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Abstract 

 

 

This dissertation explores the use of electrostatic force feedback to generate artificial 

performance characteristics in a microdevice that would otherwise not be possible. As a test case, 

a non-vacuumed microresonator that is limited to small-amplitude linear-spring displacements 

and subject to thermal drift is transformed by electrostatic force feedback to behave as if it were 

in a vacuum and subject to highly nonlinear spring displacements that are insensitive to thermal 

drift. Thermal drift is the most significant challenge faced by microscale vibratory gyroscopes.  

A real-time performance-control technology is presented for correcting or manipulating 

the performance of microelectromechanical systems (MEMS) devices that are subject to process 

variations, temperature fluctuations, packaging stresses, or limited by manufacturing materials or 

geometry. This is done by using electrostatic force feedback to artificially increase or decrease 

the effective mass, damping, or stiffness of the MEMS device.  

When subject to identical excitations, process variations in the fabrication of MEMS 

devices cause two identically designed MEMS devices to perform differently, such as having 

different resonance frequencies. A shift in resonance frequency due to a variation in temperature 

will cause a frequency mismatch between the electrically driven excitation frequency and 

structural resonance frequency. This variation in temperature results in small changes in 

geometry, material properties, and packaging stress, causing significant drift in sensor reading 

from the MEMS device. For instance, readings of a three-axis vibratory MEMS gyroscope 

resting on a stationary table will drift by incorrectly sensing motion in the stationary table. 

Efforts by others to reduce drift sensitivity include using temperature-dependent drive frequency 

to match the drift of structural resonance frequency, creating structural designs that are less 
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sensitive to temperature variations, encapsulating the MEMS in a thermal reservoir to maintain a 

constant temperature, etc. 

Applying our real-time performance-control technology to our test case, we address the 

abovementioned problems as follows. To ensure all identically fabricated devices can achieve 

identical resonance frequencies, the devices are structurally designed to have a resonance 

frequency that is below the desired resonance frequency. Two electrostatic force feedbacks are 

applied to each device. The first feedback (proportional to negative velocity) greatly narrows the 

bandwidth and increases the resonance amplitude, i.e. an artificial vacuum for a high-quality 

factor. The second feedback (proportional to cubed displacement) bends the amplitude response 

curve over the desired resonance frequency; i.e. an artificial nonlinear stiffness for wide 

bandwidth within 3dB of the preferred amplitude. Ultimately, this enables all devices to resonate 

precisely at the applied electronic excitation frequency and be insensitive to the process 

variations and thermal drift that would have overwise affected their structural resonance 

frequencies. This real-time performance-control technology is called performance-on-demand 

MEMS, or PODMEMS. 

Our analytical and simulation results show that the effective stiffness, quality factor, and 

nonlinearity of the device can be easily tuned by just changing the gain of the feedback circuit. 

While applying these technologies to the application of a low-cost MEMS gyroscope, the result 

shows that for a temperature variation of 80oC, the output amplitude of the gyro is only 

attenuated by 0.4dB, which is 94.4dB smaller than the gyro without the feedback control.  
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Chapter 1  

Introduction 

 

 

Since microelectromechanical systems (MEMS) often generate small electrostatic forces 

and small static deflections, resonance is often used to achieve larger deflections for improved 

signal-to-noise ratios (SNR) for greater sensitivities. Examples of MEMS devices that use 

resonance include filters, gyroscopes, mass sensors, timers, etc. The resonance frequency of a 

MEMS device most significantly depends on the structure's geometric design and material 

properties. Nevertheless, due to the variations in fabrication processing, packaging, and ambient 

conditions, the identically-designed and fabricated devices that are subject to identical excitation 

will perform differently. 

The conventional methods of tuning the resonant frequency of MEMS resonators due to 

process variation have primarily involved post-processing with mechanical techniques or 

electrical tuning techniques. The mechanical tuning methods can be further divided into additive 

methods and subtractive methods. The additive methods can be achieved by deposition [1], 

surface coating [2], and electroplating [3]. In [4], through selective polysilicon deposition, the 

cross-section of a suspension beam is increased from 6 to 9.4
2μm , which results in the resonate 

frequency increased by 1.96% from its initial value of 86.6kHz. Different from additive methods, 

subtractive methods use chemical etching [5], laser ablation [6], ion milling [7], and mechanical 

milling [8] methods to remove material from the resonator to change the stiffness. In [9], the 

resonant frequency of the vibratory MEMS gyroscope is changed from 3200Hz to 3209Hz by 

trimming the mass with laser trimming. On the other hand, electrical tuning techniques can be 

generally divided into categories of electrostatic actuation and feedback control. The electrical 
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actuation methods are achieved by applying an electrostatic force to the resonator, causing a 

deflection and thereby altering the effective stiffness. By varying the voltage applied to the 

electrodes, the electrostatic force can be adjusted, enabling tunability of the resonator's stiffness 

[10]–[12]. In [13], by applying a 14.903V electrostatic-tuning voltage to the comb-drive  MEMS 

gyroscope, the mismatch frequency of 497Hz between the drive and sense mode is eliminated, 

which results in mechanical sensitivity increased by 238.9%. While the electrostatic actuation 

methods can tune the stiffness by changing the applied voltages, feedback control methods 

provide more dynamic flexibility, which involves sensing the displacement or frequency 

response of the resonator and employing feedback control to adjust the actuation forces 

accordingly [14]–[16]. In [17], the displacement feedback control is adopted to tune the mode 

mismatching of a DSP-based MEMS gyroscope. As a result, the mode mismatching is reduced to 

less than 0.01Hz.  While these approaches have proven effective to some extent, they often 

exhibit limitations in terms of controllability, responsiveness, and adaptability. Therefore, there 

is a need for innovative techniques that provide greater dynamic control over the stiffness of 

MEMS resonators. 

Another major factor influencing the performance of the MEMS device is the 

temperature change. Semiconductor conductivity increases with temperature due to increased 

conduction band charge carriers; ceramic resistor conductivity decreases with increased 

temperature due to increased scattering, and capacitance increases with temperature due to 

thermal expansion [18]. MEMS structural volume increases with temperature due to thermal 

expansion, and Young’s modulus decreases with an increase in temperature due to a widening of 

the potential wells between lattice sites [19]. For example, [20] reported a shift in the natural 

frequency of a MEMS accelerometer by 10Hz due to an increase in an ambient temperature of 
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20oC. Besides, temperature variation will also result in changes in resistor and capacitor values in 

analog circuits. Such disturbances cause the resonance frequency of the MEMS device to drift. 

The amplitude at resonance is proportional to the quality factor (Q), which is inversely 

proportional to the resonance bandwidth (BW) for high-Q devices. The initial challenge is to tune 

the driving frequency with the structural resonance frequency. Thermally induced structural 

resonance at zero-state can sometimes be sensed to determine the driving frequency. The second 

challenge is updating the driving frequency to match the drifting structural resonance frequency. 

For slight mismatches between the drive frequency and structural resonance frequency, there will 

be significant attenuation in amplitude, resulting in a much smaller SNR. For example, [21] 

describes a MEMS resonator with Q > 105, wr = 911kHz, and BW = 47.7Hz, where a frequency 

mismatch between the driving force and the structure on the order of a millionth of resonance 

reduced the amplitude by a factor of 10, below the 3dB cutoff.  

Previous methods of addressing thermal drift problems can be divided into two 

categories: passive compensation and active compensation. The passive compensation methods 

reduce the influence of temperature fluctuation by selectively choosing the materials [22]–[24], 

optimizing structural design [25]–[27], and packaging and thermal management [28], [29]. In 

[30], Hajjam et al. reported a high phosphorus-doped silicon MEMS resonator with thermal drift 

of frequency down to 1.5 ppm/°C, which is based on the theory that Temperature Coefficient of 

Elastic Modulus (TCEM) of single-crystal silicon can be compensated by high doping. While in 

[31], Melamud et al. proposed a Si-SiO2 composite resonator to reduce thermal drift through 

structural design optimization, where SiO2 covers the surface of the silicon beam to form a 

composite resonator beam. Because TCEMs of silicon and SiO2 are negative and positive, 

respectively, the Si-SiO2 composite resonator can realize the passive compensation for the 
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thermal drift of frequency. On the contrary, the active compensation methods actively sense and 

adjust the operating parameters of a MEMS resonator to counteract the effects of thermal drift. In 

[32], the ambient temperature of the piezoelectric MEMS resonator is sensed by measuring 

frequency difference between the two operating modes of the resonator, which is then used as the 

feedback control signal for the micro oven. The measured frequency stability is less than 400 

ppb over a wide temperature range from -40oC to 80oC. While in [33], Sundaresan et al. 

presented the method of realizing active thermal compensation with electrostatic tuning via an 

adjustable voltage for a capacitive MEMS device, where the frequency drift is decreased from 

2830ppm to 39ppm over the temperature range of 100oC. Another main category of active 

compensation is the electronic frequency compensation with the aid of a phase-locked loop 

(PLL) and a highly accurate temperature sensor [34]–[36]. In [37], the frequency stability of a 

MEMS-based oscillator is increased by ~33 times with the utilization of the electronic frequency 

compensation method. 

This dissertation will explore the methods of compensating for the performance changes 

caused by process variation through linear electrostatic feedback force tuning and addressing the 

thermal drift problem by nonlinear electrostatic feedback force tuning. Chapter 2 shows a 

comprehensive literature review that presents different methods for solving the process variation 

and thermal drift problems. Then, the backgrounds of the proposed methods, PODMEMS, will 

be introduced in Chapter 3, covering the mechanism of the MEMS resonator, feedback control 

theory, and stability analysis. With the background covered, Chapter 4 and Chapter 5 will then 

introduce the application of artificial stiffness and artificial nonlinear stiffness to a MEMS 

resonator separately. Then in Chapter 6, the MEMS resonator with artificial high quality and 

artificial nonlinear stiffness is developed. In Chapter 7, a test case of applying artificial stiffness, 
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damping, and nonlinear stiffness control to a MEMS gyroscope will be demonstrated. Chapter 8 

Concludes this investigation.  
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Chapter 2  

Survey of Literature 

 

 

This chapter reviews the literature on the methods for addressing process variation and 

thermal drift in microelectromechanical systems (MEMS) resonators. The chapter begins is 

divided into two parts: process variation compensation and thermal drift compensation, which 

begin by highlighting the challenges posed by process variation and temperature fluctuations. 

Then the review explores the existing methods of compensating for these challenges, including 

both passive and active compensation techniques. The chapter concludes by emphasizing the 

need for innovative techniques that provide greater dynamic control over the performance of 

MEMS devices. 

2.1 Process Variation Compensation 

The inherent variability that occurs during the fabrication process led to deviations in the 

physical dimensions, material properties, and overall performance of MEMS devices. These 

variations can arise from various sources, including lithography [38], etching [39], deposition 

[40], doping [41], and assembly processes. Process variation poses significant challenges to the 

consistent and reliable production of MEMS devices, as it can affect their functionality, 

performance, and yield. 

2.1.1 Mechanical Tuning Methods 

The mechanical tuning methods can be classified into additive and subtractive 

approaches. Additive methods add materials to the surface of the MEMS device to modify the 

resonator's structure. One commonly used additive method is selective deposition, which uses 
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Chemical Vapor Deposition (CVD) or Physical Vapor Deposition (PVD) to add material to the 

structure. CVD involves the reaction of precursor gases on the surface, resulting in the deposition 

of a desired material [42]. Selective CVD allows targeted deposition on specific regions of the 

device to modify its properties [43]. In [44], a metal layer is deposited onto the surface of a 

MEMS resonator, resulting in the resonance frequency being shifted by 11%.  The advantages of 

using CVD methods include having a conformal coating, high-purity films, and precise control 

[45]. But the deposition time is usually longer than other methods [46], and therefore decreases 

the throughput of the production. While PVD methods, on the other hand, will have the benefit 

of requiring less deposition time [47]. Sputtering and evaporation techniques are usually used for 

PVD. Sputtering involves bombarding a target material with high-energy ions, causing atoms to 

be ejected and deposited on the substrate [48]. Evaporation involves heating a solid material, 

allowing the vaporized atoms to condense onto the substrate surface [49].  

Another important method of additive mechanical tuning is electroplating. Electroplating 

is an electrochemical process that involves depositing a metal or alloy coating onto a conductive 

surface. It utilizes an electrolyte solution and an electrical current to facilitate the deposition of 

the desired material onto the MEMS structure. 

Contrary to additive methods, subtractive methods use techniques such as chemical 

etching, laser ablation, ion milling, and mechanical milling to remove material from the MEMS 

device to tune the structure sizes. Chemical etching is a widely used technique in the fabrication 

of MEMS due to its benefits of low cost and high precision [50], which is achieved by 

selectively removing material from the substrate using chemical reactions. Commonly used 

etchant for MEMS are Potassium hydroxide (KOH) [51], Hydrofluoric acid (HF) [52], Hot 

phosphoric acid (H3PO4) [53], and so on. In [54], chemical etching reduces the frequency split 
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between the identical designed and fabricated cylindrical resonator gyroscope from 2.2Hz to less 

than 0.05Hz. 

2.1.2 Electrical Tuning Methods 

The review then discusses electrical tuning methods for compensating for process 

variation. Various electrical tuning methods have been developed, such as electrothermal, 

electrostatic, magnetic, piezoelectric, dielectric excitation, etc. Among those methods, 

electrostatic methods are of particular interest because of their benefits of virtually nonexistent 

current loss, high energy density, and large force at the micro-scale [55].  

Electrostatic actuation methods involve applying an electrostatic force to the resonator to 

induce deflection and modify its effective stiffness. This can be achieved by varying the voltage 

applied to the electrodes, enabling tunability of the resonator's stiffness. The electrostatic 

actuation tuning methods can be further divided into four categories: parallel plate [56]–[60], 

varying gap [61]–[64], varying overlapping surface [65]–[68], and non-interdigitated [69].  The 

two most commonly used tuning techniques, parallel plate tuning, and varying gap tuning 

mechanisms, will be discussed as follows. 

For parallel plate tuning, an electrostatic force generated by applying voltage difference 

across two capacitive plates will be applied to the MEMS devices, causing the parallel plate to 

move to generate a new equilibrium between the electrostatic attraction and mechanical restoring 

force. Therefore, around this new equilibrium, the effective stiffness will be defined by the sum 

of the mechanical and electrostatic forces. The electrostatic force can be adjusted by varying the 

applied voltage, where higher voltages result in increased electrostatic forces, leading to higher 

stiffness. In [70], the resonance frequencies of a MEMS gyroscope’s drive mode and sense 

mode, which should be matched for generating larger output amplitude, are mismatched 
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(~100Hz) due to process variation and temperature. However, by tuning the effective stiffness of 

the sense mode by applying DC voltage on the parallel plate, the mode mismatching is 

significantly reduced with a normalized sense mode stiffness change by a factor of 1.3. 

2.2 Thermal Drift Compensation 

Another challenging issue that MEMS devices are facing is thermal drift. Due to 

temperature variation, the physical sizes, material properties, ambient air pressure, packaging 

stress, and electronic circuits will all be subject to changes, causing the performance change of 

MEMS devices. In [71], the temperature drift of bias (TDB) of a comb MEMS accelerator 

caused by thermal expansion is 1.85mg/oC, and the temperature drift of scale factor (TDSF) 

caused by thermal expansion and stiffness-temperature dependency is -162.7ppm/oC. The 

MEMS gyroscope is another example of a device’s performance significantly degraded by 

thermal drift. In [72], the zero bias stability of a disk MEMS gyroscope is only 27.8o/h, which 

the TDB and TDSF cause. This chapter then focuses on compensation methods for addressing 

thermal drift in MEMS resonators. Two main categories of compensation techniques are 

discussed: passive compensation and active compensation. 

2.2.1 Passive Compensation Methods 

Passive compensation methods aim to reduce the influence of temperature fluctuations on 

MEMS devices. These methods involve selectively choosing materials with specific temperature 

coefficients [73]–[76], optimizing structural designs [77]–[82], and implementing packaging and 

thermal management techniques [28], [83]–[85].  

Materials used in MEMS structure typically involve silicon, polysilicon, silicon dioxide 

(AlN), and so on. The material’s properties are related to temperature through the temperature 
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coefficient. By selectively choosing and arranging the use of materials, the thermal drift of the 

device can be reduced. In [86], a SiO2 overlay with a temperature coefficient of frequency (TCF) 

>0 and a lithium niobate substrate with TCF<0 are chosen for the design of a surface acoustic 

wave (SAW) resonator, which resulted in the thermal drift smaller than 200kHz p.p., where the 

center frequency is 800MHz.  

Except selectively choosing materials with specific temperature coefficients, optimize the 

structure of the MEMS device to reduce the thermal drift is another way to permanently 

compensate for temperature variation. In [79], He et al. studied the relation between TCSF and 

the wide-narrow gaps ratio (WNGR), which is defined as the ratio of the asymmetric comb 

fingers gap distance. Results reveal that with a certain range of WNGR, increasing the WNGR 

will have a smaller TCSF, therefore having a smaller thermal drift.  

MEMS devices are usually packaged for protection from contamination and reduced 

damping. Thermal management of the packaging can also reduce the thermal drift of the device, 

which can be realized by thermal isolation and thermal dissipation. Using insulating materials, 

thermal isolation methods create a thermal barrier between the MEMS device and the external 

environment. This prevents heat transfer from external sources, reducing the temperature 

fluctuations experienced by the MEMS device. In [87], the MEMS sensor is encapsulated in a 

plastic carrier with low thermal conductivity of 0.96W/(m.K), which increases the measurement 

accuracy by two times. While thermal dissipation incorporates heat sinks, heat spreaders, or 

thermal vias to efficiently channel heat away from the MEMS device. In [88], the MEMS dies 

are placed inside a copper cavity on the substrate to provide better heat dissipation.  
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2.2.2 Active Compensation Methods 

Active compensation methods actively sense and adjust the operating parameters of 

MEMS resonators to counteract the effects of thermal drift, which can be divided into categories 

as follows: oven control [89]–[92], electrostatic feedback control [93]–[97], and estimation 

model of temperature drift error development [98]–[101].  

Oven control compensation method is the most straightforward technique, which utilizes 

the temperature sensor to sense the ambient temperature of the MEMS device. Then it uses the 

sensed temperature signal as the feedback signal for controlling the heater to maintain the 

ambient temperature at a constant value. The structure of the oven-controlled MEMS device can 

be divided into two categories: off-chip structure and on-chip structure. The off-chip solution is 

to install a mass-produced commercial MEMS sensor in a larger package. In [102], Yang et al. 

packaged the commercial six-axis MEMS inertial measurement unit (IMU) into a larger package, 

which has CMOS temperature sensor and heater to realize the temperature control. By doing so, 

the bias stability of the IMU is increased by 345 times. On the other hand, the on-chip structure 

integrates all structures in a sealed first-level package, which provides the benefit of reduced 

package size compared with the off-chip structure. In [103], the MEMS dies is attached to a 

platform, which is surrounded by a heating element made up of polysilicon. Results show that 

the active temperature control scheme successfully reduced the TCF by five times.  

Oven control methods unavoidably increase the MEMS chip's size and the packaging's 

complexity. However, the electrostatic force feedback method uses temperature-dependent 

variables such as demodulated phase or resonant frequency as the control signal for the 

electrostatic feedback force-generating. In [97], Zhai et al. implemented the electrostatic force 
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feedback control on a MEMS differential capacitive accelerometer, which reduced the standard 

deviation of the scale factor of the accelerometer with respect to temperature by 95.69%. 

Different from oven control and electrostatic force feedback control, which substantially 

change the mechanical performance of the MEMS device, the estimation model of temperature 

drift error method uses collected data of temperature change and output of the device to train the 

model for estimating the relationship between temperature change and zero bias error. Therefore, 

the output of the MEMS device can be compensated by the model. In [98], Zhu et al. employed 

the radical basis function neural network to develop the temperature drift error estimation model 

for thermal drift compensation, which decreased the acceleration random walking by 22 times. 

2.3 Summary 

This chapter focuses on the methods used to address process variation and thermal drift in 

MEMS resonators, which are divided into two main sections: process variation compensation 

and thermal drift compensation. 

The challenges posed by process variation in MEMS devices are highlighted in the 

section on process variation compensation. The review explores various mechanical tuning 

methods, including additive and subtractive approaches. Additive methods, such as selective 

deposition and electroplating, involve adding materials to modify the resonator's structure, while 

subtractive processes, such as chemical etching and milling, remove material from the device. 

The section also discusses electrical tuning methods, with a particular focus on electrostatic 

actuation techniques that modify the resonator's stiffness by varying the applied voltage. 

The section on thermal drift compensation addresses the issue of temperature-induced 

variations in MEMS devices. The impact of thermal drift on device performance is discussed, 

with examples from accelerometers and gyroscopes. Passive compensation methods are 



13 
 

explored, which involve selecting materials with specific temperature coefficients, optimizing 

structural designs, and implementing packaging and thermal management techniques. Active 

compensation methods, including oven control, electrostatic feedback control, and temperature 

drift error estimation models, are also discussed. These active methods actively sense and adjust 

operating parameters to counteract the effects of thermal drift. 

In conclusion, the literature review emphasizes the need for innovative techniques that 

provide greater dynamic control over the performance of MEMS devices. The chapter provides a 

comprehensive overview of existing methods for process variation and thermal drift 

compensation, laying the foundation for further research and development in this field. 
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Chapter 3  

PODMEMS Theory 

 

 

This chapter introduces the basic theory of the performance of demand 

MEMS(PODMEMS). PODMEMS is a comprehensive and accurate method of electrically 

tuning MEMS devices' effective mass, damping, and stiffness based on continuous force 

feedback [104]. The PODMEMS method can compensate for the performance variations caused 

by process variation, packaging stress, temperature variation, and noise. Therefore, with the 

proposed method, MEMS devices can fully adjust their performance on demand.  

3.1. Steady-State Analysis of Linear PODMEMS 

 

Figure 3.1: MEMS + performance controller. The structure incorporates symmetrical feedback components on both 

sides (left side unshown) that operate out of phase by 180°, ensuring continuous feedback response throughout each 

cycle. Left and right combs receive feedback forces proportional to position, velocity, and acceleration. 
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With the test case shown in Figure 3.1, the analytical expression of the effective mass, 

damping, and stiffness is obtained by using steady-state analysis subject to feedback latency. 

Assuming a sinusoidal driving force ,0

jwt

dr dr
F F e=  is applied to the proof mass through the comb 

drives, where the ,0dr
F  is the amplitude of the driving force,   is the driving force’s frequency. 

For the system shown in Figure 3.1, electrostatic feedback forces that are proportional to the 

displacement, velocity, and acceleration of the proof mass are applied. Therefore, the whole 

system can be described by eq (3.1). 

 

( , , )

                       

                       

MK D

MK D

dr fb

dr K D M

dr e e e

Mx Dx Kx F F x x x

F F F F

F K x D x M x

 

 

+ + = −

= −  + +  

 = − + +
 

                                                                                     (3.1) 

where M

M e
F M x= , D

D e
F D x= , K

K e
F K x= are the feedback forces that are proportional to the 

sensed acceleration ( )M

M
x x t

 − , velocity ( )D

D
x x t

 − , and displacement ( )K

K
x x t

 − . 

Due to latency introduced by sensing and feeding back circuit, there will be latency M
 , D

 , and 

K
 introduced. The quantities e

M , e
D , and  e

K  are the electrically-generated proportionality 

constants that constructively or destructively contribute to the system's effective mechanical 

stiffness, damping, or mass. 

Assuming the steady-state solution to eq (3.1) has the form of 
( )

0
( ) ( ) j tX t x e   −

= , where 

0
x  is the amplitude of the motion displacement,   is the angular frequency of the motion 

displacement,   is the phase difference between the mechanical response angle and applied 

electrical driving angle. By substituting the solution to eq (3.1), the real and imaginary parts of 

the solution will be: 
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,0 2 2

0

cos( )
cos( ) sin( ) cos( )dr

e M e D e K

F
M K M D K

x


     = − + − + +                                    (3.2) 

,0 2

0

sin
sin( ) cos( ) sin( )dr

e M e D e K

F
D M D K

x


     = + + −                                                     (3.3) 

By squaring and summing eq (3.2) and eq (3.3), the displacement amplitude 0
x  will be found as: 

,0

0 1 2 2

1 2 2

,0

2 2 2 2

( )
( cos( ) ( cos( ) sin( )) )

( cos( ) sin( ) sin( ))

         
( )

dr

e K e M e D

e D e K e M

dr

eff eff eff

F
x

K K M M D

D D K M

F

K M D


    

     

 

−

−

=
+ − + −

+ + − +

=
− +

                                      (3.4) 

where the second relation in eq (3.4) is determined by an effective equation of motion in 

standard form: 

eff eff eff dr
M x D x K x F+ + =                                                                                                                                 (3.5) 

Therefore, the effective stiffness 
eff
K , effective damping 

eff
D , and effective mass 

eff
M can be 

found through (3.4) as : 

cos( )
      
eff e K

e

K K K
K K

= +

 +
                                                                                                                                     (3.6) 

1

2

cos( ) sin( ) sin( )
      D+D
eff e D e K e M

e e K e M

D D D K M
K M

    

  

−= + − +

 − +
                                                                (3.7) 

1cos( ) sin( )
       

eff e M e D

e e D

M M M D
M M D

  


−= + −

 + −
                                                                             (3.8) 

The first relations in eq (3.6)-(3.8) show the exact representation of the effective stiffness, 

damping and mass, while the second relations show the first-order approximation, assuming that 

the feedback latency is much smaller than the time period of proof-mass oscillation 2   . 
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The phase difference between the response angle t −  and the drive angle t  is found 

by the ratio of eq (3.3) to (3.2) as: 

1

2
tan ( )

eff

eff eff

D

K M






−=
−

                                                                                                                                  (3.9) 

 

The performance parameters of the PODMEMS can be calculated from eq (3.5) as follows. 

Exponential decay rate: 

1

2eff eff eff
D M =                                                                                                                                             (3.10) 

Quality factor: 

2 2

, , 0, ,

2 2

0, ,

1

2 2

d eff d eff eff eff r eff

eff

eff eff eff r eff

M
Q

D

   

  

+
= = =

−
                                                                                              (3.11) 

Amplitude at displacement resonance: 

,0

max

,

dr

eff d eff

F
x

D 
=                                                                                                                                                 (3.12) 

Velocity resonance: 

0,

eff

eff

eff

K

M
 =                                                                                                                                                    (3.13) 

Frequency relations: 

2 2 2 2 2 2 2

, 0, , , 0 ,
2 2

r eff eff eff d eff eff d eff eff
      = − = − = −                                                                                      (3.14) 
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3.2. Steady-State Analysis of Nonlinear PODMEMS 

In this section, the PODMEMS is extended from linear to nonlinear by considering third-order 

nonlinearity, which is generated by feeding back a force proportional to the cubic of proof mass 

displacement. The governing equation can describe such a system.  

3 3

3

(( ) )

                                

                                ( )

dr fb

dr

dr e

Mx Dx Kx x F F x

F F

F x















+ + + = −

= −

= −

                                                                                                    (3.15) 

where 
3( )

e
F x 


= is the feedback force proportional to the cubic of sensed displacement 

3 3( ) ( )x x t


 − . The latency introduced by the sensing and feedback circuit is represented by 


 . The original nonlinearity coefficient of the MEMS device is represented by  , which is 

usually a very small value. On the other hand, the quantity e
  is the electrically generated 

proportionality constant that constructively or destructively contributes to the effective 

mechanical nonlinear stiffness of the system. 

The steady-state solution to eq (3.15) can be found with Harmonic Balance 

Method(HBM). Firstly, when the driving force equals to ,0
cos( )

dr
F t , eq (3.15) can be rewritten 

as: 

3 cos( )x x x x A t  + + + =                                                                                                     (3.16)                                                                                                                         

where D M = , K M = , e
M = ,  ,0dr

A F M= . 

The approximate solution to the equation will take the form of: 

cos( ) sin( ) cos( )x a t b t Z t   = + = −                                                                                  (3.17)                                                                                                 
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where 
2 2Z a b= + is the amplitude of displacement of proof mass, 

1tan ( )b a −=  is phase 

difference between the mechanical response angle and applied electrical driving angle. 

Substitute the approximate solution into eq (3.16) will have: 

2 3 2 3 2

3 2 3 2

3 3 3
( )cos( ) ( )sin( )

4 4 4
1 3 1 3

( )cos(3 ) ( )sin(3 ) 0
4 4 4 4

a b a a A t a b b ba t

a ab t ba t

          

     

− + + + − + − − + + +

+ − + − + =

           (3.18)                                    

Neglecting the super harmonics term at 3 t , the remaining two terms cos( )t  and sin( )t must 

be zero, which leads to the following two equations: 

2 3 2

2 3 2

3 3
0

4 4
3 3

0
4 4

a b a a ab A

b a b b ba

    

    


− + + + + − =

 − + + + + =


                                                                           (3.19)                                                                                       

The amplitude-frequency response can be obtained by squaring both terms of eq (3.19) and 

adding them together: 

2

2 2 2 2 23
( )

4
Z Z A   

  
− − + =  

   

                                                                                     (3.20)                                                                                              

For the system described with eq (3.16), when the nonlinear stiffness 0  , the system’s 

stiffness characteristic is hardening. Otherwise, when 0  , the system’s stiffness characteristic 

is softening. As shown in Fig.1, by using eq (3.20), the frequency responses of eq (3.16) with 

different   values are plotted. 
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Figure 3.2: Frequency response of the nonlinear system. As shown in the figure, the black curve shows when the 

nonlinear stiffness  is a positive value, which is hardening. On the contrary, the red curve shows when the 

nonlinear stiffness  is negative, corresponding to the softening characteristic. For both the hardening and softening 

frequency responses, the solid lines represent the stable state, while the dashed lines represent the unstable state of 

the system.  Taking the hardening system as an example, when the driving frequency is swept from the low 

frequency to high frequency, the displacement amplitude will follow the solid line until point D. After that, there 

will be the jump phenomenon, which causes the displacement amplitude to drop dramatically. On the other hand, if 

the frequency is swept from high frequency to low frequency, the displacement amplitude will follow the solid line 

until point U, where the jump-up phenomenon will occur, causing the amplitude to increase dramatically. This 

phenomenon also apply to the softening system. 

 

The jump phenomenon for both the hardening and softening situations. The jump 

phenomenon is caused by the unstable status of the system, which is described in more detail in 

[105]. With a determined  value, the jump-up and jump-down frequency will be dependent on 

the direction of the sweeping excitation frequency. For a hardening system, the jump-down will 

occur when increasing the sweeping frequency from below the unstable region to into the 
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unstable region. On the other hand, the jump-up will occur when decreasing the sweeping 

frequency from a stable region into an unstable region. The jump-down frequencies are 

expressed in the following equation: 

2 2

max

3 ˆ (1 2 )
4d
X  = + −                                                                                                       (3.21)                                                                                                        

where 2D M = ,  max
X̂  is the maximum amplitude, expressed as: 

,0

max 2

2 3ˆ ( 1 1)
3 4

dr
F

X
K



 
 + −                                                                                              (3.22)                                                                                                                  

Meanwhile, the jump-up frequency, which is dependent on whether the system is softening or 

hardening, can be expressed as follows: 

Hardening system: 

3
1

4u

up
X

 = +                                                                                                                                                    (3.23) 

Softening system: 

 
3

1
4u

up
X

 = −                                                                                                                                                    (3.24)                                                                                                                                                         

where  is the amplitude at jump-up frequency, which is expressed as: 

1/3

1/3

2 1
( )
3up

X


=                                                                                                                      (3.25)   

3.3. Stability Analysis      

The stability characteristic of eq (3.1) can be revealed by finding the region where the 

equation is stable in ( , , )
e e e

M D K -sapce, through using eigenvalue analysis of the characteristic 
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equation. To make the presentation simpler, assuming that     = = =M D K
, therefore, the 

characteristic equation for eq (3.1) is expressed as: 

( )2 2 0−+ + + + + =z

e e eMz Dz K e M z D z K                                                                                  (3.26) 

The borderline values between stability and instability of eq (3.1) is given by the values of 
eM , 

eD , and 
eK , which give pure imaginary solutions z jy=  of eq (3.26). Thus, substituting z jy=  

into the homogeneous equation (3.26) and solving for 
eD  and 

eK , we have 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

2

2 2

sin cos

cos sin

 

 

 = − −


= − − +

e

e e

D y My K y y D y

K y My K y Dy y M y
                                                                               (3.27) 

Here, the parameter 0y  introduces a spiral in the ( ),e eD K -plane through equations 

(3.27). Additionally, when considering the fixed 
eM  value, this spiral, along with the line 

= −eK K  where 0=z  solves eq (3.26), defines a partition within the ( ),e eD K -plane. By 

allowing 
eM  to vary, we obtain a corresponding partition in ( ), ,e e eM D K -space. The next step 

involves selecting the subset from this partition that includes ( ) ( ), , 0,0,0=e e eM D K . For any 

triple ( ), ,e e eM D K  chosen from this selected subset, eq (3.1) demonstrates stability. This stability 

analysis yields zero error as it relies on finding exact solutions of the characteristic equation. 

Figure 3.3a and 3.3c depict families of stability domains, showcasing different e
M  and 

  values. These domains are plotted as a function of e
D D  versus e

K K . In Figure 3.3b and 

3.3d, the magnified views of these domains specifically around the system 

state ( ) ( ), 0,0=e eD D K K is presented. The stability domains represent regions within the 

domes, which are delimited by solid curves and the horizontal dashed line at 1
e
K K = − . It is 
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important to note that system states located outside the domes, characterized by 

, ,e e eD D K K M , and  , indicate instability. 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Figure 3.3: The stability domains of PODMEMS are illustrated for various Me values. The horizontal-axis 

represents the ratio of electrical to mechanical damping, while the vertical-axis represents the ratio of electrical to 

mechanical stiffness. The dome-shaped areas enclosed between the curve and the horizontal line Ke/K = –1 indicate 

regions of stability. Within each dome, stability diminishes as the state approaches its boundary, reaching zero 

precisely on the boundary. Conversely, outside the domes, instability intensifies as the state moves farther away 

from the stability boundary. Figure 3.3a portrays the stability domains for different Me values, while Figure 3.3b 

provides a closer view around the point (De/D, Ke/K) = (0,0). Additionally, Figure 3.3c exhibits stability domains for 

various   values, with Figure 3.3d offering a magnified perspective near (0,0). It is worth noting that upon further 

magnification of Figure 3.3d, it becomes evident that all curves do not intersect at a single point near (-1, -2.9x10-3). 

 

3.4. Conclusion 

This chapter demonstrates the basic theory of PODMEMS, including both linear and 

nonlinear steady-state analysis. The effective stiffness, damping coefficient, and mass can be 

tuned by feeding back forces that are proportional to the sensed displacement, velocity, and 

acceleration. Meanwhile, the influence of latency introduced by sensing and feedback circuit are 

considered for the linear PODMEMS analysis. On the other hand, by feeding back a force that is 

proportional to the cubic of proof mass displacement, the third-order nonlinearity can be easily 

tuned, therefore realizing nonlinear PODMEMS. 
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Chapter 4  

Artificial Linear Stiffness 

 

 

This chapter introduced an on-time method of linearly tunning the effective stiffness of 

MEMS resonators. The proposed tunning mechanism is achieved by applying a feedback signal 

to the resonator to generate a feedback force proportional to the displacement. The feedback 

signal is obtained by adjusting the resonator's sensed displacement amplitude. Such a technique 

can be used for various applications, such as compensating the parameter variations introduced 

by process or temperature variation and achieving large displacement with extreme-low effective 

stiffness. Previous efforts by others on tuning the stiffness include post-processing with 

mechanical methods and electrical tunning by position based-feedback. However, we proposed a 

method of on-time tunning of stiffness with more dynamic controllability. The proposed 

analytical model has been verified by simulation in MATLAB/Simulink. The simulation result 

shows that by applying a feedback voltage with a voltage amplitude of only 1.1V, the effective 

stiffness can be decreased by 0.08N/m, resulting in a resonance frequency shift of 6Hz. 
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4.1 Analytical Model 

4.1.1 MEMS resonator 

 

Figure 4.1: Layout of the MEMS resonator. The resonator is driven by electrostatic force, which is generated by the 

voltage difference between the fixed comb-fingers and movable comb-fingers. Except for the purpose of generating 

the electrostatic force, the fixed comb-finger capacitors are also used to sense the movement of the movable comb-

fingers. The four flexures supported the movable comb-fingers and provided stiffness for the system.  

 

The schematic of the comb-drive MEMS resonator used for the study is shown in Figure 

4.1.  Such a system can be modeled as a second-order mass-spring-damper system: 

( ) ( ) ( ) ( )dr
Mx t Dx t Kx t F t+ + =                                                                                                (4.1) 

where M is the mass of the proof mass, D is the damping coefficient, K is the stiffness, ( )x t  is 

the displacement of the proof mass, and ( )dr
F t  is the electrostatic force generated by comb-

finger capacitors.  

The transfer function of the second-order system is expressed as follows: 
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( )
( )
( ) 2 2

1

ndr
n

X s M
G s

F s
s s

Q




= =

+ +

                                                                                                  (4.2)                                                                                          

Where Q is the quality factor of the system, 
n

  is the undamped natural frequency.  

The parameters used in our test case are: flexure width w = 3μm, thickness h = 25μm, and length 

L= 300μm; the two pairs of N = 200 finger comb drive arrays have initial finger overlap length 

0
l  = 20μm, finger width 

f
w  = 2µm, and gap g= 2μm; Young’s modulus E= 160GPa, density 

 = 2300kg/m3, structure-to-substrate gap sub
g  = 2μm, viscosity 51.75 10 sPa −=  , and proof 

mass area 61.1 109
pf
a −= m2 (including flexures and combs). This yields a compact mass of M  

=  volume = 86.87 10− kg, and stiffness of 
3

3

4
16 N m

Ehw
K

L
= = . The damping at standard 

atmospheric pressure is
51.04 10 Ns m

m sub
D a g −= =  , with a quality factor of 

0
Q M D = 101 in air. Static capacitance is 0 0

0
0.44pF

hl N
C

g


= = , where the permittivity of 

the medium is 
12

0
8.854 10 −=  F/m. The driving force is 20

0

1

2dr dr

C
F V

l
= . All the parameters used 

in this article are listed in Table 4.1. 

 

Table 4.1: Nomenclature of Artificial Linear Stiffness System 

Parameter Value Unit Description 

m
a  1 atm Standard atmospheric pressure 

pf
a  61.19 10−  m2 Area of proof mass 
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0
C  121.1 10−  F Static capacitance 

D  51.04 10−  Ns/m Damping coefficient 

0
  128.854 10−  F/m Permittivity of the medium 

E  111.6 10  Pa Young’s modulus 

g  62 10−  m Gap between comb fingers 

sub
g  62 10−  m Structure-to-substrate gap 

f
G  5 1 Gain of amplifier 

h  52.5 10−  m Thickness of structure layer 

K  16.039 N/m Stiffness 

L  43 10−  m Length of flexure 

0
l  52.5 10−  m Initial comb-finger overlap length 

M  86.87 10−  Kg Mass 

N  200 1 Comb finger numbers 

Q  101 1 Quality factor 

  51.75 10−  sPa Viscosity of air 

w  63 10−  m Flexure length 

f
w  62 10−  m Finger width 

 

To analyze the dynamic performance of the MEMS resonator, COMSOL is used for the 

simulation. Firstly, the eigenfrequency study is conducted, which reveals the first resonate mode 

frequency along the x-direction at 2475.9Hz and the second mode resonate frequency along the 
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y-direction at 12733Hz. Since the first and second modes’ resonate frequencies are assigned far 

away, the unwanted motion along the y-direction can be avoided. Secondly, the stationary study 

is conducted by applying a constant voltage of 20V across one pair of fixed and movable comb-

finger capacitors, which generated an electrostatic force of 8.8uN. With the simulated stationary 

displacement of 0.55um, the stiffness of the system can be calculated as 16 N m
stat stat

K F x= = . 

The COMSOL simulation shows a good alignment with the calculated parameter values. 

 

Figure 4.2: (a)First resonant mode of the MEMS resonator at 2475Hz. The direction of movement of the first 

resonant mode is along the x-direction. (b) The second resonant mode of the MEMS resonator is at 12733Hz. The 

direction of movement of the first resonant mode is along the y-direction. 

 

4.1.2 Artificial Stiffness Tunning Principle  

With the MEMS resonator designed as in Figure 4.1, the artificial stiffness tunning will 

be realized by adding the force feedback as in Figure 3.1 expressed by eq (4.3): 
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( )e dr
Mx Dx K K x F+ + − =                                                                                                         (4.3)                                                                                  

where e
K  is the proportionality constants of the electrically generated feedback forces: 

( )K e
F K x t = − , and    is the feedback latency.  

Eq (4.3) is a form that ignores feedback latency   for simplicity. By explicitly including latency, 

eq (4.3) is expressed as 

( ) ( ) ( ) ( )e dr
Mx t Dx t Kx t K x t F+ + − − = (4.4)                                                                                                         

where ( )x t  is the position at the time t , and ( )x t −  was the position about several 

nanoseconds ago. 

Applying Laplace transform to eq (4.4), the transfer function of the stiffness tunable system is: 

( ) 2

1
s

e

G s
Ms Ds K K e −

=
+ + −

                                                                                                   (4.5)                                                                                                 

When the latency  is relatively small, the term se − can be approximated by Taylor 1st order 

expansion: 

1se s − = −                                                                                                                                 (4.6)                                                                                                 

Therefore, the transfer function eq (4.5) can be rewritten as: 

( )
( )2

2 2

11

effe e
eff

eff

M
G s

Ms D K s K K
s s

Q




= =
+ + + −

+ +

                                                              (4.7)                                                           

where the e
eff

K K

M


−
=  is the effective undamped natural frequency, 

eff

eff

e

M
Q

D K




=

+
is the 

effective quality factor. The transfer function eq (4.7) suggest that the small latency will result in 

a decrease in the quality factor.  
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However, when the latency is relatively large, the term se −  needs to be approximated by Taylor 

2nd order expansion: 

2
21

4
se s s 

− = − +                                                                                                                      (4.8)                                                                                        

This will result in the transfer function of: 

( )
( )

2

2
2 22

1
41

4

e

effe
effe e

eff

K
M

G s
K

s sM s D K s K K
Q






 
− 

 = =
 

+ +− + + + − 
 

                                              (4.9)                                                    

where the 
2

4

e
eff

e

K K

K
M




−
=

−

 is the effective undamped natural frequency, 

2

4
e

eff

eff

e

K
M

Q
D K






 
− 

 =
+

is the effective quality factor. From eq (4.9), it can be seen that the 

latency will introduce another influence on the effective mass of the system, which will cause the 

shift of the resonance frequency and decrease the quality factor. 

The proposed artificial stiffness tunning technique is realized in the system shown in 

Figure 4.3  
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Figure 4.3: Block diagram of the stiffness tunable MEMS resonator. There are six pads connected to the fixed-

comb-fingers arrays, chosen for the purpose of driving, sensing and feedback. Besides, the movable comb-fingers 

are all biased with a DC voltage. For the driving purpose, the differential AC voltages ac
V  and ac

V−  are applied to 

pad 1 and 6, which will generate a total force linearly proportional to the amplitude of the AC voltage. For the 

sensing purpose, the two identical charge amplifiers are connected to pads 3 and 4, forming a differential charge 

sensing structure. The sensed voltage sense
V  is linearly proportional to the displacement of the proof mass, which 

will then be split into a pair of differential signals applied to pad 2 and 5 for the purpose of generating feedback 

force. 

  

To drive the MEMS resonator to vibrate and achieve the linear voltage-force relationship, 

a differential AC+DC driving voltage will be applied to pad 1 and 6:  

Pad1: 

1
sin( )

dr ac bias bias
V V V A t V= − = −                                                                                                             (4.10) 
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Pad6:  

6
sin( )

dr ac bias bias
V V V A t V= − − = − −                                                                                                       (4.11) 

where the Vac is the AC voltage, whose amplitude is A and frequency is  , bias
V  is the DC 

voltage applied to moveable comb fingers. 

Since pad 1 and pad 6 has comb fingers pointed in the opposite direction, the total driving force 

will be the subtraction of the electrostatic force generated by pad 1 and pad6: 

( )2 20 0 0

0 0 0

1 1
2 cos [N]

2 2dr l r bias n

C C C
F V V AV t

l l l
= − =                                                                (4.12)                                                 

When the frequency of the exciting voltage is equal to the effective resonate frequency 
eff

 , the 

steady state amplitude of displacement is: 

( ) 2

dr

eff

F Q
x t

M
=                                                                                                                           (4.13)                                                                   

When the driving force drives the resonator dr
F , the changing of fixed-movable comb-finger 

capacitor overlap areas will cause the accumulated charge changing on pad 3 and pad 4, which 

will be described as: 

Pad3: 

( )( )0 0

3

r

bias

h l x t N
q V

g

  +
=                                                                                                                          (4.14) 

Pad4:  

( )( )0 0

4

r

bias

h l x t N
q V

g

  −
=                                                                                                      (4.15)                                                                                               



34 
 

The charge will then be picked up and amplified by the charge amplifier. A differential charge 

amplifier structure is adopted to reduce parasitic capacitance effect. The sensing equation is 

expressed as follows: 

( )0
2

rl r bias
sense CAl CAr

f f f

hx tq q V
V V V

C C g C

 
= − = − =                                                                   (4.16) 

Eq (4.16) suggested that the sensed voltage sense
V  is directly proportional to the displacement 

( )x t . The sensed voltage will then be split into two differential signals, amplified with the same 

gain 
f

G . The feedback voltages applied to pad 2 and pad 5 are expressed as: 

2

5

f f sense bias

f f sense bias

V G V V

V G V V

 = −


= − −
                                                                                                            (4.17) 

The electrostatic feedback force generated by the feedback voltage is then described as: 

( )
22

2 20 0 0 0

2
0 0 0 0

1 1
2 4

2 2

f bias

fb fl fr f bias sense

f

G VC C C C
F V V G V V x t

l l l Cl
= − = =                                             (4.18) 

Substituting eq (4.18) into eq (4.4), the governing equation of the stiffness tunable system is: 

( ) ( ) ( ) ( ) ( )
22

0 0

2
0 0

2 cos 4
f bias

dr fb bias n

f

G VC C
Mx t Dx t Kx t F F AV t x t

l Cl
+ + = + = +                        (4.19) 

Therefore, the electrically generated stiffness is

22

0

2

0

4
f bias

e

f

G VC
K

Cl
= . 

4.2 Simulation 

To verify the proposed system, the simulation is performed in Matlab/Simulink(R2022a). 

As shown in Fig.4, the MEMS resonator is represented by a second-order system that integrates 

the acceleration signal. The Driving Voltage-Force and Feedback Voltage-Force blocks represent 
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the voltage-to-force functions of the resonator ports. On the other side, the Differential Charge 

Amplifier block represents the displacement-to-charge relationship and the following charge 

amplifier stage. 

 

Figure 4.1: Simulation setup in MATLAB/Simulink. The mechanical spring-mass-damper system of the MEMS 

resonator is represented by the second-order system with two integrators. The voltage-force driving and voltage-

force feedback blocks represent the voltage-to-force relationship at the ports. The differential charge amplifier 

represents the displacement to voltage conversion. Lastly, the amplifier block amplifies the sensed voltage signal 

and is processed to generate differential feedback voltages.  

 

Figure 4.5 shows the simulation result of frequency response when electronic stiffness 

e
K =0 N/m and -0.31N/m. The system was applied with a total of 10V DC voltage at a 

simulation time of 0.05s. 



36 
 

 

Figure 4.5: Step response of the system when with and without the electrical stiffness tuning.  

 

Figure 4.6 shows the resonance frequency change simulation result when electronic 

stiffness e
K =0.08N/m, 0N/m, and -0.08N/m. The value of electronic stiffness value is setup by 

setting the amplifier gain 
f

G  value equal to -5, 0, and 5. Meanwhile, in this simulation, the 

feedback circuit latency   is not included. Simulation results show that the resonator's resonance 

frequency is tuned by 6Hz, 0Hz, and -6Hz.  
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Figure 4.6: Frequency response of the system with different electrical stiffness e
K  value.   

 

To show the influence of the feedback circuit latency on the quality factor of the system, a 

transport delay block is added with latency values of 0us, 1us, and 10us. As discussed in eq (4.7), 

when the latency is small, the latency term can be described by using Taylor 1st order expansion, 

which will cause influence on the damping coefficient of the system. As shown in Figure 4.7, 

the Q is reduced by a, and b for latency of 1us and 10us.  
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Figure 4.7: Frequency response of the system with same electrical stiffness 
e
K  value, but different feedback circuit 

latency. The latency values are set to be smaller than 10us, which can be treated as relatively small latency. 

 

However, as shown in eq (4.9), when the latency is large enough, the latency term needs 

to be described by Taylor's 2nd-order expansion, which will cause influence on both the damping 

coefficient and effective mass. As shown in Figure 4.8, when the latency tau is increased from 

0us to 500us, the quality factor is decreased by a. Meanwhile, the resonance frequency is also 

shifted from c to d, due to a change of effective mass.  

 

Figure 4.8: Frequency response of the system with the same electrical stiffness e
K  value, but different feedback 

circuit latency. The latency values are set to be larger than 10us, which can be treated as relatively large latency. 

 

4.3 Conclusion 

In this chapter we proposed a method to solve the problem of resonance frequency shift 

caused by process variation. Due to process variation, even identically designed MEMS devices 

will perform differently, such as the geometry variation causing the stiffness variation of the 
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flexures. Therefore, causing the resonance frequency shift. However, though consistently feeding 

back a force proportional to the displacement of the proof mass, the effective stiffness of the 

device will be tuned.  
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Chapter 5  

Artificial Nonlinear Stiffness 

 

 

Nonlinearity in MEMS resonators is usually unwanted because it degrades performance 

based on linearized sensing. However, this chapter examines the generation and utilization of 

artificial nonlinear stiffness for a micro-electromechanical system (MEMS) resonator to reduce 

the influence of the thermal drift problem. Utilizing the resonator's nonlinear behavior, the 

amplitude of motion can remain large while the structural resonance frequency drifts, and the 

drive frequency remains constant. Our previous efforts showed the methods of tuning the 

apparent mass, damping, and stiffness linearly by applying electrostatic feedback force. Here, we 

implement this method with nonlinear stiffness, which is generated by applying an electrostatic 

feedback force proportional to the cubed displacement of the proof mass. As a test case, we 

demonstrate how this concept may benefit devices that suffer from thermal drift, such as MEMS 

vibratory gyros. The test case is simulated with Simulink, which is verified by comparing it with 

analytical results. The results suggest when the temperature is decreased by 10K from the room 

temperature that artificial nonlinear stiffness can help reduce the amplitude attenuation of 

oscillation to 3dB while resonance frequency drifts 10Hz about a constant drive frequency of 

2449Hz, where the amplitude attenuation is 36dB for the system without nonlinear feedback. 

5.1 The design of the artificial nonlinear stiffness resonator system 

The nonlinear stiffness model is realized in the system shown in Figure 5.1. 
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Figure 5.1: Block diagram of the stiffness tunable MEMS resonator. There are 6 pads connected to the fixed-comb-

fingers arrays, chosen for driving, sensing, and feedback. Besides, the movable comb-fingers are all biased with a 

DC voltage. For the driving purpose, the differential AC voltages ac
V  and ac

V−  are applied to pads 1 and 6, which 

will generate a total electrostatic force linearly proportional to the amplitude of the AC voltage. For the sensing 

purpose, the two identical charge amplifiers are connected to pads 3 and 4, forming a differential charge sensing 

structure. The sensed voltage sense
V  is linearly proportional to the displacement of the proof mass, which will then 

be split into a pair of differential signals and cubed to generate the feedback voltage 
2f

V and 
5f

V .  

 

The parameters used in our test case are: flexure width w = 3μm, thickness h = 25μm, 

and length L= 300μm; the two pairs of N = 200 finger comb drive arrays have initial finger 

overlap length 0
l  = 20μm, finger width 

f
w  = 2µm, and gap g= 2μm; Young’s modulus E= 

160GPa, density  = 2300kg/m3, structure-to-substrate gap sub
g  = 2μm, 
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viscosity 51.75 10 sPa −=  , and proof mass area 61.1 109
pf
a −= m2 (including flexures and 

combs). This yields a compact mass of M  =   volume = 86.87 10− kg, and stiffness of 

3

3

4
16 N m

Ehw
K

L
= = . The damping at standard atmospheric pressure 

is 51.04 10 Ns m
m sub

D a g −= =  , with a quality factor of 0
Q M D = 101 in air. Static 

capacitance is 0 0
0

0.44pF
hl N

C
g


= = , where the permittivity of the medium is 

12

0
8.854 10 −=  F/m. The driving force is 20

0

1

2dr dr

C
F V

l
= . 

To drive the MEMS resonator to vibrate and achieve the linear voltage-force relationship, 

differential AC+DC driving voltage will be applied to pads 1 and 6: 

Pad1: 

1
sin( )

dr ac bias bias
V V V A t V= − = −                                                                                                               (5.1) 

Pad6: 

6
sin( )

dr ac bias bias
V V V A t V= − − = − −                                                                                        (5.2)                                                              

where the Vac is the AC voltage, whose amplitude is A and frequency is  , and Vbias is the DC 

voltage applied to moveable comb-fingers. 

Since pad 1 and pad 6 have comb-fingers pointed in the opposite direction, the total driving force 

will be the subtraction of the electrostatic force generated by pad 1 and pad6: 

2 2

0 0 0

0 0 0

2 cos( )[N]
2 2

l r
dr bias n

C V C V C
F AV t

l l l
= − =                                                                           (5.3) 

When the frequency of the exciting voltage is equal to the effective resonate frequency , the 

steady state amplitude of displacement is: 
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2
( ) dr

eff

F Q
x t

M
=                                                                                                                              (5.4) 

When the driving force drives the resonator , the changing of fixed-movable comb-finger 

capacitor overlap areas will cause the accumulated charge changing on pad 3 and pad 4, which is  

described as: 

Pad3: 

0 0
3

( ( ))
r

bias

h l x t N
q V

g

  +
=                                                                                                                               (5.5) 

Pad4: 

0 0
4

( ( ))
r

bias

h l x t N
q V

g

  −
=                                                                                                                               (5.6)                                                                                                                                        

The charge will then be picked up and amplified by the charge amplifier. A differential charge 

amplifier structure is adopted to reduce the parasitic capacitance effect. The sensing equation is 

expressed as follows:  

0
2 ( )

l r r bias
sense CAl CAr

f f f

q q hx t V
V V V

C C g C

 
= − = − =                                                                      (5.7) 

Eq (5.7) suggested that the sensed voltage  is directly proportional to the displacement . 

The sensed voltage will then be split into two differential signals amplified with the same gain 

. The feedback voltages applied to pad 2 and pad 5 are expressed as: 

Pad2: 

3

2f f sense bias
V G V V= −                                                                                                                                           (5.8) 

Pad5: 

3

5f f sense bias
V G V V= − −                                                                                                                  (5.9)                                                                                                                          
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The electrostatic feedback force generated by the feedback voltage is then described as: 

4 2
2 2 3 30 0 0 0
2 5 4 3

0 0 0 0

1 1
2 16 ( )

2 2
bias

fb f f f bias sense f

f

C C C C V
F V V G V V G x t

l l l l C
= − = =                                        (5.10) 

Substituting eq (5.10) into eq (3.15), the governing equation of the stiffness tunable system is: 

4 4
30 0

4 3
0 0

( ) ( ) ( ) 2 cos( ) 16 ( )bias
dr fb bias n f

f

C C V
Mx t Dx t Kx t F F AV t G x t

l l C
+ + = + = +                        (5.11) 

Therefore, the electrically generated nonlinear stiffness is 
4 4

0

4 3

0

16 bias
e f

f

C V
G
l C

 = . 

5.2  Simulation 

In this section, the nonlinear resonator system is simulated with Simulink. Figure 5.2 

shows the simulation setup in Simulink. 

 

 

Figure 5.2: Simulation setup in Simulink. The mechanical spring-mass-damper system of the MEMS resonator is 

represented by the second-order system with two integrators. The voltage-force driving and voltage-force feedback 

blocks represent the voltage-to-force relationship at the ports. The differential charge amplifier represents the 
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displacement to voltage conversion. Lastly, the cubic block cube sensed the voltage signal and processed it to 

generate differential feedback voltages.  

 

5.2.1 Transient behavior 

By applying a constant driving frequency of 2453Hz and a magnitude of 1V of AC 

voltage, the transient simulation result can reveal the start-up oscillation process, which took 15s 

to stabilize. At t=15s, the driving voltage is set to 0, which will cause the amplitude of 

displacement to decay with time. By fitting the envelope of the decay curve to the displacement 

amplitude, the simulated damping coefficient will be 0.3979, which is comparable to the 

analytical result of 2 0.396D M = = − .  

 

Figure 5.3: Transient simulation result. At t=0s, the system is driven with an AC voltage with an amplitude of 1V 

and frequency of 2453Hz. After 15s, the system reaches a steady state, which gives the steady state amplitude of 

1.67um. At t=15s, the power is turned off, which causes the displacement amplitude to decay. By fitting the decay 

curve to the response envelope, the decay rate is determined to be 0.3979. 
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A driving voltage with increasing frequency is applied to show the nonlinear system's 

jump-down phenomena. At t=0s, the excitation frequency is set to be 2440Hz, which is 

simulated for 10s to let the system reach a steady state. At t=10s, the excitation frequency will be 

increased with a step size of 1Hz. The final state of each step is used as the initial state for the 

next step. Repeating such a procedure will cause the jump-down phenomenon. As shown in 

Figure 5.4, when the driving voltage is 0.2V, and the nonlinear feedback gain is 5, the jump-

down phenomenon happens at a frequency of 2.466kHz. 

 

Figure 5.4: Result of TA when sweeping the driving voltage’s frequency from 2440Hz to 2470Hz. The nonlinear 

system is swept from 2440Hz to 2470Hz with a step size of 1Hz. To make sure the response reaches steady state, 

each step was simulated for 10s. Meanwhile, to make the sweeping continuous, the end state of each step is used for 

the initial state of the next step. The jump-down phenomenon occurs at t=260s, corresponding to the driving 

frequency of 2.466kHz.  
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5.2.2 The frequency characteristic  

Figure 5.5 shows the amplitude and phase response of the artificial nonlinear stiffness. 

Through tuning the gain Gf of the nonlinear feedback path, the artificial nonlinear stiffness value 

is changed from 102.11 10  N/m3 to 103.74 10 N/m3, corresponding to the feedback voltage 

value increased from 3.1V to 5.5V. Furthermore, to show the influence of the amplitude of the 

driving force on the jump-down frequency, for a constant nonlinear stiffness value of 

102.11 10 =  , the amplitude of the driving voltage is increased from 0.02V to 0.027V. 

 

Figure 5.5: Frequency responses of the nonlinear PODMEMS. Comparing the red and black curve, the effective 

nonlinear stiffness is the same, while the amplitude of the driving frequency is increased from 0.02V to 0.027V, and 

the jump-down frequency is increased from 2.459kHz to 2.464kHz. On the other hand, comparing red and blue 

curves, the amplitude of driving frequency is constant, while the feedback voltage is increased, also causing the 

jump down frequency 2.459kHz to 2.464kHz. 
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5.2.3 Thermal drift 

Using our verification between expected analytical modeling behavior and our numerical 

modeling testbed, we now investigate how temperature changes affect our PODMEMS test case 

subject to artificial vacuuming and stiffening. Thermal expansion of length, width, and thickness 

of flexure, as well as the effect of temperature on Young’s modulus, is modeled as  

( )
( ) ( ) ( )

( )

3

4 / 2

E T h T w T
K T

L T

 
=  

 
 

                                                                                              (5.12)                                                                                                                              

where  

( ) 0
(1 )L T L T= +  , ( ) 0

(1 )w T w T= +  , ( ) 0
(1 )h T h T= +  , and 

( )
3

9 10
145 10 exp 2.61 [ ]

B

eV
E T Pa

k T

− 
=   

 
 

and where the coefficient of thermal expansion of silicon is 
6 12.6 10 K − −=  , the reference 

geometry at 300K is 0
,L   0
w , 0

h , electron volts is 
191.6 10 JeV −=  , and Boltzmann constant is 

231.38 10 J K.
B
k −=   

According to eq (5.12), when the temperature is increased from 300K to 310K, the 

resonance frequency of the MEMS resonator used for the test is decrease by 5Hz. Therefore, 

when a constant driving frequency of 2449Hz is applied to the linear model and detuned to the 

frequency of 2460Hz for the nonlinear model, the thermal drift will cause the linear model’s 

amplitude to drop by 98.5% (36dB) and causes the nonlinear model’s amplitude to drop by 

18.9% (1.8dB). 
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Figure 5.6: Frequency response of linear and nonlinear Simulink models of PODMEMS undergoing thermal drift. A 

constant driving frequency of 2.449kHz is applied to the linear model and detuned to the frequency of 2.460kHz for 

the nonlinear model, where a decrease in temperature of 10K results in a resonance frequency increase of about 5Hz. 

Such drift causes the linear model’s amplitude to drop by 98.5% (36dB) and causes the nonlinear model’s amplitude 

to drop by 18.9% (1.8dB). 

 

5.3 Conclusion 

This chapter proposed a method to address a MEMS resonator's output amplitude 

stability issue due to thermal drift. For a MEMS resonator with high Q, a small temperature 

change can cause the resonator to lose resonance by falling below cutoff frequency amplitudes. 

However, the amplitude can remain above the cutoff by controllably bending the response curve 

through artificial damping. 
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Chapter 6  

Artificial Vacuum and Nonlinear Stiffness 

 

 

Matching the drive frequency to the resonance frequency of narrow bandwidth, high-Q 

microstructure subject to thermal drift can be difficult. We, therefore, study the effect of 

applying artificial nonlinear stiffness to maintain high Q while widening the bandwidth. Doing 

so enables the amplitude of motion to remain large while the structural resonance frequency 

drifts and the drive frequency remains constant. Previously we showed how a MEMS device's 

apparent mass, damping, and stiffness could be linearly increased or decreased using electrostatic 

force feedback. Here, we use electrostatic feedback force to generate apparent nonlinear stiffness 

mimicking a Duffing oscillator’s nonlinear stiffness that is strongly cubic in displacement at low 

amplitude. To achieve high Q in the absence of a vacuum, we apply negative damping feedback 

such that the total apparent damping is near zero. We simulate a MEMS oscillator's feedback 

circuit and an equivalent circuit model subject to noise, parasitic capacitance, leaking current, 

and thermal drift. We validate the simulation using analytical methods. Our results suggest that 

artificial nonlinear stiffness can help maintain a large oscillation amplitude while resonance 

frequency drifts about a constant drive frequency. The rest of the chapter is organized as follows. 

In Section 6.1, we introduce and verify our nonlinear stiffness feedback model. Section 6.2 

demonstrates how such nonlinear feedback maintains large amplitudes during resonance 

frequency shifts due to temperature changes. Last, we summarize our findings in Section 6.3. 

The nomenclature used in this study is provided in Table 1. 
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Table 6.1: Nomenclature of artificial nonlinear stiffness and vacuum system 

 

Parameter Value Unit Description 

am 1 atm Standard atmospheric 

pressure 

C1 0.5 F Capacitor of equivalent 

circuit 

Cp 110-9 F Parasitic capacitor 

D 1.5510-7 Ns/m Damping 

De 1.54810-7 Fs/m Electrical damping 

E 1.61011 Pa Young’s modulus 

0
  8.85410-9  F/m Permittivity of free space 

g 210-6  m Gap between comb fingers 

gsub 210-6 m Substrate-to-substrate gap 

Gamp 1103 1 Gain of pre-amplifier 

GD 1103 1 Gain of damping amplifier 

GF/C 1 F/C Unit converter 

GFm
2

/CV
2 1 Fm2/CV2 Unit converter 

GFN/m 1 FN/m Unit converter 

GH/Kg 1 H/Kg Unit converter 

Gint 1103  1/s Gain of integrator 

Gк 8.85105  1/V2 Gain of cubic amplifier 
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GmN/FV 1 mN/FV Unit converter 

Gsq 1.3 1/V Gain of square root 

amplifier 

Gsqrt 1 V1/2 Gain of square amplifier 

GTIA 1105  V/A Gain of TIA 

GΩm/Ns 1 Ωm/Ns Unit converter 

h 2010-6  m Thickness of folded 

flexure 

K 2 N/m Stiffness 

  0 F/m3 Mechanical nonlinear 

stiffness 

e
  1109 F/m3 Electrical nonlinear 

stiffness 

L 294.710-6 m Length of folded flexure 

L1 810-10 H Inductor of equivalent 

circuit 

Lf 2010-6 m Length of comb finger 

M 810-10 Kg Mass  

N 100 1 Comb finger numbers 

  2300 Kg/m3 Density 

R1 1.5510-7 Ω Resistor of equivalent 

circuit 

Rp1 110-9 Ω Parasitic resistance 
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Rp2 110-3 Ω Parasitic resistance 

1
  3.210-9 s Latency of equivalent 

circuit 

2
  2.210-9 s Latency of TIA circuit 

3
  1.210-9 s Latency of integrator 

circuit 

4
  810-10 s Latency of cubic circuit 

5
  810-11 s Latency of parasitic 

elements 

6
  310-9 s Latency of square root 

circuit 

7
  310-9 s Latency of square circuit 

  1.7510-5 sPa viscosity 

Vnoise 110-9 V Noise source 

w 210-6 m Width of folded flexure 

wf 210-6 m Width of comb finger 
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 Figure 6.1: The bandwidth, driving frequency, and quality factor of a linear (blue) vs nonlinear (red) MEMS 

oscillator.  

 

6.1. Electronic feedback components for artificial nonlinear stiffness  

In this section, we present a set of analog circuit components that, when integrated, can 

generate the type of electrostatic force feedback needed to achieve near-zero damping and large 

nonlinear stiffness. By feeding back an amplified electrostatic force onto the proof mass 

proportional to the displacement's cubic, nonlinear Duffing characteristics can be produced at 

low amplitudes. For nonlinear stiffness, let’s define it as the derivative of the elastic restoring 

force with respect to displacement: 

( )3 23
nonlinear K

d d
K F Kx x K x

dx dx
 = = + = + .  (6.1) 

The equation of motion of the MEMS structure shown in Figure 3.1 without feedback is 

( )23
dr

Mx Dx K x x F+ + + = .  (6.2) 
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By including feedback for damping 
e
D  and nonlinear stiffness 

e
  we have 

( ) ( )2 23
e e dr

Mx D D x K x x x F + − + + + = ,  (6.3) 

 which is a form that ignores feedback latency   for simplicity. By explicitly including latency, 

eq (6.3) is expressed as 

( ) ( ) ( ) ( ) ( ) ( )
3 3

3
e e dr

Mx t Dx t D x t Kx t x t x t F      + − − + + + − =    , (6.4) 

where ( )x t  is the position at the time t , and ( )x t −  was the position about several 

nanoseconds ago. 

Using the ready-made circuit models in HSPICE that include latency, and components 

for noise and parasitics, we model and simulate our nonlinear feedback circuit together with an 

equivalent circuit representation of the MEMS device. Our analytical circuit model expression of 

the MEMS device with feedback circuit has the form： 

2

0
3

int

1
D TIA amr p TIA ampd

G R G i G GL t R G
N hdi

Ri i
C

i dtd V
dt g  


 −



−


+ + =  





        (6.5) 

where L M= , R D=  and 1C K= ; that is, the inductor, resistor, and capacitor represent the 

mass, damping, and stiffness. The velocity x  and drive force dr
F  are represented by current  and 

drive voltage dr
V . The quantities ,

amp
G  TIA

R , D
G


, and G


 are the amplification of pre-

amplifier, transimpedance amplifier (TIA), damping amplifier, and nonlinear stiffness amplifier. 

From eq (6.5), right-hand terms for force, damping, and nonlinear stiffness are 
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  (6.6) 

From eq (6.6) it is seen that the magnitude of the artificial nonlinear stiffness is independently 

controlled by G


 and int
,G  and that of the damping is independently controlled by D

G


. A block 

diagram of the feedback circuit is shown in Figure 6.2.  

The parameters used in our PODMEMS test case are: folded flexure width w = 2μm, 

thickness h = 20μm, and length L= 294.7μm; the two pairs of N = 100 finger comb drive arrays 

have finger length 
f
L  = 20μm, finger width 

f
w  = 2µm, and gap g= 2μm; Young’s modulus E= 

160GPa, density  = 2300kg/m3, structure-to-substrate gap sub
g  = 2μm, viscosity 

51.75 10 sPa −=  , and proof mass area 
41.7 104

m
a =  μm2 (including flexures and combs). 

This yields a compact mass and stiffness of M  =   volume = 108 10− kg, and K  = 

Ehw3/4/(L/2)3 = 2N/m. The damping at standard atmospheric pressure is D  = m sub
a g = 

1.55×10-7 Ns/m, with a quality factor of 0
Q M D = 258 in air. The driving force is 

( ) 2

0dr dr
F N h g V= , where the number of fingers 100N =  and the permittivity of the medium is 

12

0
8.854 10 −=  F/m. 
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Figure 6.2: System block diagram of the artificial damping and nonlinear stiffness feedback system. The output 

signal from velocity is integrated and cubed. The square root component outputs a signal that is the square root of 

voltage since the applied force is proportional to the square of the voltage. For simplicity, the structural design 

shown here has a smaller number of comb fingers than our test case. The circuits that make up the component blocks 

of this system are shown in Figures 6.3-6.10.  

 

MEMS block. The equivalent circuit models the mechanical system with electronic 

elements and the corresponding relationship between mechanical domain and electrical domain 

parameters are listed as in eq (6.7): 

1 H kg
L MG= , 

Ωm Ns
R DG= , 

1 FN m
C G K= .  (6.7) 

Our analytical model for the MEMS equivalent circuit block is 

( )
2

0
1 1

1

1
out out out in

N hd
L i R i i dt V
dt C g


+ + =                          (6.8) 

where our transduction model between the electrical and mechanical domains is eq (6.9), and the 

block’s HSPICE circuit, numerical simulation, and verification are shown in Figure 6.3. 

0
mN FV

=
in in

N h
F G V

g

 
 
 

 and 
0

out F C out

g
x G i

N h

 
=  
 

. (6.9) 
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Figure 6.3: MEMS equivalent circuit. The purpose of the MEMS equivalent circuit is to simulate the integrated 

structure and feedback electronics in the same numerical modeling and simulation domain. A test input signal is 

shown in (a), and its simulated output is shown in (b). The component contributes a latency of 3.2ns between its 

input and output signal. The circuit model of the equivalent circuit is shown in (c). The circuit works by simulating 

the mechanical system’s mass, damping, and stiffness with the inductor, resistor, and capacitor. The pull-left and 

pull-right forces are generated by the transformers that represent the comb drives that can only pull. 

 

TIA block. Our analytical transduction model of the transimpedance amplifier is eq (6.10)

, and the block’s circuit, numerical simulation, and verification are shown in Figure 6.4. 

F/C

0

in in

amp D

Gg
x i

N h G G

 
=  
 
 

 and out TIA in
V G i= .  (6.10) 
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Figure 6.4: Transimpedance amplifier (TIA) component. The purpose of the TIA component is to convert the comb 

drive current (proof mass velocity) to a voltage. A test input signal is shown as in (a), and its simulated output is 

shown as in (b). The component contributes a latency of 3.2ns between its input and output signal. The circuit model 

of the equivalent circuit is shown in (c). The circuit works by using a resistor as the feedback loop of the operational 

amplifier. Consequently, the current that goes through the resistor will cause a voltage drop upon the resistor, which 

then will be shown as a voltage in the output of opamp that is proportional to current. Due to the limitation of the 

bandwidth and supply power of the opamp, the gain will not be infinite for an ideal opamp. A multistage TIA may 

be adopted to distribute the gain of each TIA. 

 

Integrator block. Our analytical transduction model of the integrator is eq (6.11) and the 

block’s circuit, numerical simulation, and verification are shown in Figure 6.5. 

0

in F C in

amp

g
x G i

N hG

 
=  
 
 
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F C

0 int

out out

amp

g
x G i

N hG G

 
=  
 
 

, and intout in
i G i dt=  .                   (6.11) 
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Figure 6.5: Integrator component. The purpose of the integrator component is to convert the velocity of the proof 

mass (comb drive current) to a displacement. A test input signal is shown as in (a), and its simulated output is shown 

as in (b). The component contributes a latency of 1.2ns between its input and output signal. The circuit model of the 

equivalent circuit is shown in (c). The circuit works by using the current conveyor II (CCII) structure, which is an 

open-loop current-mode amplifier with low and fixed current gain. A typical CCII is a three terminal device, with 

the terminals designated X, Y, Z. If a voltage is applied to Y, an equal potential will appear on the input terminal X. 

The current that goes through X will then be conveyed to output terminal Z, such that Z has the characteristic of the 

current source, of value I, with high output impedance. Therefore, CCII has similar behavior with an op-amp, except 

that the CCII structure has a higher voltage gain over a larger signal bandwidth than the corresponding op-amp. By 

connecting a capacitor from X to the ground and a resistor from Y to ground, the output current will be an integrated 

input current signal.  

 

Cubic block. Our analytical transduction model of the cubic block eq (6.12) and the 

block’s circuit, numerical simulation, and verification are shown in Figure 6.6. 
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Figure 6.6: Cubic component. The purpose of the cubic component is to cube the displacement. A test input signal 

is shown as in (a), and its simulated output is shown as in (b). The component contributes a latency of 0.8ns between 

its input and output signal. The circuit model of the equivalent circuit is shown in (c). The circuit works by using the 

characteristic of CMOS under weak inversion. When CMOS is working under weak inversion status, a Taylor series 

can express the gate voltage-drain current’s relationship. By using differential pair transistors, the even-ordered 

powers of the Taylor series can be canceled, while higher-order odd powers of the Taylor series are negligible. 

Therefore, the desired cubic term can be isolated by using an analog adder configuration of transistors with specific 

input voltage combinations to cancel the first-order terms. For the reason that CMOS needs to work under weak 

inversion status, the input level is limited to no larger than 300mV for the circuit shown in (c). 
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Parasitic block. Our analytical transduction model of the cubic block eq (6.13) and the 

block’s circuit, numerical simulation, and verification are shown in Figure 6.7. 

( )2 1 2
1

out p p p p in noise
V R R R C s V V= + + +   (6.13) 

where 
1p
R  and 

2p
R  are the leakage resistances, 

p
C is the parasitic capacitance, and 

noise
V  is 

noise. 

 

 

Figure 6.7: Parasitic component. The purpose of the parasitic component is to simulate the nonideal leakage current, 

parasitic capacitance, and noise. A test input signal is shown as in (a), and its simulated output is shown as in (b). 

The component contributes a latency of 80ps between its input and output signal. The circuit model of the equivalent 

circuit is shown in (c). The circuit works by using a parallel resistor, capacitor, and series resistor to represent the 

parasitic resistance and capacitance, and by using a noise voltage source to simulate the noise in the circuit. 

 

Square root block. Our analytical transduction model of the square root block eq (6.14) 

and the block’s circuit, numerical simulation, and verification are shown in Figure 6.8. 

out sqrt in
V G V= .  (6.14) 
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Figure 6.8: Square root component. The purpose of the square root component is to square root the feedback 

voltage because the comb drive subsequently squares the voltage, which then results a force that is desirable 

proportional to voltage. A test input signal is shown as in (a), and its simulated output is shown as in (b). The 

component contributes a latency of 3.0ns between its input and output signal. The circuit model of the equivalent 

circuit is shown in (c). The circuit works by using the translinear principle of BJT which works under weak 

inversion. When a BJT is working under weak inversion status, the base-emitter voltage and collector current are 

exponentially related. By building a loop with four BJTs inside, at the common collector point, using Kirchhoff’s 

law, the collector-emitter current of these BJTs can be expressed as: 1 2 3bias
I I I I =  , where bias

I is provided by a 

current source. Connecting two BJTs with emitter to collector, the collector-emitter current will be the same at these 

2 BJTs. Therefore, the output current will have a square root relationship with the input. The square root relationship 

will be between voltage and voltage by adding voltage-current converter at the input and TIA at the output. 
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Square block. Our analytical transduction model of the square block is eq (6.15), and the 

block’s circuit, numerical simulation, and verification are shown in Figure 6.9. 

( )
2

out sq in
V G V= .                                                                                                    (6.15) 

 

Figure 6.9: Square component. The purpose of the square component is to simulate the square relationship between 

the input voltage and output force of the comb drive. A test input signal is shown as in (a), and its simulated output 

is shown as in (b). The component contributes a latency of 3.0ns between its input and output signal. The circuit 

model of the equivalent circuit is shown in (c). The circuit works by using the translinear principle of BJT which 

works under weak inversion. By building a loop with four BJTs inside, at the common collector point, using 

Kirchhoff’s law, the collector-emitter current of these BJTs can be expressed as: 1 2 3bias
I I I I =  , where bias

I is 

provided by a current source. Connecting two BJTs with emitter to collector, the collector-emitter current will be the 

same at these 2 BJTs. Therefore, the output current will have a square relationship with the input. The square 

relationship between voltage and voltage will be between voltage and voltage by adding a voltage-current converter 

at the input and TIA at the output. 
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6.2. System integration verification 

Using HSPICE, the circuits shown in Figures 6.3-6.9 are integrated into a complete system, 

simulated, and verified with our analytical models. We used static, transient decay rate, 

resonance, and bandwidth simulation modes to verify the transduced displacement, comb drive 

force, and artificially-generated damping, stiffness, mass, and nonlinear stiffness. The parameter 

values used in our verification and test case are given in Table 6.1. 

Displacement. In Figure 6.10 we show the result of applying a DC input step voltage, 

which compares well to the analytical expression dr
x F K=  with a relative error of 0.135%. 

 

Figure 6.10: Result of TA when a static input force of 4.44uN (Drive voltage of 22.4V) is applied to the MEMS 

with zero displacement and velocity initial conditions. The simulation results in a static displacement of 2.223um, 

compared with the calculated ideal static displacement of 2.22um, the relative error is 0.135%. 

 

Damping. By measuring the exponential decay rate of the HSPICE simulation shown in 

Figure 6.10, we find that damping also compares favorably with / 2D M = , with a relative 

error of 0.07%. 
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Bandwidth. Instead of using linearized HSPICE’s frequency to capture nonlinearity, we 

obtained a nonlinear frequency response by slowly stepping through increasing drive frequencies 

and capturing the response amplitude after the steady-state was reached. The natural resonance 

frequency is predicted by 
2 2

0
2

d
  = − , where 

0
 is the undamped displacement frequency, 

or damped velocity resonance frequency, which is /K M . The bandwidth of a linear analytical 

model is 2
d d
QBW   = = , where   is the fraction of critical damping, 2D KM = . Our 

analytical expression [8] for the linear frequency response subject to feedback latency is given as 
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 (6.16) 

We plot eq (6.16) in Figure 6.11 as the red curve. Due to the length of time for each data point 

of our HSPICE circuit simulation to reach steady-state, we have only focused on the points near 

the peak of the curve and near the bandwidth about the 3dB down location. Our numerical results 

are shown in Figure 6.11 as the blue piecewise curves. We find that the resonance frequency is 

off by 0.2 Hz the bandwidth is off by 0.05 Hz. Verification yields a relative error of 0.6% for 

resonance amplitude and a relative error of 7.1% for bandwidth. We suspect that the larger error 

in bandwidth is due to the damping nonidealities in HSPICE circuit models and our leakage 

current.  
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Figure 6.11: Verification of TA characteristics by comparing TA’s resonance frequency and bandwidth with AC 

analysis. The resonance is 7.9577kHz, bandwidth is 31Hz.  

 

6.3. Nonlinear stiffness Results 

Using our verification between expected analytical modeling behavior and our numerical 

modeling testbed, we now investigate how temperature changes affect our PODMEMS test case 

which is subject to artificial vacuuming and artificial stiffening. Thermal expansion of length, 

width, and thickness of flexure, as well as the effect of temperature on Young’s modulus, is 

modeled as  

( )
( ) ( ) ( )

( )

3

4 / 2

E T h T w T
K T

L T

 
=  

 
 

                                                                                              (6.17) 

where  
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( ) 0
(1 )L T L T= +  , ( ) 0

(1 )w T w T= +  , ( ) 0
(1 )h T h T= +  , and 

( )
3

9 10
145 10 exp 2.61 [ ]

B

eV
E T Pa

k T

− 
=   

 
 

and where the coefficient of thermal expansion of silicon is 
6 12.6 10 K − −=  , the reference 

geometry at 300K is 
0
,L   

0
w , 

0
h , electron volts is 191.6 10 JeV −=  , and Boltzmann constant is 

231.38 10 J K.
B
k −=   

To verify the benefit of adding nonlinear stiffness on the high-Q device, an artificially 

tuned Q is increased to > 105, which only requires a small drive force of 4.43e-11 N to reach a 

steady-state amplitude of 5mm. In the test case, the damping feedback force is driven by 

( )
e

2

0
=3.87e-8N

D e D
F D x N h g V= = , which requires a voltage amplitude of 2.1V, the nonlinear 

term is driven by ( )3 2

0
=1.25e-7N

e
F x N h g V
  

 = = , which requires a voltage amplitude of 

3.8V. For a comparison with mechanical forces, the force amplitude of stiffness is 

max
1e-5Kx N= , damping is max

3.875e-8NDx = , and mass max
1e-5Mx N= . By changing the 

mechanical stiffness K according to temperature variation (6.17), which is represented by the 

capacitor in HSPICE, the relationship between the temperature variation and resonance 

frequency change in both linear and nonlinear models is shown in Figure 6.12. 
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Figure 6.12: Resonance frequency shift due to temperature change. The red curve is the linear model and the blue 

curve is the nonlinear model.  

 

As seen in Figure 6.12, increasing the temperature by 10K decreases the resonance 

frequency by about 10Hz for both linear and nonlinear models. However, as shown in Figure 

6.13, the amplitude of the linear model experiences a large decrease of 99.2%, while the 

nonlinear system only experiences a decrease of 30%, which is still within 3dB of nominal. The 

plot in Figure 15 is a stepped sweep of drive frequency using HSPICE’s transient analysis, where 

each data point was acquired after steady state was reached. Simulations also demonstrated the 

jump-up and jump-down phenomenon (not shown here), which is a characteristic of Duffing 

oscillators. The transient simulations were subject to nonidealities such as noise, parasitic 

capacitance, and leakage current at three locations on the circuit (recall Figure 6.7). The 

maximum level of noise was 43.4mV. 
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Figure 6.13: Frequency response of linear and nonlinear HSPICE circuit models of PODMEMS undergoing thermal 

drift. For the constant driving frequency of 7957Hz for the linear model, and detuned to the frequency of 7966Hz for 

the nonlinear model, an increase in temperature of 10K results in a resonance frequency change of about 10Hz. Such 

drift causes the linear model’s amplitude to drop by 99.8% (56dB) and causes the nonlinear model’s amplitude to 

drop by 30% (3dB).  

 

6.4. Conclusion 

In this chapter, we proposed a method to address the stability issue confronted by high-Q MEMS 

resonators that are subject to thermal drift. High-Q resonators typically have a very narrow 

bandwidth, so it can be difficult to match the drive frequency to a driving structural resonance 

frequency. A small temperature change can cause the oscillator to lose resonance by falling 

below cutoff frequency amplitudes. However, the amplitude can remain above cutoff by 

controllably bending the response curve through artificial damping. Moreover, using artificial 

vacuuming can significantly decrease and maintain the cost of achieving high-Q behavior as the 

device ages. 
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Chapter 7  

Application to Thermal Drift 

 

 

We propose a method to reduce the signal attenuation problem that is often associated 

with drift in vibratory microelectromechanical system (MEMS) gyroscopes. Drift in the 

electromechanical properties of MEMS can be caused by changes in temperature, pressure, or 

packaging stress, which can impact the values of the frequencies and the size of resonance 

amplitudes. Large resonance amplitude in MEMS is used to increase the strength of signals 

above the level of noise. When resonance amplitude is increased by increasing the quality factor 

(Q) from thousands to millions, the bandwidth of the resonance frequency reduces by the same 

factor, and the cost of the device increases by about the same factor. Such narrow vertical 

bandwidths increase the challenge in matching the frequency of the excitation to the drifting 

resonance frequencies of the drive mode and that of the sense mode. Due to the extremely 

narrow bandwidths, mismatch between the three frequencies results in significant signal 

attenuation within the gyroscopic sensor. This chapter addresses the problem of matching these 

three frequencies while uncharacteristically reducing the cost. To achieve high Q, we use an 

artificial electrostatic feedback force that is proportional to the negative velocity of the proof 

mass to produce a negative damping effect that restores energy lost per vibratory cycle due to 

natural damping. To achieve a consistently strong sensing signal during drift, we use a second 

artificial electrostatic feedback force that is proportional to displacement cubed, which bends the 

narrow vertical peak to cover a larger range of frequencies that are within 3dB of the preferred 

amplitude. This effectively achieves both high-Q and large bandwidth. Therefore, the problem of 

matching the three frequencies of the sense mode, drive mode, and the drive modes’ excitation 
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signal is reduced to simply locking the drive modes’ excitation frequency to the sense mode’s 

resonance frequency. That is, the drive and sense modes are continuously excited by the same 

sinusoidal voltage signal, which is itself locked to the drifting resonance frequency of the sense 

mode. Efforts by others to reduce drift sensitivity include using temperature-dependent drive 

frequency to match the drift of structural resonance frequency; creating structural designs that 

are less sensitive to temperature variations; encapsulating the MEMS in a thermal reservoir to 

maintain a constant temperature, etc. However, by integrating our feedback method into 

inexpensive MEMS gyroscopes, our study suggests that the level of performance may be 

improved to that of expensive MEMS gyroscopes. Our simulation results show that the drive 

mode’s excitation frequency can be locked to the sense mode structural resonance frequency 

with 0.006% error. For instance, by applying a temperature change of 80oC, which is the 

temperature range of consumer electronics, the signal from our nonlinear feedback system 

attenuates by 0.4dB instead of an attenuation of 94.8dB without our nonlinear feedback. By 

applying the feedback velocity voltage, which is proportional to the velocity of the proof mass 

and has a maximum value of 0.43V, the effective quality factor of the drive mode is increased by 

a hundred times, from 12k (in air at STP) to 1.2M (in an artificial vacuum). All feedback 

voltages remained less than 2V. 

7.1. Background 

MEMS gyroscopes measure changes in orientation. They are presently used in smart 

phones, virtual reality controllers, automobile navigation, robotics, etc. [106]–[109]. A most 

critical challenge in improving the accuracy and sensitivity of MEMS gyroscopes is the drift in 

resonance frequency due to changes in temperature, pressure, or stress [5]-[6]. Drift produces 

frequency mismatches between the applied excitation frequency of the drive mode, the structural 
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resonance of the drive mode, and the structural resonance of the sense mode. And large quality 

factors with a narrow bandwidth are required for the vibratory gyros to amplify the small 

Coriolis forces that they are trying to sense, which increases the cost of the gyros since the higher 

the quality factor, the higher the cost (see Figure 7.1). Therefore, a small mismatch in frequency 

can cause the output signal to be greatly reduced to the level of noise.  

 

Figure 7.1: Quality factor versus cost for MEMS gyroscopes. As Q increases exponentially, so do performance and 

cost [112]. Simulations show that our nonlinear MEMS vibratory gyroscope can adjust its effective Q without 

modifying its design. That is, by tuning the velocity feedback voltage, the effective Q can be tuned from a low to 

high value without affecting cost.  

 

A review of efforts to address frequency drift in MEMS gyroscopes is discussed in [3] 

and [7]. Example efforts include the design of temperature-insensitive mechanical structures 

[114], [115], thermal reservoir packaging [116], and electrostatic tunning [117]–[124]. In [114], 

Kaji et al. uses the donut-like rigid mass suspended on a single central anchor to improve the 

system’s symmetry. The split of drive mode and sense mode frequency is reduced by a factor of 

100 because the drive and sense mode share the same temperature-dependent mechanical 

elements. In [115], the MEMS gyroscope adopted the symmetric structure to decrease the 
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temperature sensitivity. The resonance frequency split between drive and sense mode caused by 

temperature range is reduced by 40 times. Researchers have also investigated oven control 

methods: on-chip and off-chip architecture. In [116], Lemmerhirt et al. used the on-chip method 

by integrating all structures in a sealed first-level package, where MEMS die is installed on an 

isolation platform with surrounding heaters. The heater controls the cavity temperature of the 

sealed package. A more effective method, called the electrostatic tuning method, was studied for 

its advantages of not requiring a new structure design, being low cost, and being adaptable to 

various types of MEMS devices. The electrostatic tunning method utilizes a structure-specific 

electrostatic negative stiffness effect to change the structure’s stiffness by adjusting the feedback 

voltage, thereby altering the resonant frequency to compensate for frequency drift [117]. 

Complex algorithms are used for parameter fitting [118], [119], identification [120], [121], and 

prediction [122] to realize real-time frequency tunning. Although these methods can eliminate 

the frequency split, they require large data acquisition. The phase domain approach is also 

adopted to reduce frequency mismatch on drive mode [123]. When frequency mismatch between 

the drive signal and drive mode structural displacement signal is 0, the phase difference between 

drive signal and drive mode structural displacement signal is 900, which can be measured 

through a phase-locked loop (PLL). Thereby, the frequency match-mode of drive mode can be 

recognized. In [124], Cheng et al. excited the sense mode to obtain the corresponding DC tuning 

voltage, which can be used to tune the apparent stiffness of sense mode for mode matching. 

Compared to mode mismatching conditions, their results show that the bias stability and angular 

random walk (ARW) are improved by 3.25 and 4.49 times respectively. However, such control 

did not take into account the frequency mismatch in drive mode caused by drive mode structural 

resonance frequency drift.  
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In addition to drifts in temperature, pressure, or packaging stress, process variations also 

make it difficult to match the vibratory MEMS gyroscope's drive, sense, and excitation 

frequencies. Some mode-matching efforts by others to improve performance include mechanical 

geometric post-processing, creating unusual structural designs that are difficult to fabricate, and 

in-run mode matching. Mechanical post-processing methods include removing material with 

laser [125] or chemical etching [54] and adding material with mass deposition [44] to match the 

resonance frequency between different working modes. Post-processing addresses the problem 

of process variations, it must be done before packaging, it slows production throughput, and does 

not enable real-time control. Developing unique structural designs can achieve inherent mode 

matching. Through optimizing spoke location and ring width, the frequency split of a disk-

resonating gyroscope is reduced by a factor of 100 in [126].  In [127], Ginger et al. placed the 

critical element in the center to increase symmetry, which decreased the frequency split by ten 

times. Although such unusual designs can reduce the modes mismatch, these techniques are 

passive approaches to minimize frequency split and may face the make-or-break characteristic. 

Most in-run mode matching methods utilize electrostatic tuning through specially designed 

electrodes to minimize frequency split in real-time [128]–[130]. In [131], Sung et al. employed 

the phase relation between signals in the two modes to realize mode matching, which increased 

the sensitivity of the MEMS gyroscope by 40 times. By injecting a perturbation signal to the 

quadrature cancellation loop, Yesil et al. improved the bias instabilities and ARW by factors of 

1.5 and 6 in [132]. However, such an in-run mode-matching method is unsuitable for extremely 

high Q MEMS gyroscopes with Q larger than 1M because matching the frequency of the two 

modes with an extremely small bandwidth requires high-precision circuitry [111].  
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On the other hand, the hemispherical resonator gyroscope (HRG) has an ultra-high-

quality factor, which can be larger than 10M. Matching the frequency of the two modes with 

such high Q is more difficult. The methods to decrease the frequency split between the two 

modes include enhancing the mechanical fabrication process [133], using a thermal reservoir 

package [134], and electronic calibration [135]. In [133], Sharma et al. use the Hauser make H35 

jig grinding machining to increase the precision of fabrication, which decreased the frequency 

split between the two modes by 15 times with the obtained Q of 7M. In [134], Zhao et al. 

improved the bias error level of the uncompensated HRG by 40 times by using a thermal 

reservoir package with a Q of 7M. In [135], Zhao et al. use force to rebalance control to improve 

the HRG’s bias stability by three times. 

The WGM optical gyroscope can achieve even higher quality factor due to the very low 

loss and low scattering of the host materials in the visible and near-infrared wavelengths [136]. 

Because the frequency shift of clockwise mode WGM resonator and counter-clockwise mode 

WGM resonator is proportional to the angular rate of the system, such a phenomenon is used for 

building an optical gyroscope. In [136], Liang et al. proposed and experimentally verified the 

prototype of a WGM gyroscope, whose quality factor is 1 billion. However, due to the specific 

form of WGM resonator (spherical, bottleneck, etc.), it is difficult to integrate the WGM 

resonator into the other components of the micro-optic gyroscope. More suitable for integration 

into a single optical circuit WGM resonators (toroidal, disk-shaped, etc.) are usually 

characterized by a low Q factor [137]. In [138], Amrane et al. used the disk-shaped WGM 

resonator for a fully integrated optical gyroscope, whose quality factor is only 370k. Besides, 

creating sub-millimeter resonant optical gyroscopes is impractical due to the quantum effects 

[139]. 
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7.2. Vibratory MEMS gyroscope test case 

 

 

 

Figure 7.2: Lumped spring-mass-damper model of MEMS gyroscope. For the driving mode, a proof mass is driven 

to resonate in the x-direction with a sinusoidal driving force dr
F , which also matches the resonance frequency of the 

sense mode along the y-axis. The mass is supported in the x-direction with spring stiffness x
K  and y-direction with 

spring 
y
K . The damping in x and y-directions are x

D  and 
y
D . When the device is rotated about the z-axis with 

angular rate z
 , then a Coriolis force Cor

F  generated and exerted on the mass along the y-direction. Figure 7.2(b) 

shows the designed MEMS gyroscope with a connected feedback circuit, where the x-direction is the drive mode, 

and the y-direction is the sense mode. The blue color comb fingers are stators, while the red color represents 

moveable structures, which is supported by the flexures. The velocity of the proof mass is converted to voltage and 

then used for damping feedback. Meanwhile, the sensed velocity will be integrated into displacement, which is then 

used for linear stiffness feedback. By cubing the voltage signal that is proportional to the displacement, the feedback 

voltage will be proportional to the cubic of displacement, which is used to generate nonlinear behavior. 
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As shown in Figure 7.2, the MEMS vibratory gyroscope consists of two orthogonal 

mechanical vibrations: primary mode and secondary mode, which are used to drive the proof 

mass and sense angular rate. The driving force generated by the input voltage exerted on the 

spring-mass-damper system causes a vibration on the x-axis. The velocity of the proof mass in 

the x-direction is multiplied by the angular rate along the z-axis with the mass of proof mass to 

generate a force, which is then exerted on the spring-mass-damper system on the y-axis. 

Therefore, the z-axis angular rate information can be revealed by sensing the change of 

displacement on the y-axis. The ideal equations representation of the two vibrations is described 

in eq (7.1) and eq (7.2).  

sin
x x dr o dr

Mx D x K x F F t+ + = =                   (7.1)                                                                          

2
y y cor z

My D y K y F M x+ + = = −              (7.2)                                                                                                                        

where, 
81.45 10 kgM −=  is the proof mass,

-71.55 10 Ns m ,
x
D =  71.548 10 Ns m

y
D −=   are 

the damping of x and y directions, 237.85 N m ,
x
K =  256.62 N m

y
K =  are the stiffnesses of x 

and y directions,  dr
F  is the magnitude of the driving force, dr

  is the frequency of driving force, 

z
  is the angular rate of the z-axis, t  is time. Solving for drive mode equation eq (7.1), we get 

the amplitude and phase of displacement as follows: 

2 2
2 2 2

2

/
sin( )

( )

dr
dr x

x dr
x dr

x

F M
x t

Q

 
 

 

= +

− +

                 (7.3)                                                                                                          

2 2
arctan

( )
x dr

x

x dr x
Q

 


 
= −

−
               (7.4)                                                                                                                                         
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where / 128.08k rad s
x x

K M = =  is the structural resonance frequency of drive mode, 

x x x
Q M D=  is the quality factor of drive mode. The bandwidth of drive mode is represented 

as: 

x x
BW Q=                 (7.5)                                                                                                                                                              

To increase structural displacement amplitude, get a better signal to noise ratio (SNR), be more 

sensitive to Coriolis force, high Q of both drive mode and sense mode is desired in MEMS 

gyroscope. Nevertheless, matching drive frequency to structural resonance frequency or 

matching the frequency of drive mode to sense mode with high Q can be difficult due to 

frequency drift caused by temperature variations. 

7.3. Nonlinear feedback and frequency match control system 

7.3.1. Electrostatic Force Feedback Circuit  

The electrostatic force feedback circuit is used to generate nonlinear stiffness and low 

damping behavior of drive mode by feeding back the states of the proof mass, and to excite the 

sense mode by tracking the drifting resonance frequency with PLL. The nonlinear stiffness 

feedback enables the drive mode to behave like a Duffing oscillator, while the damping feedback 

can produce high Q by only using the feedback circuit. The excitation of sense mode at 

resonance frequency with PLL enables the tracking of drifting resonance frequency of sense 

mode. In the following of this section, the system-level block diagram of the entire electrostatic 

force feedback system is given. Then generating of nonlinear stiffness behavior and low damping 

behavior are described in 7.3.2 and 7.3.3, respectively. The excitation of sense mode is 

demonstrated in 7.3.4. Lastly, the determination of the angular rate is described in 7.3.5. 
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A system-level block diagram of the entire electrostatic force feedback system is shown 

in Figure 7.3. Gains are labeled G, the signal delay time (latency) is t, the voltage signals are V, 

and the electrostatic feedback forces are labeled F. The voltage signal 
,dr x

V  that excites the drive 

mode is locked to the sense mode’s drifting resonance frequency 
y

  by the PLL, with the 

amplification of the PLL’s output by 
,dr x

G . The output voltage of the drive mode is proportional 

to the velocity with velocity to voltage gain 
xv
G . The output voltage ,out x

V  is then amplified by 

damping
G  and appears as the feedback voltage D

V for damping control. Meanwhile, the output 

voltage ,out x
V  is also integrated with gain int

G , which results in a voltage int
V  that is proportional 

to the displacement. The voltage int
V  is then amplified by 

stiffness
G  and appears as the feedback 

voltage 
stiffness
V  for linear stiffness control. At the same time, the voltage int

V  is cubed with gain 

cubed
G  and appears as the feedback voltage cubed

V , which is proportional to the cubic of 

displacement. The voltages D
V , K

V , NL
V  and ,res x

V  are then added together and square rooted, 

which are then converted to force through the square function representing the comb drive.  The 

capacitance of the comb drive is labeled as comb
G . In the sense mode, the voltage signal 

,res y
V  

that excites the sense mode is also locked to the sense mode’s drifting resonance frequency, 

which is square-rooted and converted to force 
,res y

F . When the chip rotates at z
 , then a Coriolis 

force Cor
F  that is proportional to the velocity of the drive mode is added to the sense mode.  
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Figure 7.3: System block diagram of MEMS gyroscope with control system for accurate angular rate sensing. The 

sense mode is excited by two forces: the Coriolis force Cor
F that is proportional to the velocity of the drive mode 

when the chip rotates z
 , and the force 

,res y
F  that is generated by the voltage 

,res y
V , whose frequency is locked to 

the drifting resonance frequency of the sense mode. Meanwhile, the drive mode is driven by four forces: excitation 

force ,res x
F , which is generated by the voltage ,res x

V , whose frequency is also locked to sense mode resonance 

frequency; Feedback forces D
F , K

F , and NL
F , which are proportional to the velocity, displacement, and cubic of 

displacement of the proof mass, respectively.  The square block and gain comb
G  are used to represent the voltage-to-

force relationship of the comb drive. The square root block cancels out the square relationship generated by the 

comb drive. 

 

7.3.2 Generating nonlinear stiffness behavior in the drive mode  
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Figure 7.4: Nonlinear stiffness feedback circuit. The drive mode is represented by the RLC equivalent circuit in 

Figure 7.4(a), where R1 represents the damping x
D , L1 represents the mass M , and 1/C1 represent the stiffness 

x
K . The velocity of the proof mass, which is represented by the current go through the R1, is converted to voltage 

by the TIA, which is then integrated to voltage. The integrated voltage is proportional to the displacement, which is 

amplified and appears as the feedback voltage for linear stiffness feedback. Meanwhile, the integrated voltage is also 

cubed for nonlinear stiffness feedback. Both the linear and nonlinear stiffness feedback voltages are square rooted 

and then go through the square block, which represents the comb drive. Figure 7.4(b) shows the detail of the square 

root circuit, which works by using the translinear principle of BJT which works under weak inversion. Figure 7.4(c) 

shows the detail of the square circuit, which also works by using the translinear principle of BJT, which works under 

weak inversion. Figure 7.4(d) shows the detail of the cubic block. The cubic block circuit works by using the 

characteristic of CMOS under weak inversion. 

 

Without feedback, the small amplitude deflection of the drive mode behaves linearly. To 

produce nonlinear stiffness behavior, we feed back an amplified electrostatic force onto the proof 

mass that is proportional to the cube of displacement. This enables the drive mode to behave as a 

Duffing oscillator at small displacement amplitudes. The stiffness force of the drive mode is 

( ) ( ) 3

stiffness x e e
F K K x x = + + + ,                                                                   (7.6) 
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where Kex and kex
3 are electrostatic feedback forces. Such feedback enables the drive mode to 

increase or decrease both its linear and nonlinear stiffness characteristics. With respect to Figure 

7.3, the voltage signals pertaining to stiffness force in the drive mode, we have 

3 3 3

int intstiffness xv K xv NL
V G G G x G G G x= + .                                                         (7.7)                                                                                                                   

7.3.2. Generating low damping behavior in the drive mode  

 

Figure 7.5: Damping feedback circuit. The velocity of drive mode proof mass is converted to voltage by TIA, and 

then is amplified by the amplifier. The feedback voltage is square-rooted and then goes through the square block, 

which represents the force generated on the comb drive. Therefore, the generated electrostatic force will be 

proportional to the velocity. The square root block and square block are as shown in Figure 7.4(b) and (c). 

 

High-Q MEMS gyroscopes can be achieved by feeding back an amplified electrostatic 

force onto the proof mass that is proportional to the negative velocity, such that a negative 

damping effect that restores energy lost per vibratory cycle due to natural damping is realized. 

The damping force of the drive mode is 

( )damping x e
F D D x= − ,                                                                                           (7.8) 

where e
D x  is electrostatic feedback force. The damping of the drive mode can therefore be 

decreased with the feedback. With respect to Figure 7.3, the voltage signals pertaining to 

damping force in the drive mode, we have  
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damping xV D
V G G x= .                            (7.9) 

7.3.3. Excitation of the drifting sense mode 

To track the drifting structural resonance frequency of the sense mode, the sense mode 

must be continuously excited into resonance. The resonance tracking is accomplished through a 

PLL. For accurate frequency matching, an excitation voltage generated by the PLL is applied to 

both modes, i.e., the linear sense mode and nonlinear drive modes.  

The PLL closed-loop control generates a signal whose output phase is related to the phase 

of an input signal. As shown in Figure 4, the PLL components include a phase detector (PD), a 

loop filter (LPF), and a voltage-controlled oscillator (VCO). The PD compares the phase 

relationship of the input signal ( )
s
V t  and output signal ,

( )
dr x
V t , LPF is used to filter out the 

higher frequency in the output of PD through a low pass filter, which can generate a stable phase 

difference signal ( )
c
V t ， and the VCO frequency is controlled by the voltage input.  

 

 

Figure 7.6: PLL module of Figure 7.3. The PLL consists of 4 parts: PD, which is a phase detector, is used to detect 

the phase difference between the two input signals ( )
s
V t  and 

,
( )

res y
V t ; LPF, which is a low pass filter, is used to 

filter out the higher frequency terms in the output signal ( )
p
V t  of PD and generate a signal ( )

e
V t  that is 

proportional to the phase difference detected by PD; PI controller is used to adjusting the PLL’s responding speed 
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and frequency locking accuracy; VCO, which is voltage controlled oscillator, is used to generate output signal 

whose frequency is controlled by the phase difference between ( )
s
V t  and 

,
( )

dr y
V t .  

When the excitation frequency 
,dr y

  is exactly equal to the sense mode structural 

resonant frequency 
y

 , the phase of sense mode displacement is equal to -90o. Such a 

relationship between excitation frequency and displacement phase can be used to determine 

whether the excitation frequency follows structural resonant frequency by using PLL. The phase 

difference between the drive signal and structural displacement can be detected through 

quadrature demodulation. If the input signal of PLL is ( ) cos( )
s d d
V t t = + , the output signal of 

PLL is 
,

( ) sin
dr y d
V t t= , where d

  is the phase of sensed displacement signal, which is also the 

phase deviation to the structural resonance frequency. Multiply ( )
s
V t  and 

,
( )

dr y
V t  can get the 

demodulated signal ( )
p
V t , which is shown as in eq (7.10). 

,

1
( ) ( ) ( ) cos( )sin (sin(2 ) sin ).

2p s dr y d d d d d d
V t V t V t t t t t     = = + = + −       (7.10) 

Demodulated signal eq (7.10) includes a higher frequency AC term and a DC term containing 

phase information. By using a low pass filter, the higher frequency AC term can be filtered out, 

leaving only the DC term. When 1
d

 , sin
d

 can be approximated as sin
d d

  , therefore, 

phase signal can be expressed as: 

1 1
sin .

2 2e d d
V  = −  −                           (7.11) 

In order to increase the response speed and decrease the steady-state error of the PLL, a 

proportional-integrator (PI) controller is used. The output voltage of the PI controller can be 

described as: 
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( ) ( ) ( )
c p e i e
V t G V t G V t dt= +                                                                                                     (7.12)                                                                                  

where 
p
G  and i

G  are the coefficients of proportional and integral terms, respectively.  

The output signal ( )
c
V t  can then be used as the control signal for VCO, whose output 

frequency is controlled by the input voltage. The output frequency 
d

 of VCO is determined by 

its central frequency 
o

 , the difference between the drive signal’s frequency 
d

  and central 

frequency o
 , and the multiplication of control voltage c

V  and gain of VCO o
G .  d

  is 

described as 

.
d o d o o c d o c

G V G V     = + − + = +                                                                                      (7.13)                                                                         

To realize the PLL, firstly, a first-order LPF is chosen, whose transfer function is described as 

follows: 

( ) c

c

L s
s




=

+
,                                                               (7.14)                                                                                            

where c
  is the cutoff frequency, s is the Laplace operator.  

The transfer function of VCO is described as: 

( ) o
G

V s
s

= ,                                                                  (7.15)                                                                                            

where o
G  is the gain of VCO. 

Therefore, the closed-loop transfer function of the PLL is derived as: 

2

( )
( )

( )
o c o

i c c o

s G
H s

s s s G

 

  
= =

+ +
                                                 (7.16)                                                                             

where ( )
o
s  and ( )

i
s are the output and input phase of PLL, respectively. 

The characteristic equation of the transfer function eq (7.16) is 
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2 0
c c o

s s G + + =                                                                                                                    (7.17)                                                                                          

The two roots of the characteristic equation are solved as 

2

1,2

4

2
c c c o

G
s

  −  −
= .                                                                                                       (7.18)                                                                                   

Since c
  is the cutoff frequency of LPF and 0

c
  , the two roots in eq (7.18) will always have 

a negative real part, which means all the poles of the closed-loop system are located in the left 

part of the s-plane. Therefore, the closed-loop system is asymptotically stable. 

Assuming the input phase i
  has a step change at time 0t = ,  which is represented as  

( ) ( )i
t u t =  ,                                                                                                                       (7.19)                                                                                          

where ( )u t  is the unit step function,   is the change of input phase. The Laplace transform of 

the phase input change eq (7.19) is  

( )i
s

s





= .                                                                                                                              (7.20)                                                                                              

By substituting the step input eq (7.20) to the system transfer function eq (7.16), the phase error 

is  

( ) ( )( ) ( )
( )

( )
1 c

e i

c c o

s
s H s s

s s G

 
 

 

+ 
= − =

+ +
.                                                                            (7.21)                                                                      

According to the final value theorem of the Laplace transform, when time t tends to infinity,  

( ) ( )
0

lim 0
e es

s s 
→

 = = .                                                                                                            (7.22)                                                                                      

Therefore, the phase error tends to zero when time tends to infinity. The settling time of the PLL 

under step response is 

7
s

c

t


= .                                                                                                                                     (7.23)                                                                                                    
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7.3.4. Determining the angular rate  

To determine the input angular rate from the output voltage of the sense mode, the 

nonlinear drive mode, and the sense mode equations and are solved as follows. First, the steady-

state maximum displacement amplitude 
dr
X  of nonlinear drive mode at a given driving 

frequency dr
  is solved with the harmonic balance method. The harmonic balance method 

assumes the displacement trajectory of the drive mode motion equation (7.8) as 

( )cos sin( ) cos( )
dr dr dr dr

x a t b t X t   = + = −                                  (7.24)                                                                      

where 
2 2

dr
X a b= + , tan

b

a
 = . 

Substituting the displacement trajectory equation (7.24) into drive mode motion equation (7.8) 

leads to 

( ) ( )
( )

( ) ( )
( )

( )

,2 3 2

, , ,

2 3 2

, , ,

3 2 2 3

,

3 3
cos

4 4

3 3
sin

4 4

3 3
cos 3 sin 3

4 4 4 4

x e x e res xe e
res x res x res x

x e x ee e
res x res x res x

e e e e
res x

D D K K F
a b a a ab t

M M M M M

D D K K
b a b b a b t

M M M M

a ab t a b b
M M M M

 
  

 
  

   


 − +
− + + + + − 
 
 
 − +

+ − − + + + 
 
 
   

+ − + −   
   

( ),
0.

res x
t =

                (7.25)                                        

If we neglect superharmonic terms containing 3
dr

 , the coefficients of ( )cos
dr
t  and ( )sin

dr
t  

are required to be zero 

( ) ( )

( ) ( )

,2 3 2

, ,

2 3 2

, ,

3 3
0

4 4

3 3
0.

4 4

x e x e res xe e
res x res x

x e x ee e
res x res x

D D K K F
a b a a ab

M M M M M

D D K K
b a b b a b

M M M M

 
 

 
 

 − +
− + + + + − =



− +
− − + + + =

                          (7.26)                                                   
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The parameters a  and b  in the coefficients equation eq (7.26) can be eliminated by squaring the 

coefficient equations in eq (7.26) and adding them. The relationship between dr
X  and dr

  then 

can be described as 

( ) ( )
2 2 2

,2 2 2

, ,

3
.

4
x e x e res xe

res x dr res x dr

K K D D F
X X

M M M M


 

    + −  
 − − + =                

                                 (7.27)                                                

To determine the Coriolis force, the velocity amplitude of the drive mode is needed, which can 

be derived by differentiating displacement trajectory eq (7.24): 

,

, ,

cos( )
cos( ).

dr res x

res x dr res x

d X tdx
x X t
dt dt

 
  

 − = = = −                                                      (7.28)                                                          

Therefore, the velocity amplitude of the drive mode is 

,
.

dr res x dr
X X=                                                                                                                          (7.29)                                                                                            

The Coriolis force exerted on sense mode can therefore be expressed as 

,
2 2 .

Cor z dr z dr x dr
F M X M X  = =                                                                                             (7.30)                                                                              

Then, by combing Coriolis force together with excitation force, the static displacement of sense 

mode static
Y  is 

( )
,

2 2 2

Cor res y

sense

y y r

F F
Y

D  

+
=

−

,                                                                                                       (7.31)                                                                                     

where 2 2 22
r y

  = −  is the damped displacement resonance frequency, 2
y
D M = is the 

exponential decay rate. 

Substituting Coriolis force eq (7.30) into eq (7.31), the relationship between the sense mode  

displacement amplitude and input angular rate z
  is described as 
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( )
, ,

2 2

2
.

2

z res x dr res y

sense

y y r

M X F
Y

D

 

 

+
=

−

                                                                                                  (7.32)                                                                                   

To determine angular rate through the output voltage of sense mode with sense mode 

displacement amplitude eq (7.32), quantities ,M  ,
,

res x
  ,

y
  ,

y
D  ,

x
K  

e
K , ,

x
D  ,

e
D  ,

e
  ,

,
res x
F  

,
dr
X and 

,res y
F  needed to be determined. Here, electro-micro metrology (EMM) [140] can be 

used to accurately measure the mechanical quantities ,M  ,
,

res x
  ,

y
  ,

y
D  ,

x
K  

e
K , ,

x
D  ,

e
D  

,
e

  ,
,

res x
F  ,

dr
X and 

,res y
F . Then, through using the PLL to lock drive mode driving frequency 

,res x
  with sense mode structural resonance frequency 

y
 ,  ,res x

  will be equal to 
y

 , which can 

be read out from the output of PLL.  

7.4. Simulation 

To verify the feasibility of the nonlinear feedback and mode matching system, we apply our 

method in SIMULINK and HSPICE for comparison. Figure 7.7 shows the model constructed in 

SIMULINK. 
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Figure 7.7: SIMULINK realization of the system described in Figure 7.2. The drive and sense mode in Figure 7.2 

is implemented with a second-order system by integrating the acceleration to velocity and displacement in this 

figure. The stiffnesses x
K  and 

y
K  are defined in the MATLAB function block, which defines different stiffness 

values at different times to simulate the effect of temperature change on the change of stiffness value. The square 

blocks are used to represent the voltage-to-force relationship of the comb drive, while square root blocks are used to 

square toot the input voltage. Since the square root blocks only take positive values, the MATLAB function block is 

used to separate the positive and negative values of the voltage signal. The PLL module in Figure 7.4 is modeled 

with four blocks in this figure: a multiplier block, is used as PD; a transfer function block, used to define LPF; a PID 

controller block, specified proportional and integral parameters; a continuous-time VCO block, has the central 

frequency and input sensitivity defined. The Transport delay block is connected to the PLLs and nonlinear feedback 

circuit to model the introduced latency  . 

 

Firstly, the effect of temperature change on the system’s stiffness is modeled with 

thermal expansion of length, width, and thickness of flexure, as well as the effect of temperature 

on Young’s modulus, which is described as: 

3
( )

( ) 8 ( ) ( )
( )

w T
K T E T h T

L T

 
=  

 
                                                                                                     (7.33)                                                                                   

where 0
( ) (1 ),L T L T= +   0

( ) (1 ),w t w T= +   0
( ) (1 )h T h T= +   and 

3
9 10

( ) 145 10 exp 2.61 [ ]
B

eV
E T Pa

k T

− 
=   

 
 where the coefficient of thermal expansion of silicon 

is 6 12.6 10 K − −=  , the reference geometry of drive mode flexure at -20oC is 0,
100um

x
L = , 

0,
1.95um

x
w = , 0,

25um
x

h = .To model the process variations, the reference geometry sizes of 

sense mode flexure at -20oC are slightly different with drive mode, which has parameters as 

0,
100um

y
L = , 0,

2um
y

w = , 0,
25um

y
h = , electron volts is 

191.6 10 JeV −=  , and Boltzmann 
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constant is 
231.38 10

B
k −=  J/K. In the SIMULINK model, a MATLAB function block specifies 

the stiffness, where the stiffness is a function of temperature as defined in eq (7.33). Meanwhile, 

through using clock time as another input, the temperature is defined as a step function of time, 

which can be described as: 

0 0

0 0
.

T t t
T

T T t t

 
= 

+  
                                                                                                               (7.34)                                                                                          

At a temperature of -20oC, the system parameters are set as follows: 129.28krad/s,
x

 =  

81.45 10  kg,M −=  71.55 10 Ns m ,
x
D −=  71.5345 10 Ns m ,

e
D −= 

71.548 10 Ns m ,
y
D −=   242.34 N m ,

x
K =  17 N m ,

e
K =  261.46 N m ,

y
K =  

71.8 10 N V ,
comb
G −=   10 Vs m ,

xv
G =  300Hz/V,

o
G =  5,

p
G =  0.4 s ,

i
G =  340 rad s

c
 = . 

At a temperature of 60oC, 235.53 N m ,
x
K = 254.11N m.

y
K =  

To examine the closed-loop characteristic of the PLL, a test is run in the sense mode 

frequency matching loop. At 0 ,t s=  the output frequency of VCO is 10Hz higher than the 

resonance frequency of structural displacement. At 2 ,t s=  temperature is stepped from -20oC to 

60oC, which causes the stiffness change from 261.46N/m to 254.11N/m. Therefore, the 

resonance frequency of the sense mode is changed from 21.372kHz to 21.069kHz at 2st = . 

After the simulation run, because of the frequency difference between VCO output frequency 

and sense mode resonance frequency, PLL will first detect the phase difference through PD and 

generate a corresponding control c
V voltage for VCO. c

V will decrease dramatically to match 

VCO output frequency with sense mode resonance frequency. When the simulation reaches 

2s,t =  because of the resonance frequency change of sense mode, the PLL will adjust the VCO 
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output frequency to match the sense mode resonance frequency. Figure 7.8 shows how the 

PLL’s VCO output frequency is locked to sense mode resonance frequency.  

 

Figure 7.8: Result of VCO output frequency vs. time. The central frequency of VCO is set to be 21.18kHz, which is 

10Hz higher than the sense mode’s structural resonance frequency, which is 21.372kHz at -20oC. At time t = 2s, the 

temperature is changed to 60oC, which causes sense mode's structural resonance frequency to be 21.069kHz. The 

simulation result shows the error of the VCO output frequency to the sense mode structural resonance frequency is 

54.72 10 %− .  

 

According to Figure 7.8, the response time of the PLL is shorter than 0.2s, and the 

steady-state frequency mismatch between the PLL output frequency and sense mode structural 

resonance frequency is 54.72 10 %− . 

To examine the characteristic of the nonlinear drive mode, a chirp signal with an 

amplitude of 0.32V is used to excite the nonlinear drive mode at different temperatures. The 

chirp signal linearly increases output frequency from 20.24kHz to 20.44kHz within a time range 
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of 0s to 1000s. When the nonlinear stiffness coefficient 
10 31.08 10 N m

e
 =  , the 

corresponding nonlinear stiffness feedback voltage can be obtained from  

3

cubed e dr comb
V X G=                                                                                                                  (7.35)                                                                                           

where 4.4um
dr
X = , 

71.8 10 N V
comb
G −=  . The calculated result of nonlinear feedback voltage 

is 1.28V. The transient response of nonlinear drive mode is shown in Figure 7.9, where the red 

curves show system response at -20oC, and blue curves show system response at 60oC.  

 

 

Figure 7.9: Displacement trajectory of nonlinear drive mode vs. time when the nonlinear drive mode is applied with 

a 0.31V chirp signal, whose frequency linearly increases from 20.24kHz to 20.44kHz within a time range of 1000s. 

In the figure, the red curve is the temperature at -20oC, and the blue curve is the temperature at 60oC. The linear 

stiffness x
K  of the drive mode was changed from 242.34N/m to 235.53N/m when the temperature changed from -

20oC to 60oC. The simulation result shows that the maximum displacement amplitude is 4.4um for both 

temperatures. 
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The effect of feedback controls is demonstrated in Figure 7.10(a)-(d) by adding the 

feedback control one by one. Firstly, the frequency responses of drive mode and sense mode 

without any feedback control is shown as in Figure 7.10(a). When the temperature is increased 

by 80oC, the amplitude of drive mode is attenuated by -54.8dB.  By adding damping feedback 

control, the quality factor of the drive mode is increased from 12k to 1.2M, with a bandwidth of 

0.01Hz. The frequency responses are shown in Figure 7.10(b). When the temperature is 

increased by 80oC, the amplitude of drive mode is attenuated by -94.8dB. To maintain the 

amplitude of drive mode a large value for sense mode input, linear stiffness feedback control is 

added, which is shown in Figure 7.10(c). The resonance frequency of drive mode is increased 

from 20.575kHz to 21.285kHz. In figure 7.10(d), PLL feedback control is added to lock the 

excitation frequency of drive mode and sense mode to the drifting resonance frequency of sense 

mode. Lastly, the nonlinear stiffness feedback control is added, as shown in Figure 7.10(e).  Due 

to the nonlinear frequency response and PLL control, the drive mode is only attenuated by 4.5% 

(-0.4dB) when the temperature is increased by 80oC.  
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Figure 7.10: Frequency responses of the drive mode and sense mode. In (a), there is no feedback control applied. 

The bandwidth and quality factor are 1.8Hz and 12k for the drive mode and 1.7Hz and 12.5k for the sense mode. 

The drive mode is excited at 
,

20.575kHz
dr x
f = , when temperature is changed from -20oC to 60oC, resonance 

frequency of drive mode is drifted from 20.575kHz to 20.284kHz, while the resonance frequency of sense mode is 

drifted from 21.372kHz to 21.069kHz. The amplitude of drive mode is attenuated by 99.8%(-54.8dB). In (b), the 

damping feedback control is applied, which increases the quality factor of sense mode by 100 times. The amplitude 

attenuation of drive mode when the temperature is increased by 80oC is 99.99%(-94.8dB). In (c), linear stiffness 

feedback control is applied, which tunes the resonance frequency of drive mode from 20.575kHz to 21.285kHz at -

20oC. In (d), the PLL feedback control is applied, which locks the excitation frequency of both drive mode and 

sense mode to the drifting resonance of the sense mode. Therefore, at T=-20oC, the drive mode is excited at 

21.372kHz, and at T=60 oC, the drive mode is excited at 21.069kHz. In (e), the nonlinear stiffness feedback control 

is applied, which enables the drive mode to mimic Duffing oscillator. Due to the nonlinear stiffness feedback control 

and PLL feedback control, the amplitude attenuation of drive mode is only 4.5%(-0.4dB), which is 22 times smaller 

than the system in (b).  
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To show the system’s ability to maintain sense mode output voltage amplitude at 

different angular rate input when the temperature is changed, the input angular rate ranging from 

o0 s  to o100 s  is applied to the input of the proposed system. An assumption is made that 

when the gyroscope starts being excited, the nonlinear drive mode will be swept with excitation 

voltage frequency ranging from 21.25kHz to 21.45kHz. Under such conditions, the frequency 

response of the nonlinear drive mode will follow the blue or red curves shown in Figure 7.10(b), 

where the stability of the nonlinear drive mode will be maintained. The sense mode output 

voltage amplitude is measured for every corresponding value of the input angular rate. Such 

measurements are repeated for temperatures of -20oC and 60oC. To clearly show that the 

proposed system can maintain output voltage when the temperature is changed, the absolute 

percentage change of the output voltage at 60oC to the output voltage at -20oC is used. Here, the 

percentage amplitude attenuation is defined as 

1 2

1

100%T T

T

V V
A

V

−
=  ,                                                                                                             (7.36)                                                                                        

where A is the percentage amplitude attenuation between two different temperatures, 1T
V  is the 

output voltage of sense mode at 
o

1
20 CT = − ,  2T

V  is the output voltage of sense mode at 

o

2
60 CT = . Figure 7.11(a) shows the percentage amplitude attenuation values with different 

input angular rates of the system corresponding to Figure 7.10(e). The mean value of percentage 

amplitude attenuation is 4.3% (-0.88dB). As a comparison, such simulation is also run in the 

system corresponding to Figure 7.10(b), where the excitation frequency of the drive mode is a 

constant value equal to 20.575kHz. The simulated result is plotted in Figure 7.11(b). The mean 

value of percentage amplitude attenuation is 87.2% (-41.11dB). 
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Figure 7.11(a): Percentage output voltage amplitude attenuation vs. angular rate input. For a given input angular 

rate value, sense mode's output voltage amplitude will be attenuated when the temperature is changed from -20oC to 

60oC. The dots in this figure show the percentage of amplitude attenuation when the system’s temperature is 

changed. Such simulation is repeated for different angular rate input values ranging from 
o0 s  to 

o100 s . The 

result shows that the mean value of amplitude attenuation is 4.3% (-0.88dB). 
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Figure 7.11(b): Percentage output voltage amplitude attenuation vs. angular rate input of a MEMS gyroscope 

without nonlinear feedback control and mode matching. As a comparison, a MEMS gyroscope with the same 

mechanical properties as the above-simulated system but without thermal drift control is run with the same 

simulation as in Figure 7.11(a). The output voltage of sense mode at 60oC is greatly attenuated compared with the 

output voltage at -20oC. The result shows that the mean value of amplitude attenuation is 87.2% (-41.11dB). 

 

To show the sensitivity of amplitude attenuation to the system’s nonlinearity, the system 

is simulated at a constant angular rate input value of 50o/s, while the nonlinear feedback voltage 

NL
V  is varied. The result shown in Figure 7.12 suggests that amplitude attenuation dropped 

dramatically within the nonlinear feedback voltage range of 0-1.8V. As the nonlinearity 

increasea, the amplitude attenuation slowly decreases. 
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Figure 7.12: Percentage output voltage amplitude attenuation vs. nonlinear stiffness feedback voltage. At a constant 

angular rate input equal to 50o/s, the amplitude attenuation due to a temperature change of 60oC is measured with 

different nonlinear feedback voltages. The system's nonlinearity is increased with the increasing of nonlinear 

feedback voltage. As shown in the figure, the amplitude attenuation is reduced greatly with the increasing of 

nonlinear feedback voltage in the range of 0-1.8V, which corresponds to the nonlinear stiffness value of 

10 31.08 10 N m
e

 =  . The amplitude attenuation is slowly reduced when the nonlinear feedback voltage 

continually increases after 0.2V.   

 

7.5. Conclusion 

In this chapter, we proposed a method to reduce the problems associated with frequency drifting 

and mode matching of vibratory MEMS gyroscopes. For the high-Q MEMS vibratory 

gyroscopes with Q>1M and structural resonance frequency ranges between a few kilohertz to 

tens of kilohertz, the bandwidths will be smaller than 0.1Hz. Therefore, the slight shift of 
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structural resonance frequency due to temperature variation, pressure, and packaging stress can 

greatly reduce the signal-to-noise ratio or possibly reduce the output signal to the noise level. 

However, by feeding back electrostatic forces that are proportional to the cubed displacement of 

the gyroscope’s proof mass, the amplitude of drive mode can be maintained within 3dB of a 

preferred amplitude due to an effective nonlinear frequency response. With a nonlinear 

frequency response, the drive modes frequency can always be matched to the sense mode’s 

resonance frequency. The gyroscope only needs to lock its sense modes’ excitation frequency to 

its drifting sense mode’s structural resonance frequency instead of the more difficult challenge of 

matching all three frequencies: sense mode structural resonance, drive mode structural 

resonance, and drive modes’ excitation signal. Moreover, the cost of achieving high Q can be 

significantly decreased through velocity feedback to achieve an effective high Q. Our results 

show that when the temperature is changed by 80oC, the displacement amplitude of the drive 

mode decreases by -0.4dB due to our nonlinear feedback, which is 22 times smaller than the 

change in amplitude without nonlinear feedback. For an input angular rate ranges from 0 to 100 

o/s, the output voltage of sense mode is attenuated when the temperature is changed by 80oC, 

with a mean value of an attenuation of 4.3% (-0.88dB). The mean attenuation value is 20.3 times 

smaller than without the nonlinear feedback and mode-matching. Our results suggest that the 

amplitude attenuation can be greatly reduced within the 1.8V nonlinear feedback voltage range, 

corresponding to the nonlinear stiffness coefficient value of 
10 31.08 10 N m

e
 =  . Keeping 

increasing the nonlinear feedback voltage will slowly reduce the amplitude attenuation.  
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Chapter 8  

Conclusion and Future Work 

 

 

 

In conclusion, this dissertation has proposed a comprehensive method to address the 

performance change of MEMS devices caused by systemic discrepancies arising from process 

variation and temperature fluctuation. The study has demonstrated the effectiveness of artificially 

increasing the quality factor (Q) to mitigate these factors impact and reduce the device's cost. 

The research has highlighted the significant influence of process variation on the 

performance of MEMS devices, leading to a mismatch between excitation and resonance 

frequencies. Additionally, temperature fluctuations have been shown to induce changes in device 

geometry, material properties, and packaging stress, resulting in drift in the electromechanical 

properties of MEMS. Previous efforts to reduce drift sensitivity have been explored, such as 

temperature-dependent drive frequencies, temperature-insensitive structural designs, and thermal 

encapsulation. 

To address the resonance frequency mismatch caused by process variation, this study 

proposes the generation of an electrostatic force that adjusts the stiffness of the device based on 

the displacement of the proof mass. Furthermore, to achieve a high Q, an artificial electrostatic 

feedback force proportional to the proof mass's negative velocity has been employed to produce 

a negative damping effect, restoring energy lost per vibratory cycle. Additionally, an artificial 

electrostatic feedback force that is proportional to the displacement cubed has been utilized to 

ensure a consistently strong sensing signal during drift, expanding the range of frequencies 

within 3dB of the desired amplitude. 
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Simulation results have validated the effectiveness of the proposed approach in tuning the 

effective stiffness, Q, and nonlinearity of the device by adjusting the gain of the feedback circuit. 

The application of these technologies to a low-cost and temperature-stable MEMS gyroscope has 

demonstrated a significant reduction in output amplitude attenuation, even in the presence of a 

temperature variation of 80°C. The output amplitude of the gyro with feedback control exhibited 

only a 0.4dB attenuation, which is 94.4dB smaller compared to the gyro without feedback 

control. 

In summary, this dissertation has successfully proposed and verified a method to solve 

the problem of output amplitude instability caused by process variation and thermal drift. The 

application of electrostatic feedback force to tune the device's effective stiffness, quality factor, 

and nonlinearity has shown promising results. However, there are several avenues for future 

research and improvement in this field: 

• Further investigation and optimization of the electrostatic feedback force mechanism to 

enhance its effectiveness in addressing process variation and temperature-induced drift. 

• Exploration of alternative feedback control mechanisms or hybrid approaches to further 

improve the stability and performance of MEMS devices. 

• Experimental validation and characterization of the proposed method using real-world 

MEMS devices and application-specific scenarios. 

• Study the impact of other environmental factors, such as humidity and pressure, on the 

performance of MEMS devices and develop mitigation strategies. 

• Development of advanced fabrication techniques and materials to minimize process 

variation and enhance the stability of MEMS devices. 
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• Examination of the scalability and manufacturability of the proposed method to ensure its 

practical implementation in mass production. 

By pursuing these avenues of research, it is anticipated that the proposed method will 

continue to evolve and contribute to the advancement of MEMS technology, enabling the 

development of more reliable and cost-effective MEMS devices in various applications. 
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