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Abstract 

 

 

 Misoprostol, a synthetic prostaglandin E1 (PGE1) analogue, is administered to treat 

glandular gastric ulcers in horses and may possess anti-inflammatory properties. However, 

misoprostol’s multi-dose pharmacokinetics and effects on the fecal microbiome in horses require 

investigation. Our objectives were to compare the pharmacokinetics between repeated doses and 

to characterize changes in the fecal microbiome after oral and rectal multi-dose misoprostol 

administration in 6 healthy university-owned geldings. In a randomized, cross-over study, 

misoprostol (5 g/kg) was administered orally or rectally every 8 hours for 10 doses, or not 

administered (control), with a 21-day washout between treatments. Concentration-versus-time 

data for dose 1 and dose 10 were subject to non-compartmental analysis. For microbiota analysis 

using 16sRNA amplicon sequencing, manure was collected at -7 days, immediately prior to dose 

1, then 6 hours, 7 days, and 14 days after dose 10, with time-matched points in controls. 

Repeated dosing related differences in pharmacokinetic parameters were not detected for either 

administration route. Area under the concentration-versus-time curve was greater (p < 0.04) after 

oral versus rectal administration. Relative bioavailability of rectal administration was 4-86% that 

of oral administration. Microbial composition, richness, and β-diversity differed among subjects 

(p < 0.001 all) while only composition differed between treatments (p ≤ 0.01). Richness was 

decreased 6 hours after dose 10 and at the control-matched timepoint (p = 0.0109) in all subjects. 

No other differences for timepoints, treatments, or their interactions were observed. Overall, 

differences in systemic exposure were associated with route of administration, but were not 

detected after repeated administration of misoprostol. Differences in microbiota parameters were 

primarily associated with inter-individual variation and management rather than misoprostol 

administration. 
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Chapter 1: Literature Review 

 

 

Section 1: Introduction and Justification 

 

 Endotoxemia, defined as the presence of endotoxin (lipopolysaccharide, LPS) in the 

blood after proliferation or death of Gram-negative bacteria,1-6 and/or bacteremia, defined as 

bacteria in the blood, can lead to the release of inflammatory mediators. In horses, these 

inflammatory mediators can trigger a life-threatening state called systemic inflammatory 

response syndrome (SIRS).1,2,4,5 This condition is associated with multiple diseases in horses, 

particularly gastrointestinal diseases.1,3,4 Significant increases in morbidity and mortality are 

associated with SIRS, because this condition often results in life-threatening secondary 

conditions.1,3,5,6 

Preventing or reducing inflammation is essential for managing SIRS. Unfortunately, 

treatment options for horses are limited, with flunixin meglumine and polymyxin B representing 

the mainstays of therapy.1,4,5 Flunixin meglumine is a non-selective cyclooxygenase (COX) 

inhibitor that inhibits prostanoid synthesis to provide anti-inflammatory and analgesic effects.7 

While flunixin meglumine improves some consequences of SIRS, it does not inhibit production 

of key inflammatory mediators,1,5,8,9 and  is associated with adverse effects including 

gastrointestinal ulceration and nephrotoxicity.7,9,10 Polymyxin B, a cationic polypeptide 

antibiotic, binds LPS and prevents the inflammatory cascade.4,5,8,11 However, since polymyxin B 

only targets free LPS, its anti-inflammatory effects are limited once LPS initiates the 

inflammatory cascade. While these medications are useful in some regards, there remains a clear 

need to identify alternative or complementary medications with effective in vivo anti-

inflammatory activity. 
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Misoprostol, a synthetic prostaglandin E1 (PGE1) analogue and E2, E3, and E4 prostanoid 

receptor subtype agonist, is approved in humans for the prevention of gastric and duodenal injury 

related to nonsteroidal anti-inflammatory drug (NSAID) use,12 and is recommended in horses for 

treatment of equine gastric glandular disease (EGGD) and NSAID-induced colitis.13,14 In 

addition to its recommended uses, misoprostol may also hold promise as a potential anti-

inflammatory medication for the management of SIRS in horses. While numerous in vitro and ex 

vivo studies have described the anti-inflammatory effects of misoprostol through cytokine and 

cyclic adenosine monophosphate (c-AMP)-mediated pathways,15-19 its anti-inflammatory 

potential in horses is less clear. A recent study investigating the administration of single dose 

misoprostol orally or rectally in healthy adult horses challenged with LPS identified appreciable 

changes in select inflammatory cytokines.20 A critical next step in the evaluation of misoprostol 

involves obtaining clinically useful multi-dose pharmacokinetic data in order to make more 

informed decisions regarding misoprostol dosing regimens. Additionally, because the drug has 

the potential to alter gastrointestinal physiology, misoprostol’s potential to affect the 

gastrointestinal microbiota should be considered and further evaluated. 
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Section 2: Misoprostol Pharmacokinetics 

Subsection 2a: Misoprostol Pharmacokinetics in Humans 

 The pharmacokinetics of misoprostol have been described in humans for a variety of 

routes of administration, including oral, sublingual, buccal, transvaginal, and transrectal, with 

pharmacokinetic profiles varying widely based on the route.21-24 Following administration, 

misoprostol is quickly de-esterified to its active metabolite, misoprostol free acid (MFA).21,22 

MFA has varying bioavailability depending on the route of administration and degree of protein-

binding. MFA is typically 81-89% protein-bound, with the majority of protein-binding occurring 

with albumin. 

 Following oral administration in humans, misoprostol appears to be rapidly absorbed 

with a maximum plasma concentration (Cmax) occurring within 12-30 minutes and a reported 

half-life of 20-40 minutes. However, it appears that a fed versus fasted state affects the 

pharmacokinetic properties of orally administered misoprostol in people. In particular, the rate of 

absorption and bioavailability can decrease in fed people as compared to fasted people.25  

  The route of administration also has an impact on misoprostol pharmacokinetics in 

humans. One study revealed that sublingual administration had higher bioavailability as 

compared to oral and transvaginal administration.23 Additional studies demonstrated that oral 

administration had a faster time to Cmax (Tmax) and shorter disappearance half-life (T1/2) as 

compared to trans-rectal administration.24 Although transrectal and transvaginal administration 

yielded longer Tmax and T1/2 compared to other routes, they did not lead to a significant change in 

bioavailability compared to oral administration.21,22 
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Subsections 2b: Misoprostol Pharmacokinetics in Horses 

Single dose pharmacokinetics of misoprostol at a dose of 5 µg/kg have been described 

after oral administration (per os, PO) in corn oil in fasted horses, and after PO and rectal 

administration (per rectum, PR) in water in fed and fasted healthy horses.15,26 The dose of 5 

µg/kg is extrapolated from human misoprostol pharmacokinetic studies, in which adult subjects 

are most often administered 400 µg (total dose, not per kilogram).23,27 The dose of 5 µg/kg has 

also been commonly accepted to be effective for treating certain gastrointestinal conditions in 

horses when given two to three times per day.14,28 Comparisons between the single dose 

pharmacokinetic studies in healthy horses are presented in Table 1. The reported Cmax in fasted 

horses receiving misoprostol PO in corn oil was much lower than in fasted horses receiving 

misoprostol PO in water.15,26 Additionally, the Cmax in both fasted and non-fasted horses 

receiving misoprostol PO in water was much lower than in horses receiving misoprostol PR in 

water.26 Tmax values reported in horses administered misoprostol PO in water and corn oil were 

similar, while horses administered misoprostol PR in water had a significantly shorter Tmax.
15,26 

Finally, when evaluating area under the concentration-versus-time curve (AUC), values were 

highest in fasted horses administered misoprostol PO in water, followed by fed horses 

administered misoprostol PO in water, and then lowest in fasted horses administered misoprostol 

PO in corn oil and horses administered misoprostol PR in water.15,26 While pharmacokinetic 

profiles vary between routes of administration and carrier vehicle, reported plasma 

concentrations for both routes and vehicles were comparable or superior to those reported in 

humans.  

Overall, the presence of food in the gastrointestinal tract appears to have a strong 

influence on the absorption and pharmacokinetic profile of orally administered misoprostol. 
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Fasted horses receiving the drug in water demonstrated a greater Cmax, T1/2, and AUC as 

compared to fed horses receiving the drug in water or even fasted horses receiving the drug in 

corn oil.15,26 This suggests that the presence of food (such as hay or corn oil) reduces the 

bioavailability of orally administered misoprostol. This could be due to alterations in the gastric 

emptying/gastrointestinal motility, drug binding to food, and/or changes in physiologic factors 

such as gastrointestinal pH between the fasted and fed states, which also happens with other 

medications such as gastroprotectants, anthelminthics, antimicrobials, and NSAIDs.29-33 

A more recent study evaluated the pharmacokinetics of a single 5 µg/kg dose of 

misoprostol administered to fasted horses PO in water and horses PR in water that were 

experimentally challenged with endotoxin (LPS) at a 20 ng/kg dose. Select pharmacokinetic 

parameters as compared to the earlier single-dose study are presented in Table 2. Similar 

differences in parameters occurred between PO and PR administration in both studies. However, 

Cmax concentrations and AUC were interestingly increased in the horses experimentally 

challenged with LPS that were receiving misoprostol PO as compared to healthy horses 

receiving misoprostol PO, suggesting that inflammation may also influence oral drug 

absorption.20,26  

In equine clinical practice, misoprostol is typically administered for several days to 

weeks at a suggested dose of 5 μg/kg orally or rectally every 8 to 12 hours.14 To date, the 

pharmacokinetics of multi-dose misoprostol have yet to be described in the horse. Since the 

pharmacokinetic behavior of a drug can change with repeated administration, describing multi-

dose pharmacokinetics of misoprostol administered orally and rectally is an essential step for 

optimizing misoprostol administration protocols in horses.  
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 Martin et al. EVJ 2019 Lopp et al. AJVR 2019 

Route/Vehicle PO-Fasted 

Water + Corn Syrup 

PO-Fasted 

Water 

PO-Fed 

Water 

PR 

Water 

Tmax (hr) 0.39 ± 0.04 0.25 

(0.17-0.75) 

0.30 

(0.08-1.5) 

0.08 

Cmax (pg/mL) 290 ± 70 655 ± 259 352 ± 109 967 ± 492 

AUC0→ 

(pg*hr/mL) 

400 ± 120 2,217 ± 955 1358 ± 891 385 ± 153 

t1/2 (hr) 0.67 ± 0.20 4.13 ± 3.4 2.53 ± 1.73 0.53 ± 0.27 

Table 1: Comparison of select pharmacokinetic parameters from two investigations of single-

dose misoprostol administration to healthy horses by a variety of delivery strategies.15,26 

 

 

 Kimura et al. AJVR 2022 Lopp et al. AJVR 2019 

 PO-Fasted PR PO-Fasted PR 

Tmax (min) 25 (10-45) 3 (3-5) 21 (10-45) 5 

Cmax (pg/mL) 5209 ± 3487 854 ± 855 655 ± 259 967 ± 492 

AUC0→ 

(hr*pg/mL) 

4999 ± 3665 179 ± 155 2217 ± 955 385 ± 153 

t1/2 (min) 40 ± 21 9 ± 7 170 ± 129 21 ± 24 

Table 2: Comparison of select pharmacokinetic parameters from two investigations of single-

dose misoprostol administration to healthy horses and LPS-challenged horses by a variety of 

delivery strategies.20,26 
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Section 3: The Equine Gastrointestinal Microbiome 

 In order to review and comprehend previous publications relating to the equine 

gastrointestinal microbiome, a general understanding of some common microbial ecology 

concepts is vital. Appendix I reviews the definitions of a few of the most important terms 

utilized in the literature and throughout the remainder of this work. 

The gastrointestinal microbiota and microbiome have been previously recognized for 

their importance in the breakdown and utilization of complex nutrients as well as protection from 

overgrowth of pathogenic organisms. As hindgut fermenters, horses have a unique digestive 

tract, which relies on anaerobic fermentation within the large intestine. Although polymicrobial 

populations reside throughout the entire gastrointestinal tract, the complex microbial community 

responsible for the aforementioned fermentation primarily exists within the cecum and large 

colon. The bacterial population of the large intestines is thought to be most important in 

maintaining the homeostasis of this environment.34 Particularly important in the horse, fibrolytic 

bacteria breakdown complex carbohydrates to produce short-chain fatty acids that supply most of 

the animal’s energy requirements.35,36  

 It is important to glean an understanding of the normal, healthy microbiota in horses, in 

order to allow for assessment of the abnormal. However, it is important to realize that this 

“normal” population can have marked inter-horse variation. Additionally, a wide variety of 

factors such as geographic region, nutrition, breed, age, and management, can influence the 

composition of the microbiota in healthy horses. As a result, a generalized assessment of the 

microbial population is required. 

 Similar to other mammals, Firmicutes is the primary bacterial phylum noted in the distal 

gastrointestinal tract of horses. In the literature, some studies show Bacteroidetes as the second 
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most abundant phylum,37-40 while others show Verrucomicrobia,41-43 as depicted in Figure 1. 

Shifts in Firmicutes and Bacteroidetes populations have been observed in the literature in 

response to certain factors such as nutritional changes, housing and management changes, 

various gastrointestinal pathologies, and stress-related factors like transportation, although these 

shifts are often inconsistent.44  

 As evaluation of phyla only provides a high-level overview of the microbiota, concurrent 

evaluation of lower taxonomic levels should also take place. Decreases in Lachnospiraceae, 

Ruminococcaceae, and other butyrate-producing bacteria (important contributors to intestinal 

homeostasis) or increases in Lactobacillus and Streptococcus (lactic acid-producing bacteria), 

have been considered undesirable changes in the microbiota because they are often associated 

with gastrointestinal dysbiosis. Additionally, overall decreases in microbial richness and/or 

diversity are also considered an undesirable change.44  

As with many species, the intestinal microbial population of horses is influenced by many 

factors. The membership and structure, especially at lower taxonomic levels (e.g., species and 

genus) can be affected by age, diet, environment (geographic location, climate, and season), 

management (continuous vs. meal feeding, fasting, exercise, and transportation), medication 

administration, and multiple disease states.34,44 For the purposes of this review, the effects of 

diet, gastrointestinal disease, and drug administration will be discussed. 
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Figure 1: Relative abundance of the main phyla reported in feces of healthy horses in numerous 

studies. Reprinted from Costa & Weese 2018,34 with permission from Elsevier. 
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Subsection 3a: Diet and the Microbiome 

 Evolutionarily, horses are adapted to graze continuously, allowing for a continuous intake 

of complex carbohydrates as roughage. However, active performance horses often require 

supplementation with more readily digestible carbohydrates. As expected, marked differences 

are reported in the microbiota of horses on forage-based diets versus carbohydrate-supplemented 

diets.45-49 Forage based, less nutrient dense diets are reported to increase microbial diversity and 

stability.49,50 In contrast, the high-nutrient availability of carbohydrate supplemented diets is 

reported to reduce microbial diversity.48-50 Ecological theories suggest this decreased diversity 

leads to a microbial community that is less stable and more prone to gastrointestinal dysbiosis.51 

It is proposed that this is due to a decrease in the proportion of fibrolytic bacteria (genus 

Fibrobacter and family Ruminococcaceae), where lactic-acid producing bacteria (group 

Bacillus-Lactobacillus-Streptococcus) were increased in horses on a concentrate supplemented 

diet.45,48,52-54 Streptococci are lactic-acid producing bacteria associated with hind-gut 

acidosis.53,54 It seems that in horses fed high carbohydrate diets, a large amount of those starches 

pass by enzymatic digestion in the foregut.55 When those starches reach the hindgut, they are 

fermented and increased volumes of lactic acid are produced.56 The resulting drop in pH is 

thought to create conditions unfavorable for fibrolytic bacteria, representing a risk factor for 

disease.56  

 In addition to the inclusion of starch in the diet, it also appears that the source of starch 

has an effect on changes in the microbial population.57 For instance, in one study, 

supplementation of oats in the diet resulted in increased Lactobacilli and decreased Gram-

positive cocci, while supplementation with corn reversed these effects.58 This may be explained 

by increased digestibility of oats in the foregut as compared to corn.59 It could also be attributed 
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to other properties of these starches, including differences in amylose/amylopectin ratio, starch 

granule morphology, presence of other nonstarch components in oats (beta-glucans in oats have 

prebiotic effect), or others.60 Finally, abrupt changes in the diet are also strongly associated with 

gastrointestinal microbial disturbance in the horse.47,61-64 
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Subsection 3b: Gastrointestinal Disease and the Microbiome 

 Numerous diseases have been associated with alterations in the equine gastrointestinal 

microbiota. This includes colic,65,66 acidosis, diarrhea, colitis,37,67 equine grass sickness,68,69 

equine metabolic syndrome,70 laminitis,53,54,71-73 asthma,74 and parasitism.75,76 However, with 

many of these findings, it is important to note that the differentiation of cause versus effect can 

be difficult, if not impossible, given how difficult it is to control sporadic disease for study 

conditions. This means that we cannot tell which shapes the other, disease or altered microbiota. 

It is possible and likely that each shapes the other in a cycle.  

As gastrointestinal disease is a major contributor to morbidity and mortality in horses, the 

effect of both colic and colitis on the fecal microbiome will be the focus of this review.  

Despite the importance of colic, and the expectation that the microbiota would experience 

marked changes with colic, few studies have been completed to evaluate this hypothesis. One 

such study reported increased Bacteroidetes and Clostridium phytofermentans in samples from 

horses experiencing non-surgical large intestinal colic versus 30-90 days post colic resolution.65 

Another study found consistently decreased Firmicutes and increased Proteobacteria in horses 

with colic, and suggested that the ratio of Firmicutes to Proteobacteria could potentially be used 

to predict colic (the higher the ratio, the less likely colic is to develop).66 Finally, in a third study, 

horses presenting for colic had reduced microbial richness and diversity compared with horses 

presenting for elective procedures. This included decreased prevalence of commensal bacteria 

including Prevotella and Lachnospiraceae, and increased pathobionts Streptococcus and 

Sphaerochaeta.77 It has been proposed that decreased ability of the microbiota to adapt to 

environmental or diet changes (such as season, weather, or forage types) may be related to 
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development of certain types of colic.78 This could explain why these changes predispose some 

but not all horses to colic. 

In cases of colitis, the recognized infectious bacterial causes include Clostridium difficile, 

Clostridium perfringens, Salmonella spp, and Neorickettsia risticii.34 Still, in many cases of 

colitis, the underling etiology remains unknown, so the role of other pathogenic bacteria as a 

cause continues to be an area that requires investigation. Despite the importance of colitis as a 

disease process in the horse, few studies have investigated this further. In one study, a decrease 

in the normally abundant Firmicutes phylum and increase in the Bacteroidetes phylum was noted 

in horses with colitis as compared to healthy horses.37 Additionally, horses with colitis had more 

Fusobacteria, but less Actinobacteria, Sprirochaetes, and Clostridia members. Another study 

reported that species richness and evenness (distribution of different bacterial species present) 

were lower in horses with diarrhea.67 Additionally, both studies discovered increased levels of 

Fusobacteria, but none in healthy horses. Further evaluation of the role of Fusobacteria in the 

microbiota of horses with and without diarrhea is warranted, as it may serve as an equine enteric 

pathogen. However, it is also possible that these Fusobacteria are just able to proliferate more 

easily in response to intestinal changes that occur with diarrhea. For instance, it has been 

proposed that increased intestinal permeability may contribute to some of the changes in the 

microbiota.79 However, the overall findings suggest colitis is likely more associated with major 

intestinal disturbances rather than to any one single, specific pathogen.37  
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Subsection 3c: Drugs and the Microbiome 

 Among the numerous external factors leading to changes in the microbiome, 

antimicrobial drug administration may have some of the most profound consequences.80 While 

treatment with antibiotics is one of the most important therapies in equine medicine, it can 

induce dysbiosis. This can lead to overgrowth of more pathogenic organisms (such as 

Clostridium difficile),81 and result in antimicrobial induced diarrhea/colitis.82-86 It is also 

proposed that changes in microbial communities can promote deterioration of the mucosal 

protective barrier.87 One study of three antibiotics administered for five days in horses revealed 

specific changes in fecal microbiota community membership (including reduced richness and 

diversity).41 The most significant effect was noted with trimethoprim sulfonamide administered 

orally, as compared to procaine penicillin and ceftiofur sodium administered intramuscularly. 

However, all drugs induced some effect. Another study demonstrated that trimethoprim 

sulfadiazine oral administration was associated with decreased cellulolytic bacteria 

concentrations and increased amylolytic bacteria.84 Similarly, a third study found horses 

administered trimethoprim sulfadiazine or ceftiofur exhibited decreased cellulolytic bacteria in 

fecal samples.86 Furthermore, it demonstrated that disruption of the microbiota was associated 

with proliferation of Salmonella and Clostridium difficile commonly associated with diarrhea, 

even after treatment with antibiotics was discontinued. A fourth study revealed that 

metronidazole administered intracecally in cannulated horses decreased alpha diversity metrics 

from both cecal and fecal samples.88 Finally, a recent study demonstrated that horses 

administered oral doxycycline experienced significant decrease of both alpha and beta 

diversity.89 Overall, antimicrobial drug administration is associated with decreased celluloytic 

bacteria, suggesting these treatments could decrease the total energy derived from forage in the 



 25 

diet.84,86 Moreover, the decline in diversity may allow for propagation of more pathogenic 

bacteria.  

 In addition to antimicrobials, NSAIDs are commonly utilized in the treatment of various 

conditions in horses. These medications have previously been associated with the development 

of gastropathy, enteropathy, or NSAID-induced colitis,9,90,91 as well as decreased recovery of the 

mucosal barrier function.92 One study evaluating the effects of therapeutic doses of 

phenylbutazone and firocoxib on the fecal microbiota revealed decreased members of the 

Firmicutes phylum, and the Lachnospiraceae, Clostridiaceae, and Ruminococcaceae families 

with both medications.91 While this demonstrates dysbiosis, the implications of these findings are 

still unknown. 

 Finally, another commonly overlooked but critical consideration is the potential of the 

gastrointestinal microbiota to modulate the bioavailability of drugs, particularly orally 

administered drugs that are absorbed in the lower gastrointestinal tract. The microbiota may 

influence drug bioavailability directly through microbial enzyme activity, or indirectly through 

changes in the gastrointestinal environment or drug transport.93 Although these effects have not 

been specifically investigated in equine medicine, their possibility should still be taken into 

consideration when evaluating the pharmacokinetics and bioavailability of medications in horses. 
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Section 4: Misoprostol and the Gastrointestinal Microbiome 

 Administration of misoprostol has the potential to alter gastrointestinal physiology 

through interactions with prostanoid receptors throughout the gastrointestinal tract. These effects 

can be beneficial with respect to the role of misoprostol in mucosal protection and repair, 15-

19,92,94  but can also result in adverse events including alterations in smooth muscle contractility, 

colonic transit time, or intestinal fluid movement leading to reported side effects of abdominal 

cramping and diarrhea.95 To date, there is limited information available regarding whether 

misoprostol-mediated effects on gastrointestinal physiology have the potential to cause 

alterations in the gastrointestinal microbiome. In mice, misoprostol improved colonic barrier 

function and promoted the recovery of microbiome homeostasis after disruption with antibiotics, 

although the exact mechanism of these benefits remains unknown.96 This could be of therapeutic 

significance in horses where gastrointestinal disease37,65,66,77,97,98 and administration of antibiotics 

or NSAIDs41,86,91,99 have the potential to create dysbiosis, if misoprostol could be prescribed to 

help restore the microbiome population. In contrast, it is possible that administration of 

misoprostol and the subsequent changes in gastrointestinal physiology previously described 

could result in enough changes to the local intestinal environment to cause dysbiosis itself. Given 

the essential role of the gastrointestinal microbiome in health and disease of horses, as well as 

the increased frequency with which misoprostol is used to treat horses with gastrointestinal 

disease, investigation into its potential to alter the gastrointestinal microbiome in horses is 

warranted. 

 

 

 



 27 

 

Section 5: Objectives and Hypotheses 

The objectives of this study were to determine the pharmacokinetics of misoprostol and 

to describe changes in the fecal microbiome after oral and rectal repeated dose misoprostol 

administration to healthy, adult horses. It was hypothesized that pharmacokinetic parameters 

would differ by route of administration, but not after repeated dose administration. Furthermore, 

it was hypothesized that changes in the composition, richness, or diversity of the fecal 

microbiome would not be observed after oral or rectal repeated dose misoprostol administration. 
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Chapter 2: Materials and Methods 

 

 

Section 1: Animals 

 Six university-owned healthy adult (13-18 years old) mixed-breed geldings, ranging in 

body weight from 468 to 609 kg, were used for the study. All horses had no history of illness or 

antimicrobial administration within the previous six months and were deemed healthy on the 

basis of physical examination findings and biochemistry panel screenings. Horses were housed 

individually in stalls for a minimum of 12 hours prior to and for the duration of each 

experimental condition. Horses were maintained on group-specific pasture prior to study onset, 

during all washout periods, and after study completion. Fresh clean water was provided ad 

libitum. Horses were offered grass hay (three flakes twice daily) and a senior concentrate mash 

(three pounds once daily) leading up to and throughout the entire study, including washout 

periods. Physical examinations were performed prior to and then every 12 hours for the duration 

of each experimental condition. Horses were monitored hourly during each experimental 

condition and daily during each washout period. All procedures were reviewed and approved by 

the Auburn University Institutional Care and Use Committee (Protocol #2020-3736). 
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Section 2: Experimental Design 

 A prospective, three treatment randomized crossover study design was used. Treatment 

order was assigned by simple randomization using a random number generator (random.org). 

Horses were administered a 5 µg/kg dose of misoprostol orally (ORAL) or rectally (RECTAL) 

every 8 hours for a total of 10 doses, or no medication (CONTROL) for the same duration, with 

a minimum 21-day washout period between each experimental condition. For the ORAL and 

RECTAL conditions, horses were instrumented with a 14-gauge over-the-needle catheter in the 

left or right jugular vein to facilitate repeated blood sample collection for the measurement of 

plasma MFA concentrations. For all conditions, manure samples were collected by manual 

evacuation of the rectum for fecal microbiome analysis. Horses were maintained on a standard 

feeding schedule throughout the study with feed provided a minimum of 5 hours prior to and 1 

hour following drug administration for the ORAL and RECTAL conditions and at time-matched 

points for the CONTROL condition. 
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Section 3: Misoprostol Administration 

 For oral administration (ORAL condition), misoprostol hydrochloride tablets 

(Greenstone®, 100 µg) were dissolved in 30 mL water, administered via oral syringe, and 

followed immediately by administration of 30 mL water through the same syringe to ensure 

delivery of the total dose. For rectal administration (RECTAL condition), manure was manually 

evacuated prior to drug administration. Misoprostol tablets were dissolved in 30 mL water, 

administered via syringe attached to a 40 cm, 18 French red rubber catheter advanced 

approximately 30 cm into the rectum, and followed immediately by infusion of 30 mL water 

through the same syringe and catheter to ensure delivery of the total dose. 
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Section 4: Blood Sample Collection 

 For measurement of plasma MFA concentrations for the ORAL condition, blood samples 

were collected immediately prior to (time 0), and at 10, 15, 20, 30, 60, 90, and 120 minutes 

following drug administration for doses 1 (first) and 10 (last) as well as at time 0, and at 15 and 

30 minutes for doses 2 and 8. For the RECTAL condition, blood samples were collected at time 

0, and at 3, 5, 10, 15, 30, 60, and 90 minutes after drug administration for doses 1 and 10, as well 

as at time 0, and at 3 and 5 minutes after drug administration for doses 2 and 8. Timing of sample 

collection was based on previously reported pharmacokinetics for single-dose misoprostol 

administered by the oral and rectal routes.9,26 Samples were immediately placed in sodium 

heparin tubes, placed on ice, and then centrifuged (400 × g for 10 minutes at 4°C) within 15 

minutes of collection. Plasma was separated into 2 mL aliquots and stored at -80°C until 

analysis.  
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Section 5: Fecal Sample Collection 

 For all horses, a manure sample was collected 7 days prior to study onset (Baseline). 

Samples were then collected immediately prior to dose 1 (Start Tx), and then 6 hours (End Tx), 7 

days (D7), and 14 days (D14) after dose 10 for the ORAL and RECTAL conditions, and at time-

matched points for the CONTROL condition. Samples were refrigerated within 10 minutes of 

collection. Aliquots of feces from the center of each fecal ball were then transferred to 2 mL 

Eppendorf tubes within 30 minutes of collection and stored at -80°C until analysis. 
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Section 6: Measurement of Plasma MFA Concentration 

 Plasma MFA concentrations were analyzed by liquid-chromatography-tandem mass 

spectrometry (LC-MS/MS) with a triple quadrupole system (Thermo Altis, Thermo Fisher 

Scientific) and software (TraceFinder 4.1) designed for data acquisition and analysis. The LC-

MS/MS protocol and data acquisition parameters have been previously described for equine 

plasma.20,26 Briefly, 500 μL plasma sample was mixed with 1 mL acetonitrile spiked with 5 μL 

D5-misoprostol acid (100 ng/mL), centrifuged and the supernatant dried and then reconstituted 

into 100 μL solvent prior to LC-MS/MS instrument injection. LC separation was performed on a 

C18+ column (2.1 x 100mm, 1.5μm; Thermo Accucore Vanquish, Thermo Scientific) with a 

mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in 

acetonitrile). For method validation, the calibrated concentration range was 2 pg/ml to 5000 

pg/ml with a lower limit of quantification (LLOQ) of 2 pg/mL and standard curve correlation 

coefficient values (R2) > 0.993. Percent MFA recovery and within and between-run accuracy 

and precision data are presented in Table 3. 
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MFA 

concentration 

(ng/mL) 

Recovery 

(%) 

Within 

run 

precision 

(n = 15) 

Between 

run 

precision 

(n = 15) 

Within run accuracy (n = 5) Between 

run 

accuracy 

(n = 15) 

        Day 1 Day 2 Day 3   

0.3 67 ± 9 7.8 5.4 96 ± 8 100 ± 6 101 ± 10 99 ± 7 

1 71 ± 6 5.3 4.3 116 ± 3 115 ± 8 113 ± 6 115 ± 6 

3 73 ± 3 4.3 3.7 102 ± 3 101 ± 5 101 ± 5 101 ± 4 

Table 3: Recovery, accuracy, and precision data for validation of method used to detect MFA 

concentrations via LC/MS/MS. Recovery is calculated by the signal ratio of spiked standard in 

serum to spiked standard in 50% acetonitrile. Values for recovery and accuracy are presented as 

mean ± standard deviation. 
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Section 7: Pharmacokinetic Analysis 

 Plasma MFA concentration-versus-time data were subjected to noncompartmental 

pharmacokinetic modeling using Phoenix WinNonlin, v8.1 (Certara, St Louis MO) software. 

Peak plasma concentration (Cmax) and its respective time (Tmax) were reported. The area under 

the MFA concentration-versus-time curve to the last sample timepoint (AUC0→last), to infinity 

(AUC0→∞), and to the dosing interval (AUCtao) after dose 1 (first) and dose 10 (last) were 

calculated using the log-linear trapezoidal method. For AUC0→  and AUCtao the percentage 

extrapolated from the terminal component of the curve was calculated and reported as AUCextrap 

and AUCtaoextrap respectively. Nonlinear regression was used to determine the slope of the 

terminal component of the drug-elimination time curve. Because intravenous drug administration 

was not performed, both the elimination rate constant (1/λ) and half-life (t1/2) are reported as 

disappearance values. Additional reported parameters include mean residence time (MRT), 

relative bioavailability (F) of rectal compared to oral administration (F=AUCRECTAL/AUCORAL), 

and the accumulation index. The coefficient of variation (CV) for selected values was calculated 

as the standard deviation (SD) divided by the mean. 
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Section 8: Fecal DNA Extraction  

DNA was extracted from fecal samples using QIAamp PowerFecal kits (Qiagen) 

according to the manufacturer’s instructions, with minor adaptations in sample and lysis buffer 

homogenization as previously described.100 DNA, eluted in 100 µL of buffer, was quantified via 

fluorometry (Qubit 2.0, Invitrogen, Carlsbad, CA) using quant-iT BR dsDNA reagent kits 

(Invitrogen) and normalized to a uniform concentration and volume.  
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Section 9: 16S rRNA Amplicon Library Preparation and Sequencing 

Construction and sequencing of bacterial 16S rRNA amplicon libraries was performed at 

the University of Missouri (MU) DNA Core Facility according to previously described 

methodology.100  Briefly, 16S rRNA amplicons were generated via amplification of the V4 

hypervariable region of the 16S rRNA gene using universal primers (U515F/806R) flanked by 

Illumina standard adapter sequences101,102 and the following amplification parameters: 98°C(3 min) 

+ [98°C(15 sec) + 50°C(30 sec) + 72°C(30 sec)] × 25 cycles + 72°C(7 min).  Amplicons were pooled, 

purified, and then washed. The final amplicon pool was quantified (quant-iT HS dsDNA reagent 

kit) and sequenced using a standard 2×250 bp paired-end reads protocol for sequencing on the 

Illumina MiSeq instrument. 
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Section 10: Bioinformatics Analysis 

Bioinformatics on DNA sequences was performed at the MU Informatics Research Core 

Facility. Primers designed to match the 5' ends of forward and reverse reads were removed from 

the 5' end of the forward read using Cutadapt103 (version 2.6; 

https://github.com/marcelm/cutadapt). When identified, reverse complements of the primer and 

all bases downstream were then removed from the forward read. For the reverse reads the 

approach was similar but opposite. Two passes were made over each read with an allowable 

error-rate of 0.1. Read pairs were rejected if both did not match a 5' primer. The QIIME2104 

DADA2105 plugin (version 1.10.0) with R version 3.5.1 and Biom version 2.1.7 was used to 

denoise, de-replicate, and count amplicon sequence variants (ASVs). Finally, taxonomies were 

assigned using the Silva.v132106 database. 
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Section 11: Statistical Analysis 

 Analysis of pharmacokinetic data was performed using Graphpad Prism 9. Distribution of 

data was evaluated for normality using Shapiro-Wilk and Kolmogorov-Smirnov methods. Data 

are reported as mean  standard deviation apart from Tmax and T1/2 which are reported as median 

(range) and harmonic mean ± pseudo-standard deviation, respectively. Comparisons between the 

first and last (tenth) doses for each route of administration were evaluated using Wilcoxon signed 

rank test for Tmax and paired T-tests for all other parameters. Comparisons between routes of 

administration (ORAL versus RECTAL) were evaluated using mixed effects analysis with 

Sidák’s post hoc multiple comparisons for Tmax and repeated measures two-way analysis of 

variance (ANOVA) with Tukey’s post-hoc multiple comparisons test for all other parameters. 

 Analysis of fecal microbiota data was performed using SigmaPlot version 14.0. 

Differences in overall microbiota composition (beta-diversity) between horses and treatments 

were tested via two-way permutation multivariate analysis of variance (PERMANOVA) using 

Bray-Curtis and Jaccard similarities. Principal coordinate analysis (PCoA) was performed on ¼ 

root-transformed data. Effects of horse and treatment on change in intra-subject beta-diversity 

over time were assessed for normality and equal variance using the Shapiro-Wilk and Brown-

Forsythe methods, respectively, and then tested using a two-way ANOVA with Holm-Sidak post 

hoc multiple comparisons. Univariate data including detected and predicted richness of ASVs 

(Taxa_S and Chao-1 respectively), and alpha-diversity (Shannon index and Simpson index) were 

assessed for normality and equal variance using the Shapiro-Wilk and Brown-Forsythe methods, 

respectively, and then tested via three-way ANOVA with Holm-Sidak post hoc multiple 

comparisons. Significance for all statistical comparisons was defined as p < 0.05. 
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Chapter 3: Results 

 

 

Section 1: Study Completion 

 

Physical examination parameters remained normal and no clinical evidence of abdominal 

discomfort or changes in appetite, fecal consistency, or fecal output were noted for any horse 

during the study. One horse developed mild cellulitis of one distal hindlimb just prior to the third 

experimental condition necessitating administration of a single dose each of flunixin meglumine 

(1.1 mg/kg IV) and ceftiofur crystalline free acid (6.6 mg/kg IM). The horse was maintained on 

group-specific pasture until after resolution of the cellulitis. Since dysbiosis following NSAID 

and antibiotic administration has been demonstrated in horses,21,23,24 an additional four-week 

wash-out period (from the time of medication administration) was instituted prior to the horse 

completing the third experimental condition. The fecal microbiome data for the horse’s third 

experimental condition was ultimately included in the final analysis for this study because 

significant differences were not identified between the horse’s fecal samples at baseline and the 

Start Tx time-point of the third experimental condition. 
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Section 2: Pharmacokinetic Results 

 Plasma MFA concentrations remained above the LLOQ for all horses at 120 minutes 

after doses 1 and 10 in the ORAL condition, and at 90 minutes in the RECTAL condition for 5 of 

6 horses after dose 1 and 4 of 6 horses after dose 10. Plasma MFA concentrations fell below the 

lower limit of detection (LLOD) in all horses at time 0 for doses 1, 2, 8, and 10 in both ORAL 

and RECTAL conditions. Differences in time-matched plasma MFA concentrations were not 

observed across doses within both the ORAL and RECTAL conditions. 

 Plasma concentration-versus-time curves generated for dose 1 and dose 10 of the ORAL 

and RECTAL conditions are displayed in Figure 2 and pharmacokinetic parameters are 

summarized in Table 4. The mean  standard deviation percentage of the AUC0→ that was 

extrapolated after dose 1 and 10 for the ORAL condition was 17  10% and 18  12%, and for 

the RECTAL condition was 14  15% and 15  11% respectively. For this reason, both 

AUC0→last and AUC0→ are reported and included in statistical comparisons. The mean 

percentage of AUCtao extrapolated was < 5% for all measurements. Within the ORAL and 

RECTAL conditions, differences between AUC0→last, AUC0→, and AUCtao were not detected for 

either dose 1 or dose 10 (p > 0.5 all). Differences in pharmacokinetic parameters were not 

detected between dose 1 and dose 10 for either the ORAL or RECTAL conditions. 

 Several differences in pharmacokinetic parameters were identified between the ORAL 

and RECTAL conditions. Tmax (p < 0.03) was significantly longer, and both AUC0→last (p = 0.01) 

and AUCtau (p = 0.01) were significantly greater for the ORAL condition after dose 1, but not 

after dose 10 (p > 0.06 all). AUC0→∞ (p = 0.01 both) was significantly greater and T1/2 (p ≤ 0.02 

both) was significantly longer for the ORAL condition after both doses 1 and 10. No other 

differences in pharmacokinetic parameters were detected between routes of administration. 
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Figure 2: Mean plasma misoprostol free acid (MFA) concentration-versus-time curve for six 

healthy, adult horses that received misoprostol (5 µg/kg q8h for 10 doses) after dose 1 and dose 

10 ORAL administration (solid circles) as well as dose 1 and dose 10 RECTAL administration 

(cross-hatched boxes). Error bars represent standard deviation. 
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Parameter 

  
   Units 

ORAL 
      Dose 1                 Dose 10 

RECTAL 
     Dose 1                     Dose 10 

C
max

 
 
(CV) 

pg/mL 
(%) 

1648 ± 1084  
(66) 

1138 ± 324  
 (29) 

957 ± 225 
 (24) 

1117 ± 402 
 (36) 

T
max

 min 20 (10 – 60)
a 12.5 (10 – 30) 3 (3 – 5)

a 3 (3 – 5) 

AUC
0→last

  
(CV) 

pg*min/mL 
(%) 

75,720 ± 29,060
a
 

(38) 
54,040 ± 15,060 

(29) 
17,630 ± 16,160

a
 

(92) 
16,080 ± 11,600  

(72) 

AUC0→ 
 

(CV) 
pg*min/mL 

(%) 
90,860 ± 32,620

a 
(36) 

66,400 ± 

17,010
b
 (26) 

23,960 ± 28,310
a 

(118) 
19,290 ± 13,990

b 
(73) 

AUC
tau
 pg*min/ml 77,820 ± 29,490

a 55,610 ± 15,180 17,930 ± 16,560
a 16,460 ± 11,520 

MRT
inf
 min 61.92 ± 19.76 65.36 ± 24.20 38.81 ± 30.64 36.36 ± 21.08 

T
1/2
 min 38 ± 12

a 41 ± 16
b 28 ± 16

a 30 ± 20
b 


z
  min

-1 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 

Accumulation 

Index   
1.14 ± 0.10 1.17 ± 0.13 1.15 ± 0.17 1.19 ± 0.22 

F % NA NA 28 ± 30 32 ± 27 
Table 4: Plasma pharmacokinetic parameters for misoprostol free acid (MFA) following dose 1 

and dose 10 for ORAL and RECTAL administration in six healthy, adult horses. Values are 

reported as mean ± SD for all parameters except Tmax which is reported as median (range) and 

T½dis which is reported as harmonic mean ± pseudoSD. 

 

Cmax: maximum observed plasma concentration; Tmax: time to Cmax; AUC0→last: area under the 

concentration-versus-time curve from time 0 to the last measured concentration; AUC0→: area 

under the concentration-versus-time curve from time 0 extrapolated to infinity; AUCtau: area 

under to concentration-versus-time curve from time 0 to the dosing interval (eight hours); CV: 

coefficient of variation presented for select variables; F: relative bioavailability of rectal 

compared to oral administration; MRTinf: mean residence time extrapolated to infinity; NA: not 

applicable; T1/2: disappearance half-life; z: disappearance rate constant 

 
a within a row denotes a significant difference (p < 0.05) between ORAL and RECTAL for dose 

1. 
b within a row denotes a significant difference (p < 0.05) between ORAL and RECTAL for dose 

10.  
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Section 3: Microbiome Results 

Subsection 3a: Assessment of Microbial Community 

All samples yielded acceptable coverage with a mean read count of 87,662 per sample 

(range 46,652 – 106,767). A total of 31 phyla, 249 families, 411 genera, and 15,647 species were 

detected. Major phyla and families identified and their associated mean relative abundances (%) 

included Firmicutes (55%), Bacteroidota (28%), and Verrucomicrobiota (5%) for phyla and 

Clostridia (11%), Lachnospiraceae (9%), and p-251-o5 (8%) for families. Significant 

differences in relative abundance of major identified taxa were not detected among experimental 

conditions or timepoints at the phylum, family, genus, or species level as depicted in Figure 3. 

 

 

Figure 3: Stacked bar chart depicting the major families detected in fecal samples from horses at 

baseline (arrow), undergoing ORAL (O) or RECTAL (R) treatments, or the CONTROL (C) 

experimental condition. 
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Subsection 3b: Beta-diversity 

 Principal coordinate analysis comparing composition of fecal microbiota between all 6 

study horses and conditions (ORAL, RECTAL, CONTROL) is depicted for the Bray-Curtis and 

Jaccard similarity indices in Figure 4 and Figure 5, respectively. A strong significant effect of 

horse on beta-diversity was detected by two-way PERMANOVA (Bray-Curtis p < 0.001, F = 

10.8; Jaccard p < 0.001, F = 5.7) with samples clearly clustering according to horse. A weak 

significant effect of experimental condition on beta-diversity was also detected (Bray-Curtis p = 

0.002, F = 1.8; Jaccard p = 0.01, F = 1.4), with minimal separation of samples identified 

according to condition.   

 To further evaluate the effect of experimental condition over time, samples within each 

condition and for each timepoint were compared to the baseline samples collected 7 days prior to 

study onset. Two-way ANOVA to assess the effect of experimental condition and timepoint on 

intra-horse similarity to baseline found that, when controlling for the individual horse, there were 

significant effects of condition (p < 0.001, F = 8.5) and timepoint (p < 0.001, F = 7.8) on fecal 

beta-diversity, and no significant interaction between factors (p = 0.778, F = 0.5; Figure 6). 

Specifically, intra-subject similarity to baseline was greater during the CONTROL condition 

than during either the RECTAL (p = 0.009) or ORAL (p < 0.001) conditions and was lower at 

the End Tx timepoint compared to other timepoints (p < 0.019 all). When experimental condition 

within each timepoint was considered, significance was only identified between the CONTROL 

and ORAL conditions at the End Tx timepoint (p = 0.016).  
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Figure 4: Principal coordinate analysis based on Bray-Curtis similarities with results of two-way 

permutational multivariate analysis of variance shown in upper left. Samples cluster according to 

horse, with minimal to no separation of experimental conditions within horse (legend at right), 

showing clear inter-horse differences in beta-diversity.  

 

 

 
 

Figure 5: Principal coordinate analysis based on Jaccard similarities with results of two-way 

permutational multivariate analysis of variance shown in upper left. Samples cluster according to 

horse, with minimal to no separation of experimental conditions within horse (legend at right), 

showing clear inter-horse differences in beta-diversity. 
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Figure 6: Intra-horse similarity to baseline at each subsequent time-point, according to treatment 

group. Tukey box plots showing intra-horse similarity to their baseline composition at each time-

point during ORAL (A) or RECTAL (B) administration of misoprostol, or during the 

CONTROL period (C). Different letters indicate significant differences in pairwise comparisons 

within each panel. An asterisk (*) indicates a significant difference between the CONTROL and 

ORAL conditions at the End Tx timepoint.  
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Subsection 3c: Richness and Alpha Diversity 

 Univariate data including inter-horse and time-dependent effects on observed ASV 

richness and alpha-diversity are presented in Figure 7. Results of the three-way ANOVA 

identified differences in observed richness (Taxa_S) by horse (p < 0.001, F = 12.2) and timepoint 

(p = 0.002, F = 5.6) particularly when the End Tx timepoint was compared to the Start Tx (p = 

0.001) and D14 (p = 0.037) timepoints. Differences were not detected among experimental 

condition (p = 0.181, F = 1.7; Figure 7 A & B). Similarly, differences were detected in predicted 

richness (Chao-1) by horse (p < 0.001, F = 3.9) and timepoint (p = 0.014, F = 4.9), but not by 

experimental condition (p = 0.689, F = 0.4). Evaluation of diversity using the Shannon Index 

detected differences by horse (p < 0.001, F = 6.8) but not according to timepoint (p = 0.130, F = 

2.0) or experimental condition (p = 0.077, F = 2.7; Figure 7 C & D). Evaluation using the 

Simpson index resulted in similar findings for diversity by horse (p < 0.001, F = 4.4), timepoint 

(p = 0.339, F = 1.2) and experimental condition (p = 0.5, F = 0.7). 
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Figure 7: Inter-horse and time-dependent effects on richness and alpha-diversity. Box plot and 

line graph showing the number of detected amplicon sequence variants (ASVs) as a measure of 

richness, grouped by horse (A) or treatment and time-point (B). Main effects associated with 

horse and time-point (three-way ANOVA) are included in A and B, respectively. Box plot and 

line graph representing Shannon alpha-diversity in the same fashion (C & D). Different letters 

indicate significant differences in pairwise comparisons within each panel. 
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Chapter 4: Discussion 

 

 

 To date, the present study is the first to describe the pharmacokinetics and detail the fecal 

microbiome in horses following repeated dose oral and rectal administration of misoprostol. As 

predicted, differences in pharmacokinetic parameters were noted between routes of 

administration but not in response to repeated drug administration. With respect to fecal 

microbiome assessment, changes in the microbiome composition were observed over the course 

of the study. While associations with treatment and timepoint were identified, these were far 

outweighed by observed inter-horse differences in fecal microbiome composition.  

 At the dose and dose interval described in this study, misoprostol did not appear to 

accumulate with repeated-dose administration or reach steady state plasma concentrations. The 

mean disappearance t1/2 was well below one-hour for both oral and rectal administration, and 

MFA plasma concentrations were below the LLOD when measured immediately prior to drug 

administration. Additionally, repeated dose administration did not appear to alter misoprostol 

absorption or metabolism as suggested by the lack of detectable differences in pharmacokinetic 

parameters between the first and last dose for either route of administration. Considerable 

variability in misoprostol absorption (Cmax) and systemic exposure (AUC) has been recognized 

in horses15,20,26 and was also noted among horses in the present study. This is evident by the large 

CV observed for these parameters for both routes of administration (Table 4). Notable variability 

between the first and last dose was also observed when individual horses were considered, with 

differences for Cmax and AUC between the first and last dose exceeding 50% for some horses. 

Thus, it is possible that both between and within-horse variability could have precluded the 

detection of small differences in pharmacokinetic parameters associated with repeated dose 

administration. 
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 The pharmacokinetics of misoprostol in horses are described after single dose 

administration by the oral or rectal route in fasted and fed horses and in horses challenged with 

LPS.15,20,26 Rapid absorption of misoprostol is observed for this and all previous studies with 

reported values for Tmax of 3-5 minutes after rectal and 10-45 minutes for oral 

administration.15,20,26 Additional similarities are particularly apparent when considering rectal 

administration of misoprostol. The mean Cmax and AUC values reported in the present repeated-

dose study demonstrate notable overlap with what has been reported for these parameters in 

single-dose studies both with and without LPS challenge.20,26 The relative differences between 

oral and rectal pharmacokinetics observed in this study are also similar to those previously 

reported where the larger AUC and longer disappearance t1/2 observed after oral administration 

corresponds to greater systemic drug exposure with oral administration and decreased relative 

bioavailability for rectal administration.20,26 Thus while parenteral administration can provide an 

opportunity to improve relative bioavailability by bypassing hepatic first-pass metabolism, it is 

less predictable in horses107 and does not appear to have improved the bioavailability of 

misoprostol in this or previous studies.9,10 

 The variability in drug pharmacokinetics noted across studies with oral drug 

administration most likely reflects the impact that differences in experimental protocols such as 

fasting times or endotoxin challenge and inherent physiologic differences among horses may 

have on drug absorption and systemic exposure after oral administration. The Cmax and AUC 

values  reported in this study are most similar to those reported by Lopp et al for fasted versus 

fed horses after single-dose oral misoprostol administration.26 While horses in this study were 

not specifically fasted, their similarity to the fasted horses in the Lopp et al study most likely 

reflects the feeding schedule relative to timing of drug administration used in this repeated-dose 
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study. Similar to what has been reported in comparisons to previous single-dose studies, the 

mean Cmax and AUC values reported in the present study were approximately 4-5 fold lower than 

those reported by Kimura et al in LPS-challenged horses.20 The study population in this 

repeated-dose study is identical to that used by Kimura et al with a 12-month gap between 

studies.20 However, comparisons between separate studies must be made with caution and 

therefore the influence of LPS or inflammation on misoprostol pharmacokinetics in horses 

remains to be determined. 

 With respect to the fecal microbiome, the overall composition and major taxa present at 

the phylum, family, and genus levels in the horses in this study were similar to what has been 

reported previously in healthy adult horses.34 When comparing microbiome composition using 

beta diversity indices, although significant differences were detected among individual horses 

and experimental conditions, marked clustering was only noted between individual horses and 

not between experimental conditions (Figures 4 and 5). Furthermore, intra-horse similarity to 

baseline decreased at the End Tx timepoint, particularly in the ORAL condition (Figure 6). 

Taken altogether, these results suggest that while inter-horse differences outweigh other factors, 

there are nonetheless subtle effects of treatment and timepoint on fecal microbiome composition. 

Although the exact mechanism(s) underlying these effects remains unknown, it is proposed that 

prostanoid receptor interactions leading to alterations in intestinal smooth muscle contractility, 

ingesta transit time, and intestinal fluid movement likely alter the local intestinal environment 

enough to impact the survival and composition of the microbiome. Since changes in the relative 

abundance of specific taxa were not identified, it is impossible to predict whether these 

differences in microbiome composition represent clinically or biologically significant changes.  
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 When considering the univariate data, the decrease in observed (Taxa_S) and predicted 

(Chao-1) richness at the End Tx time-point (Figure 7A & B) might be considered an undesirable 

change.44 However, since the decline in richness occurred equally across all experimental 

conditions, including the CONTROL, this decline is likely in response to management changes 

during each experimental condition. All horses were fed the same hay and concentrate 

throughout the entire study and were housed on group-specific grass pasture prior to, in between, 

and after all experimental periods. However, they were brought into individual stalls with pine 

shavings during each experimental condition. Similar changes in diet and environment have been 

associated with a decline in richness of the microbiome in previous studies.45,49,50 Given that the 

decline in richness affected all experimental conditions similarly, it is likely that study-specific 

management changes, rather than misoprostol administration, resulted in the decreased microbial 

richness observed at the End TX time-point.   

 Finally, comparison of the Shannon and Simpson indices (Figure 7C & D) suggests no 

significant impact of treatment or time-point on fecal microbiome diversity. It is important to 

note that a considerable amount of variability was observed in these indices at the End Tx 

timepoint. This variability between horses, combined with the small number of horses included 

in the study, could have limited our ability to detect differences in these α-diversity indices. 

Regardless, the overall impact of misoprostol on the microbiome composition was minor, and 

specific effects of misoprostol on richness or α-diversity were not appreciated in the current 

study. 

 There are limitations to this study. The small sample size, particularly in consideration of 

the observed variability in several measured parameters, may have precluded the ability to detect 

subtle differences in pharmacokinetic or microbiome parameters associated with repeated-dose 
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misoprostol administration. Little information exists regarding therapeutic plasma concentrations 

for misoprostol. Current dosing recommendations in horses are largely extrapolated from human 

literature, and are described for the treatment of EGGD,14 and single-dose pharmacokinetic 

studies in healthy horses.15,26 To date, evaluation of a lower drug dose or shorter dosing interval 

for misoprostol has not been investigated in horses but is described in humans for the prevention 

of NSAID-induced gastric ulcers. While the 10-dose course of drug administration used in this 

study may be similar to that used for treatment of acute colitis, it is shorter than what is 

recommended for treatment of EGGD3 and may have been of insufficient duration to detect 

changes in drug pharmacokinetic behavior or alterations in microbiome composition associated 

with a longer course of treatment. Furthermore, only healthy horses were included in this study 

and thus the potential impact that systemic illness or inflammation could have on misoprostol 

pharmacokinetics or the fecal microbiome, or the interaction of the two, remains unknown at this 

time. 

Finally, unavoidable changes in management between the experimental and washout 

periods was a limitation of the study. Multiple inherent factors such as age,46 breed,98,108 and sex 

or pregnancy status;66,109 as well as external factors such as diet,46,48,49,98 exercise,110,111 

transport,112,113 geographic location,98 and season98,114 can all affect the fecal microbiome. While 

a study designed to avoid any management or environmental changes would have been preferred, 

this was not possible given the limitations of the facility. The CONTROL group was included to 

limit over-interpretation of these confounding factors’ effects on the fecal microbiome. 

 In conclusion, this study did not identify differences in systemic exposure after repeated 

dose administration of misoprostol, although increased systemic exposure was observed after 

oral as compared to rectal administration. Additionally, the observed differences in the fecal 
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microbiome’s composition, richness, and alpha-diversity appeared to be primarily related to 

large inter-individual variation and changes in management, with only minor effects on 

composition associated with misoprostol administration. Further evaluation of misoprostol after 

long-term administration to horses with gastrointestinal disease or systemic inflammation and 

with or without concurrent administration of anti-inflammatory or antimicrobial medications is 

warranted, as this may provide clinically relevant information regarding changes in drug 

pharmacokinetics and pharmacodynamics or the potential for misoprostol to impact the 

gastrointestinal microbiome. 
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Appendix I 

Definitions adapted from Costa & Weese, 2018.34 

 

 


