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Abstract

A decentralized collaborative navigation algorithm known as inverse covariance inter-

section (ICI) is studied in the context of a group of vehicles navigating using opportunistic

Doppler measurements. Signals of opportunity (SOOPs) have been extensively studied for

applications requiring reliable position, velocity, and timing (PVT) information in condi-

tions with potentially degraded GNSS performance. Doppler measurements derived from

SOOPs can be used for positioning when GNSS signals are unavailable, but the resulting

position estimate accuracy from Doppler-only techniques is unacceptably poor for many use

cases. Collaborative techniques can leverage high-quality peer-to-peer range measurements

to constrain PVT estimate error growth for each vehicle in a collaborating group.

A navigator employing a tightly-coupled Doppler-inertial extended Kalman filter (EKF)

is developed. Its performance is analyzed using Monte Carlo techniques and simulated

Doppler measurements from a collection of satellites in low earth orbit (LEO). Peer-to-peer

range measurements are integrated using techniques including the well-known covariance

intersection (CI), ICI, and a centralized EKF. The performance gains of each method are

presented as compared to non-cooperating vehicles. Additionally, the two decentralized

navigators are each compared to the centralized navigator, which represents a reasonable

best case. The proposed ICI-based navigator is shown using a Monte Carlo test to achieve

62% of the position error reduction of an ideal centralized navigator in the average case,

compared to 28% for the well-studied CI-based technique. The proposed ICI navigator is

tested with experimentally-collected ranges from ultrawideband transceivers and is shown

remain functional in the presence of faulty range measurements.
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Chapter 1

Introduction

Since their inception, global navigation satellite systems (GNSSs) such as GPS have demon-

strated the importance of the global availability of high-quality positioning measurements.

In the intervening decades, common causes of performance degradation of GNSSs such as

foliage occlusion or jamming (among many others) have been extensively studied. More

recently, signals of opportunity (SOOPs) have seen increasing study as a supplementary

source of positioning information when GNSS is degraded or unavailable [1]. The quality

of the measurements available from SOOP sources is, however, generally poorer than those

from GNSSs. Consequently, the positioning performance resulting from the use of SOOP

measurements is unacceptably poor for many use cases. Collaborative navigation techniques

utilizing peer-to-peer range measurements among a group of users can enhance the viability

of SOOPs as a GNSS fallback navigation technique, and thus is the focus of this work.

1.1 Prior Art

One of the earliest examples of SOOP-based positioning is presented in [2], which used

carrier phase odometry from terrestrial AM radio stations to estimate the relative posi-

tion between a static base receiver and a roving receiver. Research on SOOPs is relatively

sparse in the literature from this point until around 2009, when works such as [3] examined

the potential for using the Iridium satellite network to augment GPS performance. In the
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years since there has been a steady stream of works published on SOOP navigation, with

the Autonomous Systems Perception, Intelligence, & Navigation (ASPIN) Laboratory being

particularly prolific publishers in the field [4–11]. In particular, [11] is pertinent as it demon-

strates obtaining Doppler measurements opportunistically from the Iridium and Orbcomm

satellite networks, though only a stationary navigator is considered. Obtaining useful oppor-

tunistic measurements is also presented in [12] for the second-generation Iridium network,

along with a discussion of dilution of precision metrics for satellite Doppler measurements.

As for Globalstar (yet another satellite communications network), [13] describes some of the

foundational components one would need to opportunistically track the network’s signals,

but a working implementation of an opportunistic Globalstar receiver has yet to be demon-

strated. A more general discussion of Doppler positioning can be found in [14], which focuses

on using Doppler measurements derived from GPS.

An early example of collaborative navigation using peer-to-peer ranges is given in [15],

which utilizes a centralized EKF and makes planar assumptions for the collaborating nav-

igators. The development of the centralized navigator concept is further refined in [16],

which includes with UAVs moving with a full six degrees of freedom. The use of covariance

intersection (CI) for decentralized collaborative navigation is discussed extensively in [17, 18].

The inverse covariance intersection (ICI) algorithm which is of interest to this work

is rigorously defined in [19, 20] and is implemented for measurement integrity monitoring

in [21]. Interest in the ICI algorithm has increased in the literature during the past 2–3

years. At the time of writing, there are a number of works published within the past year

which adapt and modify ICI to be better suited to distributed positioning applications. The

algorithm is adapted to distributed sensor networks in [22–24], though in these cases the

application is a tracking problem, in which a network of sensors is estimating the state of a

common tracked object. Most recently — and most similarly to this work — [25] uses ICI

to improve the positioning performance of UAVs, though it does so so by implementing a

LiDAR-based tracking system to estimate UAV positions.
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Only one study was found in the literature applying ICI to a fully distributed network

of independent navigators collaborating using peer-to-peer range measurements [26].

1.2 Contributions of This Work

The application of ICI to the problem of peer-to-peer cooperative navigation is not well

studied in the literature. In particular, the integration of ICI with SOOP-based Doppler

navigation has yet to be explored. The key contributions of this work, as well as the most

relevant chapter for each, are as follows:

• Development of a mathematically simple and computationally efficient measure for de-

scribing the effect of emitter geometry on Doppler navigation performance (Chapter 4).

• A modified EKF-based navigator which permits the use of inverse covariance intersec-

tion for decentralized fusion of peer-to-peer range measurements (Chapter 6).

• Monte Carlo comparison of the proposed navigator to existing decentralized navigation

techniques, and to a centralized collaborative navigator (Chapter 7).

• Integration of the proposed navigator with experimental peer-to-peer range measure-

ments logged from ultrawideband (UWB) transceivers affixed to a set of aerial and

ground vehicles (Chapter 8).

1.3 Overview of Subsequent Chapters

The remaining chapters in this work incrementally build the mathematical and computer

models necessary to study a network of collaborating SOOP navigators. Chapter 2 intro-

duces the concept of opportunistic navigation and provides rationale for the selection of

signals used in this work. Chapter 3 demonstrates how Doppler measurements can be used

for positioning and how the pattern of a tightly-coupled GNSS-INS EKF navigator can be

modified to perform Doppler positioning. Chapter 4 develops a computationally efficient

3



performance metric for a Doppler-based navigator given a set of available measurements.

Chapter 5 presents the simulation architecture used to test the navigator design of inter-

est and presents Monte Carlo simulation results for non-cooperating Doppler navigators.

Chapter 6 introduces fundamentals of peer-to-peer ranging and collaborative navigation, de-

scribing existing well-known data fusion methods as well as the novel ICI-centric architecture,

with corresponding Monte Carlo simulation results given in Chapter 7. Chapter 8 applies

the collaborative navigators to an experimentally collected data set. Chapter 9 summarizes

the major findings of this work and outlines opportunities for further study.
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Chapter 2

Signals of Opportunity

This chapter introduces the concept of signals of opportunity (SOOPs) and of opportunistic

navigation more broadly. The difficulties inherent to SOOP navigation as compared to

GNSSs are examined, and the criteria used to select the SOOPs of interest for this work are

presented.

2.1 Opportunistic Navigation

In considering the broad collection of methods for measuring an object’s position, the meth-

ods can be sorted into two broad categories: coordinated navigation and opportunistic nav-

igation. In a coordinated navigation scheme, the navigator depends on the existence and

functioning of some kind of infrastructure which was built for the purposes of providing

navigation information. The nature of such navigation infrastructure can range in scale and

complexity from the proximity Bluetooth beacons present in public venues like sporting are-

nas [27] to GNSSs like GPS and Galileo. In any case, the navigator leverages its a priori

knowledge of the infrastructure’s design to determine location. In contrast, opportunistic

navigation is primarily characterized by a lack of intentionally deployed navigation infras-

tructure. This includes the opportunistic radio frequency (RF) navigation concepts that are

a focus of this work, but ideas such as celestial navigation, geomagnetic navigation, and

many vision-based approaches can also be described as opportunistic, since they only lever-

age preexisting information in the environment. The information used to opportunistically
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determine position may be natural (stars) or artificial (communications satellites), but the

common property is that the information being leveraged in the environment was not created

for the express purpose of navigation.

Part of the appeal of opportunistic methods is their generally low cost of implementation.

No infrastructure needs to be deployed, and in cases where non-navigation infrastructure

(such as LEO satellite networks) is leveraged, no payment is made to the relevant network

operator. In contrast, they are often inferior to coordinated navigation systems in terms of

positioning accuracy. This is unsurprising, especially given that the purpose of designing

and deploying navigation infrastructure for a coordinated navigation system is to create

a known and predictable environment which is capable of yielding precise and accurate

measurements. The deployment of GNSSs involves the tremendous expense of building and

maintaining extensive networks of ground stations and satellites — and for good reason. A

GNSS’s ground and space segments combine to create a precisely tuned and easily predictable

RF environment for the navigator, which is a large part of how GNSSs can achieve excellent

positioning performance on a planetary scale. Conversely, knowledge of the environment is

a challenge for opportunistic navigation. Depending on the features which are of interest to

the navigator, the environment may change in unexpected ways. The geomagnetic field shifts

over time and maps used for vision navigation become outdated. Similarly for opportunistic

radionavigation, the signals of interest can change behavior or fall out of service without

notice.

Given such challenges, one might conclude that opportunistic navigation is not area wor-

thy of study. Indeed, a large proportion of the world’s navigation needs are adequately served

by GNSSs and other coordinated systems. Where opportunistic techniques fall short in terms

of predictability, they can excel in availability. GNSS performance degrades markedly with-

out a clear view of the sky [28, 29] and fares poorly in the presence of interference [30].

Bluetooth beacons and similar technologies are only effective for confined areas. An op-

portunistic RF navigator can target signals in the environment which are available without
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a clear view of the sky, or which have a stronger received signal strength to better resist

interference. Similarly, vision-based approaches can work anywhere that is mappable, and

celestial navigation can even be effective in deep space environments, far from any built

infrastructure.

This chapter focuses on a specific type of opportunistic navigation known as signal of

opportunity navigation. Signals of opportunity (SOOPs) can include any RF signal in the

environment that is not intended for navigation. This excludes navigation signals such as

GNSSs, eLORAN, VOR and DME, and the like, but includes almost everything else: terres-

trial AM and FM radio, digital television, cellular network signals, weather station telemetry

links, and satellite communication networks. Though it is relatively easy to enumerate a list

of signals that are SOOPs, finding signals which are useful SOOPs is more challenging.

2.2 Useful SOOPs

For a particular SOOP to be of use to an opportunistic navigator, the navigator must be able

to derive one or more observables from the signal. An observable is a quantity that is related

to the states that the navigator is estimating (such as position or velocity, among others).

Common observables include pseudorange, pseudorange rate, and angle of arrival, though

others can be formulated. Determining what observables, if any, can be obtained from a

particular SOOP, and (more importantly), establishing how to obtain those observables, is

one of the largest barriers to effective implementation of a SOOP-based navigator. The sig-

nals of interest are often proprietary, with little publicly available documentation describing

their structure. Empirical trial-and-error with live sky signal recordings are often the only

way that a suitable signal tracking algorithm can be developed. Progress made in tracking

SOOPs is vulnerable to regression, as any signal which is operated by a private company

utilizing proprietary protocols is subject to change in structure suddenly and without notice.
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The degree to which this is a risk worth considering varies greatly from one SOOP to an-

other. Examining historical trends and considering the volume of consumer hardware using

a given signal can be useful as a proxy for signal structure stability. Taken together, these

considerations are often enough to narrow the field of candidate SOOPs from nearly every

signal imaginable down to a small number of well-suited prospects.

Three signals form the basis of the work presented here: Iridium, Globalstar, and Or-

bcomm. All three are low earth orbit (LEO) satellite communications networks. Iridium

and Globalstar primarily offer satellite mobile phone services, while Orbcomm offers non-

realtime low-bandwidth data transmission services which are often used for collecting data

from autonomous sensing equipment. These signals were selected for their broad availability

across the earth (unlike terrestrial sources like cellular networks), their high received sig-

nal power relative to other satellite signals (such as those in geostationary orbit), and their

generally stable and well-studied signal structures (unlike newer LEO constellations such as

Starlink).

This work focuses on pseudorange rate observables derived from these signals. The

most impactful advantage this choice offers over using pseudoranges is that Doppler shift

is a simpler quantity to measure for an arbitrary signal than time of arrival (TOA). Users

of Doppler measurements need not be concerned with clock biases of the transmitter and

receiver, but rather they only need to account for the relative clock drift. Minimizing the

impact of timing errors is especially helpful given that many non-GNSS satellites do not

carry onboard atomic clocks. The major downside of using Doppler for navigation is that

the pseudorange rate is not a strong function of position. Nonetheless it is a function of

position, and thus it can be used for navigation. This topic is discussed in more detail in

Chapter 3. A summary of rationale for selecting each signal is given below.

Iridium The Iridium network is perhaps the most widely studied space SOOP. Iridium’s

LEO network boasts continuous coverage anywhere on earth, and the network has been
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operational for long enough that the downlink signals are generally well understood [3, 12,

31, 32].

Globalstar Similarly to Iridium, Globalstar operates a global satellite phone network, but

Globalstar’s service footprint does not cover the entire earth. However, Globalstar does offer

continuous coverage of at least one satellite overhead at any given time for the majority of

the earth’s land area. It is markedly less studied as a SOOP compared to Iridium, but it is

included here as a plausible signal that could be leveraged in the future.

ORBCOMM Unlike the other two networks, Orbcomm does not offer continuous satel-

lite coverage; rather, their network is configured such that most locations rarely go longer

than 10-20 minutes without a satellite pass. As such, Orbcomm offers fewer measurements

overall, but it has a well-understood signal structure and has been studied as a SOOP in the

past [11, 33].
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Chapter 3

Doppler Navigation

The use of Doppler measurements, and the pseudorange rate observables that they yield, is

central to the collaborative navigation ideas presented in this work. This chapter introduces

the concept of using Doppler measurements as a means of estimating position.

3.1 The Doppler Effect

The Doppler effect describes the signal propagation phenomenon by which relative motion

between an emitter and a receiver causes a change in the apparent frequency of a signal

as observed by the receiver. This property of propagating waves is responsible both for

the characteristic eeeeownn sound of a passing car as heard by a pedestrian, as well as the

redshifting of light from extremely distant stars as observed from earth [34]. The effect

applies equally well to both mechanical and electromagnetic waves.

More formally, the Doppler effect means that the frequency of a received signal is shifted

by an amount which is approximately proportional to the component of the relative velocity

between the emitter and receiver which is along the line of sight. The Doppler frequency

can be expressed as

∆f = − ṙ
c
f0 (3.1)
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where ∆f is the change in observed frequency relative to transmission frequency f0, c is the

wave speed, and ṙ is the range rate between the transmitter and the receiver. Range rate is

given by

ṙ = (vRX − vTX) · uTX→RX (3.2)

where v describes the velocity of either the transmitter (tx) or receiver (rx) expressed in

a common reference frame, and u is a position unit vector, in this case pointing from the

transmitter towards the receiver.

Doppler shift is influenced most strongly by the relative velocity terms. They are directly

proportional, so a doubling in the relative velocity results in a doubling of the observed

Doppler shift. This is what makes Doppler well-suited for estimating velocity. The idea here

is to leverage Doppler measurements to estimate the position of a receiver (in addition to

its velocity). To that end, attention must be paid to the unit vector term that projects the

relative velocity onto the line of sight. For the usual purpose of estimating velocity, this

unit vector is little more than a nuisance term, but in the absence of any other positioning

information, it offers a foothold.

Unlike its relationship with velocity, Doppler shift is only a weak function of position.

Consider an observer standing a few meters from a railroad track as a train passes by. Were

the train to alter its speed, either speeding up or slowing down, the change in apparent

frequency would be readily noticed by the observer, but if instead the observer moved closer

to or further from the railroad tracks, the change would be much more subtle, requiring the

observer to move tens or potentially hundreds of meters before noticing much of a change

in observed frequency shifts. The mathematical manifestation of this idea is examined in

Section 3.3.

Due to the tenuous connection between Doppler shift and position, determination of

initial position is especially difficult with Doppler measurements. As such, this work focuses
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on the use of Doppler navigation under hot start conditions, where the navigator starts with

some inexact estimate of its position and velocity at time t = 0. Such a situation could arise

if Doppler navigation is being used as a fallback to provide navigation information in the

event that GNSS becomes unavailable.

3.2 Historical Doppler Navigation

Doppler navigation is certainly not a new concept. Doppler shift has been exploited for

navigation purposes in coordinated navigation systems for decades. A notable example is

the Transit satellite navigation system which, being introduced in 1963, predates the modern

idea of a GNSS by a substantial margin. Transit relied on measurements taken across an

entire satellite pass (hence its name) to determine a location estimate, and was targeted

towards stationary and slow-moving receivers, such as ships and submarines [35, 36].

A more recent example of a deployed Doppler navigation system is the Sarsat distress

beacon system, which in a sense turns the typical satellite navigation problem inside out.

Instead of a receiver on the ground estimating its own position by measuring signals broadcast

by satellites, the satellite system attempts to locate a distress beacon on the ground by

examining the profile of the Doppler shift during a LEO satellite pass [37]. Despite the

transposition of the transmitter and receiver roles, the overall working principle is generally

the same for Sarsat as that used by Transit.

3.3 Application to an EKF Navigator

While several different navigator configurations are examined in this work, each remains, in

essence, some variation on the well-known extended Kalman filter (EKF). As such, a rudi-

mentary knowledge of EKFs as they pertain to pseudorange-based GNSS-INS navigation is

assumed. A thorough grounding in the workings of GNSS-INS EKFs can be found in [38, 39].

This section focuses on how a GNSS-INS EKF may be modified to work with LEO Doppler
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measurements, and the additional implementation and usage considerations introduced by

such modifications.

The models discussed here suppose a tightly coupled GNSS-INS EKF as a starting point

with an error state vector given by

δx =



δp

δv

δΨ

δc∆t

δc∆̇t


=



δpx

δpy

δpz

δvx

δvy

δvz

δφ

δθ

δψ

δc∆t

δc∆̇t



(3.3)

referenced to the WGS84 earth-centered earth-fixed (ECEF) reference frame with position

error δp, velocity error δv, attitude error δΨ, clock bias error δc∆t, and clock drift error δc∆̇t.

The most substantial difference between using pseudoranges and using pseudorange rates is

in the measurement model. Consider the measurement model for a pseudorange observable

ρ in terms of transmitter (tx) and receiver (rx) positions p, receiver clock bias c∆t, and

unmodeled effects ηρ:

ρ = |pRX − pTX|+ c∆t+ ηρ. (3.4)

In this case, ηρ includes deterministic effects such as tropospheric and ionospheric delay, as

well as stochastic effects like thermal noise. The model can be linearized about some nominal
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state x̂ to obtain an EKF measurement matrix H, yielding

HTOA =

[(
pRX−pTX

|pRX−pTX|

)T

1×3
01×6 1 0

]
(3.5)

which indicates that errors in pseudorange result in a combination of clock bias error and

position error in the direction of the measurement line of sight. Note that the magnitudes of

the position terms, being components of a unit vector, have an overall magnitude of 1, so the

order of magnitude of pseudorange error and the corresponding position error are similar.

The same strategy can be applied to pseudorange rate observables. Beginning again

with a full nonlinear measurement model results in

ρ̇ = (vRX − vTX) ·
pRX − pTX

|pRX − pTX|
+ c∆̇t+ ηρ̇ (3.6)

with ηρ̇ representing all unmodeled effects, the exact set of which differs between the pseudo-

range and pseudorange rate models. Deriving the linearized measurement model from this

expression is quite cumbersome, and is covered in more detail in [12, 40, 41]. The resulting

EKF measurement matrix is given by

HDoppler =

[(
pRX−pTX

|pRX−pTX| ×
(

pRX−pTX

|pRX−pTX| ×
vRX−vTX

|pRX−pTX|

))T

1×3

(
pRX−pTX

|pRX−pTX|

)T

1×3
01×3 0 1

]
.

(3.7)

The relationship between pseudorange rate and velocity is identical to that between pseudor-

ange and position (i.e. the mapping onto the error state is the line-of-sight unit vector). This

is unsurprising, given that the pseudorange rate and velocity are identically the derivatives

of the pseudorange and position, respectively. The terms mapping pseudorange rate error

onto position error are far more interesting.

Unlike the prior examples, the linearized mapping between measurement error and posi-

tion error here is not easily lent to intuitive understanding. So, falling back to a more literal
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mathematical understanding of the terms mapping position error to pseudorange rate error

HDoppler,p =
pRX − pTX

|pRX − pTX|
×
(

pRX − pTX

|pRX − pTX|
× vRX − vTX

|pRX − pTX|

)
(3.8)

it is important to note that the strength of the relationship between an estimated state and

a measured quantity in the context of an EKF is generally proportional to the magnitude of

the terms in the linearized measurement model H. Put another way, seeing larger values in

the H matrix implies that the corresponding measurement provides more information about

a given state than seeing smaller values. In the case of mapping pseudorange onto position,

the magnitudes in question correspond to unit vector components, and thus tend to be on

the order of 10−1. So, even lacking a straightforward mental model for how pseudorange rate

error maps onto position error, examining the expected magnitudes produced by (3.8) for

various emitter types should be illuminating.

Closer inspection of (3.8) reveals that the first two fractional terms are identically the

unit vector pointing from the receiver to the transmitter. Given that these unit vectors are

applied to the remaining terms by a vector cross product, they do not have an effect on the

overall magnitude of the result. Thus the remaining term, arbitrarily denoted ν,

ν =
vRX − vTX

|pRX − pTX|
(3.9)

drives the magnitude. The term is the relative velocity between the transmitter and receiver

divided by the scalar distance between the two. While still not being intuitively related

to Doppler positioning, (3.9) is certainly easier to reason about than (3.8) involving nested

vector cross products. For any given receiver implementing Doppler positioning, (3.9) shows

that fast-moving emitters are better than slow-moving ones and that nearby emit-

ters are better than faraway ones, or, equivalently, the suitability of an emitter for

Doppler positioning is roughly proportional to the sweep rate of the line-of-sight unit vector.
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To show this effect quantitatively, three emitter classes are considered for a receiver

which is near the ground and traveling at 10 m/s: a nearby terrestrial emitter, a satellite

in LEO, and a satellite in medium earth orbit (MEO). Consider a navigator located at

32.6° N, 85.5° W, 200 m altitude (height above ellipsoid) and traveling due east at 10 m/s.

The terrestrial emitter is located 600 m north and 800 m east (1 km away) relative to the

transmitter. Each of the two satellites is considered to be rising at 180° azimuth and 45°

elevation. The LEO satellite is similar to a nominal Iridium satellite (780 km altitude,

90° inclination, 7456 m/s orbital speed) and the MEO satellite is similar to a nominal GPS

satellite (20,200 km altitude, 55° inclination, 3874 m/s orbital speed). The resultingH matrix

position terms for each scenario, given in Table 3.1, support the qualitative observations made

earlier in this section. The terrestrial emitter, which is stationary but nearby, and the LEO

satellite, which is moving quickly, offer much more position sensitivity as compared to the

MEO satellite, which is extremely far away and moving substantially more slowly than the

LEO satellite. The results shown also support the claim that even for well-suited emitters,

Doppler shift is less strongly related to position than TOA. The largest values present in

Table 3.1 are on the order of 10−3, while values for TOA measurements tend to be larger,

on the order of 10−1.

Table 3.1: Nominal H matrix positioning values for three emitter classes (scaled for easy
comparison).

(All values ×10−5) H Position Terms Norm

Terrestrial [-379, 230., 404] 600.
LEO [8.36, -118, 540.] 552
MEO [10.4, -2.29, 14.1] 17.7

This method of comparing magnitudes of values in the measurement model can be useful

for comparing the relative effectiveness of various emitter and measurement types, but the

resulting values do not necessarily translate to a quantitative measurement of how much

better one emitter or measurement type performs as compared to another. For example,
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given that the H matrix values for TOA measurements from a LEO satellite are generally

two orders of magnitude smaller than those for Doppler measurements, it is reasonable to

expect that using the TOA measurements results in smaller position estimate errors than

using the Doppler measurements. However, it does not necessarily follow that the positioning

errors are two orders of magnitude smaller for TOA than for Doppler. This example only

considers the affect of geometry on position estimation quality, but the nominal measurement

error associated with each signal source and measurement type must also be considered. The

simulated pseudorange rate observables used in this work are dirtied with white Gaussian

noise with standard deviation values given in Table 3.2. The values are derived from a

frequency locked loop (FLL) tracking noise model given in [42].

Table 3.2: SOOP Doppler measurement noise parameters.

Constellation ρ̇ Noise (m/s 1σ)

Iridium 0.04438
Globalstar 0.2736
Orbcomm 0.1277

3.4 Navigator Implementation

This section summarizes the assumptions and implementation details for the remainder of the

SOOP navigator. The navigator as discussed in this chapter does not include any mechanism

for integrating collaborative range measurements. Modifications to the navigator to support

collaborative navigation are presented in Chapter 6.

The EKF time updated is conducted using a 6 degree of freedom (DOF) inertial mea-

surement unit (IMU) mechanization in the ECEF reference frame [38]. The corresponding
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continuous process noise matrix Q was determined by hand tuning and is given by

Q =



03×3 03×3 03×3 03×1 03×1

03×3 0.01I3 03×3 03×1 03×1

03×3 03×3 10× 10−9I3 03×1 03×1

01×3 01×3 01×3 0 0

01×3 01×3 01×3 0 10× 10−9


. (3.10)

Measurement noise model RDoppler at each measurement epoch is constructed using the same

noise standard deviations from Table 3.2 used to simulate the pseudorange rate observables.

If multiple measurements are available at a single epoch (as would be the case if multiple

satellites are simultaneously overhead), the measurement errors are assumed to be mutually

uncorrelated (i.e. RDoppler is always a diagonal matrix).

This chapter has shown that Doppler-based positioning schemes can be fitted into the

widely used navigator format consisting of an inertial measurement unit (IMU) fused to RF

measurements in an EKF without any structural accommodation other than a somewhat

convoluted measurement model. Special care must be taken, however, in selecting well-

suited signals and in adjusting positioning performance expectations as compared to TOA

schemes such as GNSSs.
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Chapter 4

LEO Performance Heuristics

The particular orbits used for satellites in a GNSS constellation are carefully selected to

yield acceptable performance at any location on earth at any point in time. The differ-

ences in GNSS performance between two different places on earth due to satellite geometry

tend to be small compared to other error sources (local obstructions such as urban canyons

notwithstanding) [43]. This is not the case for the LEO constellations of interest in this

work. Iridium, Globalstar, and Orbcomm are all part of communications networks, not

navigation systems, and their respective satellite orbits were selected with a different set of

tradeoffs in mind compared to a GNSS. With Iridium, for example, there is always at least

one satellite in view anywhere on the planet, but times and locations with two concurrent

visible satellites are rare, and those with more than two concurrent visible satellites are

rarer still. For navigation, having multiple concurrently visible emitters is an asset. For a

communications network, it is a waste of resources at best and actively detrimental at worst

due to crosstalk.

This chapter first examines how the expected number of visible satellites of interest

changes from one location to the next. A more Doppler-focused measure is then developed,

which is closely related to the dilution of precision (DOP) measure widely used with GNSSs.

It should be noted that similarly to the discussion of Doppler H matrices in Section 3.3,

the heuristic measures in this chapter are intended to compare the relative suitability of one
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scenario to another, and are ill-suited to the determination of precise performance expecta-

tions.

4.1 Overhead Satellite Counts

A simple and straightforward proxy for the suitability of a particular satellite geometry to

navigation is to count the number of visible emitters at a given location and time. In general,

receiving signals from a greater number of satellites imparts a greater quantity of information

to the receiver, thus resulting in better navigation performance.

Figures 4.1, 4.2, and 4.3 show the mean number of visible satellites above a 5° eleva-

tion mask for Iridium, Globalstar, and Orbcomm, respectively. The number of overhead

satellites is counted at each map point at 1-minute intervals over a 24-hour period. The

resulting 1440 instantaneous satellite counts for each point are averaged to approximate the

expected value. The values are calculated for a grid of points evenly spaced across 1810

latitude values and 3620 longitude values. Note that evenly spacing points across latitudes

and longitudes does not result in an even spacing of points on the earth’s surface, and the

map resulting from such a sampling method is an equirectangular projection [44]. A similar

map describing the total number of visible satellites across all three constellations is shown

in Figure 4.4. The most important takeaway from these maps is that the mean number of

overhead satellites does not change substantially as a function of longitude (equivalently, all

color gradients in each map are exclusively in the latitude direction). This stands to reason

given that the earth’s rotation makes moving through time effectively the same as changing

longitude from the perspective of a non-geosynchronous satellite. This observation regarding

variation across latitude and longitude permits the same data shown in Figures 4.1–4.4 to

be shown in a more easily interpreted form by examining a single line of longitude without

loss of generality.
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Figure 4.1: Expected overhead satellite map for Iridium.
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Figure 4.2: Expected overhead satellite map for Globalstar.
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Figure 4.3: Expected overhead satellite map for Orbcomm.
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Figure 4.4: Expected total overhead satellite map for the three LEO constellations.

Knowing that longitude is not a critical parameter, the same information shown in the

color maps is presented in chart form for the line of longitude at 85.5° W in Figures 4.5, 4.6,

and 4.7 — again for Iridium, Globalstar, and Orbcomm, respectively. The reduction in spa-

cial dimension permits easier visualization without the need for color gradients, and allows

for the addition of minima and maxima. The result for Iridium corroborates the claim that

the constellation does indeed have continuous visibility of at least one emitter at all locations.

Further, the number of visible satellites increases monotonically with latitude, with locations

outside of ±60◦ latitude having two or more satellites above the horizon at minimum, and

more than three on average. The other two constellations, with their non-polar-inclined

orbits, exhibit somewhat different behavior. They each have the highest average number

of visible satellites in lower-mid latitudes — roughly ±30◦ for both Globalstar and Orb-

comm — and have no visible satellites at any time near the poles. Additionally, Orbcomm

has the curious property that no location has guaranteed satellite visibility, but many lati-

tudes occasionally have four or five Orbcomm satellites visible at one time. The data from

these three plots are combined in Figure 4.8 to show the total number of overhead satellites

as a function of latitude. The overall shape is generally similar to the behavior of Iridium,

but the dropoff in visible satellites in both the mean and minimum cases is exaggerated near

the equator compared to Iridium alone.
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Figure 4.5: Expected number of overhead Iridium satellites at varying latitude.
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Figure 4.6: Expected number of overhead Globalstar satellites at varying latitude.
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Figure 4.7: Expected number of overhead Orbcomm satellites at varying latitude.
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Figure 4.8: Expected total number of overhead satellites at varying latitude.

4.2 Doppler Geometry Index

While visible satellite counts are useful and easy to understand, they neglect to account for

the type of measurement being utilized from each satellite and the uniqueness of the infor-

mation imparted by each satellite. For TOA-based navigation schemes like GNSSs, the DOP

serves this purpose, assigning a numeric value to a given satellite geometry which describes

the geometry’s quality from a TOA navigator’s perspective. Given an EKF measurement

model Hm×4 mapping m pseudoranges to a state vector comprised only of position and clock

bias, the corresponding DOP is given by

DOP =
√

tr
(
(HTH)−1) (4.1)

under the condition that HTH is invertible, which is typically (though not necessarily)

satisfied when m ≥ 4 measurements are present.

DOP is not linked only to TOA measurements, though there are factors which make

the adaptation of DOP to Doppler navigation difficult. The first issue is that of dimension.

The TOA-based conception of DOP shown in (4.1) uses an H matrix in which all values are

of like dimension — or, rather, all values are dimensionless, mapping length to length for

each state. This is not so with a Doppler measurement model, which includes an observable
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that is of dimension length
time

and states which are a mix of length and length
time

, meaning that

H contains values which may be dimensionless or have dimension 1
time

. In [45, 46] it is

shown that this issue can be mitigated with sufficient mathematical machinery. Even with

proper compensation for the dimensionality issue, a more fundamental problem remains,

which is that a true DOP calculation requires that HTH be invertible. For Doppler-based

positioning, m ≥ 8 measurements are necessary (though not necessarily sufficient) to meet

this invertibility condition, which rarely occurs with the combination of signal sources used

in this work.

Since DOP cannot serve its usual role under the conditions of interest, another geometry

indicator is required. To achieve this, the usual definition of DOP is modified to fit the needs

of this work. In modifying the DOP to such an end, the formal meaning of DOP is lost, and

so the resulting indicator is referred to as the Doppler geometry index (DGI) to emphasize

that it is not, in general, a direct substitute for DOP, despite it having similar properties.

The DGI is defined as

DGI =

√
tr
((
HT

p Hp

)−1
)

(4.2)

where Hp corresponds to the columns of the measurement model relating the observable to

the position only, as shown in (3.8). This modification eliminates the dimensionality mis-

match present in the näıve Doppler DOP and reduces the minimum number of measurements

required to achieve invertibility from eight to three. As with DOP, a lower DGI suggests that

a particular set of measurements provide better navigation results than a set of measure-

ments with a higher DGI. Unlike a true DOP metric, however, the DGI is not dimensionless;

it has a dimension of time. This work measures all velocities in units of meters per second,

so all DGI values presented in this work have units of seconds.

Even with the DGI’s lower requirement than DOP, some locations may not have enough

concurrent measurements to makeHT
p Hp invertible. It is not uncommon to have only a single
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satellite overhead for minutes at a time. Under such conditions, the navigator’s position is not

instantaneously observable given the measurements available, but an EKF can still utilize

the measurements to improve its state estimates. To adapt DGI to such conditions, the

measurements can be batched, lumping together measurements from a series of epochs. By

selecting a sufficiently long batch time, a DGI can be obtained for any location of interest. In

this way, locations can be compared to one another by selecting a common batch time that

is sufficient to calculate a DGI. Locations can also be compared by leveraging the property

that DGI (like DOP) tends to decrease as more measurements are added. In this way, a

target DGI can be selected and the batching time taken to reach the target at each location

can be compared, with a lower time-to-target-DGI indicating better geometry.

Figure 4.9 illustrates how the batched DGI evolves over time across a selection of 12 dif-

ferent satellite geometries. The scenarios model a stationary navigator at three different

latitudes and four different starting times-of-day on 13 February 2021. All the navigators

are located along 85.5° W longitude, and are each obtaining measurements at a rate of 1 Hz.

The first two batching epochs have been truncated to ensure that all scenarios have sufficient

data to compute a DGI. This result clearly shows the DGI decreasing over time, and that

the equatorial navigators — which consistently have few satellites in view — perform more

poorly than their higher-latitude counterparts, as expected. Of note is the equatorial nav-

igator starting at 12:00 UTC, which has only a single satellite in view for the first roughly

30 seconds of its run. This causes the 0° 12:00 UTC navigator to have a DGI several orders

of magnitude larger than the other navigators at the same latitude, which each have a mini-

mum of two visible satellites throughout the time window shown. When additional satellites

do rise above the horizon for the 12:00 navigator, its DGI drops quickly during the following

few epochs, indicating that the additional information is particularly useful for positioning.

Figures 4.10 and 4.11 offer a more general summary of the performance expectations at

varying latitudes. Each figure shows the same parameters, but with differing target values

and integration times. Figure 4.10 shows the necessary batching time (again obtaining
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measurements at 1 Hz) necessary to achieve DGI ≤ 100 s in addition to the DGI after

batching for 100 seconds at each latitude. Both the time-to-DGI and DGI-at-100 s results

lead to similar conclusions.

• Doppler geometry does, as anticipated, generally improve as the navigator is moved

towards the poles.

• The quality of the geometry can vary greatly depending on start time.

• General trends as a function of latitude do not substantially differ between the northern

and southern hemispheres.

• Geometry is especially poor in the immediate vicinity of the equator.

The results shown in Figure 4.11 show the same data with longer batching periods. These

data use a target value of DGI ≤ 20 s and a constant batching period of 600 s (10 min-

utes). These longer batching periods smooth out some of the moment-to-moment variation

in geometry at a given location, thereby offering a better sense of the nominal differences be-

tween latitudes. The conclusions drawn from these results do not differ from those previously

discussed for the moderate batching time case.
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Figure 4.10: Latitude-dependent DGI characteristics with moderate batching times.
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Figure 4.11: Latitude-dependent DGI characteristics with long batching times.
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Chapter 5

Solo Navigator Performance Study

To demonstrate the viability of the Doppler navigator described in Chapter 3, a simulation

environment is developed which models a series of UAVs navigating using the tightly-coupled

Doppler-INS EKF previously discussed. This chapter describes the implementation of the

simulation environment in more detail, and outlines a set of test scenarios which are used

to conduct Monte Carlo performance tests of the navigator. The navigator performance

characteristics resulting from the Monte Carlo tests are then presented and discussed.

5.1 Simulation Framework

To study the relative performance characteristics of the various navigators developed in

this work, a measurement-level simulation environment is developed such that a series of

non-collaborating navigators may be simulated. Further development of the simulation en-

vironment to support collaborative navigation is presented in Chapter 7. The simulation

environment is further modified to support experimentally collected ground and aerial vehi-

cle data in Chapter 8.

The generation of the simulated observables, it should be noted, is done geometrically ;

that is, pseudorange rate observables are generated directly from the simulated true relative

motion between the receiver and each emitter. Observables are dirtied by Gaussian noise

with standard deviations specified in Table 3.2.
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Three functional components supporting the navigator constitute the simulation envi-

ronment: inertial measurement generation, satellite position propagation, and measurement

generation. Figure 5.1 shows the notional relationships between these high-level compo-

nents. True trajectory generation and inertial measurement simulation are accomplished by

a modified fork of Aceinna’s gnss-ins-sim library [47]. The trajectory generator takes as

input a piecewise trajectory description and IMU error model terms to produce a time series

of position, velocity, and attitude values which are used as truth, as well as specific force

and angular velocity measurements from a simulated IMU. For this work, an IMU model

for a generic low-end tactical grade IMU generating measurements at a rate of 100 Hz is

used [38]. The parameters of the IMU error model are given in Table 5.1. Modeling satel-

lite positions over time is essential to obtaining realistic results in a system that depends

on measurements made from LEO satellites. The popular astronomy library Skyfield [48] is

used to translate basic orbital parameters specified in the ubiquitous two-line element (TLE)

format to a time series of position and velocity values. Though the library has many more

powerful functions for astronomical computation, here it serves the straightforward role of a

convenient wrapper around the well-known SGP4 algorithm [49] developed by NASA’s Jet

Propulsion Laboratory in the 1980s, which remains in broad use. As a final step, measure-

ments are generated on-demand while the navigator is running. Measurement generation

creates a simulated observable given true emitter and receiver state information.

Trajectory + IMU 
Simulation

(gnss-ins-sim)

Trajectory 
Description

Satellite Propagator 
(Skyfield)

Measurement 
Generation

EKF Navigator

Figure 5.1: High-level simulation components and associated data flow.
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Table 5.1: IMU model parameters.

Parameter Value Unit

Accelerometer Bias Drift 3.0× 10−3 m s−2

Accelerometer Velocity Random Walk 10.0× 10−3 m s−2Hz−
1
2

Gyroscope Bias Drift 50.0× 10−6 rad s−1

Gyroscope Angle Random Walk 100.0× 10−6 rad s−1Hz−
1
2

Given these basic building blocks of a simulation environment, the problem of ephemeris

error should be addressed. Ephemeris error describes error in a navigation solution caused

by uncorrected errors in the receiver’s knowledge of a satellite emitter’s position and/or ve-

locity. GNSSs reduce the effects of ephemeris error by employing a sophisticated network

of ground stations which can produce high-quality estimates of satellite orbital parameters

communicated to the receiver through the GNSS signal’s data message. In general, oppor-

tunistic satellite navigation systems do not have the luxury of precise a priori satellite orbit

information. Some satellite networks, such as Orbcomm, do indeed broadcast unencrypted

live ephemeris data which can be decoded by any receiver [10, 50, 51], but most do not.

For satellites for which live ephemerides are not available, orbital parameters are available

out-of-band from NORAD (or occasionally from the satellite network operator itself) in a

variety of formats, which are updated daily can be propagated using SGP4. Satellite po-

sitions propagated in this way can accumulate errors on the order of a few kilometers over

the course of a day [49]. Many prior works developing SOOP navigators employ methods

such as simultaneous tracking and navigation (STAN) to mitigate the performance impacts

caused by SGP4 propagation error. STAN is a technique in which the navigator attempts

to simultaneously estimate its own position, velocity, and time (PVT) states in addition to

those of the emitters [31, 52]. STAN is closely related to simultaneous localization and map-

ping (SLAM), which is often employed in vision navigation applications. The integration of

STAN techniques to compensate for ephemeris errors are not in the scope of this work, so

ephemeris errors are neglected.
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5.2 Monte Carlo Testing

Monte Carlo simulation is used in this work as the primary mechanism for studying the

navigation accuracy of the different navigators presented. In general, Monte Carlo simulation

is concerned with analyzing the behavior of a process that is influenced by stochastic effects.

It accomplishes this by repeating the process of interest many times, each time with freshly

generated stochastic inputs and identical deterministic inputs. The set of outputs produced

can then be used to draw conclusions about the general behavior of the process.

The results of Monte Carlo simulation are used to study two primary factors: the pres-

ence of estimate bias and the accuracy of the navigator’s estimated covariance. Bias in the

state estimate is often the result of unmodeled deterministic effects or imperfectly modeled

stochastic effects, and manifests in Monte Carlo results as a bias in the sample mean errors

observed across the entire test set. The second factor, the accuracy of the estimated covari-

ance, is particularly pertinent when testing uncertainty-based processes like EKFs. Recall

that the navigator itself produces not only an estimate of the state, but also a covariance

matrix which describes the EKF’s uncertainty in its own state estimate. For a Kalman filter

that has a linear time update model (as opposed to the linear approximations used in an

EKF), linear measurement models, and perfectly-modeled white Gaussian measurement and

process noise, not only is its state estimate optimal, but its covariance estimate is correct.

When the Kalman filter is extended to nonlinear systems, optimality of the state estimate is

not the only guarantee that is lost The covariance estimate may not be correct for an EKF,

even with properly-tuned noise models. The results of a Monte Carlo test can produce a

sample covariance for the entire state vector which can be compared to the EKF’s estimated

covariance to examine the estimator’s ability to properly model uncertainty.
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5.3 Test Scenario

The test results shown in this chapter utilize the sample trajectories shown in Figure 5.2

which include four aerial navigators. These trajectories are reused for the collaborative

test results in Chapter 7 to aid in comparison. The scenario run time is 100 seconds and

includes speeds varying from 0–10 m/s. The trajectories are defined in a generic north-east-

down (NED) coordinate frame with an origin that may be arbitrarily fixed to any point

on the earth. As part of the hot start assumption discussed in Chapter 3, the navigator

is initialized with an imperfect estimate of its states. The errors applied to the initial

position and velocity estimates are independent for each ECEF axis and are drawn from a

Gaussian distribution with σ = 3 m for the position terms and σ = 0.1 m/s for the velocity

terms. Initial attitude error is added by selecting a random axis of rotation from a uniform

distribution on the unit sphere and selecting a random angle of rotation from a Gaussian

distribution with σ = 0.01◦. The receiver clock drift is modeled as a constant 10 m/s with

the navigator’s estimate initialized to 0 m/s.

Given that the navigators in this scenario are using LEO Doppler measurements as

their only source of position-fixing navigation information, the navigators’ performance is

substantially impacted by the number and locations of the LEO satellites of interest. This

idea is discussed in detail in Chapter 4. So that the navigator is exposed to a range of

satellite geometries in this testing, scenarios are defined with the trajectories located on the

equator, at 30° N, and at 60° N. Due to symmetries induced by the rotation of the earth, the

test locations’ longitude may be selected arbitrarily, so all test scenarios are located along

85.5° W longitude, which runs through the city of Auburn, Alabama. To account for changes

in satellite geometry over time, tests are run with start times at 00:00 UTC, 06:00 UTC,

12:00 UTC, and 18:00 UTC. All start times use orbital data for 13 February 2021. The three

latitudes and four times-of-day combine to produce 12 unique scenarios, each with different

LEO satellite geometry. Each scenario is Monte Carlo tested with 100 iterations.
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Figure 5.2: The test trajectory consisting of four UAVs.

5.4 Test Results

The position estimate errors for the 100 Monte Carlo iterations starting at 00:00 UTC are

shown in Figure 5.3. The figure includes the position estimate error for each individual

Monte Carlo iteration as a collection of grey lines. The mean error across all iterations is

shown as a black line. An important takeaway from this result is that the observed errors

are zero-mean, or equivalently, that the estimator is unbiased. In addition are two sets of

±3σ bounds. The navigator’s estimated uncertainty derived from the covariance estimate

is shown in red — note that there are 100 copies of each red line on top of each other, one

from each iteration. A sample standard deviation calculated across Monte Carlo iterations

is shown in blue. In this instance, the uncertainties produced by the navigator and the

empirical uncertainty derived from the Monte Carlo test agree well, which indicates that
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the navigator has a good sense of its own uncertainty. Appendix A includes counterparts of

Figure 5.3 for a broader range of scenarios.

Figure 5.3: Position error for four non-collaborating navigators at 30° N.

Examining position error directly is useful for ensuring that the navigator is unbiased,

but using it to compare performance across scenarios quickly becomes difficult. Error mag-

nitudes are more tractable. Figures 5.4, 5.5, and 5.6 show the Monte Carlo position error

magnitudes for the navigator at 0°, 30° N, and 60° N, respectively. Additionally, similar data

with SOOP observables disabled entirely are shown in Figure 5.7. Positioning performance

is quite poor at the equator, but improves markedly at higher latitudes with the 30° N and

60° N cases achieving similar results.

To more directly compare across latitudes, Figure 5.8 shows the estimated and Monte

Carlo 3σ position error values for the three latitudes studied. Each bar consists of the

mean Monte Carlo 3σ value at the end of the 100 s run, averaged across the four starting

times-of-day and the four navigators in the group (so each bar includes data from a total of

1600 runs). Additionally, the mean estimated 3σ value is presented, as well as whisker bars
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showing how much the filter’s estimated uncertainty varies from run to run. Such variation

is caused by two effects. The first and most prominent effect is that of varying satellite

geometry. The differing sets of satellites visible at the four tested times-of-day contribute

to different covariance estimates produced by the navigator. The second effect arises from

errors in the position or velocity estimates causing errors in measurement model H, which

is a minor contributor to the variability in the results discussed in this chapter. The issue of

measurement model errors becomes a more noticeable factor once collaborative methods are

employed. This summary again shows the poor performance at the equator and improved

performance at mid and upper latitudes. Additionally the results shown in the bar chart

show that the navigator tends to be under-confident in its position estimate when it operates

under poor geometric conditions. The data in Figure 5.8 are given numerically (along with

results for other scenarios not yet introduced) in Table 7.1.

A comparison of the Monte Carlo end-of-run position error statistics (Figure 5.8) to

the DGI metric in Section 4.2 is shown in Figure 5.9. Comparing these sets of results

shows that while the DGI can serve as a general indicator of expected Doppler navigation

performance, it is not perfect. With appropriate scaling, the batching times required to

achieve DGI ≤ 100 s align well with the observed positioning errors at 30° N and 60° N.

Applying the same scaling to the positioning errors at the equator does not yield the same

level of agreement between DGI and the Monte Carlo analysis. Both the DGI and Monte

Carlo simulation agree that positioning performance is poorer at the equator than at the

other latitudes, but the DGI batch time metric cannot be used to reliably determine the

precise extent to which performance degrades under such conditions.
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Figure 5.4: Position error magnitude for four non-collaborating navigators at the equator.

Figure 5.5: Position error magnitude for four non-collaborating navigators at 30° N.
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Figure 5.6: Position error magnitude for four non-collaborating navigators at 60° N.

Figure 5.7: Position error magnitude for four non-collaborating navigators without SOOP
measurements.

39



0 30 60
Latitude (degrees)

0

25

50

75

100

125

150

Po
si

ti
on

 E
rr

or
 M

ag
ni

tu
de

 (
m

)

Filter Min/Max 3
Filter Mean 3
Monte Carlo 3

LEO Performance without Collaboration
100 Monte Carlo Iterations
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Chapter 6

Collaborative Navigation

Doppler-based opportunistic navigation is useful for providing navigation information in

challenging environments, but the positioning accuracy discussed in Chapter 5 indicates

that there is room for improvement. GNSSs, for instance, routinely achieve accuracies on

the order of a few meters. One way that navigation performance can be improved is by

combining information from multiple navigators in a collaborative navigation scheme. Col-

laborative navigation (or, equivalently, cooperative navigation) refers to any arrangement

where information from multiple navigating entities is aggregated in some fashion to im-

prove the performance of the overall system.

6.1 Peer-to-Peer Ranging

The specific collaborative environment studied in this work consists of a set of four identical

aerial vehicles which are able to exchange arbitrary information with each other. Each

navigator also has at its disposal high-quality range measurements to each of its peers, along

with the same opportunistic Doppler measurements previously discussed. The simulation

environment generates the peer-to-peer range measurements with a Gaussian noise error

model with σ = 5 cm. These peer-to-peer range measurements could be obtained using a

two-way time of flight (TW-ToF) system such as those utilized by ultrawideband (UWB)

radio transceivers. The range between two navigators α and β as measured by α using a
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TW-ToF measurement is given by

r =
1

2
c (tαRX − tαTX − (tβTX − tβRX)) (6.1)

=
1

2
c (tαRX − tαTX −∆tβResponse) .

The need for four time terms comes from the two-way nature of TW-ToF measurements.

More specifically, the situation modeled by (6.1) is that α transmits a signal at time tαTX,

which is received by β at time tβRX. After receiving a signal, β transmits a response at time

tβTX, which is received by α at time tαRX. The response time delay of β, denoted simply as

∆tβResponse, is usually a well-known constant value determined by the manufacturer of the

ranging equipment in use.

The principal advantage of such a range measurement system is that any dependence on

absolute clock biases in either of the two participating navigators is effectively eliminated The

measurement model depends only on measured time differences, rather than the absolute

time measurements necessary for obtaining range observables from TOA. This is not to say

that oscillator quality has no effect on measurement error, but only that its importance is

substantially reduced. Because of this, commercially available UWB transceivers boast range

measurement accuracies on the order of 1 cm without needing to resort to using bulky and

expensive atomic oscillators [53]. UWB transceivers can sometimes produce nominal error

magnitudes small enough that quantization error becomes the dominant source of error,

which is examined in [54]. This is in some sense a good problem to have, in that expected

measurement errors are small, but quantization error is often poorly approximated by a

Gaussian distribution, which can introduce modeling difficulties when using measurements

obtained from a UWB transceiver with an EKF-based navigation environment.

43



6.2 Data Fusion

Obtaining high-quality range measurements between peer navigators is generally straightfor-

ward, as discussed in Section 6.1. Usefully leveraging such measurements to improve overall

navigation performance is a more difficult task. Each of the collaborating navigators of in-

terest is using Doppler measurements to obtain a PVT estimate as described in Chapter 3.

An obvious technique for integrating peer-to-peer ranges would be to treat them like any

other observable and apply them as an EKF measurement update. This näıve data fusion

technique suffers from two main issues: peer state uncertainty and fusion inconsistency.

The problem of peer state uncertainty is analogous to that of ephemeris error in a GNSS

navigator. The local navigator’s PVT state is not the only PVT state being estimated in the

overall network. The peer navigator has its own state estimate and, critically, its own state

uncertainty. Neglecting to account for the peer’s uncertainty causes the EKF to assume

that the peer’s location is known perfectly, which would cause the estimator to treat the

range measurement as if it imparts a greater degree of certainty than it actually does. In

turn, this causes the local PVT uncertainty to be overly optimistic. Given that the peer’s

state uncertainty is known (at least to the peer) and can be communicated to the local

navigator, it can be used to properly model the uncertainty in the peer-to-peer range by

either coalescing both uncertainties into a common covariance matrix (Section 6.2.1) or by

inflating the measurement uncertainty itself (Section 6.2.2).

Fusion inconsistency is a more insidious issue. This problem arises due to improperly

accounting for cross-correlations between the local and peer state estimate errors. More

concretely, this means that even if peer state uncertainty is properly considered, applying

a peer-to-peer range measurement as a regular EKF measurement update carries with it

the implicit assumption that error in the local state estimate is uncorrelated with error in

the peer state estimate. This is unlikely to be the case, especially given that the local and

peer navigators are generally making use of the same SOOP measurements. In essence,
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breaking the EKF’s assumptions in this way leads to a double-counting of information. The

information held by each navigator in isolation is, to some extent, redundant when compared

to its peers, yet the EKF assumes that no such redundancy exists. The various collaborative

data fusion methods presented in this section have as a common trait some way to achieve

consistency even in the presence of correlated error among the collaborators. The mechanism

by which each method achieves fusion consistency varies considerably, with some attempting

to estimate the error correlation itself, while others opt to employ a conservative fusion

approach to become robust to unknown correlations.

This section introduces three collaborative data fusion methods. The first is a centralized

navigator, which serves as a best case point of comparison. The second is a decentralized

collaboration scheme which employs covariance intersection (CI) to fuse measurements into

each navigator’s PVT solution. The third uses inverse covariance intersection (ICI) for

decentralized data fusion in conjunction with augmented state vectors to estimate some of

the relevant correlation values. The third method, consisting both of the application of ICI

to SOOP navigation and the accompanying augmented state vector approach, comprise the

principal contribution of this work.

6.2.1 Centralized Collaboration

Mathematically speaking, the easiest way to eliminate issues stemming from peer state un-

certainty and fusion inconsistency is to consolidate all navigation information in a single,

centralized estimator. Thus for n navigators each with a state vector as defined in (3.3), the

central navigator has a single state vector in which the individual states for navigators 1..n

are concatenated, resulting in

δxCentral =

[
δpT

1 δvT
1 δΨT

1 δc∆t1 δc∆̇t1 · · · δpT
n δvT

n δΨT
n δc∆tn δc∆̇tn

]T
.

(6.2)
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The centralized navigator takes in all IMU measurements, SOOP Doppler measurements,

and peer-to-peer range measurements directly. This allows the EKF to account for both peer

state uncertainties and error correlations by having the state uncertainties and all associated

cross-correlations present in a single covariance matrix:

PCentral =


P1,1 · · · P1,n

...
. . .

...

Pn,1 · · · Pn,n

 (6.3)

where Pi,i describes the state covariance of the i
th navigator and Pi,j gives the state covariance

cross-correlation between the ith and jth navigators. It is the presence of these cross-terms

that permits the centralized navigator to properly integrate peer-to-peer ranges directly as

an EKF measurement update. For example, a range observable between the ith and jth

navigators, with i, j ∈ {1..n} and i < j, would produce an EKF measurement model of the

form

Hi→j,Central =

[
01×11(i−1)

(
pi−pj

|pi−pj |

)T

01×8 01×11(j−i−1) −
(

pi−pj

|pi−pj |

)T

01×8 01×11(n−j)

]
.

(6.4)

While mathematically advantageous, this method presents a number of challenges hin-

dering its implementation in any real system. Communicating all measurement information

to a single navigator running the centralized EKF is impractical, as it would require reliable,

high-bandwidth, low-latency communication channels to every peer navigator, which is es-

pecially challenging for IMU measurements, since they are often reported at frequencies on

the order of 100 Hz. Further, such an arrangement creates a single point of failure; the loss of

the central navigator, or even the disruption of communications with the central navigator,

constitutes a catastrophic failure of the entire network.
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Issues of practicality aside, the centralized navigator remains useful as a point of com-

parison for the decentralized methods. In simulation, issues of latency and communications

reliability can be readily ignored. As such, the centralized navigator is presented as a best

case scenario. For any given scenario, it is reasonable to expect the application of decen-

tralized collaboration to improve navigation performance relative to an equivalent set of

non-collaborating navigators. Simultaneously, it would be unreasonable to expect any de-

centralized arrangement to perform better than the centralized navigator described in this

section.

6.2.2 Decentralized Collaboration with CI

Decentralized approaches, wherein navigators share information with each other in an ad hoc

fashion, are generally better suited for realistic implementation than their centralized coun-

terparts, but they present their own set of challenges. As previously discussed, the issue

of consistency of data fusion (or, equivalently, avoidance of double-counting redundant in-

formation) is a prominent concern for a navigator wishing to leverage peer-to-peer range

measurements to improve position estimation performance. In the absence of a priori in-

formation about the relevant state covariance cross-terms, alternative approaches must be

considered to adapt the EKF navigator.

The CI algorithm is a well-understood and widely used method of fusing two state esti-

mates together in the presence of unknown cross-correlations. CI achieves this by eschewing

optimality (even for linear systems) in favor of consistency. CI may not produce an optimal

fusion, but it never produces a fused covariance that is more certain than an optimal fusion

would be [55, 56].

The general form of the CI algorithm takes as input two different estimates of the same

state vector, x̂a and x̂b, along with each estimate’s respective covariance, Pa and Pb. CI

combines these four values to produce a fused state estimate and covariance given by x̂CI
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and PCI, respectively. The fused values are computed by

PCI =
(
ωP−1

a + (1− ω)P−1
b

)−1
(6.5)

x̂CI = PCI

(
ωP−1

a x̂a + (1− ω)P−1
b x̂b

)
(6.6)

for some value of weighting factor ω ∈ [0, 1]. The value of ω is selected to minimize some

cost function. This work uses the trace of the fused covariance tr(PCI) as the cost function,

but this is not the only valid option.

CI can be understood spacially as overbounding the intersection of the two input co-

variances (hence covariance intersection). Figure 6.1 illustrates this point in two dimensions

by showing two hypothetical input uncertainty ellipses Pa and Pb. The uncertainty ellipse

resulting from an optimal fusion of the two is unknowable in the absence of more cross-

correlation information, so three plausible optimal fusion ellipses are shown in purple. The

uncertainty ellipse produced by CI fusion of Pa and Pb is shown in teal. The uncertainty PCI

overbounds all possible optimal fused P ellipses.

Possible Optimal 

Figure 6.1: An informal illustration of the CI algorithm.
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While CI addresses the issue of fusion consistency, it is not directly applicable to the

problem at hand (decentralized navigation using peer-to-peer ranges) in its basic form. The

CI equations given in (6.5) and (6.6) take as input two estimates of the same state vector.

For the navigators described here, each has only its own estimate of its state vector. The

peer-to-peer range measurements are related to its state vector through some measurement

model H. Fortunately, there is a modified version of the CI algorithm which takes the form

of a modified EKF measurement update [57]. The modified CI equations are

PCI =
(
ωP−1

a + (1− ω)HTR∗−1H
)−1

(6.7)

x̂CI = x̂a + (1− ω)PCIH
TR∗−1 (y − h(x̂a)) (6.8)

with weighting parameter ω being selected as before. New parameters not present in the

original CI equations include measurement covariance R, measurand y, and nonlinear mea-

surement model h. Equations (6.7) and (6.8) permit the integration of peer-to-peer range

measurements while avoiding consistency issues, but the problem of peer state uncertainty

remains. To compensate for this, the measurement covariance R is inflated to create a

compensated measurement covariance R∗ by

R∗
CI =

(
RCollab + (−H)PPeer(−H)T

)
WCI (6.9)

for peer state uncertainty PPeer and tunable weight factor WCI = 2.0.

With the necessary modifications in place, this method can be usefully employed to

integrate peer-to-peer measurements into a series of EKF-based navigators. Further infor-

mation on the development of this particular navigation method, and special considerations

regarding observability analysis, are examined in [58].
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6.2.3 Decentralized Collaboration with ICI

As with its more well-known sibling CI, the ICI algorithm allows for consistent fusion of two

state estimates in the presence of unknown cross-correlation. Also like CI, ICI is not (and

cannot be) optimal, but ICI’s advantage over CI is that it more tightly bounds the set of

possible optimal fusion results; that is, it is less conservative than CI, and so (in general)

produces superior results [19].

The general ICI equations for input state estimates and covariances x̂a, x̂b, Pa, and Pb

are given by

Θ = (ωPa + (1− ω)Pb)
−1 (6.10)

PICI =
(
P−1
a + P−1

b −Θ
)−1

(6.11)

K = PICI

(
P−1
a + ωΘ

)
(6.12)

L = PICI

(
P−1
b + (1− ω)Θ

)
(6.13)

x̂ICI = Kx̂a + Lx̂b (6.14)

with weighting parameter ω selected as before (such that tr(PICI) is minimized), and Θ, K,

and L being intermediate terms which serve only to improve equation readability.

Returning to the two-dimensional spacial analogy first presented in Figure 6.1, if CI

is an overbounding of intersecting uncertainty ellipses, then ICI can be thought about as

an underbounding of intersecting certainty ellipses. Figure 6.2 shows an illustration of this

idea with two input inverse covariances P−1
a and P−1

b , three plausible optimal fused inverse

covariances P−1, and the fused inverse covariance produced by ICI, P−1
ICI. It is important to

note that since these ellipses describe inverse covariances rather than covariances, a larger

ellipse indicates a smaller amount of uncertainty. This way of modeling uncertainty can

also be referred to as the information form, with the inverse covariance values describing an

amount of information provided by a given state estimate.
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Possible Optimal 

Figure 6.2: An informal illustration of the ICI algorithm.

Thus far, ICI is in every way a dual algorithm to CI. It solves the same basic problem,

it operates on the same inputs, and it produces outputs which, while not identical, are of

the same form and function. The primary challenge which prevents ICI from being useful

as a drop-in replacement for CI for the application of interest is that unlike CI, ICI does

not have a modified form which allows it to function in place of an EKF measurement

update. ICI equivalents to (6.7) and (6.8) do not exist. So to apply ICI to the problem of

collaborative navigation with peer-to-peer ranges, more invasive changes to the navigator

itself are required.

6.2.4 Adapting the Navigator for ICI

In its general form, ICI takes as input two estimates of the same state. Without any modifica-

tion, such inputs do not exist anywhere in a network of independent EKF-based navigators.
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Each navigator estimates its own state, and that estimate is the only one of its kind in the

entire network. So, with the use of ICI in a collaborative navigation environment as a start-

ing point, this section constructs a hybrid navigation architecture which borrows some ideas

from the centralized navigator, while retaining most of the advantages of a decentralized

network.

For clarity, this section shows the construction of the hybrid navigator with only two

collaborators, called “Node 1” and “Node 2”. The concepts presented are trivially extensible

to an arbitrary number of collaborators (implementation scalability concerns notwithstand-

ing). The most fundamental modification that is made to the existing EKF navigator is the

introduction of an augmented state vector. Each node’s state vector is extended to include

estimates of the positions and velocities of each of its peers, resulting in

δx̂1 =



δp1a

δv1a

δΨ1

δc∆t1

δc∆̇t1

δp2b

δv2b



δx̂2 =



δp2a

δv2a

δΨ2

δc∆t2

δc∆̇t2

δp1b

δv1b



(6.15)

with numerical subscripts (δp1, δp2, etc.) indicating the node which the sate describes and

alphabetic subscripts (δpa, δpb, etc.) indicating whether the state estimate is (a) local to the

node which it describes, or (b) a remote estimate maintained by some peer. The covariance
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matrices which correspond to the state vectors given in (6.15) are

P1 =

 P1a (11×11) P ∗
1a,2b (11×6)

P ∗
2b,1a (6×11) P2b (6×6)

 =



p1ap1a p1av1a p1aβ1

v1ap1a v1av1a v1aβ1

β1p1a β1v1a β1β1

p1ap2b p1av2b

v1ap2b v1av2b

β1p2b β1v2b

p2bp1a p2bv1a p2bβ1

v2bp1a v2bv1a v2bβ1

p2bp2b p2bv2b

v2bp2b v2bv2b


(6.16)

P2 =

 P2a (11×11) P ∗
2a1b (11×6)

P ∗
1b,2a (6×11) P1b (6×6)

 =



p2ap2a p2av2a p2aβ2

v2ap2a v2av2a v2aβ2

β2p2a β2v2a β2β2

p2ap1b p2av1b

v2ap1b v2av1b

β2p1b β2v1b

p1bp2a p1bv2a p1bβ2

v1bp2a v1bv2a v1bβ2

p1bp1b p1bv1b

v1bp1b v1bv1b


with

β1 =


δΨ1

δc∆t1

δc∆̇t1

 β2 =


δΨ2

δc∆t2

δc∆̇t2

 (6.17)

so that β encompasses the attitude and clock terms which are only present in the respective

local state vectors. Augmenting the state vectors and covariances in this way, with each

navigator keeping an estimate of the positions and velocities of each of its peers, creates

two estimates of the same state, at least for some subset of the original EKF state vector.

This fact is leveraged to apply ICI. During the EKF time update, these auxiliary states are

propagated assuming constant velocity. A process noise model given by

QAux =

03×3 03×3

03×3 1000.0I3

 (6.18)
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is concatenated along a block diagonal for each set of auxiliary states added onto the navi-

gator.

Augmenting the state vectors presents an additional advantage. The presence of the P ∗

terms in (6.16) constitute a subset of the inter-navigator cross-correlation values present in

the centralized navigator. The presence of these terms allows a range measurement taken by

Node 1 to be applied between states p1a and p2b directly as an EKF measurement update with

no special machinery needed to ensure fusion consistency. The corresponding measurement

model would be

H1→2 =

[(
p1−p2

|p1−p2|

)T

01×8 −
(

p1−p2

|p1−p2|

)T
]

(6.19)

with

R∗
ICI = RCollabWICI (6.20)

where WICI = 4.0 is an adjustable tuning parameter.

This does not mean that this hybrid navigator system effectively reduces to a centralized

navigator, nor does it imply that performance must match that of a centralized navigator.

It is important to note that in the case shown in (6.19), the measurement is applied between

p1a and p2b, not p2a. Node 1 still does not have access to all the information that Node 2

might have, including Node 2’s IMU measurements and SOOP observables. All Node 1 is

able to do to update its peer (b) state estimates is to employ constant velocity time updates

and peer-to-peer range updates. If Node 1’s navigator were left alone to operate in this way,

updating its own local (a) states as normal, the quality of the peer state estimates would

become poorer over time. Node 1 would never benefit from information that Node 2 has in

its peer state estimates. This is where the ICI algorithm itself becomes important: it allows

Node 1 and Node 2 to periodically swap state estimates, sharing any beneficial information
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that each has about the other’s position and velocity, while also effectively re-initializing

each’s peer state estimates.

Two logistical hurdles remain to applying an ICI fusion update to fuse the Node 1 and

Node 2 state vectors: each node has some states which are unique and the nodes’ states

are not in the same order. The second problem is quite easy to solve. Each of the two

collaborators must permute its respective state vector and covariance into some commonly

accepted canonical order. Solving the first issue, that of unique states, is somewhat more

involved. Consider the clock bias term in Node 1’s state vector, c∆t1. This term is not

found in Node 2’s state vector. In a Kalman filter sense, Node 2 has an infinite and uncor-

related uncertainty of this state (i.e. it has no information whatsoever). Leveraging this,

an arbitrarily-selected state value can be placed in Node 2’s state vector, accompanied by

the aforementioned infinite and uncorrelated covariance value. In the interest of avoiding

floating-point numerical issues when implementing this idea, an extremely-large-but-finite

value (denoted Ω) is used in place of infinity (this work uses Ω = 10100). These dummy

state estimates can be appended as needed to create a common state vector composition

and ordering between the two navigators, while ensuring that the ICI algorithm knows that

some nodes have no useful information to contribute on some of the states. Carrying out

this process for Node 1 and Node 2 results in

x̂′
1 =



p1a

v1a

p2b

v2b

β1

05×1


x̂′
2 =



p1b

v1b

p2a

v2a

05×1

β2


(6.21)
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which, when taken together, can be used as-is to perform an ICI fusion update to obtain

fused state estimate and covariance:

x̂′
ICI =



p1

v1

p2

v2

β1

β2


(6.23)

P ′
ICI =



P1 (6×6) P1,2 (6×6) P1,β1 (6×5) P1,β2 (6×5)

P2,1 (6×6) P2 (6×6) P2,β1 (6×5) P2,β2 (6×5)

Pβ1,1 (5×6) Pβ1,2 (5×6) Pβ1 (5×5) 05×5

Pβ2,1 (5×6) Pβ2,2 (5×6) 05×5 Pβ2 (5×5)


(6.24)

=



p1p1 p1v1 p1p2 p1v2 p1β1 p1β2

v1p1 v1v1 v1p2 v1v2 v1β1 v1β2

p2p1 p2v1 p2p2 p2v2 p2β1 p2β2

v2p1 v2v1 v2p2 v2v2 v2β1 v2β2

β1p1 β1v1 β1p2 β1v2 β1β1 05×5

β2p1 β2v1 β2p2 β2v2 05×5 β2β2


.

The resulting canonical state vector and covariance can then be rearranged back into the

preferred state ordering for each navigator, at which point each carries on as normal until

another ICI fusion updated is conducted. All Monte Carlo simulation results involving ICI

in this work carry out an ICI fusion update every 10 seconds.
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Chapter 7

Collaborative Navigator Performance Study

To study the effectiveness of each collaborative technique presented in Chapter 6, each may

be Monte Carlo tested using the same trajectories used for the solo navigator results (see

Figure 5.2). Each navigator in this chapter is tested at the same three latitudes and four

times of day described in Section 5.3, so the observed satellite geometry, and all other

deterministic effects, are identical across collaborative methods.

Figures 7.1, 7.2, and 7.3 show summarized performance characteristics computed sim-

ilarly to those in Figure 5.8 for 0°, 30° N, and 60° N, respectively. Note the drastically

different y-axis scaling for the equatorial scenario compared to the other two. Instead of

comparing performance across latitudes for non-collaborating navigators, each of these plots

examines the relative performance of each collaborative technique one latitude at a time.

As anticipated, the scenarios without collaboration generally perform the worst and

those with a centralized navigator perform the best across latitude classes, with the two

decentralized methods usually falling somewhere in between. One exception to this gen-

eralization is the performance of the CI navigator at 60° N (Figure 7.3), which produced

slightly larger position errors than the solo navigators, but overall the degradation in that

case is small. Further, for the two higher latitudes, CI offered little benefit as a collaborative

method. This could be caused by the high degree of correlation among the navigators’ co-

variances, which would cause the fused uncertainty produced by CI to be no better than the

input uncertainties. In this case, the performance gains realized by the ICI navigator arise
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not so much from the substitution of ICI for CI, but from the hybrid navigator architecture

that is required to permit the use of ICI in the first place. The extended state vectors allow

each node to estimate parts of the cross-correlations between navigators — even if those

cross-correlations are not as accurate as those produced by the centralized navigator. Thus

the ICI navigator can achieve accuracies closer to that of the centralized navigator than that

of the solo navigators.

The results at the equator (Figure 7.1), however, tell a different story. Here, it is the

CI navigator that comes closer to replicating the performance of the centralized case. It is

noteworthy, though, that despite the CI navigator offering improvement, this is not reflected

in the estimated covariance, indicating that the EKF has no idea that it has improved its

position estimate. CI does not always perform so well in environments with poor preexisting

performance, as exhibited in Figure 7.4, which shows performance characteristics for the

various collaborative methods with no LEO positioning information whatsoever. The relative

performance of each technique in this IMU-only case more closely resembles the scenarios at

higher latitudes than it does the scenario at the equator.

The performance figures shown in Figures 7.1–7.4 are given numerically in Table 7.1.
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Figure 7.1: Comparison of collaborative positioning techniques at the equator.
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Figure 7.2: Comparison of collaborative positioning techniques at 30° N.
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Figure 7.3: Comparison of collaborative positioning techniques at 60° N.
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Figure 7.4: Comparison of collaborative positioning techniques with no LEO measurements.
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Table 7.1: Comparison of collaborative positioning accuracies.

(All values in meters) No Collaboration CI ICI Centralized

IMU Only

Monte Carlo 3σ 138.6 131.6 104.3 91.6

Min Filter 3σ 186.5 188.6 151.0 93.3

Mean Filter 3σ 186.5 189.3 199.6 93.4

Max Filter 3σ 186.6 190.1 257.9 93.6

LEO 0° N Latitude

Monte Carlo 3σ 57.9 34.0 47.5 31.3

Min Filter 3σ 69.2 74.1 57.8 35.1

Mean Filter 3σ 112.5 118.5 103.7 56.3

Max Filter 3σ 157.7 177.0 156.5 78.7

LEO 30° N Latitude

Monte Carlo 3σ 11.8 11.7 7.4 5.8

Min Filter 3σ 11.8 12.3 7.1 6.1

Mean Filter 3σ 13.3 13.5 9.6 7.0

Max Filter 3σ 14.5 14.7 12.9 8.0

LEO 60° N Latitude

Monte Carlo 3σ 11.2 11.6 7.2 5.7

Min Filter 3σ 9.4 9.6 4.1 4.7

Mean Filter 3σ 12.4 12.6 7.1 6.3

Max Filter 3σ 15.1 15.3 12.2 7.7
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Chapter 8

Test Track Experiments

The central focus of this work is the development of the distributed ICI architecture and

the comparison of the ICI navigator against other collaborative methods. This end is well-

covered in Chapter 7. Nonetheless, it it is useful to take one more step in the direction of

implementation on real systems. This chapter adapts the solo SOOP navigator described

in Section 3.3 and the decentralized collaborative navigators described in Sections 6.2.2

and 6.2.4 to work with experimentally collected data.

Tests were conducted at Auburn University’s NCAT test track, which is located in

Lee County, Alabama, roughly 9 km (5.6 mi) southeast of Opelika at 32.596° N, 85.302° W.

The test track’s primary purpose is the testing of highway paving materials and tech-

niques [59], but the site also hosts facilities for vehicle autonomy or navigation research such

as this. In particular, the tests discussed in this chapter were conducted on the asphalt skid

pad located near the southeast corner of the test track property (32.5955° N, 85.2953° W).

8.1 Modifications to the Navigators

The navigators developed in Chapters 3 and 6 cannot be used as-is with the test track data

for two reasons: (1) the navigators assume that the dead reckoning timestep and the spacing

of measurement epochs is perfectly uniform and known a priori and (2) the two cars use an

entirely different time update mechanism than previously developed (wheel speed instead
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of 6-DOF IMU). The former issue is more or less a matter of implementation, and is easily

dealt with, while overcoming the latter issue requires more invasive changes.

To better accommodate ground vehicles, the state vector for all three vehicles is con-

verted from an ECEF reference frame to an NED reference frame fixed to the ground near

the center of the skid pad. Other than the change in reference frame, the resulting state

vector,

δx =



δp

δv

δΨ

δc∆t

δc∆̇t


=



δpN

δpE

δpD

δvN

δvE

δvD

δφ

δθ

δψ

δc∆t

δc∆̇t



(8.1)

is unchanged from the one described in (3.3). The navigators for the cars are further modified

to track attitude as yaw angle only (assuming pitch and roll to be zero). While the dimension

of the estimated attitude was reduced, the car navigators are not entirely reduced to two

dimensions. They each still estimate a vertical component of position and velocity, which

allows the cars to better account for the two-meter elevation difference from one end of the

skid pad to the other. This difference in elevation would negatively impact Doppler and

collaborative navigation performance if neglected.
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The EKF time update for the cars consists of a constant-velocity update of the estimated

position, and a dead reckoned update of the yaw from the single-axis gyro. The corresponding

empirically determined continuous process noise model is

QCar =



0.16 0 0 0 0 0 0 0 0 0 0

0 0.16 0 0 0 0 0 0 0 0 0

0 0 0.04 0 0 0 0 0 0 0 0

0 0 0 2.25 0 0 0 0 0 0 0

0 0 0 0 2.25 0 0 0 0 0 0

0 0 0 0 0 0.5625 0 0 0 0 0

0 0 0 0 0 0 40× 10−9 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0.01



. (8.2)

Wheel speed measurements are applied as a separate EKF measurement update. Integrat-

ing wheel speed measurements in a measurement update allows for a more straightforward

modeling of the uncertainty of the wheel speed measurements (i.e. the errors introduced by

wheel speed measurements are more readily modeled as a measurement noise source than a

process noise source). Additionally, this measurement update allows for a more fine-tuned

modeling of the implicit no-side-slip assumption that is often a part of wheel speed odometry.

As such, each odometry measurement is given by

yOdometer = vb =


vF

vR

vD

 =


vF

0

0

 (8.3)
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where the body frame velocity vb is expressed as the measured wheel speed in the forward

direction vF and implicit 0 measurements of the velocity in the right and down directions,

vR and vD, respectively. The measurement model associated with such a measurement,

neglecting the effects of heading estimate error, is

HOdometer =

[
03×3 Cb

n 03×5

]
(8.4)

where Cb
n is the rotation matrix from the navigation (NED) frame to the body forward-right-

down (FRD) frame. The rotation matrix is computed by assuming that pitch and roll are

zero and applying an elementary rotation about the vertical (down) axis of the NED frame,

or

Cb
n =


cos ψ̂ sin ψ̂ 0

− sin ψ̂ cos ψ̂ 0

0 0 1

 (8.5)

for estimated heading ψ̂. Using this wheel speed mechanization technique requires making

assumptions about lateral and vertical velocities, but utilizing an EKF measurement update

in this way allows the EKF to account for the uncertainty in these assumptions. The asso-

ciated measurement covariance for this odometry update consists of hand-tuned parameters

given by

ROdometer =


0.04 0 0

0 0.04 0

0 0 0.01

 . (8.6)
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The navigator design used for the UAV in these tests is unchanged from the design used

in simulation, save for a re-tuned continuous process noise model,

QTarrot =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.21 0 0 0 0 0 0 0

0 0 0 0 1.21 0 0 0 0 0 0

0 0 0 0 0 0.0025 0 0 0 0 0

0 0 0 0 0 0 30.5× 10−9 0 0 0 0

0 0 0 0 0 0 0 30.5× 10−9 0 0 0

0 0 0 0 0 0 0 0 305× 10−6 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0.01



.

(8.7)

The process noise model for auxiliary states used in the ICI navigator is also changed relative

to that used in the simulation environment. The process noise model used depends on the

peer vehicle’s type (car or UAV), not the local vehicle’s type. The models are given by

QAux,Car =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.01


(8.8)
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and

QAux,UAV =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0.1


(8.9)

for a car and UAV peer vehicle, respectively.

For the measurement updates integrating UWB range measurements, the UWB unit

reports an estimated 1σ uncertainty value. This reported uncertainty is combined with

residual monitoring and a tunable constant scale factor to obtain the collaborative measure-

ment covariance for the ICI navigator,

RUWB,ICI = max

(
σ2
UWB,

(r
2

)2
)
∗WICI,NCAT (8.10)

for range residual r computed during the measurement update and constant weight factor

WICI,NCAT = 4.0. This method of computing RUWB involving a max() function is used to

de-weight faulty measurements obtained from the UWB unit. Applying the same residual-

based technique to the CI-based navigator did not have a noticeable impact on the observed

position solution errors, so the form of the collaborative measurement covariance used with

CI is unchanged from (6.9),

R∗
UWB,CI =

(
σ2
UWB + (−H)PPeer(−H)T

)
WCI,NCAT (8.11)

with re-tuned weight factor WCI,NCAT = 1.0.
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8.2 Test Scenario

Testing with four UAVs in a similar manner to the simulated scenarios previously discussed

was not feasible due a lack of both four UAVs as well as — more importantly — four UAV

operators. A test scenario was developed using the vehicles that were available. Two cars

and one octo-rotor UAV were outfitted with Time Domain P440 UWB transceivers which

measured the range between each pair of vehicles. Note that at the time of writing, the

company which produced the UWB units, Time Domain, is defunct, but new company

called TDSR sells UWB transceivers with claim similar performance characteristics [60].

The cars consisted of a Lincoln MKZ and a Kia Optima — henceforth referred to as

“MKZ” and “Kia”, respectively. Both cars are equipped with high-quality GPS receivers

which produce position estimates that include real-time kinematic (RTK) corrections. The

position estimates produced by these receivers are nominally accurate to within a few cen-

timeters, suitable for use as truth values for the purposes of this work. RTK observables are

not provided to the navigators under test. The UWB units and GPS antennae were attached

to each car’s roof as shown in Figures 8.1 and 8.2.

The UAV is a Tarrot X8 octo-rotor unit. Like the two cars, it includes an RTK-enabled

GPS receiver which produces high-quality position estimates used as truth values, which

again are not provided to the navigators under test. Dead reckoning was performed using

the UAV’s onboard three-axis IMU. The equipment carried onboard the UAV is shown in

Figure 8.3, and all three test vehicles are shown together in Figure 8.4.

The test route consisted of the two cars beginning at opposite ends of the skid pad,

driving towards each other, circling each other for a turn and a half, then driving away from

each other such that each car ends up at the opposite end of the skid pad compared to where

it started. Meanwhile the UAV hovered roughly 20 m above the ground and either held

stationary or circled. The view from the driver’s seat of the Kia at the beginning of one of

the test runs is shown in Figure 8.5. RTK truth trajectories for the stationary and circling
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Figure 8.1: MKZ roof-mounted test equipment.

Figure 8.2: Kia roof-mounted test equipment.
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Figure 8.3: UAV-mounted test equipment.

Figure 8.4: Test vehicles during final checkouts before testing.
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UAV scenarios are shown in Figures 8.6 and 8.7, respectively. For sake of clarity, Section 8.3

only includes results from the trajectory with the stationary UAV. Corresponding results for

the trajectory with the circling UAV are given in Appendix B. The additional results do not

lead to substantially different conclusions.

Figure 8.5: View from the driver’s seat of the Kia before starting a test run.

During testing, each vehicle logged its respective RTK GPS solution, UWB range mea-

surements, and dead reckoning measurements (6-DOF IMU or yaw-gyro and wheel speed, as

appropriate). The integration of real-time SOOP measurement generation or a software de-

fined radio (SDR) SOOP receiver are beyond the scope of this work, so the data collected are

combined with the same LEO Doppler measurement simulation techniques used throughout

this work. All position estimation, including the integration of recorded UWB range mea-

surements, was completed in post-processing. Results are presented for both trajectories

(stationary and circling UAV), three collaborative modes (CI, ICI, and no collaboration),

and two SOOP modes (on and off), giving a total of twelve scenarios. For all ICI scenarios,

ICI fusion updates are conducted at 5 second intervals (0.2 Hz). Recall that in the ICI

navigator, the ICI fusion update is its own distinct operation separate from the peer-to-peer

range measurement update (see Section 6.2.3).
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Figure 8.6: Ground track of test run with a stationary hovering UAV.

© Mapbox © OpenStreetMap © Maxar
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Figure 8.7: Ground track of test run with a circling UAV.
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8.3 Results

8.3.1 With SOOPs

The position error magnitudes for each vehicle with LEO Doppler measurements and no col-

laborative ranging are shown in Figure 8.8. Since the error magnitudes do not substantially

differ from one vehicle to the next in this case, the RMS error across the three vehicles can

be examined to more easily compare collaborative methods. Such a comparison is shown in

Figure 8.9. Note that in this and similar plots the term “swarm” is used to denote that the

error describes an overall value for the group of three vehicles. More detailed results can be

found in Appendix B.

Interestingly, the addition of collaborative range measurements in this instance results

in no substantial gain in positioning performance. In fact, according to RMS error values, the

addition of collaborative ranging slightly degrades performance in both of the collaborative

scenarios in Figure 8.9. The reason this has happened is that the range measurements pro-

vided by the UWB transceivers were markedly worse than the UWBs’ own reported standard

deviation estimates would indicate. To demonstrate this, error of the range measurements

reported by the UWB units (using range computed from RTK GPS positions as truth) are

shown in Figure 8.10. These results show that the range measurement error is often on the

order of tens of meters, while the reported confidence estimate is much smaller. Not only

were the UWB transceivers performing worse than their specsheet would suggest, but the

units failed to properly report the degradation in performance in all but a few measurement

epochs. To avoid drastic negative performance impacts from these measurements, the ICI

navigator employs the residual-based fault de-weighting scheme described in (8.10). The

same approach did not improve the performance of the CI navigator, and so was not used.
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Figure 8.8: Position error magnitude with no collaboration.
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Figure 8.9: Overall position error magnitude for various collaborative methods.
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Figure 8.10: UWB measurement error.

8.3.2 Without SOOPs

One important difference between the results in this chapter and those of the simulated UAVs

is that ground vehicle dead reckoning using wheel speed and a single-axis gyro performs

much better than a full 6-DOF IMU mechanization (see Figure 7.4). Figures 8.11 and 8.12

show the true and estimated ground tracks for the MKZ and Kia (respectively) without any

positioning information other than wheel speed and yaw rate. (Note that the truth data

in Figure 8.11 appears as a series of discrete points. This is not an error, and is merely

a byproduct of the MKZ’s onboard GPS receiver having a slower reporting rate compared

to that of the Kia.) Each car completes the run with an RMS position error magnitude of

2.3 m. The ground track for the UAV under the same conditions is shown in Figure 8.13

(note the wider zoom level compared to Figures 8.11 and 8.12). The position errors for

the three vehicles in dead reckoned conditions are shown in Figure 8.14, which indicates

an RMS position error magnitude of 115.7 m for the UAV. Given the excellent positioning
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performance of the cars even with no RF measurements, tests were conducted with CI and

ICI on the test track datasets with LEO Doppler measurements disabled.

Position error magnitudes without SOOP navigation are shown in Figure 8.15. Both

collaborative methods are able to substantially reduce the position error of the UAV. The per-

vehicle position errors for the stationary trajectory are shown in Figures 8.14, 8.16, and 8.17

for the solo, CI, and ICI cases, respectively. These results show that the improvement to the

UAV’s position solution does not come at the expense of adversely affecting the positioning

performance of the cars. Both collaborative techniques are able to effectively reduce the

UAV’s RMS position error compared to the dead reckoned case, with reductions of 84% for

CI and 83% for ICI. Even with peer-to-peer ranges that have abnormally high measurement

error, collaborative navigation can improve position estimation quality. Similarly to the

previously discussed test track results with LEO measurements, a more comprehensive set

of results can be found in Appendix B.

8.3.3 Simulated UWB Measurements

Given the poor quality of the range measurements obtained from the UWB hardware, a

selection of the previously discussed tests were re-run with the range measurements simulated

based on the RTK true position data. The results of doing so are shown in Figure 8.18 for

the scenarios with LEO SOOPs and in Figure 8.19 for the scenarios without. Comparing

Figure 8.18 to Figure 8.9 shows that replacing the faulty UWB measurements with simulated

ones allows for both the CI and ICI methods to improve the overall positioning performance

in the presence of SOOP measurements. Comparing Figure 8.19 to Figure 8.15 results in a

similar improvement over the UWB-derived ranges for the cases with SOOP measurements

disabled. The performance gains caused by switching to simulated UWB measurements

remain modest, however. Achieving greater performance improvements is hampered by two

effects.
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• The RTK GPS position measurement epochs are not mutually synchronized across the

three vehicles. Consequently, the simulated UWB measurements are in some cases

using out-of-date position information, which, for the speeds and measurement fre-

quencies in this dataset, can introduce errors on the order of a few meters.

• Having only three vehicles, two of which are always on the ground, limits the geometric

diversity available to the collaborative navigation algorithms. The effect of relative

geometry on collaborative navigation performance is discussed in detail in [58].
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Figure 8.11: MKZ dead reckoned ground track.
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Figure 8.12: Kia dead reckoned ground track.
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Figure 8.13: UAV dead reckoned ground track.
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Figure 8.14: Position error magnitude with no collaboration and no SOOP measurements.
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Figure 8.15: Overall position error magnitude with no SOOP measurements.
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Figure 8.16: Position error magnitude with CI and no SOOP measurements.
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Figure 8.17: Position error magnitude with ICI and no SOOP measurements.
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Figure 8.18: Overall position error magnitude with simulated UWB ranges.

0 10 20 30 40 50 60 70
Time (s)

0

20

40

60

80

100

120

Po
sit

io
n 

er
ro

r m
ag

ni
tu

de
 (m

)

NoSat CI Stationary (RMS 10.2 m)
NoSat ICI Stationary (RMS 7.9 m)
NoSat Solo Stationary (RMS 66.8 m)

NoSat Stationary Swarm Error Magnitude

Figure 8.19: Overall position error magnitude with simulated UWB ranges and no SOOP
measurements.
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Chapter 9

Conclusions and Future Work

9.1 Summary

This thesis introduced the concept of opportunistic radionavigation using signals available

from LEO satellite communications networks (Chapter 2). In particular, the use of op-

portunistic Doppler measurements obtained from said LEO signals was introduced as a

workable alternative to the more common TOA measurements for use in a tightly-coupled

RF-INS EKF navigator (Chapter 3). Performance heuristics were developed in Chapter 4

to study how the expected positioning performance of LEO Doppler measurements changes

for different times and locations on the earth. In Chapter 5, the efficacy of a Doppler-based

navigator was examined more directly using Monte Carlo analysis of simulated navigators

across a selection of time and location conditions for the signals of interest. Collaborative

peer-to-peer ranging was introduced in Chapter 6 as a way to further aid navigation with

a selection of well-known and novel approaches presented. These collaborative navigation

methods were simulated in a similar manner to the non-cooperating Doppler navigators to

study the effectiveness of each method, again leveraging Monte Carlo analysis techniques

(Chapter 7). The decentralized collaborative navigation schemes were tested experimentally

using a set of two cars and one UAV obtaining range measurements using UWB transceivers

in Chapter 8.
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This chapter presents conclusions for three broad segments of this work. Section 9.2

discusses SOOP Doppler navigation in the absence of collaborative techniques, Section 9.3

examines the simulated experiments involving collaborative navigation, and Section 9.4 dis-

cusses the experimental results. Sections 9.5 presents a number of potential avenues for

future study.

9.2 Opportunistic Doppler Navigation

This work introduces the Doppler geometry index (DGI) as a way of examining the suitability

of a given satellite geometry to Doppler navigation in the absence of a straightforward

equivalent to the DOP parameter used for GNSSs. The performance results in Chapter 5

generally agree with the performance expectations set in Chapter 4, which indicates that

the DGI is a useful indicator of expected Doppler navigation performance, at least for LEO

emitters.

The simulation results in Chapter 5 also demonstrate that opportunistic Doppler naviga-

tion is an effective means of constraining error growth in the absence of GNSS signals. Even

at the equator, where heuristics suggest that LEO Doppler navigation quality will be poor,

the addition of SOOP observables results in a modest reduction in position error magnitude.

Away from the equator the effect is more pronounced, with little error growth whatsoever

during the course of the 100-second run. The position error growth is not bounded, how-

ever, and the observed error would continue to grow larger for longer scenarios. This means

that SOOP Doppler navigation using the constellations of interest is not by itself a workable

navigation strategy in the general case.

9.3 Collaborative Navigation Simulation Results

The collaborative navigation simulation study in Chapter 7 shows that the introduction of

peer-to-peer range measurements is effective for reducing position estimate error. In the best
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case — i.e. using a centralized navigator — the mean position error magnitude is reduced

by roughly half compared to an identical scenario without collaborative ranging. For the

scenarios away from the equator, the proposed ICI architecture demonstrated a reduction

in position error magnitude nearly as good as that of the centralized navigator, albeit with

the navigators producing less accurate covariance estimates than the centralized approach.

At the equator, the ICI navigator was outperformed by the simpler and more well-studied

CI navigator, though both decentralized methods reduced position error magnitude to some

extent. These results show that the hybridized architecture of the ICI navigators can be a

superior alternative to direct application of CI in some but not all cases. Each of the two

methods carries a similar communication load, but the ICI navigator is more computationally

expensive.

9.4 Collaborative Navigation Experimental Results

The experiments conducted at the NCAT test track allowed the two proposed decentral-

ized collaborative techniques to be studied in the presence of range measurements from

real hardware. The presence of measurement errors from the UWB units was substantially

larger than expected. This degraded the performance of both techniques, requiring addi-

tional deweighting to be applied to nearly all range measurements. Despite this challenge,

both collaborative techniques delivered usable navigation solutions and avoided producing

substantially degraded navigation solutions in the presence of bad measurements.

The collaborative navigators were, however, still able to reduce the position estimate

error for the cases without LEO Doppler measurements. Both the CI and ICI navigators

reduced overall position error magnitudes by roughly 80%, relying on the excellent dead

reckoning error characteristics of the cars to improve the position estimate quality of the

UAV even in the presence of worse-than-expected range measurements.

85



9.5 Future Work

A selection of opportunities for further research is presented here. Some of these items are

extensions of the concepts discussed in this work, while others regard alternative approaches

to the problems of interest.

• Test the proposed SOOP navigators with a higher-fidelity measurement model which

more closely approximates the measurement errors that would be expected from real

measurements.

• Integrate the proposed SOOP navigators with a software defined receiver (SDR) to

test with measurements collected from live sky.

• Examine the effects of adding terrestrial SOOP sources such as cellular signals in

various geometric configurations.

• Improve the data collection architecture to decrease the effects of time synchronization

offsets.

• Implement the proposed navigators in a real-time environment.

• Study the impacts of auxiliary state propagation methods other than constant velocity.

The addition of yaw rate or steer angle sharing among ground vehicles is particularly

promising as an area of improvement.

• Investigate the scalability of the collaborative navigation schemes to larger numbers of

collaborators.

• Employ heuristic measures such as DGI to dynamically adjust tuning, or to dynamically

select the best collaborative navigation method on a per-scenario basis.

• Adapt the proposed navigators to functioning in non-fully connected, sparsely con-

nected, or dynamically connected graph topologies.
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• Investigate the effects of different trajectory shapes on collaborative navigation perfor-

mance as studied in [58].

• Combine the hybridized navigator architecture proposed for use with ICI with the CI

algorithm to more directly compare the performance differences between the two data

fusion algorithms.
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Appendix A

Additional Monte Carlo Position Error Results

This appendix gives detailed position error results for all twelve 00:00 UTC navigator sce-

narios (three latitudes and four collaborative modes) as well as point-of-comparison results

for navigators with GPS and with no satellite measurements at all. Some plots shown here

are duplicates of those discussed in Chapters 5 and 7. They are repeated here to create a

complete set of aggregated results.

GPS Results with GPS enabled, shown in Figures A.1, A.2, A.3, and A.4, demonstrate

how the navigators behave in the presence of abundant navigation information. The resulting

position errors are substantially less than what would be obtained from a real GPS receiver,

which is a byproduct of the simplified measurement error models used in this work.

IMU Monte Carlo tests were also conducted with neither GPS nor LEO Doppler mea-

surements. These results show how the various collaborative techniques behave with only

each other’s dead reckoned estimates. The corresponding position error results are shown in

Figures A.5, A.6, A.7, and A.8.

LEO The remainder of the chapter is dedicated to the position error results across LEO

Doppler scenarios. Equatorial results are given in Figures A.9, A.10, A.11, and A.12. Results

from 30° N are given in Figures A.13, A.14, A.15, and A.16. Results from 60° N are given

in Figures A.17, A.18, A.19, and A.20.
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Figure A.1: Position error for a navigator using GPS and no collaboration.

Figure A.2: Position error for a navigator using GPS and CI.

99



Figure A.3: Position error for a navigator using GPS and ICI.

Figure A.4: Position error for a navigator using GPS and centralized collaboration.
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Figure A.5: Position error for a navigator using IMU and no collaboration.

Figure A.6: Position error for a navigator using IMU and CI.
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Figure A.7: Position error for a navigator using IMU and ICI.

Figure A.8: Position error for a navigator using IMU and centralized collaboration.
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Figure A.9: Position error for a navigator using LEO at the equator and no collaboration.

Figure A.10: Position error for a navigator using LEO at the equator and CI.
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Figure A.11: Position error for a navigator using LEO at the equator and ICI.

Figure A.12: Position error for a navigator using LEO at the equator and centralized col-
laboration.
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Figure A.13: Position error for a navigator using LEO at 30° N and no collaboration.

Figure A.14: Position error for a navigator using LEO at 30° N and CI.
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Figure A.15: Position error for a navigator using LEO at 30° N and ICI.

Figure A.16: Position error for a navigator using LEO at 30° N and centralized collaboration.
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Figure A.17: Position error for a navigator using LEO at 60° N and no collaboration.

Figure A.18: Position error for a navigator using LEO at 60° N and CI.
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Figure A.19: Position error for a navigator using LEO at 60° N and ICI.

Figure A.20: Position error for a navigator using LEO at 60° N and centralized collaboration.
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Appendix B

Additional Test Track Results

This appendix includes a broad set of test results relating to the NCAT test runs discussed

in Chapter 8. Section B.1 gives results corresponding exactly to those given in Chapter 8,

but for the trajectory with the circling UAV rather than with the static UAV. Section B.2

gives additional supporting data for both trajectory types.

B.1 Circling Trajectory Results

Figures B.1 – B.10 mirror exactly those in Section 8.3, but using the circling rather than

static trajectory. Corresponding plots appear in the same order, and each plot caption in

this section includes a reference to its counterpart.

B.2 Additional Data

This section includes a selection of plots showing position and velocity estimate errors in

each of the NED axes, along with the accompanying EKF estimated covariances. Such data

demonstrates how well or how poorly the EKF is estimating its uncertainty. Note that y-axis

scale varies from one plot to the next so that the maximum amount of detail may be shown

for each scenario, so care must be taken when comparing across scenarios. Figures B.11 –

B.16 describe scenarios with SOOP measurements, and Figures B.17 – B.22 describe those

without. All results shown in this section use the stationary trajectory. Results using the
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circling trajectory have been omitted for brevity and do not substantially differ. Figure B.23

shows one of the UWB units being removed from its mounting hardware; attempts to remove

the unit non-destructively were unsuccessful.
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Figure B.1: Position error magnitude with no collaboration (see Fig. 8.8).
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Figure B.2: Overall position error magnitude for various collaborative methods (see Fig. 8.9).
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Figure B.3: UWB measurement error (see Fig. 8.10).
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Figure B.4: MKZ dead reckoned ground track (see Fig. 8.11).
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Figure B.5: Kia dead reckoned ground track (see Fig. 8.12).
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Figure B.6: UAV dead reckoned ground track (see Fig. 8.13).
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Figure B.7: Position error magnitude with no collaboration and no SOOP measurements
(see Fig. 8.14).
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Figure B.8: Overall position error magnitude with no SOOP measurements (see Fig. 8.15).
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Figure B.9: Position error magnitude with CI and no SOOP measurements (see Fig. 8.16).
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Figure B.10: Position error magnitude with ICI and no SOOP measurements (see Fig. 8.17).
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Figure B.11: NED position errors with LEO SOOPs and no collaboration.
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Figure B.12: NED velocity errors with LEO SOOPs and no collaboration.
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Figure B.13: NED position errors with LEO SOOPs and CI.
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Figure B.14: NED velocity errors with LEO SOOPs and CI.
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Figure B.15: NED position errors with LEO SOOPs and ICI.
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Figure B.16: NED velocity errors with LEO SOOPs and ICI.
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Figure B.17: NED position errors with no SOOPs and no collaboration.
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Figure B.18: NED velocity errors with no SOOPs and no collaboration.
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Figure B.19: NED position errors with no SOOPs and CI.
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Figure B.20: NED velocity errors with no SOOPs and CI.
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Figure B.21: NED position errors with no SOOPs and ICI.
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Figure B.22: NED velocity errors with no SOOPs and ICI.
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Figure B.23: Removing a UWB unit from its mounting hardware.

122



Colophon

This thesis was typeset with LATEX2ε using the TEX Live package running on

Ubuntu 20.04.1. The body serif font is Computer Modern, the sans-serif font used in

figures is DejaVu Sans, and the monospaced font is DejaVu Sans Mono. Writing and

editing was done using GNU Emacs 28.2, with special thanks to the GNU Aspell package

for finding and fixing innumreable spelling errors.

Affiliation Disclosure

The author’s affiliation with The Mitre Corporation is provided for identification

purposes only, and is not intended to convey or imply Mitre’s concurrence with, or

support for, the positions, opinions, or viewpoints expressed by the author.

123


	Abstract
	Acknowledgments
	Introduction
	Prior Art
	Contributions of This Work
	Overview of Subsequent Chapters

	Signals of Opportunity
	Opportunistic Navigation
	Useful SOOPs

	Doppler Navigation
	The Doppler Effect
	Historical Doppler Navigation
	Application to an EKF Navigator
	Navigator Implementation

	LEO Performance Heuristics
	Overhead Satellite Counts
	Doppler Geometry Index

	Solo Navigator Performance Study
	Simulation Framework
	Monte Carlo Testing
	Test Scenario
	Test Results

	Collaborative Navigation
	Peer-to-Peer Ranging
	Data Fusion
	Centralized Collaboration
	Decentralized Collaboration with CI
	Decentralized Collaboration with ICI
	Adapting the Navigator for ICI


	Collaborative Navigator Performance Study
	Test Track Experiments
	Modifications to the Navigators
	Test Scenario
	Results
	With SOOPs
	Without SOOPs
	Simulated UWB Measurements


	Conclusions and Future Work
	Summary
	Opportunistic Doppler Navigation
	Collaborative Navigation Simulation Results
	Collaborative Navigation Experimental Results
	Future Work

	References
	Appendices
	Additional Monte Carlo Position Error Results
	Additional Test Track Results
	Circling Trajectory Results
	Additional Data


