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Abstract

This thesis presents an adaptive control algorithm for steering actuator delay compensation

in a ground vehicle lateral control system. Unknown and time-varying actuator delay values are

considered. Many active safety systems and all autonomous vehicles rely on a lateral control

system in order to follow a desired path. Lateral control systems designed without considering

actuator delay may not achieve desired path following performance or may exhibit an undesir-

able system response such as steering oscillation, resulting in an uncomfortable ride or even

instability or collisions. The delay compensating controller presented in this thesis is imple-

mented at a low level within the lateral control system. It attempts to mitigate the effects of the

time delay without using a vehicle model or altering the high level path following controller.

The estimation algorithm used in this thesis utilizes knowledge of the control input and mea-

sured steer angle to estimate both the communication delay and the actuator dynamics present

in the control system. This allows the compensating controller to adapt to changing or unknown

actuator delay. The performance of the inner-loop compensation algorithm is evaluated with

multiple path following controllers. The controller is then tested in a lane-keeping simulation,

and finally applied to a real-world path following experiment. The proposed compensation

algorithm is shown in both simulation and real-time tests to improve steering response and

overall path following performance.
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Chapter 1

Introduction

1.1 Motivation

Automobiles are by far the most common form of day-to-day transportation used in America,

where over 70% of commuters either drove alone or carpooled to work in 2021 [1]. In 2020

there were 276 million registered vehicles in the U.S., compared to only 228 million licensed

drivers [2]. Driving does pose a safety risk, however, with motor vehicle crashes accounting

for over 38,000 deaths in 2020 alone [3]. A study published by the National Highway Traffic

Safety Administration (NHSTA) in 2018 attributes the “critical reason” for 94% of car crashes

to the driver [4].

Recent advances in vehicle autonomy have led to many valuable safety systems, available

in most new cars today. These systems attempt to aid in avoiding collisions and performing

normal driving tasks when the driver makes mistakes or becomes distracted. These include

adaptive cruise control, lane keeping assist, electronic stability control and automatic emer-

gency braking, among others. These Advanced Driver-Assistance Systems (ADAS) attempt to

prevent crashes from occurring. Many of these features are classified as low levels of autonomy

according to the Society of Automotive Engineers (SAE). The six levels of vehicle autonomy

defined by SAE are shown in Figure 1.1. Most new vehicles are capable of level 2 autonomy,

and companies have invested hundreds of millions of dollars towards reaching higher levels of

autonomy.

Safe and effective path following control is critical to vehicle autonomy for any system

classified level 2 or higher. The vehicle must be able to adhere to a reference path with minimal
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Figure 1.1: SAE Levels of Vehicle Automation [5]

error in order to maintain lane position and avoid collisions. Path tracking controllers, also

commonly referred to as steering or lateral controllers, calculate the necessary steering input

to follow the desired path. In every vehicle there will exist a communication delay between

the path tracking (outer-loop) controller and the steering actuator. Additionally, every steering

actuator will have inherent dynamics, and will not instantaneously produce the desired steer

angle.

Communication delay and steering actuator dynamics can degrade path following con-

troller performance, often causing oscillation, reduced path tracking bandwidth, and in severe

cases, instability. Therefore, in order to meet performance specifications, actuator delays must

be accounted for in the control design. For smaller delays, it may be possible to achieve desired

performance by simply tuning the existing controller. Gain values can be scaled down to main-

tain stability margins in spite of delays. For larger delay values, however, this strategy may not
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be sufficient, as reducing gain values leads to slower performance, less accuracy and reduced

bandwidth. In this case, a more active compensation strategy is necessary.

Vehicles that have been retrofitted with drive-by-wire (DBW) hardware are especially sus-

ceptible to communication delays. The desired steer angle must pass through multiple levels

of hardware and software to get from the controller to the steering system. outer-loop delay

compensation methods have been shown to be effective at mitigating the effects of steering

delay, however many of these methods make assumptions that may not be true. One of the

main drawbacks to many outer-loop delay compensation strategies is the algorithms’ reliance

on an accurate vehicle model to predict future states. An accurate model is not always avail-

able. Additionally, vehicle parameters may change over the course of operation. For example,

millitary and commercial trucks operate under a wide range of loading conditions, leading to

significant changes in vehicle parameters. Even passenger vehicles can be susceptible to model

inaccuracies due to changing road conditions, tire wear, loading, etc. Additional drawbacks

of outer-loop compensation methods can include increased complexity, increased computation

time, and the necessity of an outer-loop controller redesign.

For many systems, an outer-loop compensation method may not be the best option. An

alternative approach is to consider an inner-loop compensation method. The benefits of com-

pensating for delay at a lower level are:

• Compensation can be achieved without the use of a vehicle model, meaning an accurate

model is not necessary.

• The negative effects of delay can be mitigated without a complete redesign of the outer-

loop controller, giving the designer more freedom in outer-loop control design.

• Inner-loop methods are often less complex and less computationally expensive than many

outer-loop methods.

Another drawback of many delay compensation methods is the assumption of known,

constant communication delay and actuator dynamics, which may not be known accurately.
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Additionally, steering dynamics can change based on tire wear and road conditions, and com-

munication delay can vary due to a number of factors [6]. Assuming known, constant delay

and dynamics can lead to prediction errors and degraded controller performance.

This thesis presents a low-level adaptive delay compensating controller designed to be

inserted between the path following controller and the steering system. The goal will be to

target the delay at the source, providing compensation without changing the outer-loop con-

troller. The inner-loop controller estimates and compensates for the inherent delays between

the computer and steering system as well as the steering actuator dynamics. This allows for

the control system to maintain stability, reduce steering oscillations, and maintain near-desired

path tracking bandwidth, without the use of a vehicle model.

1.2 Related Work

1.2.1 Path Following Control

Path following control for autonomous vehicles has been explored extensively [7]. Solutions

range from simple kinematic controllers to complex control schemes such as model predictive

control (MPC). Kinematic controllers offer simple control laws based on kinematic vehicle

models and require no feedback [8,9]. Classical control techniques such as PID feedback loops

have also been applied to path following [10]. Adaptive controllers have been shown to yield

good performance as well [11–13]. Techniques such as MPC attempt to apply optimal control

to the path following problem [14, 15]. The majority of path following control designs ignore

actuator dynamics or try to account for them by tuning controller gains or look-ahead distance.

This may not be sufficient for slower actuators or for higher dynamic maneuvers.

1.2.2 Time Delay Compensation and Estimation

Time delays and actuator dynamics are present in nearly all control systems, and the topic of

delay compensation has been widely researched for many years. One of the earliest solutions,

and still one of the most commonly used, is the Smith predictor [16], proposed in 1957 for

factory and chemical process control where long time delays are common. The Smith predictor

works by predicting and feeding back future states to mitigate the effects of time delay. Since
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its conception, it has been adapted to a wide variety of control systems with varying delay

times and dynamics. Methods exist to make the Smith predictor adaptive [17–23], to increase

its robustness [24–27], and to adapt it to unstable or non-minimum phase systems [28–31].

Additional methods such as MPC [32–34], step-ahead control [35], gain scheduling [36], and

autotuning [37] have been investigated to compensate for both pure delays and actuator dynam-

ics.

The topic of time delay estimation has been well researched, and has applications to mul-

tiple fields including system identification for control design and signal processing, among

others. Numerous methods have been proposed to estimate delays. These can be divided into

two main categories [38]. The first includes methods that approximate the time delay in a

system model where the delay itself is not an explicit parameter [39]. The second category

includes methods that attempt to estimate the delay as an explicit parameter [40, 41]. Neu-

ral networks [17] and sliding mode estimation [42] have also been applied to the time delay

estimation problem.

1.2.3 Delay Compensation in Autonomous Vehicle Systems

Actuator delay compensation for autonomous vehicle applications has been well researched,

with a multitude of resources describing the design and implementation of delay compensation

algorithms. One application where delay compensation has proven to be valuable is in longi-

tudinal control systems such as adaptive cruise control (ACC) and cooperative adaptive cruise

control (CACC) systems. The authors of [34] examine the effect of actuator and sensor delay

on the string stability of ACC systems where an MPC control architecture, augmented with ac-

tuator and sensor models, is proposed to compensate for the delays. The delays are assumed to

be known exactly, however. String stability of a CACC system with delays is examined in [43].

A Smith Predictor control scheme is utilized with a proportional-derivative (PD) controller to

compensate for the delays. The delays are, again, considered to be known and constant. Lon-

gitudinal control of commercial heavy vehicles (CHV) with actuator delays is accomplished

using a nonlinear backstepping control scheme in [44].
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Delay compensation has also been applied to numerous other autonomous vehicle sub-

systems. A compensation method for environmental sensor delays is presented in [45], but

constant delay values are again assumed. The authors of [32] present an MPC design to com-

pensate for actuator delay in a vehicle stability control system. In [46], an adaptive delay

compensating controller is applied to a vehicle active suspension system. The authors of [47]

also address delays in an active suspension system, presenting a sliding mode control based

solution. A networked predictive control strategy is developed to compensate for delays in

an electro-hydraulic actuated wet clutch system in [48]. An MPC compensation strategy was

applied to air-to-fuel ratio control in [49]. Each of these works, however, consider delay and

actuator dynamics to be known and constant.

Steering delay compensation methods have been proposed to improve lateral control sys-

tem performance. The authors of [50] present an MPC based lane keeping assist system with

Smith Predictor based delay compensation. Both the delays inherent to Global Navigation

Satellite System (GNSS) measurements and the steering actuator delay are considered. A

process-model control based approach is taken to compensate for steering actuator delays and

saturation in [51]. Performance improvements are shown, however the delay value is once

again assumed to be known and constant.

In [52], a preview path tracking controller with steering delay compensation is designed,

implemented, and compared to a predictive compensation method. Path tracking improvements

are shown over the uncompensated performance for both compensation methods, however the

steering delay and dynamics are assumed to be known and constant and an accurate vehicle

model is assumed. The authors of [33] propose a robust, delay-aware model predictive control

architecture for lateral path tracking using Robust Tube MPC. They also implement an adaptive

Kalman Filter to estimate the computation time of the MPC controller. This method focuses

mainly on the delay introduced by the computation time of the model predictive controller

rather than the communication delay between controller and actuator. Constant, known actuator

dynamics were also assumed.

6



1.3 Research Contributions

The majority of delay compensation methods that have been proposed for vehicle steering

control employ a high-level approach, often attempting to predict future vehicle states or aug-

menting an MPC model with actuator dynamics. These methods have shown promising results,

however there are drawbacks. Designing a predictive path tracking controller requires a rela-

tively accurate vehicle model and often results in a very specialized controller that may be

difficult to implement on different vehicles. Additionally, many proposed methods assume

known, constant delay and steering dynamics. This is not always a safe assumption, as these

values may be modeled incorrectly or may vary over time. This thesis presents a low level

compensation scheme that adapts to changes in the steering response.

The main contribution of this work is an adaptive inner-loop steer angle controller that

compensates for delay between the control computer and the steering system and for the dy-

namics present in the actuator. The compensation does not require a vehicle model and is able

to adapt to varying or incorrectly modeled delay and steering dynamics. The algorithm will

be shown both in simulation and in real-time experimental data to maintain stability, reduce

steering oscillations, and improve path tracking performance in the face of steering delays. It

will also be shown to adapt well to different steering actuators on different vehicles. Some of

the results from this research were presented in [53].
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Chapter 2

Technical Background

2.1 Notation

Throughout this thesis, scalars, matrices and vectors will be represented as follows. Scalars

will be represented by lowercase, non-bolded variables such as a. Matrices will be represented

by capital, non-bolded letters as shown in Equation (2.1)

M =

m1,1 m1,2

m2,1 m2,2

 (2.1)

where M represents a 2x2 matrix of scalars. Vectors will be represented by bolded, lower case

letters or symbols such as v. Accents over variables will be used to represent different types of

values. A “hat” over a variable such as x̂ implies that it represents an estimated value of that

variable. A tilde over a variable such as ỹ will be used to represent a measured value of that

variable.

Throughout this thesis, dynamic systems will be represented using both state variable

formulation and transfer functions. Basic knowledge of differential equations, control systems,

frequency response, and state space and transfer function notation is assumed. An introduction

to these topics can be found in the prior work [54, 55].

2.2 Time Delay

This section will discuss the modeling, approximation, and effect of time delay in control sys-

tems. Two types of delay will be discussed in this thesis. The first type will be referred to as
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“pure delay.” Pure delays are also commonly referred to as transport delays, non-distorting de-

lays, or latency. Pure delay encompasses communication delay, computation time and sampling

delays. Pure delays do not distort signals, they only shift the signals in time.

Time delays are inherent to all control systems and can occur for a variety of reasons.

Actuators, sensors, and other hardware components all introduce varying degrees of delay.

Software design can also introduce delay into the system due to computation time. All time

delays have a negative effect on control system performance, leading to reduced gain margin,

reduced phase margin, oscillation, and in severe cases, instability. This work will focus on

delays caused by the steering actuator of a vehicle.

The second type of delay discussed will be referred to as “dynamic delay.” This describes

the actuator dynamics caused by the mechanical properties of the actuator itself and the low

level control design within the actuation system. Both types of delay are inherent to all me-

chanical actuators in varying degrees, and both have a negative effect on control performance.

2.2.1 Mathematical Representation of Actuator Delay

A block diagram of an arbitrary control system with actuator delay and dynamics is shown in

Figure 2.1. The pure delay and actuator dynamics are shown as two seperate components. The

plant and actuator dynamics are assumed to be linear and time-invariant for this representation.

The dynamics of the plant and the actuator are represented in Equation (2.2) and Equation (2.3),

respectively.

ẋ = Ax +Bu(t) (2.2)

u̇ = −auu+ bud(t− τ) (2.3)

A and au represent the state matrix of the system and the eigenvalue of the actuator dynamics,

respectively. B and bu represent the input matrix of the system and the input scale value for the

actuator. The variables d and u represent the desired input and the actual input provided by the

actuator, respectively. For this model, the actuator dynamics are assumed to be first order.
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Figure 2.1: Block Diagram of Control System With Actuator Lag

The actuator dynamics are assumed to have both a pure delay portion and a dynamic

portion. The pure delay value in seconds is represented by τ . In order to represent the original

system and actuator dynamics in a single system, the state and input matrices can be augmented

as shown in Equation (2.4).

An =

A B

0 au

 Bn =

 0

bu

 (2.4)

This augmentation assumes that the actuator dynamics are independent of the state dynamics.

However the augmented matrix could easily be altered to represent a linear relationship between

the two. The full augmented system is shown in Equation (2.5).

ẋ

u̇

 = An

x

u

+Bnd(t− τ) (2.5)

The delayed desired input d has replaced the actuator output as the input to the system

and the actuator dynamics are included in the augmented state matrix. Due to the pure delay

present in the system, the desired input d is shifted in time by τ seconds. Linear time delay

systems can also be represented using continuous or discrete transfer functions. The laplace

domain and z-domain representation of a pure delay of τ are shown in Equations (2.6) and

(2.7), respectively.
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e−τs (2.6)

z
−τ
T (2.7)

In order to represent delay accurately in the discrete domain the delay value must be

divisible by the sample rate T . If the delay is not divisible by the sample rate then it must

be approximated by rounding to the closest number of samples. Therefore if the time delay is

significantly smaller than the sample period of the system it is impractical to approximate the

delay in the discrete domain for control design and analysis.

2.2.2 Approximation of Time Delay Systems

There are numerous methods to approximate time delay systems for control design and analy-

sis. One of the most common is the Padé Approximation, which models pure time delay as a

rational transfer function. This is necessary for some design methods such as root locus which

require the system to be represented as a rational transfer function. An example of a first order

Padé approximation of pure delay is shown in Equation (2.8).

e−τs ≈
− τ

2
s+ 1

τ
2
s+ 1

(2.8)

The approximation mimics the frequency response characteristics of the delay. Note that a

zero is added in the right half plane. Higher order Padé approximations are also possible and

approximate the delay more accurately than first order models. A simple example of a padé

approximation of a first order time delay system is shown in Equation (2.9).

G(s) = e−0.1s
5

s+ 5
≈ −s+ 20

s+ 20
∗ 5

s+ 5
(2.9)

The step responses of the actual system and the Padé approximation are compared in Figure

(2.2). The approximation closely resembles the actual system response.
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Figure 2.2: First Order Time Delay System Compared to Padé Approximation.

The step response and phase angles of the true and approximate delay responses are com-

pared in Figure 2.3 for a first order Padé approximation of a 0.1 second pure delay. The ap-

proximation nearly matches the phase angle of the pure delay up to around 10 rad/s. The step

response approximation loosely follows that of the pure delay.

Higher order Padé approximations more accurately match the true system response. A

fifth order Padé approximation of a pure delay of 0.1 seconds is compared to the true response

in Figure 2.4. The higher order approximation more closely mimics the step response and

matches the phase response up to around 100 rad/s. Padé approximations are useful, but are

not exact and can lead to instability in some systems when used for control design [56].

2.2.3 Frequency Response Effect of Time Delay

Both pure delay and actuator dynamics have an effect on the frequency response of the system.

Pure delay does not affect the gain of the open loop system as it only shifts the input in time

and therefore it does not have an effect on the magnitude of the signal. It does, however, have
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Figure 2.3: First Order Padé Approximation

an effect on the phase angle of the system. The phase of a pure time delay of τ seconds is given

in Equation (2.10).

6 τ(jω) = −ωτ (2.10)

The relationship between time delay, frequency, and phase angle is shown in Figure 2.5.

The dramatic drop in phase angle for higher frequency and time delay values greatly limits the

achievable closed loop bandwidth of the control system. This highlights the need for compen-

sation if the delay is large enough or if a high closed loop bandwidth is desired.
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Figure 2.4: Fifth Order Padé Approximation

2.3 System Analysis and Control Design in the Presence of Time Delay

The presence of time delay in a system complicates control design and stability analysis and

is detrimental to system performance. If delay is not considered during the design process, the

controller will not achieve the desired response and may cause excess oscillation or instability.

Various control design methods and their application to time delay systems will be discussed

in the following sections.

2.3.1 Root Locus Analysis for Continuous Time Delay Systems

Use of the root locus design method is difficult for continuous time delay systems because

of the need to approximate the delay in the form of a rational transfer function. This can be

done using a Padé approximation as described previously in Section 2.2.3. Once the delay is

approximated, the system can be analysed using root locus, however the approximation will
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Figure 2.5: Phase Angle Compared to Time Delay and Frequency

not be exact and could lead to errors in the control design. An example of root locus design for

a first order time delay system is described below. The example system and its approximation

are shown in Equation (2.11).

G(s) = e−0.1s
5

s+ 5
≈ −s+ 20

s+ 20
∗ 5

s+ 5
(2.11)

The root locus plot of the system without delay is compared to the plot of the approximate

system in Figure 2.6. A simple proportional controller is assumed. The importance of consider-

ing delay in control design is apparent. When delay is not considered, the system appears to be

stable for all gain values. Modifying the model using the Padé approximation to approximate

the delay shows that this is not true. The right half plane zero included in the approximation

results in the system being marginally stable at a proportional gain value of around 5.
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Figure 2.6: Comparison of Root Loci Between Delay Approximation and Non-Delayed System

2.3.2 Root Locus Analysis for Discrete Time Delay Systems

When represented as a discrete system, time delay can be included directly into root loci in the

form of poles at the origin. This is still an approximation, as the delay value must be rounded

to the nearest whole number of samples in order to be expressed in the discrete domain. An

example of discrete root locus design is shown below using the same first order system as

shown in the previous section, discretized at 100 Hz. The discrete system model with a delay

of 10 samples is shown in Equation (2.12).

G(z) = z−10
0.04877

z − 0.9512
(2.12)

The root loci of the system with and without delay with a proportional controller are

compared in Figure 2.7. When delay is not considered, the system appears to be stable even at
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high gain values. Once the delay is included into the system, however, the root locus shows the

system to be marginally stable at a gain value of around 3.5.

Figure 2.7: Comparison of Discrete Root Loci Between Delayed and Non-Delayed System.

2.3.3 Bode-Based Analysis for Time Delay Systems

Frequency response design methods are often most effective for considering time delay systems

because the effect of the pure delay can be expressed directly in the frequency domain [54]. An

example of Bode based control design is described below using the first order system previously

shown in Equation (2.12).

Assuming a simple proportional controller, the control design can be performed by exam-

ing the open loop Bode plot of the system shown in Figure 2.8. The open loop Bode plots of

the system with and without delay are shown. The delay has a large effect on the open loop

phase of the system but does not affect the gain of the system.
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Figure 2.8: Comparison of Open Loop Bode Plots Between Delayed and Non-Delayed System

Stability for linear systems can be observed through the gain and phase margin of the

open loop Bode plot. Gain margin is defined as the factor by which the system gain can be

increased while maintaining stability. A gain margin greater than 1 indicates stability, while

a margin of 1 indicates marginal stability and less than 1 indicates instability. Phase margin

is defined as the difference between the open loop system’s phase lag and -180 degrees at the

crossover frequency, which is defined as the frequency where the open loop gain crosses 0 dB

(magnitude of 1). A positive phase margin indicates stability while a negative or zero phase

margin indicates instability or marginal stability, respectively. The crossover frequency of the

open loop system approximately equals the bandwidth of the closed loop system.

Phase margin provides a metric describing the robustness of the control system to unmod-

eled dynamics or to errors in the plant model. For example, a system with a phase margin of

90 degrees or greater could maintain stability even with an unmodeled integrator (pole at 0).

As phase margin decreases, any unmodeled dynamics must have a higher bandwidth. For ex-

ample, a system with a phase margin of 30 degrees could maintain stability with an unmodeled
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pole at 2 times the open loop crossover frequency. As phase margin approaches zero, the sys-

tem response becomes more and more oscillatory. Gain margin describes how much the loop

gain can be increased before reaching instability, or how aggressive the controller gains can be

made.

The effect shown in the previous section can be seen again here. The maximum gain value

and achievable closed loop bandwidth for the system with delay is much lower than that of the

undelayed system. Because of the rapid drop in phase angle caused by the pure delay, closed

loop bandwidths around 10 rad/s or greater may not be achievable. The gain and phase margins

are plotted versus crossover frequency for a simple proportional controller in Figure 2.9. The

gain and phase margins are shown for the system described in Equation (??), with and without

delay. The point where the system reaches marginal stability is shown for the delayed system.

It can be seen that the delay greatly limits the achievable crossover frequency compared to the

undelayed system.

2.4 Coordinate Frames

2.4.1 Vehicle Frame

The vehicle frame used in this thesis is fixed to the body of the vehicle, with the origin at the

center of gravity (CG). The X-axis extends through the front of the vehicle, the Y-axis extends

from the passenger side, and the Z-axis points downward. This coordinate frame is pictured

in Figure 2.10 and is used to define the vehicle model in Section 2.5. Vehicle longitudinal and

lateral velocity are defined as velocity in the X and Y axes of the vehicle frame, respectively.

2.4.2 Local Navigation Frame

The local navigation frame used in this thesis is the North-East-Down (NED) frame. Most of

the results presented will be in this coordinate frame. The NED frame defines a plane tangential

to the surface of the earth, with the axes aligned with the North and East directions. Heading

is defined as the angle between the X-axis of the vehicle frame and the North axis of the NED

frame, with a positive heading representing a clockwise rotation off of the North-axis. An

illustration of the NED frame is shown in Figure 2.11.
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Figure 2.9: Comparison of Gain and Phase Margins Versus Controller Gain Between Delayed
and Non-Delayed System

2.4.3 Global Navigation Frame

When vehicles travel long distances, a local frame such as NED is no longer sufficient due to the

curvature of the earth. In these scenarios and for systems using GPS measurements, the Earth-

Centered, Earth-Fixed (ECEF) coordinate frame is utilized. This frame, defined in WGS84,

has its origin at the Earth’s CG, its X-axis extending through the intersection of the Equator

and Prime Meridian, its Z-axis extending through the North Pole, and the Y-axis completing

the right-handed coordinate frame, also along the Equator. Transformations between the local

NED frame and the ECEF frame can be made with knowledge of the origin of the NED frame

in ECEF coordinates and the vehicle heading in the NED frame. The ECEF frame is illustrated

in Figure 2.12.
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Figure 2.10: Illustration of vehicle frame. [57]

2.5 Vehicle Model

The linear dynamic bicycle model is used to model the lateral dynamics of the vehicle for the

purpose of control design and stability analysis. The model is derived by summing the forces

and moments about the z axis of the vehicle, shown in Figure 2.13. This model was chosen

because it is valid under most driving conditions and is well suited to linear control design and

stability analysis.

The dynamic bycicle model in continuous state space format is shown in Equation (2.13)

 ψ̈
V̇y

 =

 − C2

IzzVx
− C1

IzzVx

− C1

mVx
− Vx − C0

mVx


 ψ̇
Vy

+

aCαfIzz

Cαf
m

 δ (2.13)

where the terms C0, C1, and C2 are combinations of the distance from the vehicle’s center of

gravity to the front and rear axles, a and b, and the front and rear tire cornering stiffness, Cα,f

and Cα,r, respectively, as shown in Equations (4.30) - (4.32).

C0 = Cαf + Cαr (2.14)

C1 = aCαf + bCαr (2.15)

C2 = a2Cαf + b2Cαr (2.16)

For the purpose of control design, this model can be discretized at the desired sample rate. It

can also be expressed in the form of a transfer function describing the dynamics from steer

angle to heading, lateral position, etc. depending on the type of controller being designed.
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Figure 2.11: Illustration of NED Coordinate Frame. [58]

The dynamic bicycle model asumes steady state longitudinal velocity (Vx) and a linear

tire model. These assumptions are valid under most driving conditions. The steering dynamics

present in the vehicle are assumed to be described by a first order model with a time delay. The

nonlinearities present in the steering system are ignored. This assumption holds as long as the

steering system response is reasonably close to that of a first order linear system. For a more

detailed model of an electric power steering system, see [6, 59].

The first order model used to describe the steering dynamics is shown in Equation (2.17).

δ̇ +
1

Tc
δ = d(t− τ) (2.17)

Tc represents the time constant of the steering dynamics. The terms d and τ represent the com-

manded steer angle and the pure time delay, respectively. This model can also be represented

in continuous transfer function format as shown in Equation (2.18).

δ(s)

d(s)
= e−τs

b

s+ a
(2.18)
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Figure 2.12: Illustration of ECEF Coordinate Frame. [58]

Figure 2.13: Dynamic Bicycle Model.

The model is shown in discrete transfer function format in Equation (2.19).
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δ(z)

d(z)
= z

−τ
T

b

z − a
(2.19)

T represents the sampling period of the system. In order to represent the model in the discrete

domain the pure delay τ is assumed to be some multiple of the sampling period. The dynamic

bicycle model can be augmented with the steering dynamics in order to include the full system

dynamics in one model as shown in Equation (2.20).


ψ̈

V̇y

δ̇

 =


− C2

IzzVx
− C1

IzzVx

aCαf
Izz

− C1

mVx
− Vx − C0

mVx

Cαf
m

0 0 − 1
Tc



ψ̇

Vy

δ

+


0

0

1

 d (2.20)

This model assumes that the steering response is independent of the vehicle states. This ignores

variations in the steering response due to vehicle velocity, yaw rate, etc. One of the goals of the

parameter estimation algorithm discussed in Chapter 3 is to adapt to these changes in steering

dynamics.
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Chapter 3

Delay Compensation Algorithm

3.1 System Architecture

Figure 3.1 shows how the delay compensation algorithm would fit into a typical autonomous

vehicle software structure. The algorithm can be inserted between the high level software (path

planning, path tracking controller, etc.) and the low level software and hardware (autonomous

steering system, braking system, throttle control, etc.). This allows for delay compensation

without alteration of the high level algorithms or low level hardware. The inner-loop takes

desired steer angle as an input and uses measured steer angle in the estimation algorithm. No

other inputs or sensor measurements are necessary.

Figure 3.1: System Software Architecture

3.1.1 Inner-loop Control Design

The goals of the inner-loop control design are to quicken the steering response, to increase the

gain and phase margins of the closed loop system, and to provide filtering of high frequency
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steering commands in order to reduce oscillations. This is accomplished by introducing a low-

level controller to regulate the steer angle commands that are passed into the steering system.

Because of the communication delay between the control computer and the steering system,

implementing an inner-loop controller without delay compensation could lead to additional

oscillation and overshoot, possibly worsening path tracking performance. For this reason, a

delay compensation method is necessary when implementing an inner-loop steering controller.

The Smith Predictor (SP) is a control algorithm designed to compensate for pure time

delays. It was initially developed to compensate for large delays (1 second or more), but it has

been applied to a variety of time delay systems with various amounts of delay. The SP feeds

back predictions of future states to reduce overshoot and oscillation in the control system.

Applying the delay compensation in the inner-loop allows for the steering dynamics to be sped

up without introducing extra oscillation or adverse effects.

The block diagram of the inner-loop with SP compensation is shown in Figure 3.2. Gi

and Gi,m represent the actual and modeled steering dynamics, respectively, excluding the pure

delay. Td and Td,m represent the actual and modeled pure delay. The commanded steer angle

from the outer-loop is fed into the inner-loop controller, Ci. The inner-loop controller adjusts

the steer angle commands to reduce oscillation and speed up the steering dynamics. A model

of the steering dynamics and an estimate of the pure time delay are used to predict future steer

angles. The predicted steer angles are fed back, mitigating the effects of the pure time delay.

The closed loop transfer function of the SP system is shown in Equation (3.1).

δ(s)

d(s)
=

CiTdGi

1 + CiGi,m − CiGi,mTd,m + CiGiTd
(3.1)

When the modeled plant and time delay match the true plant and time delay exactly (Td,m = Td

and Gi,m = Gi), the effects of the pure delay are removed from the characteristic equation of

the closed-loop system. This effect can be seen in Equation (3.2).

δ(s)

d(s)
=

CiTdGi

1 + CiGi,m

(3.2)
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Figure 3.2: Block Diagram of Inner Control Loop and SP.

After the pure delay is removed from the characteristic equation, the inner-loop controller

can be designed assuming no delay. This simplifies the control design process and allows for

more aggresive controllers to be implemented. The delay will still be present in the numerator

of the closed loop transfer function, which means the system will still track reference changes

with a delay. For the purpose of control design, the steering dynamics were assumed to be

modeled by a first order system and nonlinearities in the steering system were ignored. For

some actuators, this assumption may need to be adjusted, but the steering actuators on the test

vehicles examined in this thesis exhibit characteristics of first order systems.

Assuming an actuator response similar to that of the Lincoln MKZ test vehicle described

later in Chapter 4, the controller was designed to increase the bandwidth of the steering dynam-

ics and to provide filtering at higher input frequencies. The assumed actuator dynamics, found

experimentally, are described by a first order system with a time constant of 0.1898 seconds.

A discrete compensator with one pole and two zeros was chosen for the inner-loop controller.

The transfer function of the controller in the continuous domain is shown in Equation (3.3).

Ci(s) =
di(s)

eδ(s)
= Ki

s+ 10

(s+ 15)(s+ 16)
(3.3)
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The poles and zeros of the controller were chosen in the continuous domain, then transformed

into the discrete domain using the Tustin method of discretization at a sampling frequency of

100 Hz. The transfer function of the discrete compensator is shown in Equation (3.4).

Ci(z) =
di(z)

eδ(z)
=

0.004522z2 + 0.0004307z − 0.004091

z2 − 1.712z + 0.733
(3.4)

Pre-reference scaling is used to ensure a DC gain of 1. The closed loop frequency response of

the inner-loop is compared to that of the unmodified actuator dynamics in Figure 3.3.
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Figure 3.3: Comparison of Inner-Loop Frequency Responses.

The inner-loop controller provides a significant increase in bandwidth over the original

actuator response. It also adds a steeper drop in gain at higher frequencies, providing more

filtering at all frequencies greater than approximately 50 rad/s. The phase lag of the closed loop

system is also lower for frequencies less than approximately 15 rad/s. The higher bandwidth
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and increase in phase will provide better tracking of steer inputs and the additional filtering will

help reduce steering oscillation. The increase in phase provided by the inner-loop compensation

is plotted versus frequency in Figure 3.4.
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Figure 3.4: Phase Increase Provided by Inner-Loop Controller

The compensating controller is able to provide approximately a 7.5 degree increase in

phase at a frequency of around 9 rad/s, and also increases the phase for all frequencies up to

15 rad/s. This phase increase in the inner-loop will lead to an increase in phase margin in the

outer-loop. For frequencies from 0 to around 15 rad/s, the compensation increases the phase of

the inner-loop. Therefore, if the desired outer-loop crossover frequency (approximate closed

loop bandwidth) is within this range, the phase margin of the outer loop will be increased by

the value shown previously in Figure 3.4. This analysis is based on the control design discussed

previously in this section and assumes a perfect model of both actuator delay and dynamics. If

the model does not match perfectly, this analysis becomes an approximation, but improvement

is still expected for small model inaccuracies.

For actuators with significantly different dynamics from the MKZ test vehicle, the inner-

loop controller may need to be altered slightly to achieve the desired performance. This design
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works well for actuators with dynamics close to those of the MKZ. When the SP is assumed

to have a perfect model of the plant and time delay, the delay can be considered effectively

removed from the system response. However the model will never be identical to the true

dynamics, which creates mismatch between the modeled and true dynamics. This mismatch, if

large enough, can lead to poor performance and, in some cases, instability.

When model mismatch is present in the SP system, the closed loop transfer function shown

in Equation (3.1) can be represented as shown in Equation (3.5).

δ(s)

d(s)
=

CiTdGi

1 + CiGi,m + Ci(GiTd −Gi,mTd,m)
(3.5)

]The mismatch term, (GiTd − Gi,mTd,m), represents the error between the modeled and

actual system. Errors in both the dynamic model Gi,m and the modeled delay Td,m can lead to

poor performance and instability if large enough. A detailed sensitivity analysis with respect to

delay mismatch is performed in [60]. Additional analyses of SP robustness to model mismatch

can be found in [61, 62]. In general, smaller mismatch leads to smaller prediction errors and

better overall controller performance. To maintain low prediction errors even with uncertain or

changing dynamics, a parameter estimation algorithm was implemented to estimate the actuator

model and adapt the SP.

3.2 Parameter Estimation Algorithm

The steering response of an autonomous vehicle may not be known accurately during the con-

trol design process. Additionally, the pure delay value as well as the steering dynamics can

change over time. To make the delay compensation algorithm robust to unknown or chang-

ing steering response, an estimation algorithm was developed to estimate both the pure delay

and the steering dynamics. The following assumptions were made to simplify the estimation

process:

1. The steering dynamics are assumed to be a first order linear process.

2. Measurements of current steer angle are assumed to be available at the sampling rate T.

30



3. The pure delay is assumed to be a multiple of the sampling time, meaning it can be

represented as an integer value of samples.

4. The pure delay value is bounded by αmin ≤ α ≤ αmax.

While these assumptions may not be true on a real system, they are assumed to be suffi-

ciently close to the real response so as not to introduce excess error into the estimates. The pure

delay is not an exact multiple of the sampling rate, however knowing the delay more precisely

than the sample rate would not be useful as a fractional pure delay cannot be implemented in

the SP architecture.

The discrete domain first order model that the steering data will be fit to is shown in

Equation (3.6).

δ(z)

d(z)
= z−α̂

b̂

z − â
where α̂ =

τ̂

T
(3.6)

T represents the sampling rate. Because of the simplicity of the model, only three parameters

need to be estimated: the two steering dynamics parameters, a and b, and the pure delay,

α (measured in samples). The algorithm used to estimate pure delay is the one presented

in [41]. This method was chosen because it is relatively computationally simple, it can be

used alongside standard parameter estimation methods, and it estimates the pure delay as a

separate parameter which is necessary for the implementation of the SP. The delay estimation is

coupled with a Kalman filter to estimate the steering dynamic parameters. A Kalman filter was

chosen over other estimation methods, such as recursive least squares, to allow the estimator to

better respond to the changing steering dynamics. The dynamic parameters are included in the

parameter vector θ̂ defined in Equation (3.7).

θ̂ =

â
b̂

 (3.7)

31



The estimation algorithm consists of two parts, both of which are executed at every time

step. The dynamic parameter estimates are first updated using the current estimate of the pure

delay value α, in samples. Next the pure delay estimate is updated using the most recent

estimate of the dynamic parameters. The derivation of the Kalman filter and steps for updating

the dynamic parameter estimates are given below. Both â and b̂ are modeled as a Gaussian

random walk, as shown in Equations (3.8) and (3.9).

âk = âk−1 + wk where wa,k ∼ N(0, Qa) (3.8)

b̂k = b̂k−1 + wk where wb,k ∼ N(0, Qb) (3.9)

This allows for the filter to track changes in the parameters without needing a precise model.

The process noise covariance values are used to derive the process noise covariance matrix Q

of the Kalman filter, shown in Equation (3.10).

Q =

Qa 0

0 Qb

 (3.10)

Because â and b̂ are modeled as a random walk, the state transition matrix used in the filter

is simply the identity matrix. The time update equations for the parameter predictions and the

covariance matrix P are shown in Equations (3.11) - (3.12).

θ̂−k+1 = Adθ̂k (3.11)

P−k+1 = AdPkA
T
d +Q (3.12)

Ad represents the state transition matrix. P and Q represent the estimate covariance and pro-

cess noise covariance matrices, respectively. The measurement matrix, H, is dependent on the

current delay estimate, α̂. k represents the current sample. The model shown in Equation (3.6)
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is converted to a difference equation to obtain the prediction model for the steer angle δ, shown

in Equation (3.13).

δ̂k = âδ̃k−1 + b̂d(k − α̂) (3.13)

The measured angle from the last sample (δ̃k−1) and the commanded steer angle from α̂ samples

ago (d(k − α̂)) are used to predict the next steer angle measuremtent (δ̂k). Since the actuator

dynamics are known to have a DC gain value of 1, the relationship â+ b̂ = 1 must be satisfied.

This and the prediction model defined in Equation (3.13) are used to form the measurement

matrix H shown in Equation (3.14).

Hk =

h1
h2

 =

δ̃k−1 d(k − α̂)

1 1

 (3.14)

where δ̃k represents the measurement of steer angle at timestep k. The measurement update

portion is shown in Equations (3.15) - (3.17).

Kk = P−k+1H
T
k (HkP

−
k+1H

T
k +R)−1 (3.15)

zk =

δ̃k
1

 (3.16)

θ̂+k+1 = θ̂−k+1 +Kk(zk −Hkθ̂
−
k+1) (3.17)

P+
k+1 = (I −KkH)P−k+1 (3.18)

R represents the measurement noise covariance matrix and K represents the Kalman gain ma-

trix.

The matrix R is tuned based on the noise present in the measurements and Q is tuned

based on the process noise present in the system, or the uncertainty in the system model. P is

initialized based on the uncertainty in the initial estimates of the parameters â and b̂. Once the
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dynamic parameters have been updated, the new estimates are used to update the pure delay

estimate by minimizing a cost function J , defined in Equation (3.19)

J =
i=0∑
t

[ep(t− i)]2 (3.19)

where

ep = δ̃k − δ̂k = δ̃k − h1,kθ̂k+1 (3.20)

This is accomplished by searching over a predefined range of delay values shown in Equation

(3.21).

r =

[
αmin αmax

]
(3.21)

The pure delay estimation and dynamic parameter estimation are be done simultaneously

and each estimate will be updated at every timestep. The algorithm searches for the value of

α̂, within the range r defined in Equation (3.21), that minimizes J . A smaller range r leads to

a quicker computation time, but may cause issues if the true delay value is outside the range.

A larger range can handle larger uncertainty in the initial delay estimate at the cost of a higher

computational load.

The cost function and delay estimates are updated as shown in Equations (3.22) - (3.23).

α̂k+1 = argminJk+1(α̂)∀α̂ ∈ r (3.22)

Jk+1 = λJk(α̂k+1) + (δ̃k − h1,kθ̂k+1)
2 (3.23)

A forgetting factor λ is used so that the algorithm prioritizes new data and responds better to

changes in the true pure delay. The value of λ is between 0 and 1, with lower values putting
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more weight on new data. As the value approaches 1 the algorithm is less reliant on new

measurements. The cost function J is updated at each time step according to Equation (3.24).

Jk+1(α̂, θ̂) = λJk(α̂, θ̂) + (δ̃k − h1,kθ̂k+1)
2 (3.24)

The current estimates of θ̂ and α̂ are then used to calculate the new value of J . The function J

is computed for each integer value of α within the range r and the value that yields the lowest

cost is chosen as the updated delay estimate (α̂). This is shown in Equation (3.23). Next, the

new value of J is updated with the new value of α̂, as shown in Equation (3.22).

The equations described above are implemented after the Kalman filter measurement up-

date at every timestep. If the true delay value is within r and the system is linear and first

order, the algorithm should converge near the exact values. The estimated parameters â, b̂ and

α̂ are used to adapt the SP to ensure accurate predictions of steer angle and to minimize model

mismatch. The block diagram of the inner-loop with adaptation is shown in Figure 3.5.
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Figure 3.5: Adaptive SP Inner-Loop Block Diagram

35



Chapter 4

Simulated Performance Analysis with Various outer-loop Controllers

One of the benefits of implementing delay compensation in an inner feedback loop is that the

designer has more freedom when choosing the outer-loop path tracking controller. A wide vari-

ety of vehicle path tracking control schemes have been designed, implemented, and shown to be

effective in both simulation and in real-time experiments. The delay compensation should pro-

vide improvements regardless of the outer-loop control design. In this chapter, the performance

of the inner-loop compensation will be examined in a path following control architecture with

various outer-loop control schemes. This will attempt to show that performance improvement

can be achieved using inner-loop compensation for most outer-loop controllers. The following

sections will describe the simulation set up, present each outer-loop controller tested, and show

the results and conclusions from the various controllers.

4.1 Simulation Model Description

Each simulation was performed in MATLAB. The linear bicycle model, described in Section

2.5, was used to simulate the dynamics of the vehicle. The model parameters of the bicycle

model were chosen to match those of the test vehicle used for the real-world experiments shown

in a later section. These parameters are given in Table 4.1.

The vehicle model was discretized at 100 Hz for the simulation, resulting in the state space

model shown in Equation (4.1).

 ψk+1

Vy,k+1

 =

 0.9898 0.0022 0

−0.0097 0.9891 0


 ψk
Vy,k

+

0.0350

0.0641

 δ (4.1)
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Table 4.1: Bicycle model parameters used for MATLAB simulation.

Parameter Symbol Value and Units
Mass m 1856 Kg

Yaw moment of inertia Izz 4292 Kg ∗m2

Rear Cornering Stiffness Cαr 120, 000 N/rad
Front Cornering Stiffness Cαf 184, 600 N/rad

Distance from c.g. to front/rear axle a/b 1.257/1.593 m
Longitudinal Speed Vx Kg ∗m2

Lateral Speed Vy Kg ∗m2

Steer Angle δ rad

Measurements of position, heading, and steer angle are assumed to be available for the sim-

ulation. The steer angle measurements are modeled as an encoder with a resolution of 0.18

degrees. The heading and position measurements were corrupted by zero mean Gaussian noise

as shown in Equations (4.2) - (4.4).

ψ̃ = ψ + ωψ, ωψ ∼ N(0, 0.252) (degrees) (4.2)

Ñ = N + ωN , ωN ∼ N(0, 0.022) (meters) (4.3)

Ẽ = N + ωE, ωE ∼ N(0, 0.022) (meters) (4.4)

The steering delay and dynamics were modeled as a first order linear time delay system.

The values for the steering delay and the steering dynamic’s time constant were varied on each

run to test the ability of the estimation algorithm to converge to the correct parameters. The

nominal values for these parameters were chosen from experimental steering step response data

taken from the test vehicle. A model was chosen that closely matched the measured response

of the vehicle’s actuator. The step response of the test vehicle steering actuator along with the

simulated response to the same input is shown in Figure 4.1. The simulated response is shown

to nearly match the measured response.
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Figure 4.1: MKZ Measured and Modeled Steering Response to Step Input

The nominal model of the steering response, obtained from the data shown in Figure 4.1,

is shown in Equation (4.5),

G(z) = z−10
0.0513

z − 0.9487
(4.5)

discretized at 100 Hz for the simulation. This model corresponds to a steering time constant

of 0.1898 seconds and a pure delay of 0.1 seconds. To simulate modeling inacuracies, both

the time constant and the pure delay value were varied at the start of each run as shown in

Equations 4.6 and 4.7.
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Tc = Tc,nom + ωtc, ωtc ∼ N(0, 0.00252) (4.6)

Td = Td,nom + ωtd, ωtd ∼ N(0, 0.052) (4.7)

Gaussian random variables ωtc and ωtd are added to the nominal time constant and pure

delay values, respectively. The distributions of ωtc and ωtd are also shown in (4.6) - (4.7).

4.2 Simulation Setup

The goal of the simulated vehicle was to track a reference path as closely as possible and to

accurately estimate the steering response parameters. Four outer-loop controllerers were tested.

The simulation was run at speeds of 10 and 15 m/s for each controller. For each combination

of outer-loop control scheme and longitudinal speed, the following five tests were run:

• Sim 1 (No Delay): No delay, no compensation.

• Sim 2 (Delay): Delay, no compensation.

• Sim 3 (Compensated): Delay, with non-adaptive inner-loop SP compensation using nom-

inal parameters.

• Sim 4 (Adaptive): Delay, with inner-loop SP compensation and delay estimation. Nomi-

nal model used to initialize estimation algorithm.

• Sim 5 (Adaptive Converged): Delay, with fixed inner-loop SP compensation using pa-

rameter estimates from Sim 4 for prediction model.

Sim 1 shows the performance that was designed for assuming a perfect actuator. Sim

2 shows the theoretical controller performance in the presence of actuator delay and dynam-

ics, and Sim 3 shows the performance using non-adaptive inner-loop compensation inserted to

mitigate the effects of the actuator delay. Sim 4 shows the performance of the full, adaptive

inner-loop algorithm, and in Sim 5 the tests are re-run with the model obtained by the estima-

tion algorithm in Sim 4, but the model was not adapted in-run. The goal will be for the results
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of Sims 3-5 to be as close as possible to the results of Sim 1. Sim 1 was only performed once

because the vehicle and steering model was assumed to be known and constant for this run,

however Sims 2-5 were each performed 100 times, varying the actuator delay as described in

Section 4.1, and the results were averaged across all runs. Succesful compensation would mean

that the results from Sims 2-5 are similar to those of Sim 1.

4.3 Heading Controller

The first outer-loop controller tested in the Monte Carlo simulation was a discrete heading

controller. A heading controller is one of the simplest methods of path following. It attempts to

track the reference path by simply pointing the vehicle towards target waypoints selected from

the path.

4.3.1 Control Formulation

To calculate the heading error to be fed into the discrete heading controller, a point is selected

from the path based on the look-ahead distance. The bearing from the current vehicle position

to the selected point in the local frame is then calculated. This calculated bearing is then

compared to the current vehicle heading relative to the local frame to calculate heading error.

This heading error value is fed into the control law. The heading error calculations, illustrated

in Figure 4.2, are shown in Equations (4.8) - (4.9).

Ψtarget = arctan(
Eref − E
Nref −N

) (4.8)

eψ = Ψtarget −Ψ (4.9)

The calculated heading error, eψ, is supplied to the discrete heading controller. The controller

was designed as a lead compensator, with the transfer function shown in Equation (4.10)

δOL(z)

eψ(z)
= K

z − 0.7

z − 0.2
(4.10)
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Figure 4.2: Heading Error Calculation Illustration

where K represents the outer-loop gain. The calculated steer angle from the outer-loop con-

troller was then supplied to the inner-loop, or sent directly into the simulated steering system

for the uncompensated runs.

4.3.2 Heading Controller Results

The minimum and maximum heading, lateral path, and steer angle error for the heading con-

troller across all 100 Monte Carlo runs are shown in Figure 4.3. The mean errors are also shown

with an asterisk. Run 1 is labeled as “no delay,” run 2 is labeled as “delay,” and runs 3 and 4

are labeled as “compensated” and “adaptive,” respectively. Only the data from the 10 m/s run

is shown here. The data from the 15 m/s run, as well as additional data from the 10 m/s run can

be found in Appendix A. The heading error is calculated as the difference between the vehicles

41



current heading in the local frame and the heading to the desired waypoint. Lateral error is

defined as the y-component of distance in the vehicles body frame from the vehicle’s current

position to the nearest path point. The steer angle error is defined as the difference between the

desired steer angle calculated by the outer loop controller and the actual measured steer angle.

The compensated runs are shown to reduce the maximum and mean heading, steer angle,

and lateral position errors. The maximum heading error is reduced by around 10 degrees, and

the maximum lateral error is reduced by almost 1 meter. The mean heading and lateral errors

for the compensated runs are almost as low as the mean errors for the undelayed run, showing

that the compensation is nearly able to accomplish its goal of returning the delayed system

performance to that of the undelayed system. The maximum and mean steer angle errors are

reduced by both the compensated and Adaptive runs, showing that the compensated actuator

is better able to track the desired steer angle than the uncompensated actuator. The mean and

maximum heading and steer angle errors are reduced in the Adaptive and “Adaptive Converged”

runs. Sim 5 (Adaptive Converged) shows lower errors than the Adaptive sim. This is due to

the time that the adaptive algorithm takes to converge, leading to poorer performance during

this time. Sim 5 is not adapted but is initialized with a more accurate model than Sim 3. This

leads to lower errors for the Adaptive Converged run compared to both the Compensated and

Adaptive runs.

Plots of the position, heading error and lateral path error of the simulated vehicle for

the heading controller are shown in Figure 4.4, averaged across all 100 runs of each sim. It

can be seen that the heading controller is susceptible to the negative effects of steering delay.

Once the delay is introduced into the system, the response becomes more oscillatory and takes

longer to reach steady state after the maneuver is complete. While the system response may

not have become unstable when the delay was introduced without compensation, the response

was undesirable.

Both the non-adaptive run and the adaptive run show significant performance improve-

ments over the uncompensated run, as expected. The heading error and lateral path errors of

Sims 3 and 4 stay below that of the uncompensated run for most of the maneuver. The inner-

loop compensation is also able to significantly reduce oscillation in the lateral position of the
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Figure 4.3: Heading Controller Error Statistics, Vx = 10 m/s

vehicle during the last portion of the double lane change. There is very little difference between

the path tracking performance of the adaptive and non adaptive algorithms. This was expected

as the variance of the steering parameters from run to run was relatively small for this dataset.

The estimation algorithm was able to reduce the prediction error significantly and converge

to a more accurate model of the steering response. The norm of the parameter estimation errors

over the course of the run are shown in Figure 4.5.

The estimation algorithm is able to reduce the error in the parameter estimates significantly

over the course of the run. While the estimates do not always converge to the true values, they

do improve from the initial parameter estimates on average. This improvement in the parameter

estimates leads to a more accurate prediction of steer angle, which leads to less error in the

Smith predictor. The prediction error over the course of the run is plotted for the Sims 3-5 in

Figure 4.6. The SP model was adapted at a rate of 1 Hz for every Monte Carlo run. A relatively

slow adaptation rate was chosen instead of adapting at every timestep because it was found that

adapting at 100 Hz led to a more oscillatory response. The adaptive run is shown to have lower

prediction error after the 1 second mark, when the prediction model is first updated with the

parameter estimates. For the remainder of the run, the prediction error for the adaptive run stays
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Figure 4.4: Heading Controller Double Lane Change Performance, Vx = 10 m/s

below that of the non-adaptive run. It is also shown to converge nearly to 0 degrees of error by

the end of the run. Run 5 is labeled “Adaptive Converged,” and is shown to have low prediction

error throughout the run. This was expected as it was initialized with the model obtained from

the adaptive sim, meaning an accurate model was used for the entire run.

Note that the errors in parameters â and b̂ appear to exhibit the same response. This is due

to the fact that the simulated steering dynamics always have a DC gain of 1. Additionally, the

initial model for each Sim has a DC gain of 1. Since the Kalman filter constrains the estimated

model to a DC gain of 1, the parameters â and b̂ are tied to one another and will converge at

very similar rates and display similar error characteristics.

As expected the heading controller performance is shown to be negatively affected by the

introduction of delay. The oscillation introduced in the uncompensated runs led to undesirable
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Figure 4.5: Heading Controller Parameter Estimation Errors, Vx = 10 m/s

path tracking performance. The SP compensation was able to mitigate these effects and ensure

satisfactory path following performance in the presence of actuator delay. The parameter esti-

mation algorithm was shown to converge nearly to the true model, on average, even though the

adaptive algorithm did not provide noticeable improvements to the overall control performance.

4.4 Pure Pursuit with Kinematic Controller

Pure pursuit was one of the earliest proposed solutions to the vehicle path tracking problem,

originally proposed in [63], and has been widely used in vehicle and robotics applications. It

calculates a yaw rate command based on a selected waypoint position and the current vehicle

position and velocity. The pure pursuit control law is applied here with a simple kinematic

controller used to calculate desired steer angle from the yaw rate command.
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Figure 4.6: Heading Controller Steer Angle Prediction Errors, Vx = 10 m/s

Kinematic controllers work by calculating a steer angle based on a kinematic vehicle

model. These controllers have the benefit of being simple to implement and have been shown to

be effective in many autonomous driving and robotics applications. Only the wheelbase length

and the longitudinal speed of the vehicle must be known to calculate the steer angle input,

making this one of the easiest controllers to implement.

4.4.1 Control Formulation

The pure pursuit control law calculates a desired angular velocity by fitting a curve from the

vehicle’s current position to the position of the target waypoint. An illustration of this calcula-

tion is shown in Figure 4.7. The radius of curvature, R, is calcuated based on the angle from

the vehicle to the target waypoint (α) and the look-ahead distance (L). The desired vehicle yaw

rate is calculated as shown in Equations (4.11) - (4.12).
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k = R−1 =
2sin(α)

L
(4.11)

ωcmd = Vxk =
2Vxsin(α)

L
(4.12)

Figure 4.7: Pure Pursuit Illustration [7]

To make the controller more responsive to lateral position errors, an additional term was

added to the angular velocity calculation. The full control law is shown in Equation (4.13).

ωcmd =
2Vxsin(α)

L
+ kpLsin(α) (4.13)

The added term is the lateral error at the look-ahead point multiplied by a proportional gain.

This ensures that the controller will minimize errors in lateral position. This additional term

was found to provide improved tracking performance, especially at higher speeds and when the

steering delay was included. To convert the commanded yaw rate into a desired steer angle, a

kinematic vehicle model used. For simplicity, the sideslip angle of the vehicle is assumed to be

very small, meaning only the longitudinal component of velocity is considered. The kinematic

equation relating yaw rate and steer angle is shown in Equation (4.14)

V

L
tan(δ) = ω (4.14)

where L represents the wheelbase of the vehicle.This can be solved for δ to obtain the steer

angle command that corresponds to the desired angular velocity, shown in Equation (4.15).

47



δ = arctan(
Lω

Vx)
(4.15)

4.4.2 Pure Pursuit Results

The statistics of the heading, lateral, and steer angle errors for the pure pursuit Monte Carlo run

are shown in Figure 4.8.
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Figure 4.8: Pure Pursuit Kinematic Controller Error Statistics, Vx = 10 m/s

The position, heading error and lateral path error of the simulated vehicle for the pure

pursuit controller are shown in Figure 4.9. The description of the plots in Figures 4.9-4.11 are

the same as the previous section. The compensation is shown again to succeed at decreasing

the heading and lateral errors once delay is introduced. The maximum heading error is reduced

by around 10 degrees from the uncompensate run to the compensated and adaptive runs. The

mean heading error is also reduced by around 1 degree. A similar trend is shown in the lateral

error statistics, where the maximum and mean errors are decreased by around 1 and 0.1 meters,

respectively, once the compensation is introduced. The maximum heading error for the adaptive

run is slightly below that of the non-adaptive run, while the reverse is true for the lateral error.

The mean errors for the adaptive and non-adaptive runs are almost identical. The mean and
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maximum steer angle errors are again reduced in the compensated and adaptive runs, indicating

that the actual steer angle more closely tracks the desired steer angle for these runs.
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Figure 4.9: Pure Pursuit Kinematic Controller Double Lane Change, Vx = 10 m/s

The pure pursuit controller was more strongly affected by the introduction of delay than

the heading controller. The uncompensated run shows oscillations both in lateral position and

in heading error, as well as higher maximum and mean errors than the heading controller. This

could be due to the lack of feedback in the controller design. Additionally, the only method

of tuning the controller is by adjusting the look-ahead distance. There are no control gains to

adjust to make the control less or more aggressive.

Both the non-adaptive run and the adaptive run again show improvements over the un-

compensated run. The compensated and adaptive runs are again able to keep the heading and

lateral position errors below those of the uncompensated run for most of the maneuver. There
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is very little difference between the path tracking performance of the adaptive and non adaptive

algorithms for this dataset, similar to the data shown for the previous controller. The estimation

algorithm was able to reduce the prediction error on average and converge to a more accurate

model of the steering response. The norm of the parameter estimation errors over the course of

the run are shown in Figure 4.10.
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Figure 4.10: Pure Pursuit Kinematic Controller Parameter Estimation Errors, Vx = 10 m/s

The estimation algorithm is able to reduce the error in the parameter estimates, on average.

The prediction improvement for the pure pursuit controller is less noticeable than the previous

outer-loop controller, most likely due to the slightly different dynamics introduced by the new

controller. The estimation still improves the prediction error. The prediction error over the

course of the run is plotted for Sims 3-5 in Figure 4.11. Once the prediction model was updated

after 1 second, the adaptive prediction error again stays below the non-adaptive error for the

rest of the run. The prediction errors for Sim 5 are the lowest of the three runs, as expected.
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Figure 4.11: Pure Pursuit Kinematic Controller Steer Angle Prediction Errors, Vx = 10 m/s

The pure pursuit kinematic controller was shown to be susceptible to the negative effects

of time delay, with results similar to those of the heading controller. The maximum and mean

errors for the “delay” run were slightly higher than the previous controller, while the path track-

ing performance was stable but showed some undesirable characteristics. The compensation

was able to improve the system response, reducing oscillation, heading error, and lateral path

error. The parameter estimation algorithm converged within around 2 seconds to average errors

under 0.005, and the improvements in steer angle prediction are shown. Overall, both the adap-

tive and the non-adaptive compensation schemes were succesful at improving the path tracking

performance.
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4.5 State Feedback Controller

4.5.1 Control Formulation

State feedback uses the state space model of the system to calculate control gains based on

the desired closed loop eigenvalues of the system. For this controller, the discretized dynamic

bicycle model is used to calculate the gain matrix. For control design, the dynamic bicycle

model, with heading included as an additional state, was used. The state space model in the

continuous domain is shown in Equation (4.16).


ψ̈

V̇y

ψ̇

 =


− C2

IzzVx
− C1

IzzVx
0

− C1

mVx
− Vx − C0

mVx
0

1 0 0



ψ̇

Vy

ψ

+


aCαf
Izz

Cαf
m

0

 δ (4.16)

The parameter values from Table 4.1 are inserted into the model to obtain Equation (4.17).


ψ̈

V̇y

ψ̇

 =


−10.2214 2.2247 0

−9.8581 −10.9352 0

1 0 0



ψ̇

Vy

ψ

+


35.1445

64.6204

0

 δ (4.17)

The reference state used was heading to the desired waypoint. Since there is a pure integra-

tor in the dynamics from steer angle to heading, no reference scaling is necessary to guarantee

zero steady state error for step inputs. The desired eigenvalues were chosen based on the de-

sired performance and were validated in simulation. Overdamped eigenvalues were found to

have better performance than underdamped, so the real pole locations were chosen as shown in

Equation (4.18).

sdes = [−10 − 9.9 − 9.8] (4.18)

Because the simulation is run in discrete time at 100 Hz, the state space model and desired

eigenvalues were transformed into the discrete domain. The discrete model and eigenvalues

are shown in Equations (4.19) - (4.20).
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
ψk+2

Vy,k+1

ψk+1

 =


0.9898 0.0022 0

−0.0097 0.9891 0

0.01 0 1



ψk+1

Vy,k

ψk

+


0.0350

0.0641

0

 δ (4.19)

zdes = esdesTs = [0.9048 0.9039 0.9066] (4.20)

To determine the gain matrix K, the “place” command in MATLAB is used to solve the

equation shown in Equation (4.21).

|zI − Ad +BdK| = 0 (4.21)

The desired heading is calculated with the same method described in Section 4.3. The desired

heading is then fed into the state feedback controller and the steer angle is calculated as shown

in Equation (4.22).

δdes = ψdes −K



ψ̇

Vy

ψ

−


0

0

1

ψdes
 (4.22)

4.5.2 State Feedback Results

The heading, lateral, and steer angle error statistics for the state feedback controller are shown

in Figure 4.12. The compensated and adaptive runs again have lower maximum and mean

errors, however the improvement is less drastic compared to the previous outer-loop controllers.

The compensated and adaptive runs still have maximum heading errors of over 20 degrees,

compared to approximately 27 degrees of maximum heading error for the uncompensated run.

This is in contrast to the previous two controllers, where the compensation provided a more

noticeable reduction in maximum heading error. The reason for this difference is likely the

more aggressive tuning of the state feedback controller compared to the previous controllers.

Additionally, the controller gains for the state feedback controller are calculated based on a
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model that does not include the steering dynamics. This leads to model inaccuracies and helps

to explain the higher maximum and mean errors for this controller.

This controller setup is the first in which the adaptive algorithm performs noticably better

than the non-adaptive compensation. For the state feedback controller the adaptive compensa-

tion provides improvement in the maximum heading error, lateral error, and steer angle error.

This is likely also due to the design of the outer-loop controller. Because of the more aggresive

steer angle commands from the outer-loop controller, errors in the steer angle prediction lead

to more overshoot and oscillation. Therefore, the reduction in these prediction errors shown in

the adaptive run lead to better overall control performance. The “Adaptive Converged” run out-

performed both the compensated and adaptive runs in each of the error metrics. This is due to

the presence of an accurate model for the entirety of the run. The compensation was again able

to track the desired steer angle better than the non-compensated run, showing an improvement

in mean and maximum steer angle errors.
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Figure 4.12: State Feedback Controller Error Statistics, Vx = 10 m/s

The position, heading error and lateral path error of the simulated vehicle for the state feed-

back controller are shown in Figure 4.13. The description of the legends and layout of Figures

4.13-4.15 can be found in Section 4.3.2. The controller performs poorly when delay is present
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and there is no compensation, showing larger oscillations than the previous two outer-loop con-

trollers. The average lateral error for all runs stays below 1 meter, and the average heading error

stays below 20 degrees for the entire run. The compensated runs show better performance than

the uncompensated run when delay is present, with reduced oscillation and faster convergence

to the reference path after the maneuver. The lateral error for the compensated runs is also held

below that of Sim 2, on average.

The norm of the parameter estimate errors for the state feedback controller are shown in

Figure 4.14. The estimation performance is similar to the previous two outer-loop controllers.

The dynamic parameter errors converge to an error of under 0.005, on average, within around

1 second. The average delay estimate error converges quickly to around 2 samples of error,

and slowly approaches the true value as the run continues. The improvements in prediction

error provided by the estimation can be seen in Figure 4.15. The non-adaptive prediction error

for the state feedback controller is higher and more oscillatory than the previous two outer-

loop controllers. This is likely due to the more aggressive and oscillatory nature of the steer

commands calculated by the state feedback controller.

The state feedback controller was found to be more sensitive than the previous controllers

to delay, showing worse performance for the uncompensated run. This was seen in Figure 4.12,

where the mean and maximum errors for the “delay” run are higher than either of the first two

controllers. The inner-loop compensation again provides better performance in terms of mean

and maximum errors and reduced oscillation. The state feedback controller is more sensitive

to inaccuracies in the SP model. This can be observed in the noticeable improvement in error

provided by the adaptive algorithm. The sensitivity to model inaccuracies is also apparent in

Figure 4.15 where the non-adaptive prediction is shown to have higher errors than the adapitve

prediction. Sim 5 out-performed Sims 3 and 4 in terms of prediction error. This was expected

due to the presence of a more accurate model for the whole run, in contrast to the adaptive run

which does not converge unitl after 2 seconds.
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Figure 4.13: State Feedback Controller Double Lane Change Performance, Vx = 10 m/s

4.6 Model Predictive Control (MPC)

The last outer-loop controller tested was MPC, which is a type of predictive control that com-

putes the optimal control input to follow a reference over a finite period of time. A dynamic

model of the system, in this case the linear dynamic bicycle model, is used to predict the future

system response in order to optimize the control inputs over the prediction horizon. The opti-

mization is performed by minimizing a cost function that includes control effort, error, and in

some cases system constraints. In this analysis, constraints will not be considered in the cost

function for simplicity. The optimization is performed at every iteration, which can lead to long

computation times for some systems. This has historically limited the application of MPC to
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Figure 4.14: State Feedback Controller Parameter Estimation Errors, Vx = 10 m/s

slower systems, but advances in computing power have made it feasible to apply to a wide va-

riety of control systems. The MPC control law for this analysis was derived following [64,65].

4.6.1 Control Formulation

In order to minimize lateral path error and heading error, the bicycle model was derived in error

states. Desired heading is defined as the heading to the current target waypoint. The two error

states chosen are shown in Equations (4.23) and (4.24)

eψ = ψ − ψdes (4.23)

elat = Lsin(eψ) (4.24)
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Figure 4.15: State Feedback Controller Steer Angle Prediction Errors, Vx = 10 m/s

where L represents the longitudinal distance to the target waypoint in the vehicle frame. The

derivatives of the error states are shown in Equations (4.25) - (4.28),

ėψ = ψ̇ − ˙ψdes (4.25)

ëψ = ψ̈ − ¨ψdes (4.26)

˙elat = Vy + Vxsin(eψ) = Vy + Vxsin(ψ − ψdes) (4.27)

¨elat = V̇y + Vxėψ (4.28)

assuming a small angle approximation for heading error (eψ) and a constant longitudinal ve-

locity (Vx). The error state equations can be combined with the dynamic bicycle model to form

the state space model shown in Equation (4.29)
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

ėlat

ëlat

ėψ

ëψ


=



0 1 0 0

0 −C0

mVx
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m
−C1

mVx

0 0 0 1

0 −C1

IzzVx
−C1

Izz
−C2

IzzVx





elat

ėlat

eψ

ėψ


+



0

cα,f
m

0

acα,f
Izz


δ (4.29)

where

C0 = Cαf + Cαr (4.30)

C1 = aCαf + bCαr (4.31)

C2 = a2Cαf + b2Cαr (4.32)

This model is used for the non-delayed runs, but was found to be insufficient once the delay

was introduced into the system. Because the dynamics introduced by the delayed actuator are

not negligable, the MPC controller could not maintain stability when the steering dynamics

were not included in the model. For this reason, an augmented model was used when the delay

was present in the system as shown in Equation (4.33).



ėlat

ëlat

ėψ

ëψ

δ̇
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0 1 0 0 0

0 −C0

mVx
C0

m
−C1
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cα,f
m

0 0 0 1 0

0 −C1

IzzVx
−C1

Izz
−C2

IzzVx

acα,f
Izz

0 0 0 0 − 1
τδ





elat

ėlat

eψ

ėψ

δ


+



0

0

0

0

1
τδ


d (4.33)

For the uncompensated run, the steering time constant (τδ) was set to the nominal value given

in Section 4.1. For the compensated and adaptive runs, the steering time constant was set to the

value designed for in Chapter 3 (≈ 0.075 seconds). The pure delay was not considered in the

MPC model.

Once the error state model is derived, it is used to calculate the optimal control input in

order to follow the reference path. The state space model is first discretized at the desired

sample rate, in this case 100 Hz, to obtain the discrete state transition and input matrices Ad
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and Bd, respectively. Next the model is reformulated to represent the change in states (∆x)

based on the change in input (∆u) as shown in Equation (4.34).

∆xk+1 = xk+1 − xk = Ad∆xk +Bd∆uk (4.34)

The model is then augmented with the measurement of the “output” state, in this case lateral

path offset. This is shown in Equations (4.35) - (4.36).

∆xk+1

yk+1

 =

 Ad 0

CdAd 1


∆xk

yk

+

 Bd

CdBd

∆uk (4.35)

yk =

[
0 1

]∆xk

yk

 (4.36)

This augmentation effectively embeds an integrator into the system model, driving the steady

state error to zero.

The cost function J used to calculate the optimal control input is shown in Equation (4.37).

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U (4.37)

Y and ∆U represent the predicted output over the prediction horizon Np and the control input

over the control horizon Nc, respectively. They are related in Equation (4.38).

Y = Fxk + Φ∆U (4.38)

where,
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F =

[
CA CA2 CA3 ... CANP

]T
(4.39)

Φ =



CB 0 0 ... 0

CAB CB 0 ... 0

CA2B CAB CB ... 0

... ... ... ... ...

CANp−1B CANp−2B CANp−3B ... CANp−NcB


(4.40)

The matrices Rs and R̄ are defined in Equation (4.41)

Rs = [1 1 ...1]T1xNp rk, R̄ = rwINcxNc , rw = input weighting (4.41)

. Rs defines the setpoint for each sample within the prediction horizon. In this case, since the

state being controlled is lateral error, each value inRs will be 0. R̄ is the input weighting matrix

that determines the aggressiveness of the controller. Due to the fact that in this thesis the MPC

is unconstrained, there exists an analytical solution for the optimal control input. This solution

is shown in Equation (4.42).

∆U = (ΦTΦ + R̄)−1ΦT (Rs − Fxki) (4.42)

The full control sequence ∆U is computed at every timestep, but only the first input of the

sequence is used. The sequence is then re-computed at the next timestep.

4.6.2 MPC Results

Because the MPC controller used a model of the steering response to predict future outputs and

calculate the optimal control input, it was more sensitive to changes in the steering dynamics

than the other controllers. The pure delay had an especially negative affect on the controller

performance, which was expected as it was not incorporated into the MPC model. The er-

ror statistics for the Monte Carlo run at 10 m/s are shown in Figure 4.16. The compensation
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provides a significant reduction in both maximum and mean heading and lateral path error

compared to the uncompensated run. The adaptive run also shows improvement over the non-

adapitve compensation in maximum heading error and maximum lateral error. The MPC con-

troller, along with the state feedback controller, are the only two outer-loop controllers where a

noticeable improvement was provided by the adaptive algorithm compared to the non-adaptive

run. The state feedback and MPC controllers were expected to show similar results, although

MPC was expected to perform better because of the incorporation of steering dynamics into the

model. For Sims 1, 3 and 4 the two controllers performed as expected, with the MPC controller

providing slightly lower mean and maximum heading and lateral errors for each of these runs.

For Sim 2, however, the state feedback controller had lower maximum errors. This is likely due

to the sensitivity of the MPC to inaccuracies in the steering model. When the steering dynam-

ics differed significantly from their nominal values this led to the MPC controller performing

poorly and likely led to high maximum errors on some runs. The mean errors of the MPC

controller were very similar to those of the state feedback controller and the other controllers

tested. Run 5 again showed the best performance of the simulations with delay across all three

error metrics, as expected. The maximum and mean steer angle errors are reduced again in
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the compensated and adaptive runs. The MPC controller exhibits higher mean and maximum

steer angle errors than the other controllers due to the more aggressive steer angle commands

calculated by the controller. The actuator struggles to track these commands, especially in the

uncompensated runs. The compensation is able to provide a significant improvement in both

mean and maximum steer angle error, and the adaptive run shows noticably lower maximum

error and slightly lower mean error. This shows that with the SP compensation included, the

system is better able to track the desired steer angles output by the MPC controller, which

leads to the improved path tracking performance in the compensated and adaptive runs. The

“Adaptive Converged” run shows the best tracking of desired steer angle, as expected. The

-6 -4 -2 0 2 4 6
East (m)

0

10

20

30

40

50

60

70

80

N
or

th
 (

m
)

ENU Position

No Delay Delay Compensated
Adaptive Reference Path

0 2 4 6 8 10
Time (s)

-10

0

10

20
E

rr
or

 (
de

g)
Heading Error

0 2 4 6 8 10
Time (s)

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

Lateral Error
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system performance for each of the 10 m/s runs are compared in Figure 4.17. The controller is

able to track the path relatively well, even for the uncompensated run. The SP compensation is
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able to reduce the heading and lateral errors almost back to the values of the control run. The

non-delayed run has one of the lowest average lateral errors of the four outer-loop controllers,

staying within 0.2 meters of the path, on average, throughout the run. This was expected as

MPC computes the optimal control input and should display very good path tracking perfor-

mance when an accurate model is used. The Compensated and Adaptive runs were also able to

stay within 0.2 meters of the path for the majority of the runs.
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Figure 4.18: MPC Parameter Estimation Errors, Vx = 10 m/s

The parameter estimation algorithm showed similar results to the previous controllers for

the MPC test as seen in Figure 4.18. The dynamic parameter estimate errors converged to under

0.005 on average, and the pure delay estimation errors converged nearly to zero by the end of

the run. The parameter estimates converged more quickly than with the previous controllers,

likely due to the more aggressive control inputs from the MPC, creating more excitation for

the adaptation. This also explains the adaptive algorithm providing a noticeable improvement,

64



as the parameters converged quicker and the SP model was updated with accurate parameters

earlier in the run. Once the SP model converged after 1 second, the prediction error quickly

dropped below 0.2 degrees, on average, and stayed there for the rest of the run as shown in

Figure 4.19. This improvement in prediction error is responsible for the reduction in maximum

error in the adaptive run compared to the non-adaptive compensation. The more noticeable

improvement from the adaptive run is also due to the higher prediction error during the non-

adaptive run compared to the other outer-loop controllers. Run 5 shows average prediction error

under 0.2 degrees for the entirety of the run, leading to better overall control performance.
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4.7 Comparison of Compensation Algorithm on Various Outer-Loop Controllers

The compensation algorithm was tested with four different outer-loop controllers in a path

following simulation in order to show the improvement provided by both adaptive and non-

adaptive compensation. Both inner-loop algorithms were able to provide improvement in head-

ing error, lateral error, and overall path following performance for each of the controllers. The

improvements were due only to the introduction of the inner-loop, as the outer-loop controllers

were not re-tuned when delay was introduced, with the exception of the MPC controller where

a steering model had to be included to maintain stability.

The discrete heading controller was one of the simplest controllers tested. Because the

controller only considered desired heading, it had a tendency to undershoot or overshoot the

path and required tuning of the look-ahead distance to achieve desirable path tracking perfor-

mance. When delay was introduced, the discrete heading controller displayed increased over-

shoot and oscillation, but the compensation algorithm improved the performance to acceptable

levels by speeding up the steering response.

The pure pursuit kinematic controller was also very simple to implement, and did not use

any feedback in the calculation of the desired steer angle. It showed very similar results to

the heading controller, with slightly higher maximum errors when delay was introduced. The

compensation provided significant improvement for the pure pursuit controller, as expected.

The adaptive algorithm again did not provide noticeable improvement over the non-adaptive

algorithm for this controller, but again was able to converge to an accurate model.

The state feedback controller was the first controller tested where the calculated control

input was based on a dynamic model of the vehicle. Due to the fact that the steering dynamics

were not included in the model, the state feedback controller had higher errors than either of

the previous two controllers when delay was introduced into the system. The compensation

was again able to provide improvement in error and overall path tracking, but the improvement

was less drastic for the state feedback controller, especially in regard to the maximum heading

and lateral errors. The adaptive algorithm for this outer-loop controller did provide noticably

lower maximum heading and lateral errors, in contrast to the discrete heading and pure pursuit
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controllers. This is likely due to the more aggressive control inputs provided by the state

feedback controller. This led to higher prediction error for the non-adaptive algorithm and a

more noticeable improvement from the adaptive algorithm.

The MPC controller was the most complex controller tested and also the most sensitive to

the introduction of delay. When the delay was not included in the MPC model but was present

in the system, the controller struggled to maintain stability. Even when the delay was accounted

for in the model, if the modeled delay did not match the true delay it led to large errors. This can

be seen in the maximum heading and lateral position errors for the uncompensated run, which

are significantly higher than any of the previous outer-loop controllers, despite the mean errors

being very similar to the other controllers. This shows the sensitivity of MPC to inaccuracies

in the actuator model. MPC was also found to be sensitive to pure delay, as there is no way

to account for it in the model. The SP compensation was able to improve the average MPC

performance, although the maximum errors for both the compensated and adaptive runs were

higher than those of the heading and pure pursuit controllers. On average, he parameter estimate

errors converged faster than in any of the previous tests, likely due to the greater excitation from

more aggresive control inputs. This quick convergence of parameter estimates and the higher

prediction error in the non-adaptive run led to the most noticeable improvement provided by

the adaptive algorithm for any of the outer-loop controllers.

Perhaps the best indication of the improvement provided by both the non-adaptive and the

adaptive inner-loop SP compensation is the reduction in steer angle error. The compensated

and adaptive runs for all four controllers showed reduced steer angle error, meaning they were

better able to track the desired steer angle commanded by the outer-loop controller. For any

well tuned path following controller, this should lead to better overall performance.

Table 4.2 shows the improvement in mean error provided by the Compensated (non-

adaptive) and “Adaptive Converged” Sims (3 and 5) compared to the uncompensated perfor-

mance. The last column shows the improvement in prediction error from run 3 to run 5 for

each controller. Both the adaptive and non-adaptive compensation is able to improve all of the

mean errors for each of the controllers. Sim 5 shows a greater improvement for each of the

controllers except for the kinematic controller, where the improvement in heading and lateral
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error is slightly less than that of the non-adaptive controller. The reason for this is unknown, as

the better tracking of desired steer angle and better predictions should have led to better overall

control performance. The mean prediction error for each of the controllers was improved in

Sim 5. While Sim 5 did not provide greater improvement than Sim 3 in every error metric, it

did always improve the mean steer angle error, showing that the more accurate model used for

predictions led to better tracking of the desired steer angles.

Table 4.2: Monte Carlo Error Improvements
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Chapter 5

Gazebo Simulation

Gazebo was used to perform software-in-the-loop (SIL) testing in order to ensure that the algo-

rithm would perform well before being implemented on the test vehicle in real time. Addition-

ally, SIL testing allows for testing at a wider range of speeds and under more realistic driving

conditions than real time testing. This chapter describes the mode, environment, setup, and

results of the Gazebo experiment.

5.1 Simulation Setup

Dataspeed provides a Gazebo model of a Lincoln MKZ that interfaces with ROS and nearly

matches the software structure of the actual test vehicle. This allows for the control algorithm

to be tested in simulation and then transitioned to real time implementation with minimal mod-

ifications. A lanekeeping test was conducted at various speeds using a test track environment

provided in the Dataspeed Gazebo simulation package. The test track contains turns of varying

radii as well as straightaways and lane-changes. This allows for the algorithm to be tested on a

variety of common driving maneuvers.

The simulated MKZ includes a front facing camera that is used to track the lane lines

and determine a desired path. The Dataspeed lane following node subscribes to the simulated

camera output and determines the center-point of the lane. It then publishes the desired path

in the vehicle frame. The simulation includes a graphic user interface (GUI) that shows the

simulated camera’s point of view as well as the extracted lane-lines and the desired vehicle

path. This GUI is shown in Figure 5.1.
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During the tests, the vehicle’s speed was held constant by a built-in longitudinal controller

provided in the simulation package. Runs were conducted at speeds of 10, 15, and 20 meters per

second. The outer-loop path following controller was the discrete heading controller described

in Section 4.3, and the inner-loop compensation was inserted between the heading controller

and the simulated steering system.

Figure 5.1: Gazebo Simulation GUI

The software structure of the Gazebo simulation is shown in Figure 5.2. The waypoint

manager, /path following node takes the desired path, labeled /target path, from

the lane-tracking node and calculates a heading error. This heading error is fed into the

outer loop node, where the heading controller calculates a desired steer angle. This steer

angle is either fed directly into the simulated steering system or into the inner loop node,

depending on the run. If active, the inner-loop calculates a new steer angle and publishes it to

the /vehicle/steering cmd topic, which is sent through the simulated CAN bus and to

the steering system. The parameter estimation algorithm is updated within the inner loop

node, and utilizes commanded steer angle and measured steer angle from the

/vehicle/steering report topic. The longitudinal velocity is controlled by the

/vehicle/ulc node.
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Figure 5.2: Gazebo Simulation Software Architecture

For each speed tested, one lap was run for each of the following configurations.

71



• Control - Inner-loop not active. Steering commands passed directly from outer-loop to

steering system

• Compensated - Inner-loop active with static steering model. No adaptation of SP.

• Adaptive - Full adaptive SP inner-loop algorithm active

The Gazebo MKZ model includes steering dynamics built into the simulation. The re-

sponse of the simulated steering wheel for a portion of one of the control runs is shown in Fig-

ure 5.3, compared to the modeled response used to initialize the Smith predictor. The modeled

response is shown to closely follow the measured response, however the outer-loop steering

command is shown to be very oscillatory. Due to this, a low-pass filter was inserted between

the outer and inner loops to obtain a smoother desired steer angle.
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Figure 5.3: MKZ Gazebo Simulation Steering Response

72



The path of the simulated Gazebo track is shown in Figure 5.4, plotted in the local ENU

frame. The startpoint of the path is denoted with a star.

Figure 5.4: Simulated Test Track Path

5.2 Results

The heading errors for the control, compensated, and adaptive runs at each of the three speeds

are plotted versus time in Figure 5.5. The error is shown to be higher and more oscillatory for

the control run compared to the compensated and adaptive runs, especially during the faster

simulation runs. The adaptive run also performs noticeably better than the compensated run.

Again, this improvement is more apparent in the faster simulation runs.
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Figure 5.5: Heading Error Versus Time for Gazebo Simulation at Various Speeds

The steering angle is plotted versus time for each of the runs in Figure 5.6. The uncom-

pensated (control) run is again shown to display more oscillatory steering response than the

compensated and adaptive runs, especially at higher speeds. This was expected as the un-

compensated system has more difficulty tracking the desired maneuvers as longitudinal speed

increases.
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Figure 5.6: Steering Angle Versus Time for Gazebo Simulation at Various Speeds

The heading error statistics for each run are shown in Figure 5.7. Note that the burs

represent the maximum and minimum errors while the asterisks represent the mean errors. The

compensated and adaptive runs are shown to reduce both mean and maximum error for the 15

m/s run. There is little improvement shown for the 10 m/s run, likely because the dynamics

are slow enough at that speed that the uncompensated controller is able to track them without

excess error. In the 20 m/s lap, the mean errors are reduced but the compensated run has a

higher maximum error than both the adaptive and control runs.
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Figure 5.7: Heading Error Statistics for Gazebo Simulation at Various Speeds

The steer angle error, calculated as the difference in the filtered outer-loop command and

the current measured steer angle, is shown in Figure 5.8. For the 10 m/s lap, the mean and

maximum errors for each of the three runs are similar. There is a small improvement in mean

error, shown again by the asterisk, from both the compensated and adaptive runs, while the

maximum error for the compensated run is higher than the control run. This is likely due to

prediction error spikes, which can lead to control errors. The 15 m/s run shows an improvement

in both mean and maximum errors for the compensated and adaptive runs. The 20 m/s test

shows interesting results. The compensated lap has a lower mean error than the control but a

very similar maximum error. The adaptive run shows a large improvement in maximum error

but performs slightly worse in terms of mean error. For all three speeds, the compensated

laps show higher maximum steering error than the adaptive runs. This is likely due to larger

prediction errors when the steering model is not adapted with the new parameter estimates.
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Figure 5.8: Steer Angle Error Statistics for Gazebo Simulation at Various Speeds

The prediction errors for the compensated and adaptive runs at each speed are compared in

Figure 5.9. The adaptive algorithm provides significant improvement in maximum prediction

error for each speed, with the most noticeable difference occuring during the 20 m/s lap. The

mean error is also reduced slightly for each of the runs. The adaptive algorithm proves to

be valuable in minimizing prediction error and is likely responsible for the lower maximum

heading and steer angle errors during most of the adaptive tests.
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Figure 5.9: Prediction Error Statistics for Gazebo Simulation at Various Speeds

The Gazebo simulation shows that the algorithm is able to provide improvement in a

lane-keeping control system, again lowering heading and steer angle error for most runs. The

parameter estimation algorithm was again able to converge to an accurate model and to provide

improved prediction error over the non-adaptive runs. The algorithm provided the most no-

ticeable improvements on the 20 m/s runs. This was expected, as an increased velocity means

higher dynamic maneuvers must be performed to maintain the desired path.
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Chapter 6

Real-World Experiment and Results

In order to examine the performance of the compensation algorithm on real steering actuators,

multiple tests were performed using three different vehicles. First, the compensation was tested

in a path following experiment using a Lincoln MKZ outfitted with DBW hardware. This will

show the performance improvements provided by the algorithm in a dynamic, real-time test.

Next, the parameter estimation algorithm was validated on data from the steering actuators of

two additional vehicles: an autonomous IndyCar and a Peterbilt 579 tractor trailer. The results

of each of these tests will be presented and discussed in this chapter.

6.1 MKZ Description and Software Architecture

The first test vehicle used for experimental verification was a Lincoln MKZ outfitted with a

Dataspeed drive-by-wire (DBW) kit (shown in Figure 6.1). The testing was done on a skid pad

at Auburn University’s National Center for Asphalt Testing (NCAT). The DBW hardware inter-

faces with the vehicle’s CAN bus and the existing steering motor to provide steering actuation.

Due to the multiple software levels the steering command must travel through to reach the steer-

ing wheel, there exists a non-negligable communication delay between the control computer

and the steering system. Additionally, the steering module which controls the steering actuator

has relatively slow dynamics, as shown in Figure 4.1. A diagram of the software architecture

from the control computer to the steering actuator is shown in Figure 6.2 (adapted from [52]).

The steering command must pass from the control computer, through two Robot Operating

System (ROS) drivers, into the USB-CAN tool, and to the Dataspeed steering module, which

sends it over the vehicle’s CAN network to the built-in steering system within the MKZ. The
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Figure 6.1: MKZ Test Vehicle

sensosrs used on the MKZ include a fused GPS-INS system, an encoder, measuring steering

wheel angle, an IMU, providing acceleration and angular velocity measurements, and wheel

speed encoders, providing vehicle longitudinal speed.

Controller Node

USB-CAN ROS
Driver

DBW ROS
Driver USB-CAN Tool

Dataspeed
Steering Module CAN Network

Steering System

Steering WheelDataspeed
Steering Module

USB-CAN Tool

VehicleDBW ModuleComputer

Figure 6.2: MKZ DBW Software/Hardware Architecture

6.2 MKZ Static Actuator Test

To ensure that the compensation algorithm was performing as expected before conducting dy-

namic testing, static data was taken, comparing the uncompensated and compensated perfor-

mance of the actuator. A sine wave with a frequency of 1.5 rad/s and an amplitude of 3 radians

(≈ 172 degrees) was used as the outer-loop desired steer angle for the first test. The compen-

sated and adaptive algorithms were tested and their responses were compared to that of the

uncompensated actuator. The plots of desired and measured steer angle versus time are shown
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Figure 6.3: Static Actuator Response to Sinusoidal Input

in Figure 6.4. Both the compensated and adaptive responses are shown to more closely match

the desired response, exhibiting less phase lag.

The inner-loop commands for the compensated and adaptive tests are compared to the

outer-loop commands in Figure 6.4. The inner-loop commands are shown to lead the outer-

loop for both runs. This was expected, as the Smith predictor (SP) provides a phase lead in

order to reduce the effects of pure delay. The steer angle prediction error for the compensated

and adaptive runs are compared in Figure 6.5. Once the parameter estimates converge around

the 5 second mark, the error in the adaptive test stays below that of the non-adaptive test.

The static actuator test demostrates that the inner-loop compensation is working as ex-

pected. It provides closer tracking of a sinusoidal reference for both the non-adaptive and

adaptive tests. Additionally the adaptive algorithm exhibits lower prediction errors than the

non-adaptive test, showing that the parameter estimates have converged to a more accurate

model. The control performance remains almost identical for the non-adaptive and adaptive

runs, which was expected as the non-adaptive run was initialized with a model known to be
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relatively accurate. Since the algorithm performed well in static tests, it was then applied to a

real-time path following scenario, described in the following section.

6.3 MKZ Waypoint Following Experiment

6.3.1 Experiment Description

To determine the efficacy of the inner-loop compensation algorithm in a real-time dynamic

implementation, an experiment was conducted in a waypoint following architecture. First, the

MKZ was driven manually to record a desired path on the skid pad at NCAT. Waypoints were

recorded from an on-board GPS-INS system with high run-to-run accuracy. The points were

then rotated from the ECEF frame into the local NED frame. Once the path was recorded, the

vehicle was returned to the starting point and the DBW system was enabled. The outer-loop

controller used for the tests was a discrete heading controller, as described in Section 4.3. A

block diagram of the control architecture used for the experiment is shown in Figure 6.6. The

heading controller was chosen in the outer-loop because it is simple and relatively easy to tune,

but any path tracking controller could have been used in this architecture.

Figure 6.6: Control Architecture For MKZ Test

The desired path was fed into a waypoint manager, which selected a desired waypoint

based on a the look-ahead distance. The look-ahead distance used for each test was 12 me-

ters. The heading error from the vehicle to the desired waypoint was then calculated using the

vehicle’s current heading and position and the waypoint’s position in the NED frame. This

calculated heading error was fed into the outer-loop controller, which calculated a desired steer
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angle. This steering command was either fed directly to the actuator or into the inner-loop,

depending on the type of test. The outer-loop was run at 20 Hz and the inner-loop was run at

100 Hz.

Due to noise in the desired waypoint and current position measurements, the heading error

calcualted by the waypoint manager was relatively noisy. This was amplified by the outer-loop

heading controller. Because of this, a second order low-pass filter with a bandwidth of 15 rad/s

was implemented between the inner and outer loops. In other words, the steering commands

passed from the heading controller were filtered before passing into the inner-loop controller.

This helped to reduce oscillation in commanded steer angle and to provide a smoother desired

steer angle for the inner-loop to track. The filter reduces the path-following bandwidth, but

the inner-loop compensation is still able to improve performance. This filtering would not be

necessary if the outer-loop controller provided smoother steering commands.

The throttle was controlled manually and the vehicle speed was maintained around 5 to 10

meters per second, depending on the maneuver. Higher speeds were not tested due to the space

limitations of the skid pad. Multiple runs were recorded and compared to show the effects of

the inner-loop compensation. The individual tests are described below:

Test 1. Control Run: The outer-loop steering command is passed directly to the steering system.

No inner-loop compensation.

Test 2. Compensated Run: The inner-loop compensation is activated, using a model obtained

from prior steering response data. The model is not adapted during this run.

Test 3. Adaptive Compensation Run: The inner-loop is activated and allowed to adapt. It is

initialized with the same model as the compensated run such that adaptation is expected

to be minimal.

Test 1 will be used as the control run to compare to the performance in test 2 and test

3. Tests 2 and 3 will compare the compensated and adaptive performance to the performance

shown in Test 1. This will attempt to show improved closed loop performance and reduced

steer angle oscillations in Tests 2 and 3. The estimation algorithm was run during each of the

tests, but was only used to adapt the SP model during Test 3.
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Two maneuvers were performed during the testing. The first was a double lane change

type maneuver, performed at speeds of approximately 15 and 20 miles per hour (7 and 9 m/s).

The desired path for the double lane change maneuver is shown in Figure 6.7.
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Figure 6.7: Double Lane Change Desired Path

The second maneuver performed was a slalom maneuver, shown in Figure 6.8. This was per-

formed at speeds of approximately 10 and 15 miles per hour (5 and 7 m/s). This maneuver was

chosen to test the systems performance with a sinusoidal type reference. For each maneuver,

6 runs were conducted: 2 control runs, one at a higher speed and one at a lower speed, and 1

compensated and 1 adaptive run for each speed. The description of the individual runs is shown

in Table 6.1. The control, compensated, and adaptive runs for each speed are compared to show

the performance improvements in the following sections.

Table 6.1: MKZ Testing Run Descriptions

Run Number Double Lane Change Slalom
1 Test 1, 15 mph Test 1, 10 mph
2 Test 2, 15 mph Test 2, 10 mph
3 Test 3, 15 mph Test 3, 10 mph
4 Test 1, 20 mph Test 1, 15 mph
5 Test 2, 20 mph Test 2, 15 mph
6 Test 3, 20 mph Test 3, 15 mph
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Figure 6.8: Slalom Maneuver Desired Path

6.3.2 Double Lane Change Results

The results from the MKZ double lane change test are presented and discussed in this section.

Generally, the compensated and adaptive runs were better able to track the desired steer angle

commanded by the outer-loop controller. The improvement was most noticeable in the 20 mph

run. This was expected as a higher velocity leads to a more dynamic steering response required

to track the reference path. The outer-loop steering command and the measured steer angle are

plotted versus time for the 20 mph control and adaptive runs in Figure B.12. The adaptive run

tracks the desired steer angle with less phase lag than the control run. The non-adaptive run at

this speed provided very similar performance to the adaptive run.

The SP mitigates the effect of pure delay by using a model of the system to predict future

states, which are fed back to the controller. This effectively introduces a phase lead into the

system, compensating for the lag introduced by the delay. This effect can be seen in Figure

6.10, where the inner-loop and outer-loop desired steer angles are plotted versus time. The

inner-loop commanded steer angle is shown to lead the outer-loop command slightly which

helps to reduce the negative effects of the pure delay and to increase the bandwidth of the

system.
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Figure 6.9: Commanded and Measured Steer Angle: 20 mph Double Lane Change
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Figure 6.10: Outer-Loop and Inner-Loop Steer Angle Commands: 20 mph Double Lane
Change
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Figure 6.11: Steer Angle Error: 20 mph Double Lane Change

The steer angle error is defined as the difference between the measured and desired steer

angle. It is plotted for the two runs in Figure 6.11. The adaptive run is able to maintain a

lower error for the majority of run. The faster steering response provided by the compensation

leads to slightly lower heading error for the adaptive run compared to the control. The heading

error for each run is plotted versus the X-component of the target waypoint in the vehicle frame

in Figure 6.12. It is apparent that there is very little difference in performance between the

compensated and adaptive runs. This was expected as the non-adaptive run was initialized with

a steering model known to be relatively accurate, so any improvements from the adaptation

were expected to be small.
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Figure 6.12: Double Lane Change Desired Path

The parameter estimation algorithm was active on all runs in which the inner-loop was

running, even when the estimates were not being used to adapt the prediction model. The

parameter estimates are plotted versus time for runs in which the inner loop was active (2, 3, 5,

and 6) in Figure 6.13. The estimates initially converge quickly and remain constant for around

10 seconds. This is because the vehicle is static at the start of each run such that the heading

error remains constant until the vehicle begins to move. This means that the only change in

desired steer angle before the vehicle begins moving is the initial step input. Because of this,

there is limited excitation for the parameter estimation algorithm. Once the vehicle begins

moving and the steering commands become more dynamic, the parameter estimates begin to

change again, and converge to new values by the end of the run. For each of the 4 runs shown,

the dynamic parameters (â and b̂) converge to similar values. In other words, the parameter

estimates show a similar trend across all 4 runs. The estimate of pure delay converges to a

value between 5 and 10 samples for each of the runs. Similar results were seen across all

runs because the estimates were initialized with the same values for each run. Additionally,
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the desired path for the runs was the same, leading to very similar desired and measured steer

angles across all four runs.
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Figure 6.13: Double Lane Change Parameter Estimates, 20 mph

The 15 mph double lane change results followed a similar trend, but the improvement

provided by the compensation was less noticeable because of the less dynamic nature of the

maneuver due to the lower speed. The results for the slower run as well as additional results

from the 20 mph run can be found in Appendix B.

6.3.3 Slalom Results

The results from the slalom test runs are presented and discussed in this section. The results

for this maneuver follow a similar trend to the double lane change tests. The compensation is

able to provide more accurate tracking of the desired steer angle. The improvement in steering
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error is not as apparent as the 20 mph double lane change results. This is most likely because

of the slower speeds of the slalom run. The uncompensated actuator is able to track the desired

steer angle for lower speed maneuvers better than for high speed maneuvers. The outer-loop

steering command is plotted versus time and compared to the measured steer angle for the 15

mph control and adaptive slalom runs in Figure 6.14. The compensated run is not shown here,

but additional data from the slalom test can be found in Appendix B.

The measured steer angle in the adaptive run closesly tracks the commanded angle, whereas

the control run displays greater phase lag. The steer angle errors for both runs are plotted in Fig-

ure 6.15. While the improvement provided by the adaptive algorithm is less noticeable than the

improvement shown in the double lane change, the maximum error is reduced and the spikes in

error are lower in the adaptive run. The non-adaptive compensation performs similarly to the

adaptive run, and is shown in Appendix B. The compensation does not provide a noticeable

improvement in heading error for this maneuver, but it also does not degrade performance.
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Figure 6.14: Commanded and Measured Steer Angle: 15 mph Slalom

The parameter estimation algorithm was again active for every run in which the inner-loop

was running (runs 2, 3, 5, and 6). The parameter estimates for these runs are plotted versus time

in Figure 6.16. The parameters are again initiailized at the same values. The estimates again

converge initially and re-converge as the vehicle performns the maneuver. The pure delay

estimates converge to values between 6 and 8 samples. For each of the 4 runs, the estimates

of a and b converge to very similar values. The same trend is seen here as in the double lane
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Figure 6.15: Steer Angle Error: 15 mph Slalom Test

change results. The parameters are initialized with their nominal values and the estimate of

â converges to a lower value by the end of the run while b̂ increases. The resulting model is

slightly faster than the nominal model, although it remains very close to nominal values.

Both the adaptive and compensated runs were found to improve the steering performance

of the MKZ for both maneuvers tested. The inner-loop provided closer tracking of desired steer

angles, and the inner-loop command was shown to lead the outer-loop command, compensating

for the negative effects of the pure delay present in the steering system. The parameter estimates

were able to converge for each run, and stability was maintained when the estimates were used

to adapt the prediction model online. Improvements in overall path tracking performance were

not always provided by the inner-loop, but this is most likely caused by outer-loop controller

tuning. The inner-loop SP compensation simply attempts to track the desired steer angle as

accurately as possible, so for certain outer-loop controllers and tunings this may not lead to a

noticeable improvement in path tracking performance.

6.4 Further Analysis of Parameter Estimation Performance on MKZ

6.4.1 Estimation Performance with Inaccurate Initial Model

For each of the tests discussed previously in this section, the parameter estimation algorithm

was initialized with the same values based on a model obtained from steering response data

taken from the MKZ. This model is known to closely match the true steering response. The

92



Figure 6.16: Slalom Parameter Estimates, 15 mph

goal of the parameter estimation is to adapt to changes in steering response and to correct for

modeling inaccuracies in order to minimize prediction error. In order to examine the algo-

rithm’s performance when initialized with incorrect parameters, three additional test runs were

conducted with varying initial parameter values. Table 6.2 shows the initial values for each run.

Table 6.2: Initial Parameter Values

Run Initial Parameters
Run A â0 = 0.9487, b̂0 = 0.0513, α̂0 = 10

Run B â0 = 0.94, b̂0 = 0.06, α̂0 = 8

Run C â0 = 0.97, b̂0 = 0.03, α̂0 = 12

Run A was initialized with the nominal model obtained from experimental data and used

for each of the runs previosly discussed. Run B started with a model with faster dynamics and

smaller pure delay than the nominal model and Run C was initialized with slower dynamics

and a larger delay value than run A. The reference path for each run was the slalom maneuver
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shown previously in Figure 6.8, and each run was conducted at speeds of around 15 mph.

The parameter estimates are plotted versus time for each of the three runs in Figure 6.17.

Despite different starting values for both delay and dynamic parameters, the estimates converge

to similar values. The dynamic parameters converge to very similar values across the three runs.

The final delay estimates are a bit more varied, but converge to values between 5 and 9 samples.

The prediction error for each of the three runs is plotted in Figure 6.18. The prediction error

remains less than 10 degrees for the majority of each run, showing that the estimation algorithm

is able to converge to an accurate model with small inaccuracies in the initial parameter values.

Run A exhibits the lowest errors throughout the run. This was expected, as it was initialized

with the nominal steering model.
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Figure 6.17: Parameter Estimates With Different Initial Values
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Figure 6.18: Steer Angle Prediction Error for Different Parameter Initializations

6.4.2 Adaptive Compensation Performance with Inaccurate Initial Model

To further validate the parameter estimation algorithm, two additional experiments were con-

ducted comparing the adaptive and non-adaptive performance of the algorithm in the presence

of an incorrect model. The Smith predictor performance is especially susceptible to inaccurate

modeling of pure delay. To illustrate this and to show the improvement provided by adapting

the prediction model, both the adaptive and non-adaptive run were initialized with a delay value

of 15 samples (0.15 seconds). This value is known to be higher than the typical delay present in

the MKZ steering system. The dynamic parameters were initialized with their nominal values,

shown in Table 6.2 for Run A. The prediction errors for the non-adaptive and adaptive runs are

shown in Figure 6.19. This test was conducted with the slalom maneuver as the reference path.
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The prediction error of the non-adaptive run shows large oscillations and has a maximum error

of over 20 degrees, while the adaptive run error is less oscillatory and stays below 10 degrees

of error for most of the run.
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Figure 6.19: Prediction Error - Inaccurate Model

The prediction errors due to the inaccurate model also lead to poor inner-loop control

performance for the non-adaptive run. The desired and measured steer angles for the two tests

are compared in Figure 6.20. The adaptive run provides closer tracking of the desired steer

angle with less oscillations. This illustrates the negative effects on control performance that

arise from a model of pure delay that is off by only 0.05 seconds. It also shows the improvement

that the adaptation can provide when the prediction model is initialized with an incorrect model

or the steering response changes.
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Figure 6.20: Commanded and Measured Steer Angle: Inaccurate Prediction Model

6.4.3 Estimation Performance with No Initial Model

Another scenario in which estimating steering parameters would be valuable is if the control

designer had no prior knowledge of the steering actuator response. In this case, the estimation

algorithm could be used in a calibration run to obtain an estimate of the steering parameters

in order to initialize the inner-loop compensation. In order to examine the algorithm’s perfor-

mance with no prior knowledge of the steering parameters, a test was run with the parameters

initialized at the following values: â0 = 0, b̂0 = 1, and α̂0 = 1. The inner-loop controller was

not active for these tests; the outer-loop command was passed directly to the steering system.

The run was conducted twice, again using the slalom reference path. The parameter estimates

are plotted versus time for each run in Figure 6.21.

The parameter estimates converge to similar values in both tests. The final pure delay

estimate is 15 samples (0.15 seconds) for each of the runs. At the start of the runs the delay

estimate immediately jumps to 15 samples, which is the highest value in the search range used

for the experimental tests. This is due to the initialization of the dynamic parameters. â is

initialized at 0 and b̂ is initialized at 1, meaning the initial model assumes the commanded

steer angle is instantly achieved. The algorithm tries to minimize prediction error, and at the

start of the run the lowest prediction error will come from the highest delay value within the

search range. As the run continues the dynamic parameters converge to more realistic values.

The delay estimate never deviates from 15, however with a longer run it would be expected to
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Figure 6.21: Parameter Estimates, No Initial Model

converge to a more realistic value. The final estimated steering model from each run is shown

in Equations (6.1) - (6.2).

Run 1 : Ĝ(z) = z−15
0.06143

z − 0.9385
(6.1)

Run 2 : Ĝ(z) = z−15
0.09391

z − 0.9062
(6.2)

To determine the accuracy of the prediction models, they were used post-process to predict

future steer angles based on the steering commands during the run. The predictions were

compared to the measured steer angle from each run. The predicted and measured steer angles

as well as prediction error for both runs are shown in Figure 6.22. Run 1 is shown to converge
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to an accurate model, with errors under 10 degrees for much of the run. Run 2 converges to a

usable but less accurate model, with errors under 20 degrees for the majority of the run.

0 10 20 30 40 50 60
Time (s)

-200

0

200

A
ng

le
 (

de
g)

Predicted and Measured Steer Angle

Measured
Predicted

0 10 20 30 40 50 60
Time (s)

-20

0

20

40

E
rr

or
 (

de
g)

Prediction Error

(a) Run 1

10 20 30 40 50 60 70
Time (s)

-200

0

200

A
ng

le
 (

de
g)

Predicted and Measured Steer Angle

Measured
Predicted

10 20 30 40 50 60 70
Time (s)

-20

0

20

40

E
rr

or
 (

de
g)

Prediction Error

(b) Run 2

Figure 6.22: Predicted and Measured Steer Angle and Prediction Error for Runs 1 and 2

In Figure 6.23, the step responses of the models obtained in Run 1 and Run 2 (Equations

(6.1) and (6.2)) are compared to the measured step response of the actuator and the response

of the “nominal” model shown in Table 6.2 (Run A). The model obtained in Run 1 is shown to

closely follow both the nominal model and the measured response, while Run 2 is shown to be

slightly less accurate.

Figure 6.23: Step Response of Estimated and Nominal Models
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Next, the performance of the estimation algorithm was examined when the delay estimate

was held constant. In other words, only the dynamic portion of the steering response was

estimated. The delay estimate was held constant at its nominal value of 10 samples. The

algorithm converged to the model shown in Equation (6.3).

Ĝ(z) = z−10
0.0528

z − 0.9470
(6.3)

The estimates converge nearly to the nominal values. This estimated model was then

compared to the nominal and measured step responses. The comparison is shown in Figure

6.24. The estimated model closely tracks the nominal and the measured response to a step

input. This shows that a very accurate model can be obtained when a good estimate of pure

delay is known. Therefore, better results are likely possible if the estimation algorithm is

allowed to converge to a model using only the initial estimate of delay for a short amount of

time. This would allow the dynamic parameters to converge while the delay estimate is held

constant. Once the dynamic parameters have been given ample time to converge, the delay

estimation could be turned on in order to track possible changes in pure delay. This would

avoid the issue of the delay estimate over-correcting for an inaccurate model by converging to

a value that is too high or too low.

The parameter estimation algorithm was shown to converge to an accurate steering model

from a variety of initializations. It was able to improve prediction error and control performance

when initialized with a poor model. It was also able to converge to a relatively accurate steering

model with no prior knowledge of the steering system. These tests validate the estimation

algorithm and show its ability to maintain accurate predictions of steer angle despite changing

or incorrectly modeled steering dynamics.

6.5 Parameter Estimation for Additional Vehicles

To further test the robustness of the parameter estimation algorithm, it was validated on data

from two additional test vehicles. The first was a Peterbilt 579 tractor trailer outfitted with DBW
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Figure 6.24: Step Response of Nominal and Adaptive (with Fixed Sample Delay Estimate)
Models

hardware. The Peterbilt is shown in Figure 6.25. The second was an autonomous IndyCar, also

outfitted with a DBW system, shown in Figure 6.26.

Figure 6.25: Peterbilt 579
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Figure 6.26: Autonomous IndyCar

6.5.1 Peterbilt Steering Estimation

In order to test the estimation algorithm on the Peterbilt truck, dynamic data was collected on

the NCAT test track. Measured and commanded steer angle data from a portion of the dataset

was then used in the parameter estimation algorithm in post process. The portion of the data

chosen included a double lane change maneuver and a banked turn. The GPS derived path of

the chosen portion of data is shown in Figure 6.27. The data was taken at speeds of around 20

mph.

The parameter estimates are plotted versus time for the selected portion of the run in Figure

6.28. The parameters were initialized with no prior knowledge (â = 0, b̂ = 1, and α̂ = 1).

The estimates converge in around 40 seconds to a relatively accurate model. The predicted and

measured steer angles are plotted with the prediction error in Figure 6.29. The error is shown

to stay below 5 degrees for much of the run, indicating that the estimation algorithm was able

to obtain an accurate model.

6.5.2 Indy Car Steering Estimation

Next, the estimation algorithm was tested on data from the steering actuator of an autonomous

IndyCar. The data used was from a dataset recorded on the Las Vegas Motor Speedway. A 55
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Figure 6.27: Peterbilt Path
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Figure 6.28: Peterbilt Parameter Estimates

second portion of this data was chosen and used in the parameter estimation algorithm in post

process. The parameters were again initialized with no prior knowledge.
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Figure 6.29: Peterbilt Predicted and Measured Steer Angle, Prediction Error

The parameter estimates are plotted versus time in Figure 6.30. The estimates converge

within around 30 seconds. Interestingly, the delay estimate immediately converges to zero. This

is likely because of the different software and hardware present on the IndyCar compared with

the other test vehicles. The delay present between the control computer and steering system

may be significantly smaller than that of the other two steering systems.

The measured and predicted steer angles as well as the prediction errors are plotted in

Figure 6.31. The prediction errors for this dataset are very low. In fact, the maximum error

for the run is around 0.3 degrees, which is lower than any of the other tests. The reason for

the increased accuracy is unknown, but could be due to a lower amount of delay between the

computer and the steering system.

104



0 10 20 30 40 50
Time (s)

0

0.5

1

A
 E

st
im

at
e

Parameter A Estimate

0 10 20 30 40 50
Time (s)

0

0.5

1

B
 E

st
im

at
e

Parameter B Estimate

0 10 20 30 40 50
Time (s)

0

0.5

1

D
el

ay
 E

st
im

at
e 

(s
am

pl
es

)

Pure Delay Estimate

Figure 6.30: IndyCar Parameter Estimates
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presented an adaptive Smith predictor (SP)-based inner-loop compensation method

for steering delay in a vehicle lateral control system. In Chapter 2, modeling and control de-

sign for time delay systems was discussed. A brief description of vehicle lateral dynamics

and coordinate frames was also included. Chapter 3 presented the inner-loop control design,

as well as the steering parameter estimation algorithm. Chapter 4 provided an analysis of the

inner-loop algorithm’s performance with a variety of path following controllers and examined

the robustness to incorrectly modeled steering dynamics. Chapter 5 tested the algorithm in a

higher fidelity simulation environment in a lane-keeping scenario. Chapter 6 tested the control

and estimation in real-time, using a Lincoln MKZ with DBW hardware for experimental verifi-

cation. The parameter estimation algorithm performance was also examined for two additional

steering actuators: a Peterbilt and an autonomous Indy car.

The compensation algorithm was shown to be stable in all tests performed and provided

improvement to both steering response and overall control performance with four different

outer-loop controllers in the simulation described in Chapter 4. In each of the tests, the inner-

loop controller was able to track the desired steer angle better than the uncompensater actuator,

leading to lower heading and lateral errors. The adaptive algorithm did not always provide

improvement in control performance over the non-adaptive runs, but it maintained stability and

was able to improve the prediction model.

Chapter 5 showed the performance of the compensation in a lane-keeping SIL simula-

tion performed in Gazebo, with a higher fidelity vehicle model of the Lincoln MKZ provided
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by Dataspeed. Performance improvements were shown in more realistic and varied driving

conditions than the Monte Carlo simulation and the real-time testing.

In the real-time experiment presented in Chapter 6, the algorithm was shown to provide

improvement in steering response and in heading error for a waypoint following test using a

Lincoln MKZ. The compensated actuator was able to track the desired steer angle from the

outer loop controller better than the uncompensated actuator, leading to better overall control

performance. The parameter estimation algorithm was stable when used to adapt the prediction

model, and converged during each run. When the algorithm was initialized with an inaccurate

model, the adaptation was shown to converge and provide a more accurate prediction model.

The estimation algorithm was also shown to converge succesfully to models of two additional

steering actuators.

In conclusion, the algorithm was shown in simulation and real-time tests to be succesful at

mitigating the effects of delay in a lateral control system. The inner-loop method was validated

in these tests and was shown to accomplish the following goals:

1. The algorithm was able to increase system bandwidth in the presence of actuator delay

without the use of a vehicle model and without altering the outer-loop controller

2. The algorithm was shown to be robust to inaccuracies in the modeled steering dynamics

3. The parameter estimation was able to converge to an accurate model with little or no

prior knowledge and maintained stability when used to adapt the prediction model in-run

7.2 Future Work

The proposed delay compensation method was shown to be effective, but there are many op-

portunities for improvement and future research. First, the inner-loop controller design and

tuning could be improved. It is common for steering modules, especially those installed as part

of a DBW kit such as the one in the MKZ, to impose torque and angular velocity limits on the

steering wheel. The current design does not consider actuator saturation or constraints. These

could be incorporated into the control design, ensuring that the commanded steer angles stay

within the limits of the actuator.
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Methods of adapting the inner-loop controller parameters based on the estimated steering

response could be investigated. The current design does not alter controller gains or coefficients

based on the estimated steering model. Because of this, some tuning would be required to apply

the controller to different steering actuators. Adding adaptation to the control law could reduce

or remove this need for tuning when applying the compensation to different vehicles.

Another valuable avenue to explore could be coupling the inner-loop compensation method

with an outer-loop predictive method such as MPC. This is briefly investigated in Chapter 4,

where model predictive control (MPC) is augmented with a model of the inner-loop response.

This could potentially provide improved system performance, with the inner-loop improving

the actuator response and the outer-loop controller using a model of this response to compute

optimal control inputs. The parameter estimation portion of the algorithm could also be coupled

with an outer-loop predictive method to adapt the prediction model and reduce error.

It could also be valuable to explore applying the algorithm to longitudinal control systems.

Throttle and braking actuators can be susceptible to communication delays and dynamic delays

similar to steering actuators. Delay compensation could lead to improved longitudinal control

performance.

There is also room for improvement in the parameter estimation algorithm. Higher fidelity

nonlinear models of vehicle steering systems could be investigated for use in the estimation.

Additionally, the relationship between vehicle states (velocity, yaw rate, etc.) and change in the

steering response could be explored. Many methods exist to estimate pure time delay. It would

be worth while to examine and evaluate the performance of other delay estimation algorithms

to compare to the one currently in use.
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[7] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A Sur-

vey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE

Transactions on Intelligent Vehicles, 1(1):33–55, March 2016. Conference Name: IEEE

Transactions on Intelligent Vehicles.

[8] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,

James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny

Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric

Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van

109



Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger,

Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley: The robot that won the

DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692, September 2006.
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Appendix A

Additional Monte Carlo Data

A.1 Additional 10 m/s Data

The following sections provide the steering angle errors of the Monte Carlo simulations aver-

aged accross all 100 runs. This data is from the 10 m/s simulation. The data is provided for

each of the 4 controllers.

A.1.1 Discrete Heading Controller
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Figure A.1: Heading Controller Steer Angle Error, 10 m/s
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A.1.2 Pure Pursuit Controller
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Figure A.2: Pure Pursuit Controller Steer Angle Error, 10 m/s
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A.1.3 State Feedback Controller
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Figure A.3: State Feedback Controller Steer Angle Error, 10 m/s
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A.1.4 MPC
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Figure A.4: MPC Controller Steer Angle Error, 10 m/s

A.2 15 m/s Data

A.2.1 Discrete Heading Controller

This section provides the data from the 15 m/s Monte Carlo simulation of the discrete heading

contoller. The error statistics, path tracking performance, parameter estimation performance,

prediction errors, and steer angle errors are shown in the figures below.
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Figure A.5: Heading Controller Error Statistics, 15 m/s
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Figure A.6: Heading Controller Double Lane Change Performance, 15 m/s

122



0 1 2 3 4 5 6
Time (s)

5

10

E
rr

or

#10-3 a Estimation Error

0 1 2 3 4 5 6
Time (s)

5

10

E
rr

or

#10-3 b Estimation Error

0 1 2 3 4 5 6
Time (s)

0

5

10

E
rr

or
 (

sa
m

pl
es

) Delay Estimation Error

Figure A.7: Heading Controller Parameter Estimation Errors, 15 m/s
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Figure A.8: Heading Controller Steer Angle Prediction Errors, 15 m/s
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Figure A.9: Heading Controller Steer Angle Error, 15 m/s

A.2.2 Pure Pursuit Controller

This section provides the data from the 15 m/s Monte Carlo simulation of the pure pursuit

contoller. The error statistics, path tracking performance, parameter estimation performance,

prediction errors, and steer angle errors are shown in the figures below.
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Figure A.10: Pure Pursuit Kinematic Controller Error Statistics, 15 m/s
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Figure A.11: Pure Pursuit Kinematic Controller Double Lane Change, 15 m/s
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Figure A.12: Pure Pursuit Kinematic Controller Parameter Estimation Errors, 15 m/s
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Figure A.13: Pure Pursuit Kinematic Controller Steer Angle Prediction Errors, 15 m/s
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Figure A.14: Pure Pursuit Controller Steer Angle Error, 15 m/s
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A.2.3 State Feedback Controller

This section provides the data from the 15 m/s Monte Carlo simulation of the state feedback

contoller. The error statistics, path tracking performance, parameter estimation performance,

prediction errors, and steer angle errors are shown in the figures below.
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Figure A.15: State Feedback Controller Error Statistics, 15 m/s
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Figure A.16: State Feedback Controller Double Lane Change Performance, 15 m/s
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Figure A.17: State Feedback Controller Parameter Estimation Errors, 15 m/s
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Figure A.18: State Feedback Controller Steer Angle Prediction Errors, 15 m/s
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Figure A.19: State Feedback Controller Steer Angle Error, 15 m/s

A.2.4 MPC

This section provides the data from the 15 m/s Monte Carlo simulation of the MPC contoller.

The error statistics, path tracking performance, parameter estimation performance, prediction

errors, and steer angle errors are shown in the figures below.
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Figure A.20: MPC Double Lane Change Error Statistics, 15 m/s
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Figure A.21: MPC Double Lane Change Performance, 15 m/s
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Figure A.22: MPC Parameter Estimation Errors, 15 m/s

130



0 1 2 3 4 5 6

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 (

de
g)

Non-Adaptive
Adaptive
Adaptive Converged

Figure A.23: MPC Steer Angle Prediction Errors, 15 m/s
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Figure A.24: MPC Controller Steer Angle Error, 15 m/s
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Appendix B

Additional MKZ Data

This appendix contains additional data from the real time tests conducted using the MKZ test

vehicle. Additional steering response data from both the double lane change and slalom runs

are provided.

B.1 Double Lane Change Maneuver

The figures in this section show the MKZ steering response as well as the inner-loop and outer-

loop commands for each of the double lane change datasets. The descriptions of the setup for

each of the runs is shown in Table 6.1.
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Figure B.1: Commanded and Measured Steer Angle: Double Lane Change Run 1
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(a) Commanded and Measured Steer Angle
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Figure B.2: Steering Response and Controller Inputs: Double Lane Change Run 2

15 20 25 30 35 40
Time (s)

-40

-20

0

20

40

S
te

er
 A

ng
le

 (
de

g)

Commanded
Measured

(a) Commanded and Measured Steer Angle
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Figure B.3: Steering Response and Controller Inputs: Double Lane Change Run 3
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Figure B.4: Commanded and Measured Steer Angle: Double Lane Change Run 4
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(a) Commanded and Measured Steer Angle
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Figure B.5: Steering Response and Controller Inputs: Double Lane Change Run 5
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(a) Commanded and Measured Steer Angle
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Figure B.6: Steering Response and Controller Inputs: Double Lane Change Run 6
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B.2 Slalom Maneuver
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Figure B.7: Commanded and Measured Steer Angle: Slalom Run 1
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(a) Commanded and Measured Steer Angle
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Figure B.8: Steering Response and Controller Inputs: Slalom Run 2
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(a) Commanded and Measured Steer Angle
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Figure B.9: Steering Response and Controller Inputs: Slalom Run 3
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Figure B.10: Commanded and Measured Steer Angle: Slalom Run 4
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(a) Commanded and Measured Steer Angle
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Figure B.11: Steering Response and Controller Inputs: Slalom Run 5
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(a) Commanded and Measured Steer Angle
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Figure B.12: Steering Response and Controller Inputs: Slalom Run 6
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