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Abstract

This dissertation focuses on two problems in design theory. Techniques from graph theory

are frequently utilized and therefore the proofs may also be of interest to graph theorists.

The first problem focuses on completing partial latin squares with prescribed diagonals.

Necessary and sufficient numerical conditions are known for the embedding of an incomplete

latin square L of order n into a latin square T of order t ≥ 2n + 1 in which each symbol is

prescribed to occur in a given number of cells on the diagonal of T outside of L. This in-

cludes the classic case where T is required to be idempotent. If t < 2n then no such numerical

sufficient conditions exist since it is known that the arrangement of symbols within the given

incomplete latin square can determine the embeddability. All known examples where the ar-

rangement is a factor share the common feature that one symbol is prescribed to appear exactly

once in the diagonal of T outside of L. We show if the prescribed diagonal contains a symbol

required to appear exactly once on the diagonal of T outside of L and t ≤ 2n, then there al-

ways exists a incomplete latin square satisfying the known numerical necessary conditions that

is non-embeddable. Also, we solve a conjecture made over 30 years ago stating it is only this

feature that prevents numerical conditions sufficing for all t ≥ n. Thus providing necessary

and sufficient numerical conditions for the embedding of an incomplete latin square L of order

n into a latin square T of order t for all t ≥ n in which the diagonal of T outside of L is

prescribed in the case where no symbol is required to appear exactly once in the diagonal of T

outside of L.

The second problem focuses on (not necessarily proper) s-edge-colorings of Kv in which,

for all u ∈ V (Kv), the edges incident with u are colored using exactly p colors. In the spirit

of proper edge-colorings, such (s, p)-edge-colorings are required to be equitable: the edges

at each vertex are shared evenly among p colors. First, results related to the existence of

equitable (s, p)-edge-colorings of Kv and future directions related to equitable (s, p)-edge-

colorings of λKv are discussed. Then, the structure of equitable (s, p)-edge-colorings of Kv
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is addressed, particularly, the number of vertices at which each color appears. Results are

obtained determining how large and how small these numbers can be. Results concerning

equitable (s, p)-C4-colorings of Kv − F follow as corollaries.
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Chapter 1

Introduction

Design theory is a branch of combinatorics concerned with mathematical structures, called

designs, with properties of symmetry and balance. The name design theory comes from its

applications to the design of experiments. However, design theory has applications in many

other areas of mathematics including graph theory, recreational mathematics, geometry, coding

theory, and algebra. Given a particular type of design, we typically ask two styles of questions:

(1) Existence: When do such designs exist? (2) Enumeration: How many of such designs

exist? We will focus on the first type of question for two designs: latin squares (See Chapter

2) and graph decompositions (See Chapter 3). Although many of the questions asked in both

chapters are design theoretic, techniques from graph theory are used in their proofs and may be

of interest to graph theorists.

Because the topics are sufficiently disjoint, introductions and definitions are included in

each chapter and each of the chapters is self-contained. Some of the results from the two

chapters can be found in published/accepted peer-reviewed articles [3, 11].
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Chapter 2

Completing Partial Latin Squares with Prescribed Diagonals

2.1 History and Definitions

Historically, a (partial) latin square L of order n is an n× n array in which each cell contains

(at most) one symbol in S(n) = {1, 2, . . . , n} and each of the symbols in S(n) occurs (at most)

once in each row and (at most) once in each column. Let L(i, j) denote the symbol in cell (i, j)

of L, and let NL(i) (or simply N(i) if L is clear) be the number of cells that contain symbol i

in L. A (partial) incomplete latin square of order n (also referred to as a (partial) latin array

of order n) on the symbols in S(t) is an n × n array in which each cell contains (at most) one

symbol in S(t) and each of the symbols in S(t) occurs at most once in each row and at most

once in each column. A partial or incomplete latin square L of order n is said to be embedded in

the latin square T of order t if for each cell (i, j) of L that contains a symbol, L(i, j) = T (i, j).

The cells (i, i) for n + 1 ≤ i ≤ t are said to be the diagonal of T outside L. A latin square

of order n is said to be idempotent if L(i, i) = i for 1 ≤ i ≤ n, and is said to be symmetric if

L(i, j) = L(j, i) for 1 ≤ i ≤ j ≤ n.

There is a rich history of papers that consider the embedding of partial and incomplete

latin squares; the following is a sample of such results. The classic result of Ryser [29] shows

that an incomplete latin square L of order n on the symbols in S(t) can be embedded in a latin

square of order t if and only if NL(i) ≥ 2n − t for 1 ≤ i ≤ t. This condition is known as the

Ryser condition. Evans [14] obtained a related result for partial latin squares, proving that any

partial latin square of order n can be embedded in a latin square of order t for any t ≥ 2n. This

result is best possible in that there are partial latin squares of order n that cannot be embedded
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in a latin square of order t if t < 2n. Cruse [13] then found necessary and sufficient conditions

for a partial latin square of order n to be embedded in a symmetric latin square of order t,

and also to be embedded in an idempotent symmetric latin square of order t, where in both

cases t > n is arbitrary. It turns out that embedding partial and incomplete latin squares in

an idempotent latin square is a very difficult problem. The Ryser conditions can naturally be

extended to provide a necessary condition for an incomplete idempotent latin square L of order

n with symbol set S(t) to be embedded in an idempotent latin square of order t with symbol

set S(t), namely that NL(i) ≥ 2n− t+ f(i) for 1 ≤ i ≤ t, where f(i) = 0 for 1 ≤ i ≤ n and

f(i) = 1 for n + 1 ≤ i ≤ t. It was shown by Andersen et al. [1, 6] that for all t < 2n these

Ryser-type conditions are not sufficient: there exists an incomplete idempotent latin square

of order n satisfying the Ryser-type conditions which cannot be embedded in an idempotent

latin square of order t. In some cases, just swapping the placement of symbols in two cells

results in one which does have an idempotent embedding. So, for the first time in these sorts

of embedding problems, the arrangement of the symbols in L can determine its embeddability,

thus making the idempotent setting quite special. The case where t ≥ 2n was finally settled

after various results reduced the bound on t. Treash [30] showed that a finite embedding of a

partial idempotent latin square was always possible, Lindner [23] reduced the bound to around

6n, conjecturing that 2n + 1 was the right lower bound (the Ryser-type conditions come into

play when t ≤ 2n), Andersen [2] further reduced it to t ≥ 4n and t ̸= 4n + 1, and finally

Andersen et al. [5] settled the Lindner conjecture which states that any partial idempotent latin

square can be embedded in an idempotent latin square of order t, for any t ≥ 2n + 1. The

idempotent embedding for incomplete idempotent latin squares was then settled for all t ≥ 2n

by Rodger [27].

A natural generalization to embedding an incomplete latin squareL of order nwith symbol

set S(t) into an idempotent latin square T of order t is to more generally prescribe what is

to occur on the diagonal: suppose it is required that for 1 ≤ i ≤ t symbol i should occur

f(i) times in the diagonal cells of T outside L. Then the Ryser-type conditions, in this case

NL(i) ≥ 2n − t + f(i), are again necessary, and if t ≥ 2n + 1 then Rodger [28] proved they,

along with two other necessary conditions, are also sufficient. It is the case that if f(α) = 1
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for some symbol, α, then Andersen et al. [6] again showed that when t < 2n the arrangement

of symbols in L can determine if L can be embedded in T with the given prescribed diagonal

of T outside L. In Section 2.2, we strengthen that result showing that if t < 2n, then for every

function f such that f(α) = 1 for some symbol, α, there exists an incomplete latin square

satisfying the Ryser-type conditions that is non-embeddable. Rodger conjectured more than 30

years ago that if f(i) ̸= 1 for 1 ≤ i ≤ t then, even when t ≤ 2n, the Ryser-type conditions are

sufficient to guarantee an embedding exists. It is this conjecture that we prove in Section 2.3.

Finally, in Section 2.4, we discuss future research questions.

2.2 Non-embeddable Incomplete Latin Squares

Throughout Section 2.2, we will assume t ≥ n > 0, L is an incomplete latin square of order

n on the symbols in S(t), and f : S(t) 7→ N such that
∑t

i=1 f(i) = t − n unless otherwise

specified. We show that there always exists an incomplete latin square L of order n that satisfies

the Ryser-type conditions and cannot be embedded into a latin square of order t if at least one

symbol is prescribed to appear once on the diagonal outside of L and t ≤ 2n.

The necessity of the Ryser condition, NL(i) ≥ 2n− t+ f(i), is well-known. We define a

symbol i to be marginal if NL(i) = 2n− t + f(i). Define a symbol i to be nearly marginal if

NL(i) = 2n− t+ f(i) + 1.

Observation 2.1. To extend an incomplete latin square L of order n on the symbols in S(t)

with each symbol satisfying Ryser’s condition to an incomplete latin square L′ of order n + 1

on the symbols in S(t) with each symbol satisfying Ryser’s condition, each marginal symbol,

i, must appear in both the added row and column (appearing in cell (n + 1, n + 1) meets this

condition if f(i) ≥ 1). Similarly, a nearly marginal symbol, i, must appear at least once in the

added row and column (appearing in cell (n+ 1, n+ 1) meets this condition if f(i) ≥ 1).

Proof. Suppose symbol k is in cell (n+1, n+1) ofL′. Let f ′(i) = f(i) for i ̸= k and 1 ≤ i ≤ t.

Let f ′(k) = f(k)−1. So forL′ to meet Ryser’s Condition, we needNL′(i) ≥ 2(n+1)−t+f ′(i)

for 1 ≤ i ≤ t. The symbol k satisfies Ryser’s condition because NL′(k) = NL(k) + 1 ≥

2n− t+ f(k)+1 = 2n− t+(f ′(k)+1)+1 = 2(n+1)− t+ f ′(k). For 1 ≤ i ≤ t and i ̸= k,
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we need NL′(i) ≥ 2(n+1)− t+ f ′(i) = 2n− t+ f(i)+2. So, marginal symbols must appear

both in the added row and column and nearly marginal symbols must appear at least once in

the added row or column.

Given an incomplete latin square L of order n on the symbols in S(t), define the graphs

Gρ(L) andGc(L) as follows. Form a bipartite graphGρ(L) with bipartitionR = {ρ1, ρ2, . . . , ρn}

and S = {σ1, σ2, . . . , σt} of the vertex set as follows. For 1 ≤ j ≤ n and 1 ≤ i ≤ t, join ρj to

σi if and only if symbol i is missing from row j of L. Similarly, form a bipartite graph Gc(L)

with bipartition C = {c1, c2, . . . , cn} and S ′ = {σ′
1, σ

′
2, . . . , σ

′
t} of the vertex set as follows.

For 1 ≤ j ≤ n and 1 ≤ i ≤ t, join cj to σ′
i if and only if symbol i is missing from column j of

L. Andersen [1] defined the following family of incomplete latin squares and proved Theorem

2.3, showing that each member of this family is non-embeddable.

Definition 2.2. Let t ≥ n > 0. Let L be an incomplete latin square of order n on the symbols

in S(t). Let f : S(t) 7→ N such that
∑t

i=1 f(i) = t − n. Define F(n, t, f) to be the family of

incomplete latin squares such that L ∈ F(n, t, f) if and only if

i) NL(i) ≥ 2n− t+ f(i) for 1 ≤ i ≤ t (Ryser’s condition),

ii) Gρ(L) has a connected component, call it H , in which exactly one of the symbol ver-

tices corresponds to a nearly marginal symbol, the remaining vertices all correspond to

marginal symbols, and

iii) Gc(L) has a connected component, call it H ′, and σ′
i is in H ′ and has degree less than

t − n if and only if σi is in H and has degree less than t − n. (So if σ′
i is in H ′ and σi is

not in H , then degGc(L)(σ
′
i) = t− n.)

Theorem 2.3. [1] Let t ≥ n > 0. Let L be an incomplete latin square of order n on the

symbols in S(t). Let f : S(t) 7→ N such that
∑t

i=1 f(i) = t − n. If L ∈ F(n, t, f), then L

cannot be embedded in a latin square T of order t on the same symbols in which each symbol

i appears f(i) times of the diagonal of T outside of L.

We now show that if one symbol is prescribed to appear once on the diagonal then there

aways exists one of these non-embeddable squares.
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Theorem 2.4. Let 4 ≤ n + 2 ≤ t ≤ 2n. For all f : S(t) 7→ N such that
∑t

i=1 f(i) = t − n

and f(α) = 1 for some 1 ≤ α ≤ t, there exists a latin square L ∈ F(n, t, f).

Proof. For convenience, suppose f(i) = 0 for 1 ≤ i ≤ n,
∑t−1

i=n+1 f(i) = t − n − 1, and

f(t) = 1. We first construct a latin square L, then prove L ∈ F(n, t, f).

For 0 ≤ j ≤ n− 1, define DL(j) to be cells (a, (a+ j − 1 (mod n)) + 1) for 1 ≤ a ≤ n

of L. Thus, DL(0) is the diagonal of L. We call DL(j) a generalized diagonal, and each

generalized diagonal contains n cells with disjoint rows and columns. Define L as follows:

• Fill all cells in DL(0) with symbol t.

• Fill all cells in DL(j) with symbol j for 1 ≤ j ≤ t− n− 2

• Fill the remaining DL(j) for t− n− 1 ≤ j ≤ n− 1 with 2n− t+ f(k) + 1 occurrences

of a symbol k for some k such that t− n− 1 ≤ k ≤ t− 1 and 2n− t+ f(i) occurrences

of the symbol i for all t − n− 1 ≤ i ≤ t − 1 and i ̸= k. There are exactly enough cells

to do this because

∑t−1
i=t−n−1(2n− t+ f(i)) = (n+ 1)(2n− t) +

∑t−1
i=t−n−1 f(i)

= (n+ 1)(2n− t) + (t− n− 1)

= n(2n− t+ 1)− 1.

Also, as the following shows, it is possible to place these symbols in a way that satisfies

the latin condition. Order the cells in these DL(j), t − n − 1 ≤ j ≤ n − 1, by row

number within each generalized diagonal, and with cells in DL(j) occuring before cells

in DL(j + 1) for t− n− 1 ≤ j ≤ n− 2. Fill the cells one by one in this order, placing

all occurences of one symbol before moving on to the next and ordering the symbols in

non-increasing order according to how many cells they are to be placed in.

See Example 2.5. Thus, every symbol satisfies Ryser’s condition (and therefore Definition 2.2

(i)). Symbol k is nearly marginal and all other symbols are marginal or appear n times in L.

Let H be the component of Gρ(L) containing σk. For 1 ≤ i ≤ t and i ̸= k, vertex σi ∈ S

has degree 0 or corresponds to a marginal symbol. Thus, the symbol vertices in H correspond
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to one nearly marginal symbol and the remaining all correspond to marginal symbols. So, H

satisfies Definition 2.2 (ii).

Let H ′ be the component of Gc(L) containing σ′
k. If degGρ(L)(σk) = degGc(L)(σ

′
k) = 0,

then H ′ satisfies Definition 2.2 (iii). So, assume degGρ(L)(σk) = degGc(L)(σ
′
k) > 0.

Let HR ⊆ R and HS ⊆ S be the vertices in the connected component H from R and S

respectively. Because degGρ(L)(σk) > 0, there is at least one vertex in HR. All vertices in HR

have degree t− n. The vertices in HS correspond to 1 nearly marginal symbol and the rest are

marginal symbols. So, counting edges in H ,

|HR|(t− n) = Σρj∈HR
deg(ρj)

= Σσi∈HS
deg(σi)

= Σσi∈HS
(n− (2n− t+ f(i))− 1

= Σσi∈HS
(t− n− f(i))− 1

= |HS|(t− n)− 1− Σσi∈HS
f(i).

By definition of f , 0 ≤ Σσi∈HS
f(i) ≤ t− n. Since t− n must divide both sides, it follows that

Σσi∈HS
f(i) = t − n − 1. Because NL(t) = n, degGρ(L)(σt) = 0. So, for n + 1 ≤ i ≤ t − 1

such that f(i) > 0, σi ∈ HS . For symbols i such that f(i) = 0 and i ̸= k, degGρ(L)(σi) = n−

NL(i) = n−n = 0 or degGρ(L)(σi) = n−NL(i) = n−(2n−t+f(i)) = n−(2n−t+0) = t−n.

Let H ′
C ⊆ C and H ′

S′ ⊆ S ′ be the vertices from C and S ′ in H ′ respectively. For symbols

i such that n + 1 ≤ i ≤ t − 1 and f(i) > 0, it can be proved in a similar manner that

σ′
i ∈ HS′ . Because NL(t) = n, degGc(L)(σ

′
t) = 0. For symbols i such that f(i) = 0 and i ̸= k,

degGc(L)(σ
′
i) = n−NL(i) = n−n = 0 or degGc(L)(σ

′
i) = n−NL(i) = n− (2n− t+ f(i)) =

n− (2n− t+ 0) = t− n. So, H ′ satisfies Definition 2.2 (iii).

The following example shows a nonembeddable incomplete latin square constructed using

the method described in the previous proof.

Example 2.5. Suppose f(9) = 1, f(10) = 2, f(11) = 1, and f(i) = 0 for 1 ≤ i ≤ 8. Then,

Figure 2.2 shows an example of an L ∈ F(7, 11, f) constructed as described in Theorem 2.4.

Symbol 6 is serving as the symbol k described in the proof. Figure 2.2 shows the associated

graphs Gρ(L) and Gc(L).
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11 1 2 10 6 3 5

7 11 1 2 10 6 3

4 7 11 1 2 10 9

9 4 7 11 1 2 10

10 9 4 8 11 1 2

2 6 9 5 8 11 1

1 2 6 3 5 8 11

Figure 2.1: L ∈ F(7, 11, f)

Gρ(L)

H

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6
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σ1

σ2

σ3
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σ6

σ7

σ8

σ9

σ10

σ11

Gc(L)
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c2

c3

c4
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c6
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1

σ′
2

σ′
3

σ′
4

σ′
5

σ′
6

σ′
7

σ′
8

σ′
9

σ′
10

σ′
11

Figure 2.2: Gρ(L) and Gc(L)
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2.3 Embeddable Incomplete Latin Squares

In this section, we prove a 30-year old conjecture by showing that any incomplete latin square

satisfying the Ryser-type conditions can be embedded in a latin square with prescribed diagonal

if no symbol is prescribed to appear exactly once on the diagonal. The result is joint work with

Lars Døvling Andersen, Anthony J.W. Hilton, and Chris Rodger and is published [3].

2.3.1 Previous Results

Before proving the main result, Theorem 2.9, we note the following three results.

Andersen et al. [4] proved Theorem 2.6, which completely settles the embedding problem

provided not all of the diagonal is prescribed.

Theorem 2.6 ([4]). Let t ≥ n > 0. Let L be an incomplete latin square of order n on the

symbols in S(t). Let f : {1, 2, . . . , t} 7→ N satisfy
∑n

i=1 f(i) ≤ t − n − 1. Then L can be

embedded in a latin square T of order t on the same symbols in which each symbol i appears at

least f(i) times on diagonal of T outside L if and only if NL(i) ≥ 2n− t+ f(i) for 1 ≤ i ≤ t.

The following classic theorem, proven by Ryser [29], will be used in Step 1 of the proof

of Theorem 2.9.

Theorem 2.7 ([29]). An incomplete latin square L of order n on the symbols in S(t) can be

embedded in a latin square of order t on the same symbols if and only if NL(i) ≥ 2n − t for

1 ≤ i ≤ t.

A family L of sets is said to be a laminar set if X, Y ∈ L implies that X ⊆ Y , Y ⊆ X ,

or X ∩ Y = ∅. Nash-Williams [26] proved the following result which will play a critical role

in Step 3 of the proof of Theorem 2.9.

Theorem 2.8 ([26]). If L1 and L2 are laminar sets of subsets of a finite set M , then for each

integer h > 0 there exists J ⊆M such that

⌊
|Z|
h

⌋
≤ |J ∩ Z| ≤

⌈
|Z|
h

⌉

for every Z ∈ L1 ∪ L2.
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2.3.2 Main Result

We now proceed with the main proof. In the following proof, f(i) will be modified in various

ways. With this in mind, the incomplete latin square L of order n is said to be (f, t)-satisfied

if NL(i) ≥ 2n − t + f(i) for 1 ≤ i ≤ t. We say a symbol i satisfies Ryser’s condition if

NL(i) ≥ 2n− t+ f(i).

Theorem 2.9. Let t ≥ n > 0. Let L be an incomplete latin square of order n on the symbols

in S(t). Let f : S(t) 7→ N such that
∑n

i=1 f(i) = t − n and f(i) ̸= 1 for 1 ≤ i ≤ t. Then

L can be embedded in a latin square T of order t on the same symbols in which each symbol

i appears f(i) times on the diagonal of T outside L if and only if NL(i) ≥ 2n − t + f(i) for

1 ≤ i ≤ t.

Proof. The necessity is well known, so assume that NL(i) ≥ 2n− t+ f(i) for 1 ≤ i ≤ t.

Suppose there exists a symbol α for which f(α) ≥ 3. Let f ′(α) = f(α) − 1 and f ′(i) =

f(i) for 1 ≤ i ≤ t, i ̸= α. Thus
∑t

i=1 f
′(i) = t − n − 1. Then by Theorem 2.6, L can be

embedded in a latin square T ′ of order t in which for 1 ≤ i ≤ t, symbol i occurs at least f ′(i)

times on the diagonal of T ′ outside L. By a permutation of rows and columns if needed, assume

T ′(n+1, n+1) = α. Define the incomplete latin square L′ of order n+1 by L′(a, b) = T ′(a, b)

for 1 ≤ a, b ≤ n+ 1. We now show that L′ is (f ′, t)-satisfied. Because T ′(n+ 1, n+ 1) = α,

NL′(α) = NL(α) + 1

≥ 2n− t+ f(α) + 1

= 2(n+ 1)− t+ f ′(α).

Also, since L′ is embedded in T ′, by the necessary condition in Theorem 2.6, NL′(i) ≥ 2(n +

1) − t + f ′(i) for 1 ≤ i ≤ t, i ̸= α. Thus L′ is an incomplete latin square of order n + 1

satisfying the conditions of the theorem. Therefore, by repeating this process, we can assume

that f(i) ∈ {0, 2} for 1 ≤ i ≤ t; so t− n is even.

The remainder of the proof is completed in three steps. In each step, two rows and columns

are added so that the resulting incomplete latin square satisfies the necessary condition after

appropriately modifying f to allow for the symbol placed in both the added diagonal cells.
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L Ai

Bi Di

Figure 2.3: Li

Step 1. Suppose t−n = 2. Then f(α) = 2 for exactly one symbol α, and f(i) = 0 for all

symbols i ̸= α. By assumption, NL(α) ≥ 2n− t+ f(α) = 2n− (n+ 2) + 2 = n. Because L

is of order n, NL(α) = n. Use Theorem 2.7 to embed L in a latin square T of order t. Because

NL(α) = n, symbol α must appear twice in the 2 × 2 square formed with rows and columns

t− 1 and t of T . If α is on the diagonal, we are done. If not, then permute columns t− 1 and t

to obtain the required embedding. Thus we can assume t− n ≥ 4.

Step 2. Suppose t − n ≥ 8. Let s = (t − n)/2. By renaming symbols, we can assume

that f(i) = 2 for 1 ≤ i ≤ s and f(i) = 0 for s + 1 ≤ i ≤ t. We wish to extend L by 2 rows

and 2 columns embedding L in a latin square of order n+ 2 that satisfies the conditions of the

theorem. Define f ′(i) = 2 for 1 ≤ i ≤ s − 1, f ′(s) = 1, and f ′(i) = 0 for s + 1 ≤ i ≤ t.

So,
∑t

i=1 f
′(i) = t − n − 1. Thus by Theorem 2.6 and a permutation of rows and columns if

needed, we can embed L in a latin square T ′ of order t with T ′(n+ 2i− 1, n+ 2i− 1) = i =

T ′(n + 2i, n + 2i) for 1 ≤ i ≤ s − 1 and T ′(n + 2s − 1, n + 2s − 1) = s. (So at this stage

we do not know what symbol appears in cell (t, t).) Define the sets of cells Ai, Bi and Di for

1 ≤ i ≤ s− 1 as follows:

Ai := {(a, b) : 1 ≤ a ≤ n, n+ 2i− 1 ≤ b ≤ n+ 2i},

Bi := {(a, b) : n+ 2i− 1 ≤ a ≤ n+ 2i, 1 ≤ b ≤ n}, and

Di := {(a, b) : n+ 2i− 1 ≤ a, b ≤ n+ 2i}.

Let Ai, Bi, and Di be the n × 2, 2 × n, and 2 × 2 latin subrectangles of T ′ formed by the

cells in Ai, Bi, and Di respectively. Similarly, let Ai ∪ Bi ∪ Di be the array formed by the
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cells in Ai, Bi, and Di. For 1 ≤ i ≤ s − 1, let Li be the incomplete latin square of order

n + 2 depicted in Figure 2.3. We now have s − 1 candidates for extending L by two rows

and two columns, namely L1, . . . , Ls−1. We now show that at least one of them must satisfy

the necessary conditions of the theorem. (It is only symbol s that is potentially problematic

because f ′(s) ̸= f(s). However, we show for at least one value of i, 1 ≤ i ≤ s− 1, s appears

the necessary number of times in Ai ∪ Bi ∪ Di, so Li meets the necessary conditions of the

theorem.)

Suppose 1 ≤ i ≤ s − 1. Permute the rows and columns of T ′ to produce a latin square

Ti such that Li is embedded in Ti and for 1 ≤ j ≤ t, j ̸= i, symbol j appears in at least

f ′(j) diagonal cells of Ti outside Li. Define fi(j) = f(j) for 1 ≤ j ≤ t, j ̸= i, and define

fi(i) = f(i)− 2 = 0. Because i appears 2 more times on the diagonal of Li than it did in L,

NLi
(i) = NL(i) + 2

≥ 2n− t+ f(i) + 2

= 2n− t+ (fi(i) + 2) + 2

= 2(n+ 2)− t+ fi(i).

Since Li is embedded in Ti, by the necessity of Theorem 2.6, for 1 ≤ j ≤ t, j /∈ {i, s},

NLi
(j) ≥ 2(n+ 2)− t+ f ′(j)

= 2(n+ 2)− t+ f(j)

= 2(n+ 2)− t+ fi(j).

Also, by the necessity of Theorem 2.6,

NLi
(s) ≥ 2(n+ 2)− t+ f ′(s)

= 2(n+ 2)− t+ (f(s)− 1)

= 2(n+ 2)− t+ fi(s)− 1.
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We claim that for some i, 1 ≤ i ≤ s − 1, s satisfies Ryser’s condition in Li, so in actuality

NLi
(s) ≥ 2(n + 2) − t + fi(s). Assume otherwise; so for all i, 1 ≤ i ≤ s − 1, assume that

NLi
(s) = 2(n+ 2)− t+ fi(s)− 1 = 2(n+ 2)− t+ 1. But then,

s−1∑
i=1

NLi
(s) = (s− 1)(2(n+ 2)− t+ 1)

= (s− 1)(2n− t+ 5).

Symbol s appears n times in the first n rows of Ti (by the definition of a latin square), but does

not appear in the (t− 1)th column of the first n rows because symbol s appears on the diagonal

in that column. Symbol s could possibly appear in the tth column of the first n rows. Thus

NL(s) +
∑s−1

i=1 NAi
(s) ≥ n− 1. Similarly, NL(s) +

∑s−1
i=1 NBi

(s) ≥ n− 1. Therefore,

s−1∑
i=1

NLi
(s) =

s−1∑
i=1

(NL(s) +NAi
(s) +NBi

(s) +NDi
(s))

≥ (s− 3)NL(s) + (n− 1) + (n− 1) +
s−1∑
i=1

NDi
(s)

≥ (s− 3)NL(s) + (n− 1) + (n− 1),

implying

(s− 3)NL(s) ≤ (s− 1)(2n− t+ 5)− 2n+ 2

= (s− 3)(2n− t+ 5) + 4n− 2t+ 10− 2n+ 2

= (s− 3)(2n− t+ 5)− 4s+ 12

= (s− 3)(2n− t+ 1).

So, because s ≥ 4,NL(s) ≤ (2n−t+1), contradicting our original assumption. Therefore,

for some value of i, 1 ≤ i ≤ s− 1, say i = α, NLα(s) ≥ 2(n+2)− t+ fα(s). Also, as already

stated, NLα(j) ≥ 2(n + 2) − t + fα(j) for 1 ≤ j ≤ t, j ̸= s. Thus Lα is an incomplete latin

square of order n + 2 that is (fα, t)-satisfied and thus satisfies the conditions of the theorem.

By repeating this process, we may now assume t− n ≤ 6.
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Step 3. Suppose t − n ∈ {4, 6}. Similar to what was defined in Section 2.2, form a

bipartite multigraph G∗
c with bipartition C = {c1, c2, . . . , cn, c∗} and S = {σ1, σ2, . . . , σt} of

the vertex set as follows. For 1 ≤ i ≤ n and 1 ≤ j ≤ t, join ci to σj if and only if symbol

j is missing from column i of L and join c∗ to σj with f(j) edges. Similarly, form a bipartite

multigraphG∗
ρ with bipartitionR = {ρ1, ρ2, . . . , ρn, ρ∗} and S ′ = {σ′

1, σ
′
2, . . . , σ

′
t} of the vertex

set as follows. For 1 ≤ i ≤ n and 1 ≤ j ≤ t, join ρi to σ′
j if and only if symbol j is missing

from row i of L, and join ρ∗ to σ′
j with f(j) edges. Because each column and row of L contains

n symbols, for 1 ≤ i ≤ n,

degG∗
c
(ci) = degG∗

ρ
(ρi) = t− n. (2.1)

Because
∑n

i=1 f(i) = t− n,

degG∗
c
(c∗) = degG∗

ρ
(ρ∗) = t− n. (2.2)

For 1 ≤ j ≤ t, symbol j is missing from n−NL(j) rows of L and n−NL(j) columns of L, so

degG∗
c
(σj) = degG∗

ρ
(σ′

j) = n−NL(j) + f(j). (2.3)

For 1 ≤ j ≤ t, let z(j) = NL(j) − (2n − t + f(j)). So 0 ≤ z(j) ≤ n − (2n − t + f(j)) =

t− n− f(j). Thus, by (2.3),

degG∗
c
(σj) = degGρ∗

(σ′
j) = n−NL(j) + f(j)

= n− (2n− t+ f(j) + z(j)) + f(j)

= t− n− z(j)

≤ t− n.

(2.4)

So, ∆(Gc∗) = ∆(Gρ∗) = t − n and z(j) measures how far σj and σ′
j are from this maximum

degree.
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Define a laminar set L1 of subsets of E(G∗
c) ∪ E(G∗

ρ) as follows. For 1 ≤ i ≤ n, let

Ci ∈ L1 be the set of edges incident to ci. Let C∗ ∈ L1 be the set of edges incident to c∗. For

1 ≤ j ≤ t such that f(j) > 0, let C∗
j ∈ L1 be the subset of C∗ given by the two element set of

the pair of edges joining c∗ and σj . Similarly, for 1 ≤ i ≤ n, let Ri ∈ L1 be the set of edges

incident to ρi. LetR∗ ∈ L1 be the set of edges incident to ρ∗. For 1 ≤ j ≤ t such that f(j) > 0,

let R∗
j ∈ L1 be the subset of R∗ given by the two element set of the pair of edges joining ρ∗ and

σ′
j . Define a second laminar set L2 of subsets of E(G∗

c) ∪ E(G∗
ρ) as follows. For 1 ≤ j ≤ t,

let Sj ∈ L2 be the set of edges incident to σj , S ′
j ∈ L2 be the set of edges incident to σ′

j , and

Σj ∈ L2 be the set of all edges incident to either σj or σ′
j . By Theorem 2.8, there exists a set

J ⊆ (E(G∗
c) ∪ E(G∗

ρ)) for which

⌊
|Z|

(t− n)/2

⌋
≤ |J ∩ Z| ≤

⌈
|Z|

(t− n)/2

⌉

for every Z ∈ (L1 ∪ L2).

Let GJ be the graph induced by the edges of G∗
c and G∗

ρ in J . Later, a modified version

of GJ will be colored with 2 colors and be used to fill rows and columns n + 1 and n + 2 to

embed L in an incomplete latin square of order n + 2. But first we explore GJ to see what

modifications are needed.

By (2.1), for 1 ≤ i ≤ n, degG∗
c
(ci) = degG∗

ρ
(ρi) = t − n; so, because Ci, Ri ∈ L1,

degGJ
(ci) = degGJ

(ρi) = 2. By (2.2), degG∗
c
(c∗) = degG∗

ρ
(ρ∗) = t− n; so, because C∗, R∗ ∈

L1, degGJ
(c∗) = degGJ

(ρ∗) = 2. By (2.4), degG∗
c
(σj) = degG∗

ρ
(σ′

j) = t−n−z(j); so, because

Sj, S
′
j ∈ L2, degGJ

(σj) ≤ ⌈2 − 2z(j)
t−n

⌉ ≤ 2 and degGJ
(σ′

j) ≤ ⌈2 − 2z(j)
t−n

⌉ ≤ 2. Also, because

Σj ∈ L2, degGJ
(σj) + degGJ

(σ′
j) ≥ ⌊4− 4z(j)

t−n
⌋ ≥ 4− z(j). So, for 1 ≤ j ≤ t,

NL(j) + degGJ
(σj) + degGJ

(σ′
j) ≥ (2n− t+ f(j) + z(j)) + (4− z(j))

= 2(n+ 2)− t+ f(j).

(2.5)

Recall, degGJ
(c∗) = 2. Because C∗

j ∈ L1 at most one edge {c∗, σj} ∈ C∗
j is in J . So,

the two edges in J incident to c∗ are incident to two different vertices in S. Similarly, there

are exactly two edges in J incident to ρ∗, each of which is incident to two different vertices in
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S ′. Because c∗ and ρ∗ are incident to σj and σ′
j respectively for the same two (if t− n = 4) or

three (if t − n = 6) values of j, there must exist an α such that 1 ≤ α ≤ t, {c∗, σα} ∈ J and

{ρ∗, σ′
α} ∈ J .

In what follows we construct another set of edges J ′ through a modest modification of J

so both edges in C∗
α and both edges in R∗

α will be in J ′. The graph GJ is a bipartite graph with

maximum degree 2. Thus, the edges of GJ can be properly colored with 2 colors, say 1 and

2. Consider the graphs G∗
c − J and G∗

ρ − J . They are bipartite graphs with maximum degree

t−n− 2. Thus, the edges of G∗
c −J and G∗

ρ−J can be properly colored with t−n− 2 colors,

say 3, . . . , t− n. These two edge-colorings naturally induce a proper (t− n)-edge-coloring of

G∗
c ∪G∗

ρ, X : E(G∗
c ∪G∗

ρ) → {1, 2, . . . , t− n}, in which all edges in J are colored 1 or 2.

In what follows we construct an edge-coloring X ′ : E(G∗
c ∪ G∗

ρ) → {1, 2, . . . , t − n} by

interchanging colors on two 2-colored trails, T1 and T2, in X . In X ′ the edges in C∗
α will be

colored 1 and 2 and the edges in R∗
α will be colored 1 and 2. Suppose the edges in C∗

α are

colored 1 and 3 by X . Consider the maximal trail, T1, containing the edge {c∗, σα} colored 3,

in which the edges are alternately colored 2 and 3 by X . Because the edge-coloring is proper,

T1 is either a cycle or a path. Interchange the colors on T1 and let this new edge-coloring be

X ′ on the edges in G∗
c . The edges in C∗

α are now colored 1 and 2 by X ′. If T1 is a cycle,

interchanging colors did not impact the number of edges of each color incident to each vertex.

Suppose T1 is a path. Interchanging colors did not impact the number of edges of each color

incident to each vertex in the interior of T1, but did impact the endpoints. For each c ∈ C, by

(2.1) and (2.2), deg(c) = t − n. So there is exactly one edge colored 2 and one edge colored

3 by X incident to vertex c. Thus c is not an endpoint of T1, so the endpoints of T1 must be in

S. Because G∗
c is bipartite and both ends of T1 are in S, exactly one of the ends was incident

to an edge colored 2 by X . This end cannot be σα because σα was incident to an edge colored

3 by X . So one end of T1 is a vertex σu ∈ S \ {σα} that now does not have an edge colored

2 by X ′ incident to it. The other end of T1 was incident to an edge colored 3 by X . So this

vertex now is incident to an edge colored 2 by X ′. Similarly, we can use a trail T2 to modify

the proper edge-coloring, X , of G∗
ρ and define X ′ on the edges of G∗

ρ so the edges in R∗
α are

now colored 1 and 2 in X ′. After recoloring, at most one vertex in S ′ \ {σ′
α} has lost an edge
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colored 2 incident to it in X ′. If such a vertex exists, name it σ′
v. All other vertices in G∗

c ∪G∗
ρ

have an equal or greater number of edges colored 2 incident to them. Thus, we have the revised

edge-coloring X ′ : E(G∗
c ∪ G∗

ρ) → {1, 2, . . . , t − n}. Define J ′ to be the set of edges colored

1 and 2 by X ′, and let GJ ′ be the graph induced by the edges in J ′.

It is important to note a property that will be used later in the proof if σu and/or σ′
v have

been defined. In X ′, σu and σ′
v do not have an edge colored 2 incident to them, so degG∗

c
(σu) =

degG∗
ρ
(σ′

u) < t− n and degG∗
ρ
(σ′

v) = degG∗
c
(σv) < t− n. So, for each j ∈ {u, v}, by (2.3),

NL(j) ≥ 2n− t+ f(j) + 1. (2.6)

To finally arrive at the desired edge-coloring, X ′′ : E(G∗
c ∪ G∗

ρ) → {1, 2, . . . , t − n}, X ′

is to be modified in the situation where degGJ′ (σu) = degGJ′ (σv) = 1 and/or degGJ′ (σ
′
u) =

degGJ′ (σ
′
v) = 1 (as in Case 3 below). To do this we construct the edge-coloring X ′′ by in-

terchanging colors on up to two trails, T3 and T4, whose edges are colored 1 and 2 in X ′ as

follows.

We first define X ′′ on E(G∗
c). Suppose degGJ′ (σu) = degGJ′ (σv) = 1. Let eu and ev be

the edges incident to σu and σv in GJ ′ respectively. In X ′′, we make sure that one of eu and ev

is colored 1 and the other is colored 2. If X ′(eu) ̸= X ′(ev), then we already have the desired

property, so define X ′′(e) = X ′(e) for all e ∈ E(G∗
c). Otherwise, X ′(eu) = X ′(ev). Take a

maximal trail, T3, in GJ ′ that begins with eu. Because ∆(GJ ′) = 2, the trail T3 is necessarily

a path. For each c ∈ C, degGJ′ (c) = 2. Thus c is not an endpoint of T3, so the endpoint of T3

must be in S. The path T3 cannot end with ev because X ′(eu) = X ′(ev) and GJ ′ is a bipartite

graph. So, because degGJ′ (σv) = 1, T3 does not include ev. Interchange colors along T3. All

interior vertices of T3 still have exactly one incident edge colored 1 and exactly one incident

edge colored 2. The endpoints of T3 now have the opposite color incident to them. Define X ′′

on the edges in G∗
c to be this new edge-coloring. Thus, in any case, if eu and ev exists, we can

assume

X ′′(eu) ̸= X ′′(ev). (2.7)
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For convenience, if degGJ′ (σu) ̸= 1 or degGJ′ (σv) ̸= 1, so we are not in the above case, then

define X ′′(e) = X ′(e) for all e ∈ E(G∗
c).

Similarly, we can define X ′′ on the edges in G∗
ρ by interchanging colors on a trail T4 in X ′

if needed. So, if degGJ′ (σ
′
u) = 1 and degGJ′ (σ

′
v) = 1 and we let e′u and e′v be the edges incident

to σ′
u and σ′

v in GJ ′ respectively, then

X ′′(e′u) ̸= X ′′(e′v). (2.8)

For convenience, if degGJ′ (σ
′
u) ̸= 1 or degGJ′ (σ

′
v) ̸= 1, so we are not in the above case, then

define X ′′(e) = X ′(e) for all e ∈ E(G∗
ρ).

Thus, we have the revised edge-coloring X ′′ : E(G∗
c ∪ G∗

ρ) → {1, 2, . . . , t − n}. Define

J ′′ to be the set of edges colored 1 and 2 by X ′′, and let GJ ′′ be the graph induced by the edges

in J ′′.

We will use GJ ′′ to fill in rows and columns n+1 and n+2 and extend L to an incomplete

latin square of order n + 2. For 1 ≤ i ≤ t, degGJ′′ (ci) = degGJ′′ (ρi) = 2. For 1 ≤ j ≤ t,

degGJ′′ (σj) ≤ 2 and degGJ′′ (σ
′
j) ≤ 2. Also, for 1 ≤ j ≤ t, by (2.5),

NL(j) + degGJ′′ (σj) + degGJ′′ (σ
′
j)

≥ NL(j) + degGJ
(σj) + degGJ

(σ′
j)− ϵj

≥ 2(n+ 2)− t+ f(j)− ϵj,

(2.9)

where ϵj = 0 if j /∈ {u, v}, ϵj = 1 if j ∈ {u, v} and u ̸= v, and ϵj = 2 if j = u = v.

Form a partial incomplete latin square Lα of order n + 2 by adding two new rows and

columns to L using J ′′ as follows. Let Lα(a, b) = L(a, b) for 1 ≤ a ≤ n and 1 ≤ b ≤ n.

Define the sets of cells A, B and D as follows:

A := {(a, b) : 1 ≤ a ≤ n, n+ 1 ≤ b ≤ n+ 2},

B := {(a, b) : n+ 1 ≤ a ≤ n+ 2, 1 ≤ b ≤ n}, and

D := {(a, b) : n+ 1 ≤ a, b ≤ n+ 2}.
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Let A, B, and D be the n × 2, 2 × n, and 2 × 2 latin subrectangles of Lα formed by the cells

in A, B, and D respectively. Similarly, let A ∪ B be the array formed by the cells in A and

B. We now fill A and B using GJ ′′ . For 1 ≤ k ≤ 2 and 1 ≤ i ≤ n, let Lα(n + k, i) = j

if and only if {ci, σj} is colored k in GJ ′′ . Similarly, for 1 ≤ k ≤ 2 and 1 ≤ i ≤ n, let

Lα(i, n + k) = j if and only if {ρi, σ′
j} is colored k in GJ ′′ . Every cell in A ∪ B is filled

because degGJ′′ (ci) = degGJ′′ (ρi) = 2 for 1 ≤ i ≤ n. So, for 1 ≤ j ≤ t, by (2.9),

NLα(j) ≥ 2(n+ 2)− t+ f(j)− ϵj. (2.10)

In a later modification of Lα we will place α in the two new diagonal cells, so define f ′(α) =

f(α) − 2 and f ′(j) = f(j) for 1 ≤ j ≤ t and j ̸= α. For 1 ≤ j ≤ t and j /∈ {u, v, α}, by

(2.10),

NLα(j) ≥ 2(n+ 2)− t+ f ′(j). (2.11)

Thus, Lα is a partial incomplete latin square of order n + 2 with all cells except those in D

filled and all symbols satisfying Ryser’s condition except possibly α (which will satisfy Ryser’s

condition once placed twice on the diagonal inD) and possibly u and v if they exist. The aim is

to construct L′
α through a modest modification of Lα to form a partial incomplete latin square

of order n+ 2 on S(t) which is (f ′, t)-satisfied.

By (2.10), NLα(u) ≥ 2(n+ 2)− t+ f ′(u)− ϵu and NLα(v) ≥ 2(n+ 2)− t+ f ′(v)− ϵv.

We will now modify Lα to form L′
α so that if NLα(j) < 2(n+2)− t+f ′(j) for any j ∈ {u, v},

u and/or v will be placed in cells (n+1, n+2) and/or (n+2, n+1) of L′
α as needed to ensure

that NL′
α
(u) ≥ 2(n+ 2)− t+ f ′(u) and NL′

α
(v) ≥ 2(n+ 2)− t+ f ′(v).

Let j ∈ {u, v}. If NLα(j) < 2(n+2)− t+ f ′(j), by (2.10), NLα(j) = 2n− t+ f ′(j) + 2

or NLα(j) = 2n − t + f ′(j) + 3. These two cases of NLα(j) correspond to L′
α needing 2 or

1 more occurrence of j respectively. To reveal more about these potentially problematic cases,

consider the following properties. Recall, by (2.6), NL(j) ≥ 2n− t+ f(j) + 1.

(i) Suppose NLα(u) < 2(n + 2) − t + f ′(u) and NL(u) = 2n − t + f(u) + 1. By (2.3),

degG∗
c
(σu) = n − NL(u) + f(u) = t − n − 1. In the edge-coloring X ′′, σu is missing
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exactly one of the colors 1 or 2 (because T1 ended on this vertex). So, since σu is incident

to an edge of every color in G∗
c except one, σu must be incident to the other color (1

or 2). Therefore, degGJ′′ (σu) = 1, and so because u appears at most 2 times (because

NLα(u)−NL(u) ≤ 2) in A ∪B, degGJ′′ (σ
′
u) ≤ 1.

(ii) Similarly, if NLα(v) < 2(n + 2) − t + f ′(v) and NL(v) = 2n − t + f(v) + 1, then

degGJ′′ (σ
′
v) = 1 and degGJ′′ (σv) ≤ 1.

(iii) If NL(u) = 2n− t+ f(u) + 1, NLα(u) < 2(n+2)− t+ f ′(u), and u = v, then by (i-ii),

degGJ′′ (σu) = 1 = degGJ′′ (σ
′
u). So, NLα(u) = 2n− t+ f ′(u) + 3.

(iv) If j ∈ {u, v}, NLα(j) < 2(n + 2) − t + f ′(j), and 2n − t + f(j) + 2 ≤ NL(j) ≤

2n− t+f(j)+3, then j appears at most 1 time (because NLα(u)−NL(u) ≤ 1) in A∪B.

If NLα(j) ≥ 2(n + 2) − t + f ′(j) for j ∈ {u, v}, then let L′
α(a, b) = Lα(a, b) for

1 ≤ a, b ≤ n + 2. Otherwise we will make use of (i-iv) to modify Lα to define L′
α and place

u and/or v in cells (n + 1, n + 2) and/or (n + 2, n + 1) of L′
α as needed to ensure that, for

j ∈ {u, v}, NL′
α
(j) ≥ 2(n + 2) − t + f ′(j). The following three cases are considered. The

first two cases consider if exactly one of u or v, say u, does not meet Ryser’s condition. So,

by (2.10), NLα(u) = 2(n + 2) − t + f ′(u) − 2 or NLα(u) = 2(n + 2) − t + f ′(u) − 1.

The third case considers when both u and v do not meet Ryser’s Condition, so, by (2.10),

NLα(u) = 2(n+ 2)− t+ f ′(u)− 1 and NLα(v) = 2(n+ 2)− t+ f ′(v)− 1.

Case 1: Suppose NLα(u) = 2(n + 2) − t + f ′(u) − 2. Thus, by (2.10), u = v. By (iii),

NL(u) = 2n− t+ f(u)+ 2. Then u does not appear in A nor in B. Define L′
α(a, b) =

Lα(a, b) for (a, b) ∈ A ∪ B and for 1 ≤ a, b ≤ n. Also, define L′
α(n + 1, n + 2) =

L′
α(n+ 2, n+ 1) = u. Thus NL′

α
(u) = NLα(u) + 2 = 2(n+ 2)− t+ f ′(u).

Case 2: Suppose that for exactly one of u or v, say u, NLα(u) = 2(n + 2) − t + f ′(u) − 1

and for the other, say v, NLα(v) ≥ 2(n + 2) − t + f ′(v), u = v, or v does not exist.

By (i,iii,iv), u is in at most one row of B, say n + 2, and at most one column of A,

say n + 1 (permuting the columns and/or rows of A and/or B respectively if need
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be). Define L′
α(a, b) = Lα(a, b) for (a, b) ∈ A ∪ B or 1 ≤ a, b ≤ n. Also, define

L′
α(n+ 1, n+ 2) = u. Thus NL′

α
(u) = NLα(u) + 1 = 2(n+ 2)− t+ f ′(u).

Case 3: Suppose u ̸= v,NLα(u) = 2(n+2)−t+f ′(u)−1, andNLα(v) = 2(n+2)−t+f ′(v)−1.

By (i-ii, iv), u and v each appear at most once inA and at most once inB. By (2.7) and

(2.8), we can assume u and v appear in different rows ofB and different columns ofA.

Thus, permuting rows and/or columns if necessary we can assume u does not appear in

row n+1 nor in column n+2 of Lα and v does not appear in row n+2 nor in column

n + 1 of Lα. Define L′
α(a, b) = Lα(a, b) for (a, b) ∈ A ∪ B or 1 ≤ a, b ≤ n. Also,

define L′
α(n+ 1, n+ 2) = u and L′

α(n+ 2, n+ 1) = v. So NL′
α
(u) = NLα(u) + 1 =

2(n+ 2)− t+ f ′(u) and NL′
α
(v) = NLα(v) + 1 = 2(n+ 2)− t+ f ′(v).

Thus, in any case, we can place u and/or v in cells (n+ 1, n+ 2) and/or (n+ 2, n+ 1) if

needed so that for j ∈ {u, v},

NL′
α
(j) ≥ 2(n+ 2)− t+ f ′(j).

Define L′
α(n+ 1, n+ 1) = L′

α(n+ 2, n+ 2) = α. So

NLα(α) = NL(α) + 2 ≥ 2(n+ 2)− t+ f ′(j).

Also for 1 ≤ j ≤ t and j /∈ {u, v, α}, NL′
α
(j) = NLα(j), so by (2.11),

NL′
α
(j) = NLα(j)

≥ 2(n+ 2)− t+ f ′(j).

Thus, L′
α is a partial incomplete latin square of order n+ 2 with all symbols satisfying Ryser’s

condition and all cells filled except possibly cells (n+ 1, n+ 2) and (n+ 2, n+ 1).

We now define L′′
α through a modest modification of L′

α to fill cells (n+ 1, n+ 2) and/or

(n + 2, n + 1) if needed to form an (f ′, t)-satisfied incomplete latin square. Suppose cell

(n + 1, n + 2) of L′
α is empty. Form the bipartite graph B with bipartition C ′ = {ci | 1 ≤ i ≤
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n+2} and S = {σj | 1 ≤ j ≤ t} of the vertex set as follows. For 1 ≤ i ≤ n+2 and 1 ≤ j ≤ t,

join ci to σj if and only if symbol j is missing from column i of L′
α or L′

α(n + 1, i) = j. For

ci ∈ C ′ \ {cn+1}, degB(ci) = t − n − 1. Because j appears at most once in row n + 1, for

σj ∈ S,

degB(σj) ≤ n+ 2− (NL′
α
(j)− 1)

≤ n+ 2− (2(n+ 2)− t+ f ′(j)− 1)

= t− n− f ′(j)− 1

≤ t− n− 1.

(2.12)

Define the matching M by letting {ci, σj} ∈ E(B) be in M if and only if L′
α(n + 1, i) = j.

Because symbol α appears in cell (n + 1, n + 1), {cn+1, σα} ∈ M . Let B′ be the induced

subgraph of B formed by removing vertices cn+1 and σα. We wish to find an M -augmenting

path in B′ starting at cn+2. For a contradiction, suppose there does not exist an M -augmenting

path in B′ starting at cn+2. Let W be the subgraph of B′ induced by the set of vertices that can

be reached by an M -alternating path starting at cn+2. All maximal M -alternating paths starting

at cn+2 end at an M -saturated vertex in C ′ \ {cn+1}. So V (W ) contains say x vertices from

S\{σα} and V (W ) contains x+1 vertices from C ′\{cn+1}, namely cn+2 and theM -neighbors

of the x vertices from S \{σα}. Let C ′
W = C ′∩V (W ) denote the set of these x+1 vertices. By

the definition of W , every edge in B′ incident to a vertex in C ′
W must be an edge in W (which

implies the equality in the relations below). Because degB(σα) ≤ t− n− 1 (by (2.12)) and σα

is adjacent to cn+1 in B, at most t− n− 2 vertices in C ′
W have degree t− n− 2 in B′ and all

other vertices in C ′
W have degree t− n− 1 in B′. So,

(t− n− 1)x ≥
∑

σj∈V (W )

degB′(σj)

≥ e(W )

=
∑

ci∈V (W )

degB′(ci)

≥ (t− n− 1)(x+ 1)− (t− n− 2).
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This is a contradiction. Thus, there exists an M -augmenting path in B′ starting at cn+2. Form

the matching M ′ from M by interchanging edges in M with edges not in M along this path.

Now replace row n + 1 of L′
α to form L′′

α using M ′ by letting L′′
α(n + 1, i) = j if and only

if {ci, σj} is in M ′ for 1 ≤ i ≤ n + 2 and 1 ≤ j ≤ t and letting L′′
α(a, b) = L′

α(a, b) for

1 ≤ a ≤ n or a = n + 2 and 1 ≤ b ≤ n + 2. Thus, L′′
α contains the same symbols as L′

α

with the addition of one more symbol in row n + 1. Now, all cells in row n + 1 are filled.

Similarly, if cell (n + 2, n + 1) is empty, we can modify L′′
α using the same approach. So we

can assume all cells of L′′
α are filled and all symbols satisfy Ryser’s condition. Thus, L′′

α is an

incompete latin square of order n+ 2 that is (f ′, t)-satisfied and thus satisfies the conditions of

the theorem.

2.4 Future Directions

This section summarizes possible future directions. The first question highlights an interesting

difference in the idempotent and generally prescribed diagonal problem.

Question 2.10. Suppose t = 2n. Let L be an incomplete latin square of order n on the symbols

in {1, 2, . . . , t}. Let f : {1, 2, . . . t} 7→ N such that
∑n

i=1 f(i) = t− n. What are the necessary

and sufficient conditions for L to be embedded in a latin square T of order t on the same

symbols in which each symbol i appears f(i) times on the diagonal of T outside L?

When t = 2n, Rodger found the necessary and sufficient conditions for the embedding of

an incomplete idempotent latin square of order n in an idempotent latin square of order t [27].

However, this question is still open for the generally prescribed diagonal problem. There are

incomplete latin squares of order n and functions f : {1, 2, . . . t} 7→ N meeting the Ryser-type

conditions described in Rodger’s result for t ≥ 2n + 1 [28] that are not embeddable in a latin

square of order t with each symbol i appearing f(i) times on the diagonal of T outside of L.

We suggest investigating this interesting case to try and find necessary and sufficient conditions

(even when f(i) = 1 for some 1 ≤ i ≤ t).
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The next question suggests looking at a higher dimension. Although there is not a con-

sensus among mathematicians for the definition of a latin cube, we will focus on one varia-

tion. Let L be an n × n × n array. A layer of L is an n × n array formed by fixing one

coordinate of L. More formally, a layer is of the form Li,∗,∗ = {(i, j, k)|1 ≤ j, k ≤ n},

L∗,j,∗ = {(i, j, k)|1 ≤ i, k ≤ n}, or L∗,∗,k = {(i, j, k)|1 ≤ i, j ≤ n}. We call L a layer-

rainbow latin cube of order n if L contains the symbols in S(n2) such that each layer of L uses

each symbol exactly once. In the past year, results analogous to many of the classic results

mentioned in Section 2.1 have been proven for layer-rainbow latin cubes [7, 8, 9]. Therefore,

we suggest the following question.

Question 2.11. Let L be an n× n× n array filled with the symbols from S(t2) such that each

layer of L contains each of the symbols at most once. What are the necessary and sufficient

conditions for embedding L in a layer-rainbow latin cube of order t in which the cells (i, i, i)

for n+ 1 ≤ i ≤ t are prescribed?
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Chapter 3

Equitable (s, p)-Edge-Colorings of Complete Graphs

3.1 History and Definitions

Although this chapter focuses on edge-colorings, historically, the problem is stated in terms of

design theory. We will start with that history. An H-decomposition of a graph G is an ordered

pair (V,B) where V is the vertex set of G and B is a partition of the edges of G into sets, each

of which induces a copy of H . The graphs induced by the elements of B are known as the

blocks of the decomposition. (V,B) is said to have an (s, p)-block-coloring (also referred to as

a (s, p)-H-coloring) E : B 7→ C = {1, 2, . . . , s} if:

1. the blocks in B are colored with exactly s colors, and

2. for each vertex u ∈ V (G) the blocks containing u are colored using exactly p colors.

The (s,p)-block-coloring, E, is said to be equitable if

3. for each vertex u ∈ V (G) and for each {i, j} ⊂ C(E, u), |b(E, u, i)− b(E, u, j)| ≤ 1,

where C(E, u) = {i | E colors some block incident with u with color i}, and b(E, u, i) is the

number of blocks inB containing u that are colored i byE. Note that this definition of equitable

generalizes the definition used in the usual edge-coloring situation where the blocks are copies

of K2 and s = p.

Such colorings were first introduced by Colbourn and Rosa who considered a more general

notion in regards to Steiner Triple Systems (K3-decompositions of Kv) in [12]. M. Gionfriddo

et al. were the first to consider the equitable block-colorings as defined above, studying equi-

table block-colorings of Steiner Triple Systems in [16].
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L. Gionfriddo, M. Gionfriddo, and Ragusa considered the existence of equitable block-

colorings of 4-cycle systems of Kv in [15]. M. Gionfriddo and Ragusa extended their work

in [17]. In [22], Li and Rodger considered the existence of equitable (s, p)-C4-colorings of

Kv′ − F , where v′ is even and F is a 1-factor of Kv′ , allowing them to consider complete

graphs on an even number of vertices previously excluded by necessary conditions. As we will

see in the next paragraph, they showed this problem can be reduced to considering equitable

(s, p)-edge-coloring (K2-decompositions) of Kv for v = v′

2
. In this chapter, we focus on these

edge-colorings. We first summarize known results in this area and then discuss extension of

results to multigraphs λKv where λKv is the graph formed by replacing every edge in Kv with

λ edges. Finally, we consider the structure of these colorings as introduced and studied by Li,

Matson, and Rodger in [21] and by Matson and Rodger in [25].

While studying equitable (s, p)-C4-colorings of Kv′ − F where v′ is even and F is a

1-factor of Kv′ , the authors in [22] proved the following lemma which reduces the work to

finding equitable (s, p)-edge-colorings of Kv′/2. Define G × 2 to be the graph with vertex set

{(u, 1), (u, 2)|u ∈ V (G)} and edge set {{(u, i), (w, j)}|1 ≤ i, j ≤ 2, {u,w} ∈ E(G)}. Thus,

Kv′/2 × 2 ∼= Kv′ − F where F = {{(u, 1), (u, 2)}|u ∈ V (Kv′/2)} is a 1-factor of Kv′ .

Lemma 3.1 ([22]). If there exists an equitable (s, p)-edge-coloring E of G, then there exists

an equitable (s, p)-C4-coloring E ′ of G× 2.

Therefore, the focus of this chapter is on equitable (s, p)-edge-colorings of Kv. In Section

3.2, we fix p and investigate the smallest value of s such that there exists an equitable (s, p)-

edge-coloring of Kv and λKv. In Section 3.3, we investigate the structure of these colorings.

Finally, in Section 3.4, we discuss open questions in this area.

It is also worth noting that (s, p)-edge-colorings have the flavor of list edge-colorings.

Typically in this area, allowable color lists are assigned to edges, and proper edge-colorings

are sought so that each edge receives an allowable color. One could consider a variation where

vertices receive allowable color lists, and incident edges must receive a color allowed by the

lists of both incident vertices. This can be reformulated as a list edge-coloring problem by

assigning the intersection of the lists associated with the two vertices incident with edge e to
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the allowable list for edge e for each edge e in the graph. This variation does not work well

in the sense that finding the smallest p such that any list assignment of size p to each vertex

results in a proper s-edge-coloring already requires p to be quite large: p must be greater than

s/2 just to assure that the resulting intersections assigned to the edges are non-empty. This

unpleasing feature can be overcome by adjusting the definition of this proposed variation of list

edge-colorings so that, instead of assigning a list of size p to each vertex u from which incident

edges must be colored, simply restrict the number of colors on edges incident with u to have

size p. These are precisely (s, p)-edge-colorings, and then imposing the equitable requirement

simply generalizes the expectation of a proper edge-coloring.

These colorings are also related to those considered by Hilton in [18] and [19]. There, he

defined an (r, r + 1)-factor to be a spanning subgraph of a graph G in which each vertex has

degree r or r+1. Fixing r, he looked for (r, r+1)-factorizations expressing G as the union of

edge disjoint (r, r+1)-factors. Assigning each (r, r+1)-factor a color, an (r, r+1)-factorization

is exactly an equitable (p, p)-edge-coloring, say E, of G with b(E, u, i) ∈ {r, r+1} for all u ∈

V (G) and for all colors i for 1 ≤ i ≤ p. He considered a more general problem, considering

graphs with degrees within a set of consecutive values. In an effort to do this, he found the

possible p for which a regular simple graph, G, can have an equitable (p, p)-edge-coloring, E,

with b(E, u, i) ∈ {r, r + 1} for all u ∈ V (G) and for each color i for 1 ≤ i ≤ p. In relation

to this chapter, Hilton fixed v and b(E, u, i) and found the possible p for which an equitable

(p, p)-edge-coloring of Kv exists. Here, we fix p and v investigate the possible values of s.

In Section 3.3 we focus on the interesting case requiring innovative proof techniques where s

must be larger than p in order for an equitable (s, p)-edge-coloring of Kv to exist.

3.2 Lower p-Chromatic Index

A logical question may be to ask: Given a value of p, what are the possible values of s for an

equitable (s, p)-H-coloring of a graph G? Particularly, what is the smallest possible value of

s? First, in Subsection 3.2.1 we compile known results for equitable (s, p)-edge-colorings (K2-

decompositions) of Kv and therefore, equitable (s, p)-C4-coloring of Kv′ − F where v′ = 2v

27



and F is a 1-factor ofKv′ . Then, in Subsection 3.2.2 we compile the known results for equitable

(s, p)-edge-colorings of λKv and state a new lemma that suggests some future work.

We begin with some definitions. For any H-decomposition Σ = (V,B) of G, the au-

thors in [22] defined the spectrum of Σ as Ωp(Σ) = {s | there exists an equitable (s, p)-

block-coloring of Σ}. They defined the p-color-spectrum Ωp(H,G) = ∪Ωp(Σ), the union

being taken over all H-decompositions, Σ, of G. Two values in Ωp(H,G) are of particular

interest: the lower p-chromatic index is defined to be χ′
p(H,G) = minΩp(H,G) and the upper

p-chromatic index is defined to be χ′
p(H,G) = maxΩp(H,G).

3.2.1 Equitable (s, p)-edge-colorings of Kv

In this subsection, we consider the lower p-chromatic index of edge-colorings (K2-decomposi-

tions) of Kv and C4-decompositions of Kv′ − F where v′ = 2v is even and F is a 1-factor of

Kv′ . Because results in this area are in several different papers and they use different notation,

we list known results and then combine them for Theorem 3.10.

Observation 3.2. Because p is bounded by the degree of every vertex,

• for all equitable (s, p)-edge-colorings of Kv, 1 ≤ p ≤ v − 1, and

• for all equitable (s, p)-blocking colorings of a C4-decomposition of Kv′ − F , 1 ≤ p ≤

(v′ − 2)/2.

Thus, for the remainder of this subsection, we assume 1 ≤ p ≤ v − 1 and 1 ≤ p ≤

(v′ − 2)/2. We also note that an equitable (p, p)-edge-coloring of Kv is equivalent to what has

previously been defined as an equitable edge-coloring of Kv with p colors. However, we will

continue to call this an equitable (p, p)-edge-coloring of Kv.

The study of (p, p)-edge-colorings of Kv has a long history. The following theorem shows

a sufficient condition for their existence.

Theorem 3.3. [20] Let G be a simple graph and let p ≥ 2. If p ∤ d(v) (for all v ∈ V (G)), then

G has an equitable (p, p)-edge-coloring.
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The following foundational theorem can be proved with the well-known Walecki’s con-

struction and will be used to prove another sufficent condition for equitable (p, p)-edge-color-

ings of Kv in Lemma 3.5. This theorem will also be used throughout the remainder of this

section.

Theorem 3.4. [24] λKv (or λKv − F where F is a 1-factor of λKv) has a Hamilton decom-

position if and only if λ(v − 1) is even (or odd, respectively).

Lemma 3.5. Suppose v is odd, p | (v−1), and (v−1)/p is even. Then there exists an equitable

(p, p)-edge-coloring of Kv.

Proof. By Theorem 3.4, there exists a Hamilton decomposition of Kv. To create each color

class, color the edges of (v − 1)/(2p) Hamilton cycles the given color.

The authors in [22], prove the following theorem in their proof that there exists an eq-

uitable (p, p)-C4-coloring of Kv′ − F for v′/2 even and F a 1-factor of Kv′ . This shows yet

another sufficient condition for (p, p)-edge-colorings of Kv.

Theorem 3.6. [22] Let v be even. There exists an equitable (p, p)-edge-coloring of Kv.

The next three results focus on an interesting case where equitable (p, p)-C4-decomposi-

tions of Kv′ − F and equitable (p, p)-edge-colorings of Kv do not exist.

Lemma 3.7. [22] Let v′ ≡ 4t + 2 (mod 8t). Then there is no C4-decomposition of Kv′ − F

for which there exists an equitable (2t, 2t)-C4-coloring.

The next lemma is similar to the previous, and is proved in a similar manner as the authors

in [22] proved Lemma 3.7.

Lemma 3.8. [22] Let v ≡ 2t+ 1 (mod 4t). Then there is no equitable (2t, 2t)-edge-coloring

of Kv.

Proof. Let v = 4tx+2t+1 for some integer x. Thus, b(E, u, i) = (v−1)/p = (4tx+2t)/2t =

2x+ 1 is odd for all edge colorings E, vertices u ∈ V (Kv), and colors i. Thus, a color cannot

appear at every vertex, else the graph induced by that color class would be regular with odd

degree on an odd number of vertices. Therefore, s > p.
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As seen in the following theorem, the authors in [21] found the lower p-chromatic index

in the previous case, showing p+ 1 colors suffice.

Theorem 3.9. [21] Let v ≡ 2t+ 1 (mod 4t) and v′ ≡ 4t+ 2 (mod 8t). Then,

• there exists a equitable (2t+ 1, 2t)-edge-coloring of Kv and

• there exists an equitable (2t+ 1, 2t)-C4-coloring of Kv′ − F .

Finally, we combine all of these results to obtain the following theorem and corollary.

Theorem 3.10. [20, 21, 22] For 1 ≤ p ≤ v − 1,

χ′
p(K2, Kv) =


p+ 1 if p even and v ≡ p+ 1 (mod 2p)

p otherwise.

Proof. If v is even the result follows by Theorem 3.6. If v is odd and p ∤ (v − 1), the result

follows by Theorem 3.3. If v is odd, p | (v − 1), and (v − 1)/p is even, the result follows by

Theorem 3.5.

If v is odd and p | (v − 1) and (v − 1)/p is odd, then p must be even. Thus, b(E, u, i) =

(v−1)/p = 2x+1 for some integer x for all edge colorings E, vertices u ∈ V (Kv), and colors

i. Also, p = 2t for some integer t. Therefore, v−1 = (2t)(2x+1). So, v = 4tx+2t+1 ≡ 2t+1

(mod 4t). Thus, by Theorem 3.8 and 3.9, χ′
p(K2, Kv) = p+ 1.

Corollary 3.11. [20, 21, 22] For v′ even and 1 ≤ p ≤ (v′ − 2)/2,

χ′
p(C4, Kv′ − F ) =


p+ 1 if p is even and v ≡ 2p+ 2 (mod 4p)

p otherwise.

where F is a 1-factor of Kv′ .

Proof. This follows directly from Lemmas 3.1 and 3.7 and Theorem 3.10.
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3.2.2 Equitable (s, p)-edge-colorings of λKv

We now discuss equitable (s, p)-edge-colorings of λKv.

Observation 3.12. Because p is bounded by the degree of every vertex, for all equitable (s, p)-

edge-coloring of Kv, 1 ≤ p ≤ λ(v − 1).

So, for the remainder of this subsection assume 1 ≤ p ≤ λ(v− 1). Similar to the last sub-

section, we first list some results about sufficient conditions for equitable (p, p)-edge-colorings

of λKv. Then we highlight a case where the lower p-chromatic index is greater than p, leading

to a conjecture and avenue for future research.

Lemma 3.13. Let v be even. Then there exists an equitable (p, p)-edge-coloring of λKv.

Proof. Let {F0, F1, . . . , Fλ(v−1)−1} be a 1-factorization of λKv. For 0 ≤ i ≤ λ(v−1)−1 color

the edges of Fi color j if and only if j ≡ i (mod p). Thus, each vertex is incident to ⌈λ(v−1)
p

⌉

or ⌊λ(v−1)
p

⌋ edges of each of the p colors. Because p ≤ λ(v− 1), there is at least 1 edge of each

color appearing at each vertex. Thus, this is an equitable (p, p)-edge coloring of λKv.

The following proof is similar to the proof of Lemma 3.5.

Theorem 3.14. Suppose v is odd, p | λ(v − 1), and λ(v − 1)/p is even. Then there exists an

equitable (p, p)-edge-coloring of λKv.

Proof. By Theorem 3.4 there exists a Hamilton decomposition of λKv. To create each color

class, color the edges of (λ(v − 1))/(2p) Hamilton cycles the given color.

The following lemma highlights a case where there does not exist an equitable (p, p)-edge-

coloring of λKv and gives a lower bound for s.

Lemma 3.15. Suppose v is odd, p | λ(v − 1), and λ(v − 1)/p is odd. Then s ≥ p+ ⌈ p
v−1

⌉.

Proof. Each of the s colors can appear on at most v−1 vertices because v is odd and λ(v−1)/p

is odd. Also, each vertex has exactly p colors on the edges incident to it. So, s(v − 1) ≥ vp.

Thus,
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s ≥ vp
v−1

= (v−1)p
v−1

+ p
v−1

= p+ ⌈ p
v−1

⌉.

This leads to the following conjecture. We predict it can be proved in a similar manner

to Theorem 3.9 using the technique of amalgamations that will be described in more depth in

Section 3.3.

Conjecture 3.16. Suppose v is odd, p | λ(v − 1), and λ(v − 1)/p is odd. Then there exists an

equitable (p+ ⌈ p
v−1

⌉, p)-edge-coloring of λKv.

If the previous conjecture is true, then we can obtain a more general version of Theorem

3.10 concerning equitable (s, p)-edge-colorings of λKv by combining that result, a modifica-

tion of Theorem 3.3, Lemma 3.13, Lemma 3.14, and Lemma 3.15.

3.3 Structure of Colorings

The results in this section are joint work with Chris Rodger and have been accepted for publi-

cation. See [11].

We begin by motivating the avenue of research in this section with a scheduling problem.

Suppose v people, say v = 25, want to meet one-on-one with each other during one day of a

convention. Through the s = 9 hours of the day, each person meets with others for p = 8 of

the hours, taking the other hour for a break. Ideally, the meetings for each person should be

spread out evenly throughout the day, so during each hour the aim is for each person not on

a break to meet (v − 1)/p = 3 people. Participants are requested to list the s − p = 1 hour

when they would prefer to take a break (hours around lunch time or the first and last hours

to arrive late or leave early being likely popular choices). This information is described by

a vector V = (c1, c2, . . . , cs), the ith component being the number of participants wanting to

meet during the ith of the s hours (so v − ci is the number of participants wanting their break

during the ith hour).
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This problem can be modeled by using the complete graph Kv, each vertex representing a

participant, with the edge {i, j} being colored k to indicate that participants i and j should meet

during the kth hour. To meet the requirements, at each vertexw, each of some choice of p colors

should appear on exactly (v − 1)/p edges incident to w, the remaining s− p colors appearing

on no incident edges. Furthermore, to meet the choice of when to take a break, the number of

vertices missing color k should be v − ck for 1 ≤ k ≤ s where ck is the kth component of V .

This is an equitable (s, p)-edge-coloring of Kv, say E, with what we will define below as the

associated color vector V (E).

Completing the scheduling would then require, for 1 ≤ k ≤ s, taking the subgraph G(k)

induced by the edges colored k and giving it an edge-coloring with max{(v− 1)/p, χ′(G(k))}

colors to subdivide the kth hour into meeting times. But this step is not the focus of the research

in this section.

In this section we will focus on the particularly interesting case of Theorem 3.10 where

the lower p-chromatic index is not equal to p; i.e., χ′
p(K2, Kv) > p. Thus, for the rest of this

section we will assume v ≡ 2t+ 1 (mod 4t), p = 2t, and s = 2t+ 1. It’s interest is generated

for edge-colorings (i.e., K2-decompositions) by the observation that, because at each vertex a

color is prohibited from appearing on an incident edge, the usual edge-coloring technique of

interchanging colors along a 2-edge-colored path does not work. So completely new techniques

are needed.

In [21], the authors began to focus on the structure of equitable (s, p)-block-colorings

using the following concepts. The color vector of an equitable (s, p)-block-coloring E of an

H-decomposition (V (G), B) of a graph G is the vector V (E) = (c1(E), c2(E), . . . , cs(E)) in

which, for 1 ≤ i ≤ s, ci(E) is the number of vertices inG that are incident with a block of color

i; by renaming colors if necessary, it is always assumed that c1(E) ≤ c2(E) ≤ · · · ≤ cs(E).

The following definitions help us explore the color vector. For any graphs G and H and for

1 ≤ i ≤ s, define

(i) ϕ(H,G; s, p, i) = {ci(E) | E is an equitable (s, p)-block-coloring of an

H-decomposition of G},
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(ii) ψ′(H,G; s, p, i) = minϕ(H,G; s, p, i), and

(iii) ψ′(H,G; s, p, i) = maxϕ(H,G; s, p, i).

Because we are only considering s = 2t + 1 and p = 2t, we define ψ′
i(H,G) = ψ′(H,G;

2t+ 1, 2t, i) and ψ′
i(H,G) = ψ′(H,G; 2t+ 1, 2t, i).

As stated earlier, the motivation behind this work stems from design theory. Similar to the

last section, assume 2v = v′ and F is a 1-factor of Kv′ . In [21], the values of ψ′
1(C4, Kv′ − F )

and ψ′
2t+1(C4, Kv′ − F ) were found. In [25], ψ′

1(C4, Kv′ − F ) and ψ′
2t+1(C4, Kv′ − F ) were

found, along with ψ′
i(C4, Kv′ − F ) for 2 ≤ i ≤ 2t. In this chapter we find ψ′

2(C4, Kv′ − F )

(see Theorem 3.41), ψ′
t(C4, Kv′ −F ) (see Theorem 3.43), and ψ′

2t(C4, Kv′ −F ) (see Theorem

3.40).

We use the methods established in [21, 22, 25] to find ψ′
i(C4, Kv′ − F ) by considering

ψ′
i(K2, Kv). Thus, most of the chapter is focused on equitable (s, p)-edge-colorings of Kv,

finding ψ′
2t(K2, Kv) (see Theorem 3.24), ψ′

2(K2, Kv) (see Theorem 3.27), and ψ′
t(K2, Kv) (see

Theorem 3.34). This focus on these three special values of ψi(K2, Kv), namely when i ∈

{2, t, 2t}, is driven by the fascinating observation that in rare cases such as these the color vector

attaining this value is unique and contains only 2 different integers (see Propositions 3.25, 3.29,

and 3.35). These values are found using the graph theory technique of amalgamations and

may be of particular interest to graph theorists. The results concerning equitable (s, p)-C4-

decompositions of Kv′ − F then follow as corollaries (see Subsection 3.3.3).

3.3.1 Preliminary Results

Lemma 3.17 ([25]). Let v′ = 2v = 8tx + 4t + 2 for some integer x. Let E and E ′ be

an equitable (2t + 1, 2t)-edge-coloring and an equitable (2t + 1, 2t)- C4-coloring of Kv and

Kv′ − F , respectively. Then

b(E, u, i) = b(E ′, u′, i′) = 2x+ 1

for all u ∈ V (Kv), i ∈ C(E, u), u′ ∈ V (Kv′ − F ) and i′ ∈ C(E ′, u′).

34



In view of Lemma 3.17, because b(E, u, i) and b(E ′u′, i′) are independent of E, u, i, E ′,

u′, and i′, for the remainder of this section we define b(v) = b′(v′) = b(E, u, i) = b(E ′u′, i′) =

2x + 1. So for such an edge-coloring, at each vertex u, p = 2t colors each occur on exactly

b(v) = 2x + 1 edges incident with u, and the remaining s − p = 1 color appears on no edges

incident with u.

Lemma 3.18, proved in [21], will be used to establish lower bounds for ψ′
i(K2, Kv) in

Lemma 3.19.

Lemma 3.18 ([21]). Let v ≡ p + 1 (mod 2p). In any equitable (s, p)-edge-coloring E of Kv,

for 1 ≤ i ≤ s,

(i) ci(E) must be even,

(ii) ci(E) ≥ b(v) + 1 = v−1
p

+ 1, and

(iii) if v is odd then ci(E) ≤ v − 1.

The following generalizes results in [21] and [25] that considered the i = 2t+1 and i = 1

cases respectively. Let ⌈a⌉e denote the smallest even integer greater than or equal to a.

Lemma 3.19. Let v = 4tx + 2t + 1 for some integer x. Then ψ′
i(K2, Kv) ≥ max{b(v) +

1, ⌈v(s−1)−(s−i)(v−1)
i

⌉e} for 1 ≤ i ≤ s.

Proof. Let E be an equitable (2t+1, 2t)-edge-coloring of Kv. Because p = 2t and s = 2t+1,

we know each vertex must be missing exactly one color; so s− 1 colors appear at each vertex.

Counting in two ways, we have v(s − 1) =
∑s

i=1 ci(E). By the definition of the color vector,

c1(E) ≤ c2(E) ≤ · · · ≤ ci(E). Also, because v is odd, by Lemma 3.18 (iii), cj(E) ≤ v − 1;

in particular this holds for the s − i values (i + 1) ≤ j ≤ s. Thus,
∑s

i=1 ci(E) ≤ ici(E) +

(s− i)(v− 1). So, v(s− 1) ≤ ici(E) + (s− i)(v− 1). Therefore, ⌈v(s−1)−(s−i)(v−1)
i

⌉ ≤ ci(E).

By Lemma 3.18 (i), ci(E) must be even. Thus, ⌈v(s−1)−(s−i)(v−1)
i

⌉e ≤ ci(E). By Lemma

3.18 (ii) ci(E) ≥ b(v) + 1. Therefore, ψ′
i(K2, Kv) ≥ max{b(v) + 1, ⌈v(s−1)−(s−i)(v−1)

i
⌉e} for

1 ≤ i ≤ s.
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To this point we know of no case where ψ′
i is not equal to the lower bound in Lemma 3.19.

We plan to pursue this avenue of research in the future, hoping to show no such example exists.

To prove the results in the next subsection we use the proof technique of amalgamations. In

the following definitions and throughout the chapter, all sets are multisets, but are still denoted

using set notation. The amalgamation of a graph G defined by the amalgamation function

ϕ : V (G) → V (H) is the graph H , possibly with multiple edges and loops, with vertex set

V (H) and the multiset of edges E(H) = {{ϕ(a), ϕ(b)} | {a, b} ∈ E(G)}, where {ϕ(a), ϕ(a)}

denotes a loop on vertex ϕ(a). For each u ∈ V (H), let η(u) = |{ϕ−1(u)}|; η is said to

be the number function associated with ϕ. So η(u) is the number of vertices in G that were

amalgamated to form u. Given H , we define G to be an η-detachment of H if there exists an

amalgamation function ϕ : V (G) → V (H) such that |ϕ−1(u)| = η(u) for every u ∈ V (H).

Theorem 3.20 below is a special case of a theorem in [10]. Some notation is needed. Let ℓ(u)

be the number of loops on vertex uwhere each loop contributes 2 to the degree of u, letG(j) be

the subgraph of G induced by the edges colored j, let m(u, v) be the multiplicity (i.e. number

of edges) between the vertices u and v, and let x ≈ y represent ⌊y⌋ ≤ x ≤ ⌈y⌉.

Theorem 3.20 ([10]). LetH be a k-edge-colored graph and let η be a function from V (H) into

N such that for each w ∈ V (H), η(w) = 1 implies ℓH(w) = 0. Then there exists a loopless

η-detachment G of H with amalgamation function ϕ : V (G) → V (H), η being the number

function associated with ϕ, such that G satisfies the following conditions:

(i) dG(j)(u) ≈ dH(j)(w)/η(w) for each w ∈ V (H), each u ∈ ϕ−1(w), and for 1 ≤ j ≤ k;

(ii) mG(u, u
′) ≈ ℓH(w)/

(
η(w)
2

)
for each w ∈ V (H) with η(w) ≥ 2 and every pair of distinct

vertices u, u′ ∈ ϕ−1(w); and

(iii) mG(u, v) ≈ mH(w, z)/(η(w)η(z)) for every pair of distinct vertices w, z ∈ V (H), each

u ∈ ϕ−1(w), and each v ∈ ϕ−1(z).

The following two theorems will be used in the proofs of the main theorems in Subsection

3.3.2. Theorem 3.21, attributed to Petersen, can be easily proved using Euler circuits and 1-

factorizations of bipartite graphs.
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Theorem 3.21. Every 2k-regular graph can be partitioned into k edge-disjoint 2-factors.

Theorem 3.22 ([31]). For any k ≥ 1 and any bipartite graph B, there exists an equitable

(k, k)-edge-coloring of B.

In the next Subsection we prove our main theorems, finding ψ′
2t(K2, Kv), ψ′

2(K2, Kv),

and ψ′
t(K2, Kv). Each theorem is preceded by a lemma which uses Lemma 3.19 to establish a

lower bound. Then, the proof of each theorem constructs an edge-coloring reaching this lower

bound.

3.3.2 Main Results

In this subsection we focus on edge-colorings, finding ψ′
2t(K2, Kv), ψ′

2(K2, Kv), and

ψ′
t(K2, Kv). These are proved in Theorems 3.24, 3.27, and 3.34 using the method of amal-

gamations, applying Theorem 3.20 to a suitably chosen amalgamation of Kv. Theorem 3.24

could be proved more directly, but in this simpler setting it will help the reader to see the amal-

gamation technique in action before moving to the two more complicated cases. The values of

ψ′
2t(C4, K2v −F ), ψ′

2(C4, K2v −F ), and ψ′
t(C4, K2v −F ) will then be shown to be corollaries

of these results in the next subsection.

Lemma 3.23. Let v = 4tx+ 2t+ 1 for some integer x. Then, ψ′
2t(K2, Kv) ≥ 4tx+ 2t− 2x.

Proof. Using the postulated values of v, s, and i,

⌈v(s−1)−(s−i)(v−1)
i

⌉e

= ⌈ (4tx+2t+1)((2t+1)−1)−((2t+1)−2t)((4tx+2t+1)−1)
2t

⌉e

= ⌈8t2x+4t2−4tx
2t

⌉e

= 4tx+ 2t− 2x.

Thus, by Lemma 3.19, ψ′
2t(K2, Kv) ≥ max{b(v)+1, ⌈v(s−1)−(s−i)(v−1)

i
⌉e} = 4tx+2t−2x.

Throughout Section 3.3.2, for any simple graphG, let λG be the multigraph in which each

pair of vertices is joined by λ edges if they are adjacent in G and no edges otherwise. Also, at

times it will cause no confusion to let ci instead of ci(E) denote the ith component of the color

vector V (E).

37



Theorem 3.24. Let v = 4tx+ 2t+ 1 for some integer x. Then, ψ′
2t(K2, Kv) = 4tx+ 2t− 2x.

Proof. Because s = 2t + 1 and p = 2t, we want every vertex in our final graph, G = Kv, to

be missing exactly one color. This will be done so that color 2t + 1 is missing from exactly

one vertex and every other color is missing from exactly 2x + 1 vertices. This will show that

ψ′
2t(K2, Kv) ≤ 4tx + 2t + 1 − (2x + 1) = 4tx + 2t − 2x. Then it will follow from Lemma

3.23 that ψ′
2t(K2, Kv) = 4tx+ 2t− 2x.

Let U = {u1, . . . , u2t}. We will form the edge-colored graphs G1, G2, and G3 on the

vertex set U ∪ {w} as follows. Once this is done, defining G′ =
⋃3

i=1Gi, Theorem 3.20 will

be used to detach G′ to form G = Kv with our desired coloring. To do so, ϕ : V (G) → V (G′)

will be the amalgamation function with amalgamation numbers η(w) = 1 and η(ui) = 2x + 1

for 1 ≤ i ≤ 2t.

Define α to be a proper (2t+1)-edge-coloring ofK2t+1 on the vertex set U ∪{w}. Then α

is a near-one-factorization. Use colors {1, 2, . . . , 2t+ 1} so that each vertex ui ∈ U is missing

color i and w is missing color 2t+ 1.

(i) Define the (2t+1)-edge-colored graph G1 = (2x+1)K2t+1 on the vertex set U ∪{w} as

follows: for each {u, u′} ⊆ U ∪ {w} join u and u′ with 2x+ 1 edges colored α({u, u′}).

(ii) Define the (2t+1)-edge-colored graphG2 = (4x2+2x)K2t on the vertex setU as follows:

for each {u, u′} ⊆ U join u and u′ with (4x2 + 2x) edges colored α({u, u′}).

(iii) Define the (2t+1)-edge-colored graph G3 on the vertex set U by adding (2x2 + x) loops

on ui of color j if and only if α({w, ui}) = j. (So G3 has no edges; just loops, each

contributing degree 2 to its incident vertex.)

As indicated earlier in the proof, we now define G′ =
⋃3

i=1Gi. Apply Theorem 3.20 to

G′ using the number function η defined earlier to form G. We now show that G = Kv and that

the resulting edge-coloring of G has the desired properties.

We first show w is incident in G′ to b(v) edges of each color with one exception, a color

which appears on no edge, namely color 2t+ 1. We also conclude what this means for G. For

1 ≤ j ≤ 2t, by (i), dG′(j)(w) = 2x+1 = b(v), so dG(j)(w) = dG′(j)(w)/η(w) = b(v)/1 = b(v)
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by Theorem 3.20 (i). We will now check that each vertex detached from ui with 1 ≤ i ≤ 2t

is incident in G to b(v) edges of each color, with one exception, a color which appears on no

edge, namely color i. For 1 ≤ i ≤ 2t, 1 ≤ j ≤ 2t + 1, and i ̸= j, by (i) and either (ii) or (iii),

dG′(j)(ui) = (2x+1)+(4x2+2x) = 4x2+4x+1 or dG′(j)(ui) = (2x+1)+2(2x2+x) = 4x2+

4x+1 respectively, so dG(j)(a) = dG′(j)(ui)/η(ui) = (4x2+4x+1)/(2x+1) = 2x+1 = b(v)

for each a ∈ ϕ−1(ui) by Theorem 3.20 (i).

We will now check that there is exactly one edge between each pair of vertices in G.

For 1 ≤ i ≤ 2t, by (iii), ui has 2x2 + x loops, so mG(a, a
′) = ℓG′(ui)/

(
η(ui)
2

)
= (2x2 +

x)/( (2x+1)(2x)
2

) = 1 for each distinct a, a′ ∈ ϕ−1(ui) by Theorem 3.20 (ii). For 1 ≤ i, j ≤ 2t

and i ̸= j, by (i) and (ii), mG′(ui, uj) = (2x+1)+ (4x2+2x) = 4x2+4x+1, so mG(a, a
′) =

mG′(ui, uj)/(η(ui))(η(uj)) = (4x2 + 4x + 1)/(2x + 1)(2x + 1) = 1 for each a ∈ ϕ−1(ui)

and a′ ∈ ϕ−1(uj) by Theorem 3.20 (iii). For 1 ≤ i ≤ 2t, by (i), mG′(w, ui) = 2x + 1, so

mG(a, a
′) = mG′(w, ui)/(η(w))(η(ui)) = (2x + 1)/(1)(2x + 1) = 1 for a ∈ ϕ−1(w) and for

each a′ ∈ ϕ−1(ui) by Theorem 3.20 (iii). Therefore, every vertex in G is attached to each other

vertex with exactly one edge. Thus, G = Kv.

The following proposition highlights the interesting property that the color vector used in

Theorem 3.24 to find ψ2t(K2, Kv) is unique and contains only 2 different integers.

Proposition 3.25. Let v = 4tx+2t+1 for some integer x. In any equitable (s, p)-edge-coloring

of Kv with c2t = ψ′
2t(K2, Kv), c1 = c2 = · · · = c2t = ψ′

2t(K2, Kv) and cs = v − 1.

Proof. Since ψ′
2t(K2, Kv) = 4tx+ 2t− 2x, by definition of color vector and Lemma 3.18,

s∑
i=1

ci ≤ 2t(4tx+ 2t− 2x) + (v − 1)

with equality if and only if

ci =


4tx+ 2t− 2x for 1 ≤ i ≤ 2t, and

v − 1 for i = s.
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Because p = 2t and s = 2t + 1, we know each vertex must be missing exactly one color;

so s− 1 colors appear at each vertex. Counting in two ways, we have (s− 1)v =
∑s

i=1 ci(E).

The result follows since,∑s
i=1 ci = (s− 1)v

= 2t(4tx+ 2t+ 1)

= 2t(4tx+ 2t− 2x) + 4tx+ 2t

= 2t(4tx+ 2t− 2x) + (v − 1).

Lemma 3.26. Let v = 4tx+ 2t+ 1 for some integer x. Then, ψ′
2(K2, Kv) ≥ 2tx+ 2t.

Proof. Using the postulated values of v, s, and i,

⌈v(s−1)−(s−i)(v−1)
i

⌉e

= ⌈ (4tx+2t+1)((2t+1)−1)−((2t+1)−2)((4tx+2t+1)−1)
2

⌉e

= ⌈4tx+4t
2

⌉e

= 2tx+ 2t.

Thus, by Lemma 3.19, ψ′
2(K2, Kv) ≥ max{b(v) + 1, ⌈v(s−1)−(s−i)(v−1)

i
⌉e} = 2tx+ 2t.

Theorem 3.27. Let v = 4tx+ 2t+ 1 for some integer x. Then ψ′
2(K2, Kv) = 2tx+ 2t.

Proof. Because s = 2t + 1 and p = 2t, we want every vertex in our final graph, G = Kv, to

be missing exactly one color. This will be done so that colors 1 and 2 are each missing from

exactly 2tx + 1 vertices and every other color is missing from exactly one vertex. This will

show that ψ′
2(K2, Kv) ≤ 4tx+2t+1− (2tx+1) = 2tx+2t. Then it will follow from Lemma

3.26 that ψ′
2(K2, Kv) = 2tx+ 2t.

Let U = {u1, u2}, W = {w3, . . . , w2t+1} and V = {v1, v2}. We will form the edge-

colored graphs G1, . . . , G10 on the vertex set U ∪W ∪ V as follows. A general approach is

described below similar to the proof used for the next theorem, but also for this theorem a

specific example of G1, . . . G10 follows in Example 3.28 to potentially help the reader. In (ii)

and (iii) below, the vertex z /∈ U∪W ∪V is introduced simply to ensure that wi is missing color

iwhenGj (j ∈ {2, 3}) is defined. Once this is done, definingG′ =
⋃10

i=1Gi, Theorem 3.20 will

be used to detach G′ to form G = Kv with our desired coloring. To do so, ϕ : V (G) → V (G′)
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will be the amalgamation function with amalgamation numbers η(ui) = 1 for 1 ≤ i ≤ 2,

η(wi) = 1 for 3 ≤ i ≤ 2t+ 1, and η(vi) = 2tx for 1 ≤ i ≤ 2.

i) Define the graph G1 = K2t+1 on the vertex set U ∪W . Use a near-one-factorization of G1

to properly color the edges of G1 with colors {1, 2, . . . , 2t+1} so that each vertex ui ∈ U

is missing color i and each vertex wj ∈ W is missing color j.

ii) Consider G′
2 = (2t − 1)K2t−1,1 ∪K2t−1,1 with parts W and {v1} and W and {z} respec-

tively. Using Theorem 3.22, equitably (2t, 2t)-edge-colorG′
2 with colors 2, . . . , 2t+1 such

that the edge {wi, z} is colored i. Form the graph G2 = (2tx − x)K2t−1,1 from G′
2 with

parts W and {v1} by deleting z and replacing each remaining edge {u, v} in G′
2 colored

j with x edges joining u and v colored j in G2. (So v1 is incident with (2t − 1)x edges

colored 2 and (2t− 2)x edges of each color 3, 4, . . . , 2t+ 1.)

iii) Consider G′
3 = (2t − 1)K2t−1,1 ∪K2t−1,1 with parts W and {v2} and W and {z} respec-

tively. Using Theorem 3.22, equitably (2t, 2t)-edge-colorG′
2 with colors 1, 3, 4, . . . , 2t+1

such that the edge {wi, z} is colored i. Form the graph G3 = (2tx − x)K2t−1,1 from G′
3

with parts W and {v2} by deleting z and replacing each remaining edge {u, v} in G′
3 col-

ored j with x edges joining u and v colored j in G3. (So v2 is incident with (2t − 1)x

edges colored 1 and (2t− 2)x edges of each color 3, . . . , 2t+ 1.)

iv) Define the graph G4 = x(K2t−1,1) with parts W and {v1} with all edges colored 2.

v) Define the graph G5 = x(K2t−1,1) with parts W and {v2} with all edges colored 1.

vi) Define the graph G6 to be the bipartite graph with parts U and V such that ui and vj are

connected with 2tx − 2x edges if i = j and 2tx edges otherwise. Using Theorem 3.22,

equitably (2t− 1, 2t− 1)-edge-color G6 with colors 3, . . . , 2t+ 1. (So, for 1 ≤ i ≤ 2 and

3 ≤ j ≤ 2t+ 1, vi is incident to ((2tx− 2x) + 2tx)/(2t− 1) = 2x edges of color j.)

vii) Let G7 = (2x)K1,1 with parts {u1} and {v1} with all edges colored 2.

viii) Let G8 = (2x)K1,1 with parts {u2} and {v2} with all edges colored 1.
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ix) Let G9 be formed from 2tx2− tx loops colored 2 on vertex v1 and 2tx2− tx loops colored

1 on vertex v2.

x) LetG10 be formed from (4t2x2)K2 on the vertex set V by adding 2t2x2−2tx2 loops to each

vertex. Pair the loops forming edge-disjoint 2-factors (each loop contributes 2 to the degree

of its incident vertex) and pair the edges to partition (4t2x2)K2 into 2-factors. Therefore,

G10 is decomposed into (4t2x2−2tx2) 2-factors. By appropriately combining the 2-factors,

decomposeG10 into 2t−1 (4tx2)-factors, coloring their edges with 3, 4, . . . , 2t+1 in turn.

As indicated earlier in the proof, we now define G′ = ∪10
i=1Gi. Apply Theorem 3.20 to G′

using the number function η defined earlier to form G. We now show that G = Kv and the the

resulting edge-coloring of G has the desired properties.

We first show the vertices in the sets U and W are incident in G′ to b(v) edges of each

color with one exception, a color which appears on no edges, namely color i for each ui ∈ U

and color j for each wj ∈ W . We also conclude what this means for G. For 1 ≤ i ≤ 2 and

3 ≤ j ≤ 2t+1, using (i) and (vi), dG′(j)(ui) = 1+2x = b(v), so dG(j)(a) = dG′(j)(ui)/η(ui) =

b(v)/1 = b(v) for each a ∈ ϕ−1(ui) by Theorem 3.20 (i). For 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, and

i ̸= j, using (i) and (vii) or (viii), dG′(j)(ui) = 1+2x = b(v), so dG(j)(a) = dG′(j)(ui)/η(ui) =

b(v)/1 = b(v) for each a ∈ ϕ−1(ui) by Theorem 3.20 (i). For 3 ≤ i ≤ 2t+ 1, 1 ≤ j ≤ 2t+ 1,

and i ̸= j, using (i) and (ii) and (iii) if 3 ≤ j ≤ 2t + 1, (ii) and (iv) if j = 2, or (iii) and (v) if

j = 1, dG′(j)(wi) = 1 + x + x = b(v), so dG(j)(a) = dG′(j)(wi)/η(wi) = b(v)/1 = b(v) for

each a ∈ ϕ−1(wi) by Theorem 3.20 (i).

We will now check that each vertex detached from vi with 1 ≤ i ≤ 2 is incident in G to

b(v) edges of each color with one exception, a color which appears on no edge, namely color

i for vi. For 3 ≤ j ≤ 2t + 1, using (ii), (vi), and (x), dG′(j)(v1) = (2t − 2)x + 2x + 4tx2 =

2tx + 4tx2, so dG(j)(a) = dG′(j)(v1)/η(v1) = (2tx + 4tx2)/(2tx) = 1 + 2x = b(v) for each

a ∈ ϕ−1(v1) by Theorem 3.20 (i). Using (ii), (iv), (vii), and (ix), dG′(2)(v1) = (2t−1)x+(2t−

1)x+2x+2(2tx2− tx) = 2tx+4tx2, so dG(2)(a) = dG′(2)(v1)/η(v1) = (2tx+4tx2)/(2tx) =

1 + 2x = b(v) for each a ∈ ϕ−1(v1) by Theorem 3.20 (i). Similarly, for 3 ≤ j ≤ 2t + 1,

using (iii), (vi), and (x), dG′(j)(v2) = (2t − 2)x + 2x + 4tx2 = 2tx + 4tx2, so dG(j)(a) =

42



dG′(j)(v2)/η(v2) = (2tx + 4tx2)/(2tx) = 1 + 2x = b(v) for each a ∈ ϕ−1(v2) by Theorem

3.20 (i). Using (iii), (v), (viii), and (ix), dG′(1)(v2) = (2t−1)x+(2t−1)x+2x+2(2tx2−tx) =

2tx + 4tx2, so dG(1)(a) = dG′(1)(v2)/η(v2) = (2tx + 4tx2)/(2tx) = 1 + 2x = b(v) for each

a ∈ ϕ−1(v2) by Theorem 3.20 (i).

We will now check there is exactly one edge between each pair of vertices in G. For

b, b′ ∈ (U∪W ), by (i),mG′(b, b′) = 1, somG(a, a
′) = mG′(b, b′)/(η(b)η(b′)) = 1/((1)(1)) = 1

for each a ∈ ϕ−1(b) and a′ ∈ ϕ−1(b′) by Theorem 3.20 (iii). For each ui ∈ U and vj ∈ V , by

(vi) if i ̸= j, (vi) and (vii) if i = j = 1, or (vi) and (viii) if i = j = 2, mG′(ui, vj) = 2tx,

mG′(ui, vj) = (2tx − 2x) + 2x = 2tx, or mG′(ui, vj) = (2tx − 2x) + 2x = 2tx respectively.

Therefore, mG(a, a
′) = mG′(u, v)/(η(u)η(v)) = 2tx/((1)(2tx)) = 1 for each u ∈ U , v ∈

V , a ∈ ϕ−1(u) and a′ ∈ ϕ−1(v) by Theorem 3.20 (iii). For each w ∈ W and v ∈ V ,

by either (ii) and (iv) or (iii) and (v), mG′(w, v) = x(2t − 1) + x = 2tx, so mG(a, a
′) =

mG′(w, v)/(η(w)η(v)) = 2tx/((1)(2tx)) = 1 for each a ∈ ϕ−1(w) and a′ ∈ ϕ−1(v) by

Theorem 3.20 (iii). For each distinct v, v′ ∈ V , by (x), mG′(v, v′) = 4t2x2, so

mG(a, a
′) = mG′(v, v′)/(η(v)η(v′)) = 4t2x2/((2tx)(2tx)) = 1

for each a ∈ ϕ−1(v) and a′ ∈ ϕ−1(v′) by Theorem 3.20 (iii). Finally, for 1 ≤ i ≤ 2, by (ix)

and (x), ℓ(vi) = (2tx2 − tx) + (2t2x2 − 2tx2) = 2t2x2 − tx, so mG(a, a
′) = ℓG′(vi)/

(
η(vi)
2

)
=

(2t2x2−tx)/( (2tx)(2tx−1)
2

) = 1 for each distinct a, a′ ∈ ϕ−1(vi) by Theorem 3.20 (ii). Therefore,

every vertex in G is attached to each other vertex with exactly one edge. Thus, G = Kv.

Example 3.28. The following is an example of a specific coloring and construction ofG′ which

could emerge from the general construction described in Theorem 3.27.

(i) Use a near-one-factorization to properly color K2t+1 with vertex set U ∪W with colors

{1, 2, . . . 2t+ 1} so that ui is missing color i and wj is missing color j.

(ii) Join wi for 3 ≤ i ≤ 2t+ 1 with x edges of each color in {2, . . . 2t+ 1} \ {i} to v1.

(iii) Join wi for 3 ≤ i ≤ 2t+ 1 with x edges of each color in {1, 3, 4, . . . 2t+ 1} \ {i} to v2.

(iv) Join wi for 3 ≤ i ≤ 2t+ 1 with x edges of of color 2 to v1.
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(v) Join wi for 3 ≤ i ≤ 2t+ 1 with x edges of of color 1 to v2.

(vi) Join ui to vj for 1 ≤ i, j ≤ 2 with x edges of each color in {4, . . . , 2t+ 1}. Additionally,

join ui and vj with 2x edges of color 3 for i ̸= j.

(vii) Join u1 to v1 with 2x edges colored 2.

(viii) Join u2 to v2 with 2x edges colored 1.

(ix) Attach (2tx)(2tx−1)
2

− (t − 1)(2tx2) loops of color 2 to v1 and (2tx)(2tx−1)
2

− (t − 1)(2tx2)

loops of color 1 to v2.

(x) Attach 2t2x2

t
loops of each color in {3, . . . , t+ 1} to each of v1 and v2. Join v1 to v2 using

4t2x2

t
edges of each color in {t+ 2, . . . 2t+ 1}.

Proposition 3.29. Let v = 4tx+2t+1 for some integer x. In any equitable (s, p)-edge-coloring

of Kv with c2 = ψ′
2(K2, Kv), c1 = c2 = ψ′

2(K2, Kv) and c3 = c4 = · · · = cs = v − 1.

Proof. Since ψ′
2(K2, Kv) = 2tx+ 2t, by definition of color vector and Lemma 3.18,

s∑
i=1

ci ≤ 2(2tx+ 2t) + (s− 2)(v − 1)

with equality if and only if

ci =


2tx+ 2t for 1 ≤ i ≤ 2, and

v − 1 for 3 ≤ i ≤ s.

Because p = 2t and s = 2t + 1, we know each vertex must be missing exactly one color;

so s− 1 colors appear at each vertex. Counting in two ways, we have v(s− 1) =
∑s

i=1 ci(E).

The result follows since,∑s
i=1 ci = (s− 1)v

= 2t(4tx+ 2t+ 1)

= 2(2tx+ 2t) + 2t(4tx+ 2t)− 1(4xt+ 2t)

= 2(2tx+ 2t) + (2t− 1)(4tx+ 2t)
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= 2(2tx+ 2t) + (s− 2)(v − 1).

Next, we will find ψ′
t(K2, Kv). We first note the case where t = 1 has been settled since

ψ′
1(K2, Kv) was found in [25], as stated below.

Theorem 3.30 ([25]). Let v = 4tx+2t+1 for some integer x. Then ψ′
1(K2, Kv) = max{b(v)+

1, 2t}.

Lemma 3.31 and Lemma 3.32 use constructions similar to the well-known Walecki con-

struction and will be used in the proof of Theorem 3.34.

Lemma 3.31. There exists a (t− 1)-cycle system of 2Kt.

Proof. Let V (2Kt) = {a0, a1, . . . , at−1}. Define the cycles

C ′ = (a0, a1, . . . , at−2)

and

C + j = (h1,j, h2,j, . . . h(t−2),j, at−1)

where hi,j = a((−1)i⌊ i
2
⌋+j+1) (mod t−1). Thus, {C + j | 0 ≤ j ≤ t− 2} ∪ {C ′} is a (t− 1)-cycle

system on 2Kt.

Lemma 3.32. The graph Kc
2 ∨ 2Kt with {b1, b2} being the vertex set of KC

2 and {a0, . . . at−1}

the vertex set of Kt can be decomposed into a t-cycle on the vertices a0, . . . at−1 and t paths,

each path being of length t with ends b1 and b2.

Proof. Define the cycle C = (a0, . . . , at−1). Define the path

P + j = (b1, h1,j, h2,j, . . . h(t−1),j, b2)

where hi,j = a((−1)i⌊ i
2
⌋+j+1) (mod t). Thus, {P + j | 0 ≤ j ≤ t − 1} ∪ {C} is the desired

decomposition.

Lemma 3.33. Let v = 4tx + 2t + 1 for some integer x and t ≥ 2. Then, ψ′
t(K2, Kv) ≥

4tx+ 2t− 4x.
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Proof. Using the postulated values of v, s, and i,

⌈v(s−1)−(s−i)(v−1)
i

⌉e

= ⌈ (4tx+2t+1)((2t+1)−1)−((2t+1)−t)((4tx+2t+1)−1)
t

⌉e

= ⌈4t2x+2t2−4tx
t

⌉e

= 4tx+ 2t− 4x.

So, using Lemma 3.19, ψ′
t(K2, Kv) ≥ max{b(v) + 1, ⌈v(s−1)−(s−i)(v−1)

i
⌉e} ≥ 4tx + 2t −

4x.

Theorem 3.34. Let v = 4tx + 2t + 1 for some integer x and t ≥ 2. Then, ψ′
t(K2, Kv) =

4tx+ 2t− 4x.

Proof. Because s = 2t+ 1 and p = 2t, we want every vertex in our final graph, G = Kv, to be

missing exactly one color. This will be done so that colors t + 1, . . . , 2t + 1 are each missing

from exactly one vertex and colors 1, . . . , t are each missing from exactly 4x+1 vertices. This

will show that ψ′
t(K2, Kv) ≤ 4tx + 2t + 1 − (4x + 1) = 4tx + 2t − 4x. Then it will follow

from Lemma 3.33 that ψ′
t(K2, Kv) = 4tx+ 2t− 4x.

Let U = {u1, . . . , ut}, U ′ = {ut+1, . . . u2t−1}, W = {w2t, w2t+1}, and V = {v1, . . . , vt}.

We will form the edge-colored graphsG1, . . . , G7 on the vertex setU∪U ′∪W∪V as follows. In

(ii), (iii), and (iv) below, z1 and z2 are introduced simply to ensure that vj is missing color j and

ui is missing color i respectively when Gk is defined for k = 2, 3, 4. Once this is done, defining

G′ =
⋃7

i=1Gi, Theorem 3.20 will be used to detach G′ to form G = Kv with our desired

coloring. To do so, ϕ : V (G) → V (G′) will be the amalgamation function with amalgamation

numbers η(ui) = 1 for 1 ≤ i ≤ 2t − 1, η(wi) = 1 for 2t ≤ i ≤ 2t + 1, and η(vi) = 4x for

1 ≤ i ≤ t.

(i) Define the graph G1 = K2t+1 with vertex set U ∪ U ′ ∪W . Use a near-one-factorization

of G1 to properly color the edges of G1 with colors {1, 2, . . . , 2t+ 1} so that each vertex

ui ∈ U ∪ U ′ is missing color i and each vertex wj ∈ W is missing color j.

(ii) Let H = 2Kt,t with parts U and V , H ′ = (t+1)K2 on the vertex set {z1, z2}, H ′′ = K1,t

with parts {z1} and V , andH ′′′ = K1,t with parts {z2} andU . LetG′
2 = H∪H ′∪H ′′∪H ′′′.
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Properly edge-color G′
2 with 2t+1 colors such that the t+1 edges with endpoints z1 and

z2 are colored t + 1, . . . 2t + 1. Rename the vertices in U ∪ V so that color i is on edge

{ui, z2} and {vi, z1}. Form the graph G2 = (4x)Kt,t from G′
2 with parts U and V by

deleting z1 and z2 and then replacing each remaining edge {u, v} in G′
2 colored j with 2x

edges joining u and v colored j in G2.

(iii) Let G′
3 = Kt+1,t+1 with parts U ′ ∪W and V ∪ {z2}. Properly edge-color G′

3 with colors

t+ 1, . . . , 2t+ 1 such that the edge {ui, z2} is colored i and the edge {wj, z2} is colored

j for each ui ∈ U ′ and wj ∈ W . Form the graph G3 = (2x)Kt+1,t from G′
3 with parts

U ′∪W and V by deleting z2 and then replacing each remaining edge {u, v} inG′
3 colored

j with 2x edges joining u and v colored j in G3.

(iv) Let G′
4 = Kt,t with parts U ′ ∪ {z1} and V . Properly edge-color G′

4 with colors 1, . . . , t

such that the edge {z1, vi} is colored i. Form the graph G4 = (2x)Kt−1,t from G′
4 with

partsU ′ and V by deleting z1 and then replacing each remaining edge {u, v} inG′
4 colored

j with 2x edges joining u and v colored j in G4.

(v) Let G′
5 = KC

2 ∨ 2Kt with W being the vertex set of KC
2 and V being the vertex set of

the 2Kt. Use Lemma 3.32 to decompose G′
5 into a t-cycle on the vertices v1, . . . vt and t

paths, each path being of length t with ends w2t and w2t+1. Color the edges of the t-cycle

with color t + 1. Each path Pi, for 1 ≤ i ≤ t, is missing exactly one vertex, namely

vi; color the edges of Pi with color i. Define the graph G5 = (2x)(KC
2 ∨ 2Kt) with W

being the vertex set of the KC
2 and V being the vertex set of the Kt by replacing each

edge {u, v} in G′
5 colored j with 2x edges joining u and v colored j in G5.

(vi) Let G′
6 = 2Kt with vertex set V . By Lemma 3.31, G′

6 can be decomposed into (t − 1)-

cycles, C1, . . . , Ct, where, for 1 ≤ i ≤ t, Ci is missing exactly one vertex, namely vi.

Color the edges of Ci with color i for 1 ≤ i ≤ t. Define the graph G6 = (8x2 − 4x)Kt

with vertex set V by replacing each edge {u, v} in G′
6 colored j with 4x2 − 2x edges

joining u and v colored j in G6.
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(vii) Let G7 be formed from (8x2)Kt on vertex set V by adding 8x2− 2x loops to each vertex.

Partition the loops into edge-disjoint 2-factors (each loop contributes 2 to the degree of its

incident vertex) and use Theorem 3.21 to partition (8x2)Kt into edge-disjoint 2-factors.

Therefore, G7 is decomposed into 8x2 − 2x + 8x2(t−1)
2

= 4x2 − 2x + 4x2t 2-factors. By

appropriately combining the 2-factors, decomposeG7 into one (8x2−4x)-factor, coloring

its edges (t+ 1), and t (8x2)-factors, coloring their edges t+ 2, . . . , 2t+ 1 in turn.

As indicated earlier in the proof, we now define G′ =
⋃7

i=1Gi. Apply Theorem 3.20 to

G′ using the number function η defined earlier to form G. We now show that G = Kv and that

the resulting edge-coloring of G has the desired properties.

We first show the vertices in the set U , U ′, and W are incident in G′ to b(v) edges of

each color with one exception, a color which appears on no edge, namely color i for each

ui ∈ U ∪ U ′ and color j for each wj ∈ W . We also conclude what this means for G. For

1 ≤ i ≤ t, 1 ≤ j ≤ 2t + 1, and i ̸= j, using (i) and (ii), dG′(j)(ui) = 1 + 2x = b(v), so

dG(j)(a) = dG′(j)(ui)/η(ui) = b(v)/1 = b(v) for each a ∈ ϕ−1(ui) by Theorem 3.20 (i). For

t + 1 ≤ i ≤ 2t − 1 and t + 1 ≤ j ≤ 2t + 1, using (i) and (iii), dG′(j)(ui) = 1 + 2x = b(v),

so dG(j)(a) = dG′(j)(ui)/η(ui) = b(v)/1 = b(v) for each a ∈ ϕ−1(ui) by Theorem 3.20 (i).

For t + 1 ≤ i ≤ 2t − 1 and 1 ≤ j ≤ t, using (i) and (iv), dG′(j)(ui) = 1 + 2x = b(v), so

dG(j)(a) = dG′(j)(ui)/η(ui) = b(v)/1 = b(v) for each a ∈ ϕ−1(ui) by Theorem 3.20 (i). For

2t ≤ i ≤ 2t+ 1, t+ 1 ≤ j ≤ 2t+ 1, and i ̸= j, using (i) and (iii), dG′(j)(wi) = 1 + 2x = b(v),

so dG(j)(a) = dG′(j)(wi)/η(wi) = b(v)/1 = b(v) for each a ∈ ϕ−1(wi) by Theorem 3.20 (i).

For 2t ≤ i ≤ 2t + 1 and 1 ≤ j ≤ t, using (i) and (v), dG′(j)(wi) = 1 + 2x = b(v), so

dG(j)(a) = dG′(j)(wi)/η(wi) = b(v)/1 = b(v) for each a ∈ ϕ−1(wi) by Theorem 3.20 (i).

We will now check that each vertex detached from vi with 1 ≤ i ≤ t is incident in G to

b(v) edges of all colors with one exception, a color which appears on no edge, namely color i

for each vertex detached from vi. For 1 ≤ i ≤ t, 1 ≤ j ≤ t, and i ̸= j, by (ii), (iv), (v), and

(vi), dG′(j)(vi) = 2x+2x+2(2x)+2(4x2− 2x) = 8x2+4x, so dG(j)(a) = dG′(j)(vi)/η(vi) =

(8x2+4x)/(4x) = 2x+1 = b(v) for each a ∈ ϕ−1(vi) by Theorem 3.20 (i). For 1 ≤ i ≤ t and

j = t+ 1, by (ii), (iii), (v), and (vii), dG′(j)(vi) = 2x+ 2x+ 2(2x) + (8x2 − 4x) = 8x2 + 4x,

so dG(j)(a) = dG′(j)(vi)/η(vi) = (8x2 + 4x)/(4x) = 2x + 1 = b(v) for each a ∈ ϕ−1(vi) by
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Theorem 3.20 (i). For 1 ≤ i ≤ t and t + 2 ≤ j ≤ 2t + 1, by (ii), (iii), and (vii), dG′(j)(vi) =

2x+2x+8x2 = 8x2+4x, so dG(j)(a) = dG′(j)(vi)/η(vi) = (8x2+4x)/(4x) = 2x+1 = b(v)

for each a ∈ ϕ−1(vi) by Theorem 3.20 (i).

We will now check there is exactly one edge between each pair of vertices in G. By (i),

mG′(b, b′) = 1 for b, b′ ∈ (U ∪U ′∪W ), so mG(a, a
′) = mG′(b, b′)/(η(b)η(b′)) = 1/((1)(1)) =

1 for each a ∈ ϕ−1(b) and a′ ∈ ϕ−1(b′) by Theorem 3.20 (iii). For each u ∈ U and v ∈ V ,

by (ii), mG′(u, v) = 4x, so mG(a, a
′) = mG′(u, v)/(η(u)η(v)) = 4x/((1)(4x)) = 1 for each

a ∈ ϕ−1(u) and a′ ∈ ϕ−1(v) by Theorem 3.20 (iii). For u′ ∈ U ′ and v ∈ V , by (iii) and (iv),

mG′(u′, v) = 2x + 2x = 4x, so mG(a, a
′) = mG′(u′, v)/(η(u′)η(v)) = 4x/((1)(4x)) = 1 for

each a ∈ ϕ−1(u′) and a′ ∈ ϕ−1(v) by Theorem 3.20 (iii). For w ∈ W and v ∈ V , by (iii) and

(v), mG′(w, v) = 2x + 2x = 4x, so mG(a, a
′) = mG′(w, v)/(η(w)η(v)) = 4x/((1)(4x)) = 1

for each a ∈ ϕ−1(w) and a′ ∈ ϕ−1(v) by Theorem 3.20 (iii). For v, v′ ∈ V , by (v), (vi), and

(vii), mG′(v, v′) = 4x + (8x2 − 4x) + 8x2 = 16x2, so mG(a, a
′) = mG′(v, v′)/(η(v)η(v′)) =

16x2/((4x)(4x)) = 1 for each a ∈ ϕ−1(v) and a′ ∈ ϕ−1(v′) by Theorem 3.20 (iii). Finally,

for 1 ≤ i ≤ t by (vii), vi has 8x2 − 2x loops, so mG(a, a
′) = ℓG′(vi)/

(
η(vi)
2

)
= (8x2 −

2x)/( (4x)(4x−1)
2

) = 1 for each distinct a, a′ ∈ ϕ−1(vi) by Theorem 3.20 (ii). Therefore, every

vertex in G is attached to each other vertex with exactly one edge. Thus, G = Kv.

Proposition 3.35. Let v = 4tx + 2t + 1 for some integer x. In any equitable (s, p)-edge-

coloring of Kv with ct = ψ′
t(K2, Kv), c1 = c2 = · · · = ct = ψ′

t(K2, Kv) and ct+1 = ct+2 =

· · · = cs = v − 1.

Proof. Since ψ′
t(K2, Kv) = 4tx+ 2t− 4x, by definition of color vector and Lemma 3.18,

s∑
i=1

ci ≤ t(4tx+ 2t− 4x) + (s− t)(v − 1)

with equality if and only if

ci =


4tx+ 2t− 4x for 1 ≤ i ≤ t, and

v − 1 for t+ 1 ≤ i ≤ s.
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Because p = 2t and s = 2t + 1, we know each vertex must be missing exactly one color;

so s− 1 colors appear at each vertex. Counting in two ways, we have v(s− 1) =
∑s

i=1 ci(E).

The result follows since,∑s
i=1 ci = (s− 1)v

= 2t(4tx+ 2t+ 1)

= t(4tx+ 2t− 4x) + t(4tx+ 2t) + 4xt+ 2t

= t(4tx+ 2t− 4x) + (t+ 1)(4tx+ 2t)

= t(4tx+ 2t− 4x) + (s− t)(v − 1).

The following corollary of our main theorems obtains additional values ψ′
i(K2, Kv).

Corollary 3.36. If i < j and

max{b(v) + 1, ⌈v(s− 1)− (s− i)(v − 1)

i
⌉e} = ψ′

j(K2, Kv),

then ψ′
i(K2, Kv) = ψ′

j(K2, Kv).

Proof. By Lemma 3.19, ψ′
i(K2, Kv) ≥ max{b(v)+1, ⌈v(s−1)−(s−i)(v−1)

i
⌉e}. Using assumption,

ψ′
i(K2, Kv) ≥ ψ′

j(K2, Kv). By definition of color vector, ψ′
i(K2, Kv) ≤ ψ′

j(K2, Kv). Thus,

ψ′
i(K2, Kv) = ψ′

j(K2, Kv).

The significance of the previous corollary is demonstrated in the following example. It is

extremely useful when j > t which is seen in Example 3.37 (ii).

Example 3.37.

(i) Let x = 1 and t = 5. Thus, v = 4tx + 2t + 1 = 31. By Theorem 3.34, ψ′
5(K2, Kv) =

4tx+ 2t− 4x = 26. Also, for i = 4,

max{b(v) + 1, ⌈v(s−1)−(s−i)(v−1)
i

⌉e}

= max{(2(1) + 1) + 1, ⌈31(11−1)−(11−4)(31−1)
4

⌉e

= 26.

By Corollary 3.36, ψ′
4(K2, Kv) = ψ′

5(K2, Kv) = 26.
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(ii) Let x = 2 and t = 4. Thus, v = 4tx + 2t + 1 = 41. By Theorem 3.24, ψ′
8(K2, Kv) =

4tx+2t− 2x = 36. Also, for i = 6 and i = 7, max{b(v)+ 1, ⌈v(s−1)−(s−i)(v−1)
i

⌉e} = 36.

By Corollary 3.36, ψ′
6(K2, Kv) = ψ′

7(K2, Kv) = ψ′
8(K2, Kv) = 36.

3.3.3 Extension to C4-Decompositions

In order to be consistent with notation in previous literature, we define v′ = 2v ≡ 4t +

2 (mod 8t). Now we will combine the main theorems from the last section with the tech-

niques used in [22, 21, 25] to find ψ′
2t(C4, Kv′ − F ), ψ′

2(C4, Kv′ − F ), and ψ′
t(C4, Kv′ − F ).

Although they could be called corollaries, we call them theorems here because they may be of

most interest to design theorists.

Recall, Lemma 3.1 which is stated in more detail below.

Lemma 3.1. If there exists an equitable (s, p)-edge-coloring E of G, then there exists an equi-

table (s, p)-C4-coloring E ′ of G× 2. Futhermore, 2ci(E) = ci(E
′) for 1 ≤ i ≤ s.

Lemma 3.38, proved in [25], will be used to establish lower bounds for ψ′
i(C4, Kv′ − F )

in Lemma 3.39.

Lemma 3.38 ([25]). Let v′ ≡ 4t+ 2 (mod 8t). In any equitable (2t+ 1, 2t)-C4-coloring E of

Kv′ − F , for 1 ≤ i ≤ 2t+ 1,

(i) 4 divides ci(E),

(ii) ci(E) ≥ 2(b′(v′) + 1) = 2(v−1
p

+ 1), and

(iii) ci(E) ≤ v′ − 2.

Lemma 3.39 generalizes results in [21] and [25] that considered the i = 2t + 1 and i = 1

cases respectively. The statement and proof of Lemma 3.39 is similar to Lemma 3.19. Let

⌈a⌉d...4 be the smallest integer greater than or equal to a and divisible by 4.

Lemma 3.39. Let v′ = 8tx+4t+2 for some integer x. Then, ψ′
i(C4, Kv′−F ) ≥ max{2(b′(v′)+

1), ⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4} for 1 ≤ i ≤ s.
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Proof. Let E be any equitable (2t+1, 2t)-coloring of a C4 decompostion of Kv′ −F . Because

p = 2t and s = 2t+1, we know each vertex must be missing exactly one color; so s− 1 colors

appear at each vertex. Counting in two ways, we have v′(s−1) =
∑s

i=1 ci(E). By the definition

of the color vector, c1(E) ≤ c2(E) ≤ · · · ≤ ci(E). By Lemma 3.38 (iii), cj(E) ≤ v′ − 2 in

particular for the s− i values (i + 1) ≤ j ≤ s. Thus,
∑s

i=1 ci(E) ≤ ici(E) + (s− i)(v′ − 2).

So, v′(s− 1) ≤ ici(E) + (s− i)(v′ − 2). Therefore, ⌈v′(s−1)−(s−i)(v′−2)
i

⌉ ≤ ci(E). By Lemma

3.38 (i), ci(E) must be divisible by 4. Thus, ⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4 ≤ ci(E). By Lemma 3.38

(ii) ci(E) ≥ 2(b′(v′)+1). Therefore, ψ′
i(K2, Kv) ≥ max{2(b′(v′)+1), ⌈v′(s−1)−(s−i)(v′−2)

i
⌉d...4}

for 1 ≤ i ≤ s.

Next, we use Lemma 3.1, Lemma 3.39, and the main theorems from Subsection 3.3.2 to

find ψ′
2t(C4, Kv′ − F ), ψ′

2(C4, Kv′ − F ), and ψ′
t(C4, Kv′ − F ).

Theorem 3.40. Let v′ = 8tx+4t+2 for some integer x. Then, ψ′
2t(C4, Kv′−F ) = 8tx+4t−4x.

Proof. By Lemma 3.1 and Theorem 3.24, ψ′
2t(C4, Kv′ − F ) ≤ 2(4tx + 2t − 2x). Also, using

the postulated values of v′, s, and i,

⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4

= ⌈ (8tx+4t+2)((2t+1)−1)−((2t+1)−2t)((8tx+4t+2)−2)
2t

⌉d...4

= ⌈16t2x+8t2−8tx
2t

⌉d...4

= 8tx+ 4t− 4x

By Lemma 3.39, ψ′
2t(C4, Kv′−F ) ≥ 8tx+4t−4x. Thus, ψ′

2t(C4, Kv′−F ) = 8tx+4t−4x.

Theorem 3.41. Let v′ = 8tx+ 4t+ 2 for some integer x. Then, ψ′
2(C4, Kv′ − F ) = 4tx+ 4t.

Proof. By Lemma 3.1 and Theorem 3.27, ψ′
2(C4, Kv′ − F ) ≤ 2(2tx + 2t). Also, using the

postulated values of v′, s, and i,

⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4

= ⌈ (8tx+4t+2)((2t+1)−1)−((2t+1)−2)((8tx+4t+2)−2)
2

⌉d...4

= ⌈8tx+8t
2

⌉d...4

= 4tx+ 4t.

52



By Lemma 3.39, ψ′
2(C4, Kv′ − F ) ≥ 4tx+ 4t. Thus, ψ′

2(C4, Kv′ − F ) = 4tx+ 4t.

Next, we will find ψ′
t(C4, Kv′ − F ). We first note that the case where t = 1 has been

settled since ψ′
1(C4, Kv′ − F ) was found in [25], as stated below.

Theorem 3.42 ([25]). Let v′ = 8tx + 4t + 2 for some integer x. Then, ψ′
1(C4, Kv′ − F ) =

max{2(b′(v′) + 1), 4t}.

Theorem 3.43. Let v′ = 8tx+4t+2 for some integer x. Assume t ≥ 2. Then, ψ′
t(C4, Kv′−F ) =

8tx+ 4t− 8x.

Proof. By Lemma 3.1 and Theorem 3.34, ψ′
t(C4, Kv′ − F ) ≤ 2(4tx + 2t − 4x). Also, using

the postulated values of v′, s, and i,

⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4

= ⌈ (8tx+4t+2)((2t+1)−1)−((2t+1)−t)((8tx+4t+2)−2)
t

⌉d...4

= ⌈8t2x+4t2−8tx
t

⌉d...4

= 8tx+ 4t− 8x.

By Lemma 3.39, ψ′
2t(C4, Kv′−F ) ≥ 8tx+4t−8x. Thus, ψ′

t(C4, Kv′−F ) = 8tx+4t−8x.

Proposition 3.44. Let v′ = 8tx+4t+2 for some integer x. In any equitable (s, p)-C4-coloring

of Kv′ with ci = ψ′
i(K2, Kv) for i ∈ {2, t, 2t}, c1 = c2 = · · · = ci = ψ′

i(K2, Kv) and

ci+1 = ci+2 = · · · = cs = v − 1.

The proof of the previous proposition is similar to the proofs of Proposition 3.25, Propo-

sition 3.29, and Proposition 3.35.

Corollary 3.45. If i < j and max{2(b′(v′) + 1), ⌈v′(s−1)−(s−i)(v′−2)
i

⌉d...4} = ψ′
j(C4, Kv′), then

ψ′
i(C4, Kv′) = ψ′

j(C4, Kv′).

The proof of the previous corollary is similar to the proof of Corollary 3.36.

3.4 Future Directions

This section summarizes possible future directions. The first question is a natural generalization

of our main theorems from Section 3.3 and would find the remaining minimum values of the

color vector.
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Question 3.46. Let v = 4tx+2t+1 for some integer x. What is ψ′
i(Kv) for 3 ≤ i ≤ t− 1 and

t+ 1 ≤ i ≤ 2t− 1?

We conjecture the correct answer is equal to the lower bound established in Lemma 3.19.

With the previous techniques this seems like a difficult problem, so new techniques may need

to be explored.

The next question was described in detail in Subsection 3.2.2.

Question 3.47. What is χ′
p(K2, λKv)?

Partial results for this question were stated in Subsection 3.2.2. If Conjecture 3.16 (stated

below again for convenience) is true and we modify Theorem 3.3 appropriately, we will have a

complete solution to this question.

Conjecture 3.16. Suppose v is odd, p | λ(v − 1), and λ(v − 1)/p is odd. Then there exists an

equitable (p+ ⌈ p
v−1

⌉, p)-edge-coloring of λKv.

We have made progress toward this conjecture using the amalgamation technique.

Finally, a common question to ask in design theory is whether one design can be embedded

into a larger design. This leads to the next question.

Question 3.48. Let v1 = 4t1x + 2t1 + 1 and v2 = 4t2x + 2t2 + 1 where x ≥ 0 and t1, t2 ≥ 1

are integers and t1 < t2. Can an equitable (2t1 + 1, 2t1)-edge-coloring of Kv1 be embedded in

an equitable (2t2 + 1, 2t2)-edge-coloring of Kv2?

This problem also seems approachable with the amalgamation technique.
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