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Abstract

In this work, we study the the task of graph matching under several scenarios in an

adversarial context. Despite achieving remarkable performance, deep learning based graph

matching still suffers from harassment caused by small adversarial perturbations. This per-

turbation, usually delivered in the form of small yet elaborately designed alternations of the

topology of the target graphs, i.e., addition and deletion of very few portion of the edges,

can result in serious degradation of the performance of the graph matching process. To be-

gin our investigation with, we designed a density based and meta-learning enhanced attack

specifically for graph matching and observed high mismatching rate in empirical analysis.

In addition, we also showed that graph models adversarial trained on the attacking pertur-

bation generated using the above approach also gained extra robustness. The weakness of

this method as a defense against the adversarial attacks is that it does not provide any kind

of guarantee in the sense of unaffected behavior under attacks with limited perturbation

budget. Thus, we went further with Lipschitz networks equipped with specially designed

Kl-Lipschitz Weibull activation combined with weights constrained calculated target norms

with polar decomposition techniques to provide provable robustness while persevering the

expressiveness of the network to mitigate the inevitable loss of matching rate. We also in-

vestigated the potential threats when performing graph matching in a Federated Learning

scheme. An algorithm is proposed to deals with the dilemma in this specific problem which

being the data privacy constraint requiring graphs not being shared with each other on

one side and the nature of the graph matching problem demanding the possession of the

knowledge of at least two graph simultaneously.
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Chapter 1

Introduction

1.1 Problem Overview

1.1.1 Graph Matching

Graph matching is one of the most important research topics in the graph domain,

which aims to match the same entities (i.e., nodes) across two or more graphs [202, 207, 162,

165, 167, 188, 172, 213, 15, 191]. It has been widely applied to many real-world applications

ranging from protein network matching in bioinformatics [154, 180], user account linking

in different social networks [179, 169, 209, 157, 105, 144, 158], and knowledge translation

in multilingual knowledge bases [199, 214], to geometric keypoint matching in computer

vision [27]. Existing research efforts on graph matching can be classified into three broad

categories: (1) structure-based techniques, which rely only upon the topological information

to match two or multiple input graphs [162, 59, 205, 165, 172, 213, 15, 100, 87, 159, 183,

175, 158, 146]; (2) attribute-based approaches, which utilize highly discriminative structure

and/or attribute features for ensuring the matching effectiveness [99, 204, 169, 140, 181,

142, 91, 209, 35, 49, 21, 206, 168, 170, 27]; and (3) heterogeneous methods, which employ

heterogeneous structural, content, spatial, and temporal features to further improve the

matching performance [203, 155, 163, 207, 197, 208, 193, 176, 210, 211, 144].

Formally, graph matching is usually defined as follows. Given graphs {G1, G2, G3, ..., Gi},

each consists of a node set Vi and a edge set Ei, the algorithm is expected to produce an

injective mapping Ms→t given any two graphs Gs and Gt, where s ̸= t and s, t ∈ {1...i},

such that the similarity between a node v in Gs and its predicted counterpart Ms→t(v) in

Gt is maximized. The definition of this similarity can vary according to the details of the
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scenario. In supervised settings, the similarity is most often designated as the hit rate of the

predicted matches of the nodes pairs in the provided ground truth. In unsupervised settings,

various kinds of topological similarity (e.g. the consistency of the neighborhood of the two

matching nodes) are usually adopted.

1.1.2 Adversarial Perturbations

Despite the skyrocketing capabilities of neural networks in recent years, many have

observed that they are quite sensitive to little changes in the input data at the same time.

This flaw can be maliciously exploited to lead a well-trained neural network to produce

unexpected results. [314] showed that the classification result of a image can be easily

manipulated via the addition of a small amount of noise to the original pixels, which is

essentially imperceptible to human eyes. Later, works like [315] and [316] achieved similar

results on text and audio datasets. It is clear that adversarial perturbations are posing a

serious threat on the reliability and trustworthiness of deep learning based methods as a

whole.

1.1.3 Graph Matching in an Adversarial Context

Recent literature has shown that both traditional and deep graph learning algorithms

remain highly sensitive to adversarial attacks, i.e., carefully designed small perturbations

in graph structure and attributes can cause the models to produce wrong prediction re-

sults [18, 216, 182, 215, 132, 185, 201, 190, 164, 198, 196, 217]. We have witnessed various

effective attack models to cause failures of node classification [18, 216, 190, 88, 215, 187,

23, 186], community detection [139, 194, 137, 160], network embedding [136, 9, 135], link

prediction [212], similarity search [141], malware detection [151], and knowledge graph em-

bedding [201]. However, there is still a paucity of analyses of the vulnerability of graph

matching under adversarial attacks, which is much more difficult to study. Most of the ex-

isting models to fool other graph learning tasks conduct the adversarial attacks on a single
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graph but the graph matching task analyzes both intra-graph and inter-graph interactions

of multiple graphs.

1.2 Road Maps

1.2.1 Adversarial Attacks and Training

In our first work, we specifically investigate the problem within the context of graph

matching. we proposed an adversarial attack model with two novel attack techniques to

perturb the graph structure and degrade the quality of deep graph matching: (1) a kernel

density estimation approach is utilized to estimate and maximize node densities to derive

imperceptible perturbations, by pushing attacked nodes to dense regions in two graphs, such

that they are indistinguishable from many neighbors; and (2) a meta learning-based projected

gradient descent method is developed to well choose attack starting points and to improve

the search performance for producing effective perturbations. We evaluate the effectiveness

of the attack model on real datasets and validate that the attacks can be transferable to

other graph learning models.

1.2.2 Certifiable Robustness

In our second work, we tried to construct a scheme of defense which is capable of tackling

a broader scope of attacks. An attack agnostic graph-adaptive 1-Lipschitz neural network

which we named ERNN is proposed for improving the robustness of deep multiple graph

learning while achieving remarkable expressive power. A Kl-Lipschitz Weibull activation

function f̄ is designed to enforce the gradient norm ∥∇f̄(x)∥ as Kl at layer l. The nearest

matrix orthogonalization and polar decomposition techniques are utilized to constraint the

weight norm ∥W̄l∥ as 1/Kl and make W̄l close to the original weight Wl . The theoretical

analysis is conducted to derive lower and upper bounds of feasible Kl under the 1-Lipschitz

constraint. The combination of norm-constrained f̄ and W̄l leads to the 1-Lipschitz neural

network for expressive and robust multiple graph learning.
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1.2.3 Defending Graph Matching in Federated Learning

Federated graph learning, which aims to solve graph learning problem on distributed

graph data, has led to state-of-the-art innovations. Graph matching in the setting of fed-

erated learning is still an open problem. In our last work, we propose an unsupervised

federated graph matching algorithm, UFGM, for inferring matched node pairs on different

graphs across clients while maintaining privacy requirement, by leveraging graphlet theory

and trust region optimization. First, the nodes’ graphlet features are captured to generate

pseudo matched node pairs on different graphs across clients as pseudo training data for

tackling the dilemma of unsupervised graph matching in federated setting and leveraging

the strength of supervised graph matching. An approximate graphlet enumeration method

is proposed to sample a small number of graphlets and capture nodes’ graphlet features.

Theoretical analysis is conducted to demonstrate that the approximate method is able to

maintain the quality of graphlet estimation while reducing its expensive cost. Second, we

propose a separate trust region algorithm for pseudo supervised federated graph matching

while maintaining the privacy constraints. In order to avoid expensive cost of the second-

order Hessian computation in the trust region algorithm, we propose two weak quasi-Newton

conditions to construct a positive definite scalar matrix as the Hessian approximation with

only first-order gradients. We theoretically derive the error introduced by the separate trust

region due to the Hessian approximation and conduct the convergence analysis of the ap-

proximation method.
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Chapter 2

Adversarial Attacks on Deep Graph Matching

2.1 Introduction

In this work, we aim to answer the following questions: (1) Are graph matching algo-

rithms sensitive to small perturbation of graph structure? (2) How do we develop effective

and imperceptible perturbations for degrading the performance of deep graph matching

models?

A large number of research advances in adversarial attacks on graph data utilize iterative

gradient-based methods to produce effective adversarial perturbations that fool a graph

learning model [184, 192, 18, 215, 88, 187, 200, 138]. However, a recent study reports that

the iterative gradient-based methods, such as Fast Gradient Sign Method (FGSM) [148] and

Projected Gradient Descent (PGD) [166], start the attacks from original examples and add

perturbations monotonically along the direction of gradient descent, resulting in a lack of

diversity and adaptability of generated iterative trajectories [178]. This often leads to invalid

attacks since the iterative trajectories have difficulties crossing decision boundary of target

learning model with small perturbation. Can we find a shortcut across the decision boundary

to derive more effective attacks by beginning from good attack starting points in the graph

matching?

Traditionally, graph matching techniques are based on the assumption of feature con-

sistency across graphs: Two nodes in different graphs are more likely to be found to be

matching if they have similar topological and/or attribute features in respective graphs [207,

99, 140, 143, 35, 100]. These methods compute the similarity (or distance) scores between

pairwise nodes across graphs and choose the node pairs with largest similarity (or smallest

distance) as matching results [105, 91, 49, 158]. Intuitively, if an attacker perturbs a node

5



by throwing it into a dense region in the graph with many similar nodes, i.e., a pile of nodes

similar to each other, such that this attacked node is similar to many neighbors, then it is

hard for humans or defender programs to recognize it from the node pile. In addition, if two

matched nodes are simultaneously moved to such dense regions in respective graphs, then

this dramatically increases the difficulty in matching them correctly among many similar

candidate nodes.

To our best knowledge, this work is the first to study adversarial attacks on graph

matching.

We propose to utilize kernel density estimation (KDE) technique to estimate the prob-

ability density function of nodes in two graphs, to understand the intrinsic distribution of

graphs. By maximizing the estimated densities of nodes to be attacked, we push them to

dense regions in respective graphs to generate adversarial nodes that are indistinguishable

from many neighbors in dense regions. This increases the chance of producing wrong match-

ing results as well as reduces the risk of perturbations being detected by humans or by

defender programs. Our analysis is the first to introduce the KDE technique to conduct

imperceptible attacks on graph data.

Searching for good attack starting points in large graphs is computationally inefficient.

We develop a meta learning-based projected gradient descent (MLPGD) model to quickly

adapt to a variety of new search tasks on multiple batches of target nodes for deriving

effective attacks. However, the MLPGD model is non-smooth and non-differential, as the

perturbation is a multi-step process and the projection at each step is non-differential. A

Gaussian smoothing method is designed to approximate a smoothed model, and a Monte

Carlo REINFORCE method is used to estimate the model gradient.

Empirical evaluation on real datasets demonstrates the superior performance of the

GMAmodel against several state-of-the-art adversarial attack methods on graph data. More-

over, we validate that the attack strategies are transferable to other popular graph learning

models in Appendix ??.
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2.2 Problem Definition

Given two graphs G1 and G2 to be matched, each is denoted as Gs = (V s, Es) (s = 1

or 2), where V s = {vs1, · · · , vsNs} is the set of N s nodes and Es = {(vsi , vsj ) : 1 ≤ i, j ≤ N s}

is the set of edges. Each Gs has an N s ×N s binary adjacency matrix As, where each entry

As
ij = 1 if there exists an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i: specifies the ith row

vector of As. In this paper, if there are no specific descriptions, we use vs
i to denote a node v

s
i

itself and its representation As
i:, i.e., v

s
i = As

i: and we utilize vs
ij to specify the jth dimension

of vs
i , i.e., v

s
ij = As

ij.

The dataset is divided into two disjoint sets D′ and D. The former denotes a set

of known matched node pairs D′ = {(v1
i ,v

2
k)|v1

i↔v2
k,v

1
i ∈ V 1,v2

k ∈ V 2}, where v1
i↔v2

k

indicates that two nodes v1
i and v2

k belong to the same entity. The latter, denoted by D =

{(v1
i ,v

2
k)|v1

i↔v2
k,v

1
i ∈ V 1,v2

k ∈ V 2}, is used to evaluate the graph matching performance,

where the nodes (but not their matchings) are also observed during training. The goal of

graph matching is to utilize D′ as the training data to identify the one-to-one matching

relationships between nodes v1
i and v2

k in the test data D. By following the same idea in

existing efforts [105, 91, 49, 158], this paper aims to minimize the distances between projected

source nodes M(v1
i ) ∈ D′ and target ones v2

k ∈ D′. The node pairs (v1
i ,v

2
k) ∈ D with the

smallest distances are selected as the matching results.

min
M

L where L = E(v1
i ,v

2
k)∈D′∥M(v1

i )− v2
k∥22 (2.1)

where M denotes an injective one-to-one matching function M : v1
i ∈ V 1 7→ v2

k ∈ V 2.

The adversarial attack problem is defined as maximally degrading the matching perfor-

mance of M on the test data D by injecting edge perturbations (including edge insertion and

deletion) into Gs = (V s, Es) (s = 1 or 2), leading to two adversarial graphs Ĝs = (V̂ s, Ês).

We assume the attacker has limited capability, so that he/she can only make small pertur-

bations.
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Figure 2.1: Imperceptible Attacks

2.3 Imperceptible Attacks with Node Density Estimation and Maximization

Intuitively, in Eq.(2.1), if there exist nodes v1
j similar to v1

i , i.e., v
1
j ≈ v1

i , such that

∥M(v1
j ) − v2

k∥22 < ∥M(v1
i ) − v2

k∥22, then a wrong matching (v1
j ,v

2
k) will be generated. In

addition, if there are many such v1
j s around v1

i , then it is hard to recognize v1
i from a pile of

similar nodes. Thus, if we move v1
i to dense regions that contain many similar v1

j s, then this

dramatically increases the possibility of deriving the wrong matching (v1
j ,v

2
k) among many

similar candidate nodes. Also, as many v1
j s are around the adversarial node v̂1

i , it is difficult

for humans or defender programs to detect v̂1
i , as shown in a toy example in Figure 2.1.

Motivated by this, we propose to employ kernel density estimation (KDE) method to

generate imperceptible perturbations. In statistics, the KDE is to estimate the probability

density function f(x) of a random variable x with unknown distribution [173]. It helps reveal

the intrinsic distribution.

Concretely, let v1 be aN1-dimensional random variable to denote all nodes {v1
i , · · · ,v1

N1}

in graph G1 with an unknown density f . A function f̂(x) is estimated to best approximate

f(x).
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f̂(v1) =
1

N1det(B)

N1∑
i=1

K
(
B−1

(
v1 − v1

i

))
(2.2)

where det(·) denotes the determinant operation. B > 0 is a bandwidth to be estimated.

It is an N1 ×N1 diagonal matrix B = diag(b1, · · · , bN1), which has strong influence on the

density estimation f̂(v1). A good B should be as small as the data can allow. K is a product

symmetric kernel that satisfies
∫
K(x)dx = 1 and

∫
xK(x)dx = 0. The above vector-wise

form f̂(v1) can be rewritten as an element-wise form, where v1
j represents the jth dimension

in v1.

f̂(v1) =
1

N1

N1∑
i=1

N1∏
j=1

1

bj
K
(v1

j − v1
ij

bj

)
(2.3)

The derivative ∂f̂(v1)
∂bj

w.r.t. each bandwidth bj in B is computed as follows, where

K(x) = d logK(x)
dx

.

∂f̂(v1)

∂bj
=

1

N1

N1∑
i=1

∂
[∏N1

l=1
1
bl
K
(v1

l −v1
il

bl

)]
∂bj

= − 1

N1

N1∑
i=1

( 1

bj
+
v1
l − v1

il

b2j
K
(v1

l − v1
il

bj

)) N1∏
l=1

1

bl
K
(v1

l − v1
il

bl

)
(2.4)

Traditional KDE methods often fail on high-dimensional data [150, 177, 153, 156], when

bandwidths need to be selected for each dimension. A greedy search method is utilized to

select bandwidths in the KDE: If a dimension j is insignificant, then changing the bandwidth

bj for that dimension should have a weak impact on f̂(v1), while the changing bj for an

important j should cause a large change in f̂(v1). Fortunately, ∂f̂(v1)
∂bj

can differentiate these

two types of dimensions. Based on the above analysis, we greedily decrease bj with a sequence

b0, b0s, b0s
2, · · · for a parameter 0 < s < 1, until bj is smaller than a certain threshold τj, to

see if a small change in bj can result in a large change in f̂(v1). The method also offers a

good way to estimate
[∂f̂(v1)

∂b1
, · · · , ∂f̂(v

1)
∂bN1

]
along a sparse path.
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Concretely, f̂(v1) is estimated by beginning with an initial B = diag(b0, · · · , b0) for a

large b0, and then estimate ∂f̂(v1)
∂bj

as follows and decrease bj if
∂f̂(v1)
∂bj

is large.

∂f̂(v1)

∂bj
=

1

N1

N1∑
i=1

∂
[∏N1

l=1
1
bl
K
(v1

l −v1
il

bl

)]
∂bj

=
1

N1

N1∑
i=1

K
(v1

j−v1
ij

bj

)
K
(v1

j−v1
ij

bj

) N1∏
l=1

K
(v1

l − v1
il

bl

)
=

1

N1

N1∑
i=1

∂f̂(v1
i )

∂bj

(2.5)

The corresponding variance Var
(

∂f̂(v1)
∂bj

)
is given below.

Var
(∂f̂(v1)

∂bj

)
= Var

( 1

N1

N1∑
i=1

∂f̂(v1
i )

∂bj

)
(2.6)

In this work, assuming that the graph data follow the Gaussian distribution, a product

Gaussian kernel K is used to estimate the node density f̂(v1). ∂f̂(v1)
∂bj

is accordingly updated

as follows.

∂f̂(v1)

∂bj
=

C

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j

) N1∏
l=1

K
(v1

l − v1
il

bl

)
∝ 1

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j

) N1∏
l=1

K
(v1

l − v1
il

bl

)
=

1

N1

N1∑
i=1

((
v1
j − v1

ij

)2 − b2j

)
exp

(
−

N1∑
l=1

(
v1
l − v1

il

)2
2b2j

)
(2.7)

where C denotes a proportionality constant C = 1
b3j

∏N1

l=1
1
bl
. It can be safely ignored

to avoid computation overflow when bl → 0 for large N1. The bandwidth estimation is

presented in Algorithm 1.

Based on the estimated B and the Gaussian kernel K, the closed form of f̂(v1) is derived

below.
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f̂(v1) =
1

N1

N1∑
i=1

N1∏
j=1

K
(v1

j − v1
ij

bj

)√ |B+Σ|
|Σ|

×exp
(
− (v1 − µ)T (Σ−1 − (B+Σ)−1) (v1 − µ)

2

)
(2.8)

where µ andΣ are the maximum likelihood estimation of the mean vector and covariance

matrix of the Gaussian distribution. Please refer to Appendices ?? and ?? for detailed

derivation of f̂(v1).

As two graphs G1 and G2 often have different structures and distributions and thus the

same KDE method as Algorithm 1 is utilized to estimate the density ĝ(v2) of v2. Based on

the estimations f̂(v1) and ĝ(v2), the attacker aims to maximize the following loss LD with

imperceptible perturbations.

LD =
∑

(v̂1
i ,v̂

2
k)∈D

L(v̂1
i , v̂

2
k) where L(v̂1

i , v̂
2
k) = ∥M(v̂1

i )− v̂2
k)∥22 + f̂(v̂1

i ) + ĝ(v̂2
k) (2.9)

where v̂1
i = v1

i + δ1i (and v̂2
k = v2

k + δ2k) denote adversarial versions of clean nodes

v1
i (and v2

k) in G1 (and G2) by adding a small amount of edge perturbations δ1i (and δ2k)

through our proposed MLPGD method in the next section, such that M(v̂1
i ) is far away

from v̂2
k and thus the matching accuracy is decreased. In addition, we push v1

i and v2
k to

dense regions to generate v̂1
i and v̂2

k, by maximizing f̂(v̂1
i ) and ĝ(v̂2

k), such that v̂1
i and v̂2

k

are indistinguishable from their neighbors in perturbed graphs. This reduces the possibility

of perturbation detection by humans or defender programs.

2.4 Effective Attacks via Meta Learning-based Projected Gradient Descent

In Figure 2.2, two dashed purple curves denote the decision boundary of graph matching.

If we move a clean node v1
i across the decision boundary to generate an adversarial node v̂1

i ,

then we have other nodes v1
j to makeM(v1

j ) and v2
k become more similar thanM(v̂1

i ) and v2
k,

11



Algorithm 1 Bandwidth Matrix Estimation

Input: Graph G1 = (V 1, E1), parameter 0 < s < 1, initial bandwidth b0, and parameter c.
Output: Bandwidth matrix B.

1: Initialize all b1, ..., bN1 with b0
2: for each j ∈ {1, ..., N1} do
3: do
4: Estimate the derivative ∂f(v1)

∂bj
and variance V ar(∂f(v

1)
∂bj

)in Eqs.(1.6)-(1.7)

5: Compute the threshold τj =
√

2 · V ar(∂f(v
1)

∂bj
) · log(cN1)

6: if |∂f(v
1)

∂bj
| > τj then

7: bj = bjs
8: end if
9: while |∂f(v

1)
∂bj

| > τj
10: end for
11: Return B

Figure 2.2: Effective Attacks

and thus a wrong matching (v1
j ,v

2
k) will be produced. Blue and green polylines denote attack

trajectories starting from original and good starting pints with gradient descent method

respectively. A shortcut from good starting points (v1
i )

0 or (v2
k)

0 is able to cross the peak of

the decision boundary and converge quickly, while the trajectories from the original nodes

v1
i or v2

k take long walks to cross the non-peak boundary.

Based on the attack loss in Eq.(2.9), we propose to integrate meta learning and PGD

into an MLPGD model, to produce more effective adversarial nodes with good starting points

towards graph matching.

12



(v1
i )

(t+1) = Π△1
i
sgn

[
ReLU

(
∇(v1

i )
tL((v1

i )
t, (v2

k)
t)
)]

(v2
k)

(t+1) = Π△2
k
sgn

[
ReLU

(
∇(v2

k)
tL((v1

i )
t, (v2

k)
t)
)]
, t = 1, · · · , T

(2.10)

where (v1
i )

t and (v2
k)

t denotes the adversarial nodes of v1
i and v2

k derived at step t. ϵ spec-

ifies the budget of allowed perturbed edges for each attacked node. △1
i = {(δ1i )t|1T (δ1i )

t ≤

ϵ, (δ1i )
t ∈ {0, 1}N1}, where (δ1i )t = ∥(v1

i )
t−v1

i ∥22, represents the constraint set of the projection

operator Π, i.e., it encodes whether an edge of v1
i is modified or not. △2

k has the similar def-

inition for v2
k. The composition of the ReLU and sign operators guarantees (v1

i )
t ∈ {0, 1}N1

and (v2
k)

t ∈ {0, 1}N2
, as it adds (or removes) an edge or keeps it unchanged when an derivate

in the gradient is positive (or negative). The outputs (v1
i )

T and (v2
k)

T at final step T are

used as the adversarial nodes v̂1
i and v̂2

k.

Searching for attack starting points for each (v1
i ,v

2
k) in large graphs is computationally

inefficient. Meta learning techniques aim to train a general model with general parameters

that can quickly adapt to a variety of new learning tasks with refined parameters [145, 134,

161, 174]. This offers a great opportunity to find good attack starting points (v1
i )

0 and (v2
k)

0

for all (v1
i ,v

2
k) ∈ D with lower cost, such that the generated v̂1

i and v̂2
k by the PGD model

can maximize the attack loss LD in Eq.(2.9).

Algorithm 2 Meta Learning-based Projected Gradient Descent (MLPGD)

Input: Batches D1, ..., DC in a set D of node pairs, initial general policy parameters {θ1, θ2},
adaptation step size α, meta step size β
Output: Optimized {θ1, θ2}.
1: do
2: Sample C batches of anchor node pairs D1, ..., DC

3: for each c ∈ {1, ..., C} do
4: Estimate gradient ec = e(Dc, {θ1, θ2})
5: Compute adapted parameters {θ1c , θ2c} = {theta1, θ2}+ αec
6: end for
7: Update parameters {θ1, θ2} = {θ1, θ2}+ β

C

∑C
c=1 e(Dc, {θ1c , θ2c})

8: while Not Converged
9: Return {θ1, θ2}

13



Algorithm 3 Gradient Estimation

Input: Batch Dc, general parameters {θ1, θ2}, number of samples N in Monte Carlo REIN-
FORCE, smoothing parameter λ
Output: Gradient estimation of a.

1: Sample N i.i.d Gaussian matrices g1, ..., gN ∼ N(0, I)
2: Return gradient estimation 1

Nλ
a(Dc, {θ1, θ2}+ λgi)gi

Algorithm 4 Adversarial Attack

Input: Batch Dc, perturbation budget ϵ, specific parameters {θ1, θ2}
Output: Attack loss LDC

on Dc

1: LDC
= 0

2: for each (v1
i ,v

2
k) ∈ Dc do

3: Generate attack starting points (v1
i )

0 = h1(v1
i |θ1c ) and (v2

k)
0 = h2(v2

k|θ2c )
4: Utilize PGD attack to generate adversarial nodes (v1

i )
T and (v2

k)
T in Eq.(1.10)

5: Aggregate attack loss LDc+ = L((v1
i )

T , (v2
k)

T ) in Eq.(1.9)
6: end for
7: Return LDc

Algorithm 2 presents the pseudo code of our MLPGD model. D is partitioned into C

batches D1, · · · , DC , each with equal size of |D|/C. The search process on each batch Dc

(1 ≤ c ≤ C) is treated as a single task, which aims to find good (v1
i )

0 and (v2
k)

0 for Dc

to maximize the attack loss LDc =
∑

(v̂1
i ,v̂

2
k)∈Dc

L(v̂1
i , v̂

2
k). A general model that has general

parameters θ1, θ2 is learnt to quickly adapt to search tasks on multiple batches. The learnt

θ1, θ2 should be sensitive to changes of each Dc, such that small changes in θ1, θ2 will produce

high rise on LDc over any of D1, · · · , DC . Line 4 estimates the gradient of LDc by calling

Algorithm 3. In Line 5, when adapting to the task on a new Dc, θ
1, θ2 become specific

parameters θ1c , θ
2
c for Dc. Here, we use {θ1c , θ2c} to denote the concatenation matrix of θ1c and

θ2c . The parameters are trained by maximizing the attack loss a
(
Dc, {θ1c , θ2c}

)
w.r.t. general

parameters θ1, θ2 across batches. The meta objective is given below.

maxLDc = max
θ1,θ2

C∑
c=1

a
(
Dc, {θ1c , θ2c}

)
=

C∑
c=1

a
(
Dc, {θ1, θ2}+ αec

)
(2.11)
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In Line 7, the meta optimization is performed over the general θ1, θ2, while the objective

is computed using the specific θ1c , θ
2
c . The general θ1, θ2 are updated in terms of the attack

loss on each batch.

{θ1, θ2} = {θ1, θ2}+ β

C

C∑
c=1

e
(
Dc, {θ1c , θ2c}

)
(2.12)

Algorithm 4 exhibits the adversarial attack module a
(
Dc, {θ1c , θ2c}

)
on a batch Dc (1 ≤

c ≤ C). In Line 3, two neural networks h1 and h2 with specific parameters θ1c and θ2c

are designed to generate the attack starting points (v1
i )

0 and (v2
k)

0 of each (v1
i ,v

2
k) ∈ Dc.

The last layers of h1 and h2 use the composition of the ReLU [171] and Softsign [147] as

activation function to ensure (v1
i )

0 ∈ {0, 1}N1
and (v2

k)
0 ∈ {0, 1}N2

. In Line 4, the PGD

attack in Eq.(2.10) is utilized to generate the adversarial nodes v̂1
i and v̂2

k. Line 5 calculates

the attack loss LDc on Dc to provide task-specific feedback.

Standard meta learning models utilizes gradient ascent/descent techniques to compute

the updated parameters on new tasks [145, 134, 161, 174]. However, the attack module in

Algorithm 4 is non-smooth and non-differential w.r.t. parameters θ1, θ2, θ1c , and θ2c , since the

perturbation is a multi-step process as well as the projection at each step is non-differential.

Therefore, Algorithm 3 is proposed to employ Gaussian smoothing technique to approximate

a smoothed attack module.

â
(
Dc, {θ1, θ2}

)
≈ (2π)−

d
2

∫
a
(
Dc, {θ1, θ2}+ λg

)
exp

(
− 1

2
∥g∥22

)
dg

= Eg∼N (0,I)a
(
Dc, {θ1, θ2}+ λg

) (2.13)

where â is the Gaussian smoothing of a and differentiable everywhere. λ is a smoothing

parameter, and d is the number of entries in {θ1, θ2}. g ∼ N (0, I) that has the same size

as {θ1c , θ2c} is interpreted as policy exploration directions, i.e., as perturbations in policy

space to be explored. Thus, the policy perturbations in g are introduced to θ1c and θ2c
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Table 2.1: Experiment Datasets

Dataset AS SNS DBLP
Graph v1 v2 Last.fm LiveJournal 2013 2014
#Nodes 10,900 11,113 5,682 17,828 28,478 26,455
#Edges 31,180 31,434 23,393 244,496 128,073 114,588

#Matched Nodes 6,462 2,138 4,000

respectively. â is obtained by perturbing a at a given point along Gaussian directions and

averaging the evaluations. And then, Algorithm 3 estimates the gradient of â via Monte

Carlo REINFORCE method [195].

e
(
Dc, {θ1, θ2}

)
≈ ∇θ1,θ2 â

(
Dc, {θ1, θ2}

)
≈ (2π)−

d
2

∫
a
(
Dc, {θ1, θ2}+ λg

)
exp

(
− 1

2
∥g∥22

)
gdg

=
1

λ
Eg∼N (0,I)a

(
Dc, {θ1, θ2}+ λg

)
g ≈ 1

Nλ

N∑
i=1

a
(
Dc, {θ1, θ2}+ λgi

)
gi, gi ∼ N (0, I)

(2.14)

2.5 Experimental Evaluation

In this section, we will show the effectiveness of the GMA model in this work for deep

graph matching tasks over three groups of datasets: social networks (SNS) [207], autonomous

systems (AS) [133], and DBLP coauthor graphs [3], as shown in Table 4.1.

Baselines. We compare the GMA model with six state-of-the-art graph attack mod-

els. Random Attack randomly adds and removes edges to generate perturbed graphs. RL-

S2V [18, 132] generates adversarial attacks on graph data based on reinforcement learning.

Meta-Self [215] is a poisoning attack model for node classification by using meta-gradients to

solve the bilevel optimization problem. CW-PGD [88] developed a PGD topology attack to

attack a predefined or a retrainable GNN. GF-Attack [135] attacks general learning methods

by devising new loss and approximating the spectrum. The majority of existing efforts focus

on adversarial attacks on single graph learning. To our best knowledge, there are no other
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Table 2.2: Mismatching rate (%) with 5% perturbed edges

AS SNS DBLP
Attack Model SNNA CrossMNA DGMC SNNA CrossMNA DGMC SNNA CrossMNA DGMC
Clean 53.9 46.6 34.7 45.2 50.4 41.6 56.1 51.9 63.2
Random 57.5 49.9 37.6 48.8 52.0 46.8 59.8 54.0 68.8
RL-S2V 56.5 51.8 36.5 51.3 53.2 45.8 62.6 56.7 69.3
Meta-Self 63.1 55.1 45.0 55.1 64.8 51.3 65.7 63.7 73.3
CW-PGD 61.7 59.1 49.6 54.9 63.0 49.6 68.7 66.6 75.4
GF-Attack 57.9 53.7 39.5 52.9 59.6 47.9 64.9 61.1 69.1
CD-ATTACK 59.0 51.7 42.7 54.0 59.8 50.2 64.0 61.8 72.0
GMA 64.2 62.9 54.9 61.2 69.6 55.7 74.2 74.3 80.7

attack baselines on graph matching available. We replace the original losses in the baselines

with the matching loss for fair comparison in the experiments.

Variants of GMA model. We evaluate four variants of GMA to show the strengths of

different components. GMA-KDE only uses the KDE and density maximization to generate

imperceptible attacks. GMA-PGD only utilizes the basic PGD [166] to produce effective

attacks. GMA-MLPGD employs our proposed MLPGD model to well choose good attack

starting points in the PGD. GMA operates with the full support of both KDE and MLPGD

components.

Graph matching algorithms. We validate the effectiveness of the above attack mod-

els with three representative deep graph matching methods. SNNA [49] is an adversarial

learning framework to solve the weakly-supervised identity matching problem by minimizing

the distribution distance. CrossMNA [15] is a cross-network embedding-based supervised

network alignment method by learning inter/intra-embedding vectors for each node and by

computing pairwise node similarity scores across networks. Deep graph matching consensus

(DGMC) [27] is a supervised graph matching method that reaches a data-driven neighbor-

hood consensus between matched node pairs.

Evaluation metrics. We use two popular measures in graph matching to verify the

attack quality: Accuracy [99, 140, 205] and Precision@K [105, 15, 206]. A larger mismatch-

ing rate (i.e., 1 - Accuracy on test data) or a smaller Precision@K shows a better attack.

K is fixed to 30 in all tests.
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Attack performance on various datasets with different matching algorithms.

Table 3.2 exhibits the mismatching rates of three deep graph matching algorithms on test

data by eight attack models over three groups of datasets. We randomly sample 10% of

known matched node pairs as training data and the rest as test data. For all attack models,

the number of perturbed edges is fixed to 5% in these experiments. It is observed that

among eight attack methods, no matter how strong the attacks are, the GMA method

achieve the highest mismatching rates on perturbed graphs in most experiments, showing

the effectiveness of GMA to the adversarial attacks. Compared to the graph matching

results under other attack models, GMA, on average, achieves 21.3%, 18.8%, and 19.2%

improvement of mismatching rates on AS, SNS, and DBLP respectively. In addition, the

promising performance of GMA with all three graph matching models implies that GMA

has great potential as a general attack solution to other graph matching methods, which is

desirable in practice.

Attack performance with varying perturbation edges. Figure 2.3 presents the

graph matching quality under eight attack models by varying the ratios of perturbed edges

from 2% to 25%. It is obvious that the attacking performance improves for each attacker

with an increase in the number of perturbed edges. This phenomenon indicates that current

deep graph matching methods are very sensitive to adversarial attacks. GMA achieves the

lowest Precision values (< 0.488), which are still better than the other seven methods in

most tests. Especially, when the perturbation ratio is large than 10%, the Precision values

drop quickly.

Impact of training data ratios. Figure 2.4 shows the quality of two graph matching

algorithms on SNS by varying the ratio of training data from 2% to 25%. Here, the number

of perturbed edges is fixed to 5%. We make the following observations on the performances

by eight attack models. (1) The performance curves keep increasing when the training data

ratio increases. (2) GMA outperforms other methods in most experiments with the lowest

Precision: < 0.482 with SNNA and < 0.571 with DGMC respectively. Even when there
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Figure 2.4: Precision with varying training ra-
tios

are many training data available (≥ 20%), the quality degradation by GMA is still obvious,

although more training data makes the graph matching models be resilient to poisoning

attacks under a small perturbation budget.

Ablation study. Figure 3.5 presents the mismatching rates of graph matching on SNS

with four variants of the GMA attack model. We have observed the complete GMA achieves

the highest mismatching rates (¿ 54.9%) on AS, (¿ 55.7%) over SNS, and (¿ 74.2%) on

DBLP, which are obviously better than other versions. Notice that GMA-MLPGD performs

quite well in most experiments, compared with GMA-PGD. A reasonable explanation is

that searching from good attack starting points can help the MLPGD converge quickly by

crossing the peak of the decision boundary. In addition, GMA-KDE achieves the better

attack performance than GMA-MLPGD. A rational guess is that it is difficult to correctly

match two nodes results when they lie in dense regions with many similar nodes, although

the main goal of KDE is to generate imperceptible attacks. These results illustrate both

KDE and MLPGD models are important in producing effective attacks in graph matching.

Impact of perturbation budget ϵ. Figure 4.3 (a) measures the performance effect of

ϵ in the MLPGD model for the graph matching by varying ϵ from 1 to 5. It is observed that

when increasing ϵ, the Precision of the GMA model decreases substantially. This demon-

strates that it is difficult to train a robust graph matching model under large ϵ constraint.

However, a large ϵ can be easily detected by humans or by defender programs. Notice that
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the average node degree of three groups of datasets is between 2.9 and 13.9. Thus we sug-

gest generating both imperceptible and effective attacks for the graph matching task under

ϵ between 2 and 3, such that ϵ is smaller than the average node degree.
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Time complexity analysis The complexity of meta learning is O(d2), where d is the

problem dimension. In the context of graph matching, it is the number of nodes in two

graphs (N s, s = 1 or 2). Both density estimation and PGD have complexity of O((N s)2).

Thus, the overall complexity is O((N s)2), which is the same as most existing attack methods

that search the entire graphs to find weak edges to attack.

Impact of meta step size α. Figure 4.3 (b) shows the impact of α in our MLPGD

model over three groups of datasets. The performance curves initially raise when α increases.

Intuitively, the MLPGD with large α can help the meta learning converge quickly. Later

on, the performance curves keep relatively stable or even decreasing when α continuously

increases. A reasonable explanation is that the too large α makes the meta learner take a

big walk with rapid pace, such that it may miss the optimal meta parameters. Thus, it is

important to determine the optimal α for the MLPGD model.

2.6 Related Work

Adversarial Attacks on Graph Data. Several recent studies have presented that

graph learning models, especially deep learning-based models, are highly sensitive to ad-

versarial attacks, i.e., carefully designed small deliberate perturbations in graph structure

and attributes can cause the models to produce incorrect prediction results [185, 201, 190,

164, 198, 196, 217]. The current graph adversarial attack techniques mainly fall into two

categories in terms of the attack surface: (1) evasion attacks occur after the target model

is well trained in clean graphs, i.e., the learned model parameters are fixed during evasion

attacks. The attacker tries to evade the graph learning models by generating malicious

samples during testing phase [18, 216]; and (2) poisoning attacks, known as contamination

of the training data, take place during the training time of deep learning models. An ad-

versary tries to poison the training data by injecting carefully designed examples to cause

failures of the target model on some given test samples [216, 185, 215, 9]. Since transductive

learning is widely used in most graph analysis tasks, the test samples (but not their labels)
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are participated in the training stage, which leads to the popularity of poisoning attacks.

Various adversarial attack models have been developed to show the vulnerability of graph

learning models in node classification [216, 190, 88, 215, 187, 23, 186], community detec-

tion [139, 194, 137, 160], network embedding [136, 9, 135], link prediction [212], similarity

search [141], malware detection [151], and knowledge graph embedding [201].

Graph Matching. Graph data analysis has attracted active research in the last

decade [114, 115, 13, 109, 14, 110, 111, 74, 119, 112, 118, 120, 48, 122, 124, 123, 127, 125,

84, 85, 128]. Graph matching is one of the most important research topics in the graph

domain, which aims to match the same entities (i.e., nodes) across two or more graphs

and has been a heated topic in recent years [207, 179, 165, 167, 105, 15]. Research ac-

tivities can be classified into three broad categories. (1) Topological structure-based tech-

niques, which rely on only the structural information of nodes to match multiple or two

input networks, including IONE [162], GeoAlign [165], Low-rank EigenAlign [172], FRUI-

P [213], CrossMNA [15], MOANA [100], GWL [87], MSUIL [158], and DeepMGGE [146];

(2) Structure and/or attribute-based approaches, which utilize highly discriminative struc-

ture and attribute features for ensuring the matching effectiveness, such as FINAL [99,

204], ULink [169], CAlign [140], MASTER [181], gsaNA [91], CoLink [209], REGAL [35],

UUIL [157], SNNA [49], RANA [69], CENALP [21], ORIGIN [206], and OPTANE [168];

(3) Heterogeneous methods employ heterogeneous structural, content, spatial, and temporal

features to further improve the matching performance, including Factoid Embedding [197],

HEP [208], LHNE [193], and DPLink [144]. Several papers review key achievements of graph

matching across online information networks including state-of-the-art algorithms, evalua-

tion metrics, representative datasets, and empirical analysis [179, 149, 152, 189].

2.7 Conclusions

In this work, we have studied the graph matching adversarial attack problem. First,

we proposed to utilize kernel density estimation technique to estimate and maximize the
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densities of attacked nodes and generate imperceptible perturbations, by pushing attacked

nodes to dense regions in two graphs. Second, we developed a meta learning based projected

gradient descent method to well choose attack starting points and improve the search per-

formance of PGD for producing effective perturbations. The GMA model achieves superior

attack performance against several representative attack models.
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Chapter 3

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against

Adversarial Attacks

3.1 Introduction

Multiple graph learning aims to automatically extract, manage, infer, and transfer

knowledge in multiple graph data. Popular multiple graph learning tasks include graph

classification [70, 83, 103, 58, 65, 55, 56], graph matching (i.e., network alignment) [99,

35, 49, 15, 100, 87, 21, 38, 27, 94, 95, 68, 89], multi-graph clustering [54, 81, 24, 53, 80],

multi-view network embedding [54, 67, 51, 29, 75, 28], and graph kernel [90, 5, 43, 78, 62].

We have witnessed various adversarial defense techniques to improve the robustness of

single graph learning tasks against adversarial attacks, such as node classification [132, 60,

88, 77, 23, 104, 106, 42, 26, 22, 101], network embedding [19], graph clustering [39], link

prediction [107], and influence maximization [52]. However, there is still a paucity of robust

multiple graph learning methods under adversarial attacks, which is much more difficult to

study, since the multiple graph learning tasks need to analyze both intra-graph and inter-

graph links of multiple graphs. In addition, the defense strategies for single graph learning

models may not work well for multiple graphs with unique characteristics, such as size,

density, and degree distribution. Only recently, researchers have started to study how to

improve the robustness of deep multiple graph learning methods, including graph classifica-

tion [98, 93, 40, 31], graph matching [96], and multiple network embedding [129]. However,

the above techniques often defend specific attacks on particular learning tasks (e.g., only

graph classification or graph matching). Can we design an attack-agnostic graph-adaptive

neural architecture for protecting deep multiple graph learning models from adversarial at-

tacks?
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Recently, Lipschitz-constrained neural networks are proposed to offer attack-agnostic

defense solutions by imposing a Lipschitz constraint on each layer to restrict the diffusion

of input perturbations on the neural networks [16, 79, 25]. The Lipschitz bound for the

entire neural network is the product of the bound on each layer. This allows to constraint

the change of its output in proportion to the change in its input. Lipschitz-constrained

neural networks are very useful for defending multiple graph learning models since small

input perturbations can be propagated within and across graphs, which dramatically ampli-

fies the perturbations in the output space. However, bounding the Lipschitz constant and

maintaining the expressive power are often regarded as orthogonal techniques with different

optimization goals. Three recent studies of GroupSort [6, 17] and BCOP [50] improve the

expressive power of 1-Lipschitz neural networks while enhancing the robustness by enforcing

both weight norm and gradient norm as 1. We argue that simply limiting the above two

norms to 1 still sacrifices the expressive power, compared with regular neural networks that

do not hold the constraints on the weight and gradient. In addition, a 1-Lipschitz neural

network with fixed weight and gradient norms may lead to sub-optimal defense when tackling

multiple graphs with individual characteristics.

To our best knowledge, this work is the first attack-agnostic graph-adaptive 1-Lipschitz

neural network for improving the robustness of deep multiple graph learning while achieving

remarkable expressive power, by making the weight and gradient norms adaptive to multiple

input graphs and restricting the diffusion of any input perturbations on the neural networks.

Popular 1-Lipschitz activation functions, e.g. ReLU, Sigmoid, and tanh, must trade

nonlinear processing for gradient norm preservation, leading to less expressive networks.

In statistics, the Weibull distribution can model hazard functions that are monotonically

decreasing, increasing, or constant of the proportion of adopters over time, allowing it to

describe any phase of an item’s lifetime [82]. The major advantage of Weibull analysis is that

it is suitable to reliability and failure analysis. In the context of robust deep multiple graph

learning, the perturbation diffusion over the layers is similar to a monotonically decreasing
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hazard function, i.e, the attack failure possibility decreases with the perturbation diffusion.

Motivated by this, a Kl-Lipschitz Weibull activation function f̄ , i.e., ∥∇f̄(x)∥ = Kl, is

designed to restrict the gradient norm as Kl at layer l of the neural network. In addition,

we utilize nearest matrix orthogonalization and polar decomposition techniques [8, 30, 37]

to discover a weight matrix W̄l with the norm 1/Kl near to the original weight Wl, i.e.,

∥W̄l∥ = 1/Kl.

By enforcing ∥∇f̄(x)∥ = Kl and ∥W̃l∥ = 1/Kl at each layer, the composite Lips-

chitz constant of the entire neural network is constrained to 1. We theoretically derive

an important property of our 1-Lipschitz neural network for expressive and robust multi-

ple graph learning: Kl is relevant to and should be adaptive to input graphs and layers.

Given an error budget between our 1-Lipschitz neural network and regular neural network

without constrained weight and gradient, we validate the existence of feasible Kl under

the 1-Lipschitz constraint, i.e., derive lower and upper bounds of feasible Kl for expressive

and robust multiple graph learning against adversarial attacks. The theoretical analysis is

conducted to demonstrate that our 1-Lipschitz neural network with Kl-Lipschitz Weibull

activation function f̄ is universal Lipschitz function approximator, i.e., f̄ can approximate

any linear or nonlinear functions.

Empirical evaluation over graph classification and graph matching demonstrates the

superior performance of our ERNN model against state-of-the-art robust graph learning

models and Lipschitz-bound neural architectures. We validate that the proposed robust

learning strategies are transferable to other popular graph learning tasks in Appendix.

3.2 Background and Problem Statement

3.2.1 C-Lipschitz Functions

A function F : RN 7→ RM is globally Lipschitz continuous on variable space X ⊆ RN if

there exists a nonnegative constant C ≥ 0 such that for all x1 and x2 in X .
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∥F (x2)− F (x1)∥ ≤ C∥x2 − x1∥, ∀x1,x2 ∈ X (3.1)

where the smallest such C for which the above inequality holds is the Lipschitz constant

of F . If the Lipschitz constant of a function is C, it is called a C-Lipschitz function. If F is

everywhere differentiable then its Lipschitz constant is bounded by the operator norm of its

Jacobian.

If x2 is denoted as a perturbation of x1, i.e., x2 = x1 + δ, then the Lipschitz constant

is the maximum ratio between perturbations ∥F (x1 + δ)− F (x1)∥ in the output space and

perturbations ∥(x1 + δ)− x1∥ in the input space. Thus, it is a useful metric to measure the

sensitivity of the function F regarding input perturbations.

3.2.2 Lipschitz-Constrained Neural Networks

Given an input vector x ∈ RN0 , a (L + 1)-layer neural network y = F (x) is defined as

follows: layer 0 takes h0 = x as input, layers 1, · · · , L−1 produces the hidden representations

h2, · · · ,hL−1, and layer L outputs an output variable y = zL ∈ RNL .


zl = Wlhl−1 + bl,hl = f(zl), if 1 ≤ l ≤ L− 1,

zl = Wlhl−1 + bl,y = zl, if l = L.

(3.2)

where Nl is the dimensionality of layer l, Wl ∈ RNl×Nl−1 is the weight matrix between

layers l − 1 and l, and bl ∈ RNl is the bias for layer l. zl = [zl1, · · · , zlNl
] denotes the

pre-activation vector in layer l and hl = [hl1, · · · ,hlNl
] is the activation vector with zl. f is

the activation function. At layer L, the pre-activation zL is used as the final output y.

The Lipschitz constant C of neural network is derived below.

C = ∥WL∥ · ∥∇zL−1
f∥ · ∥WL−1∥ · · · ∥∇z1f∥ · ∥W1∥ (3.3)
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Adversarial robustness. When the function F is characterized by a deep neural

network, tight bounds on its Lipschitz constant can be extremely useful to improve the

robustness of the neural network against adversarial attacks. Concretely, if the Lipschitz

constant C of F is limited to a small number, say 1 used in GroupSort [6, 17] and BCOP [50],

such that ∥F (x+ δ)−F (x)∥ ≤ ∥(x+ δ)−x∥ for a 1-Lipschitz neural network, then this can

help effectively control the diffusion of input perturbations through the neural networks.

3.2.3 Multiple Graph Learning

Given a set of S graphs G = {G1, · · · , GS}. Each graph is denoted as Gs = (V s, Es)

(1 ≤ s ≤ S), where V s = {vs1, · · · , vsNs} is the set of Ns nodes and Es = {(vsi , vsj ) : 1 ≤

i, j ≤ Ns, i ̸= j} is the set of edges. Each Gs has an Ns × Ns binary adjacency matrix

As, where each entry As
ij = 1 if there exists an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i:

specifies the ith row vector of As and is used to denote the representation of a node vsi . In

this paper, we focus on enhancing the robustness of two multiple graph learning tasks, but

it is straightforward to extend to others.

Graph classification. We associate each graph Gs with a label ys ∈ Y = {1, 2, ..., Y },

where Y is the number of classes. The training data denotes a set of known graph-label

pairs, i.e., D = {(Gs, ys)|Gs↔ys, Gs ∈ G, ys ∈ Y}, where Gs↔ys indicates that Gs and ys

are the corresponding graph-label pair. The goal of graph classification is to employ D as

the training data to predict label ys for graph Gs in the test data. A classifier F : G 7→ Y is

optimized to minimize the following loss over all labeled graphs.

L =
1

|D|

|D|∑
s=1

L
(
F (Gs), ys

)
(3.4)

where L is the cross-entropy loss.

Graph matching. The entire training data consists of a set of training data between

pairwise graphs, i.e., D = {D12, · · · , D1S, · · · , D(S−1)S}. Each Dst (1 ≤ s < t ≤ S) specifies

a set of pre-aligned node pairs Dst = {(vsi , vtj)|vsi↔vtj, v
s
i ∈ V s, vtj ∈ V t}, where vsi↔vtj
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represents that two nodes vsi and vtj are the equivalent ones in two graphs Gs and Gt. The

objective of graph matching is to utilize Dst as the training data to identify the one-to-one

node matchings between nodes vsi and vtj in the test data. By following the same idea in

existing efforts [59, 105, 91, 49], this paper aims to learn an embedding function F to map the

node pairs (vsi , v
t
j) ∈ Dst with different features across two graphs into common embedding

space, i.e, minimize the distances between projected source nodes F (vsi ) ∈ Dst and target

ones F (vtj) ∈ Dst. The node pairs (vsi , v
t
j) ∈ Dst with the smallest distances in the test data

are selected as the matching results.

L =
S∑

s=1

S∑
t=s+1

E(vsi ,v
t
j)∈Dst∥F (vsi )− F (vtj)∥22 (3.5)

With the perturbed graphs as input, this paper aims to develop an attack-agnostic

graph-adaptive 1-Lipschitz neural network to improve the robustness against adversarial

perturbations while achieving remarkable expressive power in the context of multiple graph

learning.

3.3 Expressive and Robust 1-Lipschitz Neural Network for Multiple Graph

Learning

Deep learning models have demonstrated their remarkable expressive power by using

nonlinear activation functions to stimulate and learn any linear or nonlinear functions rep-

resenting a question, and provide accurate predictions. Regular neural networks do not hold

the constraints on the weight and gradient in order to achieve the superior nonlinearity.

GroupSort [6, 17] and BCOP [50] proposed 1-Lipschitz neural networks to achieve the model

robustness while improving the expressive power by limiting both weight and gradient norms

as 1. Their Lipschitz constant is computed below.
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C = ∥W̃L∥ · ∥∇z̃L−1
f̃∥ · ∥W̃L−1∥ · · · ∥∇z̃1 f̃∥ · ∥W̃1∥

= 1 · 1 · 1 · · · 1 · 1 = 1

(3.6)

The GroupSort activation function f̃ is essentially a permutation operation that sorts

and permutes the elements in each zl on each layer l. Thus, both ∥W̃l∥ and ∥∇z̃l f̃∥ are

constrained to 1. This may lead to sub-optimal defense when tackling multiple graphs with

individual characteristics.

We propose an attack-agnostic graph-adaptive 1-Lipschitz neural network with a Kl-

Lipschitz activation function f̄ , i.e., ∥∇zl−1
f̄∥ = Kl and a constrained weight matrix ∥W̄l∥ =

1/Kl for achieving better expressive power.

C = ∥W̄L∥ · ∥∇z̄L−1
f̄∥ · · · ∥W̄2∥ · ∥∇z̄1 f̄∥ · ∥W̄1∥

=
1

KL

·KL · · ·
1

K2

·K2 · 1 = 1
(3.7)

where ∥W̄l∥ = 1/Kl if l > 1, otherwise ∥W̄l∥ = 1. In this paper, we use ∞-norm

for both weight and gradient. For ease representation, we use ∥ · ∥ to replace ∥ · ∥∞ in our

1-Lipschitz neural network.

The following theorems validate the existence of feasible Kl under the 1-Lipschitz con-

straint for robust and expressive multiple graph learning against adversarial attacks. Theo-

rem 2 derives lower bound of feasible Kl and demonstrates that selecting an appropriate Kl

rather than 1 can guarantee that our 1-Lipschitz neural network achieves better expressive

power than GroupSort [6, 17]. Theorem 3 derives upper bound of feasible Kl when we are

given an error budget between our 1-Lipschitz neural network and regular neural network

without constrained weight and gradient. Theorem 3 also exhibits that Kl is relevant to and
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should be adaptive to input graphs and layers. Definition 1, Lemma 1, and Theorem 1 are

the preparation of the proof of Theorem 2-3

Definition 3.1 (Finite Partition of an Interval) A partition P of an interval [a, b] on

the real line is a sequence of a finite number of subintervals of [a, b]

P =
{
[x0, x1], [x1, x2], · · ·, [xm−1, xm], · · ·, [xM−1, xM ]

}
(3.8)

where a = x0 < x1 < x2 < · · · < xm−1 < xm < · · · < xM−1 < xM = b. The points

xm, 0 ≤ m ≤ M , are called the partition points in P . Each [xm−1, xm] is referred to as a

subinterval of the partition P .

Based on Definition 1, given large enough M , it is always feasible to partition an inter-

val [a, b] into multiple subintervals, such that any continuous nonlinear function f on [a, b]

become linear or near-linear on each subinterval.

Lemma 3.1 (Lagrange’s Mean Value Theorem) For any continuous function f on the

closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point c

in (a, b) such that the tangent at c is parallel to the secant line through the endpoints (a, f(a))

and (b, f(b)) [71].

f ′(c) =
f(a)− f(b)

a− b
(3.9)

When a continuous function f is linear on the interval [a, b], its slope is equal to f ′(c).

The above observations inspire us to design and transform a nonlinear activation function f̄

going through the origin into an approximate piecewise linear function for the proof of the

following three theorems and to finally derive the lower and upper bounds of Kl.

Theorem 3.1 For any Kl-Lipschitz nonlinear activation function f̄ : RN 7→ RN , if f̄ is

everywhere differentiable and f̄(x) = 0 ∈ RN at x = 0 ∈ RN , then there must exist a linear

function g such that f̄(x) ≤ g(x) for ∀x,x ∈ RN .
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Theorem 3.2 By following the definition in Eq.(2), we build a (L + 1)-layer 1-Lipschitz

neural network F̄ : RN0 7→ RNL, with a gradient norm preserving activation function

∥∇z̄l−1
f̄∥ = Kl almost everywhere and a norm-constrained weight matrix ∥W̄l∥ = 1/Kl

like the definitions in Eq.(7). If Kl > 1 for ∀l, 2 ≤ l ≤ L, our 1-Lipschitz neural network

F̄ achieves better expressive power than the neural network F̃ constructed by the GroupSort

model [6, 17].

Theorem 3.3 Given a regular (L + 1)-layer fully connected neural network F : RN0 7→

RNL with unconstrained ReLU as the activation and unrestricted weight, and our (L + 1)-

layer 1-Lipschitz neural network F̄ defined in Theorem 2, if an error budget between each

layer of two neural networks is limited to ε, i.e., ∥z̄l − zl∥ ≤ ε, where zl and z̄l are the

representations at layer l in F and F̄ respectively, then Kl ≤ min
{

∥f̄(z̄l−1)∥
∥Wlf(zl−1)∥−ε

,max
{
−

min
j

∂f̄
∂z̄(l−1)j

,max
j

∂f̄
∂z̄(l−1)j

}}
.

Proof. Please refer to Appendix for detailed proof of the above three theorems.

In this paper, we use a random variable x denoting the node representation as input of

the neural network for multiple graph learning. Since h0 = x, z1 depends on h0, and other

zl (∀l, 2 ≤ l ≤ L) are related to z1, the upper bound of Kl is relevant to input graphs and

layers.

Based on Theorems 2-3, we need to make 1 < Kl ≤ min{
∥f̄(z̄l−1)∥

∥Wlf(zl−1)∥−ε
,max

{
−min

j

∂f̄
∂z̄(l−1)j

,max
j

∂f̄
∂z̄(l−1)j

}}
, such that our 1-Lipschitz neural network

F̄ achieves better expressive power than the GroupSort model F̃ and comparable quality to

the regular network F at layer l.

3.3.1 Constraining ∥W̄l∥ = 1/Kl

According to Theorem 2 in the GroupSort paper [6], when enforcing ∥W̃l∥ = 1, it needs

to adjust the weight matrix Wl to have singular values of 1 without sacrificing nonlinear

processing capacity. In our case, the equivalent problem is that all singular values of the

norm-contained weight matrix ∥KlW̄l∥ are equal to 1.
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Recall that the singular values of a real matrix A are the eigenvalues of the positive-

semidefinite real matrix ATA, where AT is the transpose of A. The singular values of A

are all 1 iff A is orthogonal, i.e., ATA = I, where I is the identity matrix. Thus, the original

problem is equivalent to finding the nearest orthonormal matrix of KlWl.

For ease of representation, let A = KlWl and B = KlW̄l. Formally, given an Nl×Nl−1

matrix A, we aim to find the nearest Nl ×Nl−1 matrix B with Nl orthonormal columns (i.e.

BTB = I), i.e., we try to minimize ∥A−B∥F =
√
trace

(
(A−B)T (A−B)

)
.

Polar decomposition is an effective technique that finds the nearest orthonormal ma-

trix. However, traditional iterative algorithms have non-trival computational cost based

on operation counts, including Björck Orthonormalization [8] and Newton iteration-based

methods [30, 10]. In order to improve the cost of the iterative algorithms, a fast hybrid

algorithm was proposed to adaptively switches from the matrix inversion based iteration to

a matrix multiplication based iteration [36]. The hybrid algorithm tends to require at most

7 iterations for convergence. In addition, if B is not required to full accuracy then there is

no need to iterate to converge–just 1 or 2 iterations may yield a sufficiently accurate approx-

imation to B. In our implementation, we use 3-4 iterations of the fast hybrid algorithm per

forward pass to get a good approximation ∥KlW̄l∥.

Theorem 4 exhibits the uniqueness of the nearest orthonormal matrix B by using the

above fast hybrid algorithm.

Theorem 3.4 Given an Nl × Nl−1 matrix A, the nearest orthonormal matrix B of A is

unique. It is equal to B̂ = AH−1 by using the fast hybrid polar decomposition, where H =
√
ATA is positive definite.

Proof. Please refer to Appendix for detailed proof.

Practically, we can compute a residualR = ATA−I and then use a series to approximate

B̂.
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B̂ = A(ATA)−1/2 = A(I+R)−1/2

= A−AR(1/2− 3R/8 + 5R2/16− 35R4/128 + · · · )
(3.10)

In order to further improve the computational cost, we can calculate the first few terms

without losing much accuracy. If ∥R∥F comes near to zero, then B̂ can be approximated

adequately B̌ = A − AR/2 = B̂(I − 3R2/8 + R3/8 − · · · ) as its residual B̌T B̌ − I =

R2(R − 3I)/4 is trivial. On the other hand, if ∥R∥F << 1/2, then the columns of B̌ will

be more nearly orthonormal than those of A; and repeating upon B̌ the process performed

upon A can yield an approximation B̂(I− 27R4/128 + · · · ).

3.3.2 Kl-Lipschitz Weibull Activation ∥∇z̄l f̄∥ = Kl

To bound the Lipschitz constant of neural network, the gradient norm must be preserved

by each layer in the network during backpropagation. Unfortunately, Theorem 5 exhibits

that norm-constrained neural networks with common 1-Lipschitz activation functions (e.g.

ReLU, Leaky ReLU, Sigmoid, SoftPlus, or tanh) must trade nonlinear processing for gradi-

ent norm preservation, leading to less expressive networks. Namely, such norm-constrained

neural networks can only approximate the linear functions with less expressive power. It is

straightforward to extend the conclusion of Theorem 5 to our 1-Lipschitz neural network.

In addition, for our 1-Lipschitz neural network, most of popular nonlinear activation func-

tions with gradient norm preservation ∥∇z̄l−1
f∥ = Kl, can not achieve the feasible Kl, since

the maximum values of their derivatives are smaller than the lower bound of the feasible

Kl, e.g, 1 for ReLU, Leaky ReLU, and PReLU, 0.25 for Sigmoid, 1 for tanh and Softplus,

and 1 for GroupSort [6]. Therefore, we utilize the Weibull distribution to design an expres-

sive Kl-Lipschitz nonlinear activation function to allow our 1-Lipschitz neural network to

approximate any functions.
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Theorem 3.5 Consider a 1-Lipschitz neural network F̄ : RN0 7→ R, built with norm-

constrained weights (∥W̄l∥ ≤ 1) and 1-Lipschitz, element-wise, monotonic activation func-

tions ∥∇z̄l−1
f∥ = 1. If ||∇xF̄ (x)|| = 1 almost everywhere, then F̄ is linear [6].

In statistics, the Weibull distribution is a continuous probability distribution [82]. It

can model hazard functions that are monotonically decreasing, increasing or constant of

the proportion of adopters over time, allowing it to describe any phase of an item’s lifetime.

Therefore, the major advantage of Weibull analysis is that it is suitable to reliability and fail-

ure analysis. In addition, a recent study reports that the non-saturating nonlinear activation

functions, such as ReLU and Leaky ReLU, often achieve faster training than the saturating

ones, e.g., Sigmoid and tanh [46]. In order to achieve the advantage of non-saturating nonlin-

earity, we combine T Weibull activation functions f̄1(z), · · · , f̄T (z) with different parameters

into a composite one, such that the upper bound of f̄(z) is increased to T .

f̄(z) =


T∑
t=1

f̄t(z), if z ≥ µt,

Klz, if z < µt.

, ft(z) = 1− e
−(

z−µt
λt

)αt
(3.11)

where f̄t is the t
th Weibull activation function with unique parameters αt, λt, and µt. z

is an element in z̄l, αt > 0 is the shape parameter, λt > 0 is the scale parameter, and µt is the

shift parameter. A value of αt < 1 indicates that the failure rate decreases with time. This

happens if there is significant “infant mortality”, or few defective parts failing to result in the

malfunction of the entire item early and the failure rate decreasing over time as more parts

gradually become defective over time. In the context of robust deep multiple graph learning,

the perturbation diffusion over the layers is similar to a monotonically decreasing hazard

function, i.e, the attack failure possibility decreases with the perturbation diffusion, and the

diffusion of any perturbations finally leads to the attack success when enough diffusion is

allowed. Thus, the Weibull activation function can effectively model the relationship between

the perturbation diffusion and the attack failure.
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The derivative of f(z) is thus generated as follows.

f̄ ′(z) =


T∑
t=1

αt

λt

(z − µt

λt

)αt−1

e
−(

z−µt
λt

)αt
, if z ≥ µt,

Kl, if z < µt.

(3.12)

Theorem 3.6 Given T Weibull activation functions with the definition in Eq.(11), there

must exist solutions of parameters αt, λt, and µt to guarantee ∥∇z̄l f̄∥ = Kl.

Proof. Please refer to Appendix for detailed proof.

In statistics, a scale parameter λt is a special kind of numerical parameter of a parametric

family of probability distributions. If it is large, then the distribution will be more spread

out; if it is small then it will be more concentrated. Therefore, f̄(z) is more sensitive to λt.

Notice that ∥∇z̄l f̄∥∞ = f̄ ′(z̄lU) =
∂f̄
∂z̄lU

, where ∂f̄
∂z̄lU

= max{| ∂f̄
∂z̄l1

|, · · · , | ∂f̄
∂z̄lNl

|}. With selected

αt and µt, we utilize the Newton-Raphson method to find an approximate λt of the following

equation to make f̄ ′(z̄lU) = Kl when z ≥ µt [32].

αt

λt

( z̄lU − µt

λt

)αt−1

e
−(

z̄lU−µt
λt

)αt
= Kl (3.13)

3.3.3 Universal Approximation of Kl-Lipschitz Weibull Activation

The following theorems demonstrate that our 1-Lipschitz neural network architecture

with a Kl-Lipschitz activation function f̄ is universal Lipschitz function approximator, i.e.,

f̄ can approximate any linear or nonlinear functions.

Definition 3.2 We say that a set of functions, F , is a lattice if for any f, g ∈ F we have

max(f, g) ∈ F and min(f, g) ∈ F (where max and min are defined pointwise).

Lemma 3.2 (Restricted Stone-Weierstrass Theorem) Suppose that (X, dX) is a com-

pact metric space with at least two points and F is a lattice in CF(X,R) with the property

that for any two distinct elements x, y ∈ X and any two real numbers a and b such that
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|a − b| ≤ dX(x, y) there exists a function f ∈ F such that f(x) = a and f(y) = b. Then F

is dense in CF(X,R) [6].

Theorem 3.7 Let LNNL
∞ : RN0 7→ RNL denote the class of (L+ 1)-layer 1-Lipschitz neural

networks F̄ with norm-constrained weight matrices ∥W̄l∥∞ = 1 (l = 1) and ∥W̄l∥∞ = 1/Kl

(l > 1), and gradient norm preserving activation function ∥∇z̄l−1
f̄∥∞ = Kl, by following the

definitions in Eqs.(2) and (7). Let input X be a closed and bounded subset of RN0 with the

L∞ metric. Then the closure of LNNL
∞ is dense in CF(X ,R).

Proof. Please refer to Appendix for detailed proof of the above two theorems.

Theorem 7 demonstrates that the closure of LNNL
∞ is dense in CF(X ,R). Namely,

for any input x ∈ RN0 , function F̄ (x) ∈ LNNL
∞ can be used to approximate any function

RN0 7→ RNL in continuous function space CF(X ,R).

3.4 Experiments

Table 3.1: Experiment Datasets

Dataset AS CAIDA DBLP

Graph G1 G1 G1 G2 2013 2014

#Nodes 10,900 11,113 16,493 16,301 28,478 26,455

#Edges 31,180 31,434 33,372 32,955 128,073 114,588

#Matched Nodes 7,943 7,884 4,000

Dataset #Graphs #Avg. Nodes #Avg. Edges #Classes

BZR 405 35.75 38.36 2

BZR MD 306 21.30 225.06 2

MUTAG 188 17.93 19.79 2
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Table 3.2: Graph classification with 5% perturbed edges

Dataset BZR MD MUTAG BZR

Metric Acc. RMSE Acc. RMSE Acc. RMSE

PAN 0.541 0.680 0.681 0.570 0.779 0.471

Pro-GNN 0.631 0.610 0.643 0.601 0.738 0.512

GRAND 0.532 0.684 0.633 0.610 0.759 0.492

GCN-SVD 0.648 0.594 0.653 0.593 0.767 0.484

RoboGraph 0.667 0.579 0.644 0.601 0.790 0.458

GraphCL 0.652 0.593 0.545 0.680 0.808 0.439

GroupSort 0.547 0.676 0.606 0.636 0.756 0.494

BCOP 0.582 0.648 0.570 0.656 0.741 0.509

ERNN 0.691 0.540 0.788 0.461 0.820 0.425

We perform extensive evaluation on the robustness of our ERNN model for graph classi-

fication on three real datasets: BZR, BZR MD and MUTAG [40, 4] and for graph matching

over three datasets: autonomous systems (AS) [1], CAIDA relationships datasets [2], and

DBLP coauthor graphs [3], as shown in Table 4.1.

Graph classification baselines. We compare our ERNN model with one regular

graph classification algorithm, two robust node classification models, one general graph de-

noising method, two state-of-the-art robust graph classification models against adversarial

attacks, and two representative Lipschitz-bound neural architectures for restricting the per-

turbation propagation. PAN [57] is a path integral based GNN containing self-consistent

convolution and pooling units for producing regular graph classification. Pro-GNN [42]

jointly learns a clean graph and a robust GNN model for defending node classification.

GRAND [26] is a graph random neural network with random propagation and data aug-

mentation to increase the robustness of node classification. GCN-SVD [23] is a general
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Figure 3.1: Matching on AS with varying perturbed edges
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Figure 3.2: Matching on CAIDA with varying perturbed edges
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perturbation elimination model irrelevant to specific graph learning architectures. Robo-

Graph [40] is the first certifiably robust graph classification model based on Lagrange du-

alization and convex envelope. GraphCL [93] is a graph contrastive learning framework

with data augmentations for GNN pre-training for boosting the robustness of graph classifi-

cation. GroupSort [6, 17] is a 1-Lipschitz fully-connected neural network that restricts the

perturbation propagation by imposing a Lipschitz constraint on each layer. BCOP [50] is a

Lipschitz-constrained convolutional network with expressive parameterization of orthogonal

convolution operations. For two node classification models, the average of node labels within

the same graphs is output as graph labels.

Graph matching baselines. We compare the ERNN model with six state-of-the-

art graph matching algorithms, GroupSort, and BCOP. FINAL [99] leverages both node

and edge attributes to solve the attributed network alignment problem. Its supervised ver-

sion with prior alignment preference matrix is used for the evaluation. REGAL [35] is an

unsupervised network alignment framework that infers soft alignments by comparing joint

node embeddings across graphs. and by computing pairwise node similarity scores across

networks. MOANA [100] is a supervised coarsening-alignment-interpolation multilevel net-

work alignment algorithm with the supervision of a prior node similarity matrix. Deep graph

matching consensus (DGMC) [27] is a supervised graph matching method that reaches a

data-driven neighborhood consensus between matched node pairs. CONE-Align [11] mod-

els intra-network proximity with node embeddings and uses them to match nodes across

networks in an unsupervised manner. G-CREWE [66] is a rapid unsupervised network

alignment method via both graph compression and embedding in different coarsened net-

works. To our best knowledge, there are no other open-source defense baselines on graph

matching available.

Attack models. We validate the robustness with four representative graph attack

models. Random attack (RND) randomly adds and removes edges to generate perturbed

graphs. NEA [9] is an efficient adversarial attack method that poison the network structure
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Figure 3.3: Matching on DBLP with varying perturbed edges
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Figure 3.4: Matching on AS with varying training ratios

against both network embedding and node classification. GMA [102] is the only attack

model on graph matching by pushing them to dense regions in two graphs to generate

imperceptible and effective attacks. RL-S2V [18, 132] generates adversarial attacks on

graph data based on reinforcement learning, which is used to attack both node classification

and graph classification models.

Variants of ERNN model. We evaluate four variants to show the strengths of differ-

ent components. ERNN-1 utilizes a fixedKl = 1 in our 1-Lipschitz neural network. ERNN-R
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Figure 3.5: Hits@1 (%) of ERNN variants with 5% perturbed edges
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employs the ReLU as the activation. ERNN-N only uses the regular fully-connected neural

network. ERNN operates with the full support of graph-adaptive Kl, Weibull activation,

and 1-Lipschitz neural network.

Evaluation metrics. We employ two measures to evaluation the quality of graph

classification: Accuracy [42, 23, 40, 93] and root-mean-square error (RMSE). A higher

Accuracy or a smaller RMSE shows a better classification. In addition, we use Hits@K [91,

27] to verify the quality of graph matching. A larger Hits@K value indicates a better graph

matching.

Defense performance on graph classification. Table 3.2 exhibits the Accuracy

and RMSE scores of nine graph classification algorithms under RL-S2V attacks over three

groups of datasets. We randomly sample 30% of labeled graphs as training data and the

rest as test data. The number of perturbed edges is fixed to 5% in these experiments. It

is observed that among nine graph classification methods the ERNN method achieve the

highest Accuracy and the smallest RMSE on perturbed graphs in all experiments, showing

the robustness of ERNN against adversarial attacks. Compared to the graph classification

results by other models, ERNN, on average, achieves 15.2% Accuracy boost and 18.6%

RMSE improvement on three groups of datasets. In addition, the promising performance

of ERNN over all three datasets implies that ERNN has great potential as a general robust

graph classification solution to other datasets, which is desirable in practice.

Defense performance on graph matching with varying perturbation edges.

Figures 3.1-3.3 present the graph matching quality under three attack models by varying the

ratios of perturbed edges from 0% to 25%. We choose 30% of matched node pairs as training

data. It is obvious that the quality by each matching algorithm decreases with increasing

perturbed edges. This phenomenon indicates that current graph matching methods are

sensitive to adversarial attacks. However, ERNN still achieves the highest Hits@1 values

(> 0.249), which are better than other eight methods in most tests. Especially, when the

perturbation ratio is larger than 10%, the Hits@1 drop by ERNN becomes slowly.
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Table 3.3: Accuracy on image classification

Dataset MNIST CIFAR-10
#Network Depth 3 5 3 5
GroupSort 0.91 0.91 0.48 0.50
BCOP 0.94 0.94 0.45 0.47
ERNN 0.97 0.97 0.55 0.56

Table 3.4: Wasserstein Distance estimation

Dataset MNIST CIFAR-10
#Network Depth 3 5 3 5
GroupSort 2.31 2.55 2.23 2.74
BCOP 5.82 6.04 5.34 6.03
ERNN 7.19 8.03 7.26 7.88

Impact of training data ratios. Figure 3.4 shows the quality of nine graph matching

algorithms on AS under three attack models by varying the ratio of training data from 5%

to 25%. Here, the number of perturbed edges is fixed to 30%. We make the following

observations on the performances by nine graph matching algorithms. (1) The performance

curves keep increasing when the training data ratio increases. (2) ERNN outperforms other

methods in most experiments with the highest Hits@1 scores: > 5.01% . When there are

appropriate training data available (≥ 10%), the quality improvement by ERNN is obvious.

A reasonable explanation is that more training data makes ERNN be more resilient to

poisoning attacks under a small perturbation budget.

Ablation study. Figure 3.5 presents the Hits@1 scores of graph matching on three

datasets with four variants of our ERNN model. We observe the complete ERNN achieves

the highest Hits@1 (> 24.9%) on AS, (> 35.2%) over CAIDA, and (> 17.5%) on DBLP,

which are obviously better than other versions. Compared with ERNN-R, ERNN-1 performs

well in most experiments. A reasonable explanation is that ReLU must trade nonlinear

processing for gradient norm preservation, leading to less expressive neural networks. In

addition, ERNN-R achieves the better performance than ERNN-N. A rational guess is that

Lipschitz-bounded neural architecture is able to restrict the perturbation propagation on

the neural networks, achieving remarkable robustness. These results illustrate all of graph-

adaptive Kl, Weibull activation, and Lipschitz-bounded neural network are important in

producing robust graph matching.
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Table 3.5: Lipschitz constant on graph matching

Dataset AS CAIDA DBLP
Unbounded Networks 2880 1530 1260
ERNN 0.910 0.968 0.955

Impact of Kl. Figure 4.3 (a) shows the impact of Kl in our ERNN model under three

attack methods over three groups of datasets. The performance curves initially raise when

Kl increases. As shown in the theoretical analysis, Kl = 1 is not the optimal solution and a

large Kl can make the 1-Lipschitz neural network more robust. Later on, the performance

curves keep relatively stable or even decreasing whenKl continuously increases. A reasonable

explanation is that the too large Kl makes the norm-constrained weight matrices very small,

such that it may hinder the feedforward of the neural network. Thus, it is important to

choose the appropriate Kl for robust training.

Impact of activation function. Figure 4.3 (b) measures the effect of different acti-

vation functions in the ERNN model for the graph matching by using different activation

functions. It is observed that among five activation functions, the Hits@1 values of our Kl-

Lipschitz Weibull activation function outperforms all other competitors. This demonstrates

that our Weibull activation is able to better maintain nonlinearity in Lipschitz-bounded neu-

ral networks. In addition, ReLU and Leaky ReLU achieve better performance than Sigmoid

and tanh. This is consistent with the fact that non-saturating nonlinear activation functions

often achieve faster training than saturating ones.

Validation of adversarial robustness on generic learning tasks. We conduct

the experiments to validate the adversarial robustness of ERNN on two generic learning

tasks: image classification and Wasserstein Distance estimation, by following similar setting

in Table 2 in the GroupSort paper, as shown in Tables 3.3 and 3.4. We utilize two standard

image datasets: MNIST [20] and CIFAR-10 [45]. Our ERNN model with Weibull activation

still achieves the best performance in all tests.
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Lipschitz constant estimate. The GroupSort and our ERNN models focus on de-

signing 1-Lipschitz neural networks with enforcing each layer and entire network to be 1-

Lipschitz. Table 3.5 shows the computed Lipschitz constants by ERNN and unbounded

neural network on graph matching. The former is close to 1 and much smaller than the lat-

ter. This demonstrates that ERNN is able to successfully constrain the Lipschitz constant

to 1.

3.5 Related Work

Lipschitz-bounded neural networks. Enforcing Lipschitz constraints in the training

of neural networks is useful for ensuring adversarial robustness against adversarial attacks.

Existing research activities can be classified into three broad categories: (1) Regularization

techniques penalize or bound the Jacobian of the neural network, constraining the Lipschitz

constant locally [72, 34, 44]. It is easy to train networks under the gradient penalties, but

these methods cannot enforce the Lipschitz constraint globally; (2) Architecture constraint-

based methods constrain the operator norm of each layer’s weights, such as the matrix

spectral norm [92, 61]. These approaches enforce the Lipschitz constraint but come at

a cost in expressive power; and (3) Gradient norm preserving architectures enforce both

weight norm and gradient norm as 1 to constraint 1-Lipschitz neural networks globally,

which improves the expressive power to a certain degree [50, 17]. However, simply limiting

the above two norms to 1 still sacrifices the expressive power, in comparison with regular

neural networks without constrained weight and gradient.

Adversarial defenses on multiple graph learning. Graph data analysis have at-

tracted active research in the last decade [12, 114, 115, 13, 109, 14, 47, 73, 116, 110, 63,

117, 111, 74, 119, 7, 121, 112, 118, 120, 48, 122, 108, 64, 124, 123, 69, 126, 125, 127, 113,

33, 84, 85, 128, 129, 102, 130, 131, 41, 86, 97]. The majority of existing techniques focus

on tackling vulnerability and improving robustness on single graph learning tasks under

adversarial attacks. Recently, researchers have demonstrated that multiple graph learning
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models, especially deep learning-based models, are highly sensitive to adversarial attacks,

including graph classification [18, 76] and graph matching [102]. Several adversarial defense

models have been developed to improve the robustness of multiple graph learning models in

graph classification [98, 93, 40], graph matching [96], and multiple network embedding [129].

RGM is a robust graph matching model against visual noise, including image deformations,

rotations, and outliers for image matching, but it fails to defend adversarial attacks on graph

topology [96]. A common characteristics of the above techniques is that they often defend

specific attacks on particular learning tasks, rather than attack-agnostic defense models.

3.6 Conclusions

In this work, we proposed an expressive 1-Lipschitz neural network to improve the

robustness of multiple graph learning. First, the theoretical analysis is conducted to derive

lower and upper bounds of feasible Kl under the 1-Lipschitz constraint. Second, a Kl-

Lipschitz nonlinear activation function is designed to enforce the gradient norm as Kl at each

layer. Finally, the nearest matrix orthogonalization and polar decomposition techniques are

utilized to constraint the weight norm as 1/Kl.
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Chapter 4

Unsupervised Federated Graph Matching with Graphlet Extraction and Separate Trust

Region

4.1 Introduction

Federated graph learning (FGL) is a promising paradigm that enables collaborative

training of shared machine learning models over large-scale distributed graph data, while

preserving privacy of local data [306, 223, 298]. Only recently, researchers have started to

attempt to study the FGL problems [277, 256, 308, 240, 280, 223, 246, 289, 283, 234, 235].

Graph matching (i.e., network alignment) is one of the most important research topics in

the graph domain, which aims to match the same entities (i.e., nodes) across two or more

graphs [165, 167, 188, 172, 213, 15, 191]. It has been widely applied to many real-world

applications ranging from protein network matching in bioinformatics [154, 180], user account

linking in different social networks [209, 157, 105, 144, 158], and knowledge translation

in multilingual knowledge bases [199, 214], to geometric keypoint matching in computer

vision [27]. While the existing techniques have achieved remarkable performance in the

above graph learning domains, there is still a paucity of techniques of effective federated

graph matching (FGM), which is much more difficult to study. Directly sharing and inferring

matched node pairs on different graphs across clients and local graphs over multiple clients

gives rise to a serious privacy leakage concern. In this work, we aim to answer the following

questions: (1) How to train effective FGM models on distributed clients with maintaining

high matching performance? (2) How to make FGM models with strong privacy protection

for cross-client information exchange?
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Research activities on centralized graph matching can be classified into two broad cat-

egories: supervised graph matching [105, 91, 49, 15, 27] and unsupervised graph match-

ing [213, 35, 157, 38]. The former utilizes a set of pre-matched node pairs between pairwise

graphs belonging to the same entities as training data to learn an effective graph matching

model by maximizing the similarities (or minimizing the distances) between the pre-matched

node pairs. The node pairs with the largest similarities between pairwise graphs in test data

are identified as the one-to-one matching results. The latter fails to employ the strength of

training data and thus often leads to sub-optimal solutions. Unfortunately, supervised graph

matching methods that use the pre-matched node pairs as the training data is improper for

the FGM scenarios due to privacy risks of direct cross-client information exchange when the

graph data are distributed over different clients.

This motivates us to capture nodes’ graphlet features to generate pseudo matched node

pairs on different graphs across clients as the pseudo training data for leveraging the strength

of supervised graph matching. A graphlet is a small graph of size up to k nodes of a larger

graph, such as triangle, wedge, or k-clique, which describes the local topology of a larger

graph [274, 275, 242, 261]. A node can be described by a graphlet feature vector, where

each component denotes the frequency of one type of graphlets. It is highly possible that

the nodes in different graphs with the large similarities regarding their graphlet features

correspond to the same entities. Thus, they can be treated as the pseudo matched node

pairs for pseudo supervised FGM.

However, graphlet enumeration one by one on large-scale graphs is impossible due to

expensive cost. We propose to leverage Monte Carlo Markov Chain (MCMC) technique for

sampling a small number of graphlets. The number of graphlet samples is much smaller than

that of all graphlets in the graphs, which dramatically improves the efficiency of graphlet

enumeration. Theoretical analysis is conducted to demonstrate that the estimated graphlet

count based on the MCMC sampling strategy is close to the actual count of all graphlets,

which implies that the graphlet samples and all graphlets share similar distributions.
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In order to maintain the privacy requirement of federated learning, we first encrypt

local graph data on each client. The encrypted graph data from all clients are uploaded to

the server for matching the graphs with each other. Note that stochastic gradient descent

(SGD) optimization widely used in deep learning fails to work on the clients in the FGM,

since each client can access only its own local graph data and thus cannot update local loss

based on the pseudo matched node pairs. We propose a separate trust region algorithm for

pseudo supervised FGM while maintaining the privacy constraints. Specifically, we separate

model optimization from model evaluation in the trust region algorithm: (1) the server

aggregates the local model parameter M s
b on each client s into a global model parameter

Mb at global iteration b, runs and evaluates Mb on the all pseudo training data D̃st and the

encrypted graph data, and computes the individual loss Ls(Mb), the gradient ∇Ls(Mb), and

the Hessian ∇2Ls(Mb) for each client s; (2) client s receives its individual Ls(Mb), ∇Ls(Mb),

and ∇2Ls(Mb) from the server and optimizes M s
b+1.

Unfortunately, the second-order Hessian computation ∇2Ls(Mb) in the separate trust

region algorithm is time-consuming over large-scale graph data. We propose to explore quasi-

Newton conditions to construct a positive definite scalar matrix αbI, where αb ≥ 0 is a scalar

and I is an identify matrix, as the Hessian approximation with only first-order gradients,

i.e., zT∇2Ls(Mb)z ≈ αbz
T z. We theoretically derive the error introduced by the separate

trust region due to the Hessian approximation and conduct the convergence analysis of the

approximation method.

To our best knowledge, this work is the first to offer an unsupervised federated graph

matching solution for inferring matched node pairs on different graphs across clients while

maintaining the privacy requirement of federated learning, by leveraging the graphlet theory

and trust region optimization. Our UFGM method exhibits three compelling advantages:

(1) The combination of the unsupervised FGM and the encryption of local raw graph data

is able to provide strong privacy protection for sensitive local data; (2) The graphlet feature

extraction can leverage the strength of supervised graph matching with the pseudo training
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data for improving the matching quality; and (3) The separate trust region for pseudo su-

pervised FGM is helpful to enhance the efficiency while maintaining the privacy constraints.

Empirical evaluation on real datasets demonstrates the superior performance of our

UFGM model against several state-of-the-art centralized graph matching, federated domain

adaption, and FGL methods.

4.2 Background

4.2.1 Supervised Graph Matching

Given a set of S graphs G = {G1, · · · , GS}. Each graph is denoted as Gs = (V s, Es)

(1 ≤ s ≤ S), where V s = {vs1, vs2, · · · } is the set of nodes and Es = {(vsi , vsj ) : 1 ≤ i, j ≤

|V s|, i ̸= j} is the set of edges. Each Gs has a binary adjacency matrix As, where each entry

As
ij = 1 if there exists an edge (vsi , v

s
j ) ∈ Es; otherwise As

ij = 0. As
i: specifies the ith row

vector of As and is used to denote the representation of a node vsi .

The entire training data consist of a set of training data between pairwise graphs, i.e.,

D = {D12, · · · , D1S, · · · , D(S−1)S}. Each Dst (1 ≤ s < t ≤ S) specifies a set of pre-matched

node pairs Dst = {(vsi , vtj)|vsi↔vtj, v
s
i ∈ V s, vtj ∈ V t}, where vsi↔vtj represents that two nodes

vsi and vtj are the equivalent ones in two graphs Gs and Gt and are treated as the same

entity. The objective of supervised graph matching is to utilize Dst as the training data

to identify the one-to-one matchings between nodes vsi and vtj in the test data. Based on

structure, attribute, or embedding features, existing efforts often aim to learn an matching

function M to map the node pairs (vsi , v
t
j) ∈ Dst with different features across two graphs

into common space, i.e, minimize the distances between source nodes M(vsi ) and target ones

M(vtj) [59, 105, 91, 158]. The node pairs (vsi , v
t
j) ∈ Dst with the smallest distances in the

test data are selected as the matching results.

L =
S∑

s=1

S∑
t=s+1

E(vsi ,v
t
j)∈Dst∥M(vsi )−M(vtj)∥22 (4.1)
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Graph convolutional networks (GCNs) have demonstrated their superior learning perfor-

mance in network embedding tasks [247]. In this paper, if there are no specific descriptions,

we utilize the GCNs to learn the embedding representation of each node vsi in each graph Gs,

based on its original structure features As
i:. The embedding representation of vsi is denoted

by vs
i . Thus, the objective of supervised graph matching is reformulated as follows.

L =
S∑

s=1

S∑
t=s+1

E(vsi ,v
t
j)∈Dst∥M(vs

i )−M(vt
j)∥22 (4.2)

4.2.2 Federated Graph Matching

In this paper, without loss of generality, we assume that each client contains only one

local graph in the federated setting, but it is straightforward to extend to the case of multiple

local graphs owned by each client. Given S clients with a set of S graphs G = {G1, · · · , GS}

and their local training data D = {D12, · · · , D1S, · · · , D(S−1)S}, and a server, federated

graph matching (FGM) aims to learn a global graph matching model M on the server by

optimizing the problem below.

min
M∈Rd

L(M) =
S∑

s=1

Ls(M) =
S∑

s=1

S∑
t=s+1

N st

N
Lst(M)

where Lst(M) =
1

N st

∑
(vsi ,v

t
j)∈Dst

lstij (M)

(4.3)

where lstij (M) = ∥M(vs
i )−M(vt

j)∥22 denotes the loss function of the prediction on the pre-

matched node pair (vsi , v
t
j) ∈ Dst made with M . Ls(M) and L(M) are the local loss function

on client s and the global one respectively. N st = |Dst| denotes the size of local training

dataset Dst. N is the size of total training data D, i.e., N = N12+ · · ·+N1S + · · ·+N (S−1)S.

A local graph matching model M s is optimized based on the local loss Ls(M). In the FGM,

M is iteratively updated with the aggregation of all M1, ·,MS on S clients in each round,

i.e., M =
∑S

s=1

∑S
t=s+1

Nst

N
M s.
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Observed from Eq.(3), when calculating the local loss Ls(M) on client s for optimizing

the local model M s, we need to access the pre-matched node pairs {vsi , vtj} ∈ Dst and the

graph Gt on client t. This operation obviously violates the privacy requirement of federated

learning. Thus, it is difficult to utilize the pre-matched node pairs for supervised FGM.

4.3 Monte Carlo Markov Chain for Graphlet Feature Extraction

As discussed in the last section, the supervised graph matching usually achieves better

performance than the unsupervised one. In addition, supervised FGM may lead to serious

privacy concerns. In this work, we explore to capture nodes’ graphlet features to generate

pseudo matched node pairs on different graphs across clients as the pseudo training data

for leveraging the strength of supervised graph matching while keeping the local graph data

safe.

In order to prohibit other clients and server from accessing local raw graphs and embed-

ding representations on any client s for maintaining the privacy requirement of FGM, we first

utilize an efficient matrix generation method [270] to produce a random nonsingular matrix

K as a key. Each client employs K to encrypt its network embedding v̂s
i = vs

iK from the

original one vs
i and uses its inverse K−1 to decrypt from v̂s

i to vs
i = v̂s

iK
−1. The encrypted

v̂s
i from all clients will be uploaded to the server for graph matching. It is important that

K is kept secret between senders and recipients. In our setting, K is shared by all clients,

but not accessed by the server.

The first step of graphlet feature extraction is to enumerate all graphlets in a graph

G = (V,E). Concretely, let Gk be the set of all C connected induced k-subgraphs (with

k nodes) in G. Let G⊣1,G2, · · · ,GR be all R types of non-isomorphic k-graphlets (with k

nodes) for which we would like to count. We denote a k-subgraph g ∈ Gk that is isomorphic

to a k-graphlet Gr (1 ≤ r ≤ R) as g ∼ Gr. The number of k-graphlets of type r in G is equal

to
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nkr(G) =
∑
g∈Gk

I (g ∼ Gr) (4.4)

where I(·) is an indicator function.

However, graphlet enumeration one by one on large-scale graphs is impossible due to

expensive cost. We propose a MCMC sampling technique for which one can calculate the

stationary distribution p on the k-subgraphs in Gk. We only sample a small number of

k-subgraphs gk1, · · · , gkO in G, where the size O << C. Then we use Horvitz-Thompson

inverse probability weighting to estimate the graphlet counts as follows.

ñkr(G) =
1

O

O∑
o=1

I (gko ∼ Gr)

p(gko)
(4.5)

Next, we describe how to expand from 1-subgraphs to k subgraphs in the graphlet

enumeration. For any (k−1)-subgraph gk−1, we expend it to a k-subgraph by adding a node

from its neighborhood Nv(gk−1) at random in terms of a certain probability distribution,

where Nv(gk−1) is the set of all nodes adjacent to a certain node in gk−1 but not including

all nodes in gk−1.

This expansion operation can explore any subgraph in Gk. It iteratively builds a k-

subgraph gk from a starting node. First, suppose that a starting node v1 is sampled from

the distribution q, which can be computed from local information. We assume that q(v) =

f(deg(v))
F

, where f(x) is a certain function (usually a polynomial) and F is a user-defined

normalizing factor. Thus, a 1-subgraph g1 = {v1} is generated. Second, it samples an edge

(v1, v2) uniformly in Ne(g1), where Ne(g1) is the set of all edges that connect a node in g1

and a node outside of g1. Thus, a node v2 is then attached to g1, forming a 2-subgraph

g2 = g1 ∪ v2 ∪ (v1, v2). Similarly, at each iteration, it samples an edge (vi, vj+1) (1 ≤ i ≤ j)

from Ne(gj) uniformly at random and attach the node vj+1 to the subgraph gj, forming a

j + 1-subgraph gj+1 = gj ∪ vj+1 ∪ (vi, vj+1). After k − 1 iterations, we obtain a k-subgraph
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gk. Once gk has been sampled we need to classify it into a graphlet type, i.e., gk ∼ Gr. The

method repeats the above process O times until O k-graphlets gk1, gk1, · · · , gkO are produced.

We conduct the theoretical analysis to evaluate the permanence of our graphlet enu-

meration based on the MCMC sampling, in terms of the difference between the estimated

and actual graphlet counts.

In the estimation ñkr(G) in Eq.(5), a key problem is to calculate p(gko). The probability

p(gk) of getting a k-subgraph gk via subgraph expansion from a (k − 1)-subgraph gk−1 is

given by the sum p(gk) =
∑

gk−1
P(gk|gk−1)p(gk−1), where the sum is taken over all connected

(k − 1)-subgraphs gk−1 ⊂ gk, and P(gk|gk−1) is the probability of getting from gk−1 to gk in

the expansion process.

p(gk) =
∑

gk−1⊂gk

p(gk−1)
deggk−1

(
Vgk − Vgk−1

)
|Ne(gk−1)|

=
∑

gk−1⊂gk

p(gk−1)
|Egk | −

∣∣Egk−1

∣∣∑
v∈Vgk−1

deg(v)− 2
∣∣Egk−1

∣∣
(4.6)

where for a subgraph gk ⊆ G, Vgk the set of its nodes and Egk is the set of its edges.

deggk−1
(V ) specifies the number of nodes in gk−1 that are connected to a node set V . deg(v)

denotes the number of associated edges of a node v.

In order to calculate p(gk), we need to consider all possible orderings of nodes in gk. As-

sume that the original node ordering of gk via the subgraph expansion is xk = {v1, v2, · · · , vk}.

Let S(gk) = [v1, v2, · · · , vk] be the set of all possible node sequences of xk. Notice that

an induced subgraph hl(xk) = {v1, v2, · · · , vl, xk, G} of graph G with the first l nodes

{v1, v2, · · · , vl} in xk must be a connected subgraph for any l (1 ≤ l ≤ k). Thus, we

have

S(gk) = {[v1, . . . , vk]|{v1, . . . , vk} = Vgk , gk|{v1, . . . , vl}is connected} (4.7)
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The following theorems give an explicit solution of the probability p(gk) of getting a

k-subgraph gk via subgraph expansion and the variance of the estimation ñkr(G) of graphlet

counts.

Theorem 4.1 Let xk = {v1, v2, · · · , vk} be the original node ordering of gk via the subgraph

expansion, S(gk) = [v1, v2, · · · , vk] be the set of all possible node sequences of xk, xk[i] be the

ith node in xk, F be a user-defined normalizing factor in the subgraph expansion, and hl(xk) =

{v1, v2, · · · , vl, xk, G} be an induced subgraph of graph G with the first l nodes {v1, v2, · · · , vl}

in xk, then the probability of getting a k-subgraph gk via the subgraph expansion is

p(gk) =
∑

xk∈S(gk)

f(deg(xk[1]))

F

k−1∏
l=1

∣∣Ehl+1(xk)

∣∣− ∣∣Ehl(xk)

∣∣∑l
i=1 deg(xk[i])− 2

∣∣Ehl(xk)

∣∣ (4.8)

Theorem 4.2 Let ñkr(G) = 1
O

∑O
o=1

I(gko∼Gr)
p(gko)

be the estimation of graphlet counts, d1, · · · , dk

be the k highest degrees of nodes in G, and denote D =
∏k−1

l=2 (d1+ · · ·+dk). If q for sampling

the starting node is the stationary distribution of the node random walk, then the upper bound

of the variance Var(ñkr(G)) is

Var(ñkr(G)) ≤ 1

O
nkr(G)

2 |EG|
|S(Gr)|

D (4.9)

It is observed that the variance Var(ñkr(G)) is small when the distribution of p(gk) is

close to uniform distribution. A larger p(gk) results in a smaller variance of the estimator.

Thus, the variation can be reduced by an appropriate choice of q for sampling the starting

node, say a smaller normalizing factor F . In this case, the estimated graphlet count ñkr(G)

is close to the actual count nkr(G), which implies that the graphlet samples and all graphlets

share similar distributions.

We capture the graphlet features of a node by computing the frequency of each type

of graphlet with size up to k that is associated with this node. For the node pairs between

pairwise graphs, we compute the cosine similarity scores based on the graphlet features on

all R types of graphlet. The top-K node pairs with the largest similarities between pairwise
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graphs Gs and Gt are treated as the pseudo matched node pairs and added to the pseudo

training data D̃st.

4.4 Separate Trust Region for Unsupervised Federated Graph Matching

In this work, according to the graphlet-based pseudo training data D̃st and the encrypted

network embedding v̂s
i , we propose a separate trust region algorithm for pseudo supervised

FGM while maintaining the privacy constraints. Specifically, we separate model optimization

from model evaluation in the trust region algorithm: (1) the server aggregates the local

model parameter M s
b on each client s into a global model parameter Mb at global iteration

b, runs and evaluates Mb on the all D̃st and v̂s
i , and computes the individual loss Ls(Mb),

the gradient ∇Ls(Mb), and the Hessian ∇2Ls(Mb) for each client s; (2) client s receives its

individual Ls(Mb), ∇Ls(Mb), and ∇2Ls(Mb) from the server and optimizes M s
b+1.

Server : ComputeMb =
S∑

s=1

S∑
t=s+1

N st

N
M s

b , Lst(Mb) =
1

N st

∑
(vsi ,v

t
j)∈D̃st

∥Mb(v̂
s
i )−Mb(v̂

t
j)∥22,

Ls(Mb) =
S∑

t=s+1

N st

N
Lst(Mb), ∇Ls(Mb), and∇2Ls(Mb)

(4.10)

Client s : Optimize z∗ = argminub(z) = Ls(Mb) + (∇Ls(Mb))
T z +

1

2
zT∇2Ls(Mb)z, s.t.∥z∥ ≤ ∆s

UpdateM s
b+1 = M s

b + z∗

(4.11)

where ∆s > 0 is the trust-region radius. z∗ is the trust-region step. The individual loss

Ls(Mb) aims to minimize the sum of distance between nodes on client s and nodes on other
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clients in the pseudo training data D̃st. The node pairs with the smallest distance between

pairwise encrypted network embeddings are selected as the matching results.

A key challenge in the separate trust region algorithm is to compute the second-order

Hessian computation ∇2Ls(Mb). It is time-consuming over large-scale graph data. We

propose to explore quasi-Newton conditions to construct a positive definite scalar matrix

αbI, where αb ≥ 0 is a scalar and I is an identify matrix, as the Hessian approximation with

only first-order gradients, i.e., zT∇2Ls(Mb)z ≈ αbz
T z.

Concretely, the quasi-Newton condition is given as follows.

∇2Ls(Mb)zb = yb (4.12)

where zb = Mb+1 −Mb and yb = ∇Ls(Mb+1)−∇Ls(Mb). The condition is derived from

the following quadratic model.

ub+1(z) = Ls(Mb+1) + (∇Ls(Mb+1))
T z +

1

2
zT∇2Ls(Mb+1)z (4.13)

The quadratic model is an approximation of the objective function at iteration b + 1

and satisfies the following three interpolation conditions:

(1) ub+1(0) = Ls(Mb+1), (2) ∇ub+1(0) = ∇Ls(Mb+1), (3) ∇ub+1(−zb) = ∇Ls(Mb) (4.14)

It is difficult to satisfy the quasi-Newton equation in Eq.(12) with a nonsingular scalar

matrix [229]. A recent study introduced a weak condition form by projecting the quasi-

Newton equation in Eq.(12) in the direction zb [238].

zTb ∇2Ls(Mb+1)zb = zTb yb (4.15)
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The choice of zb may influence the quality of the curvature information provided by

the weak quasi-Newton condition. Another weak condition is directly derived from an in-

terpolation emphasizing more on function values rather than from the projection of the

quasi-Newton condition [290].

ub+1(−zb) = Ls(Mb) (4.16)

By combining sub-conditions (1) and (2) in Eq.(14) and replacing (3) with Eq.(16), we

can get another weak quasi-Newton condition.

zTb ∇2Ls(Mb+1)zb = 2
(
Ls(Mb)− Ls(Mb+1) + zTb ∇Ls(Mb+1)

)
(4.17)

By integrating two types of weak quasi-Newton conditions together, we have a general-

ized weak quasi-Newton condition.

zTb ∇2Ls(Mb+1)zb = (1− ω)zTb yb + ω
[
2 (Ls(Mb)− Ls(Mb+1)) + 2zTb ∇Ls(Mb+1)

]
= zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T zb

]
(4.18)

where ω ≥ 0 is the weight. If ∇2Ls(Mb+1) is set to be a scalar matrix α∗
b+1(ω)I, then

we have

αb+1(ω) =
zTb yb + ω

[
2 (Ls(Mb)− Ls(Mb+1)) + (∇Ls(Mb) +∇Ls(Mb+1))

T zb

]
zTb zb

(4.19)

The following theorems derive the error introduced by the separate trust region due

to the Hessian approximation and conduct the convergence analysis of the approximation

method.
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Theorem 4.3 Let d be the dimension of the flattened Mb+1, ⊗ be an appropriate tensor

product, Ab+1 ∈ Rd×d×d and Bb+1 ∈ Rd×d×d×d are the tensors of Ls(Mb+1) at iteration b+ 1

satisfying

Ab+1 ⊗ z3b =
d∑

i,j,k=1

∂3Ls(Mb+1)

∂M i∂M j∂Mk
zibz

j
bz

k
b (4.20)

and

Bb+1 ⊗ z4b =
d∑

i,j,k,l=1

∂4Ls(Mb+1)

∂M i∂M j∂Mk∂M l
zibz

j
bz

k
b z

l
b. (4.21)

Suppose that Ls(Mb+1) is sufficiently smooth, if ||zb|| is small enough, then we have

zTb ∇2Ls(Mb+1)zb − αb+1(ω)z
T
b zb =

(
1

2
− ω

6

)
Ab+1 ⊗ z3b −

(
1

6
− ω

12

)
Bb+1 ⊗ z4b +O

(
∥zb∥5

)
(4.22)

Theorem 4.4 Suppose ∥∇Ls(Mb)∥ ≠ 0, the solution zb of the separate trust region opti-

mization argminub(z) = Ls(Mb)+ (∇Ls(Mb))
T z+ 1

2
zT∇2Ls(Mb)z, s.t.∥z∥ ≤ ∆s in Eq.(??)

satisfies

ub(0)− ub(zb) ≥
1

2
∥∇Ls(Mb)∥min

{
∆s,

∥∇Ls(Mb)∥
αb

}
(4.23)

Finally, the separate trust region optimization based on two weak quasi-Newton condi-

tions is given below.

z∗ = argminub(z) ≈ Ls(Mb) + (∇Ls(Mb))
T z +

1

2
αb(ω)z

T z, s.t.∥z∥ ≤ ∆s (4.24)
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Table 4.1: Statistics of the Datasets

Dataset #Clients/#Graphs #Avg. Nodes #Nodes #Avg. Edges #Edges
SNS 3 14,331 14,262 ∼ 14,573 51,358 48,105 ∼ 53,381
PPI 50 1,767 1,767 32,320 31,179 ∼ 32,358

DBLP 20 10,038 9,984 ∼ 10,168 56,314 54,891 ∼ 60,058

4.5 Experimental Evaluation

In this section, we have evaluated the performance of our UFGM model and other com-

parison methods for federated graph matching over serval representative federated graph

datasets to date. We show that UFGM with graphlet feature extraction and separate trust

region is able to achieve higher matching accuracy and faster convergence in federated set-

tings against several state-of-the-art centralized graph matching, federated graph learning

and federated domain adaption methods.

Datasets. We focus on three popular computer vision and natural language processing

tasks over three representative benchmark datasets respectively: social networks (SNS) [207],

protein-protein interaction networks (PPI) [313], and DBLP coauthor graphs (DBLP) [3], as

shown in Table 4.1. Without loss of generality, we assume that each client contains only one

local graph in the federated setting. For the supervised learning methods, the training data

ratio over the above three datasets is all fixed to 20%. We train the models on the training

set and test them on the test set for three datasets.

Baselines. To our best knowledge, this work is the first to offer an unsupervised fed-

erated graph matching solution for inferring matched node pairs on different graphs across

clients while maintaining the privacy requirement of federated learning, by leveraging the

graphlet theory and trust region optimization. Thus, we choose three types of baselines that

are most close to the task of federated graph matching: centralized graph matching, feder-

ated graph learning and federated domain adaption. We compare the UFGM model with

six state-of-the-art centralized graph matching models: NextAlign [303], NetTrans [302],
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Table 4.2: Final Performance on SNS

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.951 0.962 0.972 0.979 2.115

Centralized
NetTrans 0.921 0.932 0.958 0.960 1.571

Graph
CPUGA 0.248 0.392 0.433 0.563 2.598

Matching
ASAR-GM 0.299 0.394 0.453 0.668 1.699
SIGMA 0.499 0.560 0.633 0.782 1.652
SeedGNN 0.884 0.943 0.959 0.960 3.039
DualAdapt 0.006 0.006 0.007 0.011 2.106

Federated EFDA 0.007 0.011 0.014 0.029 3.249
Domain WSDA 0.009 0.011 0.013 0.016 2.746
Adaption FKA 0.005 0.006 0.006 0.008 2.227

FedGraphNN 0.081 0.132 0.179 0.200 4.259

Federated
FKGE 0.231 0.323 0.352 0.441 0.817

Graph
SpreadGNN 0.115 0.179 0.213 0.236 0.290

Learning
SFL 0.000 0.001 0.001 0.002 5.285

FederatedScope-GNN 0.001 0.001 0.001 0.002 4.259
FedStar 0.057 0.092 0.137 0.211 2.255
UFGM 0.771 0.880 0.902 0.930 0.659

CPUGA [263], ASAR-GM [272], SeedGNN [296], and SIGMA [249], six representa-

tive federated graph learning architectures: FedGraphNN [233], FKGE [264], Spread-

GNN [236], SFL [225], FederatedScope-GNN [287], and FedStar [278], and four recent

federated domain adaption methods: DualAdapt [265], EFDA [243], WSDA [239], and

FedKA [276].

Evaluation metrics. By following the same settings in two representative graph

matching models [91, 27], We employ a popular measure, Hits@K, to evaluate and com-

pare our UFGM model to previous lines of work, where Hits@K measures the proportion

of correctly matched nodes ranked in the top-K list. A larger Hits@K value indicates a

better graph matching result. We use final Hits@K to evaluate the quality of the federated

federated learning algorithms. In addition, we plot the measure curves regarding Hits@K

and Loss Function Values (Loss) with increasing rounds to verify the convergence of different
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Table 4.3: Final Performance on PPI

Type Algorithm Hits@1 Hits@5 Hits@10 Hits@50 Loss
NextAlign 0.430 0.512 0.571 0.635 2.149

Centralized
NetTrans 0.379 0.439 0.447 0.496 1.611

Graph
CPUGA 0.230 0.238 0.252 0.297 2.551

Matching
ASAR-GM 0.199 0.229 0.252 0.337 1.410
SIGMA 0.220 0.232 0.253 0.262 1.330
SeedGNN 0.319 0.340 0.342 0.388 2.919
DualAdapt 0.001 0.002 0.002 0.002 2.049

Federated EFDA 0.001 0.001 0.002 0.002 3.427
Domain WSDA 0.003 0.005 0.007 0.011 5.129
Adaption FedKA 0.001 0.001 0.010 0.013 3.715

FedGraphNN 0.051 0.100 0.116 0.161 3.120

Federated
FKGE 0.177 0.205 0.222 0.250 1.086

Graph
SpreadGNN 0.078 0.146 0.175 0.192 0.189

Learning
SFL 0.000 0.000 0.000 0.001 4.332

FederatedScope-GNN 0.000 0.000 0.000 0.001 5.611
FedStar 0.039 0.071 0.105 0.136 3.770
UFGM 0.371 0.440 0.411 0.459 0.501

federated learning methods: [244, 259, 253, 271, 245, 285]. A smaller Loss score shows a

better federated learning result.

Final Hits@K and Loss on SNS and PPI. Tables 4.2 and 4.3 show the quality of six

centralized graph matching, six federated graph learning, and four federated domain adaption

algorithms over SNS and PPI respectively. We have observed that our UFGM federated

graph matching solution outperforms all the competitors of federated graph learning and

federated domain adaption in most experiments. UFGM achieves the highestHits@K values

(> 0.771 over SNS and > 0.371 on PPI respectively) and the lowest Loss values (= 0.659 over

SNS and = 0.501 on PPI respectively), which are better than other ten baseline methods in

all tests. In addition, the Hits@K scores achieved by UFGM is close or much better than the

centralized graph matching method. Compared with the best centralized graph matching

method, NextAlign, the Hits@1, Hits@5, Hits@10, and Hits@50 scores by UFGM are

only 15.3% lower respectively. A reasonable explanation is that the combination of graphlet
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feature extraction, separate trust region, and pseudo supervised learning is able to achieve

higher matching accuracy and faster convergence in federated settings. In addition, the

promising performance of UFGM over both datasets implies that UFGM has great potential

as a general federated graph matching solution over federated datasets.
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Figure 4.1: Convergence on SNS
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Figure 4.2: Convergence on PPI
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Hits@K Convergence on SNS and PPI. Figures 4.1 and 4.2 exhibit the Hits@K

curves of eleven federated learning models for graph matching over SNS and PPI respec-

tively. It is obvious that the performance curves by federated learning algorithms initially

keep increasing with training rounds and remains relatively stable when the curves are be-

yond convergence points, i.e., turning points from a sharp Hits@K increase to a flat curve.

This phenomenon indicates that most federated learning algorithms are able to converge to

the invariant solutions after enough training rounds. However, among six federated graph

learning and four federated domain adaption approaches, our UFGM method can signifi-

cantly speedup the convergence on two datasets in most experiments, showing the superior

performance of UFGM in federated settings.

Loss Convergence on SNS and PPI. Figures 4.1 and 4.2 also present the Loss

curves achieved by eleven federated learning models on two datasets respectively. We have

observed obvious that the reverse trends, in comparison with the Hits@K curves. In most

experiments, our UFGM is able to achieve the fastest convergence, especially, UFGM can

converge around 1,000 training rounds and then always keep stable on two datasets. A

reasonable explanation is that UFGM fully utilizes the proposed graphlet feature extraction

techniques to generate the pseudo training data and employ the strength of supervised graph

matching for accelerating the training convergence.
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Figure 4.3: Final Hits@1 with Varying Parameters

Impact of graphlet sample numbers. Figure 4.3 (a) measures the performance

effect of sampled graphlet numbers in the Monte Carlo Markov Chain sampling for graphlet

enumeration and estimation by varying O from 10 to 1,000. We have witnessed the per-

formance curves by UFGM initially increase quickly and then become stable when O con-

tinuously increases. Initially, a large O can help utilize the strength of effective graphlet

feature extraction for generating the pseudo training data for tackling the dilemma of unsu-

pervised graph matching in federated setting and employing the strength of supervised graph

matching. Later on, when O continues to increase and goes beyond some thresholds, the

performance curves become stable. A rational guess is that after the enough graphlet fea-

tures have been already extracted at a certain threshold and considered in the FGM training,

our UFGM model is able to generate a good graph matching result. When O continuously

increases, this does not affect the performance of graph matching any more.

Impact of weight ω between two types of weak quasi-Newton conditions.

Figures 4.3 (b) shows the influence of weight of two types of weak quasi-Newton conditions

in our UFGM model by varying it from 1 to 2. It is observed that the performance initially
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raises when the ω increases. Intuitively, a large ω can help the algorithm well balance two

types of weak quasi-Newton conditions and thus help improve the quality of separate trust

region and graph matching. Later on, the performance curves decrease quickly when the ω

continuously increases. A reasonable explanation is that a too large ω may ruin the first

type of weak quasi-Newton condition and miss the optimal solution in the search process.

Thus, it is important to determine the optimal ω for separate trust region.

4.6 Related Work

Centralized Graph Matching. Graph matching, also well known as network align-

ment, which aims to identify the same entities (i.e., nodes) across multiple graphs, has

been a heated topic in recent years [15, 87, 81, 99, 169, 35, 49, 27, 66, 144, 68]. Research

activities can be classified into three broad categories. (1) Topological structure-based tech-

niques, which rely on only the structural information of nodes to match two or multiple

graphs, including DPMC [81], ZAC [284], GRAMPA [228], CONE-Align [11], DeepMatch-

ing [282], Exact Graph Matching [269], qc-DGM [230], OTTER [288], IA-GM [305], D-

GAP [255], CPUGA [263], CAPER [310]; (2) Structure and/or attribute-based approaches,

which utilize highly discriminative structure and attribute features for ensuring the match-

ing effectiveness, such as gsaNA [91], REGAL [35], SNNA [49], CENALP [21], GAlign [38],

Deep Graph Matching Consensus [27], CIE [94], RE [309], Meta-NA [307], EAGM [267],

DLGM [297], SIGMA [252], SCGM [251], and Grad-Align+ [262]; (3) Heterogeneous meth-

ods employ heterogeneous structural, content, spatial, and temporal features to further im-

prove the matching performance, including SCAN-PS [203], MNA [155], HYDRA [163],

COSNET [207], Factoid Embedding [197], DPLink [144], DETA [258]. BANANA [68],

SAUIL [266]. GCAN [241], and Deep Multi-Graph Matching [295]; Several papers re-

view key achievements of graph matching across online information networks including

state-of-the-art algorithms, evaluation metrics, representative datasets, and empirical anal-

ysis [179, 189, 89, 301, 232]. It has been widely applied to many real-world applications,
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including protein network alignment in bioinformatics [165, 189], user account linking in mul-

tiple social networks[179, 169, 144], object matching in computer vision [27, 284, 286, 294],

knowledge translation in multilingual knowledge bases [311, 222, 254, 231, 311, 293] and text

matching [226].

Federated Graph Learning. With the increasing privacy awareness, commercial

competition, and regulation restrictions, real-world graph data is often generated locally and

remains distributed graphs of multiple data silos among a large number of clients [306, 223,

298]. Federated graph learning (FGL) is a promising paradigm that enables collaborative

training of shared machine learning models over large-scale distributed graph data, while

preserving privacy of local data. Based on how graph data can be distributed across clients,

existing FGL techniques on machine unlearning can be broadly classified into three categories

below. (1) Graph-level FGL: each client possesses a set of graphs and all clients collaborate

to train a shared model to predict graph properties, including [291, 233, 300, 227, 278,

237, 268]. Typical graph-level FGL task is graph classification/regression, which have been

applied multiple domains, such as molecular property prediction [291, 236] and brain network

analysis [219]; (2) Subgraph-level FL: each client contains a subgraph of a global graph, a

part of node features, and a part of FGL model [299, 260, 281, 224, 218, 292, 304, 250, 312,

279]. The clients aim to collaboratively train a global model with the partial features and

subgraphs to predict node properties. Typical graph-level FGL task is node classification

and link prediction; (3) Node-level FGL: the clients are connected by a graph and thus each

of them is treated as a node [248, 257, 220, 273]. Namely, the clients, rather than the data,

are graph-structured. For example, each client performs learning with its own data and they

exchange data through the communication graph [248, 257]. The server maintains the graph

structure and uses a GNN to aggregate information (either models or data) collected from

the clients [220, 273].

A recent work studied the problem of federated knowledge graphs embedding with a

byproduct of knowledge graph alignment [264]. It exploits adversarial generation between
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pairs of knowledge graphs to translate identical entities and relations of different domains

into near embedding spaces. To our best knowledge, this workThis work is the first to

has the potential to tackle the problem of general federated graph matching. However, it

is a supervised learning method with aligned entities and relations as training data. In

addition, it is possible that neural models may memorize inputs and reconstruct inputs from

corresponding outputs [221]. The method exchanges the embeddings of entities and relations

between clients and server. Adversarial samples and gradients are interchanged among the

clients. Although a host client cannot access the embeddings of the other’s, the exchange

of translational mapping matrices (1.e., the gradients in the generators of the other clients)

makes it possible for the host client to reconstruct the former’s embeddings with the inverse

of translational mapping matrices. This work is the first to offer an unsupervised federated

graph matching solution for inferring matched node pairs on different graphs across clients

while maintaining the privacy requirement of federated learning, by leveraging the graphlet

theory and trust region optimization.

4.7 Conclusions

In this work, we have proposed an unsupervised federated graph matching algorithm.

First, an approximate graphlet enumeration method is proposed to capture nodes’ graphlet

features to generate pseudo matched node pairs as pseudo training data. Second, a sep-

arate trust region algorithm is proposed for pseudo supervised federated graph matching

while maintaining the privacy constraints. Finally, empirical evaluation on real datasets

demonstrates the superior performance of our UFGM.
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Chapter 5

Conclusions

In this dissertation, we studied the impact of adversarial perturbation to the task of

graph matching under various scenarios as while as the possibility of mitigating such influ-

ence via designed defensive mechanism. In our first work, we developed an attack that tries to

confuse the trained neural model by pushing the target nodes into areas of relatively higher

densities. Combined with meta-learnt starting point, the attack is demonstrated empiri-

cally to be effective against graph matching. We also found that neural models adversarial

trained using examples generated by the above mentioned attack scheme was able to gain

extra robustness against future attacks. In our second work, we investigated the possibility of

providing a provable and certifiable robustness guarantee while maintaining the expressive-

ness of the neural model. A range of preferred value of norm constraints of the parameters

are provided via theoretical analysis. We observed the coexistence of reasonable accuracy

and robustness guarantee in the constrained model equipped designed activation functions

combined and derived norm constraints. In our last work, we studied graph matching in the

context of Federated Learning. We deconstructed the conflict of between the graph matching

algorithm needing simultaneous knowledge of two or more graphs and the privacy constrains

preventing local user from sharing their own graphs. An secure algorithm is developed for

conducting graph matching in a Federated Learning scheme. The potential threats during

the process, namely probing attacks from the locals and the reconstruction attacks from the

server, are evaluated and dealt with anti-order preserving encryption and transformation

validations respectively. At the end, we would like to conclude that graph matching does

exhibit certain vulnerabilities in various adversarial scenarios, but these vulnerabilities are

by no means insoluble.

70



Bibliography

[1] https://snap.stanford.edu/data/Oregon-2.html.

[2] https://snap.stanford.edu/data/as-Caida.html.

[3] http://dblp.uni-trier.de/xml/.

[4] https://chrsmrrs.github.io/datasets/docs/datasets/.

[5] Al-Rfou, R., Perozzi, B., and Zelle, D. DDGK: learning graph representations for deep
divergence graph kernels. In The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, pp. 37–48, 2019.

[6] Anil, C., Lucas, J., and Grosse, R. B. Sorting out lipschitz function approximation. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, pp. 291–301, 2019.

[7] Bao, X., Liu, L., Xiao, N., Zhou, Y., and Zhang, Q. Policy-driven autonomic configura-
tion management for nosql. In Proceedings of the 2015 IEEE International Conference
on Cloud Computing (CLOUD’15), pp. 245–252, New York, NY, June 27-July 2 2015.

[8] Bjorck, A. and Bowie, C. An iterative algorithm for computing the best estimate of
an orthogonal matrix. SIAM J. Numer. Anal., 8:358–364, 1971.
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and pooling for graph neural networks. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020b.

[58] Magelinski, T., Beskow, D. M., and Carley, K. M. Graph-hist: Graph classification
from latent feature histograms with application to bot detection. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 5134–5141, 2020.

[59] Man, T., Shen, H., Liu, S., Jin, X., and Cheng, X. Predict anchor links across social
networks via an embedding approach. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pp. 1823–1829, 2016.

[60] Miller, B. A., Camurcu, M., Gomez, A. J., Chan, K., and Eliassi-Rad, T. Improving
robustness to attacks against vertex classification. In Proceedings of the 15th Inter-
national Workshop on Mining and Learning with Graphs co-located with 24th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, MLG@KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, 2019.

[61] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for
generative adversarial networks. In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018.

[62] Oettershagen, L., Kriege, N. M., Morris, C., and Mutzel, P. Temporal graph kernels
for classifying dissemination processes. In Proceedings of the 2020 SIAM International
Conference on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, pp.
496–504, 2020.

[63] Palanisamy, B., Liu, L., Lee, K., Meng, S., Tang, Y., and Zhou, Y. Anonymizing
continuous queries with delay-tolerant mix-zones over road networks. Distributed and
Parallel Databases (DAPD), 32(1):91–118, 2014.

76



[64] Palanisamy, B., Liu, L., Zhou, Y., and Wang, Q. Privacy-preserving publishing of
multilevel utility-controlled graph datasets. ACM Transactions on Internet Technology
(TOIT), 18(2):24:1–24:21, 2018.

[65] Peng, H., Li, J., Gong, Q., Ning, Y., Wang, S., and He, L. Motif-matching based
subgraph-level attentional convolutional network for graph classification. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 5387–5394, 2020.

[66] Qin, K. K., Salim, F. D., Ren, Y., Shao, W., Heimann, M., and Koutra, D. G-CREWE:
graph compression with embedding for network alignment. In CIKM ’20: The 29th
ACM International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, pp. 1255–1264, 2020.

[67] Qu, M., Tang, J., Shang, J., Ren, X., Zhang, M., and Han, J. An attention-based
collaboration framework for multi-view network representation learning. In Proc. 2017
Int. Conf. Information and Knowledge Management (CIKM’17), pp. 1767–1776, Sin-
gapore, November 6-10 2017.

[68] Ren, F., Zhang, Z., Zhang, J., Su, S., Sun, L., Zhu, G., and Guo, C. BANANA: when
behavior analysis meets social network alignment. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1438–1444,
2020.

[69] Ren, J., Zhou, Y., Jin, R., Zhang, Z., Dou, D., and Wang, P. Dual adversarial learning
based network alignment. In Proceedings of the 19th IEEE International Conference
on Data Mining (ICDM’19), pp. 1288–1293, Beijing, China, November 8-11 2019.

[70] Rieck, B., Bock, C., and Borgwardt, K. M. A persistent weisfeiler-lehman procedure for
graph classification. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 5448–5458,
2019.

[71] Sharma, J. and Vasishtha, A. Kirshna’s Real Analysis: (General), Thirty Eighth
Edition. Krishna Prakashan Media, 2010.

[72] Sokolic, J., Giryes, R., Sapiro, G., and Rodrigues, M. R. D. Robust large margin deep
neural networks. IEEE Trans. Signal Process., 65(16):4265–4280, 2017.

[73] Su, Z., Liu, L., Li, M., Fan, X., and Zhou, Y. Servicetrust: Trust management in
service provision networks. In Proceedings of the 10th IEEE International Conference
on Services Computing (SCC’13), pp. 272–279, Santa Clara, CA, June 27-July 2 2013.

[74] Su, Z., Liu, L., Li, M., Fan, X., and Zhou, Y. Reliable and resilient trust management
in distributed service provision networks. ACM Transactions on the Web (TWEB), 9
(3):1–37, 2015.

77



[75] Sun, Y., Wang, S., Hsieh, T., Tang, X., and Honavar, V. G. MEGAN: A generative
adversarial network for multi-view network embedding. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 3527–3533, 2019.

[76] Tang, H., Ma, G., Chen, Y., Guo, L., Wang, W., Zeng, B., and Zhan, L. Adversarial
attack on hierarchical graph pooling neural networks. CoRR, abs/2005.11560, 2020a.

[77] Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P., and Wang, S. Transferring robustness
for graph neural network against poisoning attacks. In Proceedings of the 13th ACM
International Conference on Web Search and Data Mining, WSDM 2020, Houston,
TX, February 3-7, 2020, 2020b.

[78] Togninalli, M., Ghisu, M. E., Llinares-López, F., Rieck, B., and Borgwardt, K. M.
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