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Abstract 

The past decade has seen an increase in the intensity and frequency of extreme weather 

events around the globe. The changes in weather and climate patterns can be linked to the 

increasing amount of greenhouse gases, GHGs, in the earth’s atmosphere. The increase in 

frequency and intensity of extreme weather has caused disruptions across all elements of modern 

societies. Particularly, infrastructure and the built environment are frequently subjected to 

disruptions and damage. Only during 2022, eighteen weather and climate disaster events 

exceeded $1 billion in losses and damages in the U.S. Transportation infrastructure is one of the 

critical sectors for the nation’s security, economy, and overall development. However, extreme 

weather events continue to pose a significant challenge to the nation’s transportation network, 

including disruptions to the national airspace system, highway system, bridges, coastal roads, 

and ports. In response, planners, stakeholders, and decision makers seek tools and guidance to 

assist in planning more resilient infrastructure.  

In this context, resilience has become the norm in planning against disruptive events. 

Resilience has been identified by academics, practitioners, and the federal government as 

essential to secure and maintain normal operations of the nation’s transportation network. 

However, we still lack a standardized and transferable process to guide planners and decision-

makers in implementing resilience into the transportation planning process. Another issue in 

implementing resilience analysis is failing to incorporate future weather conditions, as most 

analysis is based on historical weather conditions.  

In response, this dissertation aims to develop a practical, performance-based framework 

to quantify the resilience of transportation systems to extreme weather and climate events. The 

Performance-based Resilience Evaluation Program (PREP) Framework is a standardized 12-step 
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process that can be deployed to quantify resilience against extreme weather conditions among 

different transport systems. It is also transferable to multiple performance measures, regardless 

of their unit of measurement. Results show that the framework can be successfully implemented 

for two transport systems (airports and highways) and multiple performance measures (passenger 

arrival delays, passenger departure delays, and reduced capacity). Finally, this dissertation 

highlights a research agenda that can guide the implementation of the framework in the 

traditional planning process. 
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Chapter 1: Introduction 

In 1990, over 30 years ago, the Intergovernmental Panel on Climate Change (IPCC) 

published the First Assessment Report, which is a comprehensive assessment of the climate 

change issue, and concluded that over the past century, the Earth experienced a rise in 

temperatures between 0.3 and 0.6 Celsius degrees (1). The climate change issue is on the rise 

until this day as global carbon emissions from fossil fuels continue to increase since 1900; in 

fact, in 2021, global energy-related CO2 emissions rose 6%, reaching the highest ever level of 

36.3 billion tons (2). The effects of climate change are linked to all aspects of modern human 

societies, and its consequences can directly impact health, the economy, food security, 

agriculture, energy, infrastructure, and social development (3). Over the past three decades, the 

number of natural disasters causing human and economic losses in the United States (U.S.) has 

continued to rise (4–6). Since 1980, 308 weather and climate-related events with an estimated 

cost of $1 billion or more have impacted the U.S., with a combined cost of $2.085 trillion (7). 

One example of the severity of climate and weather impact in the U.S. is Hurricane Katrina in 

2005. Katrina was a category five hurricane and proved that a powerful storm impacting a 

vulnerable and at-risk community with fragile infrastructure could cause unprecedented damage 

and disrupt an entire metro area, causing over one thousand deaths and displacing hundreds of 

thousands of people (8–10). Science shows that the increased frequency and intensity of extreme 

weather events can be traced to unprecedented levels of CO2 in the atmosphere; consequently, a 

warmer atmosphere amplifies evaporation rates from the Earth’s surface and oceans, which 

increase the amount of water for rain and storms (11).  

Transportation infrastructure is the backbone of the U.S. economic growth as it allows 

manufacturers and commodities to connect with consumers, allows travel nationally and 
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internationally that supports the business and tourism industry, and allows people to reach their 

daily destinations for work, school, medical care, recreation, shopping, and as well as to connect 

people with friends and families (3). All modes of travel, including air, private vehicle, transit, 

active transportation, rail, and maritime, are key to supporting U.S. economic and social 

development. However, climate change and extreme weather events can severely disrupt existing 

transportation infrastructure as a consequence of increased rainfall, flooding, sea-level rise, 

coastal flooding, heatwaves, droughts, and changes in freeze-thaw cycles. Transportation 

infrastructure comprises all physical and operational systems that allow any mode to function. 

For example, airports require airfields, air traffic control (ATC), and terminals. Surface 

transportation requires road networks, pavement structures, intersections, traffic lights, and 

bridges. Active transportation, such as walking and bicycling, requires sidewalks, bike lanes, 

pedestrian crossings, and traffic lights. Climate and extreme weather events are especially 

important to transportation systems, where disruptions can occur at different scales, impact many 

users, and result in different types of losses. Typically, these impacts are characterized as either 

operational or physical infrastructure (12). The effects include but are not limited to losses in 

roadway capacity, loss of alternative routes, inability to evacuate, reduction of service life, 

severe safety risk, loss in economic productivity, and overall impact on the nation's supply chain 

(13).   

Transportation infrastructure supports local, regional, state, and even national economies 

and societies (14–16). In 2019, transportation services contributed 5.4% of the U.S. Gross 

domestic product (GDP) from for-hire services, in-house services, and household activities (17). 

Supply chain transportation systems such are freight, rail, and maritime transportation enable the 

U.S. economy to efficiently link goods with consumers (18). Security and protection of the 
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nation’s transportation infrastructure are critical. In fact, the Presidential Policy Directive (PPD) 

21 includes the nation's transportation sector as one of sixteen critical sectors to the nation's 

security, economic security, national public health, or safety (19). Climate change will continue 

to threaten the U.S. transportation sector significantly. The risk varies regionally as weather 

events will be more severe in certain regions than others. For example, a study to assess climate 

change in the Gulf Coast shows that warming temperatures will increase the cost of 

transportation construction, maintenance, and operations (20). This report also reveals that sea 

level rise would cause more frequent and permanent inundations of existing infrastructure. While 

in California, a report from the nonprofit Legislative Analyst’s Office (LAO) shows that intense 

storms will cause mudslides and flooding of the road network, and heat waves will accelerate 

pavement buckling and rutting (21). Awareness of the importance of transportation in the 

nation's security and growth has led to an increase in the research, education, and advocacy for 

secure infrastructure capable of coping with threats that can cause severe disruption to the 

nation's transportation system (22) and threaten the nation's economic, security, and public 

health. For example, the 2013 National Infrastructure Protection Plan (NIPP) defines roles and 

responsibilities for government agencies and the private sector, and it proposes activities and 

goals to increase the security and resilience of the national transportation system (23). 

Transportation Research Board (TRB) report titled Critical Issues in Transportation 2019 

identifies resilience and security as potential issues in the industry in the following 10 to 20 years 

(14). Recently, President Biden’s Infrastructure Investment and Jobs Act (IIJA) (Public Law 

117-58), also known as bipartisan infrastructure law, includes a number of programs that focused 

on addressing the impact of climate change and increasing the resilience of the nation’s 

transportation sector. Particularly, this legislation introduces the Promoting Resilient Operations 
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for Transformative, Efficient, and Cost-saving Transportation (PROTECT) program which will 

provide funding for $1.4 billion to states and $250 million in competitive grants for fiscal year 

2022 to eligible entities to increase the resilience of the nation’s transportation system (24). 

The concept of resilience, which is defined in this dissertation following Federal 

Highway Administration (FHWA) Order 5520, as the capacity of a transportation system or asset 

to absorb, adapt to, and recover from a disruptive extreme weather event (25), is a term on the 

rise among practitioners and researcher alike that seeks to quantify the ‘strength’ of our 

transportation infrastructure in the event of disruption as a consequence of weather and climate. 

A resilient transportation system or infrastructure is one in which its assets are not exposed to a 

hazard. If they are, the asset has sufficient capacity to continue its operation under the 

performance target before, during, and after the disruption. Despite many organizations 

recognizing the need for more comprehensive resilience planning for transportation 

infrastructure, the U.S. still lacks a standardized planning framework to guide these decisions 

and prioritize improvements (26–28). Ideally, such a resilience framework would be (a) 

practical, (b) operational, and (c) replicable to multiple transportation assets (29). While there 

has been much work on measuring different aspects of resilience related to specific types of 

infrastructure (e.g., network delays, traffic capacity, or bridge fatigue), they are incredibly 

specific to each infrastructure type and do not allow for planning decisions to consider or 

compare different operational or physical infrastructures losses or potential improvements. 

Decision-makers still need a comprehensive framework that can equitably accommodate all the 

components of a transportation system (e.g., bridges, roadways, airports, and operations) (30, 

31). Perhaps more importantly, there is no consensus on best practices or guidance for 

incorporating resilience assessment in the transportation planning process where these decisions 
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are made (8, 32). There are no unified indicators of resilience that incorporate the interaction 

between asset exposure and performance (27). Other issues that arise in studying transportation 

resilience include understanding and quantifying the impacts of climate change (22) and access 

to asset data to assess the performance of transportation infrastructure before, during, and after 

the impact of extreme weather events (33–35).  

Therefore, this dissertation develops and demonstrates the application of a flexible 

resilience framework that supports transportation resilience decision-making across multiple 

operational and infrastructure systems. Thus, this dissertation introduces The Performance-Based 

Resilience Evaluation Program (PREP) framework as a unified, transferable, practical, and 

performance-based process to guide the resilience assessment of transportation infrastructure and 

operations for local, state, and federal transportation agencies. The PREP framework can be 

implemented for any transportation infrastructure to assist transportation agencies and 

stakeholders in making informed decisions, including project prioritization, risk mitigation, asset 

management, and design for more reliable infrastructure. Such a framework is crucial because it 

allows stakeholders data-driven knowledge to develop informed management and planning of 

the entire transportation infrastructure system against disruptive events (32, 36). The PREP 

framework is designed in response to the lack of standardized guidance in the current state of the 

practice of transportation planning and resilience, consequently, is intended to be an additional 

tool to be incorporated into the traditional planning process of the Department of Transportation 

(DOT), Metropolitan Planning Organization (MPO), public transit agencies, airports, railroad 

administrations, and local municipalities. The PREP framework is particularly useful for (a) 

establishing current and future conditions and needs of the transportation system in question, (b) 
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developing strategies and plans for the short and long term, and (c) updating goals and 

performance targets.  

1.1. Research Question 

While extreme weather events will increase in frequency and intensity in the following 

decades, the nation’s transportation sector will need to cope with the growing demand for 

transport and aging infrastructure. Demand for transportation is expected to rise following an 

expected population growth to 404.5 million people by 2060 with increasing vehicle ownership 

in American households; the last four decades alone have seen a threefold increase in the latter 

(37). Aging infrastructure due to a $2 trillion ten-year investment gap increases the burden on the 

nation’s transportation sector because it has made our roads, bridges, railroads, airports, and 

ports more vulnerable to the impact of climate and extreme weather events. The transportation 

planning process, which defines the local, regional, state, or national vision for the future of our 

transport, can benefit from integrating a resilience assessment. This is a limited, not 

standardized, nor transferable practice that has not yet been incorporated into a comprehensive 

framework during planning and decision-making. How can we provide transportation agencies 

with a flexible, transferable, performance-based framework for quantifying resilience against 

climate and extreme weather events? Such a framework is critical for identifying critical assets, 

improving funding allocation, and preparing our transportation infrastructure to withstand 

disruption due to climate and extreme weather events. As such, this dissertation aims to answer 

the following question: can we develop and implement a standardized, transferable, 

performance-based resilience framework to improve planning for the resilience of different 

transportation systems to climate and extreme weather events? 
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1.2. Dissertation Objectives 

This dissertation develops a comprehensive framework to quantitatively assess individual 

or multiple transportation assets' resilience against climate and extreme weather events. The 

objectives of this dissertation aim to (1) design a comprehensive resilience framework for 

transportation infrastructure based on performance measures and hazard probability, (2) compile 

a list of transportation performance measures that can be used to implement the resilience 

framework, (3) demonstrate application examples of the resilience framework, and (4) develop a 

research agenda to support the implementation of this framework. 

The first objective will be designing the Performance-based Resilience Evaluation 

Program (PREP) framework. PREP framework will approach the resilience issue using 

transportation performance measures and hazard impact probability to account for (a) the impact 

of climate and extreme weather on transportation infrastructure and (b) the vulnerability of 

transportation infrastructure to climate and extreme weather, respectively. The PREP framework 

is a comprehensive framework designed from existing research on resilience in transportation 

and vulnerability (e.g., academic published articles, gray literature, and federal/state reports). 

Defining resilience as a quantitative model is challenging given the nature of transportation 

assets and variability in units of measurement, data collection techniques, and understanding of 

extreme weather and infrastructure interactions. Finally, the PREP framework will introduce 

resilience as a score that indicates how much in percentage a given performance measure 

deviates from a state of non-change in performance due to climate and extreme weather impact.  

In addition, the first objective of this dissertation relies on two methodological elements. 

The first element is the Hazard Probability Function (HPF), which is the proposed measure of the 

probability of occurrence of a hazard in the form of climate and extreme weather. Thus, an HPF 
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will indicate the probability that a given value of hazard (e.g., inches of rain, inches of snow, and 

temperature in Fahrenheit) will occur within a known period in the future (e.g., 5, 20, or even 50 

years in the future) for a specific geographic area that contains the transportation infrastructure of 

analysis. To create an HPF, this dissertation will retrieve climate model projections from 

different models that have been developed at the National Oceanic and Atmospheric 

Administration (NOOA) Geophysical Fluid Dynamics Laboratory (GFDL) and the Canadian 

Centre for Climate Modelling and Analysis (CCCma) (38, 39). These climate models are 

approved by the World Climate Research Program (WCRP) and are included in the Coupled 

Model Intercomparison Project (CMIP) (40). The focus of the climate projections will be on 

precipitation in the form of rain and snowfall. The second element is the Performance Measure 

Impact Function (PMIF). PMIFs indicate the impact of climate and extreme weather on the 

performance measure for a transportation asset (e.g., airports, pavement, and traffic). These 

PMIFs indicate the probability that a specific change in performance capacity will occur, given a 

specific hazard intensity. As such, the framework includes one PMIF for each potential hazard 

intensity (e.g., low, typical, and extreme hazard levels). Past research has estimated PMIFs to 

quantify infrastructure damages and costs (41, 42), but the application of PMIFs relative to the 

HPFs is unique to this dissertation. For example, FEMA HAZUS, a standardized program to 

model risk, used damage functions to estimate the financial losses to a building given a specific 

hazard severity (43, 44). PMIFs will be developed using two approaches (a) historical data on 

performance measures under hazards and (b) simulating performance using known modeling 

techniques and computer-aided software.  

The second objective of this dissertation will compile examples of supporting 

performance measures for different transportation systems (e.g., airports, pavement, drainage, 

http://www.wcrp-climate.org/
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and traffic) that can be used to develop PMIFs and consequently expand the analysis of 

resilience by considering multiple performance measures. To complete this objective, this 

dissertation will thoroughly review academic articles, gray literature, and transportation agencies' 

reports that have outlined transportation performance measures for resilience analysis. This 

objective will include details for each performance measure, including unit of analysis, data 

collection procedures, and available data sources to facilitate future analysis by transportation 

agencies.  

The third objective of this dissertation focus on demonstrating three application examples 

of the PREP framework. This objective highlights how the PREP framework can be flexibly 

used to evaluate and compare different transportation systems with a standardized methodology. 

These example applications included the development of HPF and PMIF for selected hazards 

and performance measures for three transportation systems. The first example application will 

implement the PREP framework in airports using quality service performance measures: 

departure and arrival delays. The PREP framework will be implemented in six airports with three 

different hub size categories (small, medium, and large) and include two types of hazards: rain 

(in/day) and snowfall (in/day). The second example will implement the PREP framework in a 

roadway network to assess traffic operation, specifically roadway capacity change. This example 

will be implemented in the Mobile, AL urban road network and include the impact of rain as a 

hazard event. These examples will have a national and regional focus and provide ample 

understanding of the PREP framework. 

This dissertation's fourth and final objective is to outline a research agenda to support the 

implementation of the PREP framework in the planning and decision-making of transportation 

agencies. This research agenda discusses implementing the PREP framework results as inputs to 
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the traditional transportation planning process. Particularly this objective will look at the 

opportunities to include the resilience analysis in different planning agendas, including 

Metropolitan and Statewide Long-Range Transportation Plans (LRTPs), Metropolitan and 

Statewide Transportation Improvement Plans (TIPs), and corridor and modal planning. 

These combined objectives result in a new resilience assessment method that is both 

theoretically robust and practical for implementation at local, regional, state, and federal 

planning levels. This dissertation presents practitioners and stakeholders with a comprehensive 

and unified approach to assessing the increasing threat of natural hazards to transportation 

infrastructure and operations. A novel feature in this dissertation is the flexibility and 

operationality of the framework to include multiple performance measures used for decades to 

assess the regular operation of our nation's transportation systems. Regardless of their experience 

in resilience analysis, transportation planners can implement the PREP framework to gain data-

driven knowledge for planning and decision-making. 

1.3. Dissertation Organization 

This dissertation is organized into five additional chapters after this introduction. First, 

Chapter 2 provides a detailed literature review on definitions of resilience, resilience in 

transportation systems, resilience performance measure, and resilience in the planning process. 

Next, Chapter 3 introduces the PREP framework and provides detail on the twelve steps 

framework, and it addresses the use and application of each step through an example (objective 

1). Next, Chapters 4 & 5 explore real-world applications of the PREP framework (objective 3). 

The first application of the framework looks at the National Airspace System (NAS) and 

quantifies the resilience of six airports of different sizes and regions. This application uses data 

on airline on-time performance data from the Bureau of Transportation Statistics (BTS). The 
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next chapter, Chapter 5, focuses on applying the PREP framework to traffic operations. This 

chapter quantifies the resilience of highways and principal arterial roads in Mobile, AL., with 

data from the Alabama Department of Transportation (ALDOT) and quantifies precipitation's 

impact on traffic operations. The performance measures of Objective 2 are also presented in 

Chapters 4 & 5. Finally, Chapter 6 summarizes this dissertation's findings and offers a research 

agenda on how to move forward with implementing the framework among transportation 

agencies to support planning and decision-making (objective 4). 
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Chapter 2: Literature Review 

Literature on resilience is broad, and much of it focuses on specific pieces of the 

resilience "puzzle." However, this chapter aims to provide readers with a clear notion of the 

concept of resilience, emphasizing resilience for transportation infrastructure. Since first used in 

the scientific world, the concept of resilience has witnessed an evolutionary process that has 

introduced other definitions, such as risk and vulnerability, to name a few. These definitions are 

indeed related to resilience, but caution should be used, especially when trying to quantify 

resilience for purposes of planning and decision-making. The concept of resilience has also 

included elements that can help understand the resilience process that systems and elements 

experience. With the knowledge gained over the years from academic and gray literature, it is 

essential to narrow the concept and operationalization of resilience into guidelines and policies to 

build resilient transport infrastructure. This holds true because of the increase in severity and 

intensity of extreme weather events. A challenge in implementing resilience policies and 

guidelines is the lack of standardized procedures and performance measures to quantify 

resilience. The ultimate goal of this chapter is to document the efforts and gaps in implementing 

a standardized framework that is practical and operational and relies on transportation 

performance measures. 

The literature review is organized based on the main resilience topics guiding the 

development of this dissertation. This literature review's first and second sections focus on the 

concept and elements of resilience in transportation infrastructure to extreme weather and 

climate events. The third section focuses on resilience in transportation planning. The fourth 

section documents past resilience research that have included transportation performance 
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measures. Finally, the fifth section of this literature documents the current resilience guidelines 

and frameworks practices.  

2.1 Defining Resilience  

Holling (1973) first introduced the concept of resilience in his work on ecological 

systems. Holling (1973) begins his reflection by drawing attention to the possibility of systems 

experiencing a stage that does not constitute a complete absence or complete presence of the 

system's functionality. Instead, the author presented the possibility of systems functioning in a 

"range of predictable" conditions (45). Holling (1973) defines resilience as a "measure of the 

persistence of systems and of their ability to absorb change and disturbance" (45); while this 

definition primarily focuses on ecological systems and survival from external disturbances, the 

authors introduce an idea that can be translated into engineering systems and operations. It 

should be noted that Holling (1973) resilience concept does not account for a bounce back to pre-

disturbance system performance; instead, the author introduces the concept of stability to 

represent a system's ability to return to an "equilibrium state after a temporary disturbance" (45). 

This definition is the most notable distinction between Holling's widely accepted origin concept 

of resilience (1973) and the resilience concept of interest in this dissertation, which is 

engineering resilience. Holling (1996) wrote about this difference in Engineering Resilience 

Versus Ecological Resilience (46). The author emphasizes that engineering resilience focuses on 

"resistance and speed of return to the equilibrium" as the measurement of interest, while 

ecological resilience considers the "magnitude of disturbance that can be absorbed before the 

system changes" (46). The concept of resilience has continued to evolve and adapt for an array of 

fields and ideas that seek to define and quantify how a system or object is subjected to internal or 
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external disturbances that change its typical performance and operations and how they absorb, 

adapt, and recover from the impact of these disturbances.  

In the realm of engineering infrastructures and systems, defining resilience poses a 

challenge as interdependency between sub-systems makes it complex to concur in a standard 

definition; this is especially true when reviewing academic literature on these systems. First, 

engineering and infrastructure systems can be categorized into different disciplines, including 

infrastructure, safety, organizational, economic, and social systems (47). Infrastructure system 

resilience will be dealt with in more detail in the following sections of this literature review, as 

this constitutes the main focus of study in this dissertation. Safety systems resilience interest 

revolves around the prevention of disruptions. In their work on resilience and safety, Leveson et 

al. (2017) conceptualize resilience as the "ability of systems to prevent or adapt to changing 

conditions" to reduce losses; this definition also emphasizes the concepts of safety and risk (48). 

Organizational systems resilience is a theory that seeks to provide organizations and all 

individuals and units that comprise it with insights to continue achieving established goals in the 

event of a disruption and unprecedented challenges to the organization's development (49). For 

organizations, resilience is conceptualized as the response to "turbulences and discontinuities" 

and the capacity to withstand and adapt to new risks (50). The third resilience system to describe 

is economical, and in this domain, the focus lies in minimizing the losses (51, 52). Furthermore, 

economic resilience can be divided in terms of performance and capacity; the former refers to the 

reaction of the economic system to the disturbance, and the latter refers to the adaptation process 

demand as a consequence of the disturbance (53, 54). The final domain to discuss corresponds to 

the social system’s resilience. Here, resilience is closely related to ecological and infrastructure 

systems as societies utilize these for their benefit and development (55). Bruneau et al. (2003) 



34 
 

studied community resilience to earthquakes and defined resilience in this context as the "ability 

of social units to mitigate the hazard, contain the effects of disaster when they occur, and carry 

out recovery activities" (56). Social systems can be perceived as resilient even in undesirable 

circumstances; examples of these are indigenous and native communities adapting to modern 

technological advances and climate change. For indigenous communities, for example, social 

resilience is a characteristic that describes the ability of its members, individually or collectively, 

to survive, adapt and develop in the event of shocks and stress (57). These systems introduce a 

unique definition of resilience, and each has its approach to the question of resilience. 

Nevertheless, it is shared across all systems the need to prevent, adapt, respond, and recover 

from shocks and disturbances. 

Similarly, it should note another connection across all systems, which is the 

interdependence with infrastructure systems. We can argue that infrastructure systems are 

indispensable for a safe system to operate, for organizations to achieve their goals, for economies 

to grow, and for societies to develop (58). In this context, resilient infrastructure systems and 

operations can directly impact the resilience of every other domain of modern societies. 

However, as in every other system, the concept of resilience is still significantly being discussed 

among scholars and practitioners. The following paragraph addresses this issue by providing a 

thorough review of the current concepts and definition of resilience in infrastructure, with an 

emphasis on transportation infrastructure. 

Infrastructure comprises an array of facilities, systems, personnel, equipment, and 

operations that provide a service to society in support of their security, transportation, economy, 

health, and overall development (59). Transportation infrastructure such as railways, airports, 

highways, pavements, and traffic signals are examples of transportation infrastructure systems. 
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In addition, a segment of infrastructure can be grouped in the so-called "critical infrastructure" 

category, which refers to every infrastructure that plays an essential or critical role for a country, 

organization, or individual (60). In fact, Presidential Policy Directive 21 (PPD-21): Critical 

Infrastructure Security and Resilience established sixteen critical infrastructure sectors that 

support the security and development of the country (61). Because of the role of critical 

infrastructure in providing essential services to society (e.g., power plants, bridges, airports, and 

hospitals), there is a growing need for resilience in such infrastructures, even when subject to 

major disruptive events. The PPD-21 highlighted the need for united efforts and policies that 

strengthen and build resilient, secure, and functioning critical infrastructure (61). A key element 

to consider in the study of resilience in infrastructure, and especially critical infrastructure, is the 

interdependency despite distinctive characteristics of each sector, even within systems of the 

same sector (60, 62). This interdependency found in infrastructure poses a challenge for a unified 

definition of resilience, and the literature regarding this concept can be overwhelmingly broad; 

nevertheless, I conducted a review of the most relevant literature to this dissertation, and it is 

examined herein. 

This initial section discussed the more general definition of resilience for infrastructure 

systems. Ouyang et al. (2019) indicated that infrastructure resilience is closely related to 

robustness and recovery rapidly, defining robustness as the capacity to continue functioning after 

disruption and recovery rapidly as how quickly the damaged systems can be restored to pre-

disruption levels (63). Infrastructure resilience is also conceptualized in terms of functionality 

before and after the disruption (64). This conceptualization is also similar to McDaniels et al. 

(2008), that define resilience as the capacity to absorb shocks while maintaining functionality 

(65). At the same time, resilience in urban infrastructure is defined as the "ability of 
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infrastructure systems, urban populations, and communities to quickly and effectively resist and 

recover" from a disruption (66). Following this idea, Poulin and Kane (2021) proposed the 

following definition for infrastructure resilience as the "ability to withstand, respond, and recover 

from disruption" (67). 

Research on the resilience of infrastructure systems can be narrowed down depending on 

the specific type of infrastructure (power plants, transportation, and communication). For 

example, power systems have defined resilience as "the ability to withstand and reduce the 

magnitude and duration of disruptive events (68)". In contrast, the International Council on 

Large Electric Systems (CIGRE) defines power systems resilience as "the ability to limit the 

extent, severity, and duration of system degradation" after the occurrence of an extreme event 

(69). Similarly, Umunnakwe et al. (2021) define a power plant’s resilience as the ability of the 

grid to prepare and adapt to changing conditions (70). Other infrastructure systems, such as 

wastewater and water management, define resilience as "the ability to gracefully degrade and 

subsequently recover from a potentially catastrophic disturbance that is internal or external in 

origin" (71). Another definition found in urban water infrastructure systems is "the degree to 

which the system minimizes the level of service failure magnitude and duration over its design 

life when subject to exceptional conditions" (72).  

Let us now look at how the extensive work on resilience for infrastructure and other 

systems of society (economic, social, and organizational) can be centered on transportation 

infrastructure. First, it should be noted that transportation infrastructure is described as being 

multimodal, multi-faceted regarding the different levels of impact on society, and multi-

parametric as they have different designs, operations, and directions (15). As expected, this 

uniqueness that characterizes transportation infrastructure has caused a number of definitions and 
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conceptualizations for resilience. For the purpose of brevity, I first provided a summary of the 

most notable works conceptualizing transportation resilience. Finally, I summarized additional 

works for reference in Table 1, which can serve the reader for further study of transportation 

resilience. 

One of the earliest works on transportation resilience is Murray-Tuite (2006), where the 

author describes the resilience of transportation networks as a ten dimensions concept that 

includes "redundancy, diversity, efficiency, autonomous components, strength, collaboration, 

adaptability, mobility, safety, and the ability to recover quickly" (73). Another initial study of 

transport network resilience defines it as the "capability of the transport system to repeatedly 

recover, preferably within a short time, from a temporary overload" (74). Calvert and Snelder 

(2015) studied traffic resilience and used the following definition: "the ability of a system to 

cope with disturbances and recover its original function after a loss of function" (75). Similarly, 

resilience in the context of transportation systems is narrowed to "performance reduction and 

recovery" when facing disruptive events (76). Cimellaro et al. (2010) proposed defining the 

resilience of any bridge or lifeline network (e.g., road networks, airports, rail networks, etc.) as a 

function of the capability to sustain performance functionality over time (77). Chan and Schofer 

(2016) noted that transportation researchers define resilience through the lens of (a) the ability to 

recover from disruption and (b) the ability to absorb the impact of a disruption and recover to 

typical performance (78). Finally, the resilience of transportation networks is defined as the 

ability to absorb shocks and disruptions while maintaining basic structure and performance and 

recover to acceptable levels of performance promptly (16, 79). Other definitions of resilience are 

summarized in Table 1.
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Table 1: Summary of Resilience Definitions for Transportation  

 

Title Author  Year Definition Transportatio
n System 

Disaster Resilience Assessment 
of Building and Transportation 
System 

Cimellaro et al. (80) 2021 Ability of social units to 
mitigate the hazard, contain the 
effects of disasters, plan for 
recover 

Road networks 

Enhancing network resilience 
by adding redundancy to road 
networks 

Xu et al. (79) 2021 Resilience is based on terms of 
redundancy of the road network 

Road networks 

Transportation network 
resilience against failures: GIS-
based assessment of network 
topology role 

Rouhana and Jawad (81) 2020 Ability to cope, absorb, and 
withstand the effect of a 
disruption 

Networks 

Evaluation and prediction of 
transportation resilience under 
extreme weather events: A 
diffusion graph convolutional 
approach 

Wang et al. (31) 2020 Resilience is based on traffic 
speed predictions 

Road networks 

Emergence of resilience as a 
framework for state 
Departments of Transportation 
(DOTs) in the United States 

Renne et al. (82) 2020 Ability to prepare and plan for, 
absorb, recover from, or more 
successfully adapt to adverse 
event 

n/a 

CRAFT: Comprehensive 
Resilience Assessment 
Framework for Transportation 
Systems in Urban Areas 

Koc et al. (83) 2020 Ability to reduce the chances of 
a shock, to absorb a shock if it 
occurs, and to recover quickly 
after a shock 

Road networks 

Statistical process control for 
analyzing resilience of 
transportation networks 

Ilbeigi (84) 2019 Resilience is based on the 
severity of the impact and 
recovery quickly  

Road networks 

Resilience in Intelligent 
Transportation Systems (ITS) 

Ganin et al. (85) 2019 Ability to prepare for, absorb, 
recover from, and adapt to 
disturbances 

Road networks 

Resilience in transportation 
systems: a systematic review 
and future directions 

Wan et al. (16) 2018 Ability to bounce back to 
normal condition after the 
original state was altered 

Multimodal  

Resilience of Underground 
Transportation Infrastructure in 
Coastal Regions: A Case Study 

Martinez et al. (86) 2018 Resilience is defined as a 
function of exposure, 
adaptability, and sensitivity 

Railways 

Integration of stress testing 
with graph theory to assess 
the resilience of urban road 
networks under seismic 
hazards 

Aydin et al. (87) 2018 Resilience is defined in terms 
of network efficiency and 
robustness 

Road networks 

A methodology for road traffic 
resilience analysis and review 
of related concepts 

Calvert and Snelder (75) 2018 Ability of a road section to 
resist and recover from 
disturbances in traffic flow 

Traffic flow 

Seismic Resilience of 
Transportation Networks with 
Deteriorating Components 

Alipour and Shafei (88) 2016 Resilience involves four 
interrelated capabilities to 
anticipate, absorb, adapt to, and 
recover 

Road networks 
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The literature on definitions of resilience for transportation infrastructure and systems is 

broad, as noted in the previous sections. Up to this point, we have reviewed definitions that 

correspond to academic work and have lacked the practitioner's point of view on the issue of 

resilience. In the U.S., resilience continues to raise a significant issue that planning agencies will 

face in the future, especially due to climate change. This holds true for transportation agencies, 

as noted by the U.S. Global Change Research Program (USGCRP), which defines resilience as 

"the ability of the transportation sector to perform reliably, safely, and efficiently is undermined 

by a changing climate" (3). 

Considering that (a) the need for consensus in defining and conceptualizing resilience and 

(b) resilience’s definition depends on the agency's vision and goals, the type of threats that are 

Table 1: Continue 
Measuring Transportation 
System Resilience: Response of 
Rail Transit to Weather 
Disruptions 

Chan and Schofer (78) 
2016 

Defines resilience in terms of 
three strategies: hardening, 
redundancy, and elasticity 

Rail transit 

Resilience-based risk mitigation 
for road networks 

Zhang and Wang (89) 
2016 

Ability to withstand or adapt to 
external shocks and to recover 
from such shocks efficiently 
and effectively 

Road networks 

Resilience of traffic networks: 
From perturbation to recovery 
via a dynamic restricted 
equilibrium model 

Nogal et al. (90) 
2016 

Ability to absorb disruptive 
events gracefully, maintaining 
its demonstrated level of 
service, to return itself to a 
level of service equal 
to or greater than the pre-
disruption 

Road networks 

Transport resilience and 
vulnerability: The role of 
connectivity 

Reggiani et al. (91) 
2015 

Speed a network return to its 
equilibrium after a disruption 

Road networks 

Travel time resilience of 
roadway networks under disaster 

Faturechi and Miller-
Hooks (30) 2014 

Ability to resist and adapt to 
disruption 

Road networks 

Resilience and Friability of 
Transportation Networks: 
Evaluation, Analysis and 
Optimization 

Ip and Wang (92) 
2011 

Resilience of a road network is 
defined based on number of 
reliable nodes 

Road networks 

Robustness And Resilience of 
Road Network Structures 

Immers et al. (74) 
2004 

Capacity of road network to 
recover from serious 
disruptions 

Road networks 
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considered, and the agency’s role and responsibilities (93), this dissertation defines resilience, 

following FHWA Order 5520, as the capacity of a transportation system or asset to absorb, 

adapt to, and recover from a disruptive extreme weather event. This definition is consistent with 

current literature on resilience in transportation infrastructure for natural disasters and extreme 

weather events. Existing work includes the American Association of State Highway and 

Transportation Officials (AASHTO) definitions of resilience in transportation as "the ability of 

the transportation system to recover and regain functionality after a major disruption or disaster" 

(94). A similar definition is found in a National Academy of Science (NAS) report that defines 

resilience as the "ability to prepare and plan for, absorb, recover from, or more successfully 

adapt to actual or potential adverse events (4)." The lack of consensus defining resilience for 

transportation infrastructure is a rising issue that has impacted many agencies' ability to deploy a 

practical framework. Using FHWA's definition, this dissertation addresses this issue and creates 

the foundation for a unified framework built from existing research and supported by the 

research from FHWA. 

2.2 Elements of Transportation Resilience 

Resilience’s concept has been tied to an array of elements and properties that can be used 

to quantify resilience. Bruneau et al. (2003) introduced four properties to define the concept of 

resilience for both physical and social systems, including robustness, redundancy, 

resourcefulness, and rapidity (56). In his work, Bruneau et al. (2003) conceptualized resilience as 

the change in a system's performance over time; they assented that change can happen gradually 

or suddenly (56), linking the concept of resilience to the properties he defined. Similarly, Alipour 

and Shafei (2016) used anticipation, absorptive capacity, adaptive capacity, and restorative 

capacity (88) as interrelated elements of resilience. Other research has focused only on resilience 
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as the capacity to anticipate a hazard (95), adaptation (73, 96),  efficiency (97–99), and flexibility 

(78, 92, 100). The purpose of classifying resilience in terms of these stages is to provide another 

layer to characterize resilience using surrogate definitions. For example, Immers et al. (2004) 

used the terms reliability and robustness to describe the capacity of a network to recover (74). 

Faturechi and Miller-Hooks (2014) reviewed elements of resilience that include risk, 

vulnerability, reliability, robustness, flexibility, and survivability (101). Indisputably the main 

element frequently associated with resilience is vulnerability, which has led to several 

publications seeking to determine the differences and similarities. Vulnerability is associated 

with measures of weaknesses or susceptibility to potential threats (102). 

It is notable the inconsistency across academic work in conceptualizing resilience, and in 

some instances, there is evidence of using different terminologies as a surrogate to quantify 

resilience. However, this dissertation considers twofold; first, that resilience is a multistage 

process that occurs over time; hence we can characterize resilience across time, and second, 

transportation infrastructure performance is variable as each stage of resilience develops. 

Consequently, this dissertation conceptualizes resilience as a change in the performance of a 

transportation infrastructure measure. The change in performance measures is caused by a 

climate-related stressor's gradual or sudden impact (hazard). The change in performance can be 

quantified in three stages, namely before, during, and after the hazard event. This dissertation 

establishes three components that characterize infrastructure performance during these three 

stages of a hazard event. Each stage is defined as the change in performance during that period: 

absorptive capacity, adaptive capacity, and recovery capacity (See Figure 1). Absorptive capacity 

quantifies how well an asset can lessen performance losses once the hazard begins. Adaptive 

capacity quantifies how well an asset minimizes the impacts caused by the reduced performance 



42 
 

due to the hazard. Finally, recovery capacity quantifies how well an asset maximizes the 

resources and operations to regain initial performance levels. These metrics encompass the 

general purpose of the different properties associated with the concept of resilience.  

 

Figure 1: Stages of Resilience 

2.3 Transportation Resilience Planning 

Resilience practice is gaining attention and is quickly becoming an important topic for 

transportation infrastructure planning, design, and operations (103). In fact, numerous agencies 

have identified that resilient transportation systems capable of withstanding disruptive events are 

one of the most critical areas currently demanding attention to avoid compromising national 

security, economics, and public health (104). The first roadblock for resilience planning comes 

fundamentally from defining resilience; as discussed in previous sections, this is overcome as 

this dissertation supports the use of a unified definition that comes from FHWA. The next 

challenge for implementing resilience into the transportation planning process is the lack of 
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guidelines, legislation, and policies that specifically address the issue. This is the assessment of 

transportation infrastructure resilience to climate change and extreme weather events and how to 

operationalize it into the planning process for State DOTs and MPOs (105).  A report from 

RAND Corporation recognized that existing state and federal legislation requires transportation 

agencies to incorporate resilience in the planning process (e.g., the Moving Ahead for Progress 

in the 21st Century Act in 2012, FHWA Order 5520 in 2014, and the FAST Act in 2015); 

however, agencies are not provided with guidance on definitions, data requirements, and 

methodologies to assess resilience in transportation infrastructure (27). The Government 

Accountability Office (GAO) stated in a 2021 report that, although FHWA has "taken steps to 

encourage states to enhance the climate resilience," there are no policies and guidance that 

integrate climate resilience (106). The lack of standardized guidance and policies has created a 

vacuum in resilience planning. In fact, a survey among 41 state agencies in 2017 showed that 32 

reported not having a definition of resilience (107). This survey revealed significant challenges 

that many states and metropolitan agencies face when seeking to incorporate resilience thinking 

in the transportation planning process, particularly when assessing asset and system resilience 

against extreme weather and climate change.  

Even with gaps in operationalizing resilience among transportation agencies, some state 

agencies have developed in-house policies for resilience planning according to their specific 

context (population and geographic size, location, and hazards of interest). Some examples 

include the Colorado Department of Transportation (CDOT) and its Policy Directive (PD) 1905, 

which supports the implementation of resilience for strategic decisions for assets and operations 

(108). The Minnesota Department of Transportation (MnDOT) incorporates resilience with a 

focus on planning for adaptation and its 20-Year Statewide Multimodal Transportation Plan 
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(109). A survey in 2018 reported that 17 of 52 state agencies and 45 of 101 MPOs included 

resilience in their goals and objectives, while 21 of 52 state agencies and 64 of 101 MPOs 

included resilience strategies in their planning steps (110).  Despite lacking guidance on 

resilience assessment, state, and metropolitan area transportation agencies are approaching 

resilience planning through risk assessment and adaptation strategies in their long-range 

transportation planning (LRTP) process (20). Risk assessment is implemented to determine the 

likelihood and magnitude of extreme weather and climate change impacts. Ultimately, those 

agencies rely on risk assessments to estimate the resilience of current infrastructure and plan for 

future infrastructure. Lastly, these agencies use the knowledge derived from proxy resilience 

analysis to leverage knowledge for transportation decision-makers, stakeholders, and the public 

to make informed choices reflected in the LRTP in the form of investment, project prioritization, 

adaptation strategies, and emergency planning. However, state and metropolitan agencies still 

lack a comprehensive resilience framework; thus are limited to studying the risk of extreme 

weather and identifying critical assets only (82, 111).  

2.4 Transportation Performance Measure-Based Resilience Approach 

This framework proposes a resilience performance measure-based approach for 

quantifying transportation infrastructure resilience. Transportation agencies currently utilize 

numerous programs that collect asset and performance measure data for management, planning, 

and decision-making purposes, so these procedures are a natural approach for resilience 

assessment. In most cases, quantitative performance measures describe transportation systems' 

infrastructure and operations, although qualitative approaches are sometimes used. For example, 

the National Cooperative Highway Research Program (NCHRP) Report 551 (2006) reviewed the 

state of practice on performance measures and organized the revised performance measures into 



45 
 

four categories: preservation of assets, mobility and accessibility, operations and maintenance, 

and safety (112). For the case of transportation, more explicitly planning, performance measures 

are fundamental for measuring targets and goals and assessing progress (113). The following 

section summarizes the performance measures academics and practitioners implement to 

quantify resilience across multiple transportation infrastructure systems. 

Faturechi and Miller-Hooks (2015) reviewed performance measures in the literature 

about disasters in transportation systems, categorizing performance measures into risk, 

vulnerability, reliability, robustness, flexibility, resilience, survivability, and measures of 

effectiveness (MOE) (101). The latter category, MOE, corresponds to functional and topological 

measures. Functional measures include travel time and distance, flow, and accessibility, while 

the topological category considers the transportation systems in terms of a network (graph 

theory). Sun et al. (2020) provided a review of resilience metrics and measurement methods for 

transportation infrastructure and classified them into two categories: topological and traffic-

related metrics; the former include connectivity and centrality, and the latter include travel time, 

congestion index, throughput, and weighted centrality-related metrics (road capacity, length of 

the road, and traffic flow) (36).  

The literature shows that several performance measures have been used to quantify 

resilience, with most emphasizing the functionality and effectiveness of transportation systems 

(infrastructure and operations) (36, 114). However, there is no consensus on a single accepted 

measure that best fits the resilience analysis. For example, Murray-Tuite (2006) addresses system 

optimum (SO) and user equilibrium (UE) traffic assignment and their impact on the road 

network using the performance measure of travel time (73). Similarly, Faturechi and Miller-

Hooks (2014) proposed a bi-level, three-stage stochastic mathematical program with equilibrium 
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constraints (SMPEC) model to quantify travel time under different disaster scenarios (30). 

Similar research on travel time is found in (115, 116). Scenario-based traffic modeling is used to 

assess resilience using vehicle distance traveled (VDT) and vehicle hours traveled (VHT) (117, 

118) and to assess resilience based on the availability of alternate paths (119). In the analysis of 

the resilience of mass railway transportation systems, Adjetey-Bahun et al. (2016) used 

passenger delay and passenger load (120). Similarly, Cox et al. (2011) used passenger journey 

reduction to estimate resilience by adapting a model used for direct static economic resilience 

(DSER); the authors conceptualized this model as "the estimated direct output reduction deviates 

from the likely maximum potential reduction given an external shock" (121). More examples of 

rail transit resilience metrics include Tang et al. (2021); in this study, the authors removed 

platforms and train routes to force travelers to alter their trajectories to quantify resilience in 

terms of the total queue, commuter outflows, and disruption load (122). More examples include 

(123) and (124).  

In the air transport system, travel delays as a performance measure are used to study 

airport resilience when assessing the events that generate the most travel delays (125, 126). 

Finally, airport runway pavement serviceability was modeled by Levenberg et al. (2017) to 

assess airport resilience in terms of the capacity to maintain operation while reducing runway 

and taxiway capacities (127).  

Pavement resilience has been included in resilience studies using pavement performance 

measures. Hot mix asphalt (HMA) thickness reliability is used as a performance measure to 

study the resiliency of pavements to temperature change and sea-level rise (SLR) in New 

Hampshire (128). Similarly, Stoner et al. (2019) conducted a resilience analysis of pavements to 

climate change that included pavement performance measures such as permanent deformation, 
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total pavement permanent deformation, and international roughness index (IRI) (129). The 

impact of climate change on the seasonal freezing and thawing conditions in low-volume 

roadways (LVR) was studied by Daniel et al. (2016), who used two performance measures, the 

cumulative freezing and thawing indices and frost depth, to assess the resilience of LVRs for 

changes in temperatures (130). Other pavement performance resilience analyses are found in 

(131–133). Airport resilience studies have used several airport performance measures. For 

example, flight volume and the volume of the influx of goods and freight were used by Comes et 

al. (2020) to study the resilience of airports simulating the response and rapidity after capacity 

disruption (134). A similar study by Zhou and Chen (2020) studied recovery time in the Chinese 

airport network after disruptions in the network (135). 

Huang et al. (2020) proposed two metrics for assessing tunnel resilience, which include 

restoration time and damage level (fragility) (136). The resilience of the freight transportation 

network is measured using the fraction of demand that can satisfy post-disruption using multiple 

paths as a solution (137). In a similar application, Morlok and Chang (2004) assessed the 

resilience of freight transportation on railway networks using unused network capacity (138). 

Travel delays were first proposed as a congestion index by Taylor (1992) to measure 

urban congestion in terms of links delays (139). Other studies have used real-time data from GPS 

sources to quantify resilience based on normalized travel time for New York City (140). At the 

same time, Beiler et al. (2013) proposed economic and financial metrics, including the economic 

capacity to maintain the existing network, the economic capacity to expand the existing network, 

and access to resources for recovery and preparedness (141). Table 2 summarizes additional 

performance metrics reported in the literature. 
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Table 2: Resilience Metric Summary 

Author  Year Metric Transportation 
System 

Method 

Sampaio et al. (142)  2022 Index based on network connectivity Air transport 
network 

Complex network theory 

Henry et al. (143)   2021 Travel time, queue length, and road 
capacity 

Traffic network Graph theory 

Jaksic and Janić (144) 2020 Demand, congestion, traffic 
complexity, costs, emissions, fuel 
consumption, and delays 

Air traffic control Mathematical modeling 

Nogal and Honfi(145) 2019 Travel time and available links Traffic network Stochastic modeling  
Janić (146) 2018 Direct cost of damage based on lines 

or route closure 
Passenger railway 
network 

Mathematical modeling 

Wang et al.(147) 2017 Alternative paths and length of paths Passenger railway 
network 

Network science and graph 
theory 

Chen et al. (148) 2017 Container flow and demand Ports Numerical simulation 
Karamlou and Bochini 
(149) 

2016 Network connectivity Bridges Optimization modeling 

Dunn and Wilkinson 
(150) 

2016 Network connectivity Air transport 
network 

Graph theory 

Karamlou and Bochini 
(151) 

2015 Resilience index as a probabilistic 
function of recovery-based traffic-
carrying capacity in normal 
conditions 

Bridges Probabilistic analysis using 
simulations 

Khaled et al. (152) 2015 Travel time, cost, volume Railway network Optimization modeling 
Zobel and Khansa (153) 2014 Recovery time n/a Optimization modeling 
Faturechi et al. (154) 2014 Runway and taxiway capacity Airport pavement Mathematical modeling 
Jin et al. (155) 2014 Demand between O.D. pairs that are 

satisfied  
Transit network 
(metro and bus) 

Optimization modeling 

Osei-Asamoah and 
Lownes (156) 

2014 Global efficiency and relative size of 
the giant component 

Road network Graph theory 

Cardillo et al. (157) 2013 Passenger volume that can be re-
schedule in the network 

Air traffic control Graph theory 

Freckleton et al. (158) 2012 LOS, travel time index, length, area, 
mode choice, costs 

Road network Fuzzy model 

Zobel (159) 2011 Recovery time and initial loss n/a Optimization modeling 
Serulle et al. (160) 2011 LOS, road density, delay, speed, cost Road network Fuzzy model 
Nair et al. (161) 2010 Average ratio of throughput achieved 

and total demand 
Ports and 
intermodal 
networks 

System-level network 
analysis using optimization 
modeling 

Rose (162) 2007 Potential maximum economic 
reduction  

Economic system Mathematical modeling 
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2.5 Current Practice on Measuring Resilience 

As mentioned throughout this introduction and literature review, the U.S. still lacks a 

practical performance-based framework to comprehensively quantify the resilience of 

transportation systems. However, there are several efforts to provide transportation agencies with 

guidance to assess the impact of extreme weather events on the infrastructure and operation of 

transportation systems from which such a framework can be built. The first group of tools 

discussed in this literature review provided agencies with information on the risk and 

vulnerability of different hazards to cause disruptions and severe losses to critical transportation 

infrastructure such as road networks, bridges, airports, and ports. This category of tools included 

HAZUS and the vulnerability assessment scoring tool (VAST). For example, Bocchini and 

Frangopal (2011) implemented HAZUS to assess the potential losses from earthquakes on 

bridges to estimate road network performance in terms of redundancy (163). Another traditional 

analysis using HAZUS is described by Allen et al. (2020) in their study of community resilience 

to flooding in Dyer County, Tennessee (164). Meanwhile, the FHWA VAST tool was used in 

studying the resilience of underground transportation infrastructure in the event of a sea-level 

rise (86). Other tools that follow a similar approach include the integrated rapid visual screening 

(IRVS) for tunnels and the climate resilience evaluation & awareness tool (CREAT) (165). 

However, it should be noted that none of these tools have been designed to assess transportation 

infrastructure's resilience. However, they can be a valuable resource for understanding risk and 

vulnerability. 

The American Society of Mechanical Engineers (ASME) developed the Risk Analysis 

and Management for Critical Asset Protection (RAMCAP) process to address two fundamental 

issues for critical infrastructure management. The first is protection by identifying the hazard and 
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minimizing risk, while the second approach focuses on resilience by providing means to quantify 

rapid return to all functions (166). This framework resulted from a White House conference in 

2002 that concerned the protection of the nation's critical infrastructure. The RAMCAP process 

is a seven-step process from asset characterization to risk and resilience management. The 

RAMCAP process included several threats, from terrorism attacks to natural disasters, and can 

be applied to various infrastructures, including transportation. In addition, the RAMCAP process 

provides a quantitative model to quantify risk and resilience and even outlines the benefits of 

incorporating improvements in risk and resilience (166).  

Nevertheless, one disadvantage of this framework is the method of quantifying 

consequences and vulnerability. Consequences determine the cost of specific hazards, and in the 

RAMCAP process, this typically concerns only financial losses or fatalities and injuries. 

However, the framework does not consider operational or physical losses in the infrastructure, 

which can be estimated using asset performance measures. Similarly, the RAMCAP process 

quantifies vulnerability based on an expert's knowledge and past experiences managing similar 

hazards. Finally, the vulnerability analysis does not include an analysis of the infrastructure 

performance under a specific hazard, which can vary among the intensity level, geographic 

location, and future conditions. 

FHWA’s vulnerability and adaptation framework (VAF) is a framework to assist 

transportation agencies and stakeholders in assessing transportation infrastructure vulnerability 

to extreme weather and climate effects (167). This tool, however, does not incorporate resilience, 

and agencies are limited to only mitigating and adapting existing infrastructure without a clear 

understanding of their capacity to withstand, adapt, and recover. In many cases, planning 

decisions that only account for vulnerability assessment led to the unnecessary allocation of 
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funds for hardening and adapting existing infrastructure (e.g., raising roads, adding and 

expanding lanes, improving drainage). To improve resilience assessment in transportation 

infrastructure, FHWA tasked RAND corporation to propose a resilience approach that could be 

adapted to the existing VAF process. RAND corporation proposed a resilience framework that 

assesses transportation infrastructure through an absorptive capacity, restorative capacity, 

equitable access, and adaptive capacity (AREA). The RAND AREA framework focuses on 

transportation systems' inputs, activities, outputs, and outcomes. In this context, AREA proposed 

quantitative and qualitative resilience metrics for each resilience capacity. Although the AREA 

framework proposed using performance measures to quantify resilience in different capacities, it 

does not provide a model that can relate performance measures with vulnerability and hazard to 

quantify a resilience score. 

2.6 Conclusions 

The concept of resilience has been narrowed across different disciplines, most notably in 

infrastructure systems. Unfortunately, this has become a barrier to deploying a standardized 

framework to assist agencies in assessing the resilience of transportation infrastructure to climate 

change. The lack of standardized guidelines and policies exacerbates the gap in operationalizing 

resilience for planning and decision-making. However, it should be noted that many agencies 

have developed policies and procedures to assist resilience planning. From academic work, there 

have been numerous efforts that have sought to define the "ultimate" solution for quantifying 

resilience. Most of the current work has been developed using complex models and sometimes 

abstract solutions that are impractical for application among planning agencies. Nevertheless, 

these efforts have provided a substantial number of metrics that individually can be used to 
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quantify resilience (e.g., travel time, delays, connectivity, costs, etc.). The issue remains: how 

can agencies implement a practical, transferable, and operational framework? 

The next chapter provides the formulation and rationale for a unified, standardized, 

transferable performance measure-based framework that can be deployed across multiple 

agencies and transportation systems. As such, this framework builds upon existing theories, 

definitions, and performance-based planning approaches, most of which have been discussed in 

the literature review. 
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Chapter 3: The Performance-based Resilience Evaluation Program (PREP) Framework 

So far, this dissertation has provided a thorough review on the concept of resilience and 

the elements that constitute resilience analysis for transportation infrastructure, the 

implementation of resilience analysis for transportation planning, the definition of transportation 

performance measures for resilience analysis, and the current practice on resilience guidelines 

for transportation planning and decision making. The previous chapter highlighted several issues 

that arise for transportation agencies in their effort to implement resilience into their planning 

process. One of the most notable barriers is the lack of a standardized, transferable, and 

operational framework that can be deployed across multiple transportation systems (e.g., 

airports, roadways, pavement, etc.) and incorporate multiple performance measures (travel time, 

delays, capacity, costs, safety, etc.). The second barrier arises with appropriately incorporating 

the concepts of vulnerability and risk in quantifying resilience. Ideally, such a framework should 

be practical and supportive of transportation planning.  

In this chapter, this dissertation centers on the development of a new performance-based 

framework that supports transportation resilience decision-making across multiple operational 

and infrastructure systems. As it has been titled, the Performance-based Resilience Evaluation 

Program (PREP) framework can be implemented for any transportation infrastructure to assist 

transportation agencies and stakeholders in making informed decisions, including project 

prioritization, risk mitigation, asset management, and design for more reliable infrastructure. 

Such a framework is crucial because it allows stakeholders data-driven knowledge to develop 

informed management and planning of the entire transportation infrastructure system against 

disruptive events (32).  
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The objectives of this chapter are (a) to develop a standardized, transferable, and operational 

framework to quantify resilience across multiple transportation systems, (b) to define a step-by-

step process to implement the PREP framework, and (c) provided examples of the application of 

the PREP framework. These objectives aim to provide a clear understanding of the PREP 

framework and the rationale for the elements of the framework and their numerical 

representation.  

3.1 Transportation Infrastructure Performance-based Resilience Evaluation Program 

(PREP) Framework 

Several organizations recognize resilience in transportation infrastructure systems and 

operations as a rising issue in the industry. For example, the 2013 National Infrastructure 

Protection Plan (NIPP) defines roles and responsibilities for government agencies and the private 

sector, and it proposes activities and goals to increase the security and resilience of the national 

transportation system (23). Also, the TRB report Critical Issues in Transportation 2019 identifies 

resilience and security as potential issues in the industry in the following 10 to 20 years (168).  

Despite this urgent call for action, the U.S. still lacks a standardized planning framework 

to guide transportation agencies. In response, this research developed the Performance-based 

Resilience Evaluation Program (PREP) framework. The PREP framework is a twelve-step 

process to bridge the gap in the current practice of quantifying resilience in transportation 

planning. This framework seeks to (a) build upon past research practices, gray literature, and 

existing federal guidance and (b) develop a transferable and quantifiable method for 

incorporating resilience performance measures into transportation decision-making and planning 

processes. 
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3.1.1 Framework Objectives and Overview 

The PREP Framework supports four main objectives necessary for successful 

implementation: (a) quantify resilience from weather impacts in transportation infrastructure, 

including impacts of structural, operational, environmental, economic, and community systems; 

(b) it utilizes consistent, data-driven, and scalable performance measures to characterize and 

quantify resilience (and its impacts) across different infrastructure; (c) implemented from as a  

process that is flexible, data-driven, performance-based, adaptable, and scalable, and (d) it is 

rooted in existing extreme weather and transportation planning theory. Overall, the PREP 

framework should be practical, operational, and replicable to multiple transportation 

infrastructure assets. 

The PREP framework is comprised of twelve steps organized in five phases, as seen in 

Table 3. The first phase has the user define the planning scope of the resilience analysis (e.g., 

study area, infrastructure asset of interest, hazard event(s) of concern, planning horizon), as well 

as the characteristics of the hazard event. The second phase has the user define how they are 

evaluating performance of their infrastructure, including setting target performance levels before 

the analysis begins. The third phase has the user quantify the relationship between the hazard 

events and infrastructure performance. The fourth phase brings together the probabilities of 

experiencing a hazard event intensity and the probabilities of changes in performance due to these 

hazard events to calculate a weighted change in performance measure, or the normalized measure 

of resilience. Finally, the fifth phase offers an opportunity to evaluate the benefit-cost 

relationship for potential resilience improvements. Each step is described in more detail in the 

following text.  
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Table 3: PREP Framework Phases and Steps 

Phase Step Activity 

Characterize Planning 
Scope and Hazard 
Event(s) 

1 Identify Study Area, Asset, Hazard, and Planning Horizon 

2 Set Hazard Event Intensity Thresholds 

3 Calculate Probability of Hazard Impacting Asset (HPF Diagram) 

Characterize 
Performance Measure 
Impact(s) 

4 Select Performance Measure of Interest 

5 Specify Target Performance Measure of Interest 

Characterize Impact(s) 
on Performance 
Measures 

6 Calculate Probability of Change in Performance due to Hazard 
Event (PMIF Diagram) 

7 Identify Performance Measure Impact Value Thresholds 

8 Calculate Percent Change in Performance 

Calculate Resilience 9 Calculate Resilience Score 

Quantify Changes in 
Resilience for 
Improvements 

10 Identify Resilience Improvements & Updated Probability of 
Change in Performance 

11 Calculate Resilience Score under Improvement Scenario 

12 Calculate Benefit-Cost Ratio of Improvement Scenario 
 

In addition, to provide readers with a better understanding of the PREP application this 

dissertation included an example that used a hypothetical scenario where the resilience of a 

roadway network is assessed. This hypothetical scenario considers rain as the primary hazard of 

concern and mean travel time in the roadway network resilience performance measure to be 

evaluated. This example is used throughout this chapter to dive into more details about each step of 

the PREP framework. This example is used only for demonstration purposes, and all values are 

assumed.  
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Step 1: Identify Study Area, Asset, Hazard, and Planning Horizon 

Phase one of the PREP framework characterizes planning scope and hazard. Here, the 

first step is to set the assessment boundaries. First, one must define the physical boundaries of 

the study area (e.g., network, corridor, site, region, state, city, community, etc.), which control 

where hazards will be forecasted and data collected. Second, one must be clear about the types of 

infrastructure being analyzed. These can include roadways, bridges, buildings, etc. The asset can 

include more than one type of infrastructure, which is an advantage of the PREP framework. 

Third, one must determine which hazard events are going to be considered based on historical 

threats or future concerns. These events can take the form of extreme weather or climate events 

that can potentially disrupt the asset partially or permanently. Two of the most common events 

include precipitation (rain or snow) and extreme temperature (high or low). These hazard events 

have the advantage of being predicted based on historical data or using climate model 

projections. Other hazards that can be considered potential threats include flooding, sea-level 

rise, landslide, earthquake, and tornadoes.  

Finally, one must determine how far into the future one wishes to plan for disruptive 

events. Projections of hazards change over time, and the user should consider if this is a short-

term assessment or one that is in sync with a regional planning exercise, which typically extends 

from a couple of years to decades into the future. Planning horizon is dependable on the type of 

transportation system. In the traditional roadway and highways planning process, one can look at 

5 to 15 years into the future, while airport master planning can incorporate activities to be carried 

out over a period of 20 years. 
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 The planning horizon is also defined by the availability to predict and forecast future 

weather conditions, either from available climate models or the capacity to forecast from 

historical data. It should be noted that climate models are typically projected by the end of the 

21st century. 

Step 2: Set Hazard Event Intensity Thresholds 

Once the parameters of the resilience analysis are set, this step looks further into the 

hazard event(s) under consideration. For each hazard, the user needs to define the “normal” 

limits of different hazard levels, defined as event intensity thresholds. Extreme weather research 

typically classifies hazard events into four intensity thresholds: no hazard event, low hazard 

event, typical hazard event, and extreme hazard event based on present-time standards (169). 

This classification method is convenient because it is a standardized approach to defining 

extreme low and high values without implementing fixed thresholds that might not be equally 

represented across different geographic zones or natural hazards.  

This dissertation implements a definition of hazard intensity that is used by the NOAA’s 

National Center for Environmental Information (NCEI) Climate Extreme Index. This index 

provides a definition for low and extreme intensity. This dissertation defines “Low Hazard” 

event intensity as the hazard intensity level limit for the lowest 10% of days with a value greater 

than zero. “Extreme Hazard” event intensity is the hazard intensity level limit for the highest 

10% of days with a value greater than zero. “Typical Hazard” event intensity is defined as the 

hazard intensity levels for the range between these two lower and upper limits. The U.S. Global 

Change Research Program uses instead of the top 10 percent the top one percent of all days with 
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precipitation to define the extreme event threshold. This can be an alternative approach based on 

the frequency of extreme events in the area of analysis. 

The approach to defining these event intensity thresholds can vary depending on the 

industry or type of infrastructure. For example, an alternative method is to follow the approach 

used in the hydrology and stormwater fields. Here, the definition of event intensities is 

traditionally associated with a percent exceedance probability (e.g., 20-, 10-, 7- , 3-, 2- and 1- 

percent exceedance probability), commonly referred to as 5-, 10-, 15-, 30-, 50- and 100- year 

rainfall events or return periods, respectively (170). This is an alternative approach that can be 

implemented to define the hazard intensity thresholds. For example, based on historical rainfall 

data, a planning agency can identify 10-year rainfall as the “Low Hazard,” a 100-year rainfall as 

the “Extreme Hazard,” and all other values in between as the “Typical Hazard.” 

For consistency and demonstration, this dissertation implements the first approach 

described in this section, which uses the top and lower 10 percent of the event distribution. For 

example, if one were considering rainfall, data from the past year might indicate that the lowest 

10% of days of rainfall produced up to 0.01 inches, and the highest 10% of days with rainfall 

produced 0.75 inches or more. These become the low and extreme rainfall intensity thresholds, 

respectively, for resilience planning. The most common method for identifying these limits is by 

considering previous years of event activity within the study area.  

There are a number of data sources that can be accessed for free to obtain historical data 

and these are compiled at NOAA’s NCEI website. In this website, the dataset directory provides 

access to daily, monthly, and annual global and normal summaries. Hazard event intensity data 

that can be accessed includes temperature, precipitation, evaporation, soil temperature, wind, 
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clouds, waves, swell, etc. This data can be accessed from https://www.ncei.noaa.gov/cdo-

web/search?datasetid=GHCND. Figure 2 shows the search tool available on this website. From 

this search tool, the dataset is selected from the dropdown menu, then the specific date range is 

entered, and in some cases, this data will be available from the late 1800s. There is also an option 

to search based on a specific station name, city or area name, or state. Finally, the name of the 

location of interest is entered. 

 
Figure 2: Example of Historical Weather Data Search Tool at NOAA’s NCEI Website (Retrieved from 
https://www.ncei.noaa.gov/) 

Precipitation, such as rainfall and snow, are broadly discussed in this dissertation. 

However, as noted in Step 1, the PREP framework includes multiple hazard events in the 

resilience analysis. For example, wind data can be used to study the resilience of bridges and 

airports. Winds are also a critical hazard for modeling the impact of tornados and hurricanes. 

Similarly, the PREP framework can include resilience analysis based on sea-level rise and storm 

https://www.ncei.noaa.gov/cdo-web/search?datasetid=GHCND
https://www.ncei.noaa.gov/cdo-web/search?datasetid=GHCND
https://www.ncei.noaa.gov/
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surge. However, such analysis will require a specific data collection process for that specific 

hazard (wind, hurricanes, sea-level rise)), which falls out of this dissertation's scope. 

Step 3: Calculate Probability of Hazard Impacting Asset (HPF Diagram) 

The next step determines the probability that the study area will experience different 

hazard event intensities during the defined planning horizon. Each study area has the chance of 

experiencing a wide range of hazard levels in the future, and in this dissertation, this probability 

is characterized by a Hazard Probability Function (HPF). Hence, an HPF can determine the 

probability that any intensity value or less can occur in the study area. However, the probability 

that a hazard event intensity will impact the study area is challenging to predict with accuracy, 

and this is because weather conditions can vary based on multiple factors. Nevertheless, this 

dissertation advised that future weather conditions should be included in the best possible way to 

make an adequate estimate of the threat that future hazard events will pose to the asset.  

An HPF is a cumulative distribution function, which describes the probability that the 

study area or the asset specifically will experience a given hazard event intensity, or less, on any 

given day in the future (seen in Figure 3). These HPFs can look very different depending on how 

far into the future one is planning, with many evolving environmental factors influencing hazard 

events. This HPF is then compared with the no hazard event, low hazard event, typical hazard 

event, and extreme hazard event intensity thresholds defined in the previous step. The goal of this 

comparison is to understand the new probabilities of experiencing these events.  

Returning to the rain example, future HPF projections might now show that the 

probability of experiencing a low hazard (up to 0.01-inch on any given day) is now 8% (instead of 

the original 10% from last year) and the probability of experiencing an extreme hazard (0.75-
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inches or more on any given day) is now 15% (instead of the original 10% from last year). These 

probabilities will be used as a foundational component of Step 9. 

 
Figure 3: Example of a Hazard Probability Function (HPF) for Precipitation (in/day) 

The data to develop an HPF can be obtained from two sources. The first one is looking at 

historical observations; however, this method requires a great understanding of weather forecast 

systems, and it is typically restricted to a couple of weeks into the future. An alternative is to 

simply assume that past probabilities will repeat in the future. The latter is an assumption that 

does not account for the effect of greenhouse gas (GHGs) emissions in the dynamic of the 

atmosphere and weather conditions. Alternatively, this first category includes using a define 

event return period to estimate the probability of occurrence of such intensity. For example, a 

planning agency can use the definition of a 100-year event to estimate the probability (1% 

probability) of being exceeded in any given year in the planning horizon. 
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The second method accounts for such a phenomenon which is the use of climate models. 

Although it is not the scope of this dissertation to test, compare or determine which climate 

models are more accurate, it is intended to draw the attention of practitioners and stakeholders to 

research, use, and gain insights into the application of climate models to forecast future hazard 

threats to transportation infrastructure. The following paragraphs provide readers with a brief 

description of climate models to better understand how these models operate and how the 

outcomes can be used. 

Climate models are the proposed methodology for developing HPFs in this dissertation. 

Climate models represent how energy and matter interact in the atmosphere, ocean, and land. 

Climate models also include mathematical formulations that predict the global circulation of 

energy and water that take place in climate systems. Climate models derived projections based 

on different GHG scenarios, and there are four main scenarios widely accepted and used by 

climate scientists. These scenarios are called representative concentration pathways (RCPs) and 

were proposed in 2008 in preparation of the IPCC Fifth Assessment Report. Each RCPs 

represent a specific net amount of climate forcing (W/m2) at the end of the 21st century, and this 

are based on the number of global emissions. Figure 4 shows the four RCPs and their projected 

trajectories. 
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Figure 4: Global Emission Trajectories (retrieved from 170) 

Using RCPs, a number of research institutions and organizations around the world have 

developed climate models at different scales, regions, and modeling techniques that simulate 

interactions between GHGs and the atmosphere, oceans, and land. For example, NOAA’s GFDL 

has contributed with six models used for climate assessment on the IPCC reports. NOAA GFDL 

models and others developed around the world have been collected in CMIP Phases 3, 5, and 6 to 

support the diagnosis, validation, intercomparison, documentation, and data access of model 

outputs. CMIP data for the U.S. can be accessed at the Downscaled CMIP3 and CMIP5 Climate 

and Hydrology Projections archive at http://gdo-dcp.ucllnl.org/. Another source for climate model 

data is the Coordinated Regional Climate Downscaling Experiment (CORDEX), which provides 

model projections for different regions worldwide and at different time scales. This dissertation 

will implement climate models from different sources based on data compatibility and availability 

in the areas of interest. More information about each model used in this dissertation will be 

provided in their corresponding chapters.  
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Finally, it is worth making a clear distinction between the meaning of two terms frequently 

used in this dissertation “extreme weather event” and “Extreme Hazard intensity event”. On the 

one hand, the first term is used along with the term “climate change” to refer to all natural hazard 

events that have an unusual occurrence and represent severe weather conditions. Typically, this 

term indicates that weather and climate conditions will cause more severe “extreme” events due to 

climate change and GHG emissions in the future. On the other hand, the term “Extreme Hazard” 

only refers to the threshold of the selected hazard that will be used to categorize any event as 

extreme. 

Step 4: Select Performance Measure of Interest 

Step 4 is the first step in Phase 2: Characterize Performance Measure Impacts. This phase 

focuses on identifying the performance measure of interest as well as the target performance. 

Performance measures describe the effectiveness of transportation assets' operation and physical 

infrastructure. They have been widely used to measure the results and goals set in the planning 

stage and are tools to assess improvements. Performance measures are essential to the PREP 

framework as they describe the impact of a hazard on the transportation asset and systems. For 

example, data and statistics collected from performance measures can estimate systems and asset 

capacity degradation due to a hazard impact. Obtaining performance measures is a systematic 

process that is, most of the time, part of an agency's asset management process. However, in 

some instances, agencies might not have a defined process to access such data, or a specific 

performance measure is not yet being reported. In identifying performance measures, this 

framework suggests considering the recommendations in the report Serving the American Public: 

Best Practices in Performance Measurement  (7) for defining a performance measure. In this 

report, a performance measure should include the following (114): 
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• A specific goal or objective from which is derived 

• Data requirements (unit, metric, frequency of measurement, data source) 

• Calculation methodology 

• A clear data collection process 
 

The methodology to obtain performance measures relies upon a literature review of 

research publications, gray literature, and reports for state and federal agencies that have outlined 

the use of performance measures to assess resilience. In addition, asset management and 

maintenance guidelines will serve as a point of reference to collect performance measures 

established per state of a federal mandate to be collected regularly to assess the performance of 

transportation infrastructure. In addition, this step proposed a resilience question matrix approach 

(seen in Table 4) to help identify performance measures characterizing all types of assets and 

organized by stage of resilience. This table aims to provide agencies with questions to help 

identify performance measures that support studying an asset (Highway) resilience across the 

three resilience stages. Other sectors, like airports or maritime transport, could include different 

asset categories and focus their questions appropriately. The same metrics may be used to answer 

multiple of these questions. For example, system travel delay, corridor level of service (LOS), and 

pavement deterioration could be performance measures for multiple questions. Table 5 lists some 

example performance measures for different transportation systems and are organized by the 

resilience capacity or stage. 

The PREP framework is designed to assist planning agencies during any of the stages of 

resilience (absorb, adapt, and recover). It can also assist agencies in preparing and anticipating 

before the infrastructure is impacted, for example, during the evacuation of communities before the 

impact of hurricanes and storms. In addition, agencies can rely on the PREP framework to study 
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the resilience of the roadway (e.g., travel time, LOS, or IRI) before the hazard actually impacts it, 

and similarly can assist in studying after the impact of the hazard during the humanitarian relief 

and reconstruction.  

Table 4: Resilience Question Matrix for Identifying Performance Measures 

Asset Categories 

STAGES OF RESILIENCE 

Absorptive Capacity Adaptive Capacity Recovery Capacity 
Impacts Before Asset loss of 

capacity 
Impacts During Asset loss of 

capacity 
Impacts to Rebuilt Asset Post loss 

of capacity 

Daily Passenger 
Traffic 

Operation 

How well can the asset maintain 
typical passenger traffic operations 
during the disruption, but before 
the asset fails due to the hazard? 

How well can the rest of the 
system support rerouting 
passenger traffic operations if 
this asset fails due to the hazard? 

How well can the asset support 
passenger traffic operations as it is 
being rebuilt after failing due to the 
hazard? 

Asset Pavements 
& Materials 

How well can the design of the 
asset pavement and materials 
increase the time before it fails due 
to the hazard? 

How well can the design of the 
asset pavement and materials 
maintain its structural integrity 
through failure due to the 
hazard? 

How well can the design of the 
asset pavement and materials be 
quickly rebuilt after failing due to 
the hazard? 

Asset Bridge 
Structural & 

Geometric 
Design 

How well can the roadway layout 
and structural asset elements 
increase the time before it fails due 
to the hazard? 

How well can the layout and 
structural asset elements 
maintain its structural integrity 
through failure due to the 
hazard? 

How well can the layout and 
structural asset elements be quickly 
rebuilt after failing due to the 
hazard? 

Hydrology & 
Environment 

How well can the area surrounding 
the asset and its own hydrological/ 
environmental status/design 
increase the time before it fails due 
to the hazard? 

How well can the area 
surrounding the asset and its own 
hydrological/ environmental 
status/design maintain its 
structural integrity through 
failure due to the hazard? 

How well can the area surrounding 
the asset and its own 
hydrological/environmental 
status/design be quickly rebuilt 
after failing due to the hazard? 

Community  
Access & Equity 

How well can the asset support 
access to the preferred evacuation 
destinations for all resident groups 
before the asset fails due to the 
hazard? 

How well can the rest of the 
system asset support access to 
the preferred evacuation 
destinations for all resident 
groups if this asset fails due to 
the hazard? 

How well can the asset support 
return of residents of all groups as 
it is being rebuilt after failing due 
to the hazard? 

Emergency 
Planning 

Preparation 

How well prepared is the 
community leadership for a 
potential failure of this asset due to 
the hazard? 

How well can the community 
leadership react if this asset fails 
due to the hazard? 

How well can the community 
leadership rebuild this asset if it 
fails due to the hazard? 
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Table 5: Example Performance Measures for Highway Infrastructure Systems  

 Daily Passenger Traffic Operation 

 

Asset Pavements  

& Materials 

Asset Structural  

& Geometric Design 

 Absorption Absorption Absorption 

Clearance Time AADT Terrain 

Queue Length Groundwater Elevation Lanes 

Volume to Capacity Ratio Asset within Flooding Zone Lane Width 

LOS Wearing Course Thickness Age of Asset 

Mean Speed Surface Drainage Roadway Width 

Travel Time 

% Truck 

Infiltration Rate 

Tensile Strength Ratio Test 

Curbs 

On Street Parking 

Throughput  Roadway Centerline Elevation 

Passenger Trips  Landslide Zone 

CBD or Suburban   

AADT   

Adaption Adaption Adaption 

Link Functional Classification Durability Factor Driveway Density 

Queue Length (reroute) International Roughness Index Clear Zone 

Volume to Capacity Ratio (reroute) % Rutting Right of Way 

LOS (reroute) % Cracking Grade 

Travel Time (reroute)  Exit Ramp within 2 Miles 

% Truck (reroute)  Multimodal Path Available 

Capacity-Based Network 
Robustness index  

Length of Detour 

  

Recovery Recovery Recovery 

Number of Day Link is Expected to be 
Closed 

Percentage of Unaffected Links 

Recycled Materials Available to 
Rebuild 

  Distance to Plant 

Asset Maintenance Schedule 

 

Replacement Cost 

Proximity to Alternative Route Availability of Contractors/Agency 
Crews to Work Overnight 

Replacement Time 
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Step 5: Specify Target Performance for Measure of Interest 

Once the performance measures of concern have been selected, the following step is to 

specify a target performance measure value. This value is input in Step 7, where it is used to 

calculate the change in performance for the selected measure, and it is equal to the percentage 

change between the target performance and the calculated performance at the time of the hazard. 

Target performance can be derived from agency planning goals and targets set in the 

LRTP or MPO's Transportation Improvement Program (TIP). Target performance can also be 

established by the agency's operational and design guidelines and standards. Similarly, these can 

be referenced to federal or state guidelines required to maintain funding in the operation of the 

transportation system or asset. For example, if one had selected ‘mean travel delay in minutes’ as 

the performance measure, one might accept a 10-minute delay, on average, as acceptable on the 

highway. Of course, this a value that will depend on location (e.g., urban vs. rural area) or road 

classification (e.g., arterial vs. interstate). 

Step 6: Calculate Probability of Change in Performance due to Hazard Event (PMIF) 

Diagram 

Step 6 of the PREP framework is the first step in Phase 3: Characterize Impact(s) on 

Performance Measures. This phase focuses on quantifying the cost in terms of loss in the 

capacity as a result of a hazard event intensity. Step 6 is one of the most important steps of the 

PREP framework, and this step quantifies the relationship between the hazard event and the 

selected performance measure. This relationship is characterized by a Performance Measure 

Impact Function (PMIF). This dissertation defines a PMIF as the probability that a specific 

damage value for a selected performance measure can occur, given historical observations of 
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hazard intensity. A PMIF is a graph of the cumulative distribution of the observed or simulated 

performance measure damage values under a given hazard intensity. 

A PMIF describes the impact of a specific hazard intensity in the selected performance 

measure. In developing a PMIF, the PREP framework links performance measure values with 

known observations of hazard intensity. This process is achieved through a cumulative 

distribution of the performance measure values corresponding to a specific hazard event intensity. 

Hazard intensities are four thresholds previously defined: no hazard event, low hazard event, 

typical hazard event, and extreme hazard event. The selection of the modeling period will vary 

based on data availability, agency resources to estimate performance values, and the overall 

analysis goal. The advantage of using a probability distribution to describe hazard impact to a 

performance measure is that we can standardize the process to quantify losses in the asset, 

regardless of the performance measure. In the past, resilience has been quantified in terms of a 

single performance measure (e.g., travel time) with single units of measurement. However, the 

goal of this framework is to present a flexible and standardized framework that can include 

multiple measures simultaneously. 

Once the hazard intensity levels are defined, cumulative distributions for the performance 

measure impacts due to the hazard are constructed for each of the hazard intensity levels defined 

in the previous steps. To do this, the performance measure complete dataset is broken into four 

subsets, one for each intensity level, and the performance measure value is matched with hazard 

values reported that same period.  

Continuing with our example, one would create four PMIFs showing the cumulative 

distribution of different ‘mean travel delay in minutes’ experienced by vehicles under (a) no 
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rainfall events, (b) low rainfall events, (c) typical rainfall events, and (d) extreme rainfall events, 

seen in Figure 5. In order to keep the framework consistent, mean travel delay would be 

characterized by the discrete values of travel delays: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 

and 60 minutes. In this example, no vehicle would experience more than 60 minutes of delay. 

Ideally, the more data available to construct the PMIF, the better. However, this process 

still applies even when the number of data points is limited. The data required to develop PMIFs 

is often kept by different agencies and may need to be combined with weather data. Additionally, 

this is an opportunity to start collecting data on key performance measures to evaluate resilience 

in the future. 

 
Figure 5: Example of Mean Travel Time Delay PMIF for Different Hazard Intensities 
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Step 7: Identify Performance Measure Impact Value Thresholds 

In this step, one simply lists out the different performance measure values that are feasible. 

This will take the form of a list with acceptable discrete thresholds for the performance measure. 

For example, if one had selected ‘mean travel delay in minutes’ as the performance measure, in 

this step one would list out the possible discrete values: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 

60 minutes. The range of value thresholds can be as large as needed, depending on what would 

be expected. It can also include negative values, for example, when working with performance 

measures that represent a change in capacity. 

Step 8: Calculate Percent Change in Performance 

This step is, again, purely mathematical. Each performance measure impact value is 

converted into a unitless and comparable ‘percent difference in performance measure’ score by 

subtracting the impact value and the target value and dividing by the target value. Following our 

example, this means that each threshold value (e.g., 0 through 60 minutes) would now be 

converted into percentage changes (-100% to 300%). 

Step 9: Calculate Resilience Score 

This step aims to quantify resilience through a standardized, flexible, and transferable 

equation. As noted in Chapter 2, Section 2.1, this dissertation defines resilience following Federal 

Highway Administration's (FHWA) Order 5520 as the capacity of a transportation system or asset 

to absorb, adapt to, and recover from a disruptive extreme weather event. In addition, the PREP 

framework defines an asset as the physical (infrastructure) or operational elements that are part of 

a transportation system. For example, within a transportation system like airports, one can define 

multiple assets, such as a runway or terminal, and other operational assets, such as air traffic 
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operations. Similarly, for the transportation system roadway network, an asset can be the 

pavement structure, the traffic operations, the roadway links, an intersection, and multimodal 

terminals. 

Based on past research and literature, the PREP framework applies Equation 1 to quantify 

the resilience of any single asset (A). Resilience is calculated for a single asset (A) based on a 

selected performance measure (M) as the summation of products of the probabilities that asset (A) 

experience the impact of a hazard intensity level (H), the probability of a change in the capacity 

value of the selected performance measure (∆CM) due to a hazard intensity level (H) impacting 

the asset (A), and finally, the value of the change in the capacity value of the selected 

performance measure (∆CM). In Equation 1, the hazard intensity level (H) corresponds to any of 

the three intensity levels defined in Step 2 (e.g., none, low, typical, extreme hazard events). 

Equation 1 can be written as: 

Resilience A,M = ∑ [P(HA) × P(∆CM|HA) × ∆CM] H                                                         (1) 

The resilience measure calculated from Equation 1 is a unitless comparable and scalable 

factor, defined as the ‘Expected Percent Change in Performance Measure from Target Value 

(%).’ This definition and equation are both developed from existing research and literature. First, 

it should be noted that Equation 1 quantifies resilience in terms of losses, vulnerabilities, and 

threats. Each of these elements is represented by one calculation. For example, losses are 

represented by the term ∆𝐶𝐶𝑀𝑀, vulnerability by the term 𝑃𝑃(∆𝐶𝐶𝑀𝑀|𝐻𝐻𝐴𝐴), and threats by the term 

𝑃𝑃(𝐻𝐻𝐴𝐴). In this dissertation’s resilience definition, threat and vulnerability account for the 

likelihood that a hazard will impact the asset and the likelihood of the consequences in the event 

of the hazard impacting the asset, respectively. At the same time, losses are the outcome of the 
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hazard impacting the asset. Negative resilience scores indicate that the asset still has the 

absorptive capacity and can continue to operate without reaching the target performance measure. 

Positive resilience scores indicate the asset is operating at a capacity loss and has surpassed the 

target performance measure.  

These three elements are used in a similar resilience score introduced by The American 

Risk Analysis and Management for Critical Asset Protection (RAMCAP). In RAMCAP, 

resilience for owners and communities is based on economic losses, vulnerability, and threats 

(166). However, in this publication, the values of vulnerability and threat are not described in 

terms of the probability of hazard and changes in the capacity value of a performance measure. 

Instead, the authors based these terms on a broad general-based approach to risk and 

consequences associated, mainly with terrorist attacks. 

Similar to the RAMCAP resilience score, other literature has included at least one of the 

terms of  Equation 1. For example, vulnerability which is associated with the susceptibility of a 

transportation asset to experience a reduction in the performance measure capacity, is 

implemented in the study of road vulnerability (173). Most notably, losses are included in the 

widely used resilience definition by Bruneau et al. (2003) on seismic resilience. Bruneau et al. 

(2003) define that the performance of any system can be measured as a point in a 

multidimensional space represented by performance measures and that sometimes this 

performance can change gradually or abruptly (56). Because resilience has been associated to the 

capacity of a system to maintain functionality over a period (174), it is reasonable to interpret a 

change in the capacity to function as losses that affect the system's resilience. Hence, a similar 

approach to that taken by 10 and 11 is incorporated into the PREP resilience score. Finally, the 

concept of threats for quantifying resilience can be best related to risk analysis of extreme 



75 
 

weather. Risk is a concept that is widely associated with resilience studies and incorporates 

exposure and sensitivity of infrastructures to hazards (167). It is shown in the literature that these 

three terms have been used with the purpose of quantifying or at least understanding resilience in 

transportation infrastructure. However, the PREP framework combines them all and uses a unique 

performance measure-based approach and probability functions to characterize vulnerabilities, 

threats, and losses. Equation 1 incorporates these terms to quantify resilience in a flexible and 

standardized approach that can be replicated to multiple assets and performance measures. 

Additionally, Equation 1 evaluates resilience for a single asset using only one 

performance measure; however, if multiple performance measures are used, the PREP framework 

proposes using Equation 2. In this equation, the resilience score for the asset (A) is the summation 

of all individual performance measures resilience scores divided by the number of performance 

measures (M). This equation can be written as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  =  ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴,𝑀𝑀𝑀𝑀
𝑀𝑀

                                                                      ( 2)                                                                                          

Ultimately, Equations 1 and 2 allow comparing multiple assets using single or multiple 

performance measures for each asset. In addition, the PREP framework allows comparing assets 

and systems despite the uniqueness of each because the resilience score is based on a standardized 

and transferable equation. This is an advantage that is not found in the existing practice of resilience 

for transportation infrastructure. This allows agencies, planners, and stakeholders to gain data-

driven knowledge for informed decision-making. 
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Step 10: Identify Resilience Improvements & Updated Probability of Change in Performance 

Finally, it is important to recognize that a key reason transportation planners seek to 

measure resilience is to evaluate how it will change if they implement different improvements. 

Therefore, it will be important to develop new PMIFs to show how each new countermeasure, 

product, design, or operation changes the relationship between different performance measures 

and hazard intensities. The data required to develop new PMIFs under different improvements 

may be kept by different agencies that are studying resilience improvements. Additionally, this is 

an opportunity to start collecting data on key improvement measures to evaluate resilience in the 

future. 

Step 11: Calculate Resilience Score under Improvement Scenario 

After developing an updated PMIF that accounts for the benefits of the resilience 

improvements in the performance measure values, the new resilience score for the given 

performance measure can be quantified. Again, it is necessary to implement Equations 1 and 2¸in 

case multiple measures are considered. This new value of resilience will account for the benefits 

of the resilience improvements and can be used for scenario planning and decision-making. 

Step 12: Calculate Benefit-Cost Ratio of Improvement Scenario 

The last step in the PREP framework corresponds to a traditional benefit-cost ratio 

analysis for assessing the feasibility of potential resilience improvements (e.g., adaptation 

options). A benefit-cost analysis serves to decide between two alternatives, including potential 

resilience improvements to the transportation asset or system. In this step of the PREP framework, 

agencies have gathered enough information for informed decision-making in their planning 

process. 



77 
 

3.2 Example Application of the PREP Framework: Rainfall and Mean Travel Delay 

Table 6 presents the first nine steps of the PREP Framework using the example described 

throughout this paper, with the steps labeled for each component. In this example, there are no 

days with zero rainfall, and the mean target delay is 15 minutes. Based on the projected rainfall in 

2030, a typical highway planning time horizon, and the observed relationship between rainfall 

levels and mean travel delay on this highway, the resilience score is 141.90%. This is the 

‘Expected Percent Change in Performance Measure from Target Value’ as a consequence of the 

hazard event, and this score indicates that without improvement, it is likely that the current 

highway will not be able to operate consistently under the likely rainfall conditions in the future. 
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Table 6: Example Application of the PREP Framework 

Hazard Event: Daily Precipitation (in/day) Performance Measure: Mean Travel Time Delay Expected Percent 
Change in 
Performance 
Measure from 
Target Value at 
Hazard Event 
Intensity (%) 

Expected Percent 
Change in 
Performance 
Measure from 
Target Value due 
to Hazard Event 
(%) 

Hazard 
Event 
Intensity 
Thresholds 
(in/day) 

Probability of 
Experiencing 
This Hazard 
Event 
Intensity or 
Less 

Probability 
of 
Experiencing 
This Hazard 
Event 
Intensity 

Performance Measure Impact PMIF 
Target 
Value 
(minutes) 

Impact 
Value 
Thresholds 
(minutes) 

Percent 
Change in 
Impact Value 
from Target 
Value (%) 

Probability 
of 
Experiencing 
Impact 
Value or 
Less (%) 

Probability 
of 
Experiencing 
This Impact 
Value (%) 

Low:  
 
0.001 to 
0.01 inches 

21.76% 21.76% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
15.00 

0.00 -100.00 0.00 0.00 

135.67 

141.90 

10.00 -33.33 0.00 0.00 
20.00 33.33 10.00 10.00 
30.00 100.00 45.00 35.00 
40.00 166.67 77.00 32.00 
50.00 233.33 92.00 15.00 
60.00 300.00 95.00 3.00 

Typical: 
  
0.02 to 
0.74 inches 

95.50% 73.74% 

0.00 -100.00 0.00 0.00 

144.67 

10.00 -33.33 0.00 0.00 
20.00 33.33 9.00 9.00 
30.00 100.00 40.00 31.00 
40.00 166.67 65.00 25.00 
50.00 233.33 83.00 18.00 
60.00 300.00 92.00 9.00 

Extreme:  
 
0.75 inches 
or more  

100.00% 4.50% 

0.00 -100.00 0.00 0.00 

126.67 

10.00 -33.33 0.00 0.00 
20.00 33.33 5.00 5.00 
30.00 100.00 19.00 14.00 
40.00 166.67 31.00 12.00 
50.00 233.33 70.00 39.00 
60.00 300.00 70.00 0.00 
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The following calculations demonstrate how to arrive at the resilience score, as depicted 

in Table 6. The following calculations show the results of a single hazard event intensity. First, 

once the Target Value (Step 5) and Impact Value Thresholds (Step 7) are defined, we can 

calculate Percent Change in Impact Value from Target Value (%) (Step 8), as shown in   

Equation 3: 

Percent Change = (Impact Value Threshold - Target Value)
(Target Value)�                         (3)                    

For the threshold value of 20 minutes in the Low Hazard Event intensity this value will 

be calculated as follows: 

Percent Change 20 min= (20-15)
(15)�  = 33.33% 

The next calculation from Table 4 is the Probability of Experiencing Impact Value. This 

value is equal to subtracting the current value of Probability of Experiencing Impact Value or 

Less (Step 6) minus the summation of all previous values of Probability of Experiencing Impact 

Value. Continuing with the example for a 20-minute Impact Value Threshold for Low Hazard 

Event Intensity, the calculation is as follows: 

Probability of Experiencing Impact Value  = 10% −  ( 0% + 0% ) 

Probability of Experiencing Impact Value  = 10% 

The following calculation from Table 6 is the Expected Percent Change in Performance 

Measure from Target Value at Hazard Event Intensity (%). This value is determined as the 

summation of the product of Percent Change in Impact Value from Target Value (%) and 

Probability of Experiencing Impact Value. In order to calculate this value, we need to repeat the 
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previous calculation for every Impact Value Thresholds. The calculations for the Low Hazard 

Event intensity will be as follows: 

Expected Percent Change = (-33.33%×0%) + (33.33%×10%) + (100%×35%) + 

 (166.7%×32%) + (233.3%×15%) + (300%×3%) 

Expected Percent Change = 135.67% 

The final calculation in Table 4 is for the Resilience Score (Step 9), which is equal to the 

summation of the product of the Probability of Experiencing Hazard Event Intensity (%) and 

Expect Percent Change in Performance Measure from Target Value at Hazard Event Intensity 

(%). This calculation is as follows: 

Resilience Score = (21.8%×135.7%) + (73.7%×144.7%) + (4.5%×126.7%) 

Resilience Score = 141.90%  

3.3 Conclusions 

Despite many organizations recognizing the need for more comprehensive resilience 

planning for transportation infrastructure, the U.S. still lacks a standardized planning framework 

to guide these decisions and prioritize improvements. Therefore, this dissertation develops and 

demonstrates the application of a flexible resilience framework that supports transportation 

resilience decision-making across multiple operational and infrastructure systems. This 

Performance-based Resilience Evaluation Program (PREP) framework can be implemented for 

any transportation infrastructure to assist transportation agencies and stakeholders in making 

informed decisions, including project prioritization, risk mitigation, asset management, and 

design for more reliable infrastructure. The PREP Framework comprises twelve steps organized 
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in five phases and calculates resilience as a weighted probability of hazard events and the impacts 

of this hazard on performance measures. Having such a framework is crucial because it allows 

stakeholders data-driven knowledge to develop informed management and planning of the entire 

transportation infrastructure system against disruptive events. 

Additionally, it is important to recognize that resilience impacts more than just 

infrastructure or roadway operations.  There are many performance measures that describe 

community quality of life, economics, equity, etc.  The PREP framework is able to include these 

measures as they are impacted by hazards as well, as long as PMIF functions are generated. For 

example, the PREP framework can be used to estimate the resilience of organizations and 

institutions during a humanitarian crisis that causes massive migration into a single border 

crossing point (city or state). In this scenario, for example, there can be measures of how much 

the increase in the number of migrants will cause a reduction in the performance of the city or 

state operations (e.g., public safety, health services, housing, energy consumption, food, and 

water consumption). In such a scenario, the PMIF should provide a relation between the number 

of migrants and the reduction in any service. As the PREP resilience scores are unitless, these 

alternative performance measures can be combined with infrastructure based resilience to assess 

community resilience comprehensively.  

There are many opportunities for future work, especially in the realm of data collection 

and development of PMIFs. While some data exist to characterize how different hazard events 

impact different civil infrastructures, there are many opportunities to develop more equations to 

characterize these relationships. It is particularly important to consider how new technologies, 

countermeasures, products, designs, or operations can affect the relationship between 

performance measures and hazard intensities. 
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The following chapters of this dissertation (four and five) will provide readers with an in-

depth application of the PREP framework. In these applications, this dissertation considers 

different transportation systems to demonstrate the framework’s transferability, as well as the use 

of different performance measures that validate the framework’s flexibility.  
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Chapter 4: PREP Framework Application on The National Airspace System (NAS) 

Up to this point, this dissertation has formally introduced the Performance-based 

Resilience Evaluation Program (PREP) framework. In Chapters one and two, this dissertation 

provides a discussion that centers on the importance of resilience analysis of critical 

infrastructure and the gap in the current practice among transportation agencies due to the lack of 

standardized guidance. In chapter three, this dissertation introduced the PREP framework and a 

discussion of each step of the framework, followed by a hypothetical example to explain each 

step in more detail and to help readers better understand the requirements and use of the 

framework. However, it is necessary to deploy this framework in real-world applications, 

particularly applying the framework to critical transportation infrastructure. In fact, by 

implementing this framework in real-world transportation systems, this dissertation can confirm 

the transferability and flexibility of the framework. This is a value found in the PREP framework 

as no other resilience analysis process has been shown to transfer into multiple systems and 

performance measures. 

This first application of the PREP framework focuses on the National Airspace System 

(NAS). Airports are critical elements as they provide commercial and military services that 

support the economy, security, and development of the country. According to the Bureau of 

Economic Analysis (BEA), Tourist Satellite Accounts Data Sheets, during 2021, domestic 

passenger air transportation services produced $121, 309 billion, while international passenger 

air transportation services generated $ 34,132 billion in goods and services sold to travelers. A 

report in 2015 using data from the Department of Commerce indicated that airports accounted 

for 4.9% of the U.S. GDP (175). In addition to the economic impact of airports, airports also 

serve to national defense and security. Joint-Use Airport is a term designed for airport facilities 
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owned by the Department of Defense (DOD), in which both civilian and military aircraft make 

shared use of the airfield.  

Nevertheless, airports are vulnerable to disruptions and irregular operations that can 

cause significant passenger delays (176). In addition to common airline and airport operational 

and physical constraints, the rise in the severity and frequency of extreme weather events poses 

significant challenges to airports’ operations (176). The past decades have seen an increase in 

extreme weather and climate events severely impacting transportation infrastructure. For 

example, 2020 set a record in natural disaster-related damages of 22 billion dollars (26) in the 

U.S. transportation system, including the NAS. Weather-related impact on airport performance is 

on the rise; for example, extreme weather events accounted for approximately 25% of total 

airport flight delays between December 2020 and May 2021 (177). In response, there are many 

initiatives to address infrastructure resilience, including Presidential Policy Directive 21, which 

requires agencies to advance efforts to strengthen, secure, and enhance the resilience of the 

nation's infrastructure (14). A resilient NAS means that both airport infrastructure and operations 

can absorb, adapt to, and recover from a disruption caused by extreme weather while maintaining 

acceptable performance of its operation and service. 

Several public and private organizations have considered the implications of climate 

change in airport infrastructure and operations, mainly by identifying what assets are most at risk 

based on projected climate conditions (178, 179). However, there is still a research gap in 

guidance and a standardized approach for assessing the resilience of airports to extreme weather 

events. Both practitioners and researchers recognize these gaps and research needs. TRB 

Committee AV030 research needs statements noted that experts seek guidance and standardized 

airport resilience performance measures to help (a) implement systems that allow the airport 
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system to absorb extreme weather events impacts proactively, (b) generate plans that allow 

airports to adapt in real-time to extreme weather events, and (c) create systems allowing airports 

to recover from extreme weather events quickly. The existing practice in airport planning, 

particularly planning and adaptation to climate change, lacks a comprehensive approach for 

studying the NAS's operational and physical attributes that contribute to airports' resilience 

(135). Additionally, airport managers are looking for a better understanding of climate 

projections that are more relevant for airport planning (180). While there are extensive efforts to 

address the risk and vulnerability of NAS and other transportation infrastructures to extreme 

weather events (167), no specific method has been deployed that comprehensively combines 

future climate projections and performance measure-based metrics for quantifying resilience.  

Therefore, the objectives of this chapter are to (a) demonstrate the transferability and 

flexibility of the PREP framework, (b) quantify the impact of precipitation on airport quality of 

service performance measures, and (c) quantify the resilience score of airports across different 

geographic locations in the NAS. This approach is applied to six airports and quantifies 

resilience in terms of two airport performance measures, considering two hazard events. The 

results from this chapter can be used to (a) develop action plans to proactively reduce the impact 

of extreme weather events on airports operations and infrastructure, (b) develop procedures to 

react in real-time to the effect of extreme weather events in airports operation and services, and 

(c) deploy tailored strategies towards a rapid recovery in the aftermath of a severe weather event.  

This chapter is organized as follows: first, a literature review of the current practice on 

airport resilience; second, the airport resilience approach methodology; then, a section describing 

data and modeling analysis for the application demonstration; and finally, the results and 

conclusions. 
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4.1 Current Practice on Airport Resilience Planning 

A variety of resources exist to help practitioners understand the importance of airport 

resilience. For example, the Airport Cooperative Research Program (ACRP) has provided 

practitioners and researchers alike with a number of publications that (a) provide guidance for 

the assessment of airport risk and vulnerability, (b) provide tools to help airport authorities to 

incorporate climate change and extreme weather risk and vulnerability in the planning and 

decision-making, and (c) provide guidance for airport adaptation to climate change (178–180). 

ACRP Research Report 188 provides airport practitioners with a comprehensive handbook to 

integrate climate risk into the airport management system, especially among seven systems: 

strategic planning, master planning, safety management, capital planning, enterprise risk 

management, asset management, and emergency management (181). This handbook includes a 

self-assessment section followed by an integration section where airport authorities learn about 

strategies to incorporate climate risk into their management system. ACRP Research Report 199 

addresses the benefit-cost of airport resilience and provides a two steps methodology that 

focuses, first, on screening for climate threats to airports and second, on an analysis of airport’s 

risk to climate threats identified in step one (182). The San Diego Airport Climate Resilience 

Plan (CRP) is an example of airport resilience planning at the local level. This plan is designed to 

improve the airport authority’s resilience to climate stressors by (a) identifying the risk and 

magnitude of the threat, (b) identifying measures to reduce risk, and (c) integrating resilience in 

the airport’s operations and planning (183). 

Other efforts only address the risk and vulnerability to climate. For example, ACRP 

Research Report 160 presents the Airport Weather Advanced REadiness (AWARE) Toolkit to 

assist airport practitioners in identifying the weather events that pose the most significant threat 
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to airport operations and best practices to increase airport readiness for these events (178). 

Meanwhile, ACRP Research Report 147 introduces a tool for screening climate risk and 

understanding climate change impacts (179). Unfortunately, they do not provide guidance on 

quantitative measures of airport resilience. 

 This lack of consistency extends to academic work as well. For example, Comes 

et al. (12) quantify resilience as the rapid adaptation to new performance requirements that 

follow in the aftermath of a disruptive event (134). Similarly, Zhou and Chen (2020) measure the 

resilience of airports in terms of the speed of recovery (135). Alternatively, Bao and Zhang 

(2018) describe airport resilience in terms of vulnerability and response capacity (184).  Horton 

et al. (2022) studied the resilience of Dallas Fort Worth International Airport as the capacity to 

absorb shocks and by intervention to secure continuity during times of disruption (185). Janić 

(2015) proposes quantifying airport resilience as the relative importance of the airport within the 

airspace network using the total number of flights that can be accommodated at the airport 

runway during a disruption (186). Faturechi et al. (2014) propose a two-stage stochastic program 

with binary first-stage and binary and integer second-stage decision variables to assess the 

resilience of an airport runway pavement considering climate stressors, flow rate (take-offs and 

landings), and availability of the resources to support repair operations (154). Finally, Clark et al. 

(2018) present a network science modeling to estimate airport robustness and recovery (187). 

However, these efforts for quantifying airport resilience are challenging to implement due to the 

complexity of models, data requirements, and lack of a comprehensive approach to incorporate 

multiple airport performance measures. 

It should be noted that one consistent point across previous resilience work is the 

emphasis on performance measures. Performance measures serve as airport operational 
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performance indicators and provide information on the progress toward strategic goals. Airport 

performance measures also can be used to determine the capacity of airport operations before, 

during, and after a disruption. As part of an airport asset management process, many airport 

performance measures can be collected and analyzed to measure the impact of a disruption. In 

the literature, several performance measures are used to quantify the impact of disruptions and 

the resilience of an airport. For example, Cardillo et al. (2013) studied rescheduling and 

rerouting in the European airport network (157). Several studies have focused on delays, 

including (126, 188, 189). Other airport performance measures have included airport connections 

(190) and flight volumes (191). This literature review shows that multiple performances can be 

used to quantify airport resilience. Unfortunately, the challenge remains as no approach with the 

ability to incorporate multiple performance measures has been deployed. In response, this airport 

resilience approach introduces a new model that is flexible in scoring airport resilience across 

multiple performance measures. 

The following section will describe the methodology and data for implementing the 

PREP framework in the NAS. It will include a discussion on data sources and the selection of 

airports across the NAS to implement the framework. 

4.2 Methodology and Data 

The methodology followed in this chapter is defined in Chapter 3, which introduces the 

PREP framework and provides details on each step of the framework. This dissertation chapter is 

the first framework application to a real-world transportation system and includes only steps one 

through nine, described in Chapter 3. Step 1 identifies the area of study, asset or system of 

interest, hazard, and planning horizon. This application has multiple locations because the 
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framework is developed in six different airports across the U.S., and the transportation system 

corresponds to airports. Regarding the hazard of interest, there are two types of precipitation 

events considered, rain and snow, while the planning horizon is a period between 2020 and 2030. 

Step 2 of the process will collect historical precipitation data for each airport to determine hazard 

event intensity. Step 3 implements projections from climate models in order to develop the 

probability of future hazard event intensities and their impact in airports. Step 4 addresses the 

identification of the airport performance measure to use in the resilience analysis. Step 5 covers 

the selection of the target performance measure value. Step 6 calculates the probability of change 

in performance due to hazard event levels that are determined in Step 2. Step 7 identifies the 

performance measure impact value thresholds, and Step 8 quantifies the percentage change in 

performance from the target value. Finally, Step 9 quantifies the resilience score for each airport 

and each hazard event. 

Data for implementing the PREP framework in airports in the NAS comes from different 

sources, and the first is the Bureau of Transportation Statistics (BTS) On-Time Performance 

Data. This dataset is published by airlines and provides information about scheduled and actual 

departure and arrival times reported by certified U.S. air carriers. The second data corresponds to 

historical precipitation (rain and snow) between 2010 and 2019. This data is collected from 

NOAA’s NCEI website. Finally, climate projections are obtained from the Downscaled CMIP3 

and CMIP5 Climate and Hydrology Projections archive (192). 

The following sections of this chapter describe in detail the application of the first nine 

steps of the framework in the NAS. 
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4.3 PREP Framework Application 

In this section, the first nine steps of the PREP framework are illustrated in more detail. 

To assist in this discussion, the steps are applied to six representative airports from across the 

United States. These airports are categorized by the size of their commercial activities in small, 

medium, and large hubs. By Federal Aviation Administration (FAA) classification, small hubs 

received 0.05 to 0.25 percent of the annual U.S. commercial enplanements, medium hubs 0.25 to 

1.0, and large hubs 1.0 or more.  

4.3.1 Step 1: Identify Study Area, Asset, Hazard, and Planning Horizon 

The study area corresponds to the location of each airport included in this analysis. As 

noted, the six representative airports have different sizes and geographic locations. Figure 6 

shows the location of these six airports, their hub size, and the corresponding FAA region. The 

selected airports are all owned by public or governmental institutions and have operations for an 

array of services, including commercial and cargo services, and some, like the Birmingham 

Shuttlesworth International Airport, provide civil-military services. However, the scope of this 

application includes only commercial services, which precisely correspond to scheduled 

passenger services. The selection of these airports does not follow any specific criteria other than 

demonstrating the framework’s application in airports with distinct sizes, ranges in experiences 

with hazard events, and distinct geographic locations. 
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Figure 6: Airport Location, Size, and Region 

 
The airport selection provides distinctive characteristics in operation and service because 

of its size, location, and connectivity. For example, airports like Miami or Indianapolis serve as 

major airline hubs, while airports like Birmingham–Shuttlesworth do not. Similarly, the need to 

study the impact of climate and extreme weather on airport operations requires to include 

airports across different geographic locations. Thus, the effect of a hazard can be assessed at 

distinct levels of intensity. For example, rain represents more risk in Miami than in Syracuse; on 

the contrary, snow will be more significant to study in Denver than in Miami. Nevertheless, the 

application of the PREP framework is not constrained by these examples, as other hazards and 

geographic locations can be included. 

In identifying the hazard event of interest, rain (in/day) and snow (in/day) are the two 

hazard events considered in this application. Rain and snow can severely impact an airport’s 

operation and infrastructure. For example, these events can compromise existing airport drainage 



92 
 

systems, impact visibility, and flood the apron, ramp, and even runway. Other natural hazards, 

including temperature changes, freeze/thawing, wind, and sea-level rise, can also be considered.  

Figure 7 shows each airport and the corresponding hazards consider in that location. 

 
Figure 7: Airport and Corresponding Hazard 

Finally, this dissertation’s chapter aims to provide airport management and stakeholders 

with data-driven knowledge to support informed choices in the planning process. Thus, this 

demonstration will forecast hazards for the next 11 years, beginning in 2020. Hazard values are 

forecast throughout the period 2020-2030, and this is to simulate a traditional airport's long-term 

airport planning process. In addition, for demonstration, the example application is limited to the 

winter months of December, January, and February only. This is to account for the effects of rain 

and snow consistently and simultaneously in the same period. However, this framework is 

flexible and allows other analysis timeframes (e.g., yearly, quarterly, and monthly) depending on 

the airport planning goals. 
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4.3.2 Step 2: Define Hazard Event Intensity Thresholds 

After hazards are selected for each airport, the Hazard Probability Function (HPF), or the 

probability that each airport will experience different levels of hazard events, is calculated. First, 

it is necessary to identify the hazard levels for each airport and hazard. Hazard levels are ranges 

of hazard values dictated from historical observations and are used to calculate probabilities of 

impact in the performance measure. This dissertation defines the following hazard event 

intensity thresholds: No Hazard, Low Hazard, Typical Hazard, and Extreme Hazard, consistent 

with much extreme weather studies. No Hazard is the percentage of days where hazard values 

are equal to zero. The remaining hazard intensities are categorized based on the distribution of 

days with hazard values greater than zero. Thus, Low Hazard corresponds to the lowest 10% of 

days with hazard values greater than zero. Typical Hazard corresponds to the range between 

10.10% and 89.99% of days with hazard values greater than zero. Extreme Hazard is equivalent 

to 90% of days with hazard values greater than zero. 

The methodology to identify each hazard event intensity threshold is similar to that used 

in the NOAA U.S. Climate Extreme Index (CEI) analysis. The NOAA CEI defines extreme as 

the data distribution's lowest or highest 10th percentile. Data used in this analysis focuses only 

on the winter season (December through February) when snow and rain are both concerns for 

certain parts of the United States. Historical data was collected from NOAA’s NCEI website for 

the months between 2010 and 2019. Table 7 summarizes the intervals in inches per day (in/day) 

that define each airport hazard event threshold.  
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Table 7: Hazard Event Intensity Thresholds 

Hazard Event Level  Miami 
International 

Airport 

Birmingham-
Shuttlesworth 
International 

Airport 

Bradley 
International 

Airport 

Syracuse 
Hancock 

International 
Airport 

Denver 
International 

Airport 

Indianapolis 
International 

Airport 

Rain 
(in/day) 

No Hazard  
                     

0.000 0.000 0.000 0.000 n/a 0.000 

Low Hazard  0.001-0.010 0.001-0.010 0.001-0.010 0.001-0.010 n/a 0.001-0.010 
Typical Hazard  0.020-0.760 0.020-1.350 0.020-0.830 0.020-0.430 n/a 0.020-0.680 

Extreme 
Hazard  ≥0.770 ≥1.360 ≥0.840 ≥ 0.440 n/a 

≥0.690 

Snow 
(in/day) 

No Hazard  n/a n/a 0.000 0.000 0.000 0.000 
Low Hazard  n/a n/a 0.001-0.100 0.001-0.100 0.001-0.200 0.001-0.100 

Typical Hazard  n/a n/a 0.200-5.600 0.200-4.800 0.300-3.800 0.200-3.000 
Extreme 

Hazard  n/a n/a ≥ 5.700 ≥ 4.810 ≥3.810 ≥3.010 
 

4.3.3 Step 3: Calculate Probability of Hazard Impacting Asset  

This section of the dissertation focuses on developing the HPF for each hazard and 

airport. As discussed in Chapter 3, HPF describes the percentage of days with a specific hazard 

level expected in the forecast period. These HPFs represent the probability that a hazard with a 

specific level will impact the airport. HPFs are built using climate models that project future 

weather and climate conditions. Specifically, this research employs a climate model developed 

by NOAA’s GFDL. The following sections describe the climate model selection for the 

development of the HPFs. 

4.3.3.1 Climate Model Data Collection and Analysis  

This application of the PREP framework implements climate model projections 

developed by NOAA GFDL Earth System Model (ESM2M). Projections for this model are 

retrieved from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive 

(192). This archive contains fine spatial resolution translations of climate model projections that 

cover the contiguous United States. The Downscaled CMIP3 and CMIP5 Climate and 
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Hydrology Projections archive uses different downscaling techniques such as the Localized 

Constructed Analogs (LOCA).  LOCA downscale is available for different climate models and 

variables, including the CMIP phases 3 and 5, and, more specifically, the NOAA GFDL Earth 

System Model (ESM2M). Also, the downscaled archive contains model projections for different 

RCPs or emission scenarios.  

The advantage of using these projections is twofold; first, the climate model structure and 

development is completed entirely by a U.S. agency focusing on U.S. conditions. Second, the 

availability of downscaled projections provides more accuracy in the model output; and it should 

be considered that the LOCA technique is widely used and accepted by climate scientists. 

4.3.3.2 Hazard Probability Function (HPF)  

The specific products for developing this application HPFs are the LOCA-CMIP5 daily 

hydrologic data projections for the period January 2020 to December 2030; the resolution of 

these projections is 1/16th degree or approximately 6 km grid. The output from the archives is a 

NetCDF file that was later input into a Python script to convert into an excel file, and this excel 

file contains daily projected total precipitation in millimeters for rain and snow. This value was 

later converted into inches per day. This process is repeated for each location. 

Figure 8 to Figure 13 shows each airport’s projected and historical HPFs for rain and/or 

snow, as applicable during the winter season. In these figures, the horizontal axis describes the 

hazard values in inches per day (or rainfall and snow, as applicable), and the vertical axis shows 

the cumulative percentage of days that experience that hazard amount or less.  
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Figure 8: Hazard Probability Functions for Miami International Airport 

 
Figure 9: Hazard Probability Functions for Birmingham Shuttlesworth International Airport 
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Figure 10: Hazard Probability Functions for Bradley International Airport 
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Figure 11: Hazard Probability Functions for Syracuse Hancock International Airport 
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Figure 12: Hazard Probability Functions for Denver International Airport 
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Figure 13: Hazard Probability Functions for Indianapolis International Airport 
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Finally, Table 8 summarizes the percent of days that fall in each hazard event intensity 

for future and historical values during the winter season. It should be noted that these results 

indicate interesting variations in the percentage of days expected for each hazard event intensity. 

These differences are most notable for the No Hazard category, where projected results indicate 

a drop in the number of days with no hazard. For example, Bradley International Airport will 

drop from 81.04% to 39.78% in the probability of days without snow during December, January, 

and February. Also, HPFs show an expected increase in the Typical Hazard category. For 

example,  Miami International Airport will see an increase from a historical 18.63% of days with 

typical rain to 27.19% during future months of December, January, and February. HPFs also 

indicate a reduction in Extreme Hazard level for snow. See Denver International Airport, where 

Extreme Hazard will decrease from 1.49% to 0.00% on days with extreme snow. Overall, HPFs 

results indicate that airports will experience more frequency on days with at least some hazard 

value; based on the selected climate projections. 
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Table 8: Summary of HPFs for Historical and Projected Hazard Values 

Expected Percent of Days in Period of Analysis (Dec-Jan-Feb)  
 Rain (in/day) Snow (in/day) 

Airport      Period No 
Hazard 

Low 
Hazard  

Typical 
Hazard 

Extreme 
Hazard 

Total No 
Hazard 

Low 
Hazard  

Typical 
Hazard 

Extreme 
Hazard 

Total 

Miami 
International 
Airport 

Historical 74.50% 4.21% 18.63% 2.66% 100.00% n/a n/a n/a n/a n/a 

Projected 62.64% 7.75% 27.19% 2.42% 100.00% n/a n/a n/a n/a n/a 

Birmingham-
Shuttlesworth 
International 
Airport 

Historical  64.97% 2.99% 28.49% 3.55% 100.00% n/a n/a n/a n/a n/a 

Projected 46.32% 7.76% 43.30% 2.62% 100.00% n/a n/a n/a n/a n/a 

Bradley 
International 
Airport 

Historical  62.08% 3.99% 29.93% 4.00% 100.00% 81.04% 2.11% 14.85% 2.00% 100.00% 

Projected 36.25% 15.31% 46.53% 1.91% 100.00% 39.78% 14.10% 46.12% 0.00% 100.00% 

Syracuse 
Hancock 
International 
Airport 

Historical 40.69% 8.20% 45.01% 6.10% 100.00% 49.56% 4.32% 40.80% 5.32% 100.00% 

Projected 30.21% 7.65% 56.39% 5.75% 100.00% 34.54% 13.80% 51.66% 0.00% 
100.00% 

Denver 
International 
Airport 

Historical n/a n/a n/a n/a n/a 85.21% 1.83% 11.47% 1.49% 100.00% 

Projected n/a n/a n/a n/a n/a 69.89% 16.21% 13.90% 0.00% 100.00% 

Indianapolis 
International 
Airport 

Historical 61.75% 5.43% 28.83% 3.99% 100.00% 80.38% 2.77% 14.85% 2.00% 100.00% 

Projected 47.22% 9.47% 39.68% 3.63% 100.00% 58.11% 12.99% 28.90% 0.00% 100.00% 

 

4.3.4 Step 4: Select Performance Measure of Interest 

Next, performance measures that characterize the important impacts of the hazards on 

airports are selected. Table 9 presents a range of potential airport performance measures that 

could be used depending on the planning and decision-making goals of the application. These 

performance measures are grouped by airport asset and include a definition, unit of 

measurement, and data sources. It is also important to recognize that airports may start to collect 

information on these performance measures if they are recognized as important, but no data 

currently exists.  
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           Table 9: Airport Performance Measures 

` Performance 
Measure Definition Unit of Measurement Data Source 

Operation 

Passenger 
Volume 

Number of passengers at the airport 
(enplaning and deplaning) Total number of passengers Airlines 

Aircraft 
Movement 

Volume of take-offs and landings 
(departures and arrivals) 

Total number of take-offs or 
landings ATC 

Freight or 
Cargo/Baggage 

Volume of freight and cargo that is 
loaded or unload at the airport 

Metric tons of freight loaded 
or unloaded at the airport Airlines 

Safety 

Runway 
Accidents 

Accidents that involve an aircraft in the 
runway and are associated with weather 
conditions, excluded human errors 

Aircraft accidents per 
thousand aircraft movements ATC/Airlines 

Runway 
Incursions 

Incidents that involve the presence of 
vehicles, persons, or other aircraft on the 
runway and that are associated with 
weather conditions 

Runway incursions per 
thousand aircraft movements ATC/Airlines 

Service  

Airplane 
Arrival Delays 

Daily average of arrival delays at the 
airport of destinations, associated with 
weather 

Average minutes per day Airlines 

Airplane 
Departure 
Delays 

Daily average of departure delays at the 
airport of origin, associated with weather Average minutes per day Airlines 

Cancelations Number of daily canceled flights at the 
airport of origin, associated with weather Number of canceled flights Airlines 

Stranded 
Passenger 
Period 

Daily average time passengers are 
stranded in the aircraft due to lack of 
gates/delays 

Average minutes per day Airlines 

Average 
Taxing Time 

Daily average time between gate and 
runway Average minutes per day Airlines 

Airborne 
Holding 

Daily average time due to airborne 
holding Average minutes per day Airlines 

Runway 
Airport 
Pavement 
Roughness 

A measure of a runway surface 
irregularities IRI Airports 

Ramps Ramp Capacity 
Ratio 

Capacity parking locations in ramp 
(ratio)  (no boarding passengers) 

Ratio of actual parked 
aircraft to ramp capacity Airports 

Terminal 
Aircraft 
Parking 
Positions 

Available aircraft parking for boarding 
passengers 

Number available parking 
gates Airports 

Ground Access Parking 
Capacity 

Available parking for travelers, airport 
employers, and visitors Number of available parking Airports 

Transportation 
To Ground 
Access 

Passenger 
Capacity 

Number of passengers that can be 
transported in one unit Passengers per vehicle Airports 

Transportation 
Frequency 

Number of transportation units that 
arrive/departed in one hour Vehicles per hour Airports 

 

This application of the PREP framework focuses on airport passenger services. Within 

this service profile, two airport performance measures are widely used to assess airlines and 

airport service quality and performance. These performance measures are the average airplane 
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departure delay and average airplane arrival delays. These performance measures’ definition is 

(a) the average number of minutes take off is delayed past scheduled departure, per plane, per 

day at the given airport and (b) the average number of minutes arrival at the gate is delayed past 

scheduled arrival, per plane, per day at the given airport, respectively. Data for the selected 

performance measures were retrieved from the BTS On-Time Performance Data. On-Time 

Performance Data is published by airlines and provides information about scheduled and actual 

departure and arrival times reported by certified U.S. air carriers.  

4.3.5 Step 5: Specify Target Performance for Measure of Interest 

Once performance measures are selected, decision-makers must determine acceptable 

limits for these operations. Target departure and arrival delay values are defined by FAA 

Aviation System Performance Metrics (ASPM) as 15 minutes or more delays compared to 

scheduled flight plans. Thus, a target performance of 15 minutes is specified for the analysis. 

However, to demonstrate how target performance values can impact the resilience score, this 

dissertation will also include two more target values of 30 and 45 minutes as examples of how 

operations might change dramatically in the future if extreme weather becomes more prominent. 

These are only for demonstration purposes, and it is a task for the airport management to define 

target values that align with their goals and objectives. 

4.3.6 Step 6: Calculate Probability of Change in Performance due to Hazard Event 

A Performance Measure Impact Function (PMIF) is the probability that a specific 

damage value for a selected performance measure can occur under a specified hazard level. 

Developing a PMIF begins with selecting the performance values (departure and arrival delays) 

that fall into each category of hazard level. This is a straightforward process since both the 
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performance measure and hazard values have the same unit of analysis: days. Average airplane 

departure and arrival delays are calculated by day from 2010 to 2019 and only include the 

months of December, January, and February. The average daily delay was calculated based on 

the total daily number of departures and arrivals at the airport. Early departures and arrivals are 

included with a value of delay equal to zero to calculate the daily averages. Average airplane 

departure delays consider the selected airport as the origin of the flight, and average airplane 

arrival considers the selected airport as the destination.  

Figure 14 to Figure 19 show the PMIFs results for average airplane arrival delay and 

average departure arrival delays associated with rain and snow at each of the six airports. In 

these figures, the horizontal axis represents the expected damage values for the performance 

measure, and the vertical axis represents the cumulative probability that damage up to that value 

will occur. For example, at Bradley International Airport (Figure 16), there is a 69.44% 

probability of experiencing up to 10 minutes in average airplane arrival delays when the rainfall 

hazard level is low. If the rainfall hazard level is typical, the probability of experiencing up to 10 

minutes of average airplane arrival delay is 37.78%. And if the rainfall hazard level is extreme, 

then there is a 19.44% of experiencing up to 10 minutes of average airplane arrival delay. 

One observation about PMIFs in this application of the PREP framework is that the No 

Hazard event intensity includes delays. This is due to airlines indicating delays due to weather in 

situations where the historical data did not show precipitation. This requires further analysis, but 

two situations should be considered (a) airlines mistakenly assigned delays to weather, and (b) 

cascading effects of weather events in other airports caused the delays. For example, weather 

impacts the airport of destination of a departing flight or the airport of origin of arriving flights.
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PMIF Rainfall on Departure Delay

 

PMIF Rainfall on Arrival Delay 

 

PMIF Snow on Departure Delay 
 

 
 
 
 
 

n/a 

PMIF Snow on Arrival Delay  
 
 
 
 
 
 

n/a 

 
Figure 14: Performance Measure Impact Functions for Miami International Airport 
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PMIF Rainfall on Departure Delay

 

PMIF Rainfall on Arrival Delay 

 

PMIF Snow on Departure Delay 
 

 
 
 
 
 

n/a 

PMIF Snow on Arrival Delay  
 
 
 
 
 
 

n/a 

 
Figure 15: Performance Measure Impact Functions for Birmingham-Shuttlesworth International Airport 
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PMIF Rainfall on Departure Delay 

 

PMIF Rainfall on Arrival Delay 

 

PMIF Snow on Departure Delay 

 

PMIF Snow on Arrival Delay 

 

 
Figure 16: Performance Measure Impact Functions for Bradley International Airport 
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PMIF Rainfall on Departure Delay 

 

PMIF Rainfall on Arrival Delay 

 

PMIF Snow on Departure Delay 

 

PMIF Snow on Arrival Delay 

 

 
Figure 17: Performance Measure Impact Functions for Syracuse Hancock International Airport  
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PMIF Rainfall on Departure Delay  
 
 
 
 
 
 
 
 
 

n/a 

PMIF Rainfall on Arrival Delay 
 
 
 
 
 
 
 

n/a 

PMIF Snow on Departure Delay 

 

PMIF Snow on Arrival Delay 

 

 
Figure 18: Performance Measure Impact Functions for Denver International Airport
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PMIF Rainfall on Departure Delay 

 

PMIF Rainfall on Arrival Delay 

 

PMIF Snow on Departure Delay 

 

PMIF Snow on Arrival Delay 

 

 
Figure 19: Performance Measure Impact Functions for Indianapolis International Airport
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4.3.7 Step 7: Identify Performance Measure Impact Value Thresholds 

This section of the PREP framework identifies the performance measure impact value 

thresholds. These thresholds are values defined to calculate the percentage of change from the 

target value defined in Section 4.3.5. These values reflect the delays in minutes and come from 

the values defined in the PMIFs. This dissertation considers these thresholds to be intervals of 5 

minutes from 0 to 65 minutes delays, accounting for 14 values. The reasoning for the selection of 

these values is the range of possible delays that can occur based on the PMIFs analysis. This is 

rather an arbitrary process but should consider a logit standard, for example, considering the 

range of expected delays.  

4.3.8 Step 8: Calculate Percent Change in Performance 

In this step, percent change values are calculated to consistently compare the differences 

in predicted performance and the target performance no matter what the units of the performance 

measures are. The change in performance measure from the target is calculated for each hazard 

event intensity, using the standard equation of observed performance measure impact value 

thresholds minus the target value divided by the target value. This equation is a representation of 

the expected “cost” associated with the loss in capacity or performance in the asset or system. As 

mentioned previously, this analysis considers three different target performance values (15, 30, 

and 45 minutes of delay). For purposes of demonstration, Table 10 to Table 12 shows the change 

in performance from the target value considering the three target values proposed in this 

application. 
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Table 10: Change in Performance Measure from 15-minutes Target  

Performance 
Measure Impact 

Value Thresholds 

Target 
Performance 

Change In 
Performance 
from Target 

Value 
0 

15 

-100% 
5 -67% 
10 -33% 
15 0% 
20 33% 
25 67% 
30 100% 
35 133% 
40 167% 
45 200% 
50 233% 
55 267% 
60 300% 
65 333% 

 

Table 11: Change in Performance Measure from 30-minutes Target 

Performance 
Measure Impact 

Value Thresholds 

Target 
Performance 

Change In 
Performance 
from Target 

Value 
0 

30 

-100% 
5 -83% 
10 -67% 
15 -50% 
20 -33% 
25 -17% 
30 0% 
35 17% 
40 33% 
45 50% 
50 67% 
55 83% 
60 100% 
65 117% 
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Table 12: Change in Performance Measure from 45-minutes Target 

Performance 
Measure Impact 

Value Thresholds 

Target 
Performance 

Change In 
Performance 
from Target 

Value 
0 

45 

-100% 
5 -89% 
10 -78% 
15 -67% 
20 -56% 
25 -44% 
30 -33% 
35 -22% 
40 -11% 
45 0% 
50 11% 
55 22% 
60 33% 
65 44% 

 

Table 10 to Table 12 serve the purpose of displaying the calculation and results for Step 8 

of the PREP framework, the change in performance from the target. The results from these tables 

also serve to demonstrate that changes can be either negative or positive. If changes are negative, 

this indicates that there is additional capacity in the asset or system to operate at that specific 

impact value threshold compared to the target value. The opposite is true, and if the change is 

positive, this indicates their asset or system operates above the allowable capacity, thus reducing 

the resilience to withstand, adapt and recover from a disruptive event. Since the percent change 

in performance can be visualized as the “cost” of the impact of the hazard, negative changes are 

“profits” to the system’s performance and positive values are added “losses” to the system’s 

performance. 
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4.3.9 Step 9: Calculate Resilience Score 

So far, this dissertation has demonstrated the PREP framework's application in six NAS 

airports. The following step in this application is calculating the resilience score. As noted in 

Chapter 3, the resilience score for each airport is formulated as the expected percent change in 

the airport performance measure from the target level due to the hazard. This resilience score is 

calculated following Equation 1. 

Resilience scores for each airport and each hazard are summarized in Table 13. Again, 

note that under the column “Percent Change in  Impact Level Value from Target Value,” values 

can have either a positive or a negative sign. A positive sign indicates a change in the impact 

level relative to the target level, and a negative sign indicates there is additional capacity in the 

impact level value relative to the target level. The same interpretation of the signs applies to the 

values of “Expected Percent Change in Performance Measure from Target Level for Hazard 

Event Level (%)” and for the “Expected Percent Change in Performance Measure from Target 

Level due to Hazard (%).” The latter value is equivalent to the airport resilience score. For the 

example in Table 13, a target level of 15 minutes produces a negative 0.30% expected change in 

performance. The negative sign indicates the airport has not reached its capacity and thus still 

operates with 0.30% of available capacity to accommodate additional irregular operations and 

delays not related to weather. However, the magnitude of the expected change in capacity (0.30) 

indicates that the airport is at the edge of reaching full capacity to operate under the target value 

goal and the projected hazard levels. 

  



116 
 

Table 13: Resilience Score Calculation for Miami International Airport 

Hazard Event: Daily Precipitation (in/day) Performance Measure: Average Airplane Arrival Delay Expected Percent 
Change in 

Performance 
Measure from 

Target Value at 
Hazard Event 
Intensity (%) 

Expected Percent 
Change in 

Performance 
Measure from 

Target Value due 
to Hazard (%) 

 

Hazard Event 
Intensity 

Thresholds 
(in/day) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less 

Probability of 
Experiencing This 

Hazard Event 
Intensity 

Performance Measure Impact  PMIF  

Target 
Value 

(minutes) 

Impact 
Value 

Thresholds 
(minutes) 

Percent Change in 
Impact Value 
from Target 
Value (%) 

Probability of 
Experiencing 

Impact Value or 
Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

No Hazard:  
0.00 inches 62.64% 62.64% 

 
 
 
 
 
 
 
 
 
 
 
 
 

15 
 
 
 
 
 
 
 
 
 
 
 
 
  

0 -100.00% 0.00% 0.00% 

-11.11% 

 
 
 
 
 
 
 
 
 
 
 
 
 

-0.30% 
 
 
 
 
 
 
 
 
 
 
 
 
  

5 -66.67% 10.42% 10.42% 
10 -33.33% 55.36% 44.94% 
15 0.00% 81.55% 26.19% 
20 33.33% 92.41% 10.86% 
25 66.67% 96.73% 4.32% 
30 100.00% 98.51% 1.79% 
35 133.33% 99.11% 0.60% 
40 166.67% 99.26% 0.15% 
45 200.00% 100.00% 0.74% 
50 233.33% 100.00% 0.00% 
55 266.67% 100.00% 0.00% 
60 300.00% 100.00% 0.00% 
65 333.33% 100.00% 0.00% 

Low Hazard:  
0.0001-0.01 

inches 
70.39% 7.75% 

0 -100.00% 0.00% 0.00% 

10.53% 

5 -66.67% 10.53% 10.53% 
10 -33.33% 34.21% 23.68% 
15 0.00% 68.42% 34.21% 
20 33.33% 81.58% 13.16% 
25 66.67% 84.21% 2.63% 
30 100.00% 92.11% 7.89% 
35 133.33% 97.37% 5.26% 
40 166.67% 100.00% 2.63% 
45 200.00% 100.00% 0.00% 
50 233.33% 100.00% 0.00% 
55 266.67% 100.00% 0.00% 
60 300.00% 100.00% 0.00% 
65 333.33% 100.00% 0.00% 

 
 
 
 
 
 
 
 

 



117 
 

Table 13: Continue 

Hazard Event: Daily Precipitation (in/day) Performance Measure: Average Airplane Arrival Delay Expected Percent 
Change in 

Performance 
Measure from 

Target Value at 
Hazard Event 
Intensity (%) 

Expected Percent 
Change in 

Performance 
Measure from 

Target Value due 
to Hazard (%) 

 

Hazard Event 
Intensity 

Thresholds 
(in/day) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less 

Probability of 
Experiencing This 

Hazard Event 
Intensity 

Performance Measure Impact  PMIF  

Target 
Value 

(minutes) 

Impact 
Value 

Thresholds 
(minutes) 

Percent Change in 
Impact Value 
from Target 
Value (%) 

Probability of 
Experiencing 

Impact Value or 
Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

Typical Hazard:  
0.02-0.76  

inches 
97.58% 27.19% 

 
 
 
 
 
 
 
 
 

15 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

0 -100.00% 0.00% 0.00% 

17.86% 

 
 
 
 
 
 
 
 
 
 
 
 
 

-0.30% 
 
 
 
 
 
 
 
 
 
 
 
 
  

5 -66.67% 3.57% 3.57% 
10 -33.33% 32.74% 29.17% 
15 0.00% 61.90% 29.17% 
20 33.33% 80.36% 18.45% 
25 66.67% 88.69% 8.33% 
30 100.00% 92.86% 4.17% 
35 133.33% 95.24% 2.38% 
40 166.67% 96.43% 1.19% 
45 200.00% 97.62% 1.19% 
50 233.33% 98.21% 0.60% 
55 266.67% 99.40% 1.19% 
60 300.00% 99.40% 0.00% 
65 333.33% 100.00% 0.60% 

Extreme 
Hazard:   

0.77 or more 
inches 

100.00% 2.42% 

0 -100.00% 0.00% 0.00% 

41.67% 

5 -66.67% 0.00% 0.00% 
10 -33.33% 16.67% 16.67% 
15 0.00% 37.50% 20.83% 
20 33.33% 62.50% 25.00% 
25 66.67% 83.33% 20.83% 
30 100.00% 83.33% 0.00% 
35 133.33% 91.67% 8.33% 
40 166.67% 100.00% 8.33% 
45 200.00% 100.00% 0.00% 
50 233.33% 100.00% 0.00% 
55 266.67% 100.00% 0.00% 
60 300.00% 100.00% 0.00% 
65 333.33% 100.00% 0.00% 
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The demonstration of the PREP framework in the NAS repeats for each airport, 

considering three target values. The calculation of resilience score as the expected percent 

change for each airport performance measure relative to a target value is summarized in Table 

14. These results are only calculated for the winter months of December, January, and February. 

As discussed before, a positive value indicates a percent change in the performance measure, 

while a negative value indicates there is additional capacity in the performance measure for 

adaptation. This is reflected for all airports when the target value is increased from 15 minutes to 

30 and 45 minutes.  

Table 14: Summary of Resilience Scores  
 

Hazard Airport 
Performance 

Measure 

Target 
Value 

(minutes) 

Miami 
International 

Airport 

Birmingham-
Shuttlesworth 
International 

Airport 

Bradley 
International 

Airport 

Syracuse 
Hancock 

International 
Airport 

Denver 
International 

Airport 

Indianapolis 
International 

Airport 

Rain 
(in/day) 

Average 
Airplane 

Arrival Delay 

15 -0.3% 4.9% 0.2% 19.9% n/a -1.9% 
30 -50.1% -47.6% -49.7% -40.0% n/a -51.0% 
45 -66.8% -65.0% -66.3% -60.0% n/a -67.3% 

Average 
Airplane 
Departure 

Delay 

15 0.4% 0.1% -10.6% 19.1% n/a -5.7% 
30 -49.8% -50.0% -55.3% -40.5% n/a -52.8% 
45 -66.5% -66.6% -70.2% -60.3% n/a -68.6% 

Snow 
(in/day) 

Average 
Airplane 

Arrival Delay 

15 n/a n/a 10.4% 17.1% -2.20% -0.2% 
30 n/a n/a -44.8% -41.5% -51.10% -50.1% 
45 n/a n/a -63.2% -61.0% -67.40% -66.7% 

Average 
Airplane 
Departure 

Delay 

15 n/a n/a 9.5% 12.4% 7.00% -2.3% 
30 n/a n/a -45.2% -43.8% -46.50% -51.1% 
45 n/a n/ a -63.5% -62.5% -64.30% -67.4% 

 

Miami shows that at a 15-minute target performance, the airport operations are close to 

their capacity, given the projected rain hazard levels. For arrival delays, only 0.30% capacity to 

absorb delays is available, and for departure delays, the capacity is already exceeded. 

Birmingham-Shuttlesworth operations exceeded the capacity of the airport to absorb delays due 
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to the impact of rain. Bradley’s airport operations exceeded capacity, except for departure delays. 

Syracuse’s airport values are exceeding its capacity for rain and snow. Denver arrival delays 

operations are close to reaching full capacity but still operate within the available airport’s 

capacity. Finally, Indianapolis airport shows all expected changes to be within the available 

airport’s capacity.  

The 30 and 45 minutes target values indicate that airports can operate with additional 

capacity and resilience to withstand different rain and snow hazard levels, up to 70 percent more. 

However, target performance of 30 and 45 minutes is not feasible for airlines as they decrease 

service quality and cause inconvenience for passengers and economic losses. 

4.4 Conclusions 

This chapter demonstrates the application of the PREP framework in the NAS to support 

planning and decision-making for more resilient airports. This application used two airport 

performance measures: Average airplane arrival and departure delay, to study the resilience of 

six airports to rain and snow during the winter months of December to February through the year 

2030. HPFs and PMIFs provide a novel approach to addressing the probabilities of future 

weather impacts in airports and their operations. This application confirms the transferability and 

flexibility of the PREP framework to accommodate and assess resilience despite airports' size, 

hazard type, period of analysis, and airport performance measures. This study incorporates 

climate model projections to study projected hazard levels of impacts in airports. This is in 

response to the increasing need for understanding the effects of climate change on airport 

operations. 

These results indicate that precipitation in the form of rain and snow represent a 

significant threat to airports quality of service when considering a 15-minutes target value. This 
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is shown in Table 8, as most airports reported a positive resilience score. The exception of this is 

the Indianapolis airport. These results can be used by airport planners, managers, and 

stakeholders for airport planning and adaptation to extreme weather events considering future 

changes in weather and climate conditions. Also, these results can facilitate the development of 

action plans to react to real-time weather effects based on data-driven knowledge. In fact, airport 

planners can use these results to develop tailored strategies to reduce delays while operating 

under different hazard levels. The results of this application demonstration provide meaningful 

insight into practitioner and researcher understanding of airport resilience, the effect of climate 

change, and the use of airport performance measures to score airport resilience. The expected 

change in performance or resilience score is a valuable source of insight for planning and 

decision-making that can lead to adaptation measures in airport operations.  
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Chapter 5: PREP Framework Application on Traffic  

So far, this dissertation has introduced the PREP Framework as a novel process that uses 

transportation performance metrics and integrates the risk and vulnerability of transportation 

systems to quantify resilience in a practical and transferable process. The previous chapter 

focused on the application of the PREP Framework in the NAS by introducing critical airport 

quality performance measures. In this chapter, this dissertation continues demonstrating the 

applicability of the PREP Framework across multiple transportation systems. Specifically, in this 

chapter, the dissertation focuses on the study of the resilience of traffic operations in an urban 

roadway network.    

Highway systems are essential to moving goods and people and supporting the economy 

and security of the country. The highway systems are typically evaluated based on safety, 

efficiency, and mobility to provide multimodal options of movement for people and goods (193). 

These metrics, which can vary in definitions, can be negatively impacted during weather events 

and limit the roadway network's ability to maintain its operational goals. In fact, the impact of 

climate and extreme weather events have notable consequences for traffic operations and the 

performance of the National Highway System (NHS). For example, safety under extreme 

weather conditions can be compromised severely. FHWA Road Weather Management Program 

reviewed crash data collected between 2007 and 2016 and concluded that 21% of the ten-year 

average crashes were caused during weather-related conditions, while 16% of fatalities in the 

same period were reported as being a consequence of weather-related conditions (194). 

Similarly, crash data from 2008 and 2010 on the I-880N freeway in California showed that 

traffic and weather conditions contributed to crashes (195). 
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Traffic performance, such as speed and capacity, are also impacted negatively during 

weather events. These are key performance metrics for State DOT and FHWA strategic planning 

and regulations to assessing and providing funding under several legislations, including the 

Transportation Equity Act for the 21st Century (TEA‐21) (23 U.S.C. 104). Speed and capacity 

are also key metrics for traffic analysis and improvement. The Highway Capacity Manual 

(HCM) 2010 5th Edition, includes in chapter 10 freeways facilities adjustment factors due to 

adverse weather conditions on capacity and speed. For example, HCM provides speed-flow 

curves for different weather conditions (Figure 20).  

 

Figure 20: HCM 2010, 5th Edition Speed-Flow Curves for Different Weather Conditions (Retrieved from 
HCM 2010) 

Several studies have been conducted to estimate the reduction in speed and capacity 

under different weather conditions. For example, Agarwal et al. (2005) determined statistically 

significant average capacity reductions of 1%-3%, 5%-10%, and 10%-17% for trace, light, and 

heavy rain, respectively (196). Maze et al. (2006) concluded a speed reduction of 2, 4, and 6 mph 

for three rain intensities of 0-0.01 in./h, 0.01-0.25 in./h, and >0.25 in./h, respectively. It should 
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be noted that both studies were conducted for specific road sites in Minnesota and Iowa, which 

means variability with other geographic locations should be considered. Another study with 64 

winter storms in Iowa showed an average reduction in volume of 29 percent; the study also 

indicated a significant relationship between percent volume reduction and total snowfall (197). 

In Australia, Keay and Simmonds studied precipitation and traffic volumes between 1989-1996 

and concluded there was a correlation between wet days in winter and spring and traffic volume 

reduction (198). 

The impact of weather on traffic operations is an important element of the resilience of 

roadway networks. Unfortunately, there is a lack of guidance and a standardized process to 

incorporate multiple traffic operations to assess the resilience of roadways. In the case of Mobile, 

AL, there is an additional challenge in understanding the potential impact of weather in traffic 

operations due to the lack of studies that specifically address this issue in the region. Therefore, 

this chapter's aims are (a) to demonstrate the transferability of the PREP Framework and its 

implementation on traffic operations, (b) to quantify the impact of precipitation in traffic 

capacity on the interstate and principal arterial roads in Mobile, AL, and (c) quantify the 

resilience of interstate and principal arterial road in the urban area of Mobile, AL to 

precipitation. 

The organization of this chapter is as follows: first, a review of traffic resilience studies 

and their integration for planning purposes, then a section that provides a review of traffic 

performance measures that have been implemented in the literature when quantifying resilience, 

the third section corresponds to a data and methodology estimating volume variation due to rain, 

the fourth section corresponds to the implementation of the PREP framework for Mobile 

highways and arterial roads, the fifth section provides discussion and conclusion of results. 
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5.1 Understanding Traffic Resilience in Transportation Planning 

The critical role of the NHS in support of the security and economy of the nations has led 

to a growing work studying the resilience of roadways to extreme weather. For example, the 

freight industry reported that trucking handled an estimated 72.5% of the domestic tonnage, and 

it is expected to generate $1,627 billion in revenue by 2032 (199). In order to support the safe 

and reliable uninterrupted movement of persons and freight, transportation agencies need to 

develop strategies to increase the resilience of the road network to disruptions from weather and 

climate conditions. The following section reviews the efforts in providing transportation agencies 

with a model to assess the resilience of road networks, specifically resilience based on traffic 

performance measures. 

Despite the growing recognition of the importance of resilience in traffic operations for 

satisfactory planning, many agencies still struggle to develop a comprehensive framework for 

incorporating resilience into their planning processes. This is due to a variety of factors, 

including limited resources, conflicting priorities, a lack of data and information, and a lack of 

consensus on what constitutes resilience in traffic networks. However, efforts are being made to 

address these challenges and develop more effective approaches to quantify traffic resilience. A 

study on the resilience of coastal communities in the San Francisco Bay Area used crash 

estimation in flooded zones to estimate the resilience of the road network. Crash estimates are 

generated based on statistical models that relate crash and traffic volumes (200). This study 

which addresses traffic safety in terms of crashes as a consequence of flooded roads serves 

communities in the San Francisco Bay area to identify segments of the network with less 

resiliency; thus, agencies can prepare emergency plans and other adaptation strategies. Another 

study using real-time crowdsourced data from Google Maps® during winter storm Harper in the 
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Cleveland metropolitan area assesses the resilience of the road network based on accessibility 

reduction to critical facilities (201). This study helped emergency agencies obtain real-time road 

conditions to provide communities in need of aid and disaster relief. Ganin et al. (2017) use 

average annual delays to calculate resilience in 40 major urban areas in the U.S. (97). This 

resilience model uses traditional travel demand modeling techniques to quantify travel times 

between zones within each urban area and compares it to travel times under different scenarios 

of link disruptions. The resilience model in this study is based on travel time and delays, and 

these metrics determine the reliability of the transportation network.  

The use of traffic-related performance measures to quantify the resilience of 

transportation networks is a practice that still fails to integrate multiple metrics, as noted in the 

studies that were discussed previously, where only one metric is used to assess the entire 

network. Second, these studies do not properly provide agencies with a score of network 

resilience. Finally, these studies implement unique models and processes that can hardly be 

replicated to other areas and used for different traffic performance metrics. 

It is also necessary to identify the risk and vulnerability of the traffic operations to be 

disrupted as a consequence of weather events, and particularly future probabilities of disruptions. 

As highlighted at the beginning of this chapter, the impact of weather on traffic operations can 

produce significant losses in fatalities, delays, and economics. Notably, it should consider the 

impact of precipitation (rain or snow) as this event slows down traffic, reduces the number of 

trips produced, and generally reduces safety, efficiency, and mobility in the roadway network. 
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The next section will review traffic performance measures that have been implemented in 

the literature on transportation resilience. It also provides a summary of performance measures 

that can be used for the implementation of the PREP Framework. 

5.2 Resilience Performance Measures for Traffic Operations 

Traffic performance measures quantify the safety and operation of roadways for design, 

decision, and planning. Quantifying performance measures for traffic operations requires 

implementing statistical techniques along with engineering-economic principles (202). The use 

of traffic performance measures for resilience analysis is not unique to resilience studies, on the 

contrary, traffic measures are greatly implemented throughout the planning process to assess, 

identify, prioritize, and make decisions between alternatives of project and investment. The use 

of traditional traffic performance measures for resiliency studies is advantageous because 

transportation agencies continuously collect traffic data as part of federal and state regulations 

and for their own planning process.  

However, there is no consensus on which traffic measures are more or less accurate for 

resilience assessment. Also, there is no standard practice on how to integrate these measures into 

resilience models. The first task in this chapter is to review the use of traffic measures in the 

literature for resilience studies before selecting one for this analysis. The following paragraphs 

summarize these studies and provide a description of the process followed to integrate these 

measures for quantifying the resilience of transportation networks. 

5.2.1 Safety-based Traffic Performance Measures 

Safety-based traffic performance measures are concerned with maintaining the safe 

movement of people and goods. These measures are critical for safety analysis across multiple 



127 
 

transportation agencies. In the literature, these measures have been implemented to quantify 

resilience as the ability of the road network to recover from disturbances in the traffic flow. The 

use of traffic safety measures centers on predicting the network's response to a disruption that 

has compromised the network's ability to operate in safe conditions. In general, we can argue this 

is also applicable in the general sense of resilience, which goal is ultimately the continuous 

operation after a disruption. However, in this context, safety indicates vehicle violations, driver 

maneuvers and judgment errors, and any other disruption that leads to a crash (75).  

In a study on traffic safety, Wang et al. (2019) used traffic simulations to identify vehicle 

conflicts due to violations on the road, then using estimations of conflict trajectories and time-to-

collision (TTC), they estimated crashes in the roadways (203). In this study, resilience is a 

qualitative measure based on the techniques to reduce vehicle violations, hence the number of 

expected crashes. Total system crash frequency (TSCF) and total system travel time (TSTT) are 

other performance measures used when quantifying the resilience of road networks to disruptions 

produced by an earthquake, where the network disruption is caused by the collapse of one or 

more bridges within the network (204). Murray-Tuite (2006) proposed a method to quantify road 

resilience that includes two traffic safety measures: safety incidents and the number of vehicles 

exposed to hazard (73). The first traffic safety measure corresponds to the fatality rates per 

million vehicle miles traveled (VMT). According to FHWA, this refers to the ratio of total 

fatalities to the number of VMT (in 100 million VMT) per calendar year. The second traffic 

safety performance measure, vehicle exposed to hazard, refers to the number of vehicles that are 

in immediate danger of being impacted by a hazard. For example, as the authors explained, 

during a hurricane, this measure is the number of vehicles that travel close to coastlines, rivers, 

or lakes prone to flooding.   
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5.2.2 Efficiency and Mobility-based Traffic Performance Measures 

This category of traffic performance measures comprises four dimensions, including 

quantity, quality, accessibility, and capacity utilization of traffic networks. Quality indicates user 

satisfaction while traveling in a designated facility or utilizing a service. Quantity refers to the 

magnitude of the utilization of a given facility or service. Accessibility indicates how users can 

access different destinations to meet their different travel purposes. Finally, capacity utilization 

refers to the efficient utilization of capacity to meet the demand for travel without impacting 

quality. In the literature, several traffic measures are combined to quantify the resilience of road 

networks.  

Calvert and Snelder (2018) developed a link performance indicator of resilience (LPIR) 

as a deterministic score of the resilience of roadways which is based on traffic performance of 

total delay time and speed (75). In a review of traffic measures with a focus on congestion for 

use in resilience studies, Afrin and Yodo (2020) summarized traffic measures in six categories 

(205): 

• Speed: Speed reduction index (SRI) and speed performance index (SPI) 

• Travel Time: Travel rate 

• Delay: Delay rate and delay ratio 

• Level of service: Volume to capacity ratio (v/c) 

• Congestion index: Relative congestion index (RCI), and 

• Federal: Congested hours, travel time index (TTI), and planning time index (PTI) 

A survey among different transportation agencies in Texas, including DOT, MPOs, 

FHWA, and others, showed road capacity as one of the most used traffic measures (105). Also, 
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Zhang et al. (2019) conducted a resilience analysis of road networks using the congestion index, 

this index is determined using GPS data in real-time with speed data which can be compared to 

specific road capacities (206). Futurechi and Miller-Hooks (2014) use total travel time in the 

road network under different disruption scenarios to quantify the global resilience of the network 

(30). Similarly, Fotouhi et al. (2017) used travel time and link capacity to study the resilience of 

road networks (207). LOS) and TTI are traffic measures also used for assessing the resilience of 

a transport network by Freckleton et al. (2012) (158). Finally, a report from RAND Corporation 

proposes using hours of congestion, TTI, travel time reliability (TTR), vehicle delays, and total 

travel time rate (TTTR) as traffic performance to measure to quantify resilience (27).  

In order to provide a summary of traffic performance measures for resilience assessment, 

it is also recommended to review the basics of traffic engineering and planning to understand the 

array of performance measures available. Several publications, mainly at the federal level, 

provide agencies with standardized performance measures for traffic operations. For example, 

the National Research Council (NRC) prepared the report titled “Key Transportation Indicators: 

Summary of a Workshop” and proposed a list of mobility indicators for traffic operation that 

include (208): 

• Average daily hours of travel per person 

• Average minutes per mile 

• Average vehicle minutes of delay 

• Total passenger traveled 

• Reliability factor, and 

• Travel rate index 
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Another resource available is FHWA’s Traffic Analysis Toolbox Volume VI. This guide 

provided a comprehensive summary of the definition, interpretation, and computation of  MOE 

performance measures for traffic operations. The goal of this guide is to assist transportation 

agencies to assess current problems that compromise traffic safety, efficiency, and mobility. This 

guide recommends a number of performance measures, including three that can also be used for 

resilience assessment. These measures are (209): 

• Throughput 

• Mean delays, and 

• Travel time index (TTI) 

Other sources for identifying traffic performance in the state of practice are: 

• NCHRP Synthesis 311, Performance Measures of Operational Effectiveness for 

Highway Segments and Systems;  

• Interim report for NCHRP 7-15, Cost-Effective Measures and Planning 

Procedures for Travel Time, Delay, and Reliability; and  

• Interim report for NCHRP 3-68, Guide to Effective Freeway Performance 

Measurement. 

The current literature is broad and does not provide practitioners with a practical guide on 

identifying, collecting data, and implementing traffic performance measures for resilience 

analysis of roadways. In addition, there is a need to expand the use of different metrics beyond 

the traditional. This dissertation presents Table 5.1 to support transportation agencies’ efforts to 

identify traffic resilience performance measures.  
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Table 15: Proposed Traffic Resilience Performance Measures 

Traffic Operations 
Resilience  

Stage 
Performance Measure Definition Where's does data come from? 

Absorption Level of Service (LOS) A (best) to F (worst) based on measures of effectiveness HCS 
 

Traffic Volume  Annual average daily traffic, peak-hour traffic, or peak-period Traffic counts 
 Change in Traffic Capacity  Change in Annual average daily traffic, peak-hour traffic, or peak-period Traffic counts 
 

Vehicle Miles Traveled Volume times length Traffic-count-based methods, socioeconomic-data-based 
methods, travel demand forecasting models  

Travel Time Distance divided by speed Probe based systems,  estimated from other measures such as 
volume or speed  

Speed Distance divided by travel time Radar recorders  or probe based systems 
 

Person miles traveled  AADT * Length * Vehicle Occupancy Traffic-count-based methods, socioeconomic-data-based 
methods, travel demand forecasting models  

Person trips Total person trips Travel surveys, travel demand forecasting models, passive data 
(GPS)  

Throughput Number of distinct vehicles able to enter or exit the system during the 
analysis period 

Traffic counts 

 
Travel time index  The ratio of the travel time during the peak period to the time required to 

make the same trip at free-flow speeds. 
From travel time  

 
Average minutes per mile Average time to travel one mile Travel surveys 

 
Average vehicle minutes of delay Average minutes of delay per vehicle Probe based systems,  estimated from other measures such as 

volume or speed  
Volume capacity ratio (v/c) Amount of traffic on a given roadway relative to the amount of traffic the 

roadway was designed to accommodate 
AADT Counts, traffic demand models, automated traffic 
recorder (ATR)  

Relative congestion index (RCI) Measure of vehicle travel density on major roadways in an urban area Traffic count methods, probe data 
 

Crash rate Crashes per 100 million vehicle-miles of travel Crash reports, police reports 
 

Incidents Traffic interruption caused by a crash or other unscheduled event Crash reports, police reports 
 

Duration of Congestion Period of congestion Traffic count methods, probe data 
 

Percent of System Congested Percent of miles congested (usually defined based on LOS E or F) HCS 
 

Vehicle Occupancy Persons per vehicle Travel surveys 
 

Percent of Travel Congested Percent of vehicle miles or person miles traveled Traffic count methods 
 

Delay Caused by Incidents Increase in travel time caused by an incident Traffic count methods, GPS data, probe data 
 

Density Vehicles per lane per period Traffic count methods, probe data 
 

Rail Crossing Incidents Traffic crashes that occur at highway–rail grade crossings Crash data, police reports, railway company 
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      Table 16: Continue  
Recurring Delay Travel time increases from congestion Traffic count methods, travel surveys 

    
  Travel Costs Value of driver’s time during a trip and any expenses incurred Travel surveys 
 

Weather-Related Traffic Incidents Traffic interruption caused by inclement weather Crash reports, police reports 
 

Response Times to Incidents Period required for an incident to be identified and for an appropriate action 
to alleviate the interruption to traffic to arrive at the scene 

First respondents, police reports, traffic demand management 

Adaptation Commercial Vehicle Safety Violations Number of violations issued by law enforcement based on vehicle weight, 
size, or safety 

Police reports 
 

Evacuation Clearance Time Reaction and travel time for evacuees to leave an area at risk Probe data, GPS, travel survey 
 

Response Time to Weather Related Incidents Period required for an incident to be identified and for an appropriate action 
to alleviate the interruption to traffic to arrive at the scene 

First respondents, police reports, traffic demand management 
 

Security for Highway and Transit Number of violations issued by law enforcement for acts of violence against 
travelers 

Police reports 
 

Toll Revenue Dollars generated from tolls Toll agency 
 

Travel-Time Reliability Percent of travelers who arrive at their destination within an acceptable time Probe data, traffic count methods 
Recovery Truck miles traveled AADT * Length * Percent Trucks Probe data, traffic count methods 

 
Vehicle miles traveled AADT * Length Probe data, traffic count methods 

 
Average speed Average speed weighted by person miles traveled Probe data, traffic count methods 

 
Delay Average delay Probe data, traffic count methods 

 
Average travel time Distance/mean speed Probe data, traffic count methods 

 
Average trip time Door-to-door trip travel time Probe data, traffic count methods, travel survey 

 
Reliability Percent of travel times that are acceptable Probe data, traffic count methods 

 
Connectivity to intermodal facilities Percent within 5 miles (1 mile for metro area) City ordinance, land use 

 
Dwelling unit proximity Percent within 5 miles (1 mile for metro area) City ordinance, land use, census data 

 
Employment proximity Percent within 5 miles (1 mile for metro area) Census data 

 
Industrial/warehouse proximity Percent within 5 miles Land use data, city ordinance, census data 

 
Percent miles bicycle accommodations Percent miles with bike lane/shoulder City plans 

 
Percent miles pedestrian accommodations  Percent miles with sidewalk City plans 

 
Percent system congested Percent miles at LOS E or F Agency plans, reports 

 
Percent travel congested Percent daily VMT at LOS E or F Traffic count methods, probe data 

 
Vehicles per lane-mile AADT * Length/lane miles Traffic count methods, probe data 

 
Duration of congestion Percent miles at LOS E or F Traffic count methods, probe data 
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5.3 Methodology and Data 

Chapter 3 of this dissertation introduced the PREP Framework and provided a detailed 

discussion and demonstration of 9 of the 12 proposed steps. This chapter now presents how the 

PREP framework can be applied to quantify the resilience of traffic operations. The first step 

identifies the location of analysis, which corresponds to arterial roads and highways roads in the 

City of Mobile, AL; the hazard event of interest is precipitation in inches of rain per hour, and 

the analysis timeline set for the period 2021-2029. Step 2 of the framework reviews historical 

precipitation data to determine hazard intensity levels. Step 3 uses climate model projections for 

the analysis period to develop probabilities of future impact on traffic operations. Step 4 selects 

the performance measure of interest based on the proposed list of traffic performance measures 

from Table 15. Step 5 provided a proposed target performance measure value for the selected 

performance measure in Step 4. Step 6 identifies performance measure impact value thresholds 

to use in Step 7 to identify percentage change in performance from target value set in Step 5. 

Step 8 calculates the probability of change in performance due to hazard event levels identified 

in Step 2. Finally, Step 9 calculates the resilience score as the expected percent change in 

performance measure from the target value. 

Data to implement this resilience analysis according to the PREP Framework process 

comes from two sources. The first data source corresponds to ALDOT, which provides traffic 

volumes for several stations in the area of analysis (Mobile, AL). More specifically, this is 

hourly volume from seven traffic count stations between the period of January 2015 and 

December 2020. The second data source provides historical hourly precipitation volumes for the 

period of January 2015 to December 2020. This weather data is collected at the Mobile 

Downtown Airport meteorological weather station. While projections for future hourly 
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precipitation volumes for the period of January 2021 to December 2029 come from the Canadian 

Centre for Climate Modelling and Analysis. 

The next section continues with the implementation of the PREP Framework for traffic 

operations and covers in detail each of the steps described above. In addition, the following 

chapter broadly discusses the impact of rain on traffic operations. This analysis was conducted as 

part of the PREP Framework phase that characterizes impacts of performance measures, and it 

provides insights into tailored values of rain impact in traffic operations for Mobile, AL. It 

should also be noted that the impact of rain on traffic operations is still the subject of research 

because there has not been a nationwide study on this matter. Furthermore, all the available 

information in the literature corresponds to a handful of geographical areas that limit the 

transferability for traffic improvement and planning purposes in other areas. 

5.4 PREP Framework Application 

This section covers the implementation of the PREP Framework for traffic operations in 

the Mobile, AL area. This section estimates the resilience score of two roadway types 

considering a traffic performance measure.  

5.4.1 Step 1: Identify Study Area, Asset, Hazard, and Planning Horizon 

The city of Mobile, Alabama, is located on the Mexico Gulf Coast and is the largest city 

of Mobile County. The Latitude and longitude coordinates are 30.695366 and -88.039894. The 

city has a population of approximately 187,041 residents, according to the 2020 Decennial 

Census. Several natural disasters have struck The Mobile Bay in the past. The NOAA NCEI, 

Storm Events Database registered 84 events between January 2015 and December 2020, and 
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these events are listed in Table 16. Table 16 also includes the date and estimated property 

damage. These 84 events caused an estimated $ 88.706 million in economic losses.  

The city's location on the coast of the Gulf of Mexico makes it vulnerable to tropical 

storms, hurricanes, and coastal flooding. In this context, precipitation is a major concern for 

infrastructure resilience planning. Particularly, precipitation and flooding can be sources of 

major disruption to the roadway network. The City of Mobile serves a major connection between 

Interstate I-65, running north of the city, and Interstate I-10, going east-west. Other relevant 

highway infrastructure in the city's urban area includes the George Wallace Tunnel, which 

travels beneath the Mobile River. This tunnel is a major element in the interstate highway 

systems that support movement along I-10. Within the city limits, other arterials support travel 

throughout the city and to/from the suburbs. These roads include Principal Arterials and 

Collectors such as US 90 West and US 98 West.  
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Table 17: Storm Events in the Mobile Bay between 2015 and 2020 

Location County - Zone State Date Event Type Property Damage ($) 
Heron Bay Mobile Co. AL 4/12/2015 Flash Flood 200.00 K 
Heron Bay Mobile Co. AL 4/13/2015 Flood 0.00 K 

Mertz Mobile Co. AL 5/15/2015 Flash Flood 1.00 K 
Spring Hill Mobile Co. AL 9/27/2015 Flash Flood 200.00 K 
Grand Bay Mobile Co. AL 12/23/2015 Flash Flood 30.00 K 

(Mob)Mobile Bates Fl Mobile Co. AL 3/11/2016 Flash Flood 0.00 K 
Irvington Mobile Co. AL 3/11/2016 Flash Flood 0.00 K 

Chickasaw Mobile Co. AL 3/11/2016 Flash Flood 0.00 K 
Chickasaw Mobile Co. AL 3/11/2016 Flash Flood 0.00 K 

Theodore Mobile Co. AL 3/11/2016 Flash Flood 0.00 K 
Grand Bay Mobile Co. AL 3/11/2016 Heavy Rain 0.00 K 

(Mob)Mobile Bates Fl Mobile Co. AL 3/24/2016 Flood 0.00 K 
Forest Hill Mobile Co. AL 3/24/2016 Flood 10.00 K 

Semmes Mobile Co. AL 3/24/2016 Flood 10.00 K 
Semmes Mobile Co. AL 3/24/2016 Flash Flood 0.00 K 
Plateau Mobile Co. AL 3/24/2016 Flash Flood 0.00 K 
Mobile Mobile Co. AL 3/24/2016 Flash Flood 0.00 K 

Cottage Hill Mobile Co. AL 8/12/2016 Flood 0.00 K 
Spring Hill Mobile Co. AL 4/3/2017 Heavy Rain 0.00 K 

Big Creek Lake Mobile Co. AL 4/3/2017 Flash Flood 0.00 K 
Saraland Mobile Co. AL 5/20/2017 Flash Flood 0.00 K 

Mobile Bates Fld Mobile Co. AL 5/20/2017 Flash Flood 0.00 K 
Saraland Mobile Co. AL 5/20/2017 Flash Flood 0.00 K 

Grand Bay Mobile Co. AL 6/6/2017 Flash Flood 0.00 K 
Tillmans Corner Mobile Co. AL 6/6/2017 Flash Flood 0.00 K 
Tillmans Corner Mobile Co. AL 6/6/2017 Flash Flood 0.00 K 

(Mob)Mobile Bates Fl Mobile Co. AL 6/21/2017 Flash Flood 0.00 K 
Cottage Hill Mobile Co. AL 8/4/2017 Flash Flood 0.00 K 

(Mob)Mobile Bates Fl Mobile Co. AL 8/4/2017 Flash Flood 0.00 K 
Dawes Mobile Co. AL 8/4/2017 Flash Flood 0.00 K 

St Elmo Airport Mobile Co. AL 8/29/2017 Flash Flood 0.00 K 
(Mob)Mobile Bates Fl Mobile Co. AL 8/29/2017 Flash Flood 0.00 K 

Seven Hills Mobile Co. AL 8/30/2017 Flash Flood 0.00 K 
Mobile Inland (Zone) Mobile Inland  AL 10/7/2017 Tropical Storm 100.00 K 

Mobile Coastal (Zone) Mobile Coastal  AL 10/7/2017 Tropical Storm 750.00 K 
Mobile Central (Zone) Mobile Central  AL 10/7/2017 Tropical Storm 250.00 K 
Mobile Coastal (Zone) Mobile Coastal  AL 10/7/2017 Storm Surge/tide 10.00 M 
Mobile Central (Zone) Mobile Central AL 10/7/2017 Storm Surge/tide 1.00 M 

Grand Bay Mobile Co. AL 10/22/2017 Flash Flood 30.00 K 
Grand Bay Mobile Co. AL 10/22/2017 Flash Flood 0.00 K 

Mobile Mobile Co. AL 10/22/2017 Flash Flood 30.00 K 
Tillmans Corner Mobile Co. AL 10/22/2017 Flash Flood 0.00 K 

Mobile Central (Zone) Mobile Central AL 12/8/2017 Winter Weather 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 12/8/2017 Winter Weather 0.00 K 

Mobile Inland (Zone) Mobile Inland AL 1/16/2018 Winter Weather 0.00 K 
Mobile Central (Zone) Mobile Central AL 1/16/2018 Winter Weather 0.00 K 

Mobile Mobile Co. AL 8/1/2018 Flash Flood 0.00 K 
Mobile Mobile Co. AL 8/1/2018 Flash Flood 0.00 K 

Cottage Hill Mobile Co. AL 8/1/2018 Flash Flood 0.00 K 
Plateau Mobile Co. AL 8/1/2018 Flash Flood 0.00 K 
Plateau Mobile Co. AL 8/1/2018 Heavy Rain 0.00 K 
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Table 16: Continue 
 
Mobile Coastal (Zone) Mobile Coastal AL 9/4/2018 Storm Surge/tide 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 9/4/2018 Tropical Storm 0.00 K 

Mobile Inland (Zone) Mobile Inland AL 9/4/2018 Tropical Storm 0.00 K 
Mobile Central (Zone) Mobile Central AL 9/4/2018 Tropical Storm 0.00 K 
Mobile Central (Zone) Mobile Central AL 9/4/2018 Storm Surge/tide 0.00 K 
(Mob)Mobile Bates Fl Mobile Co. AL 9/4/2018 Flash Flood 0.00 K 

Mobile Mobile Co. AL 5/9/2019 Flash Flood 5.00 K 
Cottage Hill Mobile Co. AL 6/28/2019 Flash Flood 5.00 K 

Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 7/12/2019 Coastal Flood 0.00 K 

Grand Bay Mobile Co. AL 7/13/2019 Heavy Rain 0.00 K 
Bayou La Batre Airport Mobile Co. AL 8/26/2019 Flash Flood 0.00 K 

Orchard Mobile Co. AL 9/19/2019 Flash Flood 100.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 10/19/2019 Coastal Flood 0.00 K 

Saraland Mobile Co. AL 2/12/2020 Flood 0.00 K 
Mobile Central (Zone) Mobile Central AL 6/7/2020 Tropical Storm 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 6/7/2020 Tropical Storm 0.00 K 
Mobile Central (Zone) Mobile Central AL 6/7/2020 Storm Surge/tide 0.00 K  
Mobile Coastal (Zone) Mobile Coastal AL 6/7/2020 Storm Surge/tide 0.00 K 

Magazine Mobile Co. AL 6/7/2020 Flash Flood 25.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 9/15/2020 Hurricane 75.96 M 
Mobile Central (Zone) Mobile Central AL 9/15/2020 Hurricane 0.00 K 
Mobile Inland (Zone) Mobile Inland AL 9/15/2020 Hurricane 0.00 K 

Mobile Coastal (Zone) Mobile Coastal AL 9/15/2020 Storm Surge/tide 0.00 K 
Mobile Central (Zone) Mobile Central AL 10/28/2020 Storm Surge/tide 0.00 K 
Mobile Coastal (Zone) Mobile Coastal AL 10/28/2020 Storm Surge/tide 0.00 K 

Mobile Inland (Zone) Mobile Inland AL 10/28/2020 Tropical Storm 0.00 K 
 

ALDOT reports up to 21% on I-10 and up to 28% on I-65 Annual Average Daily Truck 

Traffic (AADTT) during 2021. These statistics show the critical role of these corridors in support 

of freight and personal travel. Figure 21 shows two critical road classifications in the study area, 

Interstate, and Principal Arterial Roads. The typical transportation planning horizon consists of 

either 20 years for the LRTP or six years for the TIP. For reasons of data analysis time, this 

resilience implementation will consider a 9-year planning horizon corresponding to 2021 to 

2029. 
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Figure 21: Critical Roadway Infrastructure 
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5.4.2 Step 2: Define Hazard Event Intensity Thresholds 

In order to estimate the resilience of Interstate and Principal Arterial roads to 

precipitation in the Mobile urban area, it is necessary to study historical precipitation to 

determine the hazard event intensity thresholds. This dissertation obtained hourly precipitation 

records from the NOAA NCEI Global Hourly – Integrated Surface Database (ISD). Hourly 

precipitation from ISD is collected from hourly and synoptic observations at the Mobile 

Downtown Airport (30.6268, -88.0707) from January 1st, 2015 to December 31st, 2020. Figure 22 

shows the weather station’s location, and for analysis purposes, it is assumed that the rain 

observations are constant within a five miles radius of the weather station.  

 
Figure 22: Weather Station Location and Coverage Zone  
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The total database has 355,215 hourly records with precipitation in inches per hour. 

Figure 23 shows the distribution of the precipitation. Figure 23 shows that roughly 94% of the 

hours within the period have recorded zero inches of rain. However, for purposes of analysis, the 

data is categorized by season. Four seasons are considered: Spring (March-May), Summer (June-

August), Fall (September-November), and Winter (December-February).  

 
Figure 23: Historical Distribution of Hourly Precipitation at Mobile Downtown Airport Weather Station. 

The distribution of hourly precipitation for every season does not include records with 

zero precipitation because those themselves are considered as a separate hazard event intensity of 

“No Hazard.” The suggested thresholds values are the same as in previous chapters, where the 

“Low” intensity corresponds to the lower 10% of the distribution, the “Typical” to the values 

between 10% -89%, and “Extreme” for values in the top 10% of the distribution. However, the 

distribution of records did not show clusters of records around the 24th percentile, and no records 

were observed at the 10th percentile; hence the “Low” intensity was determined as the 20th 

percentile. Every other intensity level is considered according to what is suggested in Chapter 3. 
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The Spring distribution is shown in Figure 24. The “Low” intensity is reported as values 

between 0.01 – 0.19 in/hr., the “Typical” are values between 0.20 – 3.99 in/hr., and “Extreme” 

values equal to 4 in/hr. or more. For the Summer, the distribution is shown in Figure 25. The 

“Low” intensity is reported for values between 0.01 – 0.19 in/hr., the “Typical” are values 

between 0.20 – 4.49 in/hr., and “Extreme” values equal to 4.5 in/hr. or more. 

  
Figure 24: Spring Historical Precipitation  

 
Figure 25: Summer Historical Precipitation  
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The Fall distribution is shown in Figure 26. The “Low” intensity is reported as values 

between 0.01 – 0.19 in/hr., the “Typical” are values between 0.20 – 3.49 in/hr., and “Extreme” 

values equal to 3.5 in/hr. or more. For the Winter, the distribution is shown in Figure 27. The 

“Low” intensity is reported for values between 0.01 – 0.19 in/hr., the “Typical” are values 

between 0.20 – 2.49 in/hr., and “Extreme” values equal to 2.5 in/hr. or more. 

 
Figure 26: Fall Historical Precipitation  

 
Figure 27: Winter Historical Precipitation  
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5.4.3 Step 3: Calculate Probability of Hazard Impacting Asset  

This section covers the development of the HPF for the City of Mobile. This is the 

probability of a hazard event intensity level (in/hr.) occurring throughout the planning horizon. 

As introduced in Chapter 3, HPFs are developed using climate projections to reflect future 

weather conditions. However, in this PREP framework’s implementation, the hazard's time scale 

is sub-daily, which represents a challenge due to the level of resolution required. To overcome 

this challenge, this dissertation implements a new climate model developed at The Canadian 

Centre for Climate Modelling and Analysis (CCCma); it should be noted that this model differs 

from that used in Chapter 4 for PREP application in airports. 

5.4.3.1 Climate Model Data Collection and Analysis  

The HPFs are built using The Canadian Regional Climate Model (CanRCM4) second 

generation Canadian Earth System Model (CanESM2), which is derived from a parent Global 

Climate Model (GCM) CanAM4. The CanESM2 model selected was developed for the North 

American (NAM) region of the Coordinated Regional Climate Downscaling Experiment 

(CORDEX), which coordinates the use and development of tailored climate models for different 

regions of the world. Since the CanESM2 model was developed specifically for the NAN region 

of the CORDEX (See Figure 28), it is acceptable to use for projections in Mobile, AL. Finally, 

the CanESM2 model used in this implementation used the RCP8.5 scenario, and which is also 

known as the ‘high emissions’ or ‘business as usual’ emissions scenario. The model used in this 

implementation is the only model that includes sub-daily projections at a 1-hour time scale for 

the study area; the model has a 0.44° horizontal resolution (approximately 50 km grid). 
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Figure 28: CORDEX North American (NAN) Region (Retrieved from 
https://cordex.org/domains/region1-north-america/) 

 

One single file for each year of the planning horizon was downloaded from the CCCma 

website (link to the website). The NetCDF format files were loaded into a Jupyter Notebook 

script to extract the precipitation values for the specific location. The model provides 

precipitation values for the area within the CORDEX NAN region (see box in Figure 28), and 

this grid box has a total of 155 values of longitude (x-axis) and 130 values of latitude (y-axis). 

The model uses rotated coordinates instead of usual coordinates; therefore, converting the 

coordinates of Mobile Downtown Airport to rotated coordinates is required. The rotated 

coordinates of the airport are latitude -16.41 and longitude 8. However, the model does not 

provide values for that specific location; therefore, by approximation to the closest point in the 

grid, the projections were extracted for the latitude -16.28 and longitude 7.92. This grid point in 

the rotated model coordinates corresponds to normal coordinates, latitude 30.76 and longitude 

271.85. Figure 29 shows the location of the projected precipitation from the climate model grid 

in comparison to the location where the historical data was collected. 

https://climate-modelling.canada.ca/climatemodeldata/canrcm/CanRCM4/NAM-44_CCCma-CanESM2_rcp85/1hr/atmos/pr/index.shtml
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Figure 29: Location and Coverage of Projected and Historical Observations  

5.4.3.2 Hazard Probability Function (HPF)  

The fact the projections are not based on the exact location where the historical data was 

collected can raise issues about the accuracy of the observations. However, given the fact that 

projections at such a time scale are rarely available, this dissertation will assume the coverage of 

the projections from the CanRCM4 model is valid for the study area. Figure 30 shows the 

distribution of precipitation between January 2021 and December 2029 based on the CanRCM4 

model. The projected precipitation is given in terms of the flux of precipitation, which is the 

amount of water per unit of area and time (unit: kg m-2 s-1); in other terms, this refers to the 

capacity of rainfall at the surface. This measurement can be easily converted to mm/hr. 

multiplying by 3600 (seconds in one hour), then multiplying by 0.0393701 to convert to in/hr. 
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Figure 30: Distribution of Projected Precipitation for the Period 2021-2029 by the CanRCM4 model. 

If compared to historical precipitation, projections show more periods with at least 0.01 

in/hr., as the cumulative probability of experiencing one-hour periods with no rain is only 

36.17%, compared to 94% in the historical data. The opposite is true for intensity, as historical 

precipitation showed more intense one-hour periods (up to 12 inches). However, it should be 

considered that these intense periods might be caused by a single extreme event such as a 

hurricane. This type of event is not accurately captured or forecasted using climate models as 

these only provide evidence of the interaction of emissions with the atmosphere, oceans, and the 

earth's surface. 

Due to the lack of available models to compare and use projections that provided periods 

with higher intensity, this dissertation relies on the CanRCM4 model to estimate the probability 

of future hazard event intensity. Figure 31 to Figure 34 show the HPF for the Spring, Summer, 

Fall, and Winter seasons, respectively. 
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Figure 31: Spring HPF 

 
Figure 32: Summer HPF 
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Figure 33: Fall HPF 

 
Figure 34: Winter HPF 

 

The following section will go through the process of characterizing the performance 

measure impacts. First, it covers the selection of the performance measure and then the definition 

of the target values. 
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5.4.4 Step 4: Select Performance Measure of Interest 

This implementation of the PREP Framework continues with the selection of an 

appropriate traffic performance measure. Table 15 provides a comprehensive list of traffic 

performance measures that can be used for the application of this framework to assess the 

resilience of the traffic operation in the City of Mobile. Traffic volume or capacity is defined as 

the maximum number of vehicles that can pass a point during a specified time period, and this is 

the selected performance measure. The reason for using this performance measure is twofold, 

first traffic volumes are continually collected by transportation agencies in their asset 

management process; hence it is standard practice. Second, because of the lack of insights into 

the impact of precipitation on traffic volumes in the Mobile area, thus the results from exploring 

this issue can benefit agencies and their understanding of traffic under weather conditions.  

As mentioned early in this chapter, traffic volume data was provided by ALDOT’s 

Traffic Monitoring, Data Collection and Data Management Group, Maintenance Bureau. This 

data comprised the entire Alabama highway network and included permanent traffic count 

stations only. The next section discusses the selection of an appropriate target value for the 

selected performance measure. 

5.4.5 Step 5: Specify Target Performance for Measure of Interest 

The selection of a target value is essential to estimate the future change in performance 

due to hazard intensity. Decisions on the selection of a target value should be a process in which 

planning goals, design guidelines, and key performance indicators (KPIs) of the planning agency 

are considered. However, from the literature review, there is no evidence of a proposed target 

value that transportation agencies have used to measure an acceptable change in traffic volumes 
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during extreme weather. However, limited information address changes in traffic volumes in 

response to alleviating congestion in urban areas. For example, traffic volume data with speed, 

flow, and density data are used to estimate roadway LOS. It is expected that a reduction in traffic 

volumes benefits a roadway’s LOS. While this argument should be interpreted with care because 

roadway conditions are not similar when assuming a traffic volume reduction due to inclement 

weather or because of some type of roadway improvement (e.g., more lanes, alternative routes, 

etc.). There is evidence from the literature that inclement weather will also reduce speed, flow, 

and density, hence will likely reduce the roadway LOS. 

 The impact of weather in traffic operations has been covered in some studies as shown in 

the introduction of this chapter. The results from these studies suggest that approximately 10% 

reduction in capacity has been observed during rain events. This dissertation also considered the 

results from Hranac et al. (2006) in an FHWA report titled "Empirical Studies on Traffic Flow in 

Inclement Weather”, which concluded that reduction in capacity remains between 10% to 11% 

for rain intensity between 0.00-0.61 in/hr. (210). Considering the results of past studies, this 

dissertation assumes a target value of the performance measure of 10%. On the one hand, this 

dissertation deems that setting a target value of 0.00% change is not realistic based on the 

evidence from past studies, and it will cause a bias toward the resilience results. On the other 

hand, the 10% target value is used only for implementing the PREP framework and is not a 

statement about what the target value in practice should be. On the contrary, this dissertation, 

particularly this chapter, can benefit transportation agencies trying to understand acceptable 

values of capacity reduction due to precipitation in The City of Mobile. 
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5.4.6 Step 6: Calculate Probability of Change in Performance due to Hazard Event 

So far, this chapter has introduced the study area, hazard event of interest, and planning 

horizon. Then, following the PREP framework, the hazard event intensity was defined, and HPFs 

calculated. Finally, the performance measure and target values were defined. Now, the focus of 

the section is characterizing the impact of the hazard event in the performance measure. This 

section is presented in two instances; the first will focus on analyzing the traffic data and 

calculating precipitation’s impact on traffic volumes. The second will focus on developing the 

PMIFs, which describe the probability of experiencing an impact level value for a specific 

hazard event intensity. 

5.4.6.1 Data Analysis and Impact of Precipitation in Traffic Capacity 

As described in section 5.4.1 (Figure 21), the transportation system of interest is 

Interstate and Principal Arterials in the urban area of Mobile, AL. Data from ALDOT’s Traffic 

Monitoring, Data Collection, and Data Management Group, Maintenance Bureau, was received 

in a Microsoft Excel (*.csv) format. The data consisted of five files, each equivalent to a year 

worth of traffic count data for over 200 permanent traffic count stations across the state. Each 

station had twelve spreadsheets, one for each month of the year. Traffic volumes were reported 

hourly and every day of the month.  

Only a limited number of traffic count stations were within the study area. Figure 5.15 

shows the location of the selected traffic counts used in implementing the PREP Framework. As 

depicted in Figure 35, there are eight traffic stations located within the weather station’s 5-mile 

coverage zone that recorded historical precipitation for the period 2015-2020. Stations located 
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outside the 5-mile buffer zone were not included in the analysis. Seven of the eight stations are 

located on Interstate roads, and one is on Principal Arterial roads.  

 
Figure 35: Location of Traffic Count Stations in the Study Area 

 

The next step of the analysis combined the observed precipitation (in/hr.) for every period 

with the traffic volume data. This means that every hour of the analysis period (January 1st, 2015, 

to December 31st, 2020) was assigned a precipitation value and a traffic volume value; this 

process repeats for every traffic station. The dataset used in this analysis includes traffic counts 

and weather observations for every hour across 6 years at 8 traffic count stations. This means 

that the whole dataset could potentially include up to 420,480 records. However, multiple 
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stations had missing records sporadically throughout the 6 years, resulting in a final dataset of 

356,569 records. Missing records are summarized as follows: 

• Station 718: Missing five months in year 2015 and two months in year 2016 
• Station 722: Missing six months in year 2015 
• Station 735: Missing years 2015 and 2016, missing six months in year 2017 
• Station 738: Missing three months in year 2015 and three months in year 2016 
• Station 740: Missing four months in year 2015 and one month in year 2016 
• Station 742: Missing three months in year 2015, and three months in the 2016 
• Station 744: Missing three months in year 2015, and three months in year 2017 

 
Similarly, major holidays were removed from the original dataset to avoid including 

uncommon travel patterns in the analysis. Table 17 shows the dates and holidays not included in 

the analysis. 

Table 18: Major Holidays Excluded from Analysis 

Holiday Date Year 
Memorial Day 25-May 2015 
Memorial Day 30-May 2016 
Memorial Day 29-May 2017 
Memorial Day 28-May 2018 
Memorial Day 27-May 2019 
Memorial Day 25-May 2020 
Independence Day 4-Jul 2015-2020 
Labor Day 7-Sep 2015 
Labor Day 5-Sep 2016 
Labor Day 4-Sep 2017 
Labor Day 3-Sep 2018 
Labor Day 2-Sep 2019 
Labor Day 7-Sep 2020 
Thanksgiving Day 26-Nov 2015 
Thanksgiving Day 24-Nov 2016 
Thanksgiving Day 23-Nov 2017 
Thanksgiving Day 22-Nov 2018 
Thanksgiving Day 28-Nov 2019 
Thanksgiving Day 26-Nov 2020 
Christmas Day 25-Dec 2015-2020 
New Year’s Day 1-Jan 2015-2020 
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Next, the dataset was split by seasons of the year and day of the week. The seasons are 

Spring, Summer, Fall, and Winter. Days of the week are Weekdays (Monday – Thursday), 

Fridays, and Weekends (Saturday and Sundays). The data was split into these categories to 

address traffic’s seasonal and daily variability, as indicated by (211–213). A second layer is 

created to divide these categories by peak and off-peak periods (See Figure 36). The subgroups 

shown in Figure 36 as well as the categories for the day of the week, replicate for each season 

and for each road classification category (Interstate & Principal Arterial). 

  
Figure 36: Traffic Analysis Categories and Subgroups 

The process for defining peak and off-peak periods is based on best practices and the 

distribution of traffic volumes for each category. FHWA Transportation Performance 

Management (TPM) defines peak hour as 6-10 am on weekdays morning and 3-7 pm or 4-8 pm 

on weekdays afternoon. Although for weekends, this dissertation could not identify a definition 

of peak periods based on current practices. Then, observations of the distribution of traffic 

volumes on weekdays and weekends were used to understand the peak period patterns better. 

Figure 37 and Figure 38 show the distribution of traffic volumes on weekdays, including Fridays, 

for Interstate and Principal Arterial rods, respectively. These values are the average volume for 

that hour of the day and season, including both rain and no rain conditions. These distributions 

Weekdays
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Afternoon Peak

Day Off-Peak

Night Off-Peak

Fridays
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Afternoon Peak

Day Off-Peak

Night Off-Peak

Weekends
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Day Off-Peak

Evening Off-Peak
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are used to identify the morning peak period as 6-9 am and the afternoon peak as 3-6 pm. The 

day off-peak period is 10 am to 2 pm, and the night off-peak is 7-10 pm. 

  
Figure 37: Traffic Distribution of Interstate on Weekdays 

 
 

 
Figure 38: Traffic Distribution of Principal Arterial on Weekdays 

Figure 37 and Figure 38 show that morning and afternoon peak traffic is lower in 

summers on principal arterial, as expected, due to schools closed and no school drop off and pick 

up trips. The opposite is true for days off-peak, as summers have higher volumes at this time of 
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the day, more notably on interstate roads. Other observations from these figures are that 

afternoon peak volumes are higher in winter for interstate traffic. While on principal arterials, the 

volumes are similar during winter and fall. 

Figure 39 and Figure 40 show the distribution of traffic during weekends for Interstate 

and Principal Arterials, respectively. These values are the average volume for that hour of the 

day and season, including both rain and no rain conditions. During weekends the subgroups for 

the time of day consisted of the peak, day-off peak, and evening peak, and this is because of the 

uniqueness of travel during weekends. Traffic patterns during weekends on interstate and 

principal arterial roads have one single peak at around 1-2 pm. Based on observed distributions 

during weekends, this dissertation defines the weekend peak period as 12-3 pm, the day-off peak 

as 8-11 am, and the evening off-peak as 4-8 pm.  

Traffic patterns during weekends are similar in all seasons and roads. However, interstate 

roads during spring show higher volumes than other seasons, mainly in the day-off peak (8-11 

am). While on principal arterial roads, the higher volumes occurred during winter, mainly in the 

peak period (12-3 pm) and early hours of the evening-off peak (4-8 pm).  

Once the peak and off-peak periods were selected, the following process consisted of 

identifying every record within the categories and subgroups with zero rain. These were defined 

as no-hazard scenarios. The rest of the dataset was categorized based on the intensity of the rain 

using the hazard event intensities defined in section 5.4.2. The no-hazard values were averaged 

according to each category and subgroup to calculate the base volume. Table 18 summarizes the 

average traffic volumes under conditions of no rain. 
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Figure 39: Traffic Distribution of Interstate on Weekends 

 
Figure 40: Traffic Distribution of Principal Arterial on Weekends 
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Table 19: Average Volume under No Hazard Conditions 

 

Volumes from Table 18 were used to calculate the percent change in traffic volumes for 

every record in each category and subgroup; this process was repeated for records that fall within 

the “Low,” “Typical,” and “Extreme” hazard event intensity. The goal here was to estimate the 

percentage change in traffic volume for all periods that recorded at least 0.001 in/hr. 

precipitation. The percentage change was calculated as: 

% 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝,ℎ,𝑑𝑑,𝑟𝑟𝑟𝑟 = �
(𝐴𝐴𝐴𝐴𝐴𝐴.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,   𝑝𝑝,𝑑𝑑,𝑟𝑟𝑟𝑟−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝,ℎ,𝑑𝑑,𝑟𝑟𝑟𝑟)

𝐴𝐴𝐴𝐴𝐴𝐴.𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,   𝑝𝑝,𝑑𝑑,𝑟𝑟𝑟𝑟
� × 100                                              (4)  

 
 
In Equation 4 is the percentage of traffic volume change at period, p, hazard event 

intensity, h, day of the week, d, and type of road, rc. 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,   𝑝𝑝,𝑑𝑑,𝑟𝑟𝑟𝑟 is the average 

volume under no hazard conditions, from Table 18, at the period, h, for day of the week, d, and 

type of road, rc). Finally, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,   𝑝𝑝,ℎ,𝑑𝑑,𝑟𝑟𝑟𝑟 is the traffic volume at hour, p, for hazard 

event intensity, h, day of the week, d, and type of road, rc. The average for each category is 

summarized in Table 19. Note that some percent values are negative; this indicates that the 

traffic volume under precipitation conditions increased in comparison to the volume with no 

Interstate 
Weekday Friday Weekend 

6-9 am 3-6 pm 10 am-2 pm  7-10 pm 6-9 am 3-6 pm 10 am-2 pm 7-10 pm 12-3 pm 8-11 am 4-8 pm 
Morning 

Peak 
Afternoon 

Peak 
Day 

Off-Peak 
Night 

Off-Peak 
Morning 

Peak 
Afternoon 

Peak 
Day 

Off-Peak 
Night 

Off-Peak Peak Day  
Off-Peak 

Evening 
Off-Peak 

5156 5791 4830 2161 5106 6032 5454 2971 4644 3746 3662 
Principal Arterial 

Morning 
Peak 

Afternoon 
Peak 

Day 
Off-Peak 

Night 
Off-Peak 

Morning 
Peak 

Afternoon 
Peak 

Day 
Off-Peak 

Night 
Off-Peak Peak Day  

Off-Peak 
Evening 
Off-Peak 

1047 1520 1370 714 1057 1666 1543 927 1276 894 1040 
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hazard. Positive values are an indication that the traffic volume decreases under precipitation 

conditions. 

To the best of this dissertation's knowledge, Table 19 serves as the first reference to the 

impact of precipitation on traffic capacity in the Mobile Bay area. Results can benefit future 

planning in the area. For example, these results can be used as a tailored adjustment factor for 

uninterrupted traffic flow analysis, like those described in Chapter 10 of the Highway Capacity 

Manual (2010). 

Table 20: Summary of Traffic Capacity Change 

Road Type Day of Week Hazard Event Intensity Spring Summer Fall Winter 

Interstate 

Weekdays 

Low  4.97% 6.04% 9.74% 3.29% 
Typical 3.42% 2.49% 15.58% 4.97% 
Extreme 14.45% 4.76% 4.72% 5.81% 
Total 4.95% 3.75% 12.33% 4.35% 

Fridays 

Low  5.89% -2.87% 0.26% 11.60% 
Typical 3.83% 2.05% 3.81% 9.53% 
Extreme 6.27% 10.01% -14.09% 2.66% 
Total 4.77% 0.98% 0.62% 9.14% 

Weekends 

Low  0.61% 2.14% 5.54% 4.53% 
Typical 1.96% 11.83% 7.86% 10.15% 
Extreme 6.99% 18.01% 19.32% 9.92% 
Total 1.70% 9.38% 7.62% 8.23% 

Principal 
Arterial 

Weekdays 

Low  5.17% 4.48% 8.16% 5.02% 
Typical 12.94% 2.19% 15.64% 4.04% 
Extreme 42.64% 4.65% 4.48% -0.34% 
Total 13.83% 3.09% 11.68% 4.06% 

Fridays 

Low  7.35% -4.86% 0.17% 11.07% 
Typical -0.45% 3.08% 6.01% 9.39% 
Extreme 1.50% 21.41% -5.55% 6.96% 
Total 2.26% 1.72% 2.78% 9.57% 

Weekends 

Low  -2.87% 1.71% 10.45% 10.71% 
Typical 4.54% 11.67% 11.45% 13.74% 
Extreme 8.29% 14.48% 21.21% 16.47% 
Total 1.69% 8.73% 11.81% 13.09% 
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Results in Table 19 summarize average traffic capacity changes -compared to no-hazard 

traffic capacity. However, to compute the PMIFs, all records with their percent change are 

considered, even if the percent change is negative (increased traffic during a hazard event). There 

is, then, the need to test if traffic volumes are statistically different during periods of no hazard 

(0.00 in/hr.) and periods of hazard (at least 0.01 in/hr.); here, all three hazard event intensities are 

combined as one single hazard group.  

This dissertation conducted an independent t-test to compare the means of two groups (no 

hazard group and hazard group). The null hypothesis is described as follows: 

H0=μNo Hazard=μ Hazard 

The null hypothesis states that the mean of traffic volume under no-hazard conditions is 

equal to the mean of traffic volume during hazard conditions. The alternative hypothesis states 

that the means of the two groups are not equal and is described as follows: 

H1=μNo Hazard≠μ Hazard 

This test was conducted considering equality of variance for the two groups, and a 

Levene test was included in the analysis to test this assumption. All results were conducted with 

a 95% confidence interval. The null hypothesis will be rejected if the significance of the test for 

equality means is lower 0.05 (pvalue < 0.05). If the significance of the test for equality of means is 

greater than 0.05 (pvalue > 0.05), this will indicate that the null hypothesis cannot be rejected, and 

it can be concluded that the means of the two groups are equal. Results are summarized in Table 

20 for Interstate roads and Table 21 for Principal Arterial roads. The test was conducted for 

every weekday and season category only. 
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Results for interstate roads show that the null hypothesis failed to be rejected in three 

categories that include:  Friday’s traffic in summer, Friday’s traffic in winter, and Weekend 

traffic in winter, and all other categories rejected the null hypothesis. Based on the results, it can 

be concluded with a 95% confidence that statistically, there is a difference in traffic volume 

means during no hazard and hazard conditions on interstate roads for most conditions. 

Table 21: Independent T-Test for Equality of Means for Interstate Roads 

DAY OF 
WEEK 

HAZARD 
EVENT 

INTENSITY 

GROUP SAMPLE 
SIZE 

MEAN 
TRAFFIC 
VOLUME 

STANDARD 
DEVIATION 

LEVENE'S TEST 
FOR EQUALITY 
OF VARIANCES 

INDEPENDENT 
T-TEST FOR 

EQUALITY OF 
MEANS 

Significance Significance 

WEEKDAYS 

Spring Hazard 1947 3220 2022 
0.000 0.000 No Hazard 41495 3497 2204 

Summer Hazard 3168 3312 2072 
0.000 0.000 No Hazard 42108 3574 2155 

Fall Hazard 2630 3032 2129 
0.037 0.000 No Hazard 43331 3473 2187 

Winter Hazard 2738 3322 2106 
0.000 0.000 No Hazard 35596 3476 2215 

FRIDAYS 

Spring Hazard 601 3280 2164 
0.741 0.000 No Hazard 10117 3842 2198 

Summer Hazard 600 3807 2011 
0.005 0.481 No Hazard 10631 3870 2140 

Fall Hazard 327 3412 2081 
0.084 0.003 No Hazard 11247 3760 2166 

Winter Hazard 717 3700 2064 
0.000 0.108 No Hazard 8799 3839 2249 

WEEKENDS 

Spring Hazard 1113 2850 1621 
0.090 0.018 No Hazard 20552 2728 1666 

Summer Hazard 1508 2809 1473 
0.000 0.006 No Hazard 21348 2933 1700 

Fall Hazard 1125 2524 1574 
0.013 0.007 No Hazard 21964 2649 1513 

Winter Hazard 1595 2621 1500 
0.000 0.103 No Hazard 17476 2689 1603 
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Concerning Principal Arterial roads, the analysis showed a very different situation. All 

categories but one failed to reject the null hypothesis, and this is Weekday traffic in the fall. 

Based on the results, it can be concluded with a 95% confidence that statistically, there is no 

difference between traffic volume means under no hazard and hazard conditions on principal 

arterial roads. 

Table 22: Independent T-Test for Equality of Means for Principal Arterial Roads 

DAY OF 
WEEK 

HAZARD 
EVENT 

INTENSITY 

GROUP SAMPLE 
SIZE 

MEAN 
TRAFFIC 
VOLUME 

STANDARD 
DEVIATION 

LEVENE'S TEST 
FOR EQUALITY 
OF VARIANCES 

INDEPENDENT 
T-TEST FOR 

EQUALITY OF 
MEANS 

Significance Significance 

WEEKDAYS 

Spring Hazard 359 830 546 0.007  0.153  
No Hazard 7125 875 580 

Summer Hazard 523 872 507 0.000  0.448  
No Hazard 7028 853 550 

Fall Hazard 413 786 553 0.016  0.003  
No Hazard 6894 874 582 

Winter Hazard 489 860 561 0.051  0.753  
No Hazard 6515 868 587 

FRIDAYS 

Spring Hazard 126 950 613 0.888  0.552  
No Hazard 1710 984 616 

Summer Hazard 102 997 525 0.023  0.509  
No Hazard 1776 957 588 

Fall Hazard 48 931 563 0.126  0.514  
No Hazard 1781 989 610 

Winter Hazard 124 915 575 0.056  0.137  
No Hazard 1618 1002 633 

WEEKENDS 

Spring Hazard 213 760 466 0.990  0.126  
No Hazard 3506 710 461 

Summer Hazard 247 718 366 0.000  0.519  
No Hazard 3520 699 433 

Fall Hazard 186 670 418 0.014  0.277  
No Hazard 3493 706 449 

Winter Hazard 251 683 420 0.000 0.112 
No Hazard 3216 733 482 
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Finally, it is important to note that the test of independent means is not intended to 

provide statistical evidence that traffic volumes are reduced under hazard conditions at any level 

(low. Typical, and extreme). This test only compares the means of each group to estimate 

statistically if these are equal or not. For example, as noted in Table 20, weekend traffic during 

spring has a higher mean during hazard conditions, and the test's significance is lower than 0.05.  

Nevertheless, the overall results for interstate and principal arterials show that traffic 

volume means under hazard conditions are generally lower than those under no-hazard 

conditions. This statement is the takeaway from this analysis, which can serve as a starting point 

for further research that can lead to improved analysis of traffic capacity under precipitation in 

the Mobile Bay area.  

The next section constructs the PMIFs for all traffic categories and corresponding hazard 

event intensity. These PMIFs are later used to quantify the resilience of the City of Mobile 

Interstate and Principal Arterial Road network. 

5.4.6.2 Develop Performance Measure Impact Functions, PMIFs 

PMIFs are defined as the probability of experiencing an impact level at a given hazard 

event intensity for the selected performance measure. For this implementation of the PREP 

Framework, this dissertation uses the percent change in traffic capacity obtained from the 

analysis of traffic volumes in section 5.4.6.1. This analysis allows aggregating all percent 

changes in traffic volume on all the combinations of the traffic categories (road type, day of the 

week, and season), subgroups (peak and off-peak period), and hazard intensity (low, typical, and 

extreme). 
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As discussed in Chapter 3, a PMIF can be derived as the cumulative distribution of 

performance measure values under a specific hazard event intensity. The PMIFs for percent 

change in traffic volume for interstate and principal arterial are shown in Figure 41 to Figure 64. 

The x-axis corresponds to the performance measure impact value thresholds, and the y-axis 

corresponds to the cumulative probability of occurring that impact value or less. 
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Figure 41:Spring PMIF for Interstate Roads on Weekdays 

 

Figure 42: Spring PMIF for Principal Arterial Roads on Weekdays 
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Figure 43: Spring PMIF for Interstate Roads on Fridays

 

Figure 44: Spring PMIF for Principal Arterial Roads on Fridays 
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Figure 45: Spring PMIF for Interstate Roads on Weekends 

Figure 46: Spring PMIF for Principal Arterial Roads on Weekends 
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Figure 47: Summer PMIF for Interstate Roads on Weekdays 

Figure 48: Summer PMIF for Principal Arterial Roads on Weekdays 
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Figure 49: Summer PMIF for Interstate Roads on Fridays 

 
Figure 50: Summer PMIF for Principal Arterial Roads on Fridays 
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Figure 51: Summer PMIF for Interstate Roads on Weekends 

Figure 52: Summer PMIF for Principal Arterial Roads on Weekends  
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Figure 53: Fall PMIF for Interstate Roads on Weekdays 

  
Figure 54: Fall PMIF for Principal Arterial Roads on Weekdays 

 

 

0%

20%

40%

60%

80%

100%

-40% -20% 0% 20% 40% 60%

%
 H

O
U

RL
Y 

CO
U

N
TS

% CHANGE IN TRAFFIC CAPACITY

PMIF: Weekdays Interstate

Low: Morning Peak

Typical: Morning Peak

Extreme: Morning Peak

Low: Afternoon Peak

Typical: Afternoon Peak

Extreme: Afternoon Peak

Low: Day Off-Peak

Typical: Day Off-Peak

Extreme: Day Off-Peak

Low: Night Off-Peak

Typical: Night Off-Peak

Extreme: Night Off-Peak

0%

20%

40%

60%

80%

100%

-40% -20% 0% 20% 40% 60%

%
 H

O
U

RL
Y 

CO
U

N
TS

% CHANGE IN TRAFFIC CAPACITY

PMIF: Weekdays Principal Arterial

Low: Morning Peak

Typical: Morning Peak

Extreme: Morning Peak

Low: Afternoon Peak

Typical: Afternoon Peak

Extreme: Afternoon Peak

Low: Day Off-Peak

Typical: Day Off-Peak

Extreme: Day Off-Peak

Low: Night Off-Peak

Typical: Night Off-Peak

Extreme: Night Off-Peak



172 
 

 
Figure 55: Fall PMIF for Interstate Roads on Fridays 

 
Figure 56: Fall PMIF for Principal Arterial Roads on Fridays 
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Figure 57: Fall PMIF for Interstate Roads on Weekends 

 
Figure 58: Fall PMIF for Principal Arterial Roads on Weekends 
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Figure 59: Winter PMIF for Interstate Roads on Weekdays 

 
Figure 60: Winter PMIF for Principal Arterial Roads on Weekdays 
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Figure 61: Winter PMIF for Interstate Roads on Fridays 

 
Figure 62: Winter PMIF for Principal Arterial Roads on Fridays 
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Figure 63: Winter PMIF for Interstate Roads on Weekends 

 
Figure 64: Winter PMIF for Principal Arterial Roads on Weekends 
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From Figure 41 to Figure 64, every impact value threshold received a probability that a 

value or less will occur for a given hazard event intensity. It should be noted that in some 

categories, no records were available to construct a PMIF. For example, Figure 58 PMIF for Fall 

and Principal Arterial roads on Weekends omits an “Extreme” PMIF for day off-peak. The 

probability of each performance impact value in the PMIFs was collected for the next step in 

implementing the PREP Framework. 

5.4.7 Step 7: Identify Performance Measure Impact Value Thresholds 

The performance measure impact value thresholds are selected to estimate the percent 

change from the target value. Because the data analysis from Section 5.4.6.1 shows that in some 

cases, the performance measure can take negative values, the selection of the value thresholds 

included both negative and positive values. The performance measure impact values thresholds 

are those used to construct the PMIFs and are listed in Table 22. 

The values selected also correspond to the broader range of possible percent changes 

from the analysis in Section 5.4.6.1. During the analysis, the change in capacity ranges from         

-40% to 60%. Negative values show that traffic volumes increase when rain is observed. In 

contrast, positive values indicate that traffic volumes are reduced when there is rain. For the 

analysis, fewer negative values are used as thresholds because their frequency is lower than 

positive values. In addition, the interest lies more in positive values; hence more values with 

higher frequency are considered. The next section of this chapter uses the threshold values and 

calculates the difference from the target value specified in Section 5.4.5. 
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Table 23: Performance Measure Impact Value Thresholds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.8 Step 8: Calculate Percent Change in Performance 

This section of the implementation of the PREP Framework estimates the change of the 

selected performance measure impact value thresholds from the target value defined previously 

as 10%. The PREP Framework represents this change from target value as the “cost” of the 

impact of the hazard event. Because every threshold is associated with a probability of 

occurrence, the PREP Framework can estimate the probability of that “cost” in the system 

performance. Just like in Chapter 4, this cost is standardized as a percentage and can be easily 

transferred along the resilience calculation. Table 23 shows the percent change in performance 

using the target value and previously defined thresholds. 

Performance Value 
(Change in Traffic Volume) 

-40.0% 
-20.0% 
-15.0% 
-10.0% 
-5.0% 
-1.0% 
0.0% 
0.5% 
1.0% 
1.5% 
2.0% 
2.5% 
5.0% 
7.5% 

10.0% 
15.0% 
20.0% 
25.0% 
30.0% 
35.0% 
40.0% 
45.0% 
50.0% 
55.0% 
60.0% 
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Table 24: Change in Performance Measure from Target Value 

Performance Measure Impact 
Value Thresholds 

Target 
Performance 

Change In Performance 
from Target Value 

-40.0% 

10
% 

-500% 
-20.0% -300% 
-15.0% -250% 
-10.0% -200% 
-5.0% -150% 
-1.0% -11% 
0.0% -100% 
0.5% -95% 
1.0% -90% 
1.5% -85% 
2.0% -80% 
2.5% -75% 
5.0% -50% 
7.5% -25% 

10.0% 0% 
15.0% 50% 
20.0% 100% 
25.0% 150% 
30.0% 200% 
35.0% 250% 
40.0% 300% 
45.0% 350% 
50.0% 400% 
55.0% 450% 
60.0% 500% 

 

5.4.9 Step 9: Calculate Resilience Score 

The final step in implementing the PREP Framework is to quantify the resilience score. 

As has been pointed out before, the PREP Framework resilience score constitutes the expected 

percent change in performance measure from the target value while considering the probability 

of occurrence of a hazard event level in the future. The resilience score is quantified following 

Equation 1, described in Chapter 3. Table 24 shows an example of the resilience score 

calculation for the traffic in the morning peak (6 – 9 am) of weekdays during Spring on Interstate 

roads. 
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Table 25: Resilience Score Morning Peak Weekdays in Spring on Interstate Roads 

Hazard Event: Hourly Precipitation (in/hr.) Performance Measure: Hourly Percent Change in Traffic Capacity Expected 
Percent Change 
in Performance 
Measure from 

Target Value at 
Hazard Event 
Intensity (%) 

Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
due to Hazard 

Event (%) 

Hazard 
Event 

Intensity 
Thresholds 

(in/hr.) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less  

Probability of 
Experiencing 
This Hazard 

Event Intensity 

Performance Measure Impact  PMIF 
Target 
Value 

(percent 
change) 

Impact 
Value  

Thresholds 
(percent 
change)  

Percent 
Change in 

Impact 
Value from 

Target 
Value (%) 

Probability of 
Experiencing 
Impact Value 
or Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

No Hazard 
(0.00) 34.61% 34.61% 10% 

-40.00% -500.00% 0.00% 0.00% 

0.00% 7.3% 

-20.00% -300.00% 0.00% 0.00% 
-15.00% -250.00% 0.00% 0.00% 
-10.00% -200.00% 0.00% 0.00% 
-5.00% -150.00% 0.00% 0.00% 
-1.00% -110.00% 0.00% 0.00% 
0.00% -100.00% 0.00% 0.00% 
0.50% -95.00% 0.00% 0.00% 
1.00% -90.00% 0.00% 0.00% 
1.50% -85.00% 0.00% 0.00% 
2.00% -80.00% 0.00% 0.00% 
2.50% -75.00% 0.00% 0.00% 
5.00% -50.00% 0.00% 0.00% 
7.50% -25.00% 0.00% 0.00% 

10.00% 0.00% 0.00% 0.00% 
15.00% 50.00% 0.00% 0.00% 
20.00% 100.00% 0.00% 0.00% 
25.00% 150.00% 0.00% 0.00% 
30.00% 200.00% 0.00% 0.00% 
35.00% 250.00% 0.00% 0.00% 
40.00% 300.00% 0.00% 0.00% 
45.00% 350.00% 0.00% 0.00% 
50.00% 400.00% 0.00% 0.00% 
55.00% 450.00% 0.00% 0.00% 
60.00% 500.00% 0.00% 0.00% 
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Table 24: Continue 

Hazard Event: Hourly Precipitation (in/hr.) Performance Measure: Hourly Percent Change in Traffic Capacity Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
for Hazard 

Event Intensity 
(%) 

Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
due to Hazard 
Event Intensity 

(%) 

Hazard 
Event 

Intensity 
Thresholds 

(in/hr.) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less  

Probability of 
Experiencing 
This Hazard 
Event Level 

(%) 

Performance Measure Impact  PMIF 
Target 
Value 

(percent 
change) 

Impact 
Value  

Thresholds 
(percent 
change)  

Percent 
Change in 

Impact 
Value from 

Target 
Value (%) 

Probability of 
Experiencing 
Impact Value 
or Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

Low 
Hazard    

(0.01-0.19) 
99.40% 64.79% 10% 

-40.00% -500.00% 3.41% 3.41% 

11.99% 7.3% 

-20.00% -300.00% 5.68% 2.27% 
-15.00% -250.00% 6.82% 1.14% 
-10.00% -200.00% 6.82% 0.00% 
-5.00% -150.00% 14.77% 7.95% 
-1.00% -110.00% 17.05% 2.27% 
0.00% -100.00% 20.45% 3.41% 
0.50% -95.00% 23.86% 3.41% 
1.00% -90.00% 23.86% 0.00% 
1.50% -85.00% 27.27% 3.41% 
2.00% -80.00% 29.55% 2.27% 
2.50% -75.00% 30.68% 1.14% 
5.00% -50.00% 34.09% 3.41% 
7.50% -25.00% 45.45% 11.36% 

10.00% 0.00% 50.00% 4.55% 
15.00% 50.00% 64.77% 14.77% 
20.00% 100.00% 71.59% 6.82% 
25.00% 150.00% 84.09% 12.50% 
30.00% 200.00% 93.18% 9.09% 
35.00% 250.00% 97.73% 4.55% 
40.00% 300.00% 98.86% 1.14% 
45.00% 350.00% 100.00% 1.14% 
50.00% 400.00% 100.00% 0.00% 
55.00% 450.00% 100.00% 0.00% 
60.00% 500.00% 100.00% 0.00% 
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Table 24: Continue 

Hazard Event: Hourly Precipitation (in/hr.) Performance Measure: Hourly Percent Change in Traffic Capacity Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
for Hazard 

Event Intensity 
(%) 

Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
due to Hazard 
Event Intensity 

(%) 

Hazard 
Event 

Intensity 
Thresholds 

(in/hr.) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less  

Probability of 
Experiencing 
This Hazard 
Event Level 

(%) 

Performance Measure Impact  PMIF 
Target 
Value 

(percent 
change) 

Impact 
Value  

Thresholds 
(percent 
change)  

Percent 
Change in 

Impact 
Value from 

Target 
Value (%) 

Probability of 
Experiencing 
Impact Value 
or Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

Typical 
Hazard  

(0.20-3.99) 
100.00% 0.60% 10% 

-40.00% -500.00% 3.60% 3.60% 

-77.57 7.3% 

-20.00% -300.00% 16.22% 12.61% 
-15.00% -250.00% 23.42% 7.21% 
-10.00% -200.00% 32.43% 9.01% 
-5.00% -150.00% 40.54% 8.11% 
-1.00% -110.00% 44.14% 3.60% 
0.00% -100.00% 46.85% 2.70% 
0.50% -95.00% 48.65% 1.80% 
1.00% -90.00% 48.65% 0.00% 
1.50% -85.00% 48.65% 0.00% 
2.00% -80.00% 49.55% 0.90% 
2.50% -75.00% 50.45% 0.90% 
5.00% -50.00% 55.86% 5.41% 
7.50% -25.00% 60.36% 4.50% 

10.00% 0.00% 67.57% 7.21% 
15.00% 50.00% 75.68% 8.11% 
20.00% 100.00% 90.09% 14.41% 
25.00% 150.00% 91.89% 1.80% 
30.00% 200.00% 95.50% 3.60% 
35.00% 250.00% 99.10% 3.60% 
40.00% 300.00% 100.00% 0.90% 
45.00% 350.00% 100.00% 0.00% 
50.00% 400.00% 100.00% 0.00% 
55.00% 450.00% 100.00% 0.00% 
60.00% 500.00% 100.00% 0.00% 
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Table 24: Continue 

Hazard Event: Hourly Precipitation (in/hr.) Performance Measure: Hourly Percent Change in Traffic Capacity Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
for Hazard 

Event Intensity 
(%) 

Expected 
Percent Change 
in Performance 
Measure from 
Target Value 
due to Hazard 
Event Intensity 

(%) 

Hazard 
Event 

Intensity 
Thresholds 

(in/hr.) 

Probability of 
Experiencing 
This Hazard 

Event Intensity 
or Less  

Probability of 
Experiencing 
This Hazard 
Event Level 

(%) 

Performance Measure Impact  PMIF 
Target 
Value 

(percent 
change) 

Impact 
Value  

Thresholds 
(percent 
change)  

Percent 
Change in 

Impact 
Value from 

Target 
Value (%) 

Probability of 
Experiencing 
Impact Value 
or Less (%) 

Probability of 
Experiencing 
This Impact 
Value (%) 

Extreme 
Hazard  

(> = 4.00) 
100.00% 0.00% 10% 

-40.00% -500.00% 0.00% 0.00% 

19.41% 7.3% 

-20.00% -300.00% 0.00% 0.00% 
-15.00% -250.00% 0.00% 0.00% 
-10.00% -200.00% 0.00% 0.00% 
-5.00% -150.00% 17.65% 17.65% 
-1.00% -110.00% 29.41% 11.76% 
0.00% -100.00% 35.29% 5.88% 
0.50% -95.00% 35.29% 0.00% 
1.00% -90.00% 35.29% 0.00% 
1.50% -85.00% 35.29% 0.00% 
2.00% -80.00% 35.29% 0.00% 
2.50% -75.00% 35.29% 0.00% 
5.00% -50.00% 35.29% 0.00% 
7.50% -25.00% 35.29% 0.00% 

10.00% 0.00% 41.18% 5.88% 
15.00% 50.00% 52.94% 11.76% 
20.00% 100.00% 76.47% 23.53% 
25.00% 150.00% 100.00% 23.53% 
30.00% 200.00% 100.00% 0.00% 
35.00% 250.00% 100.00% 0.00% 
40.00% 300.00% 100.00% 0.00% 
45.00% 350.00% 100.00% 0.00% 
50.00% 400.00% 100.00% 0.00% 
55.00% 450.00% 100.00% 0.00% 
60.00% 500.00% 100.00% 0.00% 
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Table 24 shows an example of the resilience score calculation for Morning Peak 

Weekdays in Spring on Interstate Roads and how every step of the PREP Framework is 

integrated into the final score calculation. It should be noted that for the No Hazard event 

intensity, the probability of experiencing an impact value is zero because there is no change in 

traffic volume on this hazard condition. However, during the Low and Typical hazard event 

intensity, the probability of experiencing an impact value is higher than zero for the range of 

impact value thresholds. Finally, for the Extreme hazard event intensity, while there are 

possibilities of different impact values, the probability of experiencing this hazard event is zero, 

based on the climate model projections. 

The resilience score indicates that throughout the planning horizon (2021 – 2029) in the 

interstate roads in Mobile, AL, and considering a target value of 10% change in traffic volume 

during the weekday morning peak (6 – 9 am) in spring, the traffic volume is expected to operate 

7.3% above the available capacity of the network. This means that the interstate network is not 

resilient to withstand, absorb, and recover from the hazard event intensities indicated in Table 

24. 

Table 25 summarizes the resilience score for remaining scenarios. These scenarios are 

based on three characteristics: day of the week, season of the year, and road type. Values with 

positive resilience score are highlighted in red, and these generally indicate the road on that 

specific scenario operates at that percentage above the capacity of the system. Negative values 

generally indicate the road on that specific scenario operates with available capacity to 

accommodate more traffic in the system. The next paragraphs discuss the main trends observed 

in the analysis. 
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First, the results indicate that Fall and Winter months have more scores where the 

system's capacity is reached, which translates into more disruptions and failure to cope with 

hazard conditions. In these months, changes in capacity produced resilience scores above the 

system's capacity to perform within the target value of change in capacity. In these months, roads 

are more vulnerable to suffering disruption. Particularly on Principal Arterial roads, there are 

expected to be periods of operation above the system's capacity. It should also be considered that 

Fall and Winter months are associated with more precipitation in the area, particularly in the 

Fall, when commuting for school is increased. The opposite is true for Summer, where it can be 

observed that scores above the capacity of the system occur with less frequency due to school 

trips being reduced. 

Second, overall Principal Arterials produced more scenarios where the resilience score is 

above capacity compared to Interstate roads. These can be associated with growing urban traffic 

and poor traffic performance of the road network under rain conditions. In addition, this can 

serve as an opportunity to develop more details studies on the traffic conditions and performance 

on Principal Arterial roads in the City of Mobile.  

Finally, resilience scores vary based on the day of the week and the time of day. Across 

all seasons, the night-off peak score is predominantly above the system's capacity during 

Summer and Fall on both road types on Weekdays. For example, the Summer score might be 

associated with more traffic due to holiday trips. In addition, Winter scores can be associated 

with holiday trips as well. Fall scores on weekends indicate more traffic in the off-peak periods. 

These all provide evidence to help local agencies implement countermeasures such as active 

traffic demand management to help regulate traffic dynamically across different periods of time. 
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Table 26: Summary of Resilience Scores 
  

Weekdays Fridays Weekends 

Season Road Type 
Morning 

Peak 

Afternoon 

Peak 

Day 

Off-Peak 

Night 

Off-Peak 

Morning 

Peak 

Afternoon 

Peak 

Day 

Off-Peak 

Night 

Off-Peak 
Peak 

Day 

Off-Peak 

Evening 

Off-Peak 

Spring 
Interstate 7.30% -27.16% -18.04% -13.41% 47.06% -5.27% -91.73% 11.49% -51.91% -3.98% -66.80% 

Principal Arterial -7.88% -58.91% 2.72% -17.08% -42.37% -36.63% 1.40% 58.42% -82.36% -19.51% -73.24% 

Summer 
Interstate -22.37% 6.64% -29.77% 9.35% -17.18% 46.02% -49.59% -146.86% -31.04% -39.06% -19.16% 

Principal Arterial -37.25% -25.14% -30.92% 4.47% -86.75% 12.17% -6.18% -122.27% -65.39% -64.77% -4.77% 

Fall 
Interstate -5.16% 75.71% -14.98% 13.09% -9.76% -59.91% -35.95% -56.95% -21.08% -24.81% 23.24% 

Principal Arterial -15.88% 21.34% 6.16% 13.60% -43.81% -162.97% 0.22% -49.90% 6.74% 30.95% 34.53% 

Winter 
Interstate 18.15% -51.55% -55.61% -2.70% -20.71% -39.83% 21.74% 146.43% -17.81% -20.06% -3.05% 

Principal Arterial 31.56% -5.67% -49.66% -16.19% -15.00% -40.66% 16.80% 116.78% 7.91% 43.76% 1.05% 
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5.5 Conclusions 

This chapter demonstrated the implementation of the PREP Framework of traffic 

operations resilience to precipitation. More specifically, this chapter implemented the PREP 

Framework for quantifying the resilience of the interstate and principal arterial roads in the urban 

area of Mobile, AL. While implementing the PREP Framework, this chapter identified hazard 

event intensity thresholds using historical hourly precipitation volumes from 2015 to 2020 in 

Mobile, AL. It then led to the use of the Canadian Regional Climate Model (CanRCM4) second 

generation Canadian Earth System Model (CanESM2) to project the precipitation in the area of 

study from 2021 to 2029. Results indicated a reduction in the probability of days without hazard 

(0.00 in/hr.) and a reduction in the precipitation intensity. Then HPFs were developed to quantify 

future probabilities of hazard event intensities occurring in the study area. A review of resilience 

performance measures has been conducted, and a list of comprehensive measures was provided 

in this chapter. Data from ALDOT was used to estimate percent changes in capacity for different 

peak and off-peak periods, days of the week, and seasons. This allows for developing PMIF to 

estimate the probability of impact value due to a given hazard event intensity. Finally, the PREP 

Framework resilience score was calculated for the combination of different road types, seasons, 

days of the week, and periods of the day.  

Data analysis of the traffic volumes during hazard and no-hazard conditions was 

completed and documented in this chapter. Analysis of percent change in traffic volumes under 

hazard conditions compared to no hazard is, to the best knowledge of this dissertation, the first 

attend to quantify traffic volume change under precipitation events in Mobile, AL. The results of 

this analysis can benefit transportation agencies in the area to conduct planning and design that 

consider these changes in traffic capacity. The results are mixed as interstate roads have more 
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instances where traffic volume means during hazard and no hazard conditions were statistically 

different, with a 95% confidence. While traffic volume means on principal arterial were mostly 

not statistically different with a 95% confidence. However, the means of traffic volume for most 

of the categories were shown to be lower under hazard conditions compared to mean volumes 

under no hazard conditions. 

 Finally, the resilience score was quantified for two road types, four seasons, and three 

different days of the week. Resilience was calculated for peak and off-peak periods. The results 

varied across seasons; for example, fall and winter have more values where traffic will operate 

above capacity. Particularly on weekdays during fall, Fridays during winter, and weekends 

during fall and winter. Summer and spring have more periods to perform with additional 

capacity to withstand, absorb, and recover from a hazard event.  The results can benefit planning 

for improvement and traffic management operations during the season with less resilience. 
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Chapter 6: Conclusion & Research Agenda 

This dissertation introduced a comprehensive and standard framework to quantify the 

resilience of transportation systems and assets to disruptions from weather events. This 

framework is presented in a twelve-step process, and it is based on transportation performance 

measures to gauge the impact of weather events on the performance of the system or asset. As 

was previously shown in Chapters 3 and 4, the PREP framework is practical, based on 

performance measures, flexible to accommodate different performance measures, and 

transferable as it can be implemented without any restrictions to different transport systems. 

However, there is still one question: how can the PREP framework support the decision-making 

process for transportation planning agencies? In addition, it would benefit the deployment of the 

PREP framework if a clear path were presented to practitioners, stakeholders, and decision-

makers. The path for implementing the PREP framework in the planning process is the subject of 

concern for this chapter. This chapter covers several potential aspects to consider around the 

implementation of the framework in practice. This chapter also highlights the future work needed 

to improve the implementation of the PREP framework. 

6.1 Incorporating the PREP Framework into the Resilience Planning Process 

The PREP framework alone would not achieve the same results compared to if it were 

considered part of a broader planning process. This means incorporating the PREP framework 

into a comprehensive planning strategy will yield more resilient infrastructure. This planning 

strategy should incorporate other activities and combine with the PREP framework’s output will 

provide planners and stakeholders with data-driven information for informed decision-making. 

This section outlines this proposed resilient planning process, describes how the PREP 
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framework can be integrated into this process, and how to unify it with the traditional 

transportation planning process ultimately. 

Transportation agencies manage several planning processes to comply with federal, state, 

and local regulations. Planning for resilient transportation infrastructure should not differ from 

the traditional planning processes. In fact, resilient planning should be designed to fit into the 

well-established transportation planning process (Figure 65). Figure 1 describes the traditional 

process followed by agencies when programming for future projects, investments, and 

improvements. As shown in Figure 65, this process includes several criteria and inputs that are 

considered for decisions and final planning.  

  

Figure 65: Traditional Transportation Planning Process (Retrieved from FHWA) 

Whether an agency prepares a short or long-term plan and pursues federal, state, or local 

funding, resilient planning outputs are valuable criteria for the process described in Figure 1, 
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which will yield more resilient transportation infrastructure. For example, suppose resilient 

planning is part of the vision and goals of the agency; resilient outputs will be included for 

evaluation and prioritization, just as other criteria are included, such as safety, equity, economy, 

etc. Consequently, agencies assure transportation plans that implement strategies to mitigate the 

effects of weather and climate change in transportation systems or assets, adapt existing 

infrastructure systems and assets to the effects of weather and climate change, or develop 

alternative systems and assets. 

In order to provide agencies with data-driven input for the evaluation and prioritization of 

strategies, it becomes necessary to develop a comprehensive resilient planning process first. This 

dissertation proposed a process to assess the resiliency of transportation infrastructure using the 

PREP framework, then using the results to develop strategies that feed the traditional 

transportation planning process. 

This dissertation proposed a resilient planning process as described in Figure 66. This 

process is designed to (a) integrate the PREP framework into the decision-making process for 

resilient planning and (b) provide feedback to the traditional planning process.  

 

 

Figure 66: Proposed Resilient Planning Process  
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The first step in this process is for a transportation agency to familiarize and understand 

the future weather and climate conditions in their planning area and surrounding and how these 

future conditions will impact their transportation infrastructure and operations. For example, 

looking back at Chapter 4 of this dissertation, airports such as Birmingham and Miami can use 

tools and resources such as future floodplains, climate models, and sea-level rise models to 

understand the risk that these hazards will pose in the future. The goal here is to educate the 

agency and gain awareness of what future conditions will look like. The following step proposed 

by this dissertation is to conduct a wider vulnerability assessment of the transportation 

infrastructure in the planning area to determine where to focus the resilience analysis. For 

example, The City of Mobile will identify which multimodal infrastructure will be more 

vulnerable to the effects of climate change that have been identified previously. In this 

dissertation, only traffic operations are studied in this area; however, a thorough vulnerability 

assessment will identify if the priority lies on the roadways (traffic, pavement, stormwater, 

drainage, etc.), ports, airports, or transit operations for example. The goal is to narrow the 

analysis using tools such as FHWA VAST Tool and focus the resilience analysis only on 

systems and assets that are more vulnerable to disruption. It is also essential to weigh the 

system's criticality in the local, state, and national transportation network. In addition, this 

scoring or ranking of critical infrastructure can be used to prioritize assets and systems for 

further analysis.  

The following step in the process is to quantify the resilience score of the transportation 

systems or assets that have been identified as at greater risk and which disruption is more critical. 

In this step of the process is where the PREP framework is deployed as a tool to assess the 

resilience of these selected systems or assets. While implementing the PREP framework, 
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agencies should consider the availability of performance measure data to complete the analysis; 

ideally, the more data available, the more insights the analysis will provide. It should also be 

noted that in some instances, one transportation system or asset will be identified to be at greater 

risk of disruption; however, the PREP framework results can reveal that the performance of the 

system or asset is acceptable and can cope with the hazard event. In such situations, it will be a 

decision of the agency to reconsider a different asset based on the ranking of vulnerability or 

simply continue with analysis even when the system is resilient.  

Once a decision has been made based on the results of the PREP framework, the agency 

will prepare and recommend strategies to improve the resilience of the transportation system or 

asset. These strategies can also be reviewed as part of the PREP framework, as described in 

Chapter 3 Section 3.1.1; the fifth and last phase of the framework handles improvements in the 

transportation infrastructure to enhance the resilience score. Such analysis and its results will be 

used to outline strategies to mitigate, adapt or re-design the infrastructure to yield more 

resilience. Finally, these strategies will be used as feedback in the traditional planning process, 

particularly during the evaluation and prioritization of strategies.  

Finally, this dissertation suggests using the process outlined in this section as additional 

input to update the weighting process during the evaluation and prioritization of strategies that 

are recommended for investment in the traditional planning process. Weighting resilience and 

climate change impact against the traditional goals and vision of the agency should align with 

other criteria such as safety, equity, social development, economic development, and 

sustainability. The resilient planning process outlined in Figure 66 generates strategies that 

should include traditional tasks such as identifying scope, process, and participants, local 
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involvement, and public participation in the selection of planning strategies, and outline process 

for continuous performance assessment and improvement. 

The process outlined in Figure 66 is designed to provide additional inputs to the 

traditional transportation planning process described in Figure 65. These inputs are performance-

based and data-driven, providing agencies with identified assets and systems with low resilience 

and strategies to improve them. The following section will discuss other efforts that should be 

considered in future works in order to improve the implementation of the PREP framework. 

6.2 PREP Framework Future Research Work 

This section of Chapter 6 shifts the discussion to identifying the opportunities for 

improving the process outlined in the PREP framework. As discussed throughout this 

dissertation, a key element of the PREP framework is the use of transportation performance 

measures. Table 5, Table 9, and Table 15 provide a summary of selected performance measures 

that transportation agencies use during the implementation of the PREP framework. However, 

this dissertation cannot provide an example application for each of those performance measures, 

and it is not in the scope of this dissertation to explore in detail each of them. Nevertheless, this 

dissertation aims to provide agencies with a research agenda to identify, collect, and assess 

transportation resilience performance measures for developing PMIFs for the application of the 

PREP framework.  

First, transportation agencies should look at their in-house asset management programs 

that collect data on different systems and assets, such as pavement, traffic, transit service, and 

airport operations. There are a number of programs that require agencies to collect and publish 

data on the national transportation system, including the National Highway System (NHS) 
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congestion, FHWA Long-Term Pavement Performance (LTPP), or the Bureau of Transportation 

Statistics (BTS). These and any other local program are excellent sources of data to identify 

performance measures. As noted in Chapter 3, Section 3.1.1, performance measures should have 

a specific goal or objective from which they are derived and include data requirements (unit, 

metric, frequency of measurement, data source) and calculation methodology.  

For example, transportation agencies should be looking at resilience performance 

measures that describe infrastructure and service quality in roadway operations. Pavement 

infrastructure is essential to maintain efficient and safe movement; however, it is also impacted 

by the effect of climate conditions. Therefore, a good starting point for future application of the 

PREP framework should begin with agencies collecting pavement infrastructure performance 

data such as roughness, rut depth, and faulting. This data can be collected without causing 

disruption to the traffic flow and operation and without creating work zones. In fact, currently, 

technology allows collecting data continuously from a vehicle adapted with sensors and radars. 

Pavement data collected is transferred for storage and analysis, and finally, it can be used by 

agencies for developing PMIFs.  

In addition, another area for future work and research around the application of the PREP 

framework is the use of modeling and simulation to obtain data that serve as inputs for 

developing performance measures. Continuing with the discussion about pavements, the 

mechanistic-empirical based pavement design can be used to determine pavement performance 

from the pavement structure response (stress, strain, or deflections), and this can be achieved 

using the AASHTOWare Pavement ME Design software. In addition, this type of pavement 

analysis included climate variables that could be taken from future climate models. 
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The implementation of sensitivity analysis is another opportunity in the future of the 

PREP framework application. This sensitivity analysis can be used to study multiple hazard 

events intensities, compared multiple HPFs from different climate model outputs. Sensitivity 

analysis will benefit the application of the PREP framework because planning agencies will 

gained better understanding of the conditions that yield better resilience results. 

For airports, the application of the PREP framework can begin by increasing data 

collection around systems such as passenger parking, access to the airport, airport tarmac and 

taxiway pavement structures. Airport quality of service is already well documented in the BTS 

website. However, data around passenger parking and access to the airport is yet to be in 

research agendas. However, these performance measures can provide significant insight into the 

airport’s resilience to weather events. These performance measures are critical to the operations 

of an airport. For example, in inclement weather, parking can be overwhelming and cause 

significant delays in accessing and egressing the airport. Similarly, multimodal transportation 

such as trains, transit, and shuttles can be affected by weather and create passenger and airport 

employer delays. In addition, the impact on modes of airport access can cause a cascading event 

that will trigger losses in performance capacity in the airport’s operations. 

This dissertation proposed two approaches to guide airport management in identifying, 

collecting, and using airport performance measures to expand the application of the PREP 

framework. First, modeling of access to airports can help understand how passengers and 

employers gain access to the airport, performance measures such as traffic volumes, parking 

capacities, the volume of transit users, and transit frequency. By developing these new 

performance measures and building new PMIFs, airports management and transportation 

agencies are reducing the dependence of private vehicles and providing multimodal opportunities 
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to access and egress the airport even during hazardous conditions. Second, collecting pavement 

performance and drainage data to develop PMIFs that can assess the pavement and structure 

capacity to cope with flooding, icing conditions, and other weather events that can disrupt the 

safe movement of aircraft.   

Nevertheless, in many instances, transportation agencies might find themselves in a 

situation where existing data is not readily available or simply a performance measure is not 

being collected for their planning area. This should not be considered a deterrent to 

implementing the PREP framework, and the resilient planning process outlined previously; 

instead, these types of situations should be taken as opportunities to create the necessary 

programs to collect the required data. In fact, during the same planning process, these are 

strategies to incorporate for future projects that will include the resources and capabilities to 

collect performance measure data. 

Finally, a potential area for future work around the application of the PREP framework is 

the use of composite indicators that can be used to identify the factors that are more important in 

the final resilience score. For example, if multiple performance measures are included 

simultaneously, this approach will allow the planning agency to identify the performance 

measures that are more critical. This can be achieved using Montecarlo simulations, for example.  

6.3 Future Work 

So far, this dissertation has presented a comprehensive process, tools, applications, and 

recommendations for transportation agencies to bridge the gap in the analysis of transportation 

resilience to weather and climate change and how to improve the planning and decision-making 
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process. However, there are still tasks that can be studied in more detail to gain better insight and 

understanding of the impact of climate change on transportation infrastructure. 

First, there should be increased research in the application of climate model projections 

and outputs for transportation infrastructure vulnerability and risk analysis. The issue arises on 

the lack of consensus on model selection, time scale selection, and model resolution. Although 

the climate scientist community has made significant improvements, there is still a gap in how to 

obtain the most from these models, particularly for the application of resilience of transport 

infrastructure. Second is the need to collect transportation performance data using technology 

advantages such as probe data or Artificial Intelligence (AI). Most importantly is to provide 

agencies of different sizes with the resources to access this data. Research efforts should also 

include the demonstration of the PREP framework with multiple performance measures to assess 

the effectiveness and gain insights that can lead to standard performance measure uses for the 

application of the PREP framework. 

Future work will also include the development of a user interface that can facilitate the 

resilience analysis among planning agencies. In order to achieve this, it will be required to 

develop a comprehensive database of different weather data, climate models, and alternatively 

allow the user to input custom performance measure data. The application can be developed in 

Python or any other computer programming language and can be uploaded onto a website for 

agencies to access and calculate custom resilience scores. This user interface will greatly 

improve the exposure of the PREP framework to different agencies, and will be also an 

opportunity to improved it based on user feedback.  
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