FORBIDDING MONCHROMATIC AND RAINBOW CYCLES AND FAMILIES OF CYCLES

by

Derrick DeMars

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Auburn, Alabama

May 6, 2023

Keywords: Mixed Ramsey, Mixed Hypergraph Coloring Problems, Gallai Colorings, Monochromatic, Rainbow

Approved by
Peter Johnson, Chair, Professor of Mathematics
Chris Rodger, Professor of Mathematics Emeritus
Jessica McDonald, Associate Professor of Mathematics
Joseph Briggs, Assistant Professor of Mathematics

Abstract

In this dissertation, we avoid certain cycles and families of cycles in complete graphs. Introduced by Axenovich and Choi [2], the mixed Ramsey spectrum, $\operatorname{MRS}\left(K_{n} ; F, H\right)$, is the set of numbers k such that for some k-edge coloring of K_{n} there is neither a monochromatic copy of $F \subseteq K_{n}$ nor a rainbow copy of $H \subseteq K_{n}$.

The values for the following spectrums are shown. Let m and n be an integers. For $n>1$, $\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)=\{g(n), \ldots, n-1\}$, in which $g(n) \in\left\{\left\lceil 2 \log _{5} n\right\rceil,\left\lceil 2 \log _{5} n\right\rceil+1\right\}$. For all m and n, where $3 \leq m \leq n,\left\{n+2-m, \ldots, n+1-m+\binom{m-1}{2}\right\} \subseteq \operatorname{MRS}\left(K_{n} ; C_{m}, C_{m}\right)$. For $n \geq 4, \max \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)=n$. Note: $\max \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)=n$ was a result shown by Axenovich and Choi [1], we provide an alternate proof.

We extended the definition of the mixed Ramsey spectrum from graphs to families of graphs. For families of graphs $\mathcal{F}, \mathcal{H}, \operatorname{MRS}\left(K_{n} ; \mathcal{F}, \mathcal{H}\right)$ is the set of numbers k such that for some k-edge coloring of K_{n}, there is no monochromatic copy of any $F \subseteq \mathcal{F}$ in K_{n} nor any rainbow copy of any $H \subseteq \mathcal{H}$ in K_{n}. It is shown that for all $n \geq 2$, $\operatorname{MRS}\left(K_{n} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)=\left\{\left\lceil\log _{2} n\right\rceil, \ldots, n-1\right\}$.

Table of Contents
Abstract 2
List of Figures 4
Chapter 1. Introduction 5
Chapter 2. Forbidding monochromatic and rainbow K_{3} 's in complete
graphs 9

1. Introduction 9
2. \quad Smallest Element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ or $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$ 9
3. Largest Element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ or $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$ 11
4. $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ or $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$ 12
Chapter 3. Forbidding monochromatic and rainbow C_{4} 's in complete
graphs 14
5. Proof of Theorem 1.4 and Related Corollaries 14
6. Conclusions Concerning min $\operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$ 16
7. Preliminary Lemmas for the C_{4} Max Theorem|1.5| 17
8. Proof of C_{4} Max Theorem 1.5 25
Chapter 4. Forbidding monchomatic odd cycles and rainbow cycles in
complete graphs 28
9. Balanced Binary Trees 28
10. Proof of Main Result 29
References 35

List of Figures

$1 \quad K_{4}$ with a 2-edge-coloring such that every K_{3} has exactly two colors. 12
$2 K_{m-1} \vee v_{m} \vee \cdots \vee v_{n} ; s=n+1-m$ 14
$\begin{array}{lll}3 \text { A rainbow subgraph, } B_{1} \subseteq K_{5} . & 19\end{array}$
4 A rainbow subgraph, $B_{2} \subseteq K_{n}$. 20
5 A rainbow subgraph $B_{3} \subseteq K_{n}$ with an additional edge, $a_{1} b_{1}$, where $c\left(a_{1} b_{1}\right)=\alpha . \quad 20$
6 A rainbow $C_{m} \subseteq K_{n}$ (where m is even) with strategically placed chords, e_{i}, for
integers $1 \leq i \leq \ell .21$
7 A rainbow $C_{7} \subseteq K_{n}$ where $n \geq 7$ with chords colored α, β, and γ. 22
8 A rainbow subgraph $B_{l} \subseteq K_{n}$ with an additional edge, $a_{1} b_{1}$, where $c\left(a_{1} b_{1}\right)=\alpha$. 23
9 In Case ii in the proof of B_{l}-Lemma 3.25 , if $\alpha \in\{8,9,10\}$, then either there is a rainbow C_{4} in K_{n}, with edges colored $5,6,7, \beta$, or there is a rainbow B_{1}, with edges colored $1,2,3,4, \beta, \alpha$.

10 A rainbow subgraph $B_{t} \subseteq K_{n}$. 24
11 A rainbow $B_{t} \subseteq K_{n}$ among two mutually rainbow C_{5} 's each with a chord. 25
12 A rainbow $B_{t} \subseteq K_{n}$ among a rainbow C_{3} and a rainbow C_{5} with a chord. 26
13 A balanced binary tree on nine vertices with five leaves, four levels, and a height of four. 28

14 Essentially different two 2-edge colorings of K_{4} that forbid monochromatic odd cycles

15 A Gallai partition with three parts and two colors. 33
16 A Gallai partition with two parts and one color. 33

Chapter 1. Introduction

All graphs considered in this work are finite, undirected, and simple.
A \boldsymbol{k}-edge coloring, c, of the edge set, $E(G)$, of a graph G is a surjective mapping $c: E(G) \rightarrow[k]$ where $[k]=\{1,2, \ldots, k\} ; c(u w)$ is the color of edge $u w$. For any subgraph $H \subseteq G, c[H]$ denotes the set of colors used to label the edges of H.

An edge colored graph is called monochromatic if all its edges have the same color. In contrast, an edge colored graph is called rainbow (elsewhere referred to as polychromatic or totally multicolored) if no color appears more than once.

A forbidden subgraph is a subgraph which cannot appear in a graph, G, and satisfies certain conditions. Forbidden subgraphs are of interest because they can be used to characterize certain graph properties. Some subgraphs are forbidden in the context of edge coloring. In other words, if a graph contains a forbidden subgraph, that subgraph cannot be edge colored with respect to a given coloring.

The multicolor Ramsey number (or simply Ramsey number), $R_{k}(F)$, defined as the smallest n such that for every k-edge coloring of K_{n} there is a monochromatic copy of $F \subseteq K_{n}$ [7]. We argue that the many other variants of Ramsey theory are equally thought provoking and valuable as the classical version.

Defined by Axenovich and Choi [2], the mixed Ramsey spectrum, $\operatorname{MRS}\left(K_{n} ; F, H\right)$, is the set of numbers k such that for some k-edge coloring of K_{n}, there is neither a monochromatic copy of $F \subseteq K_{n}$ nor a rainbow copy of $H \subseteq K_{n}$. Classical Ramsey problems are ostensibly intractable and elusive. Turning the problem inside out into a mixed Ramsey problem often gives us more tangible results and expedites research. Notice that unlike classical Ramsey problems, $\operatorname{MRS}\left(K_{n} ; F, H\right)$ fixes n and finds k.

The values in $\operatorname{MRS}\left(K_{n} ; F, H\right)$ are closely related to some more familiar types of Ramsey numbers [1]. Assuming $\operatorname{MRS}\left(K_{n} ; F, H\right)$ is nonempty, the value of $\max \operatorname{MRS}\left(K_{n} ; F, H\right)$ is less than or equal to the anti-Ramsey number, $\operatorname{AR}(n ; H)$, which is the maximum number of colors, k, such that there exists a k-edge coloring of K_{n} with no rainbow copy of $H \subseteq K_{n}$. Secondly, the value of $\min \operatorname{MRS}\left(K_{n} ; F, H\right)$ is related to the multicolor Ramsey number as
previously defined. $\min \operatorname{MRS}\left(K_{n} ; F, H\right)$ is also related to the Gallai-Ramsey number, $g r_{k}(G: H)$, which in [11], the authors define as the minimum integer N such that for all $n \geq N$, every k-edge coloring of K_{n} contains either a rainbow copy of G or a monochromatic copy of H. The following result shows the benefit in finding the maximum and minimum of a given mixed Ramsey spectrum where the forbidden monochromatic graph is not a star and the forbidden rainbow subgraph has minimum degree of at least 2 .
Theorem 1.1 (Axenovich and Choi 2): Let F be a graph that is not a star, and let H be a graph with minimum degree at least two. Then, for any natural number $n, \operatorname{MRS}\left(K_{n} ; F, H\right)$ is a set of consecutive integers.

The content of this dissertation is divided into four chapters. The last three chapters are separated into research findings from three different papers, all under the same umbrella of mixed Ramsey problems. The recent findings in chapter 2 were published in the "International Journal of Mathematics and Computer Science" by authors Derrick DeMars and Peter Johnson [5]. Several decades earlier (roughly 1976-1990), Vitaly Voloshin [14] was developing his ideas about mixed hypergraphs and their proper colorings. A mixed hypergraph is a triple $\mathscr{H}=(V ; C, D)$ in which V, the set of vertices of \mathscr{H}, is a non-empty set and $C, D \subseteq 2^{V}$ are sets of subsets of V. These subsets are hyperedges, or edges. A proper coloring of \mathscr{H} is a coloring of V such that no $c \in C$ is rainbow (that is, 2 different elements of c bear the same color), and no $d \in D$ is monochromatic (that is 2 different elements of d bear different colors). After his name sake, we refered to the set $\{k$: there is a proper coloring of \mathscr{H} with exactly k colors appearing $\}=\operatorname{VSPEC}(\mathscr{H})$ as the The Voloshin spectrum of \mathscr{H}.

In an important family of mixed hypergraphs, the vertices are edges of an ordinary graph and the hyperedges are edge sets of particular subgraphs. For simple graphs G, X, Y, we set $V=E(G)$, the edge set of $G, C=\left\{E\left(X^{\prime}\right): X^{\prime}\right.$ is a subgraph of G isomorphic to $X\}$, and $D=\left\{E\left(Y^{\prime}\right): Y^{\prime}\right.$ is a subgraph of G isomorphic to $\left.Y\right\}$. Then a proper coloring of $\mathscr{H}=(V ; C, D)$ is a coloring of G 's edges such that no copy of X in G is rainbow and no copy of Y in G is monochromatic. We will denote the Voloshin spectrum of \mathscr{H} by
$\operatorname{VSPEC}^{\prime}(G ; X, Y)$. Chapter 2 investigates for each integer $n>1$, what is the Voloshin spectrum $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$?'

Notice that $\operatorname{VSPEC}^{\prime}\left(K_{n} ; B, A\right)=\operatorname{MRS}\left(K_{n} ; A, B\right)$ where A is the forbidden monochromatic subgraph of K_{n} and B is the forbidden rainbow subgraph of K_{n}. We found $\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)=$ $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ and the proof of this result is found in chapter 2 .
Theorem 1.2 (DeMars and Johnson [5]): For all $n \geq 3, \operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)=$ $\{g(n), \ldots, n-1\}$ where $g(n) \in\left\{\left\lceil 2 \log _{5} n\right\rceil,\left\lceil 2 \log _{5} n\right\rceil+1\right\}$.

It should be noted that the value of $\min \operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)$ was obtained from results in Chung and Graham's classic work [4].
Theorem 1.3 (Chung and Graham [4): Let $f(k)$ be the largest value of n such that it is possible to edge color K_{n}, with k or fewer colors, so that every copy of $K_{3} \subseteq K_{n}$ is neither monochromatic nor rainbow. Then

$$
f(k)= \begin{cases}5^{\frac{k}{2}} & \text { if } k \text { is even } \\ 2 \cdot 5^{\frac{k-1}{2}} & \text { if } k \text { is odd }\end{cases}
$$

In chapter 3 we switched notation from that of chapter 2 to that of chapter 1 . In chapter 3 the conclusions of chapter 2 led us to inquire about $\operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$ and more generally $\operatorname{MRS}\left(K_{n} ; C_{m}, C_{m}\right)$. Two of our findings, that are proved in this chapter 3, are listed below.
Theorem 1.4: For integers m and n, where $3 \leq m \leq n$,

$$
\left\{n+2-m, \ldots, n+1-m+\binom{m-1}{2}\right\} \subseteq \operatorname{MRS}\left(K_{n} ; C_{m}, C_{m}\right)
$$

C_{4} Max Theorem 1.5: For every integer $n \geq 4$,

$$
\max \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)=n
$$

In chapter 4 , we extend the definition of the mixed Ramsey spectrum to not just subgraphs but families of graphs as well. In chapter 4, we extend the definition of the mixed Ramsey spectrum to not just subgraphs but families of graphs as well. If \mathcal{F}, \mathcal{H} are families of graphs then $\operatorname{MRS}\left(K_{n} ; \mathcal{F}, \mathcal{H}\right)$ is the set of numbers k such that for some k-edge coloring of K_{n}, there is no monochromatic copy of any $F \subseteq \mathcal{F}$ in K_{n} nor any rainbow copy of any $H \subseteq \mathcal{H}$ in K_{n}.

In chapter 4 we let \mathcal{F} be the family of odd cycles and \mathcal{H} to be the family of cycles and found the following result.

Corollary 1.6: $\operatorname{MRS}\left(K_{n} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)=\left\{\left\lceil\log _{2} n\right\rceil, \ldots, n-1\right\}$.
In [10], the authors define an edge coloring for a graph G as rainbow-cycle-forbidding if no cycle in G is rainbow with respect to that coloring. They also define a JL-coloring as a rainbow-cycle-forbidding edge coloring for a given graph G on n vertices with c components in which the maximum possible number of colors, $n-c$, appear. By the main result in 10, JL-colorings forbid monochromatic odd cycles.

Edge colorings of complete graphs which forbid rainbow K_{3} 's are known as Gallai colorings. All Gallai colorings are rainbow-cycle-forbidding. In this dissertation we will adapt the construction found in [10] to obtain rainbow-cycle-forbidding edge colorings which also forbid monochromatic odd cycles.

Chapter 2. Forbidding monochromatic and rainbow K_{3} 's in complete graphs

1. Introduction

In 1983 Chung and Graham [4] obtained a wonderful result that would now be regarded as a "mixed Ramsey" theorem.

Theorem 2.1: For each positive integer k let $f(k)$ be the largest integer n such that the edges of K_{n} can be colored with no more than k colors appearing so that each K_{3} subgraph has exactly 2 colors appearing on its edges. (That is, no $K_{3} \subseteq K_{n}$ is either monochromatic or rainbow.) Then,

$$
f(k)= \begin{cases}5^{\frac{k}{2}} & \text { if } k \text { is even } \\ 2 \cdot 5^{\frac{k-1}{2}} & \text { if } k \text { is odd }\end{cases}
$$

Recall a proper coloring of $\mathscr{H}=(V ; C, D)$ is a coloring of G 's edges such that no copy of X in G is rainbow and no copy of Y in G is monochromatic. We will denote the Voloshin spectrum of \mathscr{H} by $\operatorname{VSPEC}^{\prime}(G ; X, Y)$.

Suppose that X and Y are graphs with $|E(Y)|>1$ and k is a positive integer. Ramsey's theorem implies that for all n sufficiently large, depending on Y and k, for every edge coloring of K_{n} with less than or equal to k colors appearing, there must be a monochromatic copy of Y somewhere in K_{n}. Therefore, if X and Y are given, it is natural for Ramsey theorists to ask: "for each positive integer k, what is the largest $n=f_{X, Y}(k)$ such that $\{1, \ldots, k\} \cap \operatorname{VSPEC}^{\prime}\left(K_{n} ; X, Y\right) \neq \emptyset$?"

Of course, the question would not be posed in this way! But this is the first question answered by Chung and Graham in Theorem 2.1, in the case $X=Y=K_{3}$. Our question is: "for each integer $n>1$, what is the Voloshin spectrum $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$?" We will begin by showing the smallest and largest element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$.

2. Smallest Element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ or $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$

Lemma 2.2. The smallest element of $\operatorname{VSPEC}\left(K_{n} ; K_{3}, K_{3}\right)$ is either $\left\lceil 2 \log _{5} n\right\rceil$ or $\left\lceil 2 \log _{5} n\right\rceil+1$.

Proof. Let f be as in Theorem 2.1, let the smallest element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ be denoted $g(n)$, and let \mathscr{H}_{n} denote the mixed hypergraph of which $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ is the Voloshin spectrum.

Claim. $g(n)$ is the value of k satisfying $f(k-1)<n \leq f(k)$.
Proof. By Theorem 2.1, if $f(k-1)<n \leq f(k)$, then there is a proper coloring of \mathscr{H}_{n} with no more than k colors appearing, and there is no proper coloring of \mathscr{H}_{n} with $k-1$ or fewer colors appearing, so there must be a proper coloring of \mathscr{H}_{n} with exactly k colors appearing. Therefore $k \in \operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$, so $g(n) \leq k$.

On the other hand, if there is a proper coloring of \mathscr{H} with exactly $r \leq k-1$ colors appearing, then n would be $\leq f(k-1)$. Since $f(k-1)<n \leq f(k)$, it follows that there is no such r; therefore k is the smallest element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$.

Suppose that $k=g(n)$ is even. By Theorem 2.1 and our previous Claim,

$$
2 \cdot 5^{\frac{k-2}{2}}=f(k-1)<n \leq f(k)=5^{\frac{k}{2}}
$$

"Solving" for k, we obtain

$$
2 \log _{5} n \leq k<2 \log _{5} n+2\left(1-\log _{5} 2\right)
$$

Because k is an integer and $2\left(1-\log _{5} 2\right)<2$, it follows that $k \in\left\{\left\lceil 2 \log _{5} n\right\rceil,\left\lceil 2 \log _{5} n\right\rceil+1\right\}$.
When $k=g(n)$ is odd we obtain

$$
1-2 \log _{5} 2+2 \log _{5} n \leq k<2 \log _{5} n+1
$$

whence $k \in\left\{\left\lceil 2 \log _{5} n\right\rceil,\left\lceil 2 \log _{5} n\right\rceil+1\right\}$.
Given n, how does one decide whether $k=g(n)$ is $\left\lceil 2 \log _{5} n\right\rceil$ or $\left\lceil 2 \log _{5} n\right\rceil+1$? It is the value of k such that $f(k-1)<n \leq f(k)$.

Example 2.3: For instance, if $n=19,\left\lceil 2 \log _{5} 19\right\rceil=4$, and we see that $10=2 \cdot 5^{\frac{3-1}{2}}<19 \leq$ $5^{\frac{4}{2}}=25$, so $g(19)=4$. Now consider $n=51$. Then $\left\lceil 2 \log _{5} n\right\rceil=5$. Clearly $51 \not \leq f(5)=50$, so $g(51)=6$.

Now we will find the largest element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$. The following is well known (see [10]), but we supply a proof for the reader's convenience.

3. Largest Element of $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ or $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$

Lemma 2.4. Suppose G is a simple connected graph on n vertices and $E(G)$ is colored with n or more colors appearing. Then there is a rainbow cycle in G with respect to this coloring. Proof. Choose n edges of G with different colors. Let H be the subgraph of G induced by these edges. Then H is a subgraph with n edges on no more than n vertices. So H contains a cycle and that cycle is rainbow.

Corollary 2.5: The greatest number of colors with which the edges of a simple connected graph on n vertices can be colored so that there is no rainbow cycle is less than or equal to $n-1$.

The following theorem is proved in [10; we will supply a short proof here.
Theorem 2.6: If G is a connected simple graph on $n \geq 1$ vertices, then there is a rainbow-cycle-forbidding edge coloring of G with exactly $n-1$ colors appaearing.
Proof. The proof will be by induction on n. Clearly the conclusion holds when $n=1$.
Suppose that $n>1$. Let T be a spanning tree in G. Take any $e \in E(T) ; T-e$ is the disjoint union of two trees, T_{1} and T_{2}. Let $R=V\left(T_{1}\right), S=V\left(T_{2}\right)$. Then R and S partition $V(G)$ and the induced subgraphs $G[R], G[S]$ are connected, since each has a spanning connected subgraph.

By the induction hypothesis, if $X \in\{G[R], G[S]\}$ then $E(X)$ can be colored with $|V(X)|-1$ colors appearing so that there are no rainbow cycles in X. We arrange for the sets of colors on the edges of $G[R], G[S]$ to be disjoint. We complete the coloring of $E(G)$ by coloring the edges of the edge cut $[R, S]=\{f \in E(G)$: one end of f is in R, the other in $S\}$ with a color not appearing in $G[R] \cup G[S]$.

Figure 1. K_{4} with a 2-edge-coloring such that every K_{3} has exactly two colors.

Note that $e \in[R, S]$, so $[R, S]$ is non-empty. Therefore, the number of colors appearing on G is $|R|-1+|S|-1+1=|R|+|S|-1=n-1$. There are no rainbow cycles in $G[R]$, nor in $G[S]$. If a cycle in G has a vertex in R and a vertex in S, then the cycle must have at least two edges in $[R, S]$, and so must have a color repeated on its edges. Thus the coloring of G is rainbow-cycle-forbidding.

This leads us to conclude the following.
Corollary 2.7: For all $n \geq 1$, the largest element of $\operatorname{VSPEC}\left(K_{n} ; K_{3}, K_{3}\right)$ is $n-1$.

4. $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)$ OR $\left(\operatorname{MRS}\left(K_{n} ; K_{3}, K_{3}\right)\right)$

Theorem 2.8: For all $n \geq 1$, $\operatorname{VSPEC}\left(K_{n} ; K_{3}, K_{3}\right)=\{k: g(n) \leq k \leq n-1\}$ where $g(n) \in\left\{\left\lceil 2 \log _{5} n\right\rceil,\left\lceil 2 \log _{5} n\right\rceil+1\right\}$.
Proof. This proof is by induction on n. For $n=1, \operatorname{VSPEC}^{\prime}\left(K_{1} ; K_{3}, K_{3}\right)=\{0\}$. For $n=2, \operatorname{VSPEC}^{\prime}\left(K_{2} ; K_{3}, K_{3}\right)=\{1\}$. For $n=3, \operatorname{VSPEC}^{\prime}\left(K_{3} ; K_{3}, K_{3}\right)=\{2\}$. For $n=4$, consider Figure 1 as it shows that the min $\left(\operatorname{VSPEC}^{\prime}\left(K_{4} ; K_{3}, K_{3}\right)\right)=2$. This is consistent with Lemma 2.2, since $\left\lceil 2 \log _{5} 4\right\rceil=2$. Also, by Corollary 2.7, $n-1=4-1=3$. So $\operatorname{VSPEC}^{\prime}\left(K_{4} ; K_{3}, K_{3}\right)=\{2,3\}$.

We will show that K_{n} is exactly k-edge-colorable (so that exactly 2 colors appear on each K_{3} in K_{n}), when $g(n)<k<n-1$ for $n>4$. Note that $g(n-1) \leq g(n) \leq k-1$. Let $v \in V\left(K_{n}\right)$. By the induction hypothesis $K_{n}-v$ is exactly $(k-1)$-edge-colorable. Consider the join of $K_{n}-v$ and v, that is, K_{n}. Let all edges incident to v be colored
with a k th color. Clearly the resulting coloring of the edges of K_{n} with exactly k colors appearing admits neither monochromatic nor rainbow K_{3} 's. So $\operatorname{VSPEC}^{\prime}\left(K_{n} ; K_{3}, K_{3}\right)=$ $\{k: g(n) \leq k \leq n-1\}$ for $n \geq 1$.

Chapter 3. Forbidding monochromatic and rainbow C_{4} 's in complete graphs

5. Proof of Theorem 1.4 and Related Corollaries

Before showing the proof of Theorem 1.4, we will first define a join. The join, $G \vee H$, of two vertex-disjoint graphs G and H has $V(G \vee H)=V(G) \cup V(H)$ and $E(G \vee H)=$ $E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$ [7].

Figure 2. $K_{m-1} \vee v_{m} \vee \cdots \vee v_{n} ; s=n+1-m$

Proof of Theorem 1.4. Let $m, n \in \mathbb{Z}$ such that $3 \leq m \leq n$. Consider $K_{m-1} \subseteq K_{n}$; we will refer to this subgraph, K_{m-1}, as our base, H. In the following steps, we will construct an edge coloring on K_{n} forbidding monochromatic and rainbow C_{m} 's. First color the edges of H with color set B, where $B=\{1, \ldots, b\}$ and $1 \leq b \leq\binom{ m-1}{2}$ with all b colors appearing. Secondly, we will color all the edges joining H to v_{m} with color $b+1$. Note that $V\left(K_{n}\right) \backslash$ $V(H)=\left\{v_{m}, \ldots, v_{n}\right\}$. In the coloring thus far, the complete graph $K_{m-1} \vee v_{m}$ contains neither monochromatic nor rainbow C_{m} 's.

Now concerning additional edges incident to vertices v_{m+1}, \ldots, v_{n}. Color edges joining $K_{m-1} \vee v_{m}$ to v_{m+1} with color $b+2$. Continue in this way: color the edges from $V(H) \cup$ $\left\{v_{m}, \ldots, v_{m+t}\right\}$ to $v_{m+t+1}, 1 \leq t \leq n-m-1$, with color $b+t+2$. Notice, the value of $\left|c\left[K_{n}\right]\right|$ ranges from
(1) $b+n+1-m=n+2-m$, when $b=1$, to
(2) $b+n+1-m=n+\binom{m-1}{2}+1-m$, when $b=\binom{m-1}{2}$.

To see that K_{n}, with any of these edge colorings, contains neither monochromatic nor rainbow m-cycles, consider an arbitrary $C \simeq C_{m}$ in K_{n}. Since $H \vee v_{m}$ contains neither monochromatic nor rainbow C_{m} 's, we may as well assume that $V(C)$ contains at least one vertex $v_{j}, m<j \leq n$.

Let $\alpha \in\{m+1, \ldots, n\}$ be the largest integer such that $v_{\alpha} \in V(C)$. By the way the coloring c is defined, the two edges of C incident to v_{α} bear the same color, so C is not rainbow. Now, because $m=|V(C)| \geq 3, C$ has an edge $u w, u, w \in V(C) \cup\left\{v_{m}, \ldots, v_{\alpha-1}\right\}$; again, by appeal to the way the coloring is defined, the color on $u w$ is different from the color shared by the two edges incident to v_{α}, so C is not monochromatic.
Theorem 3.1: For integers m and n, where $3 \leq m \leq n$,

$$
\begin{aligned}
& k \in \operatorname{MRS}\left(K_{n} ; C_{m}, C_{m}\right) \Longrightarrow \\
& k+1 \in \operatorname{MRS}\left(K_{n+1} ; C_{m}, C_{m}\right)
\end{aligned}
$$

Proof. Let K_{n} be k-edge colored with all colors of [k] appearing, with no monochromatic or rainbow $C_{m} \subseteq K_{n}$. Now join K_{n} to $v_{n+1} \in V\left(K_{n+1}\right) \backslash V\left(K_{n}\right)$ and color the new joining edges with $k+1$. With respect to the edge coloring, K_{n+1} clearly contains no monochromatic or rainbow $C_{m} \subseteq K_{n+1}$. Therefore $k+1 \in \operatorname{MRS}\left(K_{n+1} ; C_{m}, C_{m}\right)$.

Prior to beginning our work and unbeknownst to us, Axenovich and Choi had shown the following.
Proposition 3.2 (Axenovich and Choi [2]): If a graph F is not a star, a graph H has minimum degree at least two, and $k \in \operatorname{MRS}\left(K_{n} ; F, H\right)$, then $k+1 \in \operatorname{MRS}\left(K_{n+1} ; F, H\right)$.
Corollary 3.3: For integer n, where $n \geq 4$,

$$
\{n-2, n-1, n\} \subseteq \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)
$$

6. Conclusions Concerning min $\operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$

We define the extremal number of a graph F as $\operatorname{ex}(n ; F):=\max \{|E(G)|:|V(G)|=n$, $F \nsubseteq G\}[3]$. The multicolor Ramsey number of a graph $F, R_{k}(F)$, is defined as the smallest n such that for every k-edge coloring of K_{n} there is a monochromatic copy of $F \subseteq K_{n}$ [1].
Proposition 3.4: For positive integers k^{*} and n, if

$$
k^{*} \operatorname{ex}(n ; F)<\binom{n}{2}
$$

then
(1) in every k^{*}-edge coloring of K_{n} there is a color class with more than $\operatorname{ex}(n ; F)$ edges, so that color class contains a copy of F,
(2) $R_{k^{\star}}(F) \leq n$, and
(3) $k^{\star}<\min \operatorname{MRS}\left(K_{n} ; F, F\right)$.

Now consider when $F=C_{4}$.
Theorem 3.5 (Reiman [13]):

$$
\begin{equation*}
\operatorname{ex}\left(n ; C_{4}\right)<\frac{1}{4} n(1+\sqrt{4 n-3}) \tag{1}
\end{equation*}
$$

Corollary 3.6: Suppose that $n, k^{\star} \geq 2$ are integers and $\frac{1}{k^{*}}\binom{n}{2} \geq \frac{n+n \sqrt{4 n-3}}{4}$. Then
(1) K_{n} cannot be k^{\star}-edge colored forbidding monochromatic C_{4} 's,
(2) $R_{k^{\star}}\left(C_{4}\right) \leq n$, and
(3) $k^{*}<\min \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$.

Proof. This corollary follows easily by combining Proposition 3.4 and Theorem 3.5, with $F=C_{4}$ in the former.

Similar results were found by Axenovich and Choi.

Proposition 3.7 (Axenovich and Choi [2]): We define $\eta(k ; F, H):=\max \{n$: there is an edge coloring of K_{n} forbidding monochromatic F and rainbow H using exactly k colors\}. Then:
(1) If $\eta(k ; F, H)=n$, then $\min \operatorname{MRS}\left(K_{n} ; F, H\right) \leq k$.
(2) If $\eta(k ; F, H)=n$ and $\eta\left(k^{\prime} ; F, H\right)<n$, for every $k^{\prime}<k$, then $\min \operatorname{MRS}\left(K_{n} ; F, H\right)=$ k.
(3) In particular if η is strictly increasing in k, and $\eta(k ; F, H)=n$, then $\min \operatorname{MRS}\left(K_{n} ; F, H\right)=k$.
(4) $\eta(k ; F, H)+1 \leq R_{k}(F)$. Equality holds if there is a k-edge coloring of $K_{R_{k}(F)-1}$ with no monochromatic F and no rainbow H.
7. Preliminary Lemmas for the C_{4} Max Theorem 1.5

Fact 1: If G is connected, C is a cycle in G, and $e \in E(C)$, then $G-e$ is connected.
Fact 2: If G is connected and acyclic then $|V(T)|-1=|E(T)|$.
Corollary 3.8: If G is connected and $|V(G)| \leq|E(G)|$ then G contains a cycle subgraph.
Corollary 3.9: If G is a connected graph and if
(1) $|V(G)|+1 \leq|E(G)|$, then G contains at least two different cycle subgraphs, C_{1} and C_{2}. Furthermore,
(2) $|V(G)|+1=|E(G)|$, then G satisfies the following: If e_{1} is an edge on some cycle subgraph of $C_{1} \subseteq G$, and e_{2} is an edge (where $e_{1} \neq e_{2}$) on some other cycle subgraph $C_{2} \subseteq G-e_{1}$, then $G-\left(e_{1} \cup e_{2}\right)$ is a tree.
Erdôs, Rubin, and Taylor [6] use the concept of the generalized Θ graph, denoted $\Theta_{r, s, t}$. The authors of [12] define $\Theta_{r, s, t}$ as "the graph consisting of two end vertices u and w meeting three internally vertex disjoint paths containing r, s, and t edges, respectively."
Corollary 3.10: If G is connected and $|V(G)|+1=|E(G)|$, then either
(1) G contains two edge-disjoint cycles, or
(2) G contains exactly three cycles, and together they form a Θ graph.

Lemma 3.11. Let K_{n} be edge colored with at least $n+1$ colors appearing. Then K_{n} has a rainbow connected subgraph G such that $|V(G)|+1=|E(G)|$.

Proof. Choose $n+1$ edges of K_{n} bearing $n+1$ distinct colors. Let H be the subgraph of K_{n} induced by these edges. Notice that H is rainbow. Then $n+1=|E(H)|=\left|V\left(K_{n}\right)\right|+1 \geq$ $|V(H)|+1$.

Since $|E(H)|>|V(H)|$, some component H^{\prime} of H, satisfies $\left|E\left(H^{\prime}\right)\right|>\left|V\left(H^{\prime}\right)\right|$. If $\left|E\left(H^{\prime}\right)\right|=\left|V\left(H^{\prime}\right)\right|+1$, take $G=H^{\prime}$. If $\left|E\left(H^{\prime}\right)\right|>\left|V\left(H^{\prime}\right)\right|+1$, obtain G by removing edges from cycle subgraphs of H^{\prime} (with each cycle after the first being a subgraph of the graph arrived at by the previous removal) to obtain a connected subgraph G such that $|E(G)|=\left|V\left(H^{\prime}\right)\right|+1=|V(G)|+1$. Since H is rainbow, its subgraph G is rainbow.
Proposition 3.12: Let K_{n} be edge colored with at least $n+1$ colors appearing. Then K_{n} has a rainbow connected subgraph H bearing at least $|V(H)|+1$ colors where either
(1) H contains two edge-disjoint cycles, or
(2) H contains exactly three cycles and they form a Θ graph.

Rainbow C_{3} Lemma 3.13: 3.13
Suppose that K_{n} is edge colored, and for some integer m, there is a rainbow C_{m} subgraph of K_{n}. Then there is a rainbow $C_{3} \subseteq K_{n}$ 9].

Proof. We can assume that $m>3$. Let $e=u v$ be a chord of the rainbow C_{m}. There are two edge-disjoint paths, P and Q, on C_{m} with end vertices u and v. Because C_{m} is rainbow, the color of e in the edge coloring of K_{n} appears on at most one of P, Q. Therefore, either $P \cup e$ or $Q \cup e$ is a rainbow cycle of order $s<m$. If $s=3$, we are done. Otherwise, we repeat the process in the argument preceding until we obtain a rainbow C_{3}.

Lemma 3.14. $k \notin \operatorname{MRS}\left(K_{4} ; C_{4}, C_{4}\right)$ for all $k \geq 5$.

Proof. k-edge color K_{4} where $k \geq 5 .\left|E\left(K_{4}\right)\right|=6$, so exactly one color is repeated exactly once if $n=5$. Remove one edge, e, associated with said repeated color. Then $K_{4}-e$ is rainbow. $K_{4}-e$ contains contains a C_{4}, which is necessarily a rainbow C_{4}.

We define a $\boldsymbol{B}_{\boldsymbol{t}}$ graph as the graph consisting of two edge disjoint triangles, joined by path of length $t-1$.

Figure 3. A rainbow subgraph, $B_{1} \subseteq K_{5}$.
\boldsymbol{B}_{1}-Lemma 3.15: If $n \geq 5, K_{n}$ is edge colored, and $B_{1} \subseteq K_{n}$ is rainbow, as depicted in Fig. 3. then $B_{1} \cup v_{1} v_{3}$ contains a rainbow C_{4} as a subgraph.

Proof. Referring to Fig. 3, we can see that in order for there to be no rainbow $C_{4} \subseteq B_{1} \cup v_{1} v_{3}$, $c\left(v_{1} v_{3}\right) \in\{3,5,6\} \cap\{1,2,4\}=\emptyset$. Therefore, there is a rainbow $C_{4} \subseteq B_{1} \cup v_{1} v_{3}$.

Corollary 3.16: $k \notin \operatorname{MRS}\left(K_{5} ; C_{4}, C_{4}\right)$ for all $k \geq 6$.
Proof. k-edge color K_{5} with $k \geq 6$ colors all appearing. By Proposition 3.12, we know there is a connected rainbow $H \subseteq K_{5}$ with $|V(H)|+1$ colors appearing on H containing at least two cycles. Assume there are no C_{4} 's in H. Since $|V(H)|+1 \leq 6$, either H contains a C_{5} or H contains two C_{3} 's.

Case 1. If H contains a C_{5}, then any edge in H bearing a sixth color (not on the C_{5}), must be a chord across C_{5}, so H contains a rainbow C_{4}.

Case 2. There are two C_{3} 's sharing either an edge or a vertex.
Case i. If the two C_{3} 's share an edge, then H contains a C_{4}, which is rainbow because H is rainbow.

Case ii. If the two rainbow C_{3} 's share exactly one vertex, refer to B_{1}-Lemma 3.15.

Corollary 3.17: For $n \geq 5$, if we have K_{n} edge colored with any number of colors appearing, with no rainbow C_{4} 's, then we can conclude that there are no rainbow B_{1} subgraphs in K_{n}.
Corollary 3.18: $\quad(n+i) \notin \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$ where $n \in\{4,5\}$ and $i \geq 1$.

Proof. This claim combines those Lemma 4.7 and Corollary 4.9.
Given a nonempty set $S \subseteq V(G)$, the subgraph $G[S] \subseteq G$ is said to be induced by S if: $u, w \in S$ are adjacent in $G[S]$ if and only if u and w are adjacent in G [7].

Figure 4. A rainbow subgraph, $B_{2} \subseteq K_{n}$.
$\boldsymbol{B}_{\mathbf{2}}$-Lemma 3.19: Let $k \geq 7, n \geq 6$, and B_{2} be the graph depicted in Fig. 4, and suppose that there is an edge coloring of K_{n} such that there are no rainbow copies of $C_{4} \subseteq K_{n}$, but there is a rainbow copy of $B_{2} \subseteq K_{n}$. Let B_{2} be such a rainbow copy described as well as depicted in Fig. 4.

Then every edge in $E\left(K_{n}\left[V\left(B_{2}\right)\right]\right) \backslash E\left(B_{2}\right)$ must be colored four (the color of edge $a_{1} b_{1}$). Consequently, there exists a monochromatic copy of C_{4} in K_{n}, under this coloring.

Proof. Let c denote the coloring of $E\left(K_{n}\right)$. Since there are no rainbow C_{4} 's in $K_{n}, c\left(a_{3} b_{2}\right) \in$ $\{3,4,5\} \cap\left\{2,6, c\left(a_{2} b_{3}\right)\right\}$, and similarly $c\left(a_{2} b_{3}\right) \in\{1,4,7\} \cap\left\{2,6, c\left(a_{3} b_{2}\right)\right\}$. It now follows that $c\left(a_{3} b_{2}\right)=c\left(a_{2} b_{3}\right)=4$. Then $c\left(a_{3} b_{1}\right) \in\{1,2,4\} \cap\{6,7,4\}=\{4\}$. Given the symmetry of the situation, it follows that $c\left(a_{3} b_{3}\right)=c\left(a_{1} b_{2}\right)=c\left(a_{1} b_{3}\right)=c\left(a_{2} b_{1}\right)=c\left(a_{2} b_{2}\right)=4$. So there exists a monochromatic $a_{3} b_{2} a_{2} b_{3} a_{3}=C_{4} \subseteq K_{6}$.

Figure 5. A rainbow subgraph $B_{3} \subseteq K_{n}$ with an additional edge, $a_{1} b_{1}$, where $c\left(a_{1} b_{1}\right)=\alpha$.
\boldsymbol{B}_{3}-Lemma 3.20: Assume $n>6$. Edge color K_{n}. Let $B_{3} \subseteq K_{n}$ be a connected rainbow subgraph containing two vertex disjoint C_{3} 's, where the C_{3} 's are connected by a path P and P contains exactly two edges. Then K_{n} contains a monochromatic or rainbow C_{4}.

Proof. If $|V(P)|=3$, as depicted in Fig. 5, we either have at least a rainbow $B_{1} \subseteq K_{n}$ or a rainbow $B_{2} \subseteq K_{n}$.

Case 1. If $\alpha \in\{1,2,3,6,7,8\}$ then $a_{1} p_{1} b_{1}$ is rainbow, and either $a_{1} a_{2} a_{3} \cup a_{1} p_{1} b_{1}$ is rainbow or $b_{1} b_{2} b_{3} \cup a_{1} p_{1} b_{1}$ is rainbow. In both cases we have a rainbow $B_{1} \subseteq K_{n}$ and should refer to B_{1}-Lemma 3.15.

Case 2. If $\alpha \notin\{1,2,3,6,7,8\}$ then we have a rainbow $B_{2} \subseteq K_{n}$ and should refer to B_{2}-Lemma 3.19.

Figure 6. A rainbow $C_{m} \subseteq K_{n}$ (where m is even) with strategically placed chords, e_{i}, for integers $1 \leq i \leq \ell$.

Even Rainbow Cycle Lemma 3.21: 3.21
Assume $n \geq m \geq 6$ and m is even. Let K_{n} be edge colored and assume that $C_{m} \subseteq K_{n}$ is rainbow. Then there is a rainbow $C_{4} \subseteq K_{n}$.

Proof. Let $C_{m} \subseteq K_{n}$ be m-edge colored with colors one through m, as depicted in Fig. 6 . Suppose there is not a rainbow $C_{4} \subseteq K_{n}$. Drop a chord, e_{1}, across C_{m} from v_{2} to v_{m-1} as depicted in Fig. 6. Since there is not a rainbow $C_{4} \subseteq K_{m}, c\left(e_{1}\right) \in\{1, m-1, m\}$. If $m \geq 6$, draw another chord, e_{2}, from v_{3} to $v_{m-2}: c\left(e_{2}\right) \in\left\{c\left(e_{1}\right), 2, m-2\right\}$. If this process continues, there are $\frac{m-2 \cdot 3}{2}+1=\ell$ chords drawn across C_{m}. So continue this process until a chord, e_{ℓ}, is drawn from $v_{\frac{m}{2}-1}$ to $v_{\frac{m}{2}+2}$. Because $c\left(e_{\ell}\right) \in\left\{c\left(e_{\ell-1}\right), \frac{m}{2}-2, \frac{m}{2}+2\right\} \cap\left\{\frac{m}{2}-1, \frac{m}{2}, \frac{m}{2}+1\right\}$ it follows that $c\left(e_{\ell}\right)=c\left(e_{\ell-1}\right)=\frac{m}{2}$. By a similar argument $c\left(e_{\ell-1}\right)=c\left(e_{\ell-2}\right)=\cdots=\frac{m}{2}$. However, since $m \geq 6$, the C_{4} on vertices $v_{1} v_{2} v_{m-1} v_{m}$ is rainbow.

Figure 7. A rainbow $C_{7} \subseteq K_{n}$ where $n \geq 7$ with chords colored α, β, and γ.

Rainbow $\boldsymbol{C}_{\mathbf{7}}$ Lemma 3.22: 3.22

Let $k, n \geq 7$ be integers and K_{n} is k-edge colored. If there is a rainbow $C_{7} \subseteq K_{n}$, then there is a monochromatic $C_{4} \subseteq K_{n}$.

Proof. Let $k, n \geq 7$ be integers. Suppose that K_{n} is k-edge colored and there is a rainbow C_{7} as depicted in Fig. 7. Label the chords with colors α, β, and γ as depicted in Fig. 7.

We will examine the color of several C_{4} 's edges and assume that no C_{4} is rainbow. Consider the cycles $v_{1} v_{2} v_{3} v_{7}$ and $v_{3} v_{4} v_{5} v_{7}$. We find $\beta \in\{1,2,7\}$ and $\beta \in\{3,4, \alpha\}$. So $\beta=\alpha$ and $\alpha, \beta \in\{1,2,7\}$. Now examine cycles $v_{2} v_{3} v_{4} v_{5}$ and $v_{1} v_{2} v_{5} v_{7}$, this shows $\gamma \in\{2,3,4\}$ and $\gamma \in\{\alpha, 7,1\}$, hence $\gamma=\alpha$ and $\alpha, \gamma \in\{2,3,4\}$. Since $\alpha=\beta$ and $\alpha=\gamma, \alpha, \beta, \gamma \in$ $\{1,2,7\} \cap\{2,3,4\}=2$. This leaves us with cycle $v_{2} v_{5} v_{7} v_{3}$ colored with only the color 2 . That is, we have a monochromatic $C_{4} \subseteq K_{n}$.

Odd Rainbow Cycle Lemma 3.23: 3.23
Assume $n \geq m \geq 9$ and m is odd. Let K_{n} be edge colored and suppose some $C_{m} \subseteq K_{n}$ is rainbow. Then there is a monochromatic or rainbow $C_{4} \subseteq K_{n}$.

Proof. Let $C_{m} \subseteq K_{n}$ be m-edge colored numerically one through m. Suppose there is no rainbow $C_{4} \subseteq K_{n}$.

Assume $m \geq 9$. Drop a chord on C_{m} so that one new cycle is a copy of C_{4}. Since by our assumption C_{4} is not rainbow. So C_{m-2} must be rainbow. Continue dropping chords on C_{m-2}, C_{m-4}, and so forth until we have a rainbow C_{7}. By Rainbow C_{7} Lemma 3.22 , we have a monochromatic C_{4}.

Rainbow Cycle Theorem 3.24: Assume $n \geq m \geq 6$. If K_{n} is edge colored and there is a rainbow $C_{m} \subseteq K_{n}$ then there is a either a monochromatic or rainbow $C_{4} \subseteq K_{n}$.

Figure 8. A rainbow subgraph $B_{l} \subseteq K_{n}$ with an additional edge, $a_{1} b_{1}$, where $c\left(a_{1} b_{1}\right)=\alpha$.

Figure 9. In Case ii in the proof of B_{l}-Lemma 3.25, if $\alpha \in\{8,9,10\}$, then either there is a rainbow C_{4} in K_{n}, with edges colored $5,6,7, \beta$, or there is a rainbow B_{1}, with edges colored $1,2,3,4, \beta, \alpha$.
B_{l}-Lemma 3.25: 3.25

Assume $n>6$. Edge color K_{n}. Let $B_{l} \subseteq K_{n}$, where $l \geq 4$, be a connected rainbow subgraph containing two vertex disjoint C_{3} 's, where the C_{3} 's are connected by a path, P, with at least three edges, and $l=|E(P)|$. Then K_{n} contains a monochromatic or rainbow C_{4}.

Proof. Suppose the ends of P are a_{1} and b_{1}. THen $a_{1} b_{1} \in E\left(K_{n}\right) \backslash E\left(B_{l}\right)$ is an edge whose endpoints are vertices in each C_{3} as depicted in Fig. 8. Let $c\left(a_{1} b_{1}\right)=\alpha$. Let $\left|V\left(B_{l}\right)\right|=q$. Either $\alpha \in\{1,2,3, q-1, q, q+1\}$ or not.

Case 1. Suppose $\alpha \notin\{1,2,3, q-1, q, q+1\}$, then we have a rainbow $B_{2} \subseteq K_{n}$ and can use B_{2}-Lemma 3.19 to conclude that K_{n} contains a monochromatic C_{4}

Case 2. If $\alpha \in\{1,2,3, q-1, q, q+1\}$, then the cycle $C=a_{1} p_{1} p_{2} \ldots b_{1} a_{1}$ is rainbow. Either $|E(P)|=3,|E(P)|=4$, or $|E(P)| \geq 5$.

Case i. Suppose $|E(P)|=3$. This gives us a rainbow $B_{1} \subseteq K_{n}$ and we can apply our B_{1}-Lemma 3.15 .

Case ii. Suppose $|E(P)|=4$. Then $C \simeq C_{5}$. Without loss of generality, assume that $\alpha \in\{8,9,10\}$ (see Fig. 9) and consider the chord $p_{1} b_{1}$ of C in Fig. 9 . Let its color be β. If $\beta \notin\{5,6,7\}$ then we have a rainbow C_{4} in K_{n}. Otherwise, if $\beta \in\{5,6,7\}$ then we have a rainbow B_{1}, whence, by B_{1}-Lemma 3.15, there is a rainbow C_{4} in K_{n}.

Case iii. Assume $|E(P)| \geq 5$. We can use our Rainbow Cycle Theorem 3.24 to show that K_{n} contains a rainbow or monochromatic C_{4}.

Figure 10. A rainbow subgraph $B_{t} \subseteq K_{n}$.

Proposition $\boldsymbol{B}_{\boldsymbol{t}}$ 3.26: Assume $n>6$. Edge color K_{n}. Let $B_{t} \subseteq K_{n}$ be a connected rainbow subgraph containing two edge disjoint C_{3} 's, where the C_{3} 's are connected by a path, P, of length $t-1$. Then K_{n} contains either a monochromatic or rainbow C_{4}.

Proof. This follows directly from the B_{1}-Lemma 3.15, B_{2}-Lemma 3.19, B_{3}-Lemma 3.20, and B_{l}-Lemma 3.25.

8. Proof of C_{4} Max Theorem 1.5

Theorem 3.27: For integers $n \geq 4$ and $i \geq 1$, $(n+i) \notin \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$.
Proof. Recall Corollary 3.17. This result states that $(n+i) \notin \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)$ where $n \in$ $\{4,5\}$, and $i \geq 1$.

Now let K_{n} be $(n+i)$-edge colored where $n \geq 6$ and $i \geq 1$. Assume that such a coloring forbids rainbow and monochromatic C_{4} 's. By Proposition 3.12, we know K_{n} contains at least two cycles in the same rainbow connected subgraph, say H. Let the collection of these rainbow cycles in H be denoted $r C(H)$. There are several cases we will consider where the largest rainbow cycle in $r C(H)$ is one of the following: C_{m} (for all $m \geq 6$), C_{5}, or C_{3}. There are also sub-cases we will soon address.

Case 1. Suppose the largest rainbow cycle in $r C(H)$ is C_{m} where $m \geq 6$. By the Rainbow Cycle Theorem 3.24, we have a monochromatic or rainbow $C_{4} \subseteq K_{n}$.

Figure 11. A rainbow $B_{t} \subseteq K_{n}$ among two mutually rainbow C_{5} 's each with a chord.

Figure 12. A rainbow $B_{t} \subseteq K_{n}$ among a rainbow C_{3} and a rainbow C_{5} with a chord.
Case 2. Suppose the largest rainbow cycle in $r C(H)$ is C_{5}. By Proposition 3.12, let $C_{\ell} \in r C(H)$ be at least one other rainbow cycle in $r C(H)$. Either $\ell=5$ or $\ell=3$. Case i. Let $\ell=5$. The two C_{5} 's meet at the ends of a path, P, in H. Draw two chords, as depicted in Fig. 11. By assumption there are no monochromatic or rainbow C_{4} 's, so we have a rainbow B_{t} graph. By Proposition B_{t} 3.26, we have monochromatic or rainbow copies of C_{4}. Case ii. Let $\ell=3$. So a C_{3} and a C_{5} meet at the ends of path, P, in H. Draw a chord across C_{5}, as depicted in Fig. 12. By assumption there are no monochromatic or rainbow C_{4} 's, so we have a rainbow B_{t} graph. By Proposition B_{t} 3.26, we have monochromatic or rainbow copies of C_{4}.

Case 3. Suppose the largest rainbow cycle in $r C(H)$ is C_{3}. Then we have two C_{3} 's that are connected by a nonempty path in H, say P. It follows that we have a B_{t} graph which by Proposition $B_{t} 3.26$, we know that H has monochromatic or rainbow copies of C_{4}.

Hence given a $(n+i)$-edge colored K_{n} where $n>6$ and $i \geq 1$, there is a monochromatic or rainbow $C_{4} \subseteq K_{n}$.

It naturally follows from the previous theorems, in particular Theorem 1.4, that the C_{4} Max Theorem 1.5 holds.
C_{4} Max Theorem 1.5: For every integer $n \geq 4$,

$$
\max \operatorname{MRS}\left(K_{n} ; C_{4}, C_{4}\right)=n
$$

Chapter 4. Forbidding monchomatic odd cycles and rainbow cycles in complete graphs

9. Balanced Binary Trees

Figure 13. A balanced binary tree on nine vertices with five leaves, four levels, and a height of four.

For this dissertation a balanced binary tree, T, is an acyclic connected graph with a root vertex, v, and descendants presenting exclusively in pairs known as siblings or children. The vertex v is the only vertex to be located on level zero. The children of v, v_{0} and v_{1}, are on level one, v_{0} 's and v_{1} 's children are on level two, and so forth. The number of levels from level zero to the last level is known as the height of T. T 's final children are known as leaves and they are all located on the final level or the last two levels; see Fig 13 .

Lemma 4.1. The height of a balanced binary tree on q vertices is $\left\lceil\log _{2} q\right\rceil+1$.
Proof. Let T be a balanced binary tree on q vertices and let level ℓ be the last level. Then $q=1+2+\cdots+2^{\ell-1}+2 t$ for some $t \in\left\{1, \ldots, 2^{\ell-1}\right\}$. Therefore $2^{\ell}<q \leq 2^{\ell+1}-1$. Since we start counting levels at zero, the height of T is $\ell+1=\left\lceil\log _{2} q\right\rceil+1$.

Our balanced binary trees are special cases of binary trees. In general, a binary tree on more than 3 vertices is a tree with one vertex of degree 2 (the root) and all other vertices of degrees either 3 or 1 (the leaves).

Lemma 4.2. A binary tree with n leafs has $2 n-1$ vertices.

Proof. Let q be the number of vertices of the tree. Then summing the degrees of those vertices, which will give us $2(q-1), q-1$ being the number of edge. We have $2(q-1)=$ $n+2+3(q-n-1)$; solving we get $q=2 n-1$.

10. Proof of Main Result

Our main result is Corollary 1.6, which follows from Theorems 4.7 and 4.10.
It is well known (see [10]) that for any coloring of the edges of K_{n} with n or more colors appearing there will be a rainbow cycle contained in K_{n}, whereas rainbow-cycle-forbidding colorings with $n-1$ colors appearing are possible, and in every such coloring, monochromatic odd cycles are forbidden; so $n-1$ is the largest integer in that spectrum. Our candidate for the smallest member is $k=\left\lceil\log _{2} n\right\rceil$. We show that every integer between k and $n-1$ is in the spectrum. If $X, Y \subseteq V\left(K_{n}\right)$ are disjoint then $[X, Y]$ denotes the set of edges in K_{n} with one end in X and one end in Y.
Theorem 4.3 (Gallai's Theorem [7]): Suppose $n \geq 3$. Let k be a positive integer. In any k-edge coloring of K_{n} where there is no rainbow $K_{3} \subseteq K_{n}$, there exists a partition of $V\left(K_{n}\right)$ into subsets $V_{1}, V_{2}, \ldots, V_{t}(t \geq 2)$ such that
(1) for each pair i, j of integers with $1 \leq i<j \leq t$, all edges in $\left[V_{i}, V_{j}\right]$ are colored the same color,
(2) the number of colors of the edges in the set $\bigcup_{1<i<j<t}\left[V_{i}, V_{j}\right]$ is at most 2, and
(3) no edge within the complete graph induced by V_{l} is colored with any of the $\left[V_{i}, V_{j}\right]$ colors.
Lemma 4.4. Suppose that G is a connected graph on $n>1$ vertices. Then $V(G)$ can be partitioned into sets, A and B, satisfying the following
(1) $||A|-|B|| \leq 1$, and
(2) $G[A]$ and $G[B]$ are connected,
if and only if G has a spanning tree, T, such that for some edge, $e \in E(T)$, such that, if T_{1} and T_{2} denote the two components of $T-e$, then $\left|\left|V\left(T_{1}\right)\right|-\left|V\left(T_{2}\right)\right|\right| \leq 1$.

Proof. Suppose A, B partition $V(G),\|A|-| B\| \leq 1$, and $G[A], G[B]$ are connected. Note that $n>1$ implies that $A \neq \emptyset \neq B$. Let T_{1}, T_{2} be spanning trees in $G[A], G[B]$ respectively, so $A=V\left(T_{1}\right)$ and $B=V\left(T_{2}\right)$. Because G is connected, there must exist an edge e with one end in A and the other in B. Then $T=T_{1} \cup T_{2} \cup e$ is a tree satisfying the requirements given in the Lemma.

Conversely, if T and e satisfy those requirements, let $A=V\left(T_{1}\right)$ and $B=V\left(T_{2}\right)$. Then $\|A|-| B\| \leq 1$, and $G[A], G[B]$ have spanning trees T_{1}, T_{2}, respectively, and are therefore connected.
Theorem 4.5 (Hoffman, Horn, Johnson, and Owens [10]): If G is a simple connected graph on n vertices, then there is a rainbow cycle forbidding edge coloring of G with $n-1$ colors appearing.
Lemma 4.6. Suppose $n>1$. An edge coloring of K_{n} is rainbow-cycle-forbidding if and only if it is a Gallai coloring.
Proof. The forward implication is clear, since K_{3} is a cycle. Now suppose that we have a coloring of the edges of K_{n} which is not rainbow-cycle-forbidding. We aim to show that there is a rainbow $K_{3}=C_{3}$ in K_{n}, with respect to this coloring.

Let m be the smallest integer such that there is a rainbow C_{m} in K_{n}. If $m=3$, we are done. Otherwise, consider any chord $u v$ of this C_{m}. This chord makes, with the two edge-disjoint paths on the C_{m} with ends u, v two cycles, each of order $<m$. The color of $u v$ can appear on at most one of those who $u v$ paths, because the C_{m} is rainbow; but then there exists a smaller rainbow cycle in K_{n}, contradicting the choice of m.
Theorem 4.7: For positive integers $n>1$ and k, if $2^{k-1}<n \leq 2^{k}$ then $[k, \ldots, n-1] \subseteq$ $\operatorname{MRS}\left(K_{n} ;\right.$ odd cycles, cycles $)$.
Proof. We will construct a balanced binary tree, T, representing a Gallai coloring, c. The vertices of T will be subsets of $V\left(K_{n}\right)=V$. The root will be the full vertex set V. For each vertex $X \subseteq V$, if $|X|=1$ then X is a leaf of T. Otherwise, if $|X|>1$, the two "children" of X at the next "level" of T will be sets Y, Z partitioning X, such that $\| Y|-|Z|| \leq 1$. We will refer to Y and Z as "siblings."

The edges of K_{n} will be colored as follows: for every pair Y, Z of siblings the edges $[Y, Z]$ will be colored with a single color that does not appear on any previously colored edge incident to a vertex in an ancestor of Y and Z.

We will enforce this restriction by the requirement that the sets of colors appearing on edges between siblings at different levels be disjoint. Thus, a color may appear on edges between different pairs of siblings, but it may not appear on edges between different pairs of siblings on different levels.

This requirement is not strictly necessary, but it does give us what we want. We shall see that every such coloring forbids rainbow cycles and monochromatic odd cycles, and the total number of colors appearing can be anything from $\left\lceil\log _{2} n\right\rceil$ to $n-1$.

To see this last claim, first note that the binary tree constructed will have n leafs, one for each vertex of K_{n}. Therefore, by Lemma 4.2, it will have $n-1$ non-leafs, and each of these will have two sibling children, the edges between the sets of vertices corresponding to which will bear one of our colors. Thus we can arrange to have $n-1$ colors appear in the coloring by making the colors assigned to the $n-1$ sibling pairs distinct.

Now we can reduce the number of colors, one at a time, while honoring the requirement that the sets of colors assigned to the sets of sibling pairs at different levels be disjoint, by merging pairs of colors on the same level. For instance, if, at some stage, blue and burgundy both appear on (edges between sibling pairs on) same level (and therefore on no other level), we can recolor all burgundy edges blue, thus reducing the total number of colors appearing by one while preserving the disjointness of color sets on different levels.

We can continue counting down in this way until on each level after the zeroth only one color is assigned to sibling pairs on that level. At that point the number of different colors deployed is one less than the number of levels. By Lemma 4.1 that number is $\left\lceil\log _{2}(2 n-1)\right\rceil-1=\left\lceil\log _{2} n\right\rceil$ (Recall that $n>1$) (Note that this number has not been proven to be min $\operatorname{MRS}\left(K_{n}\right.$; odd cycles, cycles); that proof will come shortly.)

Observe that for any color appearing in any of colorings obtained as above, the subgraph of K_{n} induced by the set of edges bearing that color is union of vertex-disjoint complete

Figure 14. Essentially different two 2-edge colorings of K_{4} that forbid monochromatic odd cycles.
bipartite graphs. Therefore, there are no monochromatic odd cycles in K_{n} with any of these colorings.

It remains to be seen that none of the colorings described allow a rainbow cycle in K_{n}. Let C be a cycle in K_{n}. Let X be a vertex of our bipartite graph therefore, a subset of $V\left(K_{n}\right)$ - such that $V(C) \subseteq X$ but, if Y, Z are the children of $X, V(C) \cap Y \neq \emptyset \neq V(C) \cap Z$.

Since C is a cycle, $E(C) \cap[Y, Z]$ must contain at least two edges. Therefore C is not rainbow.

Theorem 4.8: $\quad R\left(K_{3}, K_{3}\right)=6$ [8].
Lemma 4.9. $\min \operatorname{MRS}\left(K_{4} ;\{\right.$ odd cycles $\left.\},\{c y c l e s\}\right)=2$ and
$\min \operatorname{MRS}\left(K_{5} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)=3$
Proof. Clearly min $\operatorname{MRS}\left(K_{4} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)>1$, and Fig 14 gives two different edge colorings of K_{4} with two colors that admit no monochromtic K_{3} 's and, obviously, no rainbow cycles. ("Obviously" because there are only two colors.)

Now suppose that the edges of K_{5} are colored with red and blue so that no odd cycle in K_{5} is monochromatic. Suppose that K_{5} contains a monochromatic $K_{1,3}$ - suppose edges $v x, v y, v z$ are colored red. If any of $x y, x z, y z$ were red then there would be a red C_{3} in the edge colored K_{5}. Therefore all three of those edges are blue, so we have a monochromatic C_{3} anyway.

Figure 15. A Gallai partition with three parts and two colors.

Figure 16. A Gallai partition with two parts and one color.

It follows that every vertex of K_{5} is incident to two red and to two blue edges. The subgraph induced by the blue edges is therefore regular of degree two, so there must be a blue cycle in K_{5}. It must be a C_{4}, say on vertices v, w, x, y. Let z be the vertex of K_{5} not in this C_{4}. Of the four edges incident to z, two are blue, so there must be vertices of K_{5} incident to three blue edges, a possibility that has already been ruled out. Thus no such coloring exists.

Since $3=\left\lceil\log _{2} 5\right\rceil$ there is an edge coloring of K_{5} with 3 colors which forbids monochromatic odd cycles and rainbow cycles by Theorem 4.7.

Theorem 4.10: $\min \operatorname{MRS}\left(K_{n} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)=k$ where $k=\left\lceil\log _{2} n\right\rceil$.

Proof. The proof will be by induction on n. Assume that $n \geq 6$ and K_{n} is edge colored with k colors appearing so that rainbow cycles and monochromatic odd cycles are forbidden. Since there are no rainbow K_{3} 's in K_{n}, the coloring must be a Gallai coloring as described in Gallai's Theorem. The number of partitions K_{n} in that desciption, t, must be less than 6 as we know $R\left(K_{3}, K_{3}\right)=6$ from Theorem 4.8. By Lemma 4.9, $t \neq 5$. So $t \in\{2,3,4\}$.

We lifted the following argument from Magnant and Nowbandegani [11. Let $t=3$. Since we are forbidding monochromatic odd cycles, we must use two colors among the three partitions, V_{1}, V_{2}, and V_{3} as depicted in the reduced graph in Fig 15. This put us in the $t=2$ case where the edges from V_{1} to $V_{2} \cup V_{3}$ are colored with the color, 1 , that was used twice, see Fig 16.

We are left with cases where $t \in\{2,4\}$. Suppose $t=2$ with partitioned vertex sets V_{1} and V_{2}. Let $n_{1}=\left|V_{1}\right|, n_{2}=\left|V_{2}\right|$, and $n_{1} \leq n_{2}$. Let c_{1} and c_{2} be the number of colors in V_{1} and V_{2} respectively with $c_{1} \geq\left\lceil\log _{2} n_{1}\right\rceil$ and $c_{2} \geq\left\lceil\log _{2} n_{2}\right\rceil$. Now $n_{2} \geq \frac{n}{2}$, so we have

$$
k \geq c_{2}+1 \geq\left\lceil\log _{2} n_{2}\right\rceil+1 \geq\left\lceil\log _{2} \frac{n}{2}\right\rceil+1=\left\lceil\log _{2} n\right\rceil-\left\lceil\log _{2} 2\right\rceil+1=\left\lceil\log _{2} n\right\rceil
$$

Now suppose $t=4$ with partition vertex sets V_{1}, V_{2}, V_{3}, and V_{4}. Let $n_{1}=\left|V_{1}\right|, n_{2}=\left|V_{2}\right|$, $n_{3}=\left|V_{3}\right|, n_{4}=\left|V_{4}\right|$, and $n_{1} \leq n_{2} \leq n_{2} \leq n_{4}$. Let c_{1}, c_{2}, c_{3}, and c_{4} be the number of colors in V_{1}, V_{2}, V_{3}, and V_{4} respectively with $c_{1} \geq\left\lceil\log _{2} n_{1}\right\rceil, c_{2} \geq\left\lceil\log _{2} n_{2}\right\rceil, c_{3} \geq\left\lceil\log _{2} n_{3}\right\rceil$, and $c_{4} \geq\left\lceil\log _{2} n_{4}\right\rceil$. Now $n_{4} \geq \frac{n}{4}$,

$$
k \geq c_{4}+2 \geq\left\lceil\log _{2} n_{4}\right\rceil+2 \geq\left\lceil\log _{2} \frac{n}{4}\right\rceil+2=\left\lceil\log _{2} n\right\rceil-\left\lceil\log _{2} 4\right\rceil+2=\left\lceil\log _{2} n\right\rceil
$$

Corollary 1.6: $\operatorname{MRS}\left(K_{n} ;\{\right.$ odd cycles $\},\{$ cycles $\left.\}\right)=\left\{\left\lceil\log _{2} n\right\rceil, \ldots, n-1\right\}$.

Proof. This follows from Theorems 4.7 and 4.10 .

References

[1] Axenovich, M., and Choi, J. On colorings avoiding a rainbow cycle and a fixed monochromatic subgraph. Electron. J. Combin. 17, 1 (2010), Research Paper 31, 15.
[2] Axenovich, M., and Choi, J. A note on the monotonicity of mixed Ramsey numbers. Discrete Math. 311, 17 (2011), 2020-2023.
[3] Bollobás, B. Extremal graph theory, vol. 11 of London Mathematical Society Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978.
[4] Chung, F. R. K., and Graham, R. L. Edge-colored complete graphs with precisely colored subgraphs. Combinatorica 3, 3-4 (1983), 315-324.
[5] Demars, D., and Johnson, P. A mixed ramsey problem revisited. Int. J. Math. Comput. Sci. 16, 2 (2021), 723-727.
[6] Erdõs, P., Rubin, A. L., and Taylor, H. Choosability in graphs. In Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979) (1980), Congress. Numer., XXVI, Utilitas Math., Winnipeg, Man., pp. 125-157.
[7] Gary Chartrand and Ping Zhang. Chromatic Graph Theory, 2 ed. Chapman and Hall/CRC, Novmeber 2019.
[8] Graham, R. L., Rothschild, B. L., and Spencer, J. H. Ramsey theory, second ed. WileyInterscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., New York, 1990. A Wiley-Interscience Publication.
[9] Gyárfás, A., Sárközy, G. N., Sebơ, A., and Selkow, S. Ramsey-type results for Gallai colorings. J. Graph Theory 64, 3 (2010), 233-243.
[10] Hoffman, D., Horn, P., Johnson, P., and Owens, A. On rainbow-cycle-forbidding edge colorings of finite graphs. Graphs Combin. 35, 6 (2019), 1585-1596.
[11] Magnant, C., and Salehi Nowbandegani, P. Topics in Gallai-Ramsey theory. SpringerBriefs in Mathematics. Springer, Cham, [2020] ©2020.
[12] Meng, J., Puleo, G. J., and Zhu, X. On (4, 2)-choosable graphs. J. Graph Theory 85, 2 (2017), 412-428.
[13] Reiman, I. Über ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci. Hungar. 9 (1958), 269-273.
[14] Voloshin, V. I. Coloring mixed hypergraphs: theory, algorithms and applications, vol. 17 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 2002.

