambiguity Analysis – Longer S-bend East

In this section, a second simulation scenario is presented to highlight how the system per-

forms under more noise and forced feature symmetry. For the setup, a hash table was generated

using a bin size (qpose) of 5 centimeters and the magnitude of variance on the map elements

was raised from 2.25cm2 to 6.25cm2. Additionally, the total amount of map features was raised

to 42. A table listing the total runtime configuration parameters for the data set can be seen

in Table 6.5. In the following, this scenario will be identified as S-bend East, Longer with

Ambiguities (SELA).

Table 6.5: SELA: Parameters
Metric Value

qpose [m] 0.05

qradius [m] 0.05

blimit [m] 30.00

rincl [m] 60.00

strans 1.00

Collision Filtering strict

Descriptors none

Figures 6.6 and 6.7 again show the position and heading of the vehicle first from from an

overhead view and then broken down into single dimensional views where the last subplot of

Figure 6.7 shows the body speed profile of the vehicle during the maneuver.

85

0 50 100 150

X Pose [m]

0

20

40

60

80

100

120

140

Y
 P

os
e

[m
]

Reference
Landmarks
Odometry

Figure 6.6: SELA: Overlay of odometry with map of landmarks

86

0 200 400 600 800 1000 1200 1400
0

100

200
X

 [m
]

0 200 400 600 800 1000 1200 1400
0

100

200

Y
 [m

]

0 200 400 600 800 1000 1200 1400

Measurement Update Iterations [-]

0

5

10

H
ea

di
ng

 [r
ad

]

0 100 200 300 400 500 600

Time [s]

0

2

4

S
pe

ed
 [m

/s
]

Figure 6.7: SELA: Planar position, heading, and velocity of the vehicle over time

Figure 6.8 shows the error between the actual vehicle path and the localization solution in

each dimension. It can be seen that there are severe spikes in error in several places. Figures

6.9-6.10 depict the association results of the data set as a function of each observation sample.

A clear relationship can be inferred from each instance of an incorrect association and a spike

in the error. Figure 6.9 indicates the status of each recognition step in the same way as shown

in the previous data set.

87

0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

5
X

 [m
]

0 200 400 600 800 1000 1200 1400
-10

0

10

20

Y
 [m

]

0 200 400 600 800 1000 1200 1400

Iterations [-]

-4

-2

0

2

4

H
ea

di
ng

 [r
ad

]

Figure 6.8: SELA: Error between reference solution and odometry

88

0 50 100 150 200 250 300 350 400 450 500

Observations [-]

0

0.5

1

1.5

2

2.5

3

3.5

4
C

ou
nt

s
Missed Associations
Incorrect Associations

Figure 6.9: SELA: Missed and Incorrect associations at each observation event

89

0 100 200 300 400 500 600

Iterations [-]

6

8

10

12

14

16

18
C

ou
nt

s
Detections
Associations
Verficiation

Figure 6.10: SELA: Detections, Associations, and Verifications at each observation event

Figure 6.11 depicts a snapshot of the simulation at observation 189 when an incorrect

association occurred. The verified correct associations are circled in blue and the incorrect

association is marked with a red cross. The feature that should have been selected in place of

the incorrect association is highlighted in an orange box. Lastly, the feature that no association

was found for is highlighted by a yellow triangle.

90

0 20 40 60 80 100 120 140 160

X Pose [m]

0

20

40

60

80

100

120

140

160

Y
 P

os
e

[m
]

Reference
Landmarks
Odometry
Current Position
Sensor FoV
Correct Associations
Missed Associations
Incorrect Associations
True Associations

Figure 6.11: SELA: Snapshot of an observation frame where an incorrect association occurred

Since this scenario contains ambiguous feature geometry, some additional information is

provided to identify where these ambiguous regions are located as well as how they can affect

obtaining the correct association. As mentioned in Chapter 3, ambiguous features are described

by a cluster of points from the basis domain that correspond to two or more instances of feature

locations in the map domain. Each cluster (or constellation) of points can be roughly positioned

by it’s geometric centroid. In order to understand how many constellations are present along a

path, a density heatmap is generated to provide a metric of how ambiguous a region of the map

will be during recognition. Figure 6.12 shows the density of ambiguous constellation centroids

throughout the entire map.

91

-20 0 20 40 60 80 100 120 140 160 180

X Pose [m]

-20

0

20

40

60

80

100

120

140

160
Y

 P
os

e
[m

]

0

261.052

312.64

507.618

857.459

1008.21

1120.31

1227.75

1407.63

1531.23

1631.14

Vehicle Pose
Landmarks

Figure 6.12: SELA: Heatmap representing ambiguous constellation density (by centroid) over

mapped area

Figures 6.13-6.14 give an illustration of the ambiguous geometry as it appears in the map

sorted by 6 and 3 features, respectively. Each unique color shown in these plots indicate a new

ambiguous constellation. Constellations of the same color represent individual occurrences of

the ambiguous geometry within the map. In many cases, the number of ambiguous constella-

tions increase as the vertex count decreases. This is largely because the smaller constellations

are subsets of the larger ones.

92

Figure 6.13: SELA: View all ambiguous constellations of 6 vertices

93

Figure 6.14: SELA: View all ambiguous constellations of 3 vertices

Continuing to build from Figure 6.12, a possible vehicle trajectory can be generated

through the mapped terrain to simulate which features may be in view during an online event.

With the knowledge of these features along the mock trajectory known, the ambiguities con-

nected to these features are also known thus providing the translational and rotational transfor-

mations between each of their occurrences in the map. With all of this information, an analysis

of the trajectory is conducted in order to identify regions where choosing the incorrect associa-

tion due to ambiguities can cause the worst resultant error. Figure 6.15 depicts a heatmap along

the trajectory scaled by the minimum and maximum resultant translational offset should an

incorrect association occur from an ambiguity. Similarly, Figure 6.16 shows another heatmap

scaled by the minimum and maximum rotational offset.

94

-20 0 20 40 60 80 100 120 140 160 180

X Pose [m]

-20

0

20

40

60

80

100

120

140

160
Y

 P
os

e
[m

]

0

7.2111

7.2111

7.45356

7.45356

19.9805

19.9805

24.267

24.3311

24.3311

114.675

eT
 -

 [m
]

Figure 6.15: SELA: Heatmap representing translational error from ambiguous features over

mapped area

95

-20 0 20 40 60 80 100 120 140 160 180

X Pose [m]

-20

0

20

40

60

80

100

120

140

160
Y

 P
os

e
[m

]

0

0

90

90

90

180

180

180

180

180

180

eR
 -

 [d
eg

]
Figure 6.16: SELA: Heatmap representing rotational error from ambiguous features over

mapped area

Utilizing the information from the previous set of plots that a high concentration of am-

biguous geometry exists in the middle of the map, an expectation is set that the recognition

step may struggle in this region. A correlation to this can be seen in Figure 6.17 which depicts

a measure of probability for the correct association given the presence of ambiguous features.

This probability is shown to be 1 in regions where no features that belong to ambiguous con-

stellations are observed and shown to approach 0 as the vehicle enters an ambiguous area. The

red triangles in Figure 6.17 indicate the exact sample where an incorrect association was chosen

aligning with Figure 6.9 as shown previously.

96

0 100 200 300 400 500 600

Observations [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
pC

A
|A

m
bi

gu
ity

Probability
Incorrect Associations

Figure 6.17: SELA: Probability of correct association given ambiguous features

Along a similar idea, Figure 6.18 presents a metric of probability for the correct associa-

tion given all the candidate layers for the observation. In other words, this metric shows how

many layers specifically provided evidence for the chosen association. Again, the red triangles

indicate the sample where an incorrect association was chosen for this scenario.

97

0 100 200 300 400 500 600

Observations [-]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
pC

A
|L

ay
er

s

Probability
Incorrect Associations

Figure 6.18: SELA: Probability of correct association given layer candidates

98

6.1.3 Discussion of Results for S-bend East

The numerical results of the simulation runs can be seen in Tables 6.6-6.7 and Tables

6.8-6.9 where the former indicates the total RMS error and the latter shows statistics about

the online feature extraction and matching for the duration of the run. Odometry, in the case of

these results, represents the positioning solution at each sample. Since there are some prediction

updates where no measurements are available, the solution during these samples is purely the

integrated position of the vehicle based on input. When measurements become available, the

prediction is corrected with the measurements for a closed-loop update.

Table 6.6: SENA: Error metrics
RMS Error x [m] y [m] yaw [rad]

Odometry 0.2498 0.1059 0.0094

Table 6.7: SELA: Error metrics
RMS Error x [m] y [m] yaw [rad]

Odometry 1.2543 0.8893 0.8249

Table 6.8: SENA: Result statistics
Metric Value

Percent Associations 97.7589

Percent VerifiedAssociations 100.0000

Average Detections 7.9964

Average Associations 7.8172

Average VerifiedAssociations 7.8172

Before starting the results discussion, it is important to note a few additional caveats in the

simulation that differ greatly from what the system would normally experience in a real world

scenario. First, the mapped feature elements are generated pseudo-randomly which severely

decreases the likelihood of encountering ambiguous geometries. It is possible to have elements

99

Table 6.9: SELA: Result statistics
Metric Value

Percent Associations 98.2146

Percent VerifiedAssociations 99.9495

Average Detections 11.6551

Average Associations 11.4470

Average VerifiedAssociations 11.4412

of randomness in real-world maps, but typically urban environments have a great deal of sym-

metry which hinders the matching procedure. Next, all features in the simulation that can be

seen within the simulated LiDAR FoV, even if occluded, will still produce a range-bearing

measurement. This means that the maximum amount of possible information will always be

provided to the system each measurement sample. Lastly, there are no simulated false positive

or false negative detections that can stress the matching algorithm and all feature measure-

ments arrive in a batch rather than asynchronously. Batching measurements makes applying

the correction back to the states much easier since all the individual detections have the same

timestamp.

On a first glance, the results presented in Table 6.8 from this simulation run are very good.

The total RMS error turned out well beneath the meter-level accuracy goal. Moreover, tracing

the error over the duration of the run indicated that the solution stayed within 0.5 meters, thus

indicating good precision. It is interesting to note that lateral error remained low during times of

acceleration and performed worse in times of constant velocity. Longitudinal error was subject

to the opposite affect, while heading performed worst during the apex of curvature along the

path.

As expected, the second scenario that included ambiguities performed worse. Over the

duration of the maneuver, the solution selected an incorrect association 3 times which causes

a spike in error and took time to return back to steady state. Rationally, achieving the poor re-

sultant RMS error while maintaining a nearly perfect run of associations demonstrates that the

positioning solution is extremely sensitive to disturbances. With that aside, it is also important

100

to note that during each of the instances where an incorrect association occurred, it was not a

result of an ambiguity. The cause of each incorrect association is a result of a combination of

measurement noise and hash space quantization boundaries. This causes a feature to fall into a

bin that matches a different layer in the hash table than it was hashed at. This is a phenomenon

that is not captured in any of the ambiguity integrity risk plots shown in Section 6.1.2. How-

ever, even though the incorrect association was not mangled by an ambiguous constellation,

it does not indicate that ambiguities don’t play a role. There are many instances as shown in

Figure 6.9 where associations could not be determined for a given detection. Put simply, this

could be a result where insufficient evidence was provided to suggest a clear favorite candi-

date during matching. Despite this, the probability of a correct association given the presence

of ambiguities shown in Figure 6.17 is reasonably low in areas indicating that the recognition

procedure is fairly robust to the influence of ambiguities.

6.2 Integrated Localization Solution

The following sections in this chapter will cover the results collected from integrating

Geometric Hashing Localization into the pipeline from Kümmerle et al[23]. For each circuit

introduced in Chapter 5, both a coarse and fine resolution procedure was recorded according to

different values for the quantization parameter. For all data sets, it was found that Algorithm

4.7 yielded the most consistent results for analysis.

Since incremental state updates to Geometric Hashing Localization do not depend on prior

system states, there is very little inertia preventing the solution from bouncing around. For this

reason, quantitative results for the localization solution are presented using a convergence rule.

The solution is considered to be converged at any sample where the positional error from the

reference solution is sufficiently small and if the solution is reasonably smooth within a given

window. To obtain a metric of smoothness, the root-mean-squared deviation (RMSD) algorithm

was used in a sliding window. The window size for each data set was selected as a function

of the total upsampled length of the data. In all cases presented here, this function was 0.5%

of the data length. For the convergence tolerance parameters, the system was considered to be

converged in the horizontal position if the error was less than 10 meters and the RMSD is less

101

than 1 meter. Similarly, for system heading, convergence was attained if the error was less than

π

8 radians and the RMSD is less than π

12 radians. Total system convergence is reported if and

only if the system is converged in both position and orientation. It is also important to note, that

convergence is reported on a per sample basis. In other words, if the system is converged and a

new sample arrives that violates the convergence rule, the new sample is considered diverged.

For each data set, two tables will be presented: one reporting the total RMS error for

various signals, and the other highlighting several statistical metrics useful for comparing data

sets against one another. The odometry reported in the remaining tables and figures is slightly

different from Section 6.1.3. The difference is due to the concept that measurements are not

fused via a Kalman filter approach. Instead, as mentioned in Section 5.5, all information at each

sample (with or without associated feature identifiers) is optimized over for the best possible

positioning solution. Next, the vehicle positions (X, Y, and Heading) are provided by the ref-

erence solution, the GNSS-only solution, and the Geometric Hashing Localization solution as

well as the error between the reference and Geometric Hashing Localization solution. The plots

showing system error (Figures 6.24, 6.32, 6.45, and 6.53) indicate regions where the solution

is considered to be converged or not. Following these, are two plots pertaining to the quality of

feature extraction and data association steps. The first plot, named system availability, provides

an indication of how many features were detected at each update sample. For each of those

updates, the number of associations is also reported. Each association is considered to be valid

if the conditions presented in Section 4.2.3 hold true (i.e. features are in close proximity and

within a reasonable range of the prior position). The second plot in this series depicts the cor-

relation of system processing time with the number of detected features. Finally, the remaining

four plots in each data set breakdown each update sample relating position to the results of each

feature matching attempt. There are four possible conditions for each update sample:

• No Detections - No features could be extracted at this position, only odometry used,

• No Associations - Features are present, but no matches could be found, only odometry

used,

• No Verification - Matches found, but verification failed, only odometry used,

102

• Verification Success - Matches found and verified, odometry and matched features used

6.2.1 Sindelfingen

For each data set collected on the Sindelfingen circuit, the hash tables were generated

using a map of 738 cylindrical features assumed to be perturbed by Gaussian White Noise of

a variance of 25cm2. The perturbation was assumed equal in both the lateral and longitudinal

map axes. In addition to the hash values representing 2D positions, the recognition step utilized

the radius of the cylinders as an additional matching descriptor.

6.2.1.1 Fine Resolution – Sifi5

For the course resolution data set on the Sindelfingen circuit, the hash table was discretized

using a quantization parameter qpose of 5 centimeters and collisions were also dealt with using

the strict filter. Additionally, no bases were created from features separated further than 60

meters (blimit) and all features outside a 100 meter radius from each basis origin (rincl) were ex-

cluded from the layer data. Additional runtime parameters can be seen in Table 6.10. Features

were matched using Algorithm 4.7 as presented in Chapter 4. The hash table produced from

these parameters contained 2,571,008 hash entries and comprised of 37,236 layers resulting in

a file size of 420 MB. In the following, this scenario will be identified as SIFI5.

Table 6.10: SIFI5: Parameters
Metric Value

qpose [m] 0.05

qradius [m] 0.05

blimit [m] 60.00

rincl [m] 100.00

strans 1.00

Collision Filtering strict

Descriptors none

103

Figure 6.19 shows the path of the vehicle along with all the landmarks extracted from the

circuit presented previously in Figure 5.3. A breakdown of the solution state at each update is

also depicted to indicate areas where the solution was unable to perform as expected. As the

legend explains, pink ”X” symbols indicate sample updates where no landmark detections were

found. Yellow triangles show updates where landmarks were detected, but insufficient associ-

ations were found to utilize the data. Blue squares indicate areas where matches were found,

but did not pass the verification procedure whereas green circles met all necessary criteria to

report a positioning correction to the solution. Figures 6.20, 6.21, and 6.22 all utilize the same

legend, but show the positioning solution as an individual dimension over time.

Figure 6.19: SIFI5: Overlay of odometry with map of landmarks

104

50 100 150 200 250 300 350 400 450 500 550

Time [s]

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29
P

os
iti

on
 X

 [m
]

104

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.20: SIFI5: Breakdown of X position with update availability

105

50 100 150 200 250 300 350 400 450 500 550

Time [s]

-3.43

-3.425

-3.42

-3.415

-3.41

-3.405

-3.4

-3.395

P
os

iti
on

 Y
 [m

]
104

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.21: SIFI5: Breakdown of Y position with update availability

106

0 100 200 300 400 500 600

Time [s]

-4

-3

-2

-1

0

1

2

3

4

Y
aw

 [r
ad

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.22: SIFI5: Breakdown of heading with update availability

Figure 6.23 shows the horizontal positioning and heading solutions from the data set. As men-

tioned above, the reference solution is the result of the algorithm presented in Section 5.2. The

data marked with ”Ublox” is a Global Navigation Satellite Systems (GNSS) solution fused

with Inertial Navigation Systems (INS) solution only. Lastly, the data marked ”Odometry” is

the Geometric Hashing Localization solution.

107

0 100 200 300 400 500 600

Time [s]

4.22

4.24

4.26

4.28

P
os

iti
on

 X
 [m

] 104

Reference Ublox Odometry

0 100 200 300 400 500 600

Time [s]

-3.42

-3.4

P
os

iti
on

 Y
 [m

] 104

0 100 200 300 400 500 600

Time [s]

-5

0

5

Y
aw

 [r
ad

]

Figure 6.23: SIFI5: Planar position and heading of the vehicle over time

Figure 6.24 depicts the error between the Geometric Hashing Localization solution and the

reference solution and is segregated according to the convergence rules presented in Section

6.2 where red indicates the raw error and blue only represents a converged result.

108

Figure 6.24: SIFI5: Error between reference solution and odometry

Figure 6.25 shows association results of the solution. Black lines indicate the total number

of detected features for the given sample. Red and green lines each indicate the number of

associations for the sample. In areas where black is clearly visible, there exist no associations.

Green represents areas where associations were considered valid whereas red lines failed the

matching process at some stage. Lastly, a relationship between the number of extracted features

and the total processing time of the update is depicted in Figure 6.26.

109

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples [-]

0

5

10

15

20

25

30

35

40

45
F

ea
tu

re
s

[-
]

Detections
Invalid Associations
Valid Associations

Figure 6.25: SIFI5: Measurement correction availability during the drive

110

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples [-]

0

5

10

15

20

25

30

35

40

45
F

ea
tu

re
s

[-
]

0

100

200

300

400

500

600

700

800

900

E
la

ps
ed

 P
ro

ce
ss

in
g

T
im

e
[m

s]

Detections
Processing Time

Figure 6.26: SIFI5: Processing time for each detection during the drive

111

6.2.1.2 Coarse Resolution – Sifi20P

For the course resolution data set on the Sindelfingen circuit, the hash table was discretized

using a quantization parameter qpose of 20 centimeters and collisions were also dealt with us-

ing the strict filter. Additionally, no bases were created from features separated further than 60

meters (blimit) and all features outside a 100 meter radius from each basis origin (rincl) were ex-

cluded from the layer data. Additional runtime parameters can be seen in Table 6.11. Features

were again matched using Algorithm 4.7 as presented in Chapter 4. The hash table produced

from these parameters contained 666,532 hash entries and comprised of 37,236 layers resulting

in a file size of 254 MB. In the following, this scenario will be identified as SIFI20.

Table 6.11: SIFI20: Parameters
Metric Value

qpose [m] 0.20

qradius [m] 0.05

blimit [m] 60.00

rincl [m] 100.00

strans 1.00

Collision Filtering strict

Descriptors none

Figure 6.27 again shows the path of the vehicle along with all the landmarks extracted

from the circuit presented in Figure 5.3. Figures 6.28, 6.29, and 6.30 all utilize the same legend

as was previously stated.

112

Figure 6.27: SIFI20: Overlay of odometry with map of landmarks

113

50 100 150 200 250 300 350 400 450 500 550

Time [s]

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29
P

os
iti

on
 X

 [m
]

104

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.28: SIFI20: Breakdown of X position with update availability

114

50 100 150 200 250 300 350 400 450 500 550

Time [s]

-3.43

-3.425

-3.42

-3.415

-3.41

-3.405

-3.4

-3.395

P
os

iti
on

 Y
 [m

]
104

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.29: SIFI20: Breakdown of Y position with update availability

115

0 100 200 300 400 500 600

Time [s]

-4

-3

-2

-1

0

1

2

3

4

Y
aw

 [r
ad

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.30: SIFI20: Breakdown of heading with update availability

Figure 6.31 again shows the horizontal positioning and heading solutions from the data set

similarly to 6.23. Figure 6.32 again depicts the error between the Geometric Hashing Local-

ization solution and the reference solution and is segregated according to the convergence rules

presented in Section 6.2.

116

0 100 200 300 400 500 600

Time [s]

4.22

4.24

4.26

4.28

P
os

iti
on

 X
 [m

] 104

Reference Ublox Odometry

0 100 200 300 400 500 600

Time [s]

-3.42

-3.4

P
os

iti
on

 Y
 [m

] 104

0 100 200 300 400 500 600

Time [s]

-5

0

5

Y
aw

 [r
ad

]

Figure 6.31: SIFI20: Planar position and heading of the vehicle over time

117

Figure 6.32: SIFI20: Error between reference solution and odometry

The association results of the solution using the same format as Figure 6.25 are shown in

Figure 6.33 for the coarse run. Lastly, figure 6.34 depicts a relationship between the number of

extracted features and the total processing time of the update.

118

0 500 1000 1500 2000 2500 3000 3500 4000

Samples [-]

0

5

10

15

20

25

30
F

ea
tu

re
s

[-
]

Detections
Invalid Associations
Valid Associations

Figure 6.33: SIFI20: Measurement correction availability during the drive

119

0 500 1000 1500 2000 2500 3000 3500 4000

Samples [-]

0

5

10

15

20

25

30
F

ea
tu

re
s

[-
]

0

500

1000

1500

2000

2500

3000

3500

E
la

ps
ed

 P
ro

ce
ss

in
g

T
im

e
[m

s]

Detections
Processing Time

Figure 6.34: SIFI20: Processing time for each detection during the drive

120

6.2.1.3 Discussion of Sindelfingen Results

As expected after analyzing the results of the simulated experiments shown in Tables 6.12-

6.13, the coarse data set provided results with lower RMS error values when compared to the

fine data set when the system was converged, but had a lower percentage of samples within the

convergence envelope. The time spent converged introduces a new variable that could not be

studied with the simulated data and inherently correlates heavily with the frequency of correct

associations. Unlike the simulated scenario, the Sindelfingen data set is rich with ambiguous

cylindrical feature geometries as can be seen in Figures 6.35-6.36. The former plot shows

the density of ambiguous constellation centroids similar to Figure 6.12 while the latter shows

the locations and occurrences of ambiguous constellations of 3 vertices in the map. Just like

Figure 6.14, each color represents a unique ambiguous constellation and multiple instances of

the same color depict the locations of those constellations within the map. In addition, there are

also several pockets of very sparse, or even the complete absence of, features within the FoV

of the vehicle’s sensors. This produces additional challenges to the recognition and validation

step.

Table 6.12: SIFI5: Error metrics
RMS Error x [m] y [m] yaw [rad]

Ublox 1.8246 1.3533 0.1901

Odometry 2048.3984 1649.0362 0.4535

Odom Converged 2.3034 1.4338 0.0616

Table 6.13: SIFI20: Error metrics
RMS Error x [m] y [m] yaw [rad]

Ublox 3.0019 2.2625 0.3182

Odometry 1606.0553 1296.1178 0.8076

Odom Converged 0.8347 0.6000 0.0203

121

4.2 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.3

X Pose [m] 104

-3.44

-3.43

-3.42

-3.41

-3.4

-3.39

-3.38

Y
 P

os
e

[m
]

104

0

69.8586

135.066

275.171

511.268

1517.27

1980.87

2619.93

3759.99

4947.16

7315.39

Vehicle Pose
Landmarks

Figure 6.35: SIFI5: Heatmap representing ambiguous constellation density (by centroid) over

mapped area

122

Figure 6.36: SIFI5: View all ambiguous constellations of 3 vertices

Along the same lines as Figures 6.15-6.16, Figures 6.37-6.38 illustrate portions of a ve-

hicle trajectory where the translational and rotational errors could be large. The segments of

the trajectory that are red indicate regions of high error should sufficient incorrect associations

be chosen. Likewise, blue regions indicate regions of low error. When comparing Figure 6.35

to the position solution of vehicle in Figure 6.23, regions with dense ambiguous constellation

centroids correlate with those where the solution becomes oscillatory.

123

4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29

X Pose [m] 104

-3.45

-3.44

-3.43

-3.42

-3.41

-3.4

-3.39

-3.38

-3.37
Y

 P
os

e
[m

]

104

0

243.294

389.43

414.808

429.996

456.163

499.648

545.181

613.651

681.124

812.486

eT
 -

 [m
]

Figure 6.37: SIFI5: Heatmap representing translational error from ambiguous features over

mapped area

124

4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29

X Pose [m] 104

-3.45

-3.44

-3.43

-3.42

-3.41

-3.4

-3.39

-3.38

-3.37
Y

 P
os

e
[m

]

104

0

11.9328

28.0095

50.4588

94.1876

101.877

112.998

122.115

150.823

156.873

180

eR
 -

 [d
eg

]

Figure 6.38: SIFI5: Heatmap representing rotational error from ambiguous features over

mapped area

One metric that does align with what was discovered in the simulation is the association

percentage between the fine and coarse data sets which can be seen in Tables 6.14-6.15. It’s

important to distinguish the percent associations and verifications in these tables from those

presented in the Section 6.1.3. Previously, the percentages were reported in a cascaded manner

where the percent associations only accounts for observations where detections were recorded.

In this section, the percent associations is reported based on the total amount of observations

in the sample. This explains why the numbers are drastically different between the two sets of

results.

As explained above, the coarse resolution hash table has larger bins which can help ac-

count for noise or other boundary condition scenarios. This gives the coarse data set a slight

advantage over the fine resolution data when finding associations at each recognition step. On

125

the negative side, it also opens the possibility for more incorrect associations as well, which is

shown because both coarse and fine solutions share about the same verified association percent-

ages. This maintains that the verification step is necessary, because it eliminates a significant

amount of potential misleading information. Not everything is filtered correctly however, as

there are cases where misleading information lead to a significant discontinuity in the vehicle

position or heading. One particular instance of this occurs around the 60-100 second mark

as shown in Figure 6.31 and the accompanying plots (Figures 6.28, 6.29, 6.30). In the latter

grouping of figures, it can be seen that green dots are very scattered and do not overlap with

the reference solution as they are expected to be.

Table 6.14: SIFI5: Result statistics
Metric Value

Percent Converged 63.8525

Percent Converged X 71.4235

Percent Converged Y 82.1273

Percent Converged Yaw 94.8820

Percent Detections 94.5981

Percent Associations 24.1342

Percent VerifiedAssociations 20.3442

Average Detections 11.4241

Average Associations 15.9946

Average VerifiedAssociations 16.7784

Average ProcessingTime [ms] 43.4925

Figure 6.39 shows an example of how this occurs from the visualization where red circles

and lines indicate mapped features, blue circles and lines represent detections, and white lines

depict the association chosen. Comparing these same regions with those from the fine data

set in Figures 6.20, 6.21, 6.22, 6.23 show much higher fidelity when traversing through these

regions.

126

Table 6.15: SIFI20: Result statistics
Metric Value

Percent Converged 48.2432

Percent Converged X 55.2049

Percent Converged Y 70.2347

Percent Converged Yaw 81.1220

Percent Detections 86.8044

Percent Associations 47.9455

Percent VerifiedAssociations 22.8223

Average Detections 7.1071

Average Associations 5.9265

Average VerifiedAssociations 7.0134

Average ProcessingTime [ms] 70.0965

It can also be shown that the coarse resolution creates a significantly larger amount of data

to search through at each update. On average, a recognition step takes twice the amount of pro-

cessing time when compared to the fine data set. This is also directly correlated to the average

number of features detected at each update. One final item to address, is the large consecutive

instances of data with detects and no associations. In these areas, the number of detections

is very close to the minimally acceptable value required for an update. If there is no strong

evidence that any particular candidate feature set is likely over another, the recognition phase

will simply abandon the entire association step and provide no matches. Additionally, as can

be shown from the topics in Chapter 3, there are larger amounts of ambiguous constellations as

the number of features decreases. In other words, more features will help disprove ambiguities

and improve uniqueness.

6.2.2 Karlsruhe

For each data set collected on the Karlsruhe circuit, the hash tables were generated using a

map of 891 cylindrical features assumed to be perturbed by Gaussian White Noise of a variance

127

Figure 6.39: Incorrect feature association caused by ambiguous geometry

of 25cm2. The perturbation was assumed equal in both the lateral and longitudinal map axes.

In addition to the hash values representing 2D positions, the recognition step utilized the radius

of the cylinders as an additional matching descriptor.

6.2.2.1 Fine Resolution – KIT5

For the high resolution data set on the Karlsruhe circuit, the hash table was discretized

using a quantization parameter qpose of 5 centimeters and collisions were dealt with using the

strict filter. Additionally, no bases were created from features separated further than 60 meters

(blimit) and all features outside a 100 meter radius from each basis origin (rincl) were excluded

from the layer data. Additional runtime parameters for the fine resolution run can be seen

in Table 6.16. Features were matched using Algorithm 4.7 as presented in Chapter 4. The

hash table produced from these parameters contained 1,965,610 hash entries and comprised of

30,712 layers resulting in a file size of 324 MB. In the following, this scenario will be identified

as KIT5.

Figure 6.40 shows the path of the vehicle along with all the landmarks extracted from the

circuit presented previously in Figure 5.6. A breakdown of the solution state at each update is

128

Table 6.16: KIT5: Parameters
Metric Value

qpose [m] 0.05

qradius [m] 0.05

blimit [m] 60.00

rincl [m] 100.00

strans 1.00

Collision Filtering strict

Descriptors none

also depicted to indicate areas where the solution was unable to perform as expected. As the

legend explains, pink ”X” symbols indicate sample updates where no landmark detections were

found. Yellow triangles show updates where landmarks were detected, but insufficient associ-

ations were found to utilize the data. Blue squares indicate areas where matches were found,

but did not pass the verification procedure whereas green circles met all necessary criteria to

report a positioning correction to the solution. Figures 6.41, 6.42, and 6.43 all utilize the same

legend, but show the positioning solution as an individual dimension over time.

129

Landmarks
Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.40: KIT5: Overlay of odometry with map of landmarks

130

100 200 300 400 500 600

Time [s]

600

800

1000

1200

1400

1600

1800
P

os
iti

on
 X

 [m
]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.41: KIT5: Breakdown of X position with update availability

131

100 200 300 400 500 600

Time [s]

-1000

-800

-600

-400

-200

0

P
os

iti
on

 Y
 [m

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.42: KIT5: Breakdown of Y position with update availability

132

0 100 200 300 400 500 600 700

Time [s]

-4

-3

-2

-1

0

1

2

3

4

Y
aw

 [r
ad

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.43: KIT5: Breakdown of heading with update availability

Figure 6.44 shows the horizontal positioning and heading solutions from the data set. As men-

tioned above, the reference solution is the result of the algorithm presented in Section 5.2. The

data marked with ”Ublox” is a Global Navigation Satellite Systems (GNSS) solution fused

with Inertial Navigation Systems (INS) solution only. Lastly, the data marked ”Odometry” is

the Geometric Hashing Localization solution.

133

0 100 200 300 400 500 600 700

Time [s]

500

1000

1500

P
os

iti
on

 X
 [m

]

Reference Ublox Odometry

0 100 200 300 400 500 600 700

Time [s]

-1000

-500

0

P
os

iti
on

 Y
 [m

]

0 100 200 300 400 500 600 700

Time [s]

-5

0

5

Y
aw

 [r
ad

]

Figure 6.44: KIT5: Planar position and heading of the vehicle over time

Figure 6.45 depicts the error between the Geometric Hashing Localization solution and the

reference solution and is segregated according to the convergence rules presented in Section

6.2 where red indicates the raw error and blue only represents a converged result.

134

0 100 200 300 400 500 600

Time [s]

-5

0

5

10
x

[m
]

Total Error Error while Converged

0 100 200 300 400 500 600

Time [s]

-10

-5

0

5

y
[m

]

0 100 200 300 400 500 600

Time [s]

-0.2

-0.1

0

0.1

ya
w

 [r
ad

]

Figure 6.45: KIT5: Error between reference solution and odometry

Figure 6.46 shows association results of the solution. Black lines indicate the total number

of detected features for the given sample. Red and green lines each indicate the number of

associations for the sample. In areas where black is clearly visible, there exist no associations.

Green represents areas where associations were considered valid whereas red lines failed the

matching process at some stage. Lastly, Figure 6.47 depicts a relationship between the number

of extracted features and the total processing time of the update.

135

0 500 1000 1500 2000 2500

Samples [-]

0

10

20

30

40

50

60
F

ea
tu

re
s

[-
]

Detections
Invalid Associations
Valid Associations

Figure 6.46: KIT5: Measurement correction availability during the drive

136

0 500 1000 1500 2000 2500

Samples [-]

0

10

20

30

40

50

60
F

ea
tu

re
s

[-
]

0

200

400

600

800

1000

1200

E
la

ps
ed

 P
ro

ce
ss

in
g

T
im

e
[m

s]

Detections
Processing Time

Figure 6.47: KIT5: Processing time for each detection during the drive

137

6.2.2.2 Course Resolution – KIT20

For the course resolution data set on the Karlsruhe circuit, the hash table was discretized

using a quantization parameter qpose of 20 centimeters and collisions were also dealt with using

the strict filter. Additionally, no bases were created from features separated further than 60

meters (blimit) and all features outside a 100 meter radius from each basis origin (rincl) were

excluded from the layer data. Additional runtime parameters for the coarse resolution run can

be seen in Table 6.17. Again, features were matched using Algorithm 4.7 as presented in

Chapter 4. The hash table produced from these parameters contained 636,606 hash entries and

comprised of 30,712 layers resulting in a file size of 184 MB. In the following, this scenario

will be identified as KIT20.

Table 6.17: KIT20: Parameters
Metric Value

qpose [m] 0.20

qradius [m] 0.05

blimit [m] 60.00

rincl [m] 100.00

strans 1.00

Collision Filtering strict

Descriptors none

Figure 6.48 again shows the path of the vehicle along with all the landmarks extracted

from the circuit presented in Figure 5.6. Figures 6.49, 6.50, and 6.51 again show the individual

positions and all utilize the same legend as was previously stated.

138

Landmarks
Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.48: KIT20: Overlay of odometry with map of landmarks

139

100 200 300 400 500 600

Time [s]

600

800

1000

1200

1400

1600

1800
P

os
iti

on
 X

 [m
]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.49: KIT20: Breakdown of X position with update availability

140

100 200 300 400 500 600

Time [s]

-1000

-800

-600

-400

-200

0

P
os

iti
on

 Y
 [m

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.50: KIT20: Breakdown of Y position with update availability

141

0 100 200 300 400 500 600 700

Time [s]

-4

-3

-2

-1

0

1

2

3

4

Y
aw

 [r
ad

]

Reference
Ublox
Odometry w/o Detections
Odometry w/o Match
Odometry w/ Match
Odometry w/ Verification

Figure 6.51: KIT20: Breakdown of heading with update availability

Similar again to 6.44, Figure 6.52 shows the three positioning solutions from the data set and

Figure 6.53 depicts the error between the Geometric Hashing Localization solution and the ref-

erence solution. Red lines report the raw positioning solution while blue lines indicate periods

of convergence according to the rules presented in Section 6.2.

142

0 100 200 300 400 500 600 700

Time [s]

500

1000

1500

P
os

iti
on

 X
 [m

]

Reference Ublox Odometry

0 100 200 300 400 500 600 700

Time [s]

-1000

-500

0

P
os

iti
on

 Y
 [m

]

0 100 200 300 400 500 600 700

Time [s]

-5

0

5

Y
aw

 [r
ad

]

Figure 6.52: KIT20: Planar position and heading of the vehicle over time

143

0 100 200 300 400 500 600

Time [s]

-10

-5

0

5
x

[m
]

Total Error Error while Converged

0 100 200 300 400 500 600

Time [s]

-10

-5

0

5

y
[m

]

0 100 200 300 400 500 600

Time [s]

-0.3
-0.2
-0.1

0
0.1

ya
w

 [r
ad

]

Figure 6.53: KIT20: Error between reference solution and odometry

Figure 6.54 shows association results of the solution in the same format that was presented in

6.46. Finally, Figure 6.55 again depicts a relationship between the number of extracted features

and the total processing time of the update.

144

0 500 1000 1500 2000 2500

Samples [-]

0

5

10

15

20

25

30
F

ea
tu

re
s

[-
]

Detections
Invalid Associations
Valid Associations

Figure 6.54: KIT20: Measurement correction availability during the drive

145

0 500 1000 1500 2000 2500

Samples [-]

0

5

10

15

20

25

30
F

ea
tu

re
s

[-
]

0

200

400

600

800

1000

1200

E
la

ps
ed

 P
ro

ce
ss

in
g

T
im

e
[m

s]

Detections
Processing Time

Figure 6.55: KIT20: Processing time for each detection during the drive

146

6.2.2.3 Discussion of Karlsruhe Results

The results from the Karlsruhe data set shown in Tables 6.18-6.19 do not closely follow

the same trends established from the simulation and Sindelfingen data sets. Notably, as shown

in Tables 6.20-6.21, there is not a huge difference in performance between the coarse and fine

scenarios even though the coarse solution spent more time converged and had a larger percent

of valid associations. Instead, the differences can be seen when looking at the total RMS error

(i.e. converged and non-converged together) where the coarse solution performed noticeably

better. This is an indication that the effects (both positive and negative) presented by coarse

and fine scenarios fell beneath the convergence floor.

Table 6.18: KIT5: Error metrics
RMS Error x [m] y [m] yaw [rad]

Ublox 2.9070 3.0924 0.2911

Odometry 51.7512 31.9894 1.0653

Odom Converged 2.8817 10.1477 0.0560

Table 6.19: KIT20: Error metrics
RMS Error x [m] y [m] yaw [rad]

Ublox 3.0861 2.9169 0.3249

Odometry 22.1847 22.2974 0.6978

Odom Converged 2.9820 9.9705 0.0647

In general, the Karlsruhe environment poses a more difficult challenge for the recognition

phase due to the large amounts of symmetry and feature clustering. Some areas in the map con-

tain up to 55 features within the FoV whereas there are long periods within highly symmetric

areas containing only 5 or 6 features. These challenges contribute heavily to the lower conver-

gence percentages across the fine and the coarse scenarios when compared to the Sindelfingen

data sets.

147

Table 6.20: KIT5: Result statistics
Metric Value

Percent Converged 27.8404

Percent Converged X 39.7233

Percent Converged Y 41.6692

Percent Converged Yaw 75.0083

Percent Detections 91.6165

Percent Associations 23.0075

Percent VerifiedAssociations 18.3083

Average Detections 15.3578

Average Associations 15.1471

Average VerifiedAssociations 16.7926

Average ProcessingTime [ms] 52.9466

Two particularly troublesome areas occur at the 30 and 85 second marks respectively

where an instance of an ambiguous constellation guides the localization solution off track.

This can easily be seen when comparing Figure 6.44 and Figure 6.56. To accompany this, Fig-

ure 6.57 shows all the locations of ambiguous constellations similar to Figure 6.36 presented

previously. Figures 6.58-6.59 show the high risk trajectory segments based on the maximal

translational and rotational error of ambiguous constellation occurrences.

148

Table 6.21: KIT20: Result statistics
Metric Value

Percent Converged 35.0347

Percent Converged X 47.3573

Percent Converged Y 45.9127

Percent Converged Yaw 87.2631

Percent Detections 91.3781

Percent Associations 49.6466

Percent VerifiedAssociations 31.6254

Average Detections 8.3569

Average Associations 7.1786

Average VerifiedAssociations 8.5039

Average ProcessingTime [ms] 59.4042

400 600 800 1000 1200 1400 1600 1800

X Pose [m]

-1000

-800

-600

-400

-200

0

Y
 P

os
e

[m
]

0

32.3578

95.6915

141.923

174.764

215.594

253.303

304.448

367.919

433.657

762.17

Vehicle Pose
Landmarks

Figure 6.56: KIT5: Heatmap representing ambiguous constellation density (by centroid) over

mapped area 149

Figure 6.57: KIT5: View all ambiguous constellations of 3 vertices

In each case where the solution jumps off track, the set of samples following these errant

associations contain very few features. This reduces the system’s ability to correct the erro-

neous positioning and continue down the wrong path. The coarse solution fairs significantly

better in these areas. This is largely due to the quantization boundary condition issues presented

earlier in Chapter 4. Another notable situation occurs around the 400 second mark in the fine

resolution data set. As can be seen in the lower left corner of Figure 6.40, the odometry solution

appears to turn too early. Several yellow dots, indicating no associations, are trailed by a blue

dot and finally a green dot which snaps the positioning solution back on the correct track. This

depicts a gradual process of the solution regaining a converged position.

150

400 600 800 1000 1200 1400 1600 1800

X Pose [m]

-1000

-800

-600

-400

-200

0

200
Y

 P
os

e
[m

]

0

29.5462

152.088

361.057

706.068

798.029

908.188

1051.5

1213.01

1324.24

1447.61

eT
 -

 [m
]

Figure 6.58: KIT5: Heatmap representing translational error from ambiguous features over

mapped area

151

400 600 800 1000 1200 1400 1600 1800

X Pose [m]

-1000

-800

-600

-400

-200

0

200
Y

 P
os

e
[m

]

0

14.582

31.1554

47.4132

71.8778

101.223

122.299

137.658

166.603

179.482

179.97

eR
 -

 [d
eg

]

Figure 6.59: KIT5: Heatmap representing rotational error from ambiguous features over

mapped area

Overall, the Karlsruhe results performed worse in comparison to the Sindelfingen data sets.

This may be an indication of a misalignment between the reference and Geometric Hashing

solutions or other errors or miscalibration in the feature extraction steps. This theory is also

reinforced by comparing the ambiguous geometry results between Sindelfingen and Karlsruhe.

It can be seen that the maximal error values from Figures 6.58-6.59 are much lower than Figures

6.37-6.38. In addition, the ambiguous constellation centroid density is much smaller in Figure

6.56 than in Figure 6.35.

152

Chapter 7

Conclusion and Future Work

In this thesis, a novel approach to laser-based feature association using Geometric Hash-

ing was presented within the context of ground vehicle localization. The Geometric Hashing

algorithm was re-introduced and discussed for working with noisy features under isometric

transformation constraints. A Bayesian approach to characterizing noise on extracted features

during matching was proposed to over-bound and capture the true covariance ellipse for iso-

metric invariants. In addition, a new approach to understanding and utilizing map symmetry

using the concepts of Geometric Hashing was presented. This approach enables the recognition

phase to obtain a maximum bound on possible error should the incorrect association be cho-

sen when conflicted with an ambiguity. It also yields information towards a real-time integrity

monitor to verify no hazardous misleading information is fed into the system.

Several different matching methods were proposed and tested for use during the recog-

nition phase. Most of the schemas centered around two common themes: matching based on

a basis or matching based on individual features. When matching bases, it was found that

there was an increased likelihood of obtaining correct associations, but a decreased robustness

to noise and overall provided less frequent useful updates to the system. On the other hand,

matching features allowed for using partial information across several bases, but increased pos-

sibility of incorrect associations.

7.1 Conclusions on Geometric Hashing

The approach of using Geometric Hashing for ground vehicle localization was shown to

be feasible via simulation and integration with real system data. Results show that localization

within a mapped region using Geometric Hashing Localization is possible and can compete

with GPS precision but fell short on requirements for availability and integrity. To obtain

153

these results, the implementation was first tested in a simulation environment with ideal condi-

tions. The outcome proved that given no feature ambiguity and a sufficient amount of extracted

features, geometric hashing can correctly associate features with previously mapped counter-

parts leading to a highly precise positional state correction. Next, the algorithm was integrated

into an existing feature-based localization framework to provide the data association compo-

nent and understand how the performance changed under more realistic conditions. Data such

as extracted feature measurements, GNSS positions, and other vehicle parameters were pre-

collected from driving around two different circuits in Baden-Württemburg, Germany. These

measurements were played back onto a computer running the full localization pipeline to em-

ulate a real drive. The outcome from these tests showed that Geometric Hashing Localization

is capable of delivering high precision localization updates in a timely manner, but under per-

forms in some keys areas preventing effective use as a primary localization solution for safety

critical applications.

One shortcoming of the data from the integrated localization solution was the sampling

rate of data. Each sample from the results of the two circuits was recorded at the end of a

localization update rather than at a fixed, asynchronous rate. This means that for updates that

require more processing time, the system aggregated (or in some cases dropped) information

that could have been used in a subsequent update. Thus, there is a correlation between the

processing time of one update, and the ability to find associations in the next. The GNSS

solution was also sampled at this same frequency. This gives explanation as to why there was

a large difference in GNSS RMS error and percent of detected features between the coarse and

fine solutions of the same route.

Interestingly, the algorithm maintained precise vehicle heading in comparison to horizon-

tal positioning. Even in areas where the localization solution tended to diverge from the path,

the system still maintained an accurate estimate of heading in many cases. More study is re-

quired to understand if this is universally true for all scenarios or if this is just an artifact of the

data studied in this thesis.

154

7.2 Future Work

Overall, Geometric Hashing Localization delivered on many internally set requirements.

It was demonstrated that feature associations are time-invariant and can meet the needs of a

real-time system. Although not explicitly tested in this thesis, the system can be extended to

function using semantically chosen features from both LiDAR and imagery within both indoor

and outdoor environments. The approach can also scale up to larger map regions and can be

parallelized to further improving timing and ambiguity rejection.

However, there is still plenty of improvements that can also be made to the approach. Even

though results show promise for highly precise positioning updates, the availability of these

updates is below expectations for safety critical use-cases. Largely, this issue is a result of two

different problems; lack of uniform feature density within the mapped region and ambiguous

or noisy extracted features.

7.2.1 Additional Primitives and Descriptors

One method to help improve the likelihood of each update containing features is to add

more primitives to the feature set. This could also improve feature density per update as well.

Within this work, only cylindrical features were considered for hashing, but other features

(such as planes, curbs, and road signs) could be included as well. Planes in particular can

be extremely beneficial to positioning, but suffer greatly when partially occluded. If used in

conjunction with a more reliable primitive like cylinders or road signs, some of this information

could be partially recovered.

One major way to eliminate some ambiguity that was not implemented in this work is to

utilize more information for each primitive. Cylinders can be described simply by their position

in a 2D plane, but can also have additional characteristics such as radius, height, and tilt and

azimuth in 3D cases. Including more detail from each cylinder could improve the matching

process by adding additional characteristics to match against.

155

7.2.2 Integrity Risk Monitor

Another major improvement that could be made to improve the existing implementation

is obtaining a true characterization of the noise features undergoing rigid transformation. Cur-

rently, as was presented in Section 4.2.1.1, the joint probability density function for features

undergoing similarity transformations is known. However, when applying a similar approach to

the rigid noise model, the joint probability density function is no longer Gaussian in nature. An

example of this is shown in Hofstetter et al [26] by creating a small monte carlo simulation on

rigidly transformed noisy features. Plotting the results of the monte carlo, it was seen that the

points spread over a ”curved slot” shape. In this thesis, this curved slot was over-bounded with

an ellipse, but this does not truly characterize the noise and will negatively affect the matching

procedure.

Secondly, more steps could be taken to yield better information for an online integrity

monitor. This thesis laid the groundwork for deterministically computing all instances of am-

biguous map features and storing them in an index friendly manner. Next, a method to utilize

this information to compute the probability of a correct or incorrect association at each up-

date should be developed. With these two probabilities considered, the total probability of

hazardous misleading information is known and can be used to monitor alert limits for safety

critical applications as described in Joerger’s work [2].

156

References

[1] Ömer Şahin Taş, Niels Ole Salscheider, Fabian Poggenhans, Sascha Wirges, Claudio Ban-

dera, Marc René Zofka, Tobias Strauss, J. Marius Zöllner, and Christoph Stiller. Making

bertha cooperate–team annieway’s entry to the 2016 grand cooperative driving challenge.

IEEE Transactions on Intelligent Transportation Systems, 19(4):1262–1276, 2018.

[2] Mathieu Joerger, Michael Jamoom, Matthew Spenko, and Boris Pervan. Integrity of laser-

based feature extraction and data association. In 2016 IEEE/ION Position, Location, and

Navigation Symposium (PLANS), pages 557–571. IEEE/ION, 2016.

[3] F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio. Landmark based radar slam

using graph optimization. In 2016 IEEE 19th International Conference on Intelligent

Transportation Systems (ITSC), pages 2559–2564, 2016.

[4] Ziyang Hong, Yvan Petillot, and Sen Wang. Radarslam: Radar based large-scale slam

in all weathers. In 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 5164–5170, 2020.

[5] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown

data association using fastslam. In 2003 IEEE International Conference on Robotics and

Automation (Cat. No.03CH37422), volume 2, pages 1985–1991. IEEE, 2003.

[6] Cyrill Stachniss Giorgio Grisetti and Wolfram Burgard. Improving grid-based slam with

rao-blackwellized particle filters by adaptive proposals and selective resampling. In 2005

International Conference on Robotics and Automation (ICRA), pages 2443–2448. IEEE,

2005.

[7] Isidore Rigoutsos. Massively parallel Bayesian object recognition. PhD thesis, New York

University, Department of Computer Science, 1992.

157

[8] Yehezkel Lamdan, Jacob T Schwartz, and Haim J Wolfson. Object recognition by affine

invariant matching. In Proceedings CVPR’88: The Computer Society Conference on

Computer Vision and Pattern Recognition, pages 335–344. IEEE, 1988.

[9] Yehezkel Lamdan, JT Schwatrtz, and Haim J Wolfson. On recognition of 3-d objects

from 2-d images. In Proceedings. 1988 IEEE International Conference on Robotics and

Automation, pages 1407–1413. IEEE, 1988.

[10] Haim J Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE compu-

tational science and engineering, 4(4):10–21, 1997.

[11] Jacob T Schwartz and Micha Sharir. Identification of partially obscured objects in two

and three dimensions by matching noisy characteristic curves. The International Journal

of Robotics Research, 6(2):29–44, 1987.

[12] Yehezkel Lamdan and Haim J Wolfson. Geometric hashing: A general and efficient

model-based recognition scheme, 1988.

[13] W Eric L Grimson and Daniel P Huttenlocher. On the sensitivity of geometric hashing. In

[1990] Proceedings Third International Conference on Computer Vision, pages 334–338.

IEEE, 1990.

[14] Yehezkel Lamdan and Haim J Wolfson. On the error analysis of’geometric hashing’. In

Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 22–27. IEEE, 1991.

[15] Frank CD Tsai. A probabilistic approach to geometric hashing using line features. Com-

puter Vision and Image Understanding, 63(1):182–195, 1996.

[16] Andrea Califano and Rakesh Mohan. Multidimensional indexing for recognizing visual

shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(4):373–392,

1994.

158

[17] Andrew Gilbert and Richard Bowden. Geometric mining: Scaling geometric hashing to

large datasets. In Proceedings of the IEEE International Conference on Computer Vision

Workshops, pages 16–24, 2015.

[18] Masahiro Tomono. A scan matching method using euclidean invariant signature for global

localization and map building. In IEEE International Conference on Robotics and Au-

tomation, 2004. Proceedings. ICRA’04. 2004, volume 1, pages 866–871. IEEE, 2004.

[19] Mauro S Costa, Robert M Haralick, and Linda G Shapiro. Optimal affine-invariant point

matching. In [1990] Proceedings. 10th International Conference on Pattern Recognition,

volume 1, pages 233–236. IEEE, 1990.

[20] Isabell Hofstetter, Michael Sprunk, Frank Schuster, Florian Ries, and Martin Haueis. On

ambiguities in feature-based vehicle localization and their a priori detection in maps. In

2019 IEEE Intelligent Vehicles Symposium (IV), pages 1192–1198. IEEE, 2019.

[21] M. Sefati, Magnus Daum, Bjoern Sondermann, Kai Kreisköther, and Achim Kampker.

Improving vehicle localization using semantic and pole-like landmarks. In 2017 IEEE

Intelligent Vehicles Symposium (IV), pages 13–19. IEEE, 2017.

[22] Michael Himmelsbach, Felix Hundelshausen, and H. Wünsche. Fast segmentation of

3d point clouds for ground vehicles. In 2010 IEEE Intelligent Vehicles Symposium (IV),

pages 560–565. IEEE, 2010.

[23] Julius Kümmerle, Marc Sons, Fabian Poggenhans, Tilman Kühner, Martin Lauer, and

Christoph Stiller. Accurate and efficient self-localization on roads using basic geometric

primitives. In 2019 International Conference on Robotics and Automation (ICRA), pages

5965–5971. IEEE, 2019.

[24] Marc Sons, Martin Lauer, Christoph G Keller, and Christoph Stiller. Mapping and local-

ization using surround view. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages

1158–1163. IEEE, 2017.

159

[25] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press,

2005.

[26] Isabell Hofstetter, Michael Sprunk, Florian Ries, and Martin Haueis. Reliable data asso-

ciation for feature-based vehicle localization using geometric hashing methods. In 2020

International Conference on Robotics and Automation (ICRA), pages 1322–1328. IEEE,

2020.

[27] Marc Sons and Christoph Stiller. Efficient multi-drive map optimization towards life-long

localization using surround view. In 2018 21st International Conference on Intelligent

Transportation Systems (ITSC), pages 2671–2677. IEEE, 2018.

[28] R. Pepy, A. Lambert, and H. Mounier. Path planning using a dynamic vehicle model.

In 2006 2nd International Conference on Information and Communication Technologies,

volume 1, pages 781–786, 2006.

160

Appendices

161

Appendix A

The hash table structure created during the training phase as mentioned in Section 2.2
is typically implemented using a dynamically-sized container with the best possible random-
access time. Each entry in the hash table generally has a format similar to ’HashEntry’ below.
An example of what this may look like is presented in Figure A.1.

struct HashEntry

{

// Hash value for this entry

int hash;

// Layer identifiers for each layer that contains a key at this hash value

list<int> layers;

}

Along side the hash table, there must also be a database where the information about
each basis is stored for later use. In Section 2.2, some of the information that might be found
there was briefly mentioned. Below, the ’Basis’ data structure provides more detail to what a
possible implementation might look like. The database that each ’Basis’ structure is contained
in ultimately depends on the size and access needs of the implementation. In simple cases, a
dynamically-sized array will suffice. An example of what this may look like is presented in
Figure A.2.

struct Basis

{

// Layer identifier (basically a serial number)

int layer;

// Location of the basis origin in map frame

Point2D origin;

// Distance between basis points (points that define the basis for this

layer)

double dist;

// Quantized distance between the basis points

double dist_q;

// Angle difference between the basis x-axis and map x-axis

double rot;

// Invariants in the basis frame

list<Point2D> points;

163

// Variance on the invariants position in the basis domain

list<Point2D> variance;

// Quantized invariant positions

list<Point2D> keys;

// Feature IDs (index to corresponding mapped element)

list<int> feature_identifiers;

// Serial numbers for ambiguous constellations that contain this layer

list<int> ambiguitiy_identifiers;

}

Figure A.1: Example structure of Hash Table

164

Figure A.2: Example structure of Layers Database

In Section 3.2.1, groupings of quantized points that match between two or more bases were
introduced as similarities. By exhaustively searching through all combinations of matching
keys across all combinations of layers, a complete database of similarities is obtained. The
database is sorted by the number of points belonging to the similarity (i.e. the vertex count, K).
At each vertex count, a dynamically-sized amount of similarities are stored as shown in the text
block below.

K | list(Similarities)

4 | sim1, sim2, sim3

3 | sim4, sim5

2 | sim6, sim7, sim8

1 | sim9, sim10, sim11, sim12

Each similarity in the database is a data structure that could be implemented as shown below in
’Similarity’.

struct Similarity

{

int vertex_count; // Number of points in this similarity

int layers[2]; // Layers (bases) that created this

similarity

list<Point2D> lhs_points; // Invariants from the left-hand layer

list<Point2D> rhs_points; // Invariants from the right-hand layer

// Discretized invariants

// (Recall, these are the same between the two layers, this is why it’s a

similarity)

list<Point2D> keys;

165

// Feature IDs for the matched (similar) points

list<Point2D> similar_features;

}

After obtaining the complete list of similarity sets organized by vertex count, Section 3.2.2
suggests that the non-unique information from the similarity sets can be condensed into con-
stellations of points tying back to a unique set of layers. This step removes a great deal of re-
dundant information as well as enables a better format for computing other useful information
that can be used during the recognition step. Each ambiguous constellation has a data struc-
ture that looks similar those shown below in ’AmbiguousConstellation’ and the sub-structures
’AmbiguousLayer’ and ’AmbiguousTransform’.

struct AmbiguousConstellation

{

int serial_number; // Unique identifier for this constellation

int vertex_count; // Number of points in this constellation

// Number of occurrences of this constellation in map (same as the number

of layers)

int occurrences;

// Discretized invariants that are shared between all layers

list<Point2D> constellation;

// List of layers and their respective info that belong to this ambiguity

list<AmbiguousLayer> layers;

// List of transformations between the constellation map locations

list<AmbiguousTransform> tfs;

}

struct AmbiguousLayer

{

int layer; // Layer identifier

// Invariants that belong to this layer AND the ambiguity

list<Point2D> points;

// Feature IDs that correspond to the points above

list<int> feature_identifiers;

// Centroid of the cluster of ambiguous points in the map frame

Point2D centroid;

// Angle difference between the constellation x-axis and map x-axis

double orientation;

}

struct AmbiguousTransform

166

{

// Layer identifiers that make up this transform

int layers[2];

// Translational offset between the two centroids of the constellation pairs

double translation;

// Rotational offset between the two constellation x-axes

double rotation;

}

Lastly, an rough example of what an AmbiguousConstellation structure may look like when
populated is shown in the text block below.

Am1:

-> serial_number = 1;

-> vertex_count = 4;

-> occurrences = 2;

-> constellation = { [0,2], [0,-2], [4,7], [-3,-5] };

-> layers = {

lyr1:

layer = 7;

points = { [0.4, 1.8], [0.3, -2.2], [4.1, 6.9], [-2.8, -5.0] };

feature_identifiers = { 2, 7, 19, 32 };

centroid = [Cx7, Cy7];

orientation = R7;

lyr2:

layer = 11;

points = { [-0.1, 1.7], [-0.3, -1.9], [3.8, 6.8], [-3.2, -4.8] };

feature_identifiers = { 4, 9, 13, 21 };

centroid = [Cx11, Cy11];

orientation = R11;

}

-> tfs = {

tf1:

layers = { 7, 11 };

translation = [Cx11-Cx7, Cy11-Cy7];

rotation = wrapPi(R11-R7);

}

167

