
Application of the Finite Fourier Series for Smooth Motion Planning of Quadrotors

by

Yevhenii Kovryzhenko

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 5, 2023

Keywords: motion planning, Finite Fourier Series (FFS), minimum snap, trajectory
optimization, UAV guidance

Copyright 2023 by Yevhenii Kovryzhenko

Approved by

Ehsan Taheri, Chair, Assistant Professor of Aerospace Engineering
Imon Chakraborty, Assistant Professor of Aerospace Engineering

Nan Li, Assistant Professor of Aerospace Engineering

Abstract

Motion planning and control system design are crucial in the development of unmanned

aerial vehicles (UAVs) for various applications. To maximize the mission performance, trajec-

tory design is often performed to minimize motor output and power consumption along the en-

tire path while avoiding obstacles. Polynomial parameterizations have traditionally been used

to express UAV trajectories due to their simplicity and effectiveness of implementation. In this

work, an alternative parameterization based on Finite Fourier Series (FFS) is investigated. The

results of the FFS-based parameterization are compared with the state-of-the-art polynomial-

based trajectory generation algorithms. One unique feature of the FFS parameterization is

the theoretical piece-wise infinite differentiability of multi-segment trajectories. For fixed-

time minimum-snap motion-planning problems using FFS parameterization, it is 1) shown that

motion-planning problems can be formulated as quadratic programming (QP) problems, and 2)

derived an analytic solution to an unconstrained QP problem. Leveraging the analytic solution,

formulation, and solution of time-allocated minimum-snap multi-segment trajectories is also

presented. The practical limitations of the FFS method are also discussed in detail. Finally,

formulation and numerical comparison of the minimum-snap, multi-segment trajectories with

time-allocation are also presented. Performance (with respect to the computation time, power

required, and number of iterations) of the FFS and polynomial parameterizations are compared

using five representative trajectories. The results show the comparable performance of the two

parameterizations with important differences between the two on high-level derivatives. An

in-house quadrotor is used with a six-degree-of-freedom (6DoF) cascaded PID flight control

logic to experimentally validate the tracking of the generated smooth trajectories.

ii

Acknowledgments

I am grateful to Dr. Ehsan Taheri for his invaluable guidance and support throughout

my thesis journey. His encouragement and technical expertise have been instrumental in the

completion of this work. I would also like to thank my committee members, Dr. Nan Li and

Dr. Imon Chakraborty, for their insightful comments and feedback that greatly improved the

quality of this thesis.

I would like to thank Auburn University, Samuel Ginn College of Engineering, and the

Department of Aerospace Engineering for their financial support through the Gavin Fellowship

which has partially supported my studies.

I am also thankful to Auburn University faculty and staff for their patience and dedication

in providing a conducive research environment. I would like to express my appreciation to

Ella Atkins for providing access to the rc pilot firmware, and to Matthew Romano and Behdad

Davoudi for their assistance in understanding how to use it properly. Their contributions have

been vital in initiating this research and enhancing my understanding of embedded system code

and architecture.

Furthermore, I am deeply grateful to Dr. Russell Mailen for sharing his expertise and

knowledge and providing constructive feedback on my early thesis draft. His step-by-step

guide has been a driving force in the timely completion of this work.

Lastly, I would like to express my heartfelt thanks to my family and friends for their unwa-

vering support and encouragement throughout this journey. Their patience and understanding

have been a constant source of motivation and inspiration.

Once again, I express my heartfelt appreciation to all those who contributed to the suc-

cessful completion of this thesis.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

1 . 1

1.1 Introduction . 1

1.2 Literature Review and Motivation . 2

1.3 Earlier work on FFS . 6

1.4 Objectives . 7

2 . 11

2.1 Trajectory Planning . 11

2.1.1 Formulation of fixed-time, minimum-snap trajectory optimization prob-
lems . 11

2.1.1.1 Generalization of the polynomial and FFS parameterizations . 14

2.1.1.2 Key differences between polynomial and FFS parametrization 19

2.1.1.3 Deriving analytic solution for fixed-boundary problem 21

2.1.2 Time-allocation problem . 25

2.1.3 Simulation and experimental setup . 26

2.2 Vehicle Dynamics . 28

iv

2.3 Non-linear Control structure . 31

2.4 Formulation of the Control System Optimization Problem 33

2.5 Practical Considerations For Gain-Optimization 37

3 . 39

3.1 Numerical Results . 39

3.1.1 Fixed-time solutions . 39

3.1.1.1 “Simple” trajectory. 40

3.1.1.2 “3 Blocks” trajectory. 42

3.1.1.3 “Square” trajectory. 44

3.1.1.4 “Circle” trajectory. 45

3.1.1.5 “Figure-8” trajectory. 46

3.1.1.6 Summary of the fixed-time trajectories. 48

3.1.2 Time-allocated solutions . 48

3.1.2.1 “Simple” and “3 Blocks” trajectories. 50

3.1.2.2 “Square” trajectory. 51

3.1.2.3 “Circle” trajectory. 52

3.1.2.4 “Figure-8” trajectory. 53

3.1.2.5 Fast Finite Fourier Series . 56

3.2 Experimental Results . 59

3.2.1 “3 Blocks” trajectory . 59

3.2.2 “Square” trajectory . 60

3.2.3 “Figure-8” trajectory . 61

4 . 63

4.1 Conclusion . 63

v

Appendices . 77

vi

List of Figures

1.1 General schematics for the path and trajectory planning processes. 3

2.1 Definition of a multi-segment/interval trajectory. “interval” and “segment” are
used interchangeably. 12

2.2 Hardware data flow schematics. 27

2.3 Definition of inertial and quadcopter body-fixed frames of reference. Sense of
rotation and numbering convention of propellers are shown. 29

2.4 Cascaded position-attitude control hierarchy. The outputs of the control system
are reference/requested torque and thrust commands. 31

3.1 Simulated results for the “Simple” trajectory with polynomial parameterization. 41

3.2 Simulated results for the “Simple” trajectory with FFS parameterization. 41

3.3 Simulated results for the “3 Blocks” trajectory with polynomial parameterization. 43

3.4 Simulated results for the “3 Blocks” trajectory with FFS parameterization. . . . 43

3.5 Simulated results for the “Square” trajectory with polynomial parameterization. 44

3.6 Simulated results for the “Square” trajectory with FFS parameterization. 45

3.7 Simulated results for the “Circle” trajectory with polynomial parameterization. . 46

3.8 Simulated results for the “Circle” trajectory with FFS parameterization. 46

3.9 Simulated results for the “Figure-8” trajectory with polynomial parameterization. 47

3.10 Simulated results for the “Figure-8” trajectory with FFS parameterization. . . . 47

3.11 Simulated results for the time-allocated “Square” trajectory with polynomial
parameterization. 50

3.12 Simulated results for the time-allocated “Square” trajectory with FFS parame-
terization. 51

3.13 Simulated results for the time-allocated “Circle” trajectory with polynomial
parameterization. 52

vii

3.14 Simulated results for the time-allocated “Circle” trajectory with FFS parame-
terization. 53

3.15 Simulated results for the time-allocated “Figure-8” trajectory with polynomial
parameterization. 54

3.16 Simulated results for the time-allocated “Figure-8” trajectory with FFS param-
eterization. 54

3.17 Experimental results for the time-allocated “3 Blocks” trajectory with polyno-
mial parameterization. 59

3.18 Experimental flight results for the time-allocated “3 Blocks” trajectory with
FFS parameterization. 60

3.19 Experimental results for the time-allocated “Square” trajectory with polynomial
parameterization. 61

3.20 Experimental flight results for the time-allocated “Square” trajectory with FFS
parameterization. 61

3.21 Experimental results for the time-allocated “Figure-8” trajectory with polyno-
mial parameterization. 62

3.22 Experimental flight results for the time-allocated “Figure-8” trajectory with
FFS parameterization. 62

viii

List of Tables

3.1 Summary of the fixed-time solutions. 48

3.2 Summary of the time-allocation solutions. 55

3.3 Fixed time solutions summary for F-FFS. 57

3.4 Time allocation solutions summary for F-FFS. 58

ix

List of Abbreviations

3D LiDAR 3-Dimentional Light Detection and Ranging

F-FFS Fast Finite Fourier Series

FFS Finite Fourier Series

MOCAP Motion Capture System

NLP Non-Linear Programming

QP Quadratic Programming

UAS Unmanned Areal System

UAV Unmanned Areal Vehicle

x

Chapter 1

1.1 Introduction

Unmanned aerial vehicles (UAVs) have revolutionized the field of technology and exploration,

thanks to rapid advances in microelectronics and manufacturing techniques. These advance-

ments have made small robotic systems more affordable and capable, allowing them to perform

tasks that were once only possible with large machinery and manned labor. In response, ma-

jor commercial companies are investing millions of dollars in autonomous package delivery

technologies that use small flying multi-rotors, which produce zero operational emissions.

During the COVID-19 pandemic, the UPS utilized UAVs to transport vibration-sensitive

medical packages to local clinics, achieving a 30% boost in logistics efficiency [1]. UAVs offer

more efficient solutions to existing problems and have the potential to offer more affordable so-

lutions to previously challenging problems. For instance, practitioners worldwide are exploring

the utility of UAVs for search and rescue missions and aerial photography. Recent global events

have demonstrated that the introduction of UAVs on the battlefield can be as game-changing as

the arrival of tanks and aircraft during the First World War [2]. These and many other fields

are driving the development of new aerial platforms, complex on-board algorithms, and novel

approaches to control guidance and navigation of UAVs.

By removing the need for a trained pilot on board the aircraft, space, weight, and cost can

be saved while greatly increasing the safety of the system and expanding the range of potential

missions that can be accomplished. However, designing an unmanned system entails having

1

a capable-enough on-board guidance, navigation, and control system that can replace the on-

board pilot and/or allow remote human input. This research effort aims to develop a control

and guidance system for a small quadrotor, with a particular focus on a higher-level motion-

planning algorithm. Specifically, the focus is on investigating the use of the Finite Fourier

Series (FFS) parameterization for trajectory optimization given a set of waypoints. Using an

equivalent approach, a comparison of FFS with polynomial parametrization is presented. It is

important to emphasize that the minimum snap trajectory optimization that relies on polynomial

parametrization is currently a classical technique for rapid trajectory optimization of quadro-

tors. Due to the differential-flatness properties of the dynamics of quadrotors, this method does

not explicitly rely on vehicle dynamics.

1.2 Literature Review and Motivation

Motion- and path-planning algorithms serve as an integral element of any UAV mission design

[3, 4, 5]. In the age of space exploration and complex robotic systems, it is no longer suffi-

cient to define the objective and the intended direction of motion. Path planning for aerospace

vehicles and robotic systems requires precise motion planning, often involving collision and

obstacle avoidance [6, 7, 8, 9, 10, 11]. The tasks of path planning often extend far beyond sim-

ple route-planning and generally encompass the functions of the overall system coordination

and establish an interface between the machine and a human operator who, generally, defines

a global task for the vehicle or its purpose. The necessary commands and interactions are

then followed automatically, relaying the necessary information downstream to all the vehi-

cle’s subsystems, each executing a well-defined task. For this exact reason, path planning is

usually regarded as the highest level of control or the bridge that establishes autonomy [12].

From a mission-designer perspective, it is convenient to think of path planning as an ap-

proach to defining a set of tasks or milestones for the vehicle to execute. For example, one can

consider a map of local terrain features, such as varying elevation, structures, trees, or else [12]

(see Figure 1.1 for a visual explanation of this process). A set of tasks can be defined (e.g.,

payload delivery to certain places). All the aforementioned tasks can be summarized by a set

2

Figure 1.1: General schematics for the path and trajectory planning processes.

of requirements to traverse from a starting waypoint to a target destination. The task of find-

ing a feasible path, irrespective of vehicle dynamics and time, is what can be defined as path

planning. It is traditional to separate front-end path planning (i.e., generation of waypoints) and

back-end motion planning or trajectory optimization that takes into account dynamic feasibility

[13]. In other words, path planning (or front-end) attempts to find a discrete path between the

initial and final points or collection of points of interest, while respecting real-world dynamics

and constraints. Motion planning (or the back-end), on the other hand, builds upon the set

of discrete waypoints along with some notion of dynamic feasibly to perform an end-to-end

trajectory optimization in between the waypoints generated by the front-end. A plenitude of

path-planning methods exist, ranging from sampling-based [14] to search-based [15, 16, 17]

algorithms.

One popular sampling-based algorithm is Randomly-Exploring Random Tree (RRT) [18]

search. The foundational principles of this algorithm are based on exploring randomly gen-

erated trees of possible junctions and intersections, seeking to connect the point of origin or

initialization with the target or destination. The algorithm can be thought of as a tree, with

3

its root planted at the starting point and each subsequent randomly sampled point in the prob-

lem space to be a branch or a node of this tree. This tree grows and expands by connecting

the closest nodes together if the connection is feasible. The notion of distance and feasibility

can be defined based on the specific problem but is usually based on some easy-to-compute

heuristics to achieve the computational speeds necessary for real-time requirements. The al-

gorithm iterations terminate when one of the randomly planted nodes is placed close enough

to the destination (target, goal) and a feasible (e.g., collision-free segmented path) connection

between the start, multiple intermediate waypoints, and end goal exists. Such an algorithm is

perfect for exploring the mapped space with obstacles and finding a feasible path without any

human intervention [19, 20]. However, sampling-based methods greatly suffer from their ran-

dom nature and cannot guarantee convergence for real-time applications. Therefore, they are

often replaced or complemented by rapid geometry-based re-planing routines [21, 22, 23].

Among some of the common practical applications of path planning blended with tra-

jectory optimization is on-board trajectory generation in a cluttered environment [24]. For

example, Hong et al. [25] have combined the A∗ path-planning algorithm with a polynomial-

based, minimum-snap trajectory optimization routine and demonstrated how such a blend of

algorithms can be used for real-time collision avoidance when flying through the forest. For

path-planning purposes, they have used a 3D LiDAR system for generating point clouds and

used an on-board companion computer (NVIDIA Jetson TX2 ™) to compute the high-level

command to the control system. An equivalent combination of 3D LiDAR sensor and on-board

companion computer was used by Zhou et al. in [26] to compute collision-free trajectories on

the fly, but now indoors, flying even a smaller quadrotor. Similar applications are proposed and

demonstrated for path-planning tasks of multi-agent systems [27] and exploration of in-door

environments [28]. All mentioned applications involve solving a minimum-snap trajectory op-

timization problem using the polynomial-based parameterization [29].

Modern convex-optimization-based motion-planning techniques have broadened the range

of practical applications of UAVs [30, 31]. Trajectory optimization [32] for quadrotors, espe-

cially the methods discussed in this work, heavily rely on the concept of differential flatness

[33, 34]. Mellinger and Kumar [35] established a connection between states of a quadrotor and

4

four flat outputs. The concept of differential flatness makes it possible to establish a relation

between full (twelve) states of a rigid-body model of a quadrotor to only translational position

coordinates X , Y , Z, heading (or yaw) angle, ψ, and their appropriate higher-order deriva-

tives [36]. Mellinger and Kumar have also shown that a solution can be obtained by properly

selecting a cost function to be minimized along the trajectory for each of the flat outputs in-

dependently to generate smooth trajectories. It is possible to obtain a smooth, continuously

differentiable (up to a certain order) path by expressing the position of the vehicle using piece-

wise polynomials and minimizing its fourth time-derivative squared. They have shown that

dynamic constraints can be omitted (for a differentially flat system) to ensure that the path of

the vehicle is differentiable and continuous up to the fourth order. More importantly, for ob-

taining the least-energy path, it is sufficient to minimize the fourth derivative squared (as the

cost), without considering complex dynamics in the formulation of the optimization problem.

This optimization problem, or minimum-snap optimization, can be solved by formulating the

original cost function as a quadratic programming (QP) problem [37], where the solution yields

a set of optimal polynomial coefficients that are valid along their respective intervals. The re-

sulting QP problems can be further augmented by incorporating linear equality and inequality

constraints to represent path (corridor-like) and boundary constraints on the trajectory, and the

resulting QP problems can be solved using QP solvers.

Instead of treating the optimal set of polynomial coefficients as the unknowns, polynomial

coefficients can be indirectly incorporated into the solution. In fact, Ritcher et al. [38] showed

that minimum-snap trajectories can be obtained by reformulating the QP problem as an uncon-

strained QP problem. However, this time, a direct analytical solution can be obtained without

the need to resort to iterative numerical solvers. They have shown that, by leveraging the differ-

ential flatness property, a guaranteed feasible solution can be obtained analytically, as long as

the involved derivatives are sufficiently bounded or enough time is available for the execution

of the maneuver. In other words, by allowing more time for the maneuver, the required velocity,

acceleration, and higher-order derivatives can be lowered for the entire trajectory such that they

satisfy all the constraints and limitations of the vehicle and onboard control system. Their so-

lution strategy has shown excellent numerical stability and computational speed for long-range

5

trajectories that consist of many segments. Differential flatness property combined with the fact

that the flat outputs consist of three important configuration space parameters (i.e., quadrotor

position) provides a convenient and powerful tool for rapid design of collision-free, continu-

ous, and time-optimal trajectories even in dense indoor environments [39]. The appealing form

of the polynomial-based parameterization provides a simple interface for expressing a path of

varied complexity and degrees of freedom, as well as allowing intuitive implementation of the

optimization algorithms [40]. Although several optimization methods for quadrotors have been

developed, as shown by Kreciglowa et al. in [41], minimum-snap optimization leads to the most

power-efficient solution for quadrotor flights (when compared with minimum-acceleration and

minimum-jerk solutions). The task of path planning and trajectory optimization for quadrotors

that consist of many segments and with real-time considerations is an ongoing research topic

[42, 43, 44, 45, 46]. The choice of parametrization affects the computational speed and nu-

merical stability of the algorithm. Although polynomials offer an intuitive and simple way of

expressing the components of the position vector, an alternative parametrization can potentially

lead to faster and more efficient computation while obtaining similar results.

1.3 Earlier work on FFS

This thesis is based upon some previous research, with the original work demonstrating the FFS

parameterization being used for generating spacecraft continuous-thrust trajectories by Taheri

et al. [47, 48]. The original method was then further improved in [49] by reformulating the

FFS relations in a compact matrix representation, making the FFS method suitable for pro-

gramming purposes. In Ref. [50], it is shown that control (maximum thrust magnitude) path

constraints can also be handled using the FFS method. Benefiting from its high computational

efficiency and flexibility of incorporating various constraints, the FFS method was adopted for

shaping spacecraft trajectories with various coordinate representations and propulsion systems

[51, 52, 53, 54]. Most recent applications of the FFS method are for solving spacecraft multiple

gravity-assist low-thrust trajectory optimization problems [55] and feasibility demonstration for

quadrotor motion planning [56]. Parameterized trajectory planning for dynamic soaring using

sinusoidal basis functions is also investigated in [57]. Parts of this work have been published

6

in [58]. In all these works, the authors have demonstrated the superior performance of the FFS

method in solving a wide range of periodic spacecraft trajectories and have claimed that FFS

offers several advantages when compared with other shape-based methods. In summary, the

advantages include piece-wise infinite differentiability (theoretical), greater flexibility in han-

dling dynamical and path constraints, and greater computational efficiency. The goal of this

work was to directly compare the FFS against polynomial parametrization with an equivalent

solution methodology based on simulation and experimental results in the context of trajectory

optimization for a quadrotor. To the author’s best knowledge, FFS parametrization has not been

investigated for solving minimum-snap trajectories for quadrotors. To justify the above claims,

detailed theoretical and experimental comparisons between FFS and state-of-the-art technique

for quadrotor trajectory optimization is lacking in the literature. Polynomial parametrization

is considered the baseline for comparison since it is a very common quadrotor trajectory op-

timization technique for an input set of waypoints and dynamical constraints. Moreover, the

proposed motion-planning methodology is based on obtaining smooth trajectories for a differ-

entially flat system and does not explicitly depend on the system dynamics, which is a very

attractive solution approach due to its simplicity of implementation and problem generality.

1.4 Objectives

The use of polynomial parameterizations has been the dominant approach for motion planning

of quadrotors, aircraft, and satellites due to their simplicity and effectiveness in generating

smooth trajectories. However, this work proposes an alternative parameterization for an ex-

isting motion planning algorithm by using FFS. It can be demonstrated that the formulation

of minimum-snap trajectories using the FFS method leads to QP problems that can be effi-

ciently solved. To compare the two parameterizations, first, an unconstrained QP problem is

formulated, and next, a time-allocation optimization routine for both polynomial and FFS pa-

rameterizations is developed. By using an equivalent algorithm and identical waypoints for

the two parameterizations, the resulting trajectories are compared against each other based on

shape, numerical convergence of the resulting QPs, and computational speed. The comparison

involves both theoretical results using simulation and experimental validation with an in-house

7

quadrotor. Some of the peculiar features of the two parameterizations are also discussed in this

thesis, all based on five different example trajectories.

This thesis aims to provide additional insight into the advantages and disadvantages of

selecting FFS parametrization for minimum-snap motion planning of quadrotors. However,

some classes of flight vehicles require the satisfaction of higher-order derivatives beyond snap.

For example, the fifth derivative of position is required for expressing all the states and con-

trol outputs of a conventional (fixed-wing) aircraft with just position, heading angle, and their

higher-order derivatives (see Chapter 14.0.4.1 in [59]). The choice of the FFS parameterization

may offer some potential advantages for those classes of problems since FFS trajectories are

piece-wise infinitely differentiable. As the results presented in this thesis indicate, the selection

of a different base function can also lead to a reduced number of iterations for one of the time-

allocation problems. This suggests that FFS can offer computational advantages for problems

requiring high-order derivates. Although the FFS parametrization is theoretically piece-wise

infinitely differentiable, taking high-order derivatives can lead to numerical instability due to

loss of precision, the principal reason of which is outlined in Sec. 2.1.1.2. One of the main

goals of this research effort is to compare the formulation of the two parameterization choices

for motion planning of quadrotors. For fixed-time minimum-snap motion-planning problems

using FFS parameterization, it is 1) shown that motion-planning problems can be formulated

as QP problems, and 2) an analytic solution to an unconstrained QP problem is also derived.

Leveraging the analytic solution, formulation, and solution of time-allocated minimum-snap

multi-segment trajectory optimization solution methodology is also presented. In summary,

the primary goal of this thesis is to present a fair one-to-one comparison of the FFS- and

polynomial-based formulations for five classes of trajectories and present both computational

results and experimental validation using a custom-built quadrotor. Position and heading angle

boundary condition information and time of flight data are given for the fixed-time cases in the

Appendix for ease of reproducing the test cases.

To validate the proposed method, a quadrotor simulation was developed. Additionally, a

heuristic-based framework for “hands-off” gain tuning of multi-rotor vehicles in simulated en-

vironments has been developed as one of the byproducts of this research effort. Although there

8

are plenty of gain-tuning techniques already discussed in the literature, they often deal with

final refinement and not the entire end-to-end gain-tuning process. In other words, a stable set

of gains has to be provided to the algorithm at initialization, obtaining which can be a very

involved process that has to be done manually. A set of cost functions was considered to incor-

porate control effort, stability, agility, and overall state tracking into the gain-tuning process,

as control gain tuning for a complex non-linear system can be a daunting task. The method al-

lows for intuitively defining the notion of a well-behaved flight and performing control system

gain optimization for different classes of trajectories. The proposed method uses MATLAB’s

fmincon optimizer for all gain tuning by starting from a completely unstable set of gains.

The method is independent of the exact implementation of the control system and treats it as

a set of black boxes with known inputs and outputs. The control system gains are the only

variables required to be tuned to obtain optimal flight performance as defined by the compound

cost. This method has been developed with the main purpose of saving time spent manually

performing gain-tuning. Although it is not fast at all, the method is robust to failure and is

entirely “hands-off”, meaning that when starting with a random set of controller gains (usually

completely unstable), the algorithm can find a feasible set and further optimize it, without any

intervention. Just to be clear, this method was developed for in-simulation gain-tuning only

and is not the major focus of this work. Only high-level key details are covered here, since the

specific control system implementation (and subsequent gain-tuning) is very subjective and is

only discussed here for completeness. The main purpose of this work is to compare the per-

formance of the two motion-planning techniques, both theoretically and experimentally. Any

control system, as long as it can realize the required trajectory, should suffice.

The remainder of this thesis is organized as follows. In section 2.1, the trajectory genera-

tion algorithm is broken down into two parts. First, a solution to an unconstrained QP problem

with a fixed-time allocation is derived in Section 2.1.1. Next, the problem solution is augmented

with a time-allocation algorithm derived in Section 2.1.2. Section 2.1 is concluded by providing

some details about testing the two algorithms, hardware implementation, and details regarding

the implementation process in Section 2.1.3. Computational results for fixed-time problems

(Sec. 3.1.1) and time-allocation problems (Sec. 3.1.2) that benchmark the two parameterization

9

methods against each other are presented in Section 3. An alternative formulation of the FFS

is introduced with computational results shown in Section 3.1.2.5. Finally, experimental vali-

dation results are presented in Section 3.2. Section 4.1 summarizes the most important results

and key findings.

10

Chapter 2

2.1 Trajectory Planning

2.1.1 Formulation of fixed-time, minimum-snap trajectory optimization problems

Leveraging the concept of differential flatness for quadrotors [35], it is possible to perform

motion planning along each axis (i.e., x, y and z) of the motion independently. Additionally,

the heading angle can be considered as a separate fourth dimension. Let P (t,p) represent an

expression for each of the flat outputs, such that it is differentiable with respect to time up to ndt

times, where p is a vector of design variables. The general approach is to minimize the square

of the ndt-th derivative of P (t,p) over the entire interval and for each of the axes of motion.

While motion planning of robotic joints, limbs, and manipulators [60, 61] require minimization

of the third derivative squared (or minimum-jerk optimization with ndt = 3), motion planning

for multirotors must consider minimization of the fourth derivative of the position squared. The

Lagrange form cost functional for these classes of problems can be written as:

minimize
p

J =

∫ tf

ti

[
dndt

dtndt
P (t,p)

]2
dt, (2.1)

in which t ∈ [ti, tf]. The exact same cost functional is used along each dimension (i.e., x, y, z

and heading angle) and the total cost required to be minimized is the summation of the costs

for each axis of motion. The problem defined in Eq. (2.1) is a standard variational problem,

and the calculus of variations techniques are used to find an extremal solution.

11

Figure 2.1: Definition of a multi-segment/interval trajectory. “interval” and “segment” are used
interchangeably.

A more general approach would be to consider linear equality and inequality constraints,

which can then be reformulated as a constrained QP problem. Such a solution strategy has been

explored by the authors in [56]. While this method offers flexibility such as directly incorporat-

ing corridor and path constraints, the main limitation is the computational cost and number of

iterations required to achieve a fixed-time solution. Instead, only linear equality constraints can

be considered to simplify the process and obtain a fixed-time solution analytically. For this the-

sis, the quadrotor motion-planning problem is formulated. First introduced in [35], a quadrotor

is a differently-flat system. In other words, the quadrotor states (position, velocity, accelera-

tion, attitude, and body frame angular rates) can all be expressed in terms of a set of flat output

variables (i.e., spacial position and heading angle) and their derivatives. More importantly, the

control output (i.e., required thrust and torque value) has been shown to be a function of the flat

output variables and their derivatives. A detailed derivation has been presented in [34], but the

key takeaway is that the motor speed required to execute a certain trajectory is a direct func-

tion of position, heading angle, and their derivatives (fourth derivative of position, and second

derivative of the heading angle). In Ref. [62], it is also shown that the minimum-jerk quadrotor

cost functional has an interpretation as an upper bound of the product of the inputs (i.e., thrust

and angular rates). Therefore, to minimize power consumption on the i-th segment, ndt = 4

12

was selected in Eq. (2.1), and written as:

minimize
pi

J =

∫ tf=Ti

t0=0

[
d4

dt4
P (t,pi)

]2
dt = p⊤

i Qipi,

s.t. Aipi = di, for i ∈ {1, . . . , nint},
(2.2)

where the matrix Ai maps the vector of design variables, pi, to the constraint vector, di. The

matrix Qi maps the vector of design variables pi to the integral of P (t, Ti,pi), and Ti is the

time allocated for the i-th segment (in a multi-segment trajectory) such that 0 ≤ t ≤ Ti. Note

that Ti is assumed to be fixed and known. If more than one segment is used, time is allocated

externally for each interval with a total of nint (number of intervals) such that a time allocation

vector can be formed as T = [T1, . . . , Tnint]
⊤. Figure 2.1 shows a schematic summarizing the

definitions used throughout the paper. Each segment is represented by its own set of design

variables, independent of other segments. When multiple segments are present, the individ-

ual cost function and constraints for each segment, i ∈ {1, · · · , nint}, are used to express the

relations in a block-diagonal manner as:

minimize
p

J =


p1

...

pnint


⊤ 

Q1 [0] [0]

[0]
. . . [0]

[0] [0] Qnint



p1

...

pnint

 ,

s.t.


A1 [0] [0]

[0]
. . . [0]

[0] [0] Anint



p1

...

pnint

 =


d1

...

dnint

 ,
(2.3)

where p⊤ = [p⊤
1 , · · · ,p⊤

nint
] and Qi and Ai correspond to the i-th segment and are specific to

the parameterization of P (t,pi). The constraint vector, d⊤ = [d⊤
1 , · · · ,d⊤

nint
], consists of the

fixed and free boundary conditions, some of which are assumed to be specified (e.g., position at

each waypoint, initial and final velocity, acceleration, etc.), but the rest are free (e.g., velocity,

acceleration, and higher-order derivatives at each intermediate waypoint) and will have to be

13

solved for. The solution steps are outlined in Sec. 2.1.1.3, but it is important to start with defin-

ing trajectory parameterization methods. First, the polynomial parameterization is reviewed,

and then the FFS parameterization is introduced.

2.1.1.1 Generalization of the polynomial and FFS parameterizations

The minimum number of parameters for either method is defined by the number of boundary

constraints. For a single-interval, single-axis, minimum-snap trajectory, there are always ten

constraints to be satisfied, including: initial and final position, velocity, acceleration, jerk, and

snap values. Therefore, there must be at least ten parameters in the general form of the P (t,pi)

(i.e., pi ∈ Rn≥10). Equality constraints on derivatives allow enforcing continuity up to snap

when multiple segments are considered. However, an additional pair of equality constraints on

the fifth derivative can be considered to ensure snap is both continuous and smooth. This sets

the minimum number of parameters to twelve per axis of motion per interval. The primary fo-

cus of this thesis is on standard minimum-snap trajectory optimization with constraints applied

only up to the fourth derivative. This method considers five boundary conditions at the begin-

ning and the end of each interval, therefore requiring at least ten parameters for each interval

on a single dimension (or axis of motion).

The procedure to calculate the required mapping matrices is identical for both the poly-

nomial and FFS parameterizations. The constraint matrix Ai is simply the Jacobian of the path

P (t,pi) and its derivatives with respect to (w.r.t.) the design vector, pi, which is then evaluated

at the initial time t0 = 0 and final time tf = Ti. The quadratic mapping matrix, Qi, is one-half

of the Hessian of the cost function (Eq. (2.2)). It is assumed that pi ∈ R10×1, Ai ∈ R10×10 and

Qi ∈ R10×10 for both parameterizations. These dimensions correspond to the i-th segment of a

multi-segment trajectory for single-axis motion.

14

Polynomial parameterization. The most common parameterization for solving these classes

of QP problems is a minimum-order polynomial function, which can be written as:

P (t, Ti,pi) = a0 + a1
t

Ti
+ a2

(
t

Ti

)2

+ a3

(
t

Ti

)3

+ · · ·+ an

(
t

Ti

)n
,

where pi = [a0, a1, a2, a3, . . . , an]
⊤ ,

(2.4)

where time t is scaled by the segment time Ti allocated for the i-th segment and polynomial

order is n = 9 for constraint derivative order of four (ndt = 4). Mapping matrices for this for-

mulation are derived in the following manner. The time-dependent constraint matrix, Ai(t, Ti),

can be derived by taking the gradient (w.r.t. pi) of the vector consisting of polynomial repre-

sentation of the path and its derivatives (9th order polynomial, 4th order derivative) as:

Ai(t, Ti) = ∇pi



P (t, Ti,pi)

d
dt
P (t, Ti,pi)

...

dndt

dtndtP (t, Ti,pi)



=



1 t
Ti

t2

T 2
i

t3

T 3
i

t4

T 4
i

t5

T 5
i

t6

T 6
i

t7

T 7
i

t8

T 8
i

t9

T 9
i

0 1
Ti

2 t
T 2

i

3 t2

T 3
i

4 t3

T 4
i

5 t4

T 5
i

6 t5

T 6
i

7 t6

T 7
i

8 t7

T 8
i

9 t8

T 9
i

0 0 2
T 2

i

6 t
T 3

i

12 t2

T 4
i

20 t3

T 5
i

30 t4

T 6
i

42 t5

T 7
i

56 t6

T 8
i

72 t7

T 9
i

0 0 0 6
T 3

i

24 t
T 4

i

60 t2

T 5
i

120 t3

T 6
i

210 t4

T 7
i

336 t5

T 8
i

504 t6

T 9
i

0 0 0 0 24
T 4

i

120 t
T 5

i

360 t2

T 6
i

840 t3

T 7
i

1680 t4

T 8
i

3024 t5

T 9
i


.

(2.5)

The unconstrained optimization implies that no path constraints along each interval are

considered and only the boundary conditions have to be respected. Therefore, Eq. (2.5) can is

evaluated at the boundaries and the constraint mapping matrix Ai(Ti) is calculated. This leads

to a very appealing form that only depends on the total time (which is fixed for this problem)

15

as:

Ai(Ti) =

 Ai(t = 0, Ti)

Ai(t = Ti, Ti)

 =



1 0 0 0 0 0 0 0 0 0

0 1
Ti

0 0 0 0 0 0 0 0

0 0 2
T 2

i
0 0 0 0 0 0 0

0 0 0 6
T 3

i
0 0 0 0 0 0

0 0 0 0 24
T 4

i
0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

0 1
Ti

2
Ti

3
Ti

4
Ti

5
Ti

6
Ti

7
Ti

8
Ti

9
Ti

0 0 2
T 2

i

6
T 2

i

12
T 2

i

20
T 2

i

30
T 2

i

42
T 2

i

56
T 2

i

72
T 2

i

0 0 0 6
T 3

i

24
T 3

i

60
T 3

i

120
T 3

i

210
T 3

i

336
T 3

i

504
T 3

i

0 0 0 0 24
T 4

i

120
T 4

i

360
T 4

i

840
T 4

i

1680
T 4

i

3024
T 4

i



. (2.6)

The quadratic mapping matrix Qi(Ti) is computed by taking the Hessian of the cost func-

tion given by Eq. (2.2) w.r.t. the design vector pi and by applying a factor of 1
2
, which can be

written as:

Qi(Ti) =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 576
T 7

i

1440
T 7

i

2880
T 7

i

5040
T 7

i

8064
T 7

i

12096
T 7

i

0 0 0 0 1440
T 7

i

4800
T 7

i

10800
T 7

i

20160
T 7

i

33600
T 7

i

51840
T 7

i

0 0 0 0 2880
T 7

i

10800
T 7

i

25920
T 7

i

50400
T 7

i

86400
T 7

i

136080
T 7

i

0 0 0 0 5040
T 7

i

20160
T 7

i

50400
T 7

i

100800
T 7

i

176400
T 7

i

282240
T 7

i

0 0 0 0 8064
T 7

i

33600
T 7

i

86400
T 7

i

176400
T 7

i

313600
T 7

i

508032
T 7

i

0 0 0 0 12096
T 7

i

51840
T 7

i

136080
T 7

i

282240
T 7

i

508032
T 7

i

9144576
11T 7

i



. (2.7)

Both the linear constraint mapping matrix, Ai(Ti), and quadratic mapping matrix, Qi(Ti),

are valid for cases where only one interval and one axis of motion are considered. For more

16

complex trajectories, corresponding A(T) and Q(p) matrices can be obtained as given in

Eq. 2.3. This standard parameterization method is used as a basis of comparison against the

FFS parameterization.

FFS parameterization. Similarly, FFS can be used to parameterize each dimension of mo-

tion as:

if ndt is odd:
P (t, Ti,pi) =

a0
2

+
nr∑
k=1

{
ak cos

(
1

2
kπ

t

Ti

)
+ bk-1 sin

(
1

2
kπ

t

Ti

)}
+ bnr cos

(
1

2
nrπ

t

Ti

)
,

(2.8)

if ndt is even:
P (t, Ti,pi) =

a0
2

+
nr∑
k=1

{
ak cos

(
1

2
kπ

t

Ti

)
+ bk-1 sin

(
1

2
kπ

t

Ti

)}
+ bnr sin

(
1

2
nrπ

t

Ti

)
,

(2.9)

where design vector is pi = [a0, . . . , anr , b0, . . . , bnr] with an abuse of notation. Due to the

choise of optimization problem (ndt = 4 and nr = 4), only Eq. (2.9) is needed. However,

Eq. (2.8) can be used for the cases when the order of constants and/or cost function is odd (from

example, for minimum-jerk or minimum-crackle optimization). The two mapping matrices

are derived in the exact same manner as for the polynomial parameterization. The constraint

mapping matrix Ai(t, Ti) is found by taking the gradient of the vector of derivatives w.r.t. vector

of design variables pi. A constant mapping matrix Ai(Ti) is found by evaluating Ai(t, Ti)

at the boundaries and staking the results vertically. The constant constraint mapping matrix

17

corresponding to Eq. (2.9) is

Ai(Ti) =

Ai(Ti = 0, Ti)

Ai(tf = Ti, Ti)



=



1
2

1 1 1 1 0 0 0 0 0

0 0 0 0 0 π
2Ti

π
Ti

3π
2Ti

2π
Ti

5π
2Ti

0 − π2

4T 2
i

− π2

T 2
i

− 9π2

4T 2
i

−4π2

T 2
i

0 0 0 0 0

0 0 0 0 0 − π3

8T 3
i

− π3

T 3
i

−27π3

8T 3
i

−8π3

T 3
i

−125π3

8T 3
i

0 π4

16T 4
i

π4

T 4
i

81π4

16T 4
i

16π4

T 4
i

0 0 0 0 0

1
2

0 −1 0 1 1 0 −1 0 1

0 − π
2Ti

0 3π
2Ti

0 0 − π
Ti

0 2π
Ti

0

0 0 π2

T 2
i

0 −4π2

T 2
i

− π2

4T 2
i

0 9π2

4T 2
i

0 −25π2

4T 2
i

0 π3

8T 3
i

0 −27π3

8T 3
i

0 0 π3

T 3
i

0 −8π3

T 3
i

0

0 0 − π4

T 4
i

0 16π4

T 4
i

π4

16T 4
i

0 − 81π4

16T 4
i

0 625π4

16T 4
i



.

(2.10)

18

The Quadratic mapping matrix Qi for FFS parameterization is found using the exact same

process as the one for polynomial representation, with the final expression written as:

Qi(Ti) =

0 0 0 0 0 0 0 0 0 0

0 π8

512T 7
i

π7

24T 7
i

0 − 2π7

15T 7
i

π7

256T 7
i

π7

12T 7
i

81π7

256T 7
i

8π7

15T 7
i

625π7

768T 7
i

0 π7

24T 7
i

π8

2T 7
i

243π7

40T 7
i

0 − π7

24T 7
i

0 243π7

40T 7
i

64π7

3T 7
i

3125π7

168T 7
i

0 0 243π7

40T 7
i

6561π8

512T 7
i

486π7

7T 7
i

− 81π7

256T 7
i

− 81π7

20T 7
i

2187π7

256T 7
i

648π7

7T 7
i

50625π7

256T 7
i

0 − 2π7

15T 7
i

0 486π7

7T 7
i

128π8

T 7
i

− 2π7

15T 7
i

−32π7

3T 7
i

−486π7

7T 7
i

0 6250π7

9T 7
i

0 π7

256T 7
i

− π7

24T 7
i

− 81π7

256T 7
i

− 2π7

15T 7
i

π8

512T 7
i

π7

12T 7
i

0 − 8π7

15T 7
i

0

0 π7

12T 7
i

0 − 81π7

20T 7
i

−32π7

3T 7
i

π7

12T 7
i

π8

2T 7
i

81π7

20T 7
i

0 −625π7

84T 7
i

0 81π7

256T 7
i

243π7

40T 7
i

2187π7

256T 7
i

−486π7

7T 7
i

0 81π7

20T 7
i

6561π8

512T 7
i

648π7

7T 7
i

0

0 8π7

15T 7
i

64π7

3T 7
i

648π7

7T 7
i

0 − 8π7

15T 7
i

0 648π7

7T 7
i

128π8

T 7
i

5000π7

9T 7
i

0 625π7

768T 7
i

3125π7

168T 7
i

50625π7

256T 7
i

6250π7

9T 7
i

0 −625π7

84T 7
i

0 5000π7

9T 7
i

390625π8

512T 7
i



.

(2.11)

A few key features of the mapping matrices for the two parameterizations are noteworthy

and are summarized below.

2.1.1.2 Key differences between polynomial and FFS parametrization

A claim can be made that time allocated for each segment of the trajectory is known and

fixed, thus allowing analytic derivation of a minimizer for the quadratic cost function given

by Eq. (2.3). The derivation presented in Sec. 2.1.1.3 proves this claim. The most immediate

implication is that there should exist a unique solution corresponding to a fixed set of boundary

conditions. By keeping the global time for the entire trajectory and fixed boundary conditions,

but adjusting how much total time is allocated per segment, a family of solutions can be com-

puted for a set of position waypoints. This feature has been explored in [38], but some of the

important features will be reviewed in Section 2.1.2.

19

Since both mapping matrices (given in Eqs. (2.6) and (2.7) for polynomial and Eqs. (2.10)

and (2.11) for FFS parametrizations) are fixed in size, with their elements only being functions

of the time, Ti, they can be combined directly without the need to recompute them during the

solution using the following matrix decomposition:

Q̃i(Ti) = A−⊤
i (Ti)Qi(Ti)A−1

i (Ti). (2.12)

The origin of the relation given in Eq. (2.12) becomes clear in Sec. 2.1.1.3, but Eq. (2.12)

is computed every time irrespective of the parameterization used. In other words, the two

mapping matrices derived earlier for each of the parametrization are used equivalently in the

subsequent sections and all the differences between polynomial and FFS parametrization are

encoded in Eq. (2.12). Since the solution to this problem requires operations with large ma-

trices, it is useful to consider sparsity patterns. The result after computing the product given

by Eq. (2.12) for the two parameterizations is at the root of the differences between the two

parametrizations. Even though the mapping matrices Ai(Ti) and Qi(Ti) have completely differ-

ent sparsity patterns, the result of applying Eq. (2.12) is a fully dense matrix. In other words,

either parameterization results in a R10×10 combined mapping matrix Q̃i(Ti) with every ele-

ment being non-zero; thus, evaluation of the cost should take approximately the same time

for both parameterizations. As is shown in Sec. 2.1.1.3, computing the optimal set of design

variables involves mapping parts of the cost function back using only the inverse of constraint

matrix Ai(Ti) (Eq. (2.19)). Other than size, the constraint mapping matrices Ai(Ti) are quite

different in terms of the non-zero elements: 45/100 for polynomial and 47/100 for the FFS

parameterizations, which obviously means that there are more elements to evaluate in the FFS

formulation. However, the inverse of the same mapping matrix is needed, which means that

the number of non-zero elements grows: 55/100 for the polynomial and 100/100 for the FFS

parameterizations. This fact ultimately makes the FFS parameterization almost twice as ex-

pensive to compute. As a result, if all other parameters were to remain constant, it should be

expected that the fixed-time solution obtained using the FFS parameterization is going to be

more demanding to compute than the polynomial parameterization. The results in Tables 3.1

20

confirm this claim. The requirement of computing the inverse of the mapping matrices limits

the theoretical “infinite differentiability” of the FFS parametrization. As higher-order deriva-

tives are added into the formulation (ndt ≥ 5) since the coefficient in front of each trigonometric

term grows in magnitude (with each derivative of Eq. (2.8) or Eq. (2.9)) the inverse is not nu-

merically stable and can lead to inaccurate solutions.

2.1.1.3 Deriving analytic solution for fixed-boundary problem

The goal is to minimize the quadratic cost function given in Eq. (2.2) subject to a set of linear

equality constants enforced by the vector d. For the simplest case, when only one interval is

preset for a single axis of motion, the vector d represents a set of boundary conditions for an

interval, or pairs of initial and final position p, velocity v, acceleration a, jerk j, and snap s. Al-

though the order of the elements can be arbitrary, assume the vector d consists of concatenated

vectors dk, where each k-th vector is formed as follows:

dk = [pk, vk, ak, jk, sk, pk+1, vk+1, ak+1, jk+1, sk+1]
⊤ , (2.13)

where subscripts k and k + 1 indicate the current and next point (or first and last for a case

when only one interval is present). Note that for a multi-segmented trajectory, intermediate

waypoints have to be duplicated in the constraint vector d and this is accomplished through

regrouping and duplicating matrices below. However, to obtain an analytic solution to this QP

problem, an unconstrained QP problem formulation has to be considered. It was proposed by

Richter et al. [38] and then further improved by Park et al. [63]. As will be shown later in this

section, a globally optimal solution can be obtained to an unconstrained QP problem without

any iterations, thus, speeding up the computations. The basic approach relies on breaking down

the constraints into two types: fixed (specified) dF, and free (unspecified) dP. It is assumed

that at the very first waypoint (on the first interval) and last waypoint (on the last interval) all

derivatives are always fixed (specified) and are set to zero since it is assumed (but not required)

that the vehicle starts and ends the trajectory at rest. The position of each waypoint is assumed

to be known and specified. Continuity constraints on derivatives between the intervals, if more

21

than one segment exists (i.e., nint > 1), are also considered to be part of the dF vector. With

this rationale, certain grouping has to be performed to convert the constraint vector d into fixed

and free constraints (boundary conditions at each waypoint).

To perform reorganization of the fixed and free constraints, an additional mapping ma-

trix, M, is introduced, which has a variable size depending on the number of intervals and

constraints. A matrix M can be obtained by considering a product of two matrices. First, a

re-grouping square matrix Mr ∈ Rnc×nc of the same size as the number of unique boundary

conditions nc = (ndt + 1)(nint + 1) in d ∈ R10nint×1 is introduced, which simply re-orders the

original vector d such that specified constraints are followed by free ones. A second matrix,

Mc, takes care of continuity constraints by duplicating the intermediate waypoints for cases

with more than one interval. For cases when only one interval is present, Mc is a square iden-

tity matrix of the same size as the Mr, but for cases with more than one interval, it has to

duplicate the interior points such that the constants at the end and at the beginning of the two

subsequent intervals match. The total number of constraints should match the length of the

state vector of coefficients, in our case, ten per interval (so Mc ∈ R10nint×nc).

Constraint mapping can be summarized as:

d = M
[
d⊤

F ,d
⊤
P

]⊤
, where M = McMr, (2.14)

in which matrices Mc,Mr and M consist of ones and zeros and do not alter the constants in any

way other than reordering and duplicating them. Next, the linear constraints given in Eq. (2.2)

can be rearranged and solved for the vector of design variables, p, in terms of the fixed and free

constraints as:

p = A−1d = A−1M
[
d⊤

F ,d
⊤
P

]⊤
. (2.15)

22

Substituting Eq. (2.15) into Eq. (2.2), the resulting quadratic cost function can be re-

written as:

J = p⊤Qp =

dF

dP


⊤

M⊤A−⊤QA−1M︸ ︷︷ ︸
R

dF

dP

 =

dF

dP


⊤ RPP RFP

RPF RPP


dF

dP

 , (2.16)

where the product M⊤A−⊤QA−1M is grouped together into matrix R and then partitioned into

four blocks based on the fixed and free constraints. The product can further be expanded to

obtain the following expression:

J = d⊤
F RPPdF + d⊤

F RPFdP + d⊤
P RPFdF + d⊤

P RPPdP. (2.17)

Since fixed derivatives are already known, the main goal is then to use the free derivatives,

dP, to find the minimum of the cost function as ∂J/∂dP = d⊤
F RFP + RPFdF + 2RPPdP =

2RPFdF + 2RPPdP where both RPF and RFP are assumed to be transposes of each other (RPF =

R⊤
FP). The vector of free derivatives can be written as:

d∗
P = −R−1

PP RPFdF = −R−1
PP R

⊤
FPdF. (2.18)

The optimal set of design parameters can be obtained by substituting the result back into

Eq. (2.15):

p∗ = A−1M
[
d⊤

F ,d
∗⊤
P

]⊤
. (2.19)

At this point, an optimal solution to a fixed-time unconstrained problem without any it-

erations has been derived. The exact same procedure is applied to both polynomial and FFS

parameterizations. In fact, the only differences between the two parameterizations are reflected

in the values of the mapping matrix, A. Recall that both the quadratic mapping matrix, Q, and

linear mapping matrix, A, are only functions of the total time allocated for each segment. In

fact, there exists a simple decoupling for both. Consider a single-interval, single-axis case for

23

simplicity. Matrices Q and A can be re-written as the following products Q = QsQ̄Qs and

A = AsĀ where Qs is a square positive diagonal time-scaling matrix and Q̄ is a constant square

matrix. Similarly, As is a square symmetric time-scaling matrix (not diagonal) for constant

square matrix Ā. In fact, Q̄ and Ā are only defined by the cost function and the parameteriza-

tion method and are invariant to constraints or time allocation and are never changed unless the

order of derivatives considered is altered. The cost function given in Eq. (2.16) can be rewritten

as:

J =

dF

dP


⊤

M⊤A−⊤QA−1M

dF

dP

 =

dF

dP


⊤

M⊤
S︷ ︸︸ ︷

AsQs Ā−1Q̄Ā−⊤︸ ︷︷ ︸
Q

S︷ ︸︸ ︷
AsQs M

dF

dP



=

dF

dP


⊤

M⊤SQSM

dF

dP

 .
(2.20)

What is intriguing is that the scaling pattern given by S(T) = As(T)Qs(T) is independent

of the parameterization method used and is only defined by the cost function, or the order of

the derivative considered (minimum jerk, minimum snap, etc.). This indicates that a major part

of the problem, Q, remains completely invariant to time and, with additional manipulations,

can lead to the following time scaled form:

minimize J̄ = p̄⊤Qp̄ =

dF

dP


⊤

M⊤QM

dF

dP

 , where, (2.21)

p̄ = S−1p = Q−1
s Ā−1M

dF

dP

 . (2.22)

The problem given in Eq. (2.21) can be solved without time factored into the solution for p̄

and the time-dependent coefficients can be recovered using S(T). However, this approach does

not appear to offer any advantages over directly solving for the coefficients with time factored

in. Although it may appear simpler, the original problem must still be solved to account for the

new free constraints, so it presents no computational advantage. Since both As and Qs contain

24

elements with time raised to large and low powers simultaneously, the combined contribution

of those elements (after solving for the free constraints) amplify the numerical error and final

trajectory (in the time domain) may have visible discontinuities at some of the points. This

effect is demonstrated with the fixed-time solutions and their time-optimal counterparts in the

subsequent sections..

2.1.2 Time-allocation problem

In the previous section, it is assumed that the total time allocated for each interval is constant

and, if allocation was done correctly, the optimal trajectory for that sequence of time segments

can be obtained analytically. In practice, the trajectory designer might not know the exact

timing for each and every waypoint of interest, and more importantly, global time for the entire

trajectory can be treated as a far more important design variable rather than how that time is

allocated for each individual interval. Let us assume the exact same setup as for the fixed-

time problem discussed earlier, where a sequence of waypoints is given as well as intermediate

boundary conditions have been specified (if any). However, there is no longer explicit time

allocated for each interval, and it is up to the algorithm to find the optimal solution.

The first step is to augment the quadratic cost function in Eq. (2.2) by a linear term with a

constant weight kT for the sum of time allocation vector T = [T1, . . . , Tnint]
⊤:

JT = p⊤Qp+ kT

nint∑
i=1

Ti, (2.23)

where time T =
∑nint

i=1 Ti is the global time for the entire trajectory and Ti is time of flight

between each waypoint i to i + 1. The time penalty kT gain can be adjusted by the user to

increase or decrease the global time, but is arbitrary and depends on the specific mission and

requirements. To be more specific, the determination of an appropriate kT value depends on

several factors. If any of the dynamic requirements (maximum load factor, speed, etc.) are

exceeded for a particular choice of vehicle and a set of waypoints, the kT value can be adjusted

accordingly to lower (or raise, if too slow) the total flight time and find a dynamically feasible

trajectory. The same value of kT produces a different effect for the two parameterizations, even

25

though the solution scheme and inputs are identical. For the same boundary constraints, the

FFS usually leads to a higher cost than polynomial parameterization. Therefore, kT gain has

to be larger for the FFS method if the user intends to match the global time of the two solu-

tions. The problem defined in Eq. (2.23) can be solved using quasi-Newton gradient-based NLP

solvers such as MATLAB’s fmincon. A set of linear inequality constraints on time allocated

for each segment was considered, and the gradient numerically was computed numerically by

perturbing the time allocation vector and solving the fixed-time problem. The performance of

the algorithm has been tested with hand-picked waypoints, as well as with a higher-lever ran-

domized path-planning algorithm RRT∗ of MATLAB providing a collision-free path defined by

a set of waypoints. A virtual 3-dimensional grid was constructed to re-create the flying arena

in ACELAB. Both simulation and experimental results are presented in Sec. 3.

2.1.3 Simulation and experimental setup

A 6DoF quadrotor simulation was developed for theoretical validation of the two methods

discussed in previous chapters. The constants and parameters have been defined as in [56].

System dynamics, control system model and implementation details were also identical to those

in [56]. The dynamics are standard for a 6DoF rigid-body quadrotor, with all four motors

producing thrust perpendicular to the x − y in a north-east-down body frame. To give some

physical meaning to the numerical results presented later in the paper, the power consumption

was computed as part of the post-processing analysis of the simulated quadrotor flight and

included it with the rest of the numerical results. Although the minimum-snap cost given in

Eq. (2.3) is directly representative of the power consumed by an ideal quadrotor, for the sake of

completeness the total power consumed by the quadrotor was defined (with abuse of notation)

and computed as:

P =

∫ tf

t0

4∑
i=1

kω3
i dt, k = 3.0× 10−9N m/RPM2, (2.24)

26

where ωi is the motor speed in revolutions per minute (RPM). The quadrotor system dynamics

with the control system described in [56] was simulated in order to obtain this theoretical power

consumption.

All the motion-planing algorithms and simulations have been developed in MATLAB and

Simulink. For validating the motion-planning algorithms, a full-sized quadrotor was assembled

and flown in the lab (Fig. 2.2). All trajectories presented in Section 3 have been computed off-

board using MATLAB environment. The laptop used for generating all the trajectories runs an

Intel® i7-10750H 2.60GHz CPU. Once generated, all trajectories were uploaded to the quadro-

tor as text files and executed using remote keyboard input from the ground computer.

Figure 2.2: Hardware data flow schematics.

For experimental validation of the method presented in this thesis, a custom-built quadro-

tor with custom-written in C++ firmware (ACE-pilot) has been used. The onboard Linux com-

puter, BeagleBone® Blue, was only used to run the flight control system and its peripherals. The

communications with the ground station were handled by a pair of Xbee Pro radio modules,

with a custom data-packet format. The position and heading of the quadrotor were not esti-

mated on-board but sent from the ground station using an OptiTrack motion capture system.

The trajectories were loaded in a point-by-point format and used to assign internal position

setpoints. No feedforward control was used for this work. To simplify the trajectory genera-

tion process, all controls were assumed to be performed in a local, initial position corrected,

27

coordinate frame. The quadrotor was to log the initial state in the inertial frame when a new

trajectory was to be executed and use the incoming trajectory references as offsets to the initial

position. The same strategy was applied for continuous heading reference setpoints. A simple

path-following strategy was adopted. The reference position to the flight control system, Pref(t)

was interpolated from a pre-computed optimal trajectory based on time-since-epoch, t, or the

start of the trajectory. The deviation, ∆, from the intended path was defined as:

∆Pk(t) = Pref(t)− Pk(t), for, k ∈ {x, y, z, ψ}, (2.25)

where the state of the vehicle is estimated using Blue’s built-in inertial-measurement unit and

the motion capture system. Although there can be several enhancements made to the path-

following strategy (e.g., considering the perpendicular distance from the intended path to com-

pensate for the time lag), the development of an advanced path-following strategy is considered

to be out of the scope of this work, since it will only improve the overall tracking performance.

The exact same inputs for trajectory generation, path-following strategy, control system, hard-

ware, and overall setup have been maintained for all experimental flight tests. The only dif-

ference is due to the parametrization method used to generate an optimal trajectory, which is

converted into a set of the reference position and heading reference points to the control system.

2.2 Vehicle Dynamics

Under rigid-body dynamics assumptions, the complete state of the vehicle, X̄ , can be expressed

in terms of the position and velocity vectors of the center of mass in the inertial frame (subscript

‘I’), RI = [x, y, z]⊤, VI = [ẋ, ẏ, ż]⊤, respectively. The angular velocity vector of the body

frame relative to the inertial frame (when expressed in the body frame) is defined as Ω =

[p, q, r]⊤. The attitude of the vehicle is expressed as a sequence of three rotations about the

three orthogonal axes of the body frame Θ = [ϕ, θ, ψ]⊤. Euler angles denote rotation about

the body xB axis (with roll angle ϕ), yB axis (with pitch angle θ) and zB axis (with yaw angle

ψ) [64]. For a definition of the coordinate frames, refer to Figure 2.3. Let the state vector be

X̄⊤ = [R⊤
I ,V

⊤
I ,Θ

⊤,Ω⊤], the 6DoF dynamics is [64, 65]:

28

Figure 2.3: Definition of inertial and quadcopter body-fixed frames of reference. Sense of
rotation and numbering convention of propellers are shown.

ṘI = VI , V̇I =
1

m
(Fg +RB2IT) , (2.26)

Ω̇ = I−1
B (−Ω× IBΩ−Mgyro +M) , (2.27)

Θ̇ = Rsq Ω, (2.28)

Rsq =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 , (2.29)

RB2I =


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθcψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

 , (2.30)

wherem is the constant total mass of the vehicle, g is gravitational acceleration, Fg = [0, 0,mg]⊤

denotes the gravitational force, RB2I(ϕ, θ, ψ) is the transformation matrix from the body frame

to the inertial frame, s(·) ≡ sin(·) and c(·) ≡ cos(·). The constant moment of inertia matrix of

the vehicle is denoted as IB. In Eq. (2.27), M ∈ R3 denotes the control torque vector produced

29

by the propellers given in Eq. (2.33). Total thrust, T , is expressed as:

T =

(
n∑
i=1

Trotor,i

)
0

0

−1

 = b

(
n∑
i=1

ω2
i

)
0

0

−1

 , (2.31)

where thrust output of each propeller, Trotor,i, is related to the square of the motor speed ωi by

a constant coefficient b, i.e., Trotor,i = bω2
i and that there are n = 4 motors (with the same

performance). The total moment of inertia of the rotary part of the electric motor with the

propeller attached to it is Ir,i, and the gyroscopic torque, Mgyro, due to all n rotors is

Mgyro =
n∑
i=1

Ω×


0

0

1


 Irωi(−1)i. (2.32)

Reactive torque due to each electric motor and its propeller is related to the square of the

speed of rotation with a constant coefficient k and is expressed as Qi = kω2
i (i ∈ {1, 2, 3, 4}).

Let h and l denote the roll and pitch moment arms, respectively. The total torque due to pro-

pellers is

M =


Mx

My

Mz

 =


bh(−ω2

1 − ω2
2 + ω2

3 + ω2
4)

bl(ω2
1 − ω2

2 − ω2
3 + ω2

4)

k(ω2
1 − ω2

2 + ω2
3 − ω2

4)

 . (2.33)

Combining Eqs. (2.31) and (2.33) yields a relation between the thrust and torque produced in

the body frame as:



Tz

Mx

My

Mz


=



−b −b −b −b

−bh −bh bh bh

bl −bl −bl bl

k −k k −k





ω2
1

ω2
2

ω2
3

ω2
4


. (2.34)

30

Figure 2.4: Cascaded position-attitude control hierarchy. The outputs of the control system are
reference/requested torque and thrust commands.

2.3 Non-linear Control structure

The multirotor control systems typically consist of two primary control loops, i.e., a position-

level control and an attitude-level control. Optionally, the rate of change of both translational

and rotational (or velocity and Euler angle rate controllers respectively) motion can have their

intermediate control layers [66]. Each control loop aims to minimize the error of its respec-

tive state X̄i(t) with the input reference (·)ref ≡ X̄r
i (t) provided by the human pilot, control

layer above, or a higher-level motion planner. Similarly, the output of each control layer is

the reference to the control layer below it in a cascaded manner all the way to the actuator

speed controllers. The control system discussed in this paper is depicted on Figure 2.4. In this

work, a non-linear backstepping control is used to highlight the benefits of the proposed tuning

method. Originally presented by Zuo [65], the position and velocity controller outputs such

as roll reference, ϕref, pitch, θref, and total thrust Tref values are expressed with the following

31

algebraic expressions:



θref = arctan
(
U1 cosψref+U2 sinψref)

U3+g

)
,

ϕref = arcsin

(
U1 sinψref−U2 cosψref√

U2
1+U

2
2+(U3+g)2

)
,

Tref = m[U1(sθcψcϕ + sψsϕ)

+U2(sθsψcϕ − cψsϕ) + (U3 + g)cθcϕ],

(2.35)

where a virtual acceleration, Ū = [U1, U2, U3]
⊤, is obtained

Ū = R̈Iref +Kp ∆R+Kd ∆V +Ki

∫ tf

t0

∆Rdt, (2.36)

where ∆R = RIref − RI , ∆V = VIref − VI . Three positive definite proportional, derivative,

and integral diagonal matrices are Kp = diag{Kp1 , Kp2 , Kp3}, Kd = diag{Kd1 , Kd2 , Kd3}, and

Ki = diag{Ki1 , Ki2 , Ki3}, respectively. The diag{(·), (·), (·)} command constructs a diagonal

matrix with the listed arguments. Attitude controller outputs, i.e., the requested torque, τref =

M , can be derived as [65]:

τref = (Ω× IBΩ) +Mgyro − IBT̄Ωref + IBT̄R
−1
sq X2

−IBT̄R−1
sq Γ1 (Θ−Θref)− IBR

−1
sq (Θ−Θref − ϵ)

−IBΓ2 (Ω−Ωref) ,

which requires propagation of additional states such as:



Ẋ1 = X2,

Ẋ2 = Λ2(Θref −X1)− 2ΛX1,

Ω̇ref = −Ō (Ωref −Ωd) ,

ϵ̇ = −Γ1ϵ+Rsq (Ωref −Ωd) ,

(2.37)

32

where Θref = [ϕref, θref, ψref]
⊤, ϵ is the tracking error compensation filter, Λ, Ō, Γ1, and Γ2

are positive definite diagonal matrices (each with three gains) to be tuned and Ωd is the desired

angular velocity:

Ωd = [p, q, r]⊤ref = R−1
sq

(
Θ̇ref + Γ1(Θref −Θ)

)
. (2.38)

2.4 Formulation of the Control System Optimization Problem

The primary goal of this gain-tuning method is to mathematically quantify an appropriate vehi-

cle performance in terms of flight data. The control system would rely on the states of the vehi-

cle and a certain reference provided by the higher-level path planner or human pilot. Intuitively,

the human observer evaluates the performance based on visual cues such as overall attitude sta-

bility, smoothness of motion, and deviation from the intended path/reference. Visual measures

such as vehicle “twitching” and “shaking” are not suitable for an automated tuning algorithm.

But once the notion of “good performance” exists as a certain cost to be minimized by adjusting

the control system gains, optimization routines such as fmincon [67] can be used to obtain a

combination of control system gains resulting in an enhanced performance over the entire flight

path or certain time intervals. The performance of a controller can be characterized in terms of

state tracking, control effort, stability, etc. Recall that X̄ = [x, y, z, ẋ, ẏ, ż, p, q, r, ϕ, θ, ψ]⊤. A

state tracking cost function, Jtrack, can be defined as:

Jtrack =
12∑
i=1

Ctri,1Ji, Ji =

∫ tf

t0

(
eCtri,2 |X̄

r
i −X̄i| − 1

)
dt, (2.39)

where Ji denotes the cumulative error cost associated with the i-th state (and subscript is used

to denote the i-th element) and |(·)| denotes the absolute value. Superscript ‘r’ is used to denote

the reference state. A weighting matrix, Ctr, with a dimension of, 12×2 contains a set of gains

used to assign priority to tracking certain states.

An ideal control system should be able to achieve perfect tracking of the commanded

reference or can achieve near-zero error tracking cost given in (2.39) for any trajectory. In

practice, however, such a perfect control is generally infeasible. Since reference tracking is the

33

only piece of information given to the optimization routine, the resulting combination of control

system gains is not only extremely hard to find, if possible at all, but also may be physically

unrealistic due to an extreme control effort, sensitivity and system requirements for realizing

such performance. Moreover, there is no guarantee that such a control system would be stable

at all since any minor off-nominal disturbance can result in highly unpredictable and chaotic

behavior.

One approach to quantify control effort is to consider the resulting speeds of all the electric

motors and/or thrust produced by each motor as:

JRPM = cRPM

n∑
i=1

∫ tf

t0

[
ωi(t) ·

30

π

]2
dt, (2.40)

where JRPM is the total cost of all nmotors on the vehicle, cRPM is a constant gain used to assign

priority to this cost. However, Eq. (2.40) does not distinguish between individual control layers

and control degrees. Moreover, motor speed might not be as easily obtainable for a physical

vehicle, therefore an additional control effort cost was considered as:

JCTRL =

nd∑
i=1

∫ tf

t0

CCTRLi
|{Tref(t), τref(t)}|dt, (2.41)

where thrust and torque reference outputs from the control system are directly minimized. It

is assumed that the references from the control system can be fully realized by the propulsion

system, such that {Tref(t), τref(t)} = {T (t), τ (t)}.

Motor speed cost (2.40) provides a general way to minimize the combined effect of the

entire control system, path planner, intermediate motor mixing, and control signal-to-motor

signal conversions. By directly minimizing the control system outputs given by (2.41), a way

of prioritizing individual degrees of freedom of the vehicle provides more control over the

optimization process and can be treated as an overall energy or total power consumption mini-

mization problem. However, such a high-level approach may not be sufficient, since none of the

above has considered the actual control parameters and intermediate input and output relations.

Even for the most agile vehicles, the multi-copter’s attitude is expected to remain close to level

34

for the majority of its flight, unless the trajectory consists of long segments with strong wind

or trajectories involving cruise flight at a relatively constant tilt angle. Therefore, any reference

command generated either by pure position or position-velocity control loop is expected to be

small for the majority of flights. Similarly, an average reference for an Euler angle rate control

loop should be as small as possible. Therefore, attitude and rate deviations from hover should

carry a certain penalty on their own. All of these requirements can be enforced using an agility

cost as

Jagility =
12∑
i=1

[
Cagilityi,1Ji,1 + Cagilityi,2Ji,2

]
, with

Ji,1 =

∫ tf

t0

∣∣X̄r
i (t)
∣∣ dt, and Ji,2 =

∫ tf

t0

∣∣X̄i(t)
∣∣ dt. (2.42)

Here, the entries associated with the yaw angle and translational states (both the states and

references) cost should be excluded by zeroing out their respective entries in the cost allocation

matrix, Cagility. Observe that the underlying assumptions do not require a certain yaw angle

to hold true for maintaining stable flight, in fact, the reference yaw angle is entirely defined

by the mission designer and may remain at a fixed non-zero value for almost any trajectory.

Unbounded inputs and outputs that may remain far from zero by design (such as position states

and references), should be excluded from the cost (by setting their respective Cagility gains to

zero). For certain applications, a cost penalty on translational velocity and the rate of change of

attitude can be considered to further shape the desired cost function and enable greater control

within the optimization process.

Stability is an important characteristic of any control system. Assuming close-to-ideal

state information is available, such that sensor noise and other sources of non-physical be-

haviors are not present or have been filtered out from the flight profile, any high-frequency

oscillatory behavior can be treated as undesirable. In reality, the majority of the vehicles would

not be required to perform maneuvers that require rapid changes of the flight states faster than

0.5 to 4 Hz (depending on the vehicle’s agility, the specific state considered, and maneuver re-

quired to perform). An attempt to rapidly change any of the physical flight states faster than 7 to

10 Hz can be visually described as “shaking”, which is comparable to low-frequency vibrations

35

of the vehicle’s frame itself. Therefore, a certain cutoff frequency can be considered to filter

normal (or expected) vehicle behavior out from undesirable oscillatory behavior induced by the

control system. As such, a high-pass filter can be used for each of the states of the vehicle to

discard all the desirable behavior and leave the oscillatory profile along the trajectory, X̄hp
i (t).

The associated stability cost Jstab can then be obtained by integrating the profile similarly to

how it was done before:

Jstab =
12∑
i=1

Cstabi,1Ji, Ji =

∫ tf

t0

(
eCstabi,2 |X̄

hp
i (t)| − 1

)
dt,

Since the equation above can be treated as a measure of instability, the associated cost gains

within cost allocation matrix, Cstab, should be large enough to aggressively penalize any unde-

sirable behavior.

At this point, all the necessary building blocks of the total cost function have been intro-

duced. However, it is not sufficient to add all the individual costs together because of their

scale relative to each other. For example, the control effort cost obtained from the motor speed

is disproportionately high and has to be weighted substantially lower than all other components

discussed above such that it only becomes significant if there is severe and prolonged over-

actuation. The total cost function for the optimization, which is a function of flight states X̄(t)

and state references, X̄r(t) can be expressed as a sum of all the above costs:

Jtotal = Jtrack + Jstab + Jagility + JRPM + JCTRL. (2.43)

This cost is decreased by optimizing over a set of adjustable parameters specific to each of

the control structures. For the specific controller structure described in section 2.3, the only

variable inputs to the optimization routine are the controller gains Kp, Ki, Kd, Λ, Ō, Γ1 and

Γ2, with a total of 21 parameters (three for each), while all other parameters remain constant

(including the reference trajectory, vehicle parameters, wind magnitude, and relative direction,

etc.) The constant gains of each and every channel, C(·), are used to highlight the importance

of proper scaling: 1) stability is the primary concern. If frequency analysis was done properly,

36

any cost associated with the oscillatory behavior, Jstab, has to be the driving factor of the opti-

mization and be prioritized the most. 2) error tracking in xy plane is highly important, but its

relative value is significantly lower than all the other terms, so it has to be increased accord-

ingly. Since altitude tracking can be done directly by increasing thrust, and control effort is

evaluated separately, changes to altitude should have a relatively low cost. 3) as mentioned ear-

lier, cost associated with motor speed should not dominate and remain very small such that it is

only needed for “fine-tuning” because the majority of the control effort is already distributed to

individual cost functions. To simplify the initial test runs, the last two terms in equation (2.43)

can be dropped, that is, the total control effort, JCTRL, and power consumption, JRPM. 4) certain

desired effects have an overlap and can be achieved by adjusting various parts of the control

system. 5) since all the analysis is purely numerical, all the flight data should be scaled down

by a large factor (1.0 × 10−6 or even smaller for SI units) such that the exponential terms do

not explode.

2.5 Practical Considerations For Gain-Optimization

Compiling the simulation using built-in MATLAB tools (i.e., rapid accelerator mode) can

decrease each simulation run time from several minutes down to just a few seconds. By taking

advantage of the parallel computing capabilities, the overall optimization run time can reduce

to few hours.

The pseudo-algorithm for automated gain tuning can be described as such: 1) Formulate

the cost function and adjust the priority given to each of the cost parameters discussed in section

2.4. 2) Define a desired trajectory, run the simulation, and determine the critical time after each

control system fails. 3) Truncate the simulation time such that only a few seconds or less of

unstable flight are present (in other words, if starting with a set of unstable gains, the simulation

has to be terminated before the simulation crashes, even if it means simulation for less than a

second). 4) Run the optimization routine, and inspect the optimized performance. Major issues

and instabilities should be drastically decreased, and the system should appear to be stable for

the short time considered during optimization. If still unstable with no sign of improvement,

revisit previous steps until the short-term performance has improved substantially. 5) Increase

37

the simulation time until the simulated flight becomes unstable again or till the end of the tra-

jectory. Note, for short flight (less than 10 seconds) minor control system instabilities may not

have enough time to aggregate, and the resulting system might still be unstable long term. 6)

Repeat the optimization process (all the previous steps) until satisfactory performance. The

cost function defines the notion of what is considered a high-performance system and should

not require major modification (if at all) after all the steps have been completed for a single

trajectory. After the satisfactory performance has been defined, trajectory and flight conditions

can be changed, and the optimization routine has to be repeated without modification to the

cost function (unless the requirement for the flight performance has changed). The class of

desired maneuvers required from the control system is important: if some of the control axes

(e.g., yaw) are unused and no disturbances require significant yaw stabilization, the optimiza-

tion routine will not tune the respective control axis. Similarly, the optimization will find and

exploit any idealization and simplification such as ideal actuation (with no time delay), sim-

plified propulsion and aerodynamics model (no complex aerodynamic interactions between the

propellers and vehicle drag) or no disturbances such as wind, which require the control system

to sacrifice tracking precision for a certain degree of robustness. Due to this, it is often required

to rerun the gain-tuning routine if the reference trajectory has changed.

38

Chapter 3

3.1 Numerical Results

3.1.1 Fixed-time solutions

Let’s start by examining fixed-time solutions with an even time allocation. For the sake of

simplicity, all trajectories discussed in this section are summarized in Table 3.1, and they are

characterized in terms of the following parameters: a) ndt, which denotes the order of derivative

considered for boundary conditions. Since the goal is to compute minimum-snap trajectories,

ndt = 4 for both the cost function and the boundary conditions. This also sets the number of

coefficients per interval to be ten; b) ndim, which denotes the number of dimensions for which

motion planning is performed. This number defines how many active degrees of freedom are

used for optimization. Even though all trajectories are considered in 3D space, some of them

consider constant altitude or only planar XY motion. Any set of waypoints that is zero or

constant for a degree of freedom can be considered to always lead to a trivial solution and is

removed from the optimization to reduce the computational time; c) nint, which denotes the

number of intervals/segments between two waypoints for a single dimension. It is assumed

that all dimensions have the same waypoint discretization and no optimization is performed to

determine the optimal number of waypoints or intervals; d) T , which denotes the total time

allocated for the trajectory. Not to be mistaken for with the vector of individual time segments

T allocated for each interval. This defines the total time it physically takes to execute or fly the

trajectory. For fixed-time problems, this quantity is decided by the trajectory designer and is

fixed; e) Tsolve, which denotes the time it takes to compute a solution. This quantity defines how

39

long it took to solve a complete problem. This number does not account for initial user-input

setup, solution evaluation or plotting; f) J , which denotes the final value of the minimum-

snap cost function. Trajectory design requirements are generally widely different based on the

application, even for vehicles of the same class.

3.1.1.1 “Simple” trajectory.

This trajectory considers motion along a single axis and only between two waypoints. It serves

as a baseline for computational speed comparison and control system performance for the dif-

ferent parameterizations. This is considered the simplest case because it can be analytically

derived and solved as explained in Sec. 2.1.1.3 with mapping matrices being A(T) = A1(T)

and Q(T) = Q1(T), where there is only one segment, so the time allocation vector is a scalar

with only one element T = T = T1. The mapping matrix M is simply the diagonal matrix,

since no reordering or duplication of intermediate constraints is needed. The input waypoints

are the start and end points at one and three meters, respectively. All other axes are held con-

stant at their initialization values, which, in the case of the simulation, are all zeros. Trajectory

optimization is performed on the X axis. First, the trajectory is solved outside the simulator

and the required position, velocity, acceleration, jerk, and snap are evaluated using the optimal

coefficients.

As can be seen in Figures 3.1a and 3.2a, the path and its derivatives are identical. The

boundary-value problem is actually almost trivial in nature due to the assumptions made earlier

such that the derivatives at the start and end points of the trajectory are all zeros and only the

initial and final position, in this case, are non-zero. The solution process is simple enough to

be checked by hand and such a one-dimensional, single-interval example is quite common to

be applied in practice, where a simple connecting arc between just two points is required, for

example, for takeoff or landing. Although it is more common to use a cubic polynomial, the 9th-

degree polynomial and similar complexity FFS solutions lead to almost identical solutions. The

difference is, of course, in that the cubic polynomial is not continuous up to the snap level, and a

sharp change in motor speed is expected at the beginning and the end of the cubic-polynomial

solution. The resulting motor RPM profiles serve as the final arbiter for the performance of

40

0 1 2 3
1

2

3

0 1 2 3
0

0.5

1

1.5

0 1 2 3

-2

0

2

0 1 2 3

-4

-2

0

2

0 1 2 3

-10

0

10

(a) Generated position and higher-order derivative
references.

0 0.5 1 1.5 2 2.5 3

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5 3

4800

4850

4900

(b) RPM of propellers vs. time.

Figure 3.1: Simulated results for the “Simple” trajectory with polynomial parameterization.

0 1 2 3
1

2

3

0 1 2 3
0

0.5

1

1.5

0 1 2 3

-2

0

2

0 1 2 3

-6

-4

-2

0

2

4

0 1 2 3

-10

0

10

(a) Generated position and higher-order derivative
references.

0 0.5 1 1.5 2 2.5 3

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5 3

4800

4850

4900

(b) RPM of propellers vs. time.

Figure 3.2: Simulated results for the “Simple” trajectory with FFS parameterization.

the control system and the trajectory generation algorithm. For this reason, control system

plots have been omitted, but all four motor profiles, labeled with different colors, are shown

in Figures 3.1b and 3.2b. The sense of rotation of the propellers is given in Fig. 2.1. As

expected, motor profiles are identical for the two parameterizations and lead to the almost

equivalent power consumed (over the entire trajectory) of 425.6W for polynomial and 426.36W

41

for FFS. The values of the minimum-snap cost functions are 301.68 and 400.04 for polynomial

and FFS parameterizations. Figures 3.1b and 3.2b contain the global plot in the background,

where motor profiles are plotted with colored lines on the same scale as their maximum values

(dashed red line). Since almost all trajectories do not show significant deviation of the motor

profile along the trajectory, a zoomed-in view of the same motor profiles is included on each

of the plots. The vertical and horizontal axes are identical for both the background graph and

a zoomed-in view. Due to the simple nature of this one-dimensional (1D) trajectory, the four

motor profiles are not fully distinguishable, and only overlaid pairs are visible.

3.1.1.2 “3 Blocks” trajectory.

This trajectory was designed as an extension of the previous simple 1D case, where an open-

contour set of points between the start and end goal is required to be joined by a feasible

trajectory. First, a 3D grid with a resolution of one decimeter has been constructed to repro-

duce the flyable lab space in a virtual environment. The objective was to guide the quadrotor

from one corner of the lab to the other. To complicate the path-planning task, three static rect-

angular obstacles have been placed in between the starting point and the destination. Next, the

random-search algorithm RRT ∗ of MATLAB has been used to generate a feasible path con-

necting the start and end points in straight lines. Since there was no collision-free straight line

path between the start and goal pose, the algorithm had to introduce intermediate waypoints in

between to avoid any collision. The resulting set of waypoints was then used to compute the

optimal trajectory using the algorithm derived earlier. This time, the motion was in 3D space

with variable waypoints in X , Y , and Z axes. The heading angle was not considered for this

problem, so it was assumed to be held constant. The input waypoints are marked with red dots

on 3D plots shown in Figures 3.3a and 3.4a . Note that for display purposes, the trajectory

generated in NED coordinate frame with its Z axis pointing down, was flipped to represent

altitude or Alt = −Z.

The resulting path for polynomial (Fig. 3.3a) and FFS (Fig. 3.4a) parameterizations is

identical to within the numerical precision. The shape does not look distorted for FFS pa-

rameterization and fully follows the polynomial solution. A very small, almost unnoticeable

42

(a) 3D view of the path. Color
was removed for clarity.

0 2 4 6 8

0

2

4

0 2 4 6 8

-1

-0.5

0

0.5

0 2 4 6 8

-1

0

1

0 2 4 6 8

-1

0

1

2

0 2 4 6 8

-4

-2

0

2

4

(b) Generated position and
higher-order derivative refer-
ences.

0 1 2 3 4 5 6 7 8 9

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8

4600

4700

4800

4900

5000

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.3: Simulated results for the “3 Blocks” trajectory with polynomial parameterization.

(a) 3D view of the path. Color
was removed for clarity.

0 2 4 6 8

0

2

4

0 2 4 6 8

-1

-0.5

0

0.5

0 2 4 6 8

-1

0

1

0 2 4 6 8

-1

0

1

2

0 2 4 6 8

-4

-2

0

2

4

(b) Generated position and
higher-order derivative refer-
ences.

0 1 2 3 4 5 6 7 8 9

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8

4600

4700

4800

4900

5000

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.4: Simulated results for the “3 Blocks” trajectory with FFS parameterization.

difference is present on the snap level between the two solutions (Fig. 3.3b and Fig. 3.4b). The

total power consumption is 1269.97W and 1270.27W for polynomial and FFS parameteriza-

tions, respectively. The minimum-snap cost values are 90.07 for polynomials and 93.85 for FFS

methods, which reemphasizes that the cost function values do not directly translate to power

consumption. The only general trend is that the cost value and total power consumption, both,

are higher for the FFS parameterization, which is expected since according to the principles of

calculus of variations, the family of extremal solutions is represented by polynomials. But, the

objective of this thesis is to present an alternative smooth trajectory generation method. Even

though this trajectory requires the quadrotor to take off, fly over the obstacle and dodge the

43

other two, plenty of time has been given for the maneuver. This results in a very conserva-

tive change in motor profiles, as can be seen in Figures 3.3c and 3.4c. A zoomed-in view of

the same figures shows a slight variation in all four motor profiles. Although almost identical,

motor profiles corresponding to the polynomial solution show a very minor twitch at approxi-

mately 2.2 seconds, which is not present in the FFS solution. The two solutions are smooth and

FFS again closely matches with the solution of the polynomial parameterization.

3.1.1.3 “Square” trajectory.

Next, consider a somewhat more standard trajectory. The waypoints for this trajectory define

the four corners of a square. Additional waypoints are placed midway between each of the

corners to constrain the shape and enforce a motion close to straight lines. This square path

is completely in the horizontal X − Y plane, with time being evenly discretized between all

the waypoints. Altitude and heading are assumed to remain constant. This trajectory aims to

decouple the motion in the X and Y directions and forces the optimal solution to approximate

straight lines and corners. For this closed trajectory, the start and end waypoints are at the same

location, X = 1.0 m and Y = 1.0 m, which also defines the first corner of a 2×2 meter square.

The motion is counterclockwise.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) 2D view of the path.

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

0 5 10

-5

0

5

0 5 10

-20

0

20

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4700

4750

4800

4850

4900

4950

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.5: Simulated results for the “Square” trajectory with polynomial parameterization.

Similarly to the test cases shown earlier, the resulting trajectories are identical, within

some numerical error, for the two parameterizations. As can be seen on 2D plots in Figures 3.5a

44

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) 2D view of the path.

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

0 5 10

-5

0

5

0 5 10

-20

0

20

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4700

4750

4800

4850

4900

4950

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.6: Simulated results for the “Square” trajectory with FFS parameterization.

and 3.6a, the differences in the two shapes are indistinguishable. However, some very minor

differences are seen between the snap profiles shown in Figures 3.5b and 3.6b at about 1.2 and

8.5 seconds. Although very similar, the FFS solution might appear to be somewhat smoother

because it lacks the same small spikes on the snap level of the polynomial solution. This very

minor fluctuation (at 1.2 seconds) is also reflected in the profiles of the motors (Fig. 3.5c and

3.6c). Of course, the effect is minimal and is most likely purely attributed to the numerical

convergence of the two methods. As is shown later, similar numerical spikes in the snap are

also present for some of the FFS solutions. The power consumption (although negligible) is

still in favor of the polynomial solution that obtained a value of 1417.68W while FFS solution

lead to 1418.52W of power consumed.

3.1.1.4 “Circle” trajectory.

Even though it may not look circular at all from the fixed-time paths shown in Figures 3.7a and

3.8a, the waypoints are tracing a perfect circular shape. This 2D trajectory is very similar to

the “Square” one, with time allocated evenly for tf = 10 seconds. The intent is again to obtain

a simple circular path which, intuitively, should be the optimal shape for a set of waypoints

that already trace a circle of a constant radius. The results in Figures 3.7 and 3.8 show that

both solutions are closely matching each other except for small differences on the snap level.

These differences are then further reflected in the motor profiles shown in Figures 3.7c and

45

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 2D view of the path.

0 5 10

-2

0

2

0 5 10

-1

0

1

2

0 5 10

-2

0

2

0 5 10

-5

0

5

0 5 10

-20

0

20

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4700

4800

4900

5000

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.7: Simulated results for the “Circle” trajectory with polynomial parameterization.

3.8c. Minor numerical noise is visible across the polynomial trajectory, but is missing for the

FFS. The irregular shape of the two solutions in Figures 3.7a and 3.8a is due to the evenly

discretized time, and can be fixed when the time-allocation problem is solved.

3.1.1.5 “Figure-8” trajectory.

This trajectory traces an “8”-like figure in an inclined plane. The plane itself is tilted such that

the altitude is not constant. The heading angle is also set to approximately trace the center of

the figure. This way, all four dimensions are active and require trajectory optimization. This

high dimensionality and complex 3D shape is intended to stress both the trajectory generation

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 2D view of the path.

0 5 10

-2

0

2

0 5 10

-1

0

1

2

0 5 10

-2

0

2

0 5 10

-5

0

5

0 5 10

-20

0

20

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4700

4800

4900

5000

5100

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.8: Simulated results for the “Circle” trajectory with FFS parameterization.

46

methods and the control system. Due to the inherent symmetry of the trajectory, even dis-

cretization (for tf = 30 seconds) is close to optimal, and this feature was exploited to verify

time allocation.

(a) 3D view of the path.

0 10 20 30

-2

0

2

0 10 20 30

-0.2

0

0.2

0.4

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

(b) Generated position and
higher-order derivative refer-
ences.

0 5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

4750

4800

4850

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.9: Simulated results for the “Figure-8” trajectory with polynomial parameterization.

(a) 3D view of the path.

0 10 20 30

-2

0

2

0 10 20 30

-0.2

0

0.2

0.4

0.6

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0.4

(b) Generated position and
higher-order derivative refer-
ences.

0 5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

4760

4780

4800

4820

4840

4860

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.10: Simulated results for the “Figure-8” trajectory with FFS parameterization.

Even for this relatively complicated motion, the two parameterizations are closely match-

ing (Fig. 3.9 and Fig. 3.10). The total time allocated for this fixed-time solution was 30 seconds,

which results in almost flat motor profiles for the two solutions. No noticeable differences are

present either in shape, path components, derivatives or motor profiles.

47

3.1.1.6 Summary of the fixed-time trajectories.

All fixed-time solution metrics are summarized in Table 3.1. The solutions for the two different

parameterizations are closely following each other and are mostly identical. As was expected,

computational times are on the same order of magnitude but are slower for the FFS parameter-

ization. The power consumption is primarily dominated by the total time of flight since most

trajectories require only minor changes in motor speeds around the hover thrust. Although

the difference is very small, FFS leads to a slightly higher power consumption for all the tra-

jectories considered. The minimum-snap cost values are following the same trends as power

consummations, but the relative scale is unrelated.

Table 3.1: Summary of the fixed-time solutions.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J P (W)
Simple Polys 4 1 1 10 3 0.37 301.68 425.60
Simple FFS 4 1 1 10 3 0.62 400.04 426.36

3 Blocks Polys 4 3 4 120 9 0.85 90.07 1269.97
3 Blocks FFS 4 3 4 120 9 1.25 93.85 1270.27
Square Polys 4 2 8 160 10 0.91 1174.49 1417.68
Square FFS 4 2 8 160 10 1.26 1287.14 1418.52
Circle Polys 4 2 7 140 10 0.85 1840.02 1435.62
Circle FFS 4 2 7 140 10 1.22 2004.76 1437.65

Figure-8 Polys 4 4 9 360 30 1.38 1.05 4200.38
Figure-8 FFS 4 4 9 360 30 2.48 1.15 4200.42

3.1.2 Time-allocated solutions

This section continues the discussion of the results, now for the time-allocation formulation

presented in Section 2.1.2. In addition to the parameters introduced earlier, the solutions are

compared based on the time allocation weight coefficient, kT, and the number of fixed-time

iterations, niter, it took to converge to the optimal solution. The results are summarized in

Table 3.2. All the inputs (trajectory waypoints and constraints) are the same as for the fixed-

time solutions, the time allocation vector with evenly discretized time is used as an initial

guess for the gradient-descent algorithm that attempts to find the optimal time allocation given

48

trajectory-specific weight kT. This weight is arbitrary and is determined by trial and error to

match the desired global time T (s) for each trajectory and parametrization combination.

Additional rounds of trajectory generation have been executed to study the effect of the

time allocation weight, kT. The choice of this gain determines the global time for executing the

entire trajectory, but the values of the minimum snap cost vary between the two parameteriza-

tions. For this reason, the same time weight kT, with all other inputs being identical, leads to

two different solutions. All graphical results included in this section are using different kT val-

ues such that the global time for the two parameterizations match for each trajectory. Since it

may also be interesting to compare the two methods when all inputs, including kT, are identical,

these results have been also included in Table 3.2.

As it was shown in [38], and explained in Section 2.1.2, all the time-optimal solutions for

the same set of inputs, other than kT lead to the same path. By varying time allocation gain kT,

the global time can be adjusted, but the shape of the solution remains identical. The position

components, when plotted w.r.t. time, pass through the exact same points for any reasonable kT

values. These points only shift in time, occurring either earlier or later in time. Their deriva-

tives, on the identical plot, not only shift in time but also in their respective magnitudes. This

adjustment, if an optimal solution was found, maintains the same position along the trajectory,

but increases or decreases the respective velocity, acceleration, jerk, and snap along the path.

For this reason, it is expected to obtain the same shape of the time-allocation solution while

adjusting time allocation gain kT and keeping all other inputs the same. As will be shown later,

this property holds between the two different parameterizations. Although, the errors due to

numerical rounding, discussed in Sec. 2.1.1.2, can be more severe for one of the two parame-

terizations, which can lead to some differences between the two solutions. These differences

often increase as the order of the derivatives grows. In fact, first symptoms usually occur on the

level of snap, then, by constraining the trajectory even more (by increasing the time allocation

weight kT), undesirable large-frequency oscillations propagate to lower derivatives, up until the

solution completely breaks down. The invariance of the trajectories to time allocation is quite

an interesting characteristic and can be exploited. This means that the feasibility of the trajecto-

ries w.r.t. the collision-avoidance constraint takes precedence over the time-allocation problem

49

and the first step (in any trajectory optimization) can be focused on the collision-avoidance

step. More specifically, the time-allocation gain, kT, directly affects the total time allocated for

the trajectory and, therefore, is directly affecting how demanding the trajectory is to execute.

Ref. [40] provides an insightful discussion of the connection between the calculus of variations

of kinematics with the corresponding dynamics of the physical vehicle.

3.1.2.1 “Simple” and “3 Blocks” trajectories.

The time-allocation problem for the “Simple” trajectory is trivial, since there exists only one

interval and the only optimization that occurs is matching the minimum-snap fixed-time cost

with the time weight kT. Since the time factor kT was chosen such that it closely matches

the original global time of three seconds, this solution is identical to the one presented earlier

(fixed-time solution). The time-optimized solution for the “3 Blocks” trajectory, similar to

the “Simple” trajectory, is visibly identical since the number of intervals is still low and even

discretization is a good approximation of the optimal time allocation for this trajectory. Due to

trajectory similarities, only results are summarized in Table 3.2.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) 2D view of the path.

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

0 5 10

-5

0

5

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4780

4800

4820

4840

4860

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.11: Simulated results for the time-allocated “Square” trajectory with polynomial pa-
rameterization.

50

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) 2D view of the path.

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

0 5 10

-5

0

5

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4780

4800

4820

4840

4860

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.12: Simulated results for the time-allocated “Square” trajectory with FFS parameteri-
zation.

3.1.2.2 “Square” trajectory.

For this problem, with fixed and evenly-distributed time allocation, only two straight edges and

some irregularly shaped connections that vaguely resembled the other two edges of a square

have been obtained. Intuitively, it should be fairly obvious that an even distribution of time

is very often not optimal for a quadcopter that starts from rest, performs some maneuvers,

and returns back to a full halt at the end, especially for a fully symmetric path. A better

time allocation should allow more time for the initial and final phases of a flight, where the

vehicle must overcome its own inertia and add some velocity. If the global time is maintained

constant, some time can be removed from the portions of the trajectory that do not require large

changes in the flight path and shifted to more demanding phases. Fortunately, this task can be

completely automated, and the time allocation algorithm does just what is expected intuitively.

As can be seen in Figures 3.11a and 3.12a, the shape of a square became more clear.

Even though the two edges that used to be straight, which corresponded to the initial and fi-

nal segments of the trajectory, became more curved, the other two have straightened out. The

two parameterizations have been able to achieve a close-to-symmetric square shape, which is

also visibly identical for the two. The effects of the time allocation are clearly visible when

comparing the acceleration plots of the fixed-time solutions (Fig. 3.5b or Fig. 3.6b) with the

51

new time-optimal solutions shown in Figures 3.11b and 3.12b. Large initial and final accelera-

tion spikes that were required for the fixed-time solutions are distributed throughout the entire

trajectory. This has lowered the requirements for the control system and allowed a smoother

RPM output (Fig. 3.11c and Fig. 3.12c). Even though the global time was maintained the same,

proper time allocation has not only restored a more appealing shape but also reduced physical

requirements for executing the maneuver. As a general trend, the differences between solutions

obtained using different parameterizations are very similar. Very minor distinctions exist on

the order of snap, and FFS seems to produce smoother motor output.

3.1.2.3 “Circle” trajectory.

Similar to the “Square” trajectory, proper time allocation was able to fully recover the circular

path (Fig. 3.13a and Fig. 3.14a). The two shapes are, again, identical and requirements along

the trajectories have been lowered when compared to the fixed-time solutions (see Fig. 3.7 and

Fig. 3.8).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 2D view of the path.

0 5 10
-2

0

2

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4800

4820

4840

4860

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.13: Simulated results for the time-allocated “Circle” trajectory with polynomial pa-
rameterization.

Although very similar, the distinctions between the two parameterizations begin to be

more clear. When comparing the snap of the two solutions in Fig. 3.13b and Fig. 3.14b, the

pattern of the issues changes. The polynomial solution still contains two visible spikes at the

two joints between the first and second as well as the last and one before the last intervals,

52

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) 2D view of the path.

0 5 10
-2

0

2

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4800

4820

4840

4860

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.14: Simulated results for the time-allocated “Circle” trajectory with FFS parameteri-
zation.

while the FFS solution does not have them (or they are significantly smaller). However, the

FFS starts to encounter some difficulties along the intermediate intervals. This, almost like

numerical noise, is clearly amplified by the control system and is reflected by the motor profiles

plotted in Fig. 3.14c. Although still very minor, if compared with the global scale of the motor

profiles, the large-frequency oscillations are only present in the FFS solution and become worse

for some of the trajectories or for stricter time-allocation gain values kT.

3.1.2.4 “Figure-8” trajectory.

In this case, the shape became more circularized, perfectly tracing the figure “8” (Fig. 3.15a and

Fig. 3.16a). Time factors were also chosen such that the global time for the flight is decreased

by more than half of the original guess. For this reason, all the ranges for derivatives and

motor speeds became somewhat higher than for the fixed-time solution. However, it should

be obvious that without a proper time allocation, performing the exact same maneuver, but

more than twice as fast, would significantly increase all the requirements. No notable or new

differences between the two solutions are seen neither on the level of derivatives (Fig. 3.15b

and Fig. 3.16b) nor at the level of control system outputs (Fig. 3.15c and Fig. 3.16c).

One important point worth mentioning is that even though there are some minor issues

on the snap level for both parametrizations, they do not appear to show a distinctive pattern

53

(a) 3D view of the path.

0 5 10
-2

0

2

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

4600

4700

4800

4900

5000

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.15: Simulated results for the time-allocated “Figure-8” trajectory with polynomial
parameterization.

(a) 3D view of the path.

0 5 10
-2

0

2

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-1

0

1

0 5 10

-2

0

2

(b) Generated position and
higher-order derivative refer-
ences.

0 2 4 6 8 10 12

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12

4600

4700

4800

4900

5000

(c) RPM of propellers vs. time
for simulated flight.

Figure 3.16: Simulated results for the time-allocated “Figure-8” trajectory with FFS parame-
terization.

or correlation. In summary, it should be clear that the motion planning of quadrotors can

be performed using either of the parameterizations and the FFS shows close convergence to

the polynomial solution even when time allocation is performed. In addition to the graphical

examples discussed earlier in this section, the solution for the equivalent time factor kT has

been summarized in Table 3.2. Although the shapes of all the solutions for any kT values

remained the same, these results have been included to provide a one-to-one comparison of the

two parameterizations when every single input is identical. As it was shown by the fixed-time

solution, the minimum-snap cost of the FFS parameterization is higher than the polynomial

54

cost. For this reason, the FFS method requires a higher gain kT to match the same global time.

Thus, the total flight time should always be higher for the FFS solution than for an equivalent

polynomial solution.

Table 3.2: Summary of the time-allocation solutions.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J P (W) kT niter

Simple Polys 4 1 1 10 3.00 5.05 300.21 425.59 700 5
Simple FFS 4 1 1 10 3.10 9.09 310.99 439.68 700 6
Simple FFS 4 1 1 10 3.00 13.59 398.75 426.35 930 5

3 Blocks Polys 4 3 4 120 10.00 305.00 8.79 1403.42 6.15 34
3 Blocks FFS 4 3 4 120 10.10 252.69 8.88 1417.40 6.15 22
3 Blocks FFS 4 3 4 120 10.00 285.33 9.53 1403.52 6.67 23
Square Polys 4 2 8 160 10.00 423.99 200.02 1411.97 140 35
Square FFS 4 2 8 160 10.04 609.74 200.87 1417.61 140 32
Square FFS 4 2 8 160 10.00 563.42 205.89 1412.14 144 29
Circle Polys 4 2 7 140 10.00 306.61 54.03 1420.25 37.8 30
Circle FFS 4 2 7 140 10.07 528.96 54.38 1430.07 37.8 32
Circle FFS 4 2 7 140 10.00 469.94 56.89 1420.67 39.8 27

Figure-8 Polys 4 4 9 360 12.00 515.74 85.72 1692.22 50 22
Figure-8 FFS 4 4 9 360 12.05 895.02 86.11 1699.25 50 24
Figure-8 FFS 4 4 9 360 12.00 892.07 88.81 1665.06 51.8 23

Although the theoretical assumptions and fixed-time solutions show that FFS parameteri-

zation is slower than polynomial parameterization, the time-allocation problem may not follow

the same trends. In fact, FFS seems to often converge in fewer iterations than an equivalent

polynomial method. This is related to the time factor, kT, but for the combination of inputs

used in this work, some solutions have low enough number of iterations such that the total

computational time for the time-allocation problem offsets the longer evaluation times of each

of the fixed-time solutions. This is clearly shown for the “3 Blocks” trajectory in Table 3.2,

where FFS was able to achieve an optimal solution faster than the equivalent formulation using

the polynomial (“3 Blocks” problem). The fact that the time-allocation problem shows that

the FFS parameterization may often converge to the optimal (with a near-equivalent minimum-

snap solution in fewer iterations than an identical algorithm with a polynomial formulation) is

intriguing. Some features, specific to the trigonometric functions, allow controlling the rate of

convergence and can be further explored.

55

3.1.2.5 Fast Finite Fourier Series

As was shown in Sec. 2.1.1.3, the FFS method is inherently slower due to the sparsity pattern of

the constraint mapping matrix Ai(Ti). The numerical results for the fixed-time solutions have

further verified this in Sec. 3.1.1. However, this is not quite the case if the 1
2

factor is removed

from the argument of sin and cos terms and the order of derivative of constraints is increased

to be one degree higher (5th derivative or crackle). The cost function can remain the same (e.g.

ndt = 4 for cost function), but since ndt = 5 for the constraints, the minimum number of design

variables per interval is twelve. This also sets the Ai(Ti) and Qi(Ti) to be R12×12. The new FFS

parametrization is:

if ndt is even:
P (t, Ti,pi) =

a0
2

+
nr∑
k=1

{
ak cos

(
kπ

t

Ti

)
+ bk−1 sin

(
kπ

t

Ti

)}
+ bnr cos

(
nrπ

t

Ti

)
,

(3.1)

if ndt is odd:
P (t, Ti,pi) =

a0
2

+
nr∑
k=1

{
ak cos

(
kπ

t

Ti

)
+ bk−1 sin

(
kπ

t

Ti

)}
+ bnr sin

(
nrπ

t

Ti

)
,

(3.2)

where the argument of sin and cos terms no longer contains a factor of 1
2
. After deriving the

new mapping matrices for the FFS (using Eq. (3.2)) and polynomial parametrizations, the same

sparse metrics can be computed. Equation (2.12) still leads to a fully dense matrix for both,

and the number of non-zero elements in the constraint mapping matrix has grown as expected:

63/144 for polynomials and 68/144 for FFS parametrizations. Interestingly enough, the num-

ber of non-zero elements in the inverse of the Ai(Ti) does not follow the same trend: 78/144

for polynomial and the same 68/144 for FFS parametrizations. Not only does the number of

no-zero elements remain the same for Ai(Ti) matrix of FFS after inversion, but it becomes

lower than one for polynomial parametrization. This clearly suggests that the evaluation time

for minimum-snap optimization with boundary constraints up to crackle can be faster for FFS

than for polynomial parametrization. The computational results in Tables 3.3 and 3.4 confirm

this observation.

56

However, removing the factor of 1
2

from the FFS formulation introduces some penalty for

complex trajectories, or those having at least 3 intervals. The resulting shape of the trajec-

tory is highly likely to be noticeably different from the polynomial solution. The higher-order

derivatives, especially on the snap level may be highly oscillatory, which is very undesirable

for quadrotor flight. The solution to these issues is to consider adding back 1
2

factor in all sin

or all cos terms. This fixed all known issues with distortions in the shape of the solution and all

the undesirable oscillations, but such formulation loses the sparsity benefit. Several combina-

tions of different factors have been considered for arguments of sin and cos terms to exploit the

benefits from the sparsity of the constraint matrix without affecting the quality of the solution,

but these were not successful. In this work, the graphical or experiential results have not been

included for any other FFS parametrization other than those given by Eq. 2.9, since it gave the

closest math to the polynomial parametrization. However, computational results for Fast Finite

Fourier Series or F-FFS version of the algorithm are summarized below.

Table 3.3: Fixed time solutions summary for F-FFS.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J
Simple Polys 5 1 1 12 3 0.40 561.60
Simple F-FFS 5 1 1 12 3 0.46 1011.40

3 Blocks Polys 5 3 4 144 9 1.11 112.39
3 Blocks F-FFS 5 3 4 144 9 1.15 355.54
Square Polys 5 2 8 192 10 1.28 1526.95
Square F-FFS 5 2 8 192 10 1.13 10738.88
Circle Polys 5 2 7 168 10 1.04 2347.83
Circle F-FFS 5 2 7 168 10 1.09 12850.88

Figure-8 Polys 5 4 9 432 30 1.89 1.36
Figure-8 F-FFS 5 4 9 432 30 1.91 12.87

The fixed time solution for the same set of trajectories is shown in Table 3.3. As was

expected, the F-FFS parametrization is solved, if not faster than equivalent order polynomial

parametrization, but clearly as fast. The F-FFS is actually faster than the FFF parametrization of

the lower order, even though there are more design variables for F-FFS. The primary difference

between F-FFS and FFS is the cost value, which affects the relative values of time allocation

gain kT for the results shown in Table 3.4. The difference between the cost value for F-FFS

57

and polynomial parametrizations is even more noticeable as the order of constraints has been

increased, but follows the same trend.

The most intriguing result is the computational time for the F-FFS and the number of

iterations that led to it. By paying attention to the last column of Table 3.4, the number of

iterations is the same or lower for F-FFS than for polynomial parametrization, and it results in

lower computational time Tsolve for almost all the test cases. The computational results for F-

FFS suggest that Fourier Series may converge faster than polynomials under certain conditions.

Although it is currently not quite clear what combination of trigonometric functions and their

arguments can lead to faster computational speed while retaining the desired characteristics of

the polynomial solutions.

Table 3.4: Time allocation solutions summary for F-FFS.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J kT niter

Simple Polys 5 1 1 12 3.01 11.90 538.88 1250 5
Simple F-FFS 5 1 1 12 3.24 12.06 580.01 1250 8
Simple F-FFS 5 1 1 12 2.99 11.65 1026.41 2400 7

3 Blocks Polys 5 3 4 144 10.09 221.79 10.10 7 23
3 Blocks F-FFS 5 3 4 144 14.12 211.86 14.13 7 22
3 Blocks F-FFS 5 3 4 144 10.09 194.98 148.54 130 17
Square Polys 5 2 8 192 10.03 754.32 215.13 150 39
Square F-FFS 5 2 8 192 16.11 530.23 345.26 150 31
Square F-FFS 5 2 8 192 10.03 395.37 9465.88 6600 17
Circle Polys 5 2 7 168 10.31 405.67 50.12 34 26
Circle F-FFS 5 2 7 168 19.91 392.93 96.72 34 26
Circle F-FFS 5 2 7 168 10.30 308.73 9718.09 6600 15

Figure-8 Polys 5 4 9 432 12.75 998.74 61.97 26 34
Figure-8 F-FFS 5 4 9 432 21.99 775.60 106.83 34 20
Figure-8 F-FFS 5 4 9 432 12.75 1098.92 4846.52 2660 25

It is important to note that the F-FFS method is not as computationally stable as FFS and

is not practical for quadrotor trajectory optimization, since it requires higher-order derivatives

beyond snap. The computational results here have been shown to further highlight the potential

benefits that can be offered by the FFS parametrization. For the purposes of this work, only

FFS and polynomial parametrizations have been considered in the subsequent comparison.

58

3.2 Experimental Results

Consider a relatively small flying arena, limited to trajectories confined to a medium-size room

(about 4×6×3 meters). Five different trajectories are considered to compare the usefulness of

the trajectories in practice. All time-optimal trajectories discussed in the previous sections have

been successfully flown. Both polynomial and FFS parameterizations have shown identical

performance. Theoretical and computational results have shown that the differences between

the two methods are negligible, even in an ideal environment. Since there was little to no

difference between the two methods, the results are reported only for the “3 Blocks”, “Square”

and “Figure-8” trajectories.

3.2.1 “3 Blocks” trajectory

Using the optimal solution for the “3 Blocks” trajectory with time allocation, the control sys-

tem on the quadrotor had to follow the required position references (red) generated using the

two parameterizations. The resulting 2D path (blue) is shown in Figures 3.17a and 3.18a. Al-

though not as perfect as in the simulator, the two trajectories have been closely tracked and no

significant deviation occurred for any of the two methods.

(a) 2D view of the flight path.

0 5 10

-0.3

-0.2

-0.1

0

0.1

0 5 10

-1

-0.5

0

0 5 10

-0.1

-0.05

0

0.05

0 5 10

-0.5

0

0.5

1

1.5

0 5 10

-2

-1

0

1

2

0 5 10

-1.4

-1.2

-1

-0.8

-0.6

(b) Tracking of position compo-
nents.

0 5 10

-2

0

2

4

0 5 10

-6

-4

-2

0

2

4

0 5 10

-3

-2

-1

0

1

2

0 5 10

-4

-2

0

2

4

6

0 5 10

-10

-5

0

5

10

0 5 10

90

92

94

(c) Tracking of attitude compo-
nents.

Figure 3.17: Experimental results for the time-allocated “3 Blocks” trajectory with polynomial
parameterization.

The performance of the position control tracking is shown in Fig. 3.17b and Fig. 3.18b.

Fig. 3.17c and Fig. 3.18c show attitude control system tracking for the references generated by

59

the higher-level velocity and position control (details of the flight control system are given in

Ref. [56]). It is worth noting that the quadrotor is relatively heavy and a more conservative

control system gains have been chosen. For these reasons, in addition to the reference tracking

method that was chosen, the quadrotor’s state noticeably lags behind the commanded reference,

with position-level errors growing in time as the trajectory references run away faster than the

quadrotor is capable of catching up. However, the commanded trajectory is still followed with

acceptable accuracy.

3.2.2 “Square” trajectory

Similarly, taking the optimal solution for the square-shaped trajectory with time allocation,

the quadrotor had to follow position-level setpoints. The resulting path is shown in Fig. 3.19a

and Fig. 3.20a. Again, the 2D view is shown instead of the 3D view because the motion is

completely planar. In fact, the vertical position errors in Fig. 3.19b and Fig. 3.20b clearly

show that the altitude is kept within a few millimeters within the initialization vertical setpoint.

The performance of the attitude control tracking is shown in Figures 3.19c and 3.20c. Since

the implemented control system has a cascaded PID control structure, the references for each

control layer are generated by the control layer above, in a cascaded manner. For this reason

(a) 2D view of the flight path.

0 5 10

-0.3

-0.2

-0.1

0

0.1

0 5 10

-1

-0.5

0

0 5 10

-0.1

-0.05

0

0.05

0 5 10

0

0.5

1

1.5

0 5 10

-1

0

1

2

3

0 5 10

-1.4

-1.2

-1

-0.8

-0.6

(b) Tracking of position compo-
nents.

0 5 10

-4

-2

0

2

4

0 5 10

-10

-5

0

0 5 10

-3

-2

-1

0

1

0 5 10

-4

-2

0

2

4

6

0 5 10

-10

-5

0

5

0 5 10

93

94

95

96

97

(c) Tracking of attitude compo-
nents.

Figure 3.18: Experimental flight results for the time-allocated “3 Blocks” trajectory with FFS
parameterization.

60

and due to the significant numerical noise of estimated states, the control system references for

the attitude layer show noticeable bands of noise.

(a) 2D view of the flight path.

0 5 10

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0 5 10

0

0.5

1

1.5

2

0 5 10

0

0.5

1

1.5

0 5 10

-1.135

-1.13

-1.125

-1.12

-1.115

-1.11

(b) Tracking of position compo-
nents.

0 5 10

-6

-4

-2

0

2

4

0 5 10

-4

-2

0

2

4

6

0 5 10

-2

-1

0

1

2

0 5 10

-10

-5

0

5

10

0 5 10

-10

-5

0

5

10

0 5 10

107

108

109

110

111

(c) Tracking of attitude compo-
nents.

Figure 3.19: Experimental results for the time-allocated “Square” trajectory with polynomial
parameterization.

(a) 2D view of the flight path.

0 5 10

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10

-5

0

5

10
-3

0 5 10

-0.5

0

0.5

1

1.5

0 5 10

0

0.5

1

1.5

2

0 5 10

-1.14

-1.135

-1.13

(b) Tracking of position compo-
nents.

0 5 10

-5

0

5

0 5 10

-4

-2

0

2

4

6

0 5 10

-1

-0.5

0

0.5

0 5 10

-10

-5

0

5

10

0 5 10

-10

-5

0

5

10

0 5 10

88

88.5

89

(c) Tracking of attitude compo-
nents.

Figure 3.20: Experimental flight results for the time-allocated “Square” trajectory with FFS
parameterization.

3.2.3 “Figure-8” trajectory

The experimental results for the fast and complex “Figure-8” trajectory are also as expected

(Fig. 3.21 and Fig. 3.22). Although the uncertainties due to the environment allow using ex-

perimental results as validation, they limit the acquisition of any additional insight into the

61

solutions. No unexpected behavior has been observed, and it is clear that the two methods

generated trajectories that can be followed by a quadrotor in the ACELAB.

(a) 3D view of the flight path.

0 10

-0.2

-0.1

0

0.1

0.2

0.3

0 10

-0.4

-0.2

0

0.2

0.4

0 10

-0.05

0

0.05

0 10

-0.2

0

0.2

0.4

0.6

0 10

-1

0

1

2

0 10

-1.6

-1.4

-1.2

-1

-0.8

(b) Tracking of position compo-
nents.

0 10

-5

0

5

0 10

-5

0

5

0 10

-20

-10

0

10

0 10

-5

0

5

10

0 10

-10

-5

0

5

0 10

100

150

200

250

300

350

(c) Tracking of attitude compo-
nents.

Figure 3.21: Experimental results for the time-allocated “Figure-8” trajectory with polynomial
parameterization.

(a) 3D view of the flight path.

0 10

-0.2

-0.1

0

0.1

0.2

0 10

-0.4

-0.2

0

0.2

0.4

0 10

-0.06

-0.04

-0.02

0

0.02

0.04

0 10

-0.2

0

0.2

0.4

0.6

0.8

0 10

-1

0

1

2

0 10

-1.6

-1.4

-1.2

-1

-0.8

(b) Tracking of position compo-
nents.

0 10

-5

0

5

0 10

-2

0

2

4

0 10

-20

-10

0

10

0 10

-5

0

5

0 10

-5

0

5

10

0 10

150

200

250

300

350

(c) Tracking of attitude compo-
nents.

Figure 3.22: Experimental flight results for the time-allocated “Figure-8” trajectory with FFS
parameterization.

62

Chapter 4

4.1 Conclusion

As the result of this research effort, a quadrotor motion-planning algorithm based on the idea of

the Finite Fourier Series (FFS) method for minimum-snap trajectory optimization of quadrotors

was successfully developed. It was demonstrated how the minimum-snap trajectory optimiza-

tion problem can be formulated with the FFS parameterization as an unconstrained quadratic

programming problem.

The results show a comparable performance between the FFS and polynomial parametriza-

tion methods on five types of trajectories labeled as “simple”, “circular”, “square”, “3 Blocks”

and “Figure-8”. The results show that for one of the problems, the time-allocation problem

that uses FFS parameterization converges in fewer iterations than polynomial parametrization,

suggesting that it can potentially offer a reduced overall computational time, given an appro-

priate input. However, for the majority of the considered trajectory generation problems, the

polynomial method offers slightly better computational performance. The FFS method has gen-

erated trajectories similar to the polynomial parameterization methods when solving minimum-

snap trajectory optimization problems for quadrotors. The one-to-one comparison of the FFS

method with polynomial parametrization has also shown an obvious computational advantage

of the well-established polynomial minimum-snap optimization. The power consumption along

the smooth trajectories generated using the FFS and polynomial parameterizations show less

than 0.1% of relative difference. The FFS parameterization has been proven experimentally

63

to be suitable for quadrotor minimum-snap trajectory optimization. It is important to men-

tion that the performance of the control system and reference tracking will most likely degrade

when precise motion capture data is no longer available and the quadcopter has to rely on the

onboard sensors.

64

Bibliography

[1] Drone COVID Vaccine Deliveries. en. URL: https://about.ups.com/ca/

en / our - stories / innovation - driven / drone - covid - vaccine -

deliveries (visited on 03/18/2023).

[2] How the Ukraine drone war is changing the game on the battlefield. en-US. Section:

Military. Sept. 2022. URL: https://newatlas.com/military/ukraine-

russia-drone-war/ (visited on 03/18/2023).

[3] C. Goerzen, Z. Kong, and B. Mettler. “A Survey of Motion Planning Algorithms from the

Perspective of Autonomous UAV Guidance”. en. In: Journal of Intelligent and Robotic

Systems 57.1-4 (Jan. 2010), pp. 65–100. ISSN: 0921-0296, 1573-0409. DOI: 10.1007/

s10846-009-9383-1. URL: http://link.springer.com/10.1007/

s10846-009-9383-1 (visited on 09/14/2022).

[4] Evan Kawamura and Dilmurat Azimov. “Integrated Extremal Control and Explicit Guid-

ance for Quadcopters”. en. In: Journal of Intelligent & Robotic Systems 100.3-4 (Dec.

2020), pp. 1583–1613. ISSN: 0921-0296, 1573-0409. DOI: 10.1007/s10846-020-

01211-2. URL: https://link.springer.com/10.1007/s10846-020-

01211-2 (visited on 09/13/2022).

[5] Juan Paredes et al. “Development, implementation, and experimental outdoor evaluation

of quadcopter controllers for computationally limited embedded systems”. en. In: An-

nual Reviews in Control 52 (2021), pp. 372–389. ISSN: 13675788. DOI: 10.1016/j.

arcontrol.2021.06.001. URL: https://linkinghub.elsevier.com/

retrieve/pii/S1367578821000420 (visited on 09/14/2022).

65

https://about.ups.com/ca/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries
https://about.ups.com/ca/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries
https://about.ups.com/ca/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries
https://newatlas.com/military/ukraine-russia-drone-war/
https://newatlas.com/military/ukraine-russia-drone-war/
https://doi.org/10.1007/s10846-009-9383-1
https://doi.org/10.1007/s10846-009-9383-1
http://link.springer.com/10.1007/s10846-009-9383-1
http://link.springer.com/10.1007/s10846-009-9383-1
https://doi.org/10.1007/s10846-020-01211-2
https://doi.org/10.1007/s10846-020-01211-2
https://link.springer.com/10.1007/s10846-020-01211-2
https://link.springer.com/10.1007/s10846-020-01211-2
https://doi.org/10.1016/j.arcontrol.2021.06.001
https://doi.org/10.1016/j.arcontrol.2021.06.001
https://linkinghub.elsevier.com/retrieve/pii/S1367578821000420
https://linkinghub.elsevier.com/retrieve/pii/S1367578821000420

[6] M.G. Mohanan and Ambuja Salgoankar. “A survey of robotic motion planning in dy-

namic environments”. en. In: Robotics and Autonomous Systems 100 (Feb. 2018), pp. 171–

185. ISSN: 09218890. DOI: 10.1016/j.robot.2017.10.011. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S0921889017300313

(visited on 09/14/2022).

[7] E. Trélat. “Optimal Control and Applications to Aerospace: Some Results and Chal-

lenges”. en. In: Journal of Optimization Theory and Applications 154.3 (Sept. 2012),

pp. 713–758. ISSN: 0022-3239, 1573-2878. DOI: 10.1007/s10957-012-0050-5.

URL: http://link.springer.com/10.1007/s10957-012-0050-5

(visited on 09/14/2022).

[8] Reza Kamyar and Ehsan Taheri. “Aircraft Optimal Terrain/Threat-Based Trajectory Plan-

ning and Control”. en. In: Journal of Guidance, Control, and Dynamics 37.2 (Mar. 2014),

pp. 466–483. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.61339. URL: https:

//arc.aiaa.org/doi/10.2514/1.61339 (visited on 09/14/2022).

[9] Ehsan Taheri et al. “A novel approach for optimal trajectory design with multiple oper-

ation modes of propulsion system, part 1”. en. In: Acta Astronautica 172 (July 2020),

pp. 151–165. ISSN: 00945765. DOI: 10.1016/j.actaastro.2020.02.042.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0094576520301156

(visited on 09/14/2022).

[10] Paul Williams. “Three-Dimensional Aircraft Terrain-Following via Real-Time Optimal

Control”. en. In: Journal of Guidance, Control, and Dynamics 30.4 (July 2007), pp. 1201–

1206. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.29145. URL: https://

arc.aiaa.org/doi/10.2514/1.29145 (visited on 10/28/2022).

[11] Yang Wei, Chun-Lin Shen, and Peter Dorato. “U-parameter design for terrain-following

flight control”. en. In: Journal of Guidance, Control, and Dynamics 16.2 (Mar. 1993),

pp. 387–389. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/3.21015. URL: https:

//arc.aiaa.org/doi/10.2514/3.21015 (visited on 10/28/2022).

66

https://doi.org/10.1016/j.robot.2017.10.011
https://linkinghub.elsevier.com/retrieve/pii/S0921889017300313
https://linkinghub.elsevier.com/retrieve/pii/S0921889017300313
https://doi.org/10.1007/s10957-012-0050-5
http://link.springer.com/10.1007/s10957-012-0050-5
https://doi.org/10.2514/1.61339
https://arc.aiaa.org/doi/10.2514/1.61339
https://arc.aiaa.org/doi/10.2514/1.61339
https://doi.org/10.1016/j.actaastro.2020.02.042
https://linkinghub.elsevier.com/retrieve/pii/S0094576520301156
https://doi.org/10.2514/1.29145
https://arc.aiaa.org/doi/10.2514/1.29145
https://arc.aiaa.org/doi/10.2514/1.29145
https://doi.org/10.2514/3.21015
https://arc.aiaa.org/doi/10.2514/3.21015
https://arc.aiaa.org/doi/10.2514/3.21015

[12] Lun Quan et al. “Survey of UAV motion planning”. en. In: IET Cyber-Systems and

Robotics 2.1 (2020). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-csr.2020.0004,

pp. 14–21. ISSN: 2631-6315. DOI: 10.1049/iet-csr.2020.0004. URL: https:

//onlinelibrary.wiley.com/doi/abs/10.1049/iet-csr.2020.

0004 (visited on 09/14/2022).

[13] Janne Karelahti, Kai Virtanen, and John Öström. “Automated Generation of Realistic

Near-Optimal Aircraft Trajectories”. en. In: Journal of Guidance, Control, and Dynam-

ics 31.3 (May 2008), pp. 674–688. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.

31159. URL: https://arc.aiaa.org/doi/10.2514/1.31159 (visited on

10/28/2022).

[14] Steven M LaValle. “Rapidly-exploring random trees: A new tool for path planning”. In:

Ames, IA, USA (1998).

[15] Steven M. LaValle. Planning Algorithms. en. 1st ed. Cambridge University Press, May

2006. ISBN: 978-0-521-86205-9 978-0-511-54687-7. DOI: 10.1017/CBO9780511546877.

URL: https://www.cambridge.org/core/product/identifier/

9780511546877/type/book (visited on 10/27/2022).

[16] Alison Eele and Arthur Richards. “Path-Planning with Avoidance Using Nonlinear Branch-

and-Bound Optimization”. en. In: Journal of Guidance, Control, and Dynamics 32.2

(Mar. 2009), pp. 384–394. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.40034.

URL: https : / / arc . aiaa . org / doi / 10 . 2514 / 1 . 40034 (visited on

10/28/2022).

[17] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. “ARA*: Anytime A* with

provable bounds on sub-optimality”. In: Advances in neural information processing sys-

tems 16 (2003).

[18] T. Siméon, J.-P. Laumond, and C. Nissoux. “Visibility-based probabilistic roadmaps for

motion planning”. en. In: Advanced Robotics 14.6 (Jan. 2000), pp. 477–493. ISSN: 0169-

1864, 1568-5535. DOI: 10.1163/156855300741960. URL: https://www.

67

https://doi.org/10.1049/iet-csr.2020.0004
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-csr.2020.0004
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-csr.2020.0004
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-csr.2020.0004
https://doi.org/10.2514/1.31159
https://doi.org/10.2514/1.31159
https://arc.aiaa.org/doi/10.2514/1.31159
https://doi.org/10.1017/CBO9780511546877
https://www.cambridge.org/core/product/identifier/9780511546877/type/book
https://www.cambridge.org/core/product/identifier/9780511546877/type/book
https://doi.org/10.2514/1.40034
https://arc.aiaa.org/doi/10.2514/1.40034
https://doi.org/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960

tandfonline.com/doi/full/10.1163/156855300741960 (visited on

09/14/2022).

[19] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion

planning”. In: The International Journal of Robotics Research 30.7 (June 2011). Pub-

lisher: SAGE Publications Ltd STM, pp. 846–894. ISSN: 0278-3649. DOI: 10.1177/

0278364911406761. URL: https://doi.org/10.1177/0278364911406761

(visited on 09/14/2022).

[20] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. “Real-Time Motion Planning for

Agile Autonomous Vehicles”. en. In: Journal of Guidance, Control, and Dynamics 25.1

(Jan. 2002), pp. 116–129. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/2.4856.

URL: https://arc.aiaa.org/doi/10.2514/2.4856 (visited on 10/28/2022).

[21] Jay P. Wilhelm and Garrett Clem. “Vector Field UAV Guidance for Path Following and

Obstacle Avoidance with Minimal Deviation”. en. In: Journal of Guidance, Control,

and Dynamics 42.8 (Aug. 2019), pp. 1848–1856. ISSN: 1533-3884. DOI: 10.2514/

1.G004053. URL: https://arc.aiaa.org/doi/10.2514/1.G004053

(visited on 10/28/2022).

[22] Vrushabh Vijaykumar Zinage and Satadal Ghosh. “Generalized Shape Expansion-Based

Motion Planning in Three-Dimensional Obstacle-Cluttered Environment”. en. In: Jour-

nal of Guidance, Control, and Dynamics 43.9 (Sept. 2020), pp. 1781–1791. ISSN: 1533-

3884. DOI: 10.2514/1.G004756. URL: https://arc.aiaa.org/doi/10.

2514/1.G004756 (visited on 10/28/2022).

[23] Anusha Mujumdar and Radhakant Padhi. “Reactive Collision Avoidance of Using Non-

linear Geometric and Differential Geometric Guidance”. en. In: Journal of Guidance,

Control, and Dynamics 34.1 (Jan. 2011), pp. 303–311. ISSN: 0731-5090, 1533-3884.

DOI: 10.2514/1.50923. URL: https://arc.aiaa.org/doi/10.2514/1.

50923 (visited on 10/28/2022).

[24] Ruixiang Du and Raghvendra V. Cowlagi. “Interactive Sensing and Planning for a Quadro-

tor Vehicle in Partially Known Environments”. en. In: Journal of Guidance, Control,

68

https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.2514/2.4856
https://arc.aiaa.org/doi/10.2514/2.4856
https://doi.org/10.2514/1.G004053
https://doi.org/10.2514/1.G004053
https://arc.aiaa.org/doi/10.2514/1.G004053
https://doi.org/10.2514/1.G004756
https://arc.aiaa.org/doi/10.2514/1.G004756
https://arc.aiaa.org/doi/10.2514/1.G004756
https://doi.org/10.2514/1.50923
https://arc.aiaa.org/doi/10.2514/1.50923
https://arc.aiaa.org/doi/10.2514/1.50923

and Dynamics 42.7 (July 2019), pp. 1601–1611. ISSN: 0731-5090, 1533-3884. DOI:

10.2514/1.G003773. URL: https://arc.aiaa.org/doi/10.2514/

1.G003773 (visited on 10/28/2022).

[25] Youkyung Hong et al. “Quadrotor path planning using A* search algorithm and mini-

mum snap trajectory generation”. en. In: ETRI Journal 43.6 (2021). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2020-

0085, pp. 1013–1023. ISSN: 2233-7326. DOI: 10.4218/etrij.2020-0085. URL:

https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.

2020-0085 (visited on 10/28/2022).

[26] Boyu Zhou et al. “Robust and Efficient Quadrotor Trajectory Generation for Fast Au-

tonomous Flight”. In: IEEE Robotics and Automation Letters 4.4 (Oct. 2019). Confer-

ence Name: IEEE Robotics and Automation Letters, pp. 3529–3536. ISSN: 2377-3766.

DOI: 10.1109/LRA.2019.2927938.

[27] D. Reed Robinson et al. “An Efficient Algorithm for Optimal Trajectory Generation

for Heterogeneous Multi-Agent Systems in Non-Convex Environments”. en. In: IEEE

Robotics and Automation Letters 3.2 (Apr. 2018), pp. 1215–1222. ISSN: 2377-3766,

2377-3774. DOI: 10.1109/LRA.2018.2794582. URL: https://ieeexplore.

ieee.org/document/8260912/ (visited on 09/14/2022).

[28] Eungchang Mason Lee et al. “REAL: Rapid Exploration with Active Loop-Closing to-

ward Large-Scale 3D Mapping using UAVs”. In: 2021 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Sept. 2021, pp. 4194–

4198. DOI: 10.1109/IROS51168.2021.9636611.

[29] David G. Hull. “Conversion of Optimal Control Problems into Parameter Optimization

Problems”. en. In: Journal of Guidance, Control, and Dynamics 20.1 (Jan. 1997), pp. 57–

60. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/2.4033. URL: https://arc.

aiaa.org/doi/10.2514/2.4033 (visited on 10/28/2022).

[30] Michael Szmuk et al. “Convexification and real-time on-board optimization for agile

quad-rotor maneuvering and obstacle avoidance”. en. In: 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, Sept. 2017,

69

https://doi.org/10.2514/1.G003773
https://arc.aiaa.org/doi/10.2514/1.G003773
https://arc.aiaa.org/doi/10.2514/1.G003773
https://doi.org/10.4218/etrij.2020-0085
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2020-0085
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2020-0085
https://doi.org/10.1109/LRA.2019.2927938
https://doi.org/10.1109/LRA.2018.2794582
https://ieeexplore.ieee.org/document/8260912/
https://ieeexplore.ieee.org/document/8260912/
https://doi.org/10.1109/IROS51168.2021.9636611
https://doi.org/10.2514/2.4033
https://arc.aiaa.org/doi/10.2514/2.4033
https://arc.aiaa.org/doi/10.2514/2.4033

pp. 4862–4868. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS.2017.8206363.

URL: http://ieeexplore.ieee.org/document/8206363/ (visited on

09/14/2022).

[31] Liyang Wang and Xiaoli Bai. “Quadrotor Autonomous Approaching and Landing on

a Vessel Deck”. en. In: Journal of Intelligent & Robotic Systems 92.1 (Sept. 2018),

pp. 125–143. ISSN: 0921-0296, 1573-0409. DOI: 10.1007/s10846-017-0757-5.

URL: http://link.springer.com/10.1007/s10846-017-0757-5

(visited on 09/14/2022).

[32] John T. Betts. “Survey of Numerical Methods for Trajectory Optimization”. en. In: Jour-

nal of Guidance, Control, and Dynamics 21.2 (Mar. 1998), pp. 193–207. ISSN: 0731-

5090, 1533-3884. DOI: 10.2514/2.4231. URL: https://arc.aiaa.org/

doi/10.2514/2.4231 (visited on 10/28/2022).

[33] Nadeem Faiz, Sunil K. Agrawal, and Richard M. Murray. “Trajectory Planning of Dif-

ferentially Flat Systems with Dynamics and Inequalities”. en. In: Journal of Guidance,

Control, and Dynamics 24.2 (Mar. 2001), pp. 219–227. ISSN: 0731-5090, 1533-3884.

DOI: 10.2514/2.4732. URL: https://arc.aiaa.org/doi/10.2514/2.

4732 (visited on 10/28/2022).

[34] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. “Differential Flatness of

Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Tra-

jectories”. en. In: IEEE Robotics and Automation Letters 3.2 (Apr. 2018), pp. 620–626.

ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.2017.2776353. URL: http:

//ieeexplore.ieee.org/document/8118153/ (visited on 09/14/2022).

[35] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and control

for quadrotors”. en. In: 2011 IEEE International Conference on Robotics and Automa-

tion. Shanghai, China: IEEE, May 2011, pp. 2520–2525. ISBN: 978-1-61284-386-5. DOI:

10.1109/ICRA.2011.5980409. URL: http://ieeexplore.ieee.org/

document/5980409/ (visited on 09/14/2022).

70

https://doi.org/10.1109/IROS.2017.8206363
http://ieeexplore.ieee.org/document/8206363/
https://doi.org/10.1007/s10846-017-0757-5
http://link.springer.com/10.1007/s10846-017-0757-5
https://doi.org/10.2514/2.4231
https://arc.aiaa.org/doi/10.2514/2.4231
https://arc.aiaa.org/doi/10.2514/2.4231
https://doi.org/10.2514/2.4732
https://arc.aiaa.org/doi/10.2514/2.4732
https://arc.aiaa.org/doi/10.2514/2.4732
https://doi.org/10.1109/LRA.2017.2776353
http://ieeexplore.ieee.org/document/8118153/
http://ieeexplore.ieee.org/document/8118153/
https://doi.org/10.1109/ICRA.2011.5980409
http://ieeexplore.ieee.org/document/5980409/
http://ieeexplore.ieee.org/document/5980409/

[36] Davide Invernizzi, Simone Panza, and Marco Lovera. “Robust Tuning of Geometric At-

titude Controllers for Multirotor Unmanned Aerial Vehicles”. en. In: Journal of Guid-

ance, Control, and Dynamics 43.7 (July 2020), pp. 1332–1343. ISSN: 1533-3884. DOI:

10.2514/1.G004457. URL: https://arc.aiaa.org/doi/10.2514/1.

G004457 (visited on 10/28/2022).

[37] John T. Betts and William P. Huffman. “Path-constrained trajectory optimization using

sparse sequential quadratic programming”. en. In: Journal of Guidance, Control, and

Dynamics 16.1 (Jan. 1993), pp. 59–68. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/

3.11428. URL: https://arc.aiaa.org/doi/10.2514/3.11428 (visited

on 10/28/2022).

[38] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for

Aggressive Quadrotor Flight in Dense Indoor Environments”. en. In: Robotics Research.

Ed. by Masayuki Inaba and Peter Corke. Vol. 114. Series Title: Springer Tracts in Ad-

vanced Robotics. Cham: Springer International Publishing, 2016, pp. 649–666. ISBN:

978-3-319-28870-3 978-3-319-28872-7. DOI: 10.1007/978- 3- 319- 28872-

7_37. URL: http://link.springer.com/10.1007/978-3-319-28872-

7_37 (visited on 09/14/2022).

[39] Adam Bry et al. “Aggressive flight of fixed-wing and quadrotor aircraft in dense in-

door environments”. In: The International Journal of Robotics Research 34.7 (June

2015). Publisher: SAGE Publications Ltd STM, pp. 969–1002. ISSN: 0278-3649. DOI:

10 . 1177 / 0278364914558129. URL: https : / / doi . org / 10 . 1177 /

0278364914558129 (visited on 09/13/2022).

[40] Oleg A. Yakimenko. “Direct Method for Rapid Prototyping of Near-Optimal Aircraft

Trajectories”. en. In: Journal of Guidance, Control, and Dynamics 23.5 (Sept. 2000),

pp. 865–875. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/2.4616. URL: https:

//arc.aiaa.org/doi/10.2514/2.4616 (visited on 09/13/2022).

71

https://doi.org/10.2514/1.G004457
https://arc.aiaa.org/doi/10.2514/1.G004457
https://arc.aiaa.org/doi/10.2514/1.G004457
https://doi.org/10.2514/3.11428
https://doi.org/10.2514/3.11428
https://arc.aiaa.org/doi/10.2514/3.11428
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.1007/978-3-319-28872-7_37
http://link.springer.com/10.1007/978-3-319-28872-7_37
http://link.springer.com/10.1007/978-3-319-28872-7_37
https://doi.org/10.1177/0278364914558129
https://doi.org/10.1177/0278364914558129
https://doi.org/10.1177/0278364914558129
https://doi.org/10.2514/2.4616
https://arc.aiaa.org/doi/10.2514/2.4616
https://arc.aiaa.org/doi/10.2514/2.4616

[41] Nadia Kreciglowa, Konstantinos Karydis, and Vijay Kumar. “Energy efficiency of tra-

jectory generation methods for stop-and-go aerial robot navigation”. In: 2017 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS). June 2017, pp. 656–662.

DOI: 10.1109/ICUAS.2017.7991496.

[42] Markus Hehn and Raffaello D’Andrea. “Real-Time Trajectory Generation for Quadro-

copters”. In: IEEE Transactions on Robotics 31.4 (Aug. 2015), pp. 877–892. ISSN: 1941-

0468. DOI: 10.1109/TRO.2015.2432611.

[43] Marcelino M. de Almeida, Rahul Moghe, and Maruthi Akella. “Real-Time Minimum

Snap Trajectory Generation for Quadcopters: Algorithm Speed-up Through Machine

Learning”. In: 2019 International Conference on Robotics and Automation (ICRA). ISSN:

2577-087X. May 2019, pp. 683–689. DOI: 10.1109/ICRA.2019.8793569.

[44] Declan Burke, Airlie Chapman, and Iman Shames. “Generating Minimum-Snap Quadro-

tor Trajectories Really Fast”. en. In: 2020 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, Oct. 2020, pp. 1487–

1492. ISBN: 978-1-72816-212-6. DOI: 10.1109/IROS45743.2020.9341794.

URL: https://ieeexplore.ieee.org/document/9341794/ (visited on

09/14/2022).

[45] Zhepei Wang et al. “Generating Large-Scale Trajectories Efficiently using Double De-

scriptions of Polynomials”. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). ISSN: 2577-087X. May 2021, pp. 7436–7442. DOI: 10.1109/

ICRA48506.2021.9561585.

[46] Aleix Paris, Brett T. Lopez, and Jonathan P. How. “Dynamic Landing of an Autonomous

Quadrotor on a Moving Platform in Turbulent Wind Conditions”. In: 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA). ISSN: 2577-087X. May 2020,

pp. 9577–9583. DOI: 10.1109/ICRA40945.2020.9197081.

[47] Ehsan Taheri and Ossama Abdelkhalik. “Shape Based Approximation of Constrained

Low-Thrust Space Trajectories using Fourier Series”. en. In: Journal of Spacecraft and

Rockets 49.3 (May 2012), pp. 535–546. ISSN: 0022-4650, 1533-6794. DOI: 10.2514/

72

https://doi.org/10.1109/ICUAS.2017.7991496
https://doi.org/10.1109/TRO.2015.2432611
https://doi.org/10.1109/ICRA.2019.8793569
https://doi.org/10.1109/IROS45743.2020.9341794
https://ieeexplore.ieee.org/document/9341794/
https://doi.org/10.1109/ICRA48506.2021.9561585
https://doi.org/10.1109/ICRA48506.2021.9561585
https://doi.org/10.1109/ICRA40945.2020.9197081
https://doi.org/10.2514/1.58789
https://doi.org/10.2514/1.58789

1.58789. URL: https://arc.aiaa.org/doi/10.2514/1.58789 (visited

on 09/14/2022).

[48] Ehsan Taheri and Ossama Abdelkhalik. “Fast Initial Trajectory Design for Low-Thrust

Restricted-Three-Body Problems”. en. In: Journal of Guidance, Control, and Dynamics

38.11 (Nov. 2015), pp. 2146–2160. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.

G000878. URL: https://arc.aiaa.org/doi/10.2514/1.G000878

(visited on 09/13/2022).

[49] Ehsan Taheri and Ossama Abdelkhalik. “Initial three-dimensional low-thrust trajectory

design”. en. In: Advances in Space Research 57.3 (Feb. 2016), pp. 889–903. ISSN:

02731177. DOI: 10.1016/j.asr.2015.11.034. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0273117715008315 (visited on 09/14/2022).

[50] Ehsan Taheri, Ilya Kolmanovsky, and Ella Atkins. “Shaping low-thrust trajectories with

thrust-handling feature”. en. In: Advances in Space Research 61.3 (Feb. 2018), pp. 879–

890. ISSN: 02731177. DOI: 10.1016/j.asr.2017.11.006. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S0273117717308013

(visited on 09/14/2022).

[51] Mingying Huo et al. “Initial Trajectory Design of Electric Solar Wind Sail Based on

Finite Fourier Series Shape-Based Method”. In: IEEE Transactions on Aerospace and

Electronic Systems 55.6 (Dec. 2019), pp. 3674–3683. ISSN: 1557-9603. DOI: 10.1109/

TAES.2019.2906050.

[52] Zichen Fan et al. “Fast preliminary design of low-thrust trajectories for multi-asteroid

exploration”. en. In: Aerospace Science and Technology 93 (Oct. 2019), p. 105295.

ISSN: 12709638. DOI: 10.1016/j.ast.2019.07.028. URL: https://

linkinghub.elsevier.com/retrieve/pii/S1270963819303554 (vis-

ited on 09/14/2022).

[53] Wanmeng Zhou et al. “Low-Thrust Trajectory Design Using Finite Fourier Series Ap-

proximation of Pseudoequinoctial Elements”. en. In: International Journal of Aerospace

Engineering 2019 (Nov. 2019), pp. 1–18. ISSN: 1687-5966, 1687-5974. DOI: 10.1155/

73

https://doi.org/10.2514/1.58789
https://doi.org/10.2514/1.58789
https://doi.org/10.2514/1.58789
https://arc.aiaa.org/doi/10.2514/1.58789
https://doi.org/10.2514/1.G000878
https://doi.org/10.2514/1.G000878
https://arc.aiaa.org/doi/10.2514/1.G000878
https://doi.org/10.1016/j.asr.2015.11.034
https://linkinghub.elsevier.com/retrieve/pii/S0273117715008315
https://linkinghub.elsevier.com/retrieve/pii/S0273117715008315
https://doi.org/10.1016/j.asr.2017.11.006
https://linkinghub.elsevier.com/retrieve/pii/S0273117717308013
https://linkinghub.elsevier.com/retrieve/pii/S0273117717308013
https://doi.org/10.1109/TAES.2019.2906050
https://doi.org/10.1109/TAES.2019.2906050
https://doi.org/10.1016/j.ast.2019.07.028
https://linkinghub.elsevier.com/retrieve/pii/S1270963819303554
https://linkinghub.elsevier.com/retrieve/pii/S1270963819303554
https://doi.org/10.1155/2019/1364834
https://doi.org/10.1155/2019/1364834

2019/1364834. URL: https://www.hindawi.com/journals/ijae/

2019/1364834/ (visited on 09/13/2022).

[54] Andrea Caruso et al. “Optimal solar sail trajectory approximation with finite Fourier

series”. en. In: Advances in Space Research 67.9 (May 2021), pp. 2834–2843. ISSN:

02731177. DOI: 10.1016/j.asr.2019.11.019. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0273117719308270 (visited on 09/14/2022).

[55] Nicholas P Nurre and Ehsan Taheri. “Multiple gravity-assist low-thrust trajectory design

using finite Fourier series”. en. In: AIAA/AAS Astrodynamics Specialist Conference, AAS

20-671. 2020, p. 21.

[56] Yevhenii Kovryzhenko and Ehsan Taheri. “Comparison of Minimum-Snap and Finite

Fourier Series Methods for Multi-Copter Motion Planning”. en. In: AIAA SCITECH

2022 Forum. San Diego, CA & Virtual: American Institute of Aeronautics and As-

tronautics, Jan. 2022. ISBN: 978-1-62410-631-6. DOI: 10.2514/6.2022-1085.

URL: https://arc.aiaa.org/doi/10.2514/6.2022-1085 (visited on

09/13/2022).

[57] Jack W Langelaan et al. “The thesis of Zhenda Li was reviewed and approved by the

following:” en. In: AIAA Scitech 2020 Forum, 2020. DOI: 10.2514/6.2020-0856.

[58] Yevhenii Kovryzhenko and Ehsan Taheri. “Quadcopter Trajectory Generation Using Fi-

nite Fourier Series and Polynomial Parameterizations”. en. In: AIAA Journal of Guid-

ance, Control, and Dynamics under review (Sept. 2022).

[59] Jean Levine. Analysis and Control of Nonlinear Systems: A Flatness-based Approach.

en. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN: 978-3-642-00838-2

978-3-642-00839-9. DOI: 10 . 1007 / 978 - 3 - 642 - 00839 - 9. URL: https :

//link.springer.com/10.1007/978- 3- 642- 00839- 9 (visited on

05/24/2023).

[60] K.J. Kyriakopoulos and G.N. Saridis. “Minimum jerk path generation”. In: 1988 IEEE

International Conference on Robotics and Automation Proceedings. Apr. 1988, 364–369

vol.1. DOI: 10.1109/ROBOT.1988.12075.

74

https://doi.org/10.1155/2019/1364834
https://doi.org/10.1155/2019/1364834
https://doi.org/10.1155/2019/1364834
https://www.hindawi.com/journals/ijae/2019/1364834/
https://www.hindawi.com/journals/ijae/2019/1364834/
https://doi.org/10.1016/j.asr.2019.11.019
https://linkinghub.elsevier.com/retrieve/pii/S0273117719308270
https://linkinghub.elsevier.com/retrieve/pii/S0273117719308270
https://doi.org/10.2514/6.2022-1085
https://arc.aiaa.org/doi/10.2514/6.2022-1085
https://doi.org/10.2514/6.2020-0856
https://doi.org/10.1007/978-3-642-00839-9
https://link.springer.com/10.1007/978-3-642-00839-9
https://link.springer.com/10.1007/978-3-642-00839-9
https://doi.org/10.1109/ROBOT.1988.12075

[61] A. Piazzi and A. Visioli. “Global minimum-jerk trajectory planning of robot manipula-

tors”. In: IEEE Transactions on Industrial Electronics 47.1 (Feb. 2000), pp. 140–149.

ISSN: 1557-9948. DOI: 10.1109/41.824136.

[62] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. “A Computationally Effi-

cient Motion Primitive for Quadrocopter Trajectory Generation”. In: IEEE Transac-

tions on Robotics 31.6 (Dec. 2015). Conference Name: IEEE Transactions on Robotics,

pp. 1294–1310. ISSN: 1941-0468. DOI: 10.1109/TRO.2015.2479878.

[63] Yonghee Park, Woosung Kim, and Hyungpil Moon. “Time-Continuous Real-Time Tra-

jectory Generation for Safe Autonomous Flight of a Quadrotor in Unknown Environ-

ment”. en. In: Applied Sciences 11.7 (Apr. 2021), p. 3238. ISSN: 2076-3417. DOI: 10.

3390/app11073238. URL: https://www.mdpi.com/2076-3417/11/7/

3238 (visited on 09/14/2022).

[64] Behdad Davoudi et al. “Quad-Rotor Flight Simulation in Realistic Atmospheric Condi-

tions”. en. In: AIAA Journal 58.5 (May 2020), pp. 1992–2004. ISSN: 0001-1452, 1533-

385X. DOI: 10.2514/1.J058327. URL: https://arc.aiaa.org/doi/10.

2514/1.J058327 (visited on 09/14/2022).

[65] Z. Zuo. “Trajectory tracking control design with command-filtered compensation for

a quadrotor”. en. In: IET Control Theory & Applications 4.11 (Nov. 2010), pp. 2343–

2355. ISSN: 1751-8644, 1751-8652. DOI: 10.1049/iet-cta.2009.0336. URL:

https://digital-library.theiet.org/content/journals/10.

1049/iet-cta.2009.0336 (visited on 09/14/2022).

[66] Xi Chen and Liuping Wang. Cascaded model predictive control of a quadrotor UAV.

Journal Abbreviation: 2013 3rd Australian Control Conference, AUCC 2013 Pages: 359

Publication Title: 2013 3rd Australian Control Conference, AUCC 2013. Nov. 2013.

ISBN: 978-1-4799-2497-4. DOI: 10.1109/AUCC.2013.6697298.

[67] Hao Lu et al. “Online optimisation-based backstepping control design with applica-

tion to quadrotor”. en. In: IET Control Theory & Applications 10.14 (2016). eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cta.2015.0976, pp. 1601–1611. ISSN:

75

https://doi.org/10.1109/41.824136
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.3390/app11073238
https://doi.org/10.3390/app11073238
https://www.mdpi.com/2076-3417/11/7/3238
https://www.mdpi.com/2076-3417/11/7/3238
https://doi.org/10.2514/1.J058327
https://arc.aiaa.org/doi/10.2514/1.J058327
https://arc.aiaa.org/doi/10.2514/1.J058327
https://doi.org/10.1049/iet-cta.2009.0336
https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2009.0336
https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2009.0336
https://doi.org/10.1109/AUCC.2013.6697298

1751-8652. DOI: 10.1049/iet-cta.2015.0976. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1049/iet-cta.2015.0976 (visited on 03/26/2023).

76

https://doi.org/10.1049/iet-cta.2015.0976
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-cta.2015.0976
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-cta.2015.0976

Appendices

Waypoints for all the cases are summarized. All dimensions are specified in meters or radians.

Time per segment Ti notation is re-used to indicate a time-stamp of when a specific point i has

to be reached. The exact same set of inputs was used to solve the fixed-time problems and are

use as initial guesses for the time-allocation problems.

“Simple” trajectory: T1 = 0, X1 = 1, T2 = 3, X2 = 3.

“Figure-8” trajectory: T1 = 0, X1 = 0, Y1 = 0, Z1 = 0, ψ1 = 0.79; T2 = 3.75, X2 =

0.5, Y2 = 1, Z2 = 0.25, ψ2 = 1.57; T3 = 7.5, X3 = 0, Y3 = 2, Z3 = 0.5, ψ3 = 3.14; T4 =

11.25, X4 = −0.5, Y4 = 1, Z4 = 0.25, ψ4 = 4.71; T5 = 15, X5 = 0, Y5 = 0, Z5 = 0, ψ5 = 5.5;

T6 = 18.75, X6 = 0.5, Y6 = −1, Z6 = −0.25, ψ6 = 4.71; T7 = 22.50, X7 = 0, Y7 =

−2, Z7 = −0.50, ψ7 = 3.14; T8 = 26.25, X8 = −0.5, Y8 = −1, Z8 = −0.25, ψ8 = 1.57;

T9 = 30, X9 = 0, Y9 = 0, Z9 = 0, ψ9 = 0.79.

“Square” trajectory: T1 = 0, X1 = 1, Y1 = 1; T2 = 1.25, X2 = 0, Y2 = 1; T3 = 2.5, X3 =

−1, Y3 = 1; T4 = 3.75, X4 = −1, Y4 = 0; T5 = 5, X5 = −1, Y5 = −1; T6 = 6.25, X6 =

0, Y6 = −1; T7 = 7.5, X7 = 1, Y7 = −1; T8 = 8.75, X8 = 1, Y8 = 0; T9 = 10, X9 = 1, Y9 =

1.

“Circle” trajectory: T1 = 0, X1 = 0, Y0 = 2; T2 = 1.43, X2 = 1.56, Y2 = 1.25; T3 =

2.86, X3 = 1.95, Y3 = −0.45; T4 = 4.29, X4 = 0.87, Y4 = −1.8; T5 = 5.71, X5 =

−0.87, Y5 = −1.8; T6 = 7.14, X6 = −1.95, Y6 = −0.45; T7 = 8.57, X7 = −1.56, Y7 = 1.25;

T8 = 10, X8 = 0, Y8 = 2.

“3 Blocks” trajectory: T1 = 0, X1 = 5.4, Y1 = 3, Z1 = −0.4; T2 = 2.25, X2 = 4.2, Y2 =

1.6, Z2 = −1.4; T3 = 4.5, X3 = 2.8, Y3 = 1.6, Z3 = −1.4; T4 = 6.75, X4 = 0.5, Y4 =

1.8, Z4 = −0.9; T5 = 9, X5 = 0.4, Y5 = 0.8, Z5 = −0.4.

77

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	
	Introduction
	Literature Review and Motivation
	Earlier work on FFS
	Objectives

	
	Trajectory Planning
	Formulation of fixed-time, minimum-snap trajectory optimization problems
	Generalization of the polynomial and FFS parameterizations
	Key differences between polynomial and FFS parametrization
	Deriving analytic solution for fixed-boundary problem

	Time-allocation problem
	Simulation and experimental setup

	Vehicle Dynamics
	Non-linear Control structure
	Formulation of the Control System Optimization Problem
	Practical Considerations For Gain-Optimization

	
	Numerical Results
	Fixed-time solutions
	"Simple" trajectory.
	"3 Blocks" trajectory.
	"Square" trajectory.
	"Circle" trajectory.
	"Figure-8" trajectory.
	Summary of the fixed-time trajectories.

	Time-allocated solutions
	"Simple" and "3 Blocks" trajectories.
	"Square" trajectory.
	"Circle" trajectory.
	"Figure-8" trajectory.
	Fast Finite Fourier Series

	Experimental Results
	"3 Blocks" trajectory
	"Square" trajectory
	"Figure-8" trajectory

	
	Conclusion

	Appendices

