
Segmentation and 3D reconstruction of root systems and Humulus lupulus for high-
throughput phenotyping using deep neural networks and 3D imaging 

by 

Mary Elizabeth Cassity 

A thesis submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the Degree of 

Master of Science 

Auburn, Alabama 
August 05, 2023 

Keywords: Root system architecture, X-ray computed tomography, Instance segmentation, 
DBSCAN, Humulus lupulus, Stereo vision, Semantic segmentation, Point clouds 

Copyright 2023 by Mary Elizabeth Cassity 

Approved by 

Yin Bao, Chair, Assistant Professor of Biosystems Engineering 
Paul C. Bartley, Assistant Professor of Horticulture 

Tanzeel Rehman, Assistant Professor of Biosystems Engineering 
Alvaro Sanz-Saez, Assistant Professor of Crop, Soil and Environmental Sciences 



2 

 

Abstract 
 

 The availability of artificial intelligence (AI) tools for computer vision applications has 

greatly increased in recent years, with many advanced tools available to researchers across 

various fields. Precision agriculture has likewise seen an increase in the application of computer 

vision technologies to the field, including the application of computer vision to crop 

phenotyping. AI-empowered phenotyping can significantly reduce labor burdens and risks, 

providing efficient and high-throughput tools to process numerous plants efficiently. This paper 

explores two applications of computer vision to challenges in horticultural phenotyping in three-

dimensional (3D) space.  

 The first work addresses the segmentation and reconstruction of root systems from X-ray 

computed tomography (CT) images. Accurate phenotyping of root system architecture (RSA) is 

a significant challenge in horticultural phenotyping because the root system is below the soil, 

occluding it from view and requiring traditional phenotyping techniques to remove the root 

system from the soil. Segmentation and reconstruction of the root system from X-ray CT images 

is therefore integral to observing the root system undisturbed in the soil and over time in 

response to abiotic and biotic stress. Numerous image-processing techniques have been applied 

to the problem of segmentation of below soil root systems from CT images. However, these 

methods often require user intervention and require input parameters tuned to plant species and 

soil conditions. A recent deep learning approach employed a volumetric encoder-decoder to 

achieve high scores for common computer vision accuracy metrics. However, training a 

volumetric model relies on copious amounts of hand-annotated training data. We propose using a 
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two-dimensional (2D) Mask R-CNN model for instance segmentation of root cross sections in 

CT images. The 2D predictions can be merged to produce a 3D prediction. We also propose an 

automated parameter tuning pipeline for density-based spatial clustering of applications with 

noise (DBSCAN) to remove noise from the 3D segmentation. The proposed method was 

evaluated on scans of poinsettias and onions and achieved average scores of 0.734, 0.868, 0.749, 

and 0.669 for precision, recall, dice, and IoU, respectively, utilizing only 1% of the training 

dataset. Our proposed method is resource efficient, capitalizing on the training efficiency of a 2D 

model as well as 3D information during the unsupervised clustering using DBSCAN.  

 Our second work addresses the use of stereo vision for 3D reconstruction of Humulus 

lupulus (hops) as well as a semi-automated pipeline for phenotypic trait extraction of vine length, 

leaf area, and biomass. High-throughput computer vision tools for phenotyping are important for 

variety trials of hops, as they facilitate fast and safe measurement taking as well as non-

destructive measurement of leaf area and biomass. However, studies developing computer vision 

and machine learning for morphological phenotyping are not common for vine plants, and even 

less work has been completed for hops. Therefore, this work will develop and evaluate a method 

for hop morphological phenotyping. A 2D transformer, SegFormer, was trained for semantic 

segmentation of the hops and used to segment hop plants from 3D point cloud scenes retrieved 

from a ZED 2 stereo camera. Measurements of vine length, leaf area, and biomass were derived 

from the segmented point clouds, yielding high R2 values of 0.79, 0.95, and 0.91, respectively, 

indicative of a strong correlation between the derived measurements and the ground truth 

measurements.  
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Chapter 1. Introduction 

 Research in artificial intelligence (AI) has seen dramatic innovations in the field in recent 

years. As foundational research in AI for computer vision flourishes, accessible tools for applied 

computer vision projects have become available, such as Facebook’s Detectron2, OpenCV, and 

opensource libraries such as Hugging Face’s Transformers library (Bradski, 2000; Wolf et al., 

2020; Wu et al., 2019). The developers, contributors to, and maintainers of these tools have 

given an invaluable resource to researchers in all disciplines: the ability to apply AI to challenges 

of efficiency, accuracy, and safety in their fields.  

 Agricultural and horticultural research is no exception to the influence of applied AI 

research, encompassing applications of the closely related fields of computer vision, machine 

learning, and deep learning. High-throughput phenotyping has been of particular interest, with 

the push for phenotyping technology development to meet the pace of genotyping technology 

development (Ninomiya, 2022; White et al., 2012). This is reflected in the many current research 

centers today dedicated to plant phenotyping (Ninomiya, 2022). Distinct applications of 

computer vision, machine learning, and deep learning to above-ground plant phenotyping 

include: plant disease detection (Roy & Bhaduri, 2021; Singh et al., 2020), stress detection 

(Ghosal et al., 2018; Ramos-Giraldo et al., 2020), yield prediction (Liu et al., 2017; Pothen & 

Nuske, 2016), and morphology, including plant architecture and measurements such as leaf area 

and biomass (Azzari et al., 2013; Chaivivatrakul et al., 2014; Jiang et al., 2016; Niknejad et al., 

2023; Xiang et al., 2019). Below ground phenotyping of root systems is represented widely in 

literature of applied image processing and deep learning for image segmentation (Flavel et al., 
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2017; Gerth et al., 2021; Mairhofer et al., 2012; Mooney et al., 2012; Phalempin et al., 2021; 

Soltaninejad et al., 2020). 

The hand phenotyping of morphological traits both above and below ground can be labor 

intensive and destructive if the measurement technique requires the removal of the plant from its 

in situ environment. Hence, tools such as PlantCV (Gehan et al., 2017), a Python library for two-

dimensional (2D) analysis of plant morphology, and Phenomenal (Artzet et al., 2019), a Python 

library for three-dimensional (3D) analysis of plant morphology have been developed for 

applying computer vision to the challenge of rapid assessment of plant morphology. 

Furthermore, numerous studies reflect the application of AI to morphological plant phenotyping, 

including crops such as corn (Chaivivatrakul et al., 2014), sorghum (Xiang et al., 2019), cotton 

(Jiang et al., 2016), and pine trees (Niknejad et al., 2023).  

This work aims to explore new solutions to challenges in rapid phenotyping of plant 

morphology, both above and below ground. The second chapter of this thesis (Objective 1) 

builds upon extensive research in the challenge of segmenting root systems from X-ray 

computed tomography (CT) images for below ground plant organ morphological phenotyping. 

Segmenting roots from X-ray CT images allows for the non-destructive phenotyping of in situ 

root systems over time. The third chapter of this thesis (Objective 2) investigates a less 

investigated challenge: the application of computer vision and machine learning to the 

morphological phenotyping of above ground Humulus lupulus (hop) vines. Methods for 

measuring vine length, leaf area, and biomass were developed and evaluated, allowing for 

efficient and non-destructive measurement of these traits over time.  
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Objective 1. Root segmentation of X-ray computed tomography images of container 

horticultural plants using Mask R-CNN and DBSCAN-based 3D point cloud clustering 

The objective of this study is to develop and evaluate a fully automated approach to root 

segmentation from X-ray CT images that is computationally and resource efficient and does not 

require large amounts of training data. We propose using a pretrained Mask R-CNN (He et al., 

2020) model for instance segmentation of roots from 2D X-ray CT images. Training a model on 

2D images as well as implementing transfer learning with a pretrained model greatly reduces the 

amount of training data necessary, reducing the time and labor needed to annotate data to apply 

this method to other images containing roots of different species. Masks from predicting on 

sequential CT images can be concatenated to produce a volumetric segmentation of the whole 

root system. After segmenting roots from 2D images, we also incorporated 3D information in 

post-processing to filter noise introduced by the 2D instance segmentation density-based spatial 

clustering of applications with noise (DBSCAN) (Sander et al., 1998). DBSCAN is an 

unsupervised machine learning algorithm that is robust to noise and not vulnerable to clustering 

mistakes caused by lateral roots, branching, and negative geotropism roots. Furthermore, we 

propose a fully automatic parameter tuning approach for DBSCAN. Thus, we were able to utilize 

3D information in our approach without incurring considerable labor burdens. Our methodology 

does not require user input and is fully automated for segmenting unseen inputs. 

To the best of our knowledge, our contribution is four-fold. This work evaluates instance 

segmentation on 2D X-ray CT images for volumetric segmentation of roots in growing mediums. 

Second, we trained and evaluated one deep learning model on two different species. Third, we 

investigated training and predicting on 2D images along all axes of the soil column and 
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combining predictions from multiple axes. Fourth, we implemented DBSCAN with fully 

automated parameter tuning for automatic noise removal. 

Objective 2. High-throughput phenotyping of Humulus lupulus in greenhouse using stereo 

vision, semantic segmentation, and 3D point cloud analysis 

The objective of this study is to develop a semi-automated approach for measuring 

phenotypic traits of hops including vine length, leaf area, and biomass. We propose fine-tuning a 

2D SegFormer (Xie et al., 2021) model from the Hugging Face Transformers library (Wolf et al., 

2020) for semantic segmentation of hop plant from 2D images. Stereolabs’ ZED 2 (Stereolabs, 

San Francisco, CA) camera was used to capture ZED SVO files. Left right stereo image pairs 

and corresponding point clouds were retrieved from the SVO files. Hop plants were segmented 

from the left stereo image using the fine-tuned SegFormer model and the 2D segmentations were 

applied to the 3D point clouds. A semi-automated pipeline was developed and assessed to 

measure vine length, leaf area, and biomass from the point clouds. The V-shaped architecture 

imposed on the hops by growing them on a trellis was leveraged for individual vine separation 

and length measurement using random sample consensus (RANSAC) (Fischler & Bolles, 1981). 

Furthermore, total leaf area for each plant was estimated by summing the total triangle areas in a 

triangle mesh of the segmented 3D point cloud. Biomass results regressed from voxel count and 

leaf area were compared.  

To the best of our knowledge, this is the first work to employ computer vision and 

machine learning for automating individual plant segmentation and 3D reconstruction for 

morphological phenotypic trait extraction for hops.  
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Chapter 2. Root segmentation of X-ray computed tomography 

images of container horticultural plants using Mask R-CNN and 

DBSCAN-based 3D point cloud clustering 

2.1 Abstract 

X-ray computed tomography (CT) is a powerful tool for in situ plant root system 

architecture (RSA) characterization. Accurate root segmentation from CT images is integral to 

studying RSA. Research studies on segmenting roots from CT images have been mainly limited 

to image processing-based approaches which may require parameter tuning and often lack 

common segmentation metrics, e.g., dice and IoU. A recent deep learning approach utilizes a 

volumetric encoder-decoder network to achieve a high dice score and IoU. However, training a 

volumetric encoder-decoder model is dependent on the availability of fully annotated scans of 

the soil column, obtaining which can be time-consuming, tedious, and resource-intensive. In this 

study, an efficient method using deep learning-based instance segmentation in conjunction with 

density-based spatial clustering of applications with noise (DBSCAN)-based filtering was 

developed and evaluated for container horticultural plants. A two-dimensional Mask R-CNN 

model was fine-tuned on CT images to detect root instances. Sequential two-dimensional 

predictions were combined to produce a volumetric segmentation of the root system. Merged 

predictions along multiple axes of the soil column were compared to predictions made along one 

axis of the soil column. DBSCAN was used to filter noise from the volumetric segmentation with 

an automated parameter tuning technique. The proposed method was evaluated on scans of 
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poinsettias and onions and achieved average scores of 0.734, 0.868, 0.749, and 0.669 for 

precision, recall, dice, and IoU, respectively, utilizing only 1% of the training dataset. The 

proposed method requires significantly fewer annotations compared to the volumetric encoder-

decoder approach, making it more accessible to use. 

2.2 Introduction  

Crop phenotyping is important for breeding resource-efficient crops, but conventional 

phenotyping methods are often limited to what can be seen above ground. However, root systems 

play a vital role in many plant functions, and a deeper understanding of how root systems 

interact with the environment can lead to the development of more resilient crops. Roots respond 

to both biotic and abiotic stress, reacting by changing their architecture in response to various 

conditions (Downie et al., 2015; Smith & De Smet, 2012). Moreover, root system architecture 

(RSA) determines a plant's distribution of resource capture and transport functions (Koevoets et 

al., 2016). Therefore, quantitatively capturing RSA is an important part of plant phenotyping. 

Invasive approaches such as removing the root system from the soil have been used to phenotype 

RSA. However, these methods deform the root’s three-dimensional (3D) structure and often 

cause a loss of root mass either through loss of fine roots during removal or after removal from 

soil (Livesley, 1998; van Noordwijk & Floris, 1979). Other studies have indicated error in 

overestimating biomass measurements due to the adherence of non-root particles (Janzen, 2002). 

Furthermore, invasive methods do not allow for replanting the roots in the same 3D 

configuration they occupied before, making it impossible to analyze the root system’s spatial 

growth over time (Mooney et al., 2012). Research in segmentation of roots grown in soil or a 
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growing medium (Kang et al., 2021; Shen et al., 2020; Wang et al., 2019; Yu et al., 2023) or a 

gel medium (Gaggion et al., 2021; Thesma & Mohammadpour Velni, 2022) from two-

dimensional (2D) images taken of cross sections of soil profiles is common. These methods offer 

a solution for low cost and rapid imaging of in situ root systems over time, however, they do not 

capture a 3D view of the root system.  

X-ray computed tomography (CT), originally developed by G.N. Hounsfield for medical 

and clinical imaging (Mooney et al., 2012), offers a tool for non-invasive RSA phenotyping. 

Advances in CT technology that allow for higher resolution imaging have given X-ray CT a 

place in phenotyping RSA (Mooney et al., 2012). Furthermore, X-ray CT has been evidenced as 

a tool to detect both biotic and abiotic stress (Tollner, 1991). A common method for segmenting 

root systems from X-ray CT images is thresholding (Galkovskyi et al., 2012; Shao et al., 2021). 

However, characteristics of root systems and the substrate they grow in pose significant 

challenges to accurate segmentation of root systems from X-ray CT images, including, overlap in 

attenuation values between root matter and water or other organic matter in the substrate and root 

topology such as negative geotropism roots (Mooney et al., 2012). It is important to note that 

using X-ray CT is appropriate for plants grown in containers that can be placed in the X-ray 

scanner CT without disturbing the roots and the soil or growing medium.  

Many 2D and 3D image-processing based segmentation methods include methodologies 

to mitigate the inaccuracies introduced by overlapping attenuation values and diverse root 

topology such as RooTrak (Mairhofer et al., 2012), Root1 (Flavel et al., 2017), Rootine v.2 

(Phalempin et al., 2021), and RootForce (Gerth et al., 2021). Note, when used in this work 

“accuracy” refers to multiple computer vision metrics, including precision, recall, dice, and IoU 
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as opposed to the number of correct predictions divided by the total number of predictions. 

Please refer to the Evaluation section for the definitions of precision, recall, dice, and IoU.  

RooTrak employs a top-down tracking approach across sequential CT images to mitigate 

error incurred by overlapping attenuation values as well as varying attenuation values of root 

material within the root system. By using the level-set method (also employed in a work by Tabb 

et al. in 2018), local models of the distribution of the attenuation values are made for each image. 

The level-set function (Sethian, 1999) is updated from each previous image to be applied to the 

next image in the stack using the Jensen-Shannon (JS) divergence (Lin, 1991). Because the local 

model for each image is affected by the previous, error incurred can accumulate as RooTrak 

traverses down the image stack. To remedy this, the model is only updated if the root shapes of 

the current image are similar to the root shapes in the previous image (Mooney et al., 2012). To 

use RooTrak, a user first initializes the tracking by clicking in the root segmentation in the first 

image of the image stack. 

Root1 uses ImageJ for 3D segmentation of roots. First, the CT images are normalized and 

then enlarged to avoid creating discontinuity of the root system during a later erosion process. 

Next, ImageJ’s “Find Edges” tool is used to ameliorate the partial volume effect (PVE), caused 

by the occurrence of both root and other matter being contained in one voxel in the CT image. 

After the input image has been prepared, ImageJ’s “Median (3D)” is employed to remove small 

objects attached to the root system before a bilevel thresholding is implemented. After the 

segmentation by thresholding is complete, the ImageJ plugin “Erode (3D)” can be used to 

remove continuity between the segmented roots and poor space. Finally, the segmentation is 
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exported and VGStudioMax is used to select the root system based on connectivity with a user 

defined seed point. 

Rootine v.2 employs the ImageJ’s “Tubeness filter” and the ImageJ plugins 

“MorpholibJ” and “3D Hysteresis Thresholding” and the optional plugin “Attenuation 

correction”. In addition, the “3D Non-local Means (NLM)” filter from ITK is used. Rootine v.2 

offers improvement upon Rootine v.1 (Gao et al., 2019) including pot wall detection and 

removal in data pre-processing and background removal by masking out voxels with a 

significantly different gray value than the average gray value of the segmented material. Rootine 

v.2 further improves upon Rootine v.1 by the introduction of a new method to calculate the lower 

threshold used during hysteresis thresholding in root segmentation as well as by implementing a 

post-processing step to identify false negatives. Segmentations that are not continuously 

connected to the root system are evaluated by their vesselness (shape) and size. Using vessleness 

as filter during post-processing was first proposed by Frangi et al. in 1998. False positives are 

discarded from the segmentation while false negatives are included in the segmentation. 

Therefore, Rootine v.2 avoids discarding portions of the root system because they are not 

connected. 

Vesselness is also employed in RootForce, for which Rootine v.1 was a precursor. First, 

the pot wall is removed by thresholding by the pot wall thickness and attenuation value. Then, 

filtering by vesselness is employed for smaller root structures. However, the authors noticed that 

the original method defined by Frangi et al. was not effective for larger root structures such as 

storage roots. These larger roots are segmented by their 3D variance, implemented by a 3D-

Gaussian filter. Therefore, RootForce is designed to segment both fine and coarse roots.  
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The above-described methods all have one thing in common: the features used for 

segmentation of roots in soil or growing medium are hand selected. Therefore, methods that are 

successful for one species of plant and type of soil or growing medium may not be successful for 

other species of plants and soil or growing medium. In contrast, deep learning algorithms can 

extract many features of root systems, including, size, shape, and texture, automating the 

segmentation process, and requiring less human intervention. In other words, the deep learning 

model selects features (possibly undetectable by humans) by quantitative optimization to achieve 

optimal segmentation accuracy. Furthermore, deep learning models can be trained on diverse 

datasets, allowing the model to learn complex features of roots for more flexibility in use.  

Soltaninejad et al. (2020) developed a deep learning-based parallel pipeline that 

combined both high- and low-resolution encoder-decoders with a multi-loss training approach 

for volumetric segmentation. This was the first time a deep learning method was applied to CT 

images for root segmentation. This method was evaluated against other methods of deep 

learning-based approaches to semantic segmentation and Root1 and proved to result in the best 

scores for dice and IoU (0.740 and 0.588, respectively) using the multi-loss multi-resolution 

model. Though other image processing-based and deep learning-based approaches scored higher 

for precision and recall, scoring high for one of these metrics does not indicate an accurate 

segmentation method. For example, a method resulting in a high precision score but with a low 

score for recall would indicate the root system was under-segmented. Likewise, a high recall 

score with a low precision score would indicate the root system was segmented from the soil, but 

with low precision and many false positives (noise). High dice and IoU scores indicate a 

balanced approach that does not over or under-segment and scores comparatively for precision 
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and recall. Therefore, the multi-loss multi-resolution encoder-decoder network provided a fully 

automatic approach that avoided both over and under-segmentation with a precision and recall of 

0.733 and 0.750, respectively. 

One drawback to volumetric segmentation methods is the need for large amounts of 

labeled training data. Not only does the user have to provide annotated ground truth data for 

evaluating the accuracy of the segmentation, but fully annotated scans must also be provided to 

train a volumetric model. Annotating large amounts of data can be time-consuming, tedious, and 

resource intensive, and introduces bias into the training data with human error. Alternatively, 

when training a model on 2D images, the entire CT scan does not have to be annotated to train 

the model, only for model evaluation. Therefore, a subset of 2D images can be selected from the 

3D scan for training, greatly reducing the amount of annotation work and possible errors in the 

ground truth annotations used for training. 

The objective of this study is to develop and evaluate a fully automated approach to root 

segmentation from X-ray CT images that is computationally and resource efficient and does not 

require large amounts of training data. We propose using a pretrained Mask R-CNN (He et al., 

2020) model for instance segmentation of roots from 2D X-ray CT images. Training a model on 

2D images as well as implementing transfer learning with a pretrained model greatly reduces the 

amount of training data necessary, reducing the time and labor needed to annotate data to apply 

this method to other images containing roots of different species. Masks from predicting on 

sequential CT images can be concatenated to produce a volumetric segmentation of the whole 

root system. After segmenting roots from 2D images, we also incorporated 3D information in 

post-processing to filter noise introduced by the 2D instance segmentation density-based spatial 
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clustering of applications with noise (DBSCAN) (Sander et al., 1998). DBSCAN is an 

unsupervised machine learning algorithm that is robust to noise and not vulnerable to clustering 

mistakes caused by lateral roots, branching, and negative geotropism roots. Furthermore, we 

propose a fully automatic parameter tuning approach for DBSCAN. Thus, we were able to utilize 

3D information in our approach without incurring considerable labor burdens. Our methodology 

does not require user input and is fully automated for segmenting unseen inputs. 

To the best of our knowledge, our contribution is four-fold. This work evaluates instance 

segmentation on 2D X-ray CT images for volumetric segmentation of roots in growing mediums. 

Second, we trained and evaluated one deep learning model on two different species. Third, we 

investigated training and predicting on 2D images along all axes of the soil column and 

combining predictions from multiple axes. Fourth, we implemented DBSCAN with fully 

automated parameter tuning for automatic noise removal. 

2.3 Materials and Methods  

2.3.1 Data Collection 

All plant root samples used in this study were scanned using a high-resolution X-ray CT scanner 

(XTH 225 ST, Nikon, Melville, NY) housed in the Shared Material and Instruments Facility at 

Duke University (Durham, NC). The instrument utilized a tungsten target, white beam, and 

conical beam with a detection panel containing 2000 × 2000 pixels. A Feldkamp cone-based CT 

algorithm was applied to convert the X-ray radiographs into 2D reconstructed slices. A total of 

2,200 radiographs were collected from each scan by rotating the sample by 0.164 degrees (2 × 
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frame averaging to reduce image noise). X-ray settings were adjusted to improve the image 

quality when scanning plant samples of differing volumes and moisture contents. Poinsettia 

(Euphorbia pulcherrima “Majestic Red”) was asexually propagated and rooted in an engineered 

foam medium (87-50010 RootCube Wedge; Oasis Grower Solutions, Kent, OH, USA). The 

poinsettia were scanned at 80 kV, 140 µA. The two data sets selected from the poinsettia scans 

for further processing will be referred to herein as “Poinsettia1” and “Poinsettia2”. Onion 

(Allium cepa) was grown in either a polyacrylic tube (6.35 cm internal diameter) or a custom 

peat-based sleeve. One onion sample was scanned at 95 kV, 120 mA. The second onion sample 

was scanned at a higher moisture content at 110 kV, 120 mA. The two datasets selected from the 

onion scans for further processing will be referred to herein as “Onion1” and “Onion2”. The 

images contain a voxel resolution of 30 µm and 55 µm for the poinsettia and onion, respectively.   
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Figure 2.1 (A) Sample images and their orientations from the Onion2 soil column. Images are from slices 

along the x, y, and z axes. (B) Sample images from the Onion1 (top left), Poinsettia1 (top right), Onion2 

(bottom left), and Poinsettia2 (bottom right) soil columns. For each image set, a sample image from the x axis 

(left), the y axis (middle), and two images from the z axis (right) of the soil column are displayed. 

2.3.2 Data Pre-Processing 

Two datasets were made to test whether training a Mask R-CNN model on images from 

all axes of the soil column and combining prediction results from multiple axes of the soil 

column improved segmentation results. The first dataset was produced from the original X-ray 

CT images. These images were taken along the z axis of the soil column. Ground truth 

annotations were obtained by manual annotation of root instances using COCO Annotator 

(Brooks, 2019). The images and corresponding ground truth masks were resized to 920 × 920 

pixels while preserving the aspect ratio of each image. The second dataset was produced by 

transforming both the input images and annotation masks from the first dataset. The images and 

masks were stacked sequentially to produce a volumetric image and mask for each plant. Next, 
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these images were sliced along the x, y, and z axes of the volume to produce images and 

corresponding masks from each view of the soil column. Figure 1 illustrates images from the x, 

y, and z axes and their orientation in the volumetric image and displays sample images from each 

plant. 

In addition to producing images from all axes of the soil column, data augmentation was 

performed by random cropping and rotation. Four 512 × 512 pixel tiles were randomly cropped 

from each input image and its corresponding ground truth mask and rotated randomly by 0°, 15°, 

30°, 45°, 60°, 90°, 180°, or 270°. The instances of roots in each mask were found using 

findContours function from OpenCV 4.7.0 (Bradski, 2000) and the segmentations for each 

instance were saved in JSON files in the COCO format for training. Figure 2.2 illustrates the 

pipeline used to prepare the datasets.  

To perform cross validation, th datasets were split into two groups: Dataset1 (Onion1 and 

Poinsettia1) and Dataset2 (Onion2 and Poinsettia2). Therefore, four total datasets were used: 

Dataset1 z, Dataset1 xyz, Datset2 z, and Dataset2 xyz.  Note, z refers to datasets containing tiles 

from the z view and xyz refers to datasets containing tiles from the x, y, and z views. The Mask 

R-CNN models trained on Onion1 and Poinsettia1 were used for prediction on the images from 

Onion2 and Poinsettia2 and vice versa.  
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Figure 2.2 Data preparation pipeline including: (A) original X-ray CT input images and ground truth binary 

masks, (B) tiled and rotated input images and ground truth binary masks for the z view, (C) volumetric input 

images and ground truth binary masks, (D) input images and ground truth binary masks for the x, y, and z 

views of the soil column, (E) tiled and rotated input images and ground truth binary masks for the x, y, and z 

views. 

2.3.3 2D instance segmentation with Mask R-CNN 

Mask R-CNN models were trained using Facebook AI Research’s Detectron2 (Wu et al., 

2019) and Python (van Rossum, 2022) 3.10.9. The backbone and pretrained COCO Instance 

Segmentation model mask_rcnn_50_FPN_1x was used for training with a learning rate of 0.001, 

batch size of 64, and maximum iterations of 1000. The hyperparameters were selected by grid 

search. The default optimizer stochastic gradient descent (SGD) was used.  

After the Mask R-CNN models were trained, they were used to predict root instances in 

each scan. During prediction, each image was tiled into 512 × 512 pixel images with a side 

overlap of 100 pixels. The predicted masks for each tile were recombined using a logical OR 



38 

 

operation to make one predicted mask for each image. The models trained on images from the z 

view were used to make instance predictions on images from the z view. The models trained on 

images from xyz view were used to make instance predictions on images from all three views.  

Sequential predicted masks were concatenated to produce a volumetric mask for the 

entire soil column. Seven different volumetric masks were made by combining the predictions on 

images from all three views, including: an x prediction, y prediction, z prediction, xy prediction, 

xz prediction, yz prediction, and xyz prediction. In addition, there were volumetric masks created 

by combining predictions made on the z view by the model trained on the z view. Therefore, 

eight total predictions existed for each plant. 

 To compare our method against a baseline approach, the soil columns were thresholded 

using a global threshold.  A nested for loop was used to test each possible threshold from 0 to 

255 with a step size of 5.  

2.3.4 3D point cloud clustering and noise removal with DBSCAN 

The proposed method aimed to incorporate 3D information in its methodology without 

needing to train a model using 3D images or relying on top-down or bottom-up connectivity. 

Therefore, Euclidean-based clustering for noise removal was explored and a filtering method using 

DBSCAN was implemented. Unlike most clustering methods, DBSCAN clusters data points based 

on density instead of distance, meaning the algorithm clusters continuous volumes of homogenous 

density in space similarly to how a human would. DBSCAN also accounts for continuity without 

using a top-down or bottom-up approach. Furthermore, DBSCAN is an unsupervised machine 

learning algorithm that can be implemented independent of the amount of training data used to 



train our instance segmentation model. Although DBSCAN is commonly used for noise removal, 

it can be difficult to select parameters to optimize noise removal for DBSCAN. Therefore, 

methodology was developed to automatically compute the input parameters for the DBSCAN 

algorithm and remove noise from the segmentation.  

Before clustering our segmentation with DBSCAN, the dataset was downsampled to 

increase efficiency. Three dimensional NumPy arrays consisting of a volumetric binary mask were 

made from the prediction segmentations saved in the JSON files. First, the segmentation contours 

were converted into a point cloud using Open3D 0.16.0 (Zhou et al., 2018). Open3D was used to 

downsample the data with voxel downsampling. A voxel size of 1.5 was used.  

DBSCAN requires two input parameters, minPts (the minimum number of neighbors a 

point must have to not be considered noise) and ε (the radius in which DBSCAN can search for 

neighbors). Sander et al. (1998) offered heuristics for choosing both parameters. It is common to 

use the minPts = 2 × dimensions. For clustering in 3D dimensional space, minPts would equal 

six. This was experimentally found to be the optimal choice for minPts for the dataset through a 

grid search for minPts. Epsilon (ε) can be chosen by plotting the sorted k-nearest-neighbor 

distances computed for each point in the dataset (Schubert et al., 2017). This plot will have an 

“elbow” or “knee” point which indicates a value for ε. This was computed using the Python 

package kneed after smoothing the k-nearest-neighbor distances plot with a moving average 

filter. The Python package was an implementation of the kneedle algorithm (Satopaa et al., 

2011). Any data point without the required number of minimum points in the radius ε or not in 

the radius of a core point would be removed as noise.  

39 
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Despite using the above methods for automatic parameter tuning, there was still noise 

present in the scans. The DBSCAN algorithm only removed noise if it belonged to a cluster 

consisting of six or fewer data points (voxels segmented as root). The predictions obtained through 

instance segmentation with Mask R-CNN contained noise belonging to clusters that consisted of 

more than six data points. Therefore, the technique described above to select ε was adapted to filter 

possible noise clusters that were not removed by DBSCAN. The sorted number of points in each 

cluster were plotted and the knee point was computed using kneed after smoothing the plot with a 

moving average filter. This knee point indicated the point of maximum curvature on the plot of 

number of points in each cluster. It was assumed that noise clusters would contain significantly 

fewer data points than non-noise clusters, creating a clear point of maximum curvature. Clusters 

that were larger than the cluster size at the point of maximum curvature were kept while clusters 

that were smaller than the cluster size at the point of maximum curvature were removed as noise. 

After noise was filtered from the segmentation, the point cloud was upsampled to compute 

the segmentation accuracy metrics. First, the point cloud was converted back into a 3D NumPy 

array consisting of a volumetric binary mask. Then, dilation and erosion with a five-by-five kernel 

and one iteration was performed using OpenCV for the 2D masks along the first axis. Dilation and 

erosion operations were then performed for each 2D mask along the third axis. This upsampled 

the segmentation, and it could then be used to compute the accuracy of the method. Examples of 

downsampled and upsampled 2D masks can be seen in Figure 2.3.  
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Figure 2.3 Sample binary masks from Onion1 predictions: original predictions (left), down sampled 

predictions (middle), predictions restored by dilation and erosion (right). Note, the middle images may 

appear to be grayscale due to aliasing. 

 

Figure 2.4 Segmentation method for the z view including: (A) input images from the z view, (B) segmented 

volume from concatenating sequential z predictions. 
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Figure 2.5 Segmentation method for the xyz view including: (A) input images from the x view, (B) segmented 

volume from concatenating sequential x predictions, (C) input images from the y view, (D) segmented volume 

from concatenating sequential y predictions, (E) input images from the z view, (F) segmented volume from 

concatenating sequential z predictions, (G) segmented volume by combining multiple views. 

2.3.5 Evaluation 

Precision, recall, dice (equivalent to 𝐹𝐹1), and IoU were used to evaluate the proposed 

segmentation and filtering method. These are commonly used metrics that describe both the 

successes (true positives and true negatives) and failures (false positives and false negatives) of 

the segmentation as well as overall segmentation accuracy. The definitions of these metrics are: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

 

( 1 ) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

 

( 2 ) 
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𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 =  
2|𝐺𝐺 ∩ 𝑆𝑆|
|𝐺𝐺| + |𝑆𝑆| 

( 3 ) 

 

𝐼𝐼𝑃𝑃𝐼𝐼 =  
|𝐺𝐺 ∩ 𝑆𝑆|
|𝐺𝐺 ∪ 𝑆𝑆|  

( 4 ) 

 

where 

 = Number of correctly identified positive voxels (true positives), 

𝐹𝐹𝑃𝑃 = Number of incorrectly identified positive voxels (false positives), 

𝐹𝐹𝐹𝐹 = Number of incorrectly identified negative voxels (false negatives), 

𝐺𝐺 = Ground truth segmentation, and 

𝑆𝑆 = Predicted segmentation. 

These metrics were computed for both complete scans and subsets of the entire scans. 

The subsets were selected to only include root material and represented the entire width and 

length of the original scans, but with truncated height (z axis) to exclude non-root plant material 

at the top of the scans. These truncated scans were evaluated because the presence of non-root 

plant material in the complete scans would result in a large number of true positives, causing an 

inflated score for precision, and therefore, an inflated score for both dice and IoU. Scores closer 

to 1 indicate better segmentation accuracy for all metrics. The metrics were computed by 

iterating through each 1×1×1 voxel in the volumetric ground truth binary mask and the 

corresponding prediction binary mask. 
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2.3.6 Environment 

The experiments were conducted on a laptop (Creator M16, MSI, Taiwan) with an Intel 

Core i7 CPU at 2.30 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3050 GPU. Python 

(van Rossum, 2022) 3.10.9 was used for the experiments. 

2.4 Results 

The following results were obtained for evaluating instance segmentation with a fine-tuned 

Mask R-CNN model for volumetric segmentation of roots in soil. Table 2.1 presents results for 

the entire scans while Table 2.2 presents results for truncated scans. Results from models trained 

on the z and xyz view and predictions from the z view are featured. These training and prediction 

views achieved the highest scores for precision, recall, dice, and IoU of the eight total predictions 

described in the Materials and Methods. Table 2.2 also includes results from models trained on 

the xyz view and predictions from the combined x, y, and z views due to its high score for recall. 

Predicting on all three views increases the chance of identifying root pixels, as it provides three 

opportunities (the maximum amount) for the model to make predictions for the same voxel in the 

soil column. The best result for each accuracy metric is bolded. For complete tables including 

results from all possible prediction view combinations, please refer to Table S1 and Table S2 in 

the Supplementary Materials. 
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Table 2.1 Highlighted segmentation accuracy metrics obtained by two-dimensional instance segmentation for 

the complete scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.872 0.921 0.896 0.812 

Z Z Onion1 0.910 0.926 0.918 0.848 

Z Z Poinsettia2 0.900 0.976 0.937 0.881 

Z Z Onion2 0.817 0.982 0.892 0.805 

Average  
  

0.875 0.951 0.911 0.836 

XYZ Z Poinsettia1 0.882 0.895 0.888 0.799 

XYZ Z Onion1 0.508 0.600 0.550 0.380 

XYZ Z Poinsettia2 0.919 0.969 0.943 0.893 

XYZ Z Onion2 0.853 0.957 0.902 0.822 

Average  
  

0.791 0.855 0.821 0.723 
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Table 2.2 Highlighted segmentation accuracy metrics obtained by two-dimensional instance segmentation for 

the truncated scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 and Table 2.4 present results for filtering the predicted scans with DBSCAN-

based 3D point cloud clustering. For complete tables including results from all possible 

prediction view combinations, please refer to Table S3 and Table S4 in the Supplementary 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.821 0.866 0.843 0.729 

Z Z Onion1 0.533 0.877 0.663 0.496 

Z Z Poinsettia2 0.808 0.956 0.876 0.779 

Z Z Onion2 0.599 0.968 0.740 0.587 

Average  
  

0.690 0.917 0.781 0.648 

XYZ Z Poinsettia1 0.806 0.833 0.819 0.694 

XYZ Z Onion1 0.778 0.827 0.802 0.669 

XYZ Z Poinsettia2 0.857 0.941 0.897 0.814 

XYZ Z Onion2 0.674 0.947 0.787 0.649 

Average  
  

0.779 0.887 0.826 0.706 

XYZ XYZ Poinsettia1 0.716 0.888 0.793 0.657 

XYZ XYZ Onion1 0.613 0.904 0.731 0.576 

XYZ XYZ Poinsettia2 0.713 0.973 0.823 0.699 

XYZ XYZ Onion2 0.512 0.977 0.672 0.506 

Average  
  

0.639 0.936 0.755 0.610 
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Materials. As seen in Table 2.1 and Table 2.2, training on the z and xyz view and predicting on 

the z view achieves the highest accuracy scores. 

 

Table 2.3 Highlighted segmentation accuracy metrics obtained by two-dimensional instance segmentation and 

noise removal with DBSCAN for the complete scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training  

View(s) 

Prediction  

View(s) 

Plant Precision Recall Dice IoU 
 

Z Z Poinsettia1 0.870 0.912 0.891 0.803 

Z Z Onion1 0.952 0.919 0.935 0.879 

Z Z Poinsettia2 0.913 0.975 0.943 0.892 

Z Z Onion2 0.891 0.972 0.929 0.868 

Average 
  

0.906 0.945 0.925 0.860 

XYZ Z Poinsettia1 0.875 0.887 0.881 0.787 

XYZ Z Onion1 0.467 0.590 0.521 0.353 

XYZ Z Poinsettia2 0.925 0.968 0.946 0.898 

XYZ Z Onion2 0.927 0.934 0.931 0.870 

Average 
  

0.798 0.845 0.820 0.727 
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Table 2.4 Highlighted segmentation accuracy metrics obtained by two-dimensional instance segmentation and 

noise removal with DBSCAN for the truncated scans. 

 

Table 2.5 shows the dice scores and standard deviation for all four truncated plants when 

training with different percentages of training data. The results in Table 2.5 are from predictions 

on the truncated scans and include noise removal with DBSCAN. Predictions from the z view 

made from models trained on the z view had the highest mean dice score and the lowest standard 

deviation across different amounts of training data. Predictions from the xyz view made from 

models trained on the xyz view had the lowest mean dice score across different amounts of 

training data and the highest standard deviation. Figure 2.6 is a scatter plot of the mean dice 

scores for predicting on the z view with models trained on the z (Single) and xyz (Three) view, 

highlighting the variability in dice score across training dataset size for training on the xyz view. 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.813 0.835 0.824 0.700 

Z Z Onion1 0.559 0.799 0.658 0.490 

Z Z Poinsettia2 0.849 0.950 0.897 0.812 

Z Z Onion2 0.723 0.945 0.819 0.694 

Average  
  

0.736 0.882 0.799 0.674 

XYZ Z Poinsettia1 0.787 0.804 0.796 0.661 

XYZ Z Onion1 0.838 0.743 0.788 0.649 

XYZ Z Poinsettia2 0.881 0.927 0.904 0.824 

XYZ Z Onion2 0.816 0.883 0.848 0.736 

Average  
  

0.831 0.839 0.834 0.718 
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Because training and predicting on the z view achieved the highest mean dice score, this view 

will be featured for further results. For the z view, 1% of the total dataset equaled 34 CT images 

for Dataset1 (Onion1 and Poinsettia1) and 35 CT images for Dataset2 (Onion2 and Poinsettia2). 

 

Table 2.5 Mean dice scores of all four plants for training, prediction view(s) across percents of training data.  

 

Percent of 
training 
data 

Z, Z XYZ, X XYZ, Y XYZ, Z XYZ, XY XYZ, XZ XYZ, YZ XYZ, XYZ 

1 0.794 0.707 0.657 0.794 0.620 0.691 0.642 0.604 

5 0.820 0.780 0.737 0.808 0.708 0.752 0.725 0.694 

10 0.819 0.806 0.774 0.818 0.762 0.779 0.772 0.744 

15 0.792 0.787 0.704 0.813 0.679 0.762 0.695 0.666 

20 0.806 0.683 0.682 0.703 0.621 0.638 0.627 0.600 

25 0.803 0.768 0.755 0.814 0.714 0.742 0.739 0.698 

50 0.802 0.615 0.658 0.741 0.573 0.596 0.645 0.559 

75 0.806 0.759 0.671 0.831 0.641 0.750 0.676 0.635 

100 0.799 0.770 0.754 0.834 0.784 0.808 0.802 0.776 

Mean ± SD 0.805 ± 
0.009 

0.742 ± 
0.058 

0.710 ± 
0.043 

0.795 ± 
0.042 

0.678 ± 
0.066 

0.724 ± 
0.065 

0.703 ± 
0.058 

0.664 ± 
0.067 
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Figure 2.6 Mean dice scores of all four plants predictions made on the z view with models trained on the z and 

xyz view(s) across percents of training data. 

Table 2.6 and Table 2.7 display the percent change before and after filtering noise with 

DBSCAN. It is important to note that not all plants dice and IoU scores improved after noise 

removal with DBSCAN. For both the truncated and complete scans, filtering noise with 

DBSCAN did not improve the overall segmentation accuracy (dice and IoU) for Onion1. 

However, the average across dice and IoU scores across all four plants improved. The recall 

score was lowered across all four scans. Figure 2.7 and Figure 2.8 emphasize the effect of non-

root plant material when computing the segmentation accuracy metrics. The truncated scans 

experienced larger percent changes for the segmentation accuracy metrics. 
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Table 2.6 Highlighted percent changes in dice score from segmentations without noise removal with DBSCAN 

to segmentations with noise removal by DBSCAN for the complete scans. 

 

 

 

 

 

 

 

Table 2.7 Highlighted percent change in dice score from segmentations without noise removal with DBSCAN 

to segmentations with noise removal by DBSCAN for the truncated scans.  

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 -0.255 -0.918 -0.579 -1.044 

Z Z Onion1 4.615 -0.674 1.924 3.615 

Z Z Poinsettia2 1.444 -0.122 0.686 1.299 

Z Z Onion2 9.023 -1.072 4.196 7.837 

Average  
 

 3.707 -0.696 1.557 2.927 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 -1.055 -3.643 -2.331 -3.963 

Z Z Onion1 4.832 -8.929 -0.832 -1.240 

Z Z Poinsettia2 5.025 -0.660 2.342 4.244 

Z Z Onion2 20.766 -2.437 10.705 18.133 

Average  
  

7.392 -3.917 2.471 4.293 
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Figure 2.7 Percent change in dice score from segmentations without noise removal with DBSCAN to 

segmentations with noise removal by DBSCAN for predictions made on the z view with models trained on the 

z view for the complete scans.  
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Figure 2.8 Percent change in dice score from segmentations without noise removal with DBSCAN to 

segmentations with noise removal by DBSCAN for predictions made on the z view with models trained on the 

z view for the truncated scans. 

Table 2.8 displays the execution times for both prediction (instance segmentation) and 

filtering. The maximum run time on the computer used for experimentation was less than 23 

minutes. Note, these results are for the complete scans and runtime will increase with an increase 

in soil column dimensions. It is possible to remove images with non-root plant material or no 

plant material from the top and the bottom of the CT image stack before prediction to lower the 

execution time. 
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Table 2.8 Execution times for two-dimensional instance segmentation and noise removal with DBSCAN for 

models trained with five percent of training data. 

  

Figure 2.9, Figure 2.10, Figure 2.11, and Figure 2.12 display the ground truth, results 

from instance segmentation with Mask R-CNN, and results from instance segmentation with 

Mask R-CNN followed by noise removal with DBSCAN for Poinsetttia1, Onion1, Poinsettia2, 

and Onion2, respectively. It is important to note that the ground truth images were manually 

annotated, introducing noise into the ground truth segmentations. Therefore, “ground truth” does 

not mean the segmentations did not contain noise. On the other hand, it is also possible that the 

ground truth segmentations miss root material. This is highlighted by the segmentations of 

Onion2. Figure 2.12.F. contains segmented material not present in the ground truth 

segmentation, however, this material is consistent in size, trajectory, and continuity with the 

larger root system. It is likely these segmentations are from fine roots difficult to detect and track 

by the human annotator. Furthermore, it is important to note that the segmentations of root 

material differ from the complete (top) and truncated scans (bottom). The scans were truncated 

 

 

 
Instance Segmentation Filtering with 

DBSCAN 
Total 

Training  

View(s) 

Prediction 

View(s) 

Plant Dimensions Total  

Images 

Time  

(min) 

Points Time  

(min) 

Time  

(min) 

Z  Z  Poinsettia1 920x920x1391 1391 14.3 1.43E+07 1.5 15.8 

Z  Z  Onion1 920x920x1998 1998 19.9 4.85E+06 0.9 20.7 

Z Z Poinsettia2 920x920x1449 1449 14.4 6.22E+06 0.9 15.3 

Z Z Onion2 920x920x1998 1998 20.4 1.87E+07 2.3 22.8 



55 

 

prior to performing noise removal. Therefore, the value computed for ε varied for the complete 

and truncated scans, causing the segmentations to differ. That is to say, the truncated 

segmentations with filtering by DBSCAN are not truncated versions of the complete 

segmentations with filtering by DBSCAN.  

 

Figure 2.9 Poinsettia1 ground truth and predictions: (A) ground truth complete, (B) instance segmentation 

complete, (C) instance segmentation and filtering complete, (D) ground truth truncated, (E) instance 

segmentation truncated, (F) instance segmentation and filtering truncated. 
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Figure 2.10 Onion1 ground truth and predictions: (A) ground truth complete, (B) instance segmentation 

complete, (C) instance segmentation and filtering complete, (D) ground truth truncated, (E) instance 

segmentation truncated, (F) instance segmentation and filtering truncated. 
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Figure 2.11 Poinsettia2 ground truth and predictions: (A) ground truth complete, (B) instance segmentation 

complete, (C) instance segmentation and filtering complete, (D) ground truth truncated, (E) instance 

segmentation truncated, (F) instance segmentation and filtering truncated. 
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Figure 2.12 Onion2 ground truth and predictions: (A) ground truth complete, (B) instance segmentation 

complete, (C) instance segmentation and filtering complete, (D) ground truth truncated, (E) instance 

segmentation truncated, (F) instance segmentation and filtering truncated. 

Table 2.9 presents results for the global thresholding. The highest average dice score 

occurred with a threshold of 155 to 215 for a dice score of 0.253. The ideal lower threshold 

ranged from 145 to 195 and the ideal upper threshold ranged from 195 to 250.  
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Table 2.9 Segmentation accuracy metrics obtained by global thresholding for the truncated scans.  

 

 Figure 2.13, Figure 2.15, Figure 2.17, and Figure 2.19 display the ground truth, results 

from instance segmentation with Mask R-CNN followed by noise removal with DBSCAN, and 

results for global thresholding for Poinsetttia1, Onion1, Poinsettia2, and Onion2, respectively. 

The pot wall was segmented in Figure 2.13 (Poinsettia1), Figure 2.17 (Poinsettia2), and Figure 

2.19 (Onion2). Figure 2.14, Figure 2.16, Figure 2.18, and Figure 2.20 display 2D sample images 

and binary mask predictions for instance segmentation with Mask R-CNN followed by noise 

removal with DBSCAN and global thresholding for Poinsetttia1, Onion1, Poinsettia2, and 

Onion2, respectively.  

 

Plant Lower 
Threshold 

Upper 
Threshold 

Precision Recall Dice IoU 

Poinsettia1 145 195 0.412 0.701 0.519 0.350 

Onion1 195 250 0.106 0.567 0.179 0.098 

Poinsettia2 170 215 0.299 0.588 0.397 0.247 

Onion2 185 210 0.086 0.451 0.145 0.078 

Average 155 215 0.182 0.646 0.253 0.155 
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Figure 2.13 Poinsettia1 ground truth and predictions: (A) ground truth truncated, (B) instance segmentation 

and filtering truncated, (C) global thresholding truncated. Note, C is not to scale with A and B. 

 

Figure 2.14 Sample images and binary mask predictions from Poinsettia1: original image (left), instance 

segmentation and filtering (middle), global thresholding (right).  
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Figure 2.15 Onion1 ground truth and predictions: (A) ground truth truncated, (B) instance segmentation and 

filtering truncated, (C) global thresholding truncated. Note, C is not to scale with A and B. 

 

Figure 2.16 Sample images and binary mask predictions from Onion1: original image (left), instance 

segmentation and filtering (middle), global thresholding (right).  
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Figure 2.17 Poinsettia2 ground truth and predictions: (A) ground truth truncated, (B) instance segmentation 

and filtering truncated, (C) global thresholding truncated. Note, C is not to scale with A and B. 

 

Figure 2.18 Sample images and binary mask predictions from Poinsettia2: original image (left), instance 

segmentation and filtering (middle), global thresholding (right).  
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Figure 2.19 Onion2 ground truth and predictions: (A) ground truth truncated, (B) instance segmentation and 

filtering truncated, (C) global thresholding truncated. Note, C is not to scale with A and B. 

 

Figure 2.20 Sample images and binary mask predictions from Onion2: original image (left), instance 

segmentation and filtering (middle), global thresholding (right).  

To corroborate the low accuracy metrics for global thresholding were incurred due to 

overlapping attenuation values between non-root material in the soil column and the root 

material, histograms of the attenuation values of the entire soil column (including the root 

material) and the root material were compared (Figure 2.21, Figure 2.22, Figure 2.23, and Figure 
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2.24). The bin with the highest frequency was removed from the entire soil column histogram for 

viewability, however, the histograms still demonstrate overlapping attenuation values for root 

and non-root material. Note, the histograms for root material (represented in red in the figures) 

corroborates the empirical ranges for global thresholding presented in Table 2.9 
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Figure 2.21 Attenutation value histograms for the the entire soil column for Poinsettia1 (including the root 

material) and the root material: (A) shared y-axis, (B) separate y-axis. The empirically determined ideal 

range for Poinsettia1 was 145 to 195 (Table 2.9). 
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Figure 2.22 Attenutation value histograms for the the entire soil column for Onion1 (including the root 

material) and the root material: (A) shared y-axis, (B) separate y-axis. The empirically determined ideal 

range for Onion1 was 195 to 250 (Table 2.9). 
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Figure 2.23 Attenutation value histograms for the the entire soil column for Poinsettia2 (including the root 

material) and the root material: (A) shared y-axis, (B) separate y-axis. The empirically determined ideal 

range for Poinsettia2 was 170 to 215 (Table 2.9). 



68 

 

 

 

Figure 2.24 Attenutation value histograms for the the entire soil column for Onion2 (including the root 

material) and the root material: (A) shared y-axis, (B) separate y-axis. The empirically determined ideal 

range for Onion2 was 185 to 210 (Table 2.9). 
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Table 2.10 presents a summary of results from this work compared with the results from 

the previous deep learning-based approach presented in the Introduction of this paper (mutli-loss 

multi-resolution encoder-decoder). Note, the scores for our method (denoted by Mask R-CNN + 

DBSCAN) are from the truncated scans. These results indicate our method rivals the 

segmentation accuracies achieved by approach presented by Soltaninejad et al. However, it 

should be noted that claiming better segmentation accuracy for all possible plants and growth 

mediums combinations would require testing both methods on a common dataset with diverse 

samples. 

 

Table 2.10 Summary of results and comparison to previous work. 

 

 

Method Precision Recall Dice IoU 

Multi-loss multi-
resolution encoder-
decoder 

0.733 0.750 0.740 0.588 

Mask R-CNN + 
DBSCAN, trained 
on xyz view with 
100% of dataset  

0.831 0.839 0.834 0.718 

Mask R-CNN + 
DBSCAN, trained 
on z view with 1% 
of dataset 

0.734 0.868 0.749 0.669 
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2.5 Discussion 

The study presents an efficient and accurate method for root segmentation in CT images 

using deep learning-based root instance segmentation in conjunction with DBSCAN-based 

filtering. The proposed method achieved high accuracy scores for precision, recall, dice, and 

IoU, making it a promising approach for in situ RSA characterization. By utilizing 2D instance 

segmentation with transfer learning using a pretrained model, we capitalized on the benefits of 

automated feature selection by deep neural networks with the resource efficiency of image 

processing-based approaches. Moreover, we demonstrated that high dice scores can be achieved 

with as little as 1% of training data (Table 2.5).  

Another notable aspect of the proposed method is the use of DBSCAN-based filtering 

with automated parameter tuning. Automated parameter tuning eliminated the need for human 

interaction that is commonly seen in image processing-based approaches. Furthermore, manual 

parameter tuning can be time-consuming and subjective. However, it should be noted that the 

noise removal implementation will always remove some of the segmentation. For segmentations 

that do not contain a lot of noise (such as Poinsettia1) noise removal may end up removing root 

material (Figure 2.9.D and 2.9.F) resulting in a decrease in dice or IoU. The user can forgo noise 

removal if the segmentation qualitatively appears to contain a small amount of noise. 

Altnernatively, an automated check for whether or not further noise removal is needed can be 

implemented. 

We tested using different view combinations (eight total) for training and prediction with 

the Mask R-CNN model. We were able to conclude that training and predicting on the z view of 
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the soil column achieved the highest mean dice score and lowest standard deviation across 

different percentages of the training dataset. We also provided results for global thresholding, 

demonstrating thresholding alone is not an accurate method for segmenting roots from soil due to 

overlapping attenuation values. Automated pot wall detection could be implemented; however, 

this would not prevent noise introduced by the medium, evident in the 2D images (Figure 2.14, 

Figure 2.16, Figure 2.18, and Figure 2.20).  

Overall, the proposed method presents a promising approach for accurate and efficient 

root segmentation from CT images. The use of deep learning-based instance segmentation and 

DBSCAN-based filtering can improve the accuracy of volumetric segmentation while reducing 

the annotation and resource requirements. The proposed method can be applied to a wide range 

of plant species and growth conditions as well, providing a valuable tool for studying in situ 

plant root system architecture. The proposed method can also be trained and used for prediction 

on multiple species of plants, meaning the features and parameters do not have to be selected and 

optimized for each plant species.  

Further work could include the comparison of common phenotyping measures (e.g. 

length, branching, diameter, and biomass) derived from hand measurements and computed 

measurements using the in situ segmentation procedure presented in this work. Second, other 

methods such as the ones introduced in the Introduction of this chapter could be implemented on 

our dataset. Alternatively, our method could be used to segment roots from the datasets used for 

developing and testing previous methods. A compilation of a large and diverse common dataset 

is integral to the development of segmentation methods and the comparison of segmentation 

accuracies across various methods. 
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2.6 Conclusion  

This project developed and evaluated a method for segmenting in situ roots from X-ray 

CT images of container horticultural plants using instance segmentation with Mask R-CNN and 

DBSCAN-based 3D point cloud clustering.  We concluded that training and predicting on the z 

view achieved the highest mean dice score across different training dataset sizes. This method 

achieved scores of 0.734, 0.868, 0.749, and 0.669 for precision, recall, dice, and IoU respectively 

utilizing only 1% of the training dataset (34 CT images for Dataset1 and 35 CT images for 

Datset2). This method allows for the use of deep learning and machine learning to automate RSA 

segmentation without the burden of large GPU requirements or manually annotating large 

datasets for training.  
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Chapter 3. High-throughput phenotyping of Humulus lupulus in 

greenhouse using stereo vision, semantic segmentation, and 3D point 

cloud analysis 

3.1 Abstract 

 Humulus lupulus (hops) is an important crop, both politically and economically (Legun et 

al., 2022). The USA is a major producer of hops, sharing 75-80% of world hop production with 

Germany (Almaguer et al., 2014). One of the major factors affecting hop quality is 

environmental conditions (Neve, 1991). Therefore, there is interest in breeding hop cultivars for 

specific geographic environments. Conducting variety trials offers a tool for testing hop cultivars 

suitable for various environments. However, conducting variety trials relies on collecting large 

amounts of phenotypic data, including morphological data. Computer vision and machine 

learning technologies equip researchers with advanced capabilities for conducting high-

throughput experiments for the measurement of phenotypic traits in variety trials. However, 

limited research has been conducted for the application of computer vision and machine learning 

to high-throughput phenotyping for vine crops, especially morphological analysis, and even less 

research has been conducted developing pipelines for hop phenotyping.  In this study, an 

efficient method for measuring vine length, leaf area, and biomass from three-dimensional (3D) 

point clouds was developed and evaluated for hops grown in greenhouse. Point clouds were 

retrieved from ZED 2 stereo cameras for 3D scene reconstruction. Additionally, a two-

dimensional (2D) SegFormer model was fine-tuned on images for semantic segmentation of hop 
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plants from a greenhouse scene for morphological trait measurement. Measurements of vine 

length, leaf area, and biomass were derived from the segmented point clouds, yielding high R2 

values of 0.79, 0.95, and 0.91, respectively, indicative of strong correlation between the derived 

measurements and the ground truth measurements.  

3.2 Introduction 

The written record of use of hops for brewing dates to 1963, found in the Finnish work 

The Kalevala by Lönnrot, though the written record for hop cultivation predates this by 1227 

years, as recorded in Germany in 736 AD (Neve, 1991). Today, about 97% of hop production is 

used for brewing (Almaguer et al., 2014; Schönberger & Kostelecky, 2011) with Germany and 

the USA producing 75-80% of hops (Almaguer et al., 2014). According to the National 

Agricultural Statistics Service, the production value of hops in the USA was over 617 million 

dollars in 2022. Legun et al. deem hops a neoliberal crop, shaping both politics and economies 

globally, credited to the emerging practice of breeding hops for both flavor and aroma in addition 

to bitterness (2022). Hops that are cultivated for their flavor as opposed to bitterness are called 

aroma hops and are essential to craft beer production, an industry dominated by the USA 

(Knudson et al., 2020; Legun et al., 2022). Although hops are largely cultivated today for their 

bitterness and flavoring, their first use was for their medicinal and therapeutic properties, most 

often as mild sedatives (Turner et al., 2011). The use of hops for medicinal applications is 

reflected in contemporary research today (J.S. Bland et al., 2015; Karabín et al., 2016; Wang et 

al., 2012; Zanoli et al., 2005). 
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Interest in hop cultivation is attributed to the unique composition of their lupulin gland 

and the resins it produces, which are not found in any other plant species (Neve, 1991). 

Numerous interacting factors influence the quality and yield of the resin, affecting the 

desirability of the hop yield. These factors range from mitigating pest and disease occurrences to 

adjusting nutrient applications, with variations in environmental conditions such as temperature, 

rainfall, and sunlight also playing substantial roles. However, the magnitude of the effect of each 

factor and the interplay between these factors is contested, although it is likely the largest factor 

in hop health and yield is environmental factors, including geographic location (Neve, 1991).   

Because of their need to climb as they grow, it is common to grow hops on V-shaped 

trellises, with the height of the trellis limiting the height of hop vine growth. Note, the vines of 

hops are properly named bines, however, in this work they will be referred to colloquially as 

vines. The height of hop growth also affects the value of the harvest, as different varieties of 

hops produce their greatest yield of cones at different maximum trellis heights (Neve, 1991). 

Hops are typically grown between five and eight meters tall, though countries such as the USA 

and China typically grow hops on supports half of this height (Neve, 1991). The height of hop 

trellises makes hand measurements for hop phenotyping both ergonomically difficult and 

potentially dangerous to obtain, if standing on a raised platform or ladder is necessary to reach 

the uppermost end of the plant. Furthermore, the measurement of morphological traits such as 

leaf area and biomass often require destructive techniques, i.e., cutting the vine so that the plant 

can be placed in the appropriate measurement tool, meaning these measurements cannot be 

measured for the same plant over an extended period of time. Therefore, this work will focus on 

the development of an automated pipeline for a high-throughput method of hop morphological 
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analysis, providing steps towards both relieving the burden of the intensive process of taking 

hand measurements and allowing for the non-destructive measurement of leaf area and biomass 

over the lifespan of the plant. High-throughput tools for measuring morphological traits would 

assist in variety trials for determining which varieties grow best with varying factors, including 

geographic location, environmental conditions, and trellis length and angle.  

When compared to advances in technologies for high-throughput plant genotyping, 

advancement in technologies for high-throughput plant phenotyping was delayed (Ninomiya, 

2022; White et al., 2012). In response to this, there has been a recent surge in published studies 

in plant phenomics, accompanied by the start of many research centers dedicated to plant 

phenotyping, including the Australian Plant Phenomics Facility (AU), the Jülich Plant 

Phenotyping Center (DE), the National Plant Phenomics Center (UK), the Plant Phenotyping and 

Imaging Research Center (CA), and the Plant Phenomics Research Center (CN) (Ninomiya, 

2022) and the Danforth Center (USA). The growing development of computer vision and 

machine learning tools, including open-source software, provides the necessary tools for high-

throughput plant phenotyping, helping bridge the disparity in technologies for rapid genotyping 

and phenotyping. Distinct applications of computer vision and machine learning to above-ground 

plant phenotyping include: plant disease detection (Roy & Bhaduri, 2021; Singh et al., 2020), 

stress detection (Ghosal et al., 2018; Ramos-Giraldo et al., 2020), yield prediction (Liu et al., 

2017; Pothen & Nuske, 2016), and morphology, including plant architecture and measurements 

such as leaf area and biomass (Azzari et al., 2013; Chaivivatrakul et al., 2014; Jiang et al., 2016; 

Niknejad et al., 2023; Xiang et al., 2019). Furthermore, recent open-source libraries have been 

developed for specifically for the task of phenotyping plant morphology, including: PlantCV, 
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developed for two-dimensional (2D) plant phenotyping, (Gehan et al., 2017) and Phenomenal, 

developed for both two-dimensional and three-dimensional (3D) plant phenotyping (Artzet et al., 

2019). 

Computer vision and machine learning has been used for assessing vine crop health using 

images from unmanned aerial vehicles (UAV) (Kerkech et al., 2020a, 2020b) and 3D image 

processing techniques such as stereo vision have been used for 3D reconstruction and object 

detection in vineyard applications (Nellithimaru & Kantor, 2019) and computation of fruit-to-

leaf ratios in 3D reconstructions (Klodt et al., 2015). However, studies on vine morphology are 

not common. Even less common is the application of computer vision and machine learning to 

high-throughput phenotyping of Humulus lupulus (hops), a twinning perennial vine. Though 

computer vision has been applied to disease detection and variety classification for hops (Castro 

et al., 2022; Farhanah & Al Maki, 2022), no work has been completed for either 2D of 3D 

morphological analysis of hops plants. The limited progress in this area may stem from the 

unstructured architecture of hop plants. 

The objective of this study is to develop a semi-automated approach for measuring 

phenotypic traits of hops, including, vine length, leaf area, and biomass. We propose fine-tuning 

a 2D SegFormer (Xie et al., 2021) model from the Hugging Face Transformers library (Wolf et 

al., 2020) for semantic segmentation of hop plant from 2D images. Stereolabs’ ZED 2 

(Stereolabs, San Francisco, CA) camera was used to capture ZED SVO files. Left right stereo 

image pairs and corresponding point clouds were retrieved from the SVO files. Hop plants were 

segmented from the left stereo image using the fine-tuned SegFormer model and the 2D 

segmentations were applied to the 3D point clouds. A semi-automated pipeline was developed 
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and assessed to measure vine length, leaf area, and biomass from the point clouds. The V-shaped 

architecture imposed on the hops by growing them on a trellis was leveraged for individual vine 

separation and length measurement using random sample consensus (RANSAC) (Fischler & 

Bolles, 1981). Furthermore, total leaf area for each plant was estimated by summing the total 

triangle areas in a triangle mesh of the segmented 3D point cloud. Biomass results regressed 

from voxel count and leaf area were compared.  

To the best of our knowledge, this is the first work to employ computer vision and 

machine learning for automating individual plant segmentation and 3D reconstruction for 

morphological phenotypic trait extraction for hops.  

3.3 Materials and Methods 

3.3.1 Data Collection 

 All hop plants used in this study were grown in Patterson Greenhouse at Auburn 

University (Auburn, AL). There were sixteen plants used in this study and data was collected for 

both the North and South view of the plants seven times over a period of four weeks. Hand 

measurements were taken for vine length at each data collection date. On the eighth and final 

data collection date, biomass and total leaf area were collected for each plant. Left and right 

stereo image pairs were collected and stored as SVO files using a ZED 2 stereo camera mounted 

on a tripod. The intrinsic parameters of stereo camera used are as follows: focal lengthx = 

1054.760 pixels, focal lengthy = 1054.470 pixels, principal point coordinates Cx = 1100.000 

pixels and Cy = 651.339 pixels, and baseline Tx = 0.120 m. The images were collected at 



differing times of day on each date, resulting in a wide range of lighting conditions captured. The 

greenhouse layout can be seen in Figure 3.1.  

Figure 3.1 Patterson Greenhouse layout. Hop art obtained from Shutterstock. 

3.3.2 Data Pre-Processing 

Left and right stereo pairs were retrieved using ZED SDK (Stereolabs) and split into two 

datasets: Dataset1, used for training and evaluating the semantic segmentation model, and 

Dataset2, used for generating point clouds and measuring phenotypic traits. Dataset1 contained 

the South facing images of plants 1 through 8 and the North facing images of plants 9 through 

16. Dataset2 contained the North facing images of plants 1 through 8 and the South facing 

images of plants 9 through 16. The North facing images of plant 13 retrieved on November 29, 

2021 were removed from Dataset1 and included in Dataset2 to account for missing South view 

data on this day. Each image was 2208 × 1242 pixels large. The images from Dataset1 were tiled 
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into 512 × 512 pixel tiles for model training. Ground truth annotations were obtained by manual 

annotation of hop plants in Dataset1 using Roboflow (Dwyer et al., 2022).  
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Table 3.1 Data collection dates and dataset split. 

Dataset Date Plants 

1 November 12, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

November 17, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

November 19, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

November 23, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

November 29, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 14N, 15N, 16N 

December 03, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

December 09, 2021 1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9N, 10N, 11N, 12N, 13N, 14N, 15N, 
16N 

2 November 12, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

November 17, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

November 19, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

November 23, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

November 29, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13N, 14S, 15S, 
16S 

December 03, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

December 09, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 

December 16, 2021 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 
16S 
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3.3.3 2D Semantic Segmentation with SegFormer 

The pretrained model and configuration was provided by the Hugging Face Transformers 

Library (Wolf et al., 2020). Dataset1 was split into 2235 images for training, 528 images for 

validation, and 480 images for testing. Random horizontal flips, random vertical flips, and 

random rotations between 0° and 180° were performed during the loading of the training and 

validation sets. The model was trained using Google Colab Pro+ with a learning rate of 0.0006 

and the optimizer AdamW for 20 epochs.  

The model trained on Dataset1 was used to predict the semantic segmentations of hop 

plants in the left images of Dataset2. During prediction, each image was tiled into 512 × 512 

pixel images. The predicted masks were recombined to produce masks for the 2208 × 1242 pixel 

left image. 

3.3.4 Computer Vison-Assisted Phenotypic Trait Measurement 

To obtain measurements for length, leaf area, and biomass, 3D point clouds were 

retrieved from the SVO files using the Depth Sensing API from ZED SDK using the neural 

depth mode. Left right stereo image pairs corresponding to the point clouds were also retrieved 

from the SVO files. The plant was segmented from the left image and the 2D segmentation was 

applied to the 3D point cloud to segment the hop plant from the 3D scene. The plant of interest 

was isolated from the scene by a user using CloudCompare (CloudCompare, 2022). Next, the 

point cloud was downsampled using voxel_down_sample from Open3D 0.16.0 (Zhou et al., 

2018) with a voxel size of 1 mm. Outliers were removed from the segmented point cloud using 

statistical_outlier_removal from Open3D with a standard deviation of 2.0 and 200 neighbors.  
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Vine length was obtained by fitting a line to each vine using the random sample 

consensus algorithm (RANSAC). The line was cropped to line points within 20 mm of RANSAC 

inliers and length was measured as the distance between the first and last point on the cropped 

line. For plants with two vines, the first vine was removed after it was measured by removing the 

inliers of the line within a threshold of 60 mm. The second vine could then be detected and 

measured with a second iteration of RANSAC. RANSAC was implemented using pyRANSAC-

3D (Mariga, 2022). Plant material below the height of the pot was removed prior to fitting a line 

with RANSAC to avoid extra plant material not in the vine of interest skewing the fitted line. To 

do this, a plane was fitted to the ground in the unsegmented point cloud using Open3D’s 

implementation of RANSAC for plane fitting, segment_plane. The height of the plane was 

adjusted to the pot height and point cloud data below the pot height at 340 mm was trimmed 

from both the unsegmented and segmented point cloud. After the plants reached the top of the 

trellis length was not measured because the vines often became inseparable at this point. 

Furthermore, there had to be enough upward vine growth on the trellis to reliably fit a RANSAC 

line for vine length measurement, especially for plants with excess vine material growing at the 

bottom of the plant. Figure 3.2.A (plant 10S imaged on November 29, 2021) presents a case 

where there was not enough upward vine growth on the trellis to reliably measure height. Figure 

3.2.B (plant 10S imaged on December 09, 2021) presents a case where there was enough upward 

vine growth on the trellis to reliably measure height. Alternatively, the height under which point 

cloud data would be removed can be adjusted. However, adjusting the height can affect the 

length measurements for other plants.  
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Figure 3.2 Plant 10S imaged on (A) November 29, 2021, (B) December 09, 2021 with corresponding point 

clouds (right).  

To obtain measurements for leaf area, the ball pivoting algorithm (BPA) (Bernardini et 

al., 1999) implemented by Open3D was used to create a triangle mesh. The radii for the ball 

pivoting algorithm were determined by two methods: examining the histograms of the average 

distances between each point and its six nearest neighbors (Figure 3.3) and empirically by testing 

multiple sets of radii, including: [1] mm, [2, 1] mm, [4, 2, 1] mm, and [8, 4, 2, 1] mm. An ideal 
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first guess for radius for BPA occurs at the peak of the histogram. Radii below the radius 

indicated by this peak will be insufficient for created triangle mesh from the point cloud. 

Empirically, we found a radii combination of [4, 2, 1] mm to achieve the best results for deriving 

leaf area (see Figure 3.10 in the Results).  

Figure 3.3 Average distance between data points and six nearest neighbors for plants (A) 5N, (B) 6N, (C) 7N, 

(D) 8N, (E) 13S, (F) 15S.

Once the mesh was created, the leaf area was calculated by summing the area of the 

triangles in the mesh. Linear regression was performed between the BPA mesh derived leaf area 

and the measured (ground truth) leaf area.  

Biomass was regressed from both the number of voxels in the point cloud and the BPA 

mesh derived leaf area. Note, the ground truth biomass is fresh biomass, not dry biomass. Voxel 

sizes of 1 mm, 2 mm, 4 mm, and 8mm were used for voxelization.   
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3.3.5 Evaluation

Precision, recall, dice (equivalent to 𝐹𝐹1), and IoU were used to evaluate the 2D semantic 

segmentation used in the proposed phenotyping pipeline. These are commonly used metrics that 

describe both the successes (true positives and true negatives) and failures (false positives and 

false negatives) of the segmentation as well as overall segmentation accuracy. The definitions of 

these metrics are: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
( 1 ) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
( 2 ) 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 =  
2|𝐺𝐺 ∩ 𝑆𝑆|
|𝐺𝐺| + |𝑆𝑆| 

( 3 ) 

𝐼𝐼𝑃𝑃𝐼𝐼 =  
|𝐺𝐺 ∩ 𝑆𝑆|
|𝐺𝐺 ∪ 𝑆𝑆|

( 4 ) 

where 

 = Number of correctly identified positive voxels (true positives), 

𝐹𝐹𝑃𝑃 = Number of incorrectly identified positive voxels (false positives), 
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𝐹𝐹𝐹𝐹 = Number of incorrectly identified negative voxels (false negatives), 

𝐺𝐺 = Ground truth segmentation, and 

𝑆𝑆 = Predicted segmentation. 

To evaluate the computer vision-assisted (predicted) measurement method, root mean 

square error (RMSE) and mean absolute percent error (MAPE) were used.  

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 =  �
1
𝑃𝑃
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2

𝑛𝑛

𝑖𝑖=1
 

 

( 5 ) 

𝑅𝑅𝑀𝑀𝑃𝑃𝑅𝑅 =
1
𝑃𝑃
� �

𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

� × 100%
𝑛𝑛

𝑖𝑖=1
 ( 6 ) 

where 

𝑃𝑃  = Number of samples, 

𝑦𝑦𝑃𝑃 = measured value, and  

𝑦𝑦𝚤𝚤�  = predicted value. 

Bland-Altman analysis (J. M. Bland & Altman, 1986) was used to measure the agreement 

between the ground truth measurements for vine length and leaf area and the predicted 

measurements. The difference (Equation 7), bias (Equation 8), standard deviation (SD) (Equation 

9), and limits of agreement (LoA) (Equation 10 and Equation 11) were calculated for the Bland-

Altman analysis. Additionally, the p-value of the regression line was examined to determine if 
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the bias was constant over the measurement range. A p-value greater than 0.05 indicates there is 

not a variation in bias over the measurement range.  

Difference = Predicted – Ground truth ( 7 ) 

Bias = Mean (Difference) ( 8 ) 

SD = Standard Deviation (Difference) ( 9 ) 

Upper LoA =  Bias + 1.96 × SD ( 10 ) 

Lower LoA = Bias – 1.96 × SD ( 11 ) 

3.3.6 Environment 

The experiments were conducted on a laptop (Creator M16, MSI, Taiwan) with an Intel 

Core i7 CPU at 2.30 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3050 GPU. Python 

(van Rossum, 2022) 3.7.12 (image and point cloud retrieval) and 3.10.10 (segmentation and 

phenotypic trait measurement) were used for the experiments. Model training was performed 

using Google Colab Pro+.  

3.4 Results 

3.4.1 Semantic Segmentation 

Table 3.2 presents segmentation accuracy metrics for both semantic segmentation with the 

fine-tuned SegFormer MiT-b0 model and thresholding Hue Saturation Value (HSV) images by 

values between (35, 30, 30) and (70, 255, 255). These values were selected by hand tuning. 



94 

 

Please note these scores are averaged for the test set.  Although segmentation with SegFormer 

MiT-b0 outperformed segmentation by thresholding, these results can be misleading. The 

manual annotations used as ground truth for model training often over segmented the hop plants, 

causing the segmentation by thresholding to under segment the ground truth annotations. 

However, training a deep learning model did prevent the segmentation of regions that fell within 

the determined HSV threshold but did not contain hop plants. Therefore, training a model to 

segment the images is a crucial step for scenes that contain noisy backgrounds.  

Table 3.2 Segmentation accuracy metrics obtained by semantic segmentation with SegFormer MiT-b0 and 

Thresholding by HSV values.  

 

 

Figure 3.4 Example segmentations: input image (far left), manual segmentation (middle left), segmentation by 

thresholding (middle right), segmentation by SegFormer MiT-b0 (far right).  

Method Precision Recall Dice IoU 

Segmentation with 
SegFormer MiT-b0 

0.806 0.766 0.769 0.681 

Thresholding by 
HSV values 

0.352 0.250 0.260 0.404 
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3.4.2 Phenotypic Trait Measurement 

 Figure 3.5 presents a scatter plot and linear regression line for the RANSAC derived vine 

length and the measured vine length (A) and the Bland-Altman plot for the two measurement 

methods (B). The linear regression line had an R2 of 0.73. There was an RMSE of 0.250 m and 

MAPE of 15.2% with a p-value less than 0.05. The Bland-Altman plot showed the automated 

pipeline underestimated the vine length, but there was not a variation in bias with increasing vine 

length.   

 

Figure 3.5 Scatter plot of RANSAC derived length and measured length (A) and Bland-Altman plot (B). For 

B, the bias is represented by a red dashed line and the upper and lower limits of agreement are represented 

by gray dashed lines. The regression line is shown as a green dashed line.  

Leaves could be reliably segmented from the images, however, vine material at the top of 

the plant was not reliably segmented. Because the ground truth length measurements included 

this vine material, the RANSAC derived vine length under predicted the ground truth vine 

length. An example of missing vine is shown in Figure 3.6.  
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Figure 3.6 Plant 8N imaged on December 09, 2021. Vine missing from segmentation highlighted at bottom 

left. Meaured and RANSAC derived vine length were 2.210 m and 1.877 m, respectively, for a difference of 

0.333 m. Line fitted by RANSAC is in red and inliers are in blue (right). Note, plant material below 240 mm 

was removed in the segmented point cloud. 

 The outlier present in Figure 3.5.A represented plant 8N imaged on December 03, 2021 

(Figure 3.7). The RANSAC line was fitted to plant material at the bottom of the vine that was not 
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removed when removing plant material below 340 mm. Therefore, it should be observed that this 

method is suitable for measuring vine length of plants without excess growth at the base of the 

plant. However, it is common to remove excess growth that is not being trained upwards because 

the dense growth creates conditions ideal for mildew diseases (Neve, 1991).  

 

Figure 3.7 Plant 8N imaged on December 03, 2021. Meaured and RANSAC derived vine length were 1.753 m 

and 0.347 m, respectively, for a difference of 1.406 m. Line fitted by RANSAC is in red and inliers are in blue 

(right). Note, plant material below 240 mm was removed in the segmented point cloud. 
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 Removing this outlier from the dataset prior to linear regression produced a regression 

line with an R2 of 0.91. There was an RMSE of 0.142 m and MAPE of 10.6% with a p-value less 

than 0.05 (Figure 3.8). The Bland-Altman plot showed the automated pipeline underestimated 

the vine length, but there was not a variation in bias with increasing vine length.   

 

Figure 3.8 Scatter plot of RANSAC derived length and measured length (A) and Bland-Altman plot (B) with 

plant 8N on December 03, 2021 removed. For B, the bias is represented by a red dashed line and the upper 

and lower limits of agreement are represented by gray dashed lines. The regression line is shown as a green 

dashed line.  

 Adjusting the height under which the pot and extra plant material would be removed to 

360 mm to include plant 8N on December 03, 2021, produced a regression line with an R2 of 

0.79. There was an RMSE of 0.219 m and MAPE of 15.2% with a p-value less than 0.05 (Figure 

3.9). The Bland-Altman plot showed the automated pipeline underestimated the vine length, but 

there was not a variation in bias with increasing vine length.   
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Figure 3.9 Scatter plot of RANSAC derived length and measured length (A) and Bland-Altman plot (B) after 

adjusting height under which point cloud data would be removed. For B, the bias is represented by a red 

dashed line and the upper and lower limits of agreement are represented by gray dashed lines. The regression 

line is shown as a green dashed line.  

 Figure 3.10 presents scatter plots and linear regression lines for the BPA mesh derived 

leaf area and the measured leaf area (A-B-C) and the Bland-Altman plots for the two 

measurement methods (D-E-F). Results are presented for radii of [2, 1] mm (left), [4, 2, 1] mm 

(middle), and [8, 4, 2, 1] mm (right). The linear regression line for results obtained from radii of 

[4, 2, 1] mm achieved the highest R2 of 0.95 and the lowest RMSE and MAPE of 0.050 m2 and 

6.6%, respectively. All p-values were less than 0.05. Except for BPA derived leaf area using 

radii of [2,1] mm, the Bland-Altman plot showed there was not a variation in bias with 

increasing leaf area. 
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Figure 3.10 Scatter plots of BPA mesh dervied leaf area and measured leaf area (top) and Bland-Altman plots 

(bottom) for radii of (A-D) [2, 1] mm, (B-E) [4, 2, 1] mm, (C-F) [8, 4, 2, 1] mm. The bias is represented by a 

red dashed line and the upper and lower limits of agreement are represented by gray dashed lines. The 

regression line is shown as a green dashed line.  

Figure 3.11 presents scatter plots and linear regression lines for the voxel count derived 

biomass and the measured biomass (A-B-C). Results are presented for voxel sizes of 2 mm (left), 

4 mm (middle), and 8 mm (right). The linear regression line for results obtained from a voxel 

size of 4 mm achieved the highest R2 of 0.87. All p-values were less than 0.05.  
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Figure 3.11 Scatter plots of voxel derived biomass and measured biomass (top) for voxel sizes of  (A) 2 mm, 

(B) 4 mm, (C) 8 mm.  

Figure 3.12 presents scatter plots and linear regression lines for the leaf area derived 

biomass and the measured biomass (A-B-C). Results are presented for radii of [2, 1] mm (left), 

[4, 2, 1] mm (middle), and [8, 4, 2, 1] mm (right). The linear regression line for results obtained 

from radii of [4, 2, 1] mm achieved the highest R2 of 0.91. All p-values were less than 0.05. 

Note, biomass was regressed from the BPA mesh derived leaf area. 

 

Figure 3.12 Scatter plots of leaf area dervied biomass and measured biomass (top) for radii of (A) [2, 1] mm, 

(B) [4, 2, 1] mm, (C) [8, 4, 2, 1] mm. 
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3.5 Discussion 

 This study presents a method for vine length, leaf area, and biomass measurement from 

3D point clouds of hop vines in greenhouse. The proposed method achieved R2 values of 0.79 

(Figure 3.9), 0.95 (Figure 3.10), and 0.91 (Figure 3.12) for vine length, leaf area, and biomass, 

respectively. Furthermore, Bland-Altman analysis demonstrated there was not a variation in bias 

with an increase of vine length or leaf area.  

 For the length measurements obtained by removing point cloud data below a height of 

360 mm (Figure 3.9), the vine length was underestimated by 0.384 m on average. One solution to 

the underestimation problem would be to implement a measurement standard of measuring vine 

length from the topmost leaf. It is also important to note that adjusting the parameters for line 

fitting with RANSAC and the height under which point cloud data is removed for each plant 

would yield better results (Figure 3.5, Figure 3.8, Figure 3.9). However, this is implausible for a 

high-throughput pipeline. Future work could include developing a method of automated 

parameter tuning to find ideal parameters for line fitting with RANSAC or to determine the 

height under which to remove extra plant material not contained in the vine of interest. 

Alternatively, a method that does not require parameter tuning could be implemented.  

 We tested different combinations of radii for creating a triangle mesh with BPA for leaf 

area measurement from 3D point clouds. After examining the histograms of the average 

distances between each point and its six nearest neighbors and empirically testing radii 

combinations, we found that radii of [4, 2, 1] mm achieved the highest R2 value of 0.95, however 

radii of [2, 1] mm achieved a comparable a comparable R2 value of 0.94. These results were 
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corroborated by the nearest neighbor histograms, which often had peaks around 2 mm, but with 

average distances above 2 mm as well (Figure 3.3). Our result for regression of leaf area is 

comparable with the results achieved by Klodt et al. in 2015, with an R2 0.93 for regression of 

leaf area obtained by weighting segmented leaf pixels according to their depth in a depth map. 

 We compared linear regression for biomass estimation from both BPA mesh derived leaf 

area and voxelized point clouds. Regressing biomass from leaf area achieved a greater value for 

R2 than regressing biomass from voxel count, with R2 values of 0.91 and 0.87 respectively using 

a maximum radius and voxel size of 4 mm (Figure 3.12.B and Figure 3.11.B).  

Future work could include automated isolation of the plant of interest from the 3D scene. 

Second, investigation into solutions solving the underestimation problem from missing vine 

segmentation could be investigated, including: study of segmentation model architecture, study 

of increasing resolution in the stereo images, and study of vine length measurement accuracy 

when measuring vine length from the top leaf.  Third, automated parameter tuning for ideal 

parameters for vine length measurement could be developed.  

3.6 Conclusion  

 This project developed and evaluated a semi-automated pipeline for measuring vine 

length, leaf area, and biomass of hop plants in greenhouse. We implemented computationally 

efficient methods for measuring these phenotypic traits and achieved R2 values of 0.79, 0.95, and 

0.91 for vine length, leaf area, and biomass. This pipeline offers a tool for researchers for high-

throughput and non-destructive morphological phenotyping for hop plants in variety trials.  
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 Supplementary Materials 

 

Table S1. Complete segmentation accuracy metrics obtained by two-dimensional instance segmentation for 

the complete scans. 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.872 0.921 0.896 0.812 

Z Z Onion1 0.910 0.926 0.918 0.848 

Z Z Poinsettia2 0.900 0.976 0.937 0.881 

Z Z Onion2 0.817 0.982 0.892 0.805 

Average  
  

0.875 0.951 0.911 0.836 

XYZ X Poinsettia1 0.830 0.732 0.778 0.637 

XYZ X Onion1 0.885 0.177 0.295 0.173 

XYZ X Poinsettia2 0.899 0.952 0.925 0.860 

XYZ X Onion2 0.829 0.943 0.882 0.789 

Average  
  

0.861 0.701 0.720 0.615 

XYZ Y Poinsettia1 0.837 0.798 0.817 0.691 

XYZ Y Onion1 0.887 0.196 0.321 0.191 

XYZ Y Poinsettia2 0.889 0.951 0.919 0.851 

XYZ Y Onion2 0.835 0.952 0.890 0.801 

Average  
  

0.862 0.725 0.737 0.634 

XYZ Z Poinsettia1 0.882 0.895 0.888 0.799 

XYZ Z Onion1 0.508 0.600 0.550 0.380 
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XYZ Z Poinsettia2 0.919 0.969 0.943 0.893 

XYZ Z Onion2 0.853 0.957 0.902 0.822 

Average  
  

0.791 0.855 0.821 0.723 

XYZ XY Poinsettia1 0.770 0.888 0.825 0.702 

XYZ XY Onion1 0.885 0.310 0.459 0.298 

XYZ XY Poinsettia2 0.848 0.976 0.908 0.831 

XYZ XY Onion2 0.769 0.975 0.860 0.754 

Average  
  

0.818 0.787 0.763 0.646 

XYZ XZ Poinsettia1 0.797 0.926 0.857 0.750 

XYZ XZ Onion1 0.514 0.630 0.566 0.395 

XYZ XZ Poinsettia2 0.870 0.984 0.924 0.858 

XYZ XZ Onion2 0.785 0.983 0.873 0.774 

Average  
  

0.742 0.881 0.805 0.694 

XYZ YZ Poinsettia1 0.801 0.917 0.855 0.747 

XYZ YZ Onion1 0.518 0.639 0.572 0.400 

XYZ YZ Poinsettia2 0.866 0.981 0.920 0.852 

XYZ YZ Onion2 0.799 0.982 0.881 0.788 

Average  
  

0.746 0.880 0.807 0.697 

XYZ XYZ Poinsettia1 0.741 0.938 0.828 0.707 

XYZ XYZ Onion1 0.522 0.662 0.584 0.412 

XYZ XYZ Poinsettia2 0.834 0.988 0.905 0.826 

XYZ XYZ Onion2 0.750 0.987 0.853 0.743 

Average  
  

0.712 0.894 0.792 0.672 
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Table S2. Complete segmentation accuracy metrics obtained by two-dimensional instance segmentation for 

the truncated scans. 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.821 0.866 0.843 0.729 

Z Z Onion1 0.533 0.877 0.663 0.496 

Z Z Poinsettia2 0.808 0.956 0.876 0.779 

Z Z Onion2 0.599 0.968 0.740 0.587 

Average  
  

0.690 0.917 0.781 0.648 

XYZ X Poinsettia1 0.826 0.572 0.676 0.511 

XYZ X Onion1 0.755 0.768 0.762 0.615 

XYZ X Poinsettia2 0.827 0.926 0.874 0.776 

XYZ X Onion2 0.620 0.901 0.734 0.580 

Average  
  

0.757 0.792 0.761 0.620 

XYZ Y Poinsettia1 0.845 0.705 0.769 0.624 

XYZ Y Onion1 0.671 0.614 0.641 0.472 

XYZ Y Poinsettia2 0.798 0.935 0.861 0.757 

XYZ Y Onion2 0.632 0.910 0.745 0.594 

Average  
  

0.736 0.791 0.754 0.612 

XYZ Z Poinsettia1 0.806 0.833 0.819 0.694 

XYZ Z Onion1 0.778 0.827 0.802 0.669 

XYZ Z Poinsettia2 0.857 0.941 0.897 0.814 

XYZ Z Onion2 0.674 0.947 0.787 0.649 

Average  
  

0.779 0.887 0.826 0.706 

XYZ XY Poinsettia1 0.786 0.812 0.799 0.665 
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XYZ XY Onion1 0.648 0.865 0.741 0.588 

XYZ XY Poinsettia2 0.736 0.964 0.835 0.716 

XYZ XY Onion2 0.536 0.961 0.688 0.524 

Average  
  

0.676 0.901 0.766 0.624 

XYZ XZ Poinsettia1 0.753 0.872 0.808 0.678 

XYZ XZ Onion1 0.680 0.883 0.768 0.624 

XYZ XZ Poinsettia2 0.776 0.966 0.861 0.756 

XYZ XZ Onion2 0.559 0.971 0.709 0.550 

Average  
  

0.692 0.923 0.787 0.652 

XYZ YZ Poinsettia1 0.758 0.859 0.806 0.675 

XYZ YZ Onion1 0.668 0.868 0.755 0.606 

XYZ YZ Poinsettia2 0.763 0.959 0.850 0.739 

XYZ YZ Onion2 0.583 0.970 0.729 0.573 

Average  
  

0.693 0.914 0.785 0.648 

XYZ XYZ Poinsettia1 0.716 0.888 0.793 0.657 

XYZ XYZ Onion1 0.613 0.904 0.731 0.576 

XYZ XYZ Poinsettia2 0.713 0.973 0.823 0.699 

XYZ XYZ Onion2 0.512 0.977 0.672 0.506 

Average  
  

0.639 0.936 0.755 0.610 

 

Table S3. Complete segmentation accuracy metrics obtained by two-dimensional instance segmentation and 

noise removal with DBSCAN for the complete scans. 

Training  

View(s) 

Prediction  

View(s) 

Plant Precision Recall Dice IoU 

 
 

Z Z Poinsettia1 0.870 0.912 0.891 0.803 
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Z Z Onion1 0.952 0.919 0.935 0.879 

Z Z Poinsettia2 0.913 0.975 0.943 0.892 

Z Z Onion2 0.891 0.972 0.929 0.868 

Average 
  

0.906 0.945 0.925 0.860 

XYZ X Poinsettia1 0.833 0.735 0.781 0.641 

XYZ X Onion1 0.931 0.171 0.288 0.169 

XYZ X Poinsettia2 0.904 0.954 0.928 0.866 

XYZ X Onion2 0.885 0.940 0.912 0.838 

Average 
  

.889 0.700 0.728 0.629 

XYZ Y Poinsettia1 0.834 0.790 0.812 0.683 

XYZ Y Onion1 0.930 0.200 0.330 0.197 

XYZ Y Poinsettia2 0.894 0.953 0.923 0.856 

XYZ Y Onion2 0.905 0.950 0.927 0.864 

Average 
  

0.891 0.723 0.748 0.650 

XYZ Z Poinsettia1 0.875 0.887 0.881 0.787 

XYZ Z Onion1 0.467 0.590 0.521 0.353 

XYZ Z Poinsettia2 0.925 0.968 0.946 0.898 

XYZ Z Onion2 0.927 0.934 0.931 0.870 

Average 
  

0.798 0.845 0.820 0.727 

XYZ XY Poinsettia1 0.768 0.891 0.825 0.702 

XYZ XY Onion1 0.922 0.326 0.482 0.317 

XYZ XY Poinsettia2 0.855 0.978 0.912 0.839 

XYZ XY Onion2 0.813 0.976 0.887 0.798 

Average 
  

0.840 0.793 0.777 0.664 

XYZ XZ Poinsettia1 0.791 0.921 0.851 0.741 
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XYZ XZ Onion1 0.490 0.639 0.554 0.383 

XYZ XZ Poinsettia2 0.880 0.982 0.928 0.866 

XYZ XZ Onion2 0.831 0.978 0.898 0.816 

Average 
  

0.748 0.880 0.808 0.701 

XYZ YZ Poinsettia1 0.792 0.912 0.848 0.735 

XYZ YZ Onion1 0.507 0.643 0.567 0.396 

XYZ YZ Poinsettia2 0.875 0.979 0.924 0.859 

XYZ YZ Onion2 0.849 0.977 0.909 0.832 

Average 
  

0.756 0.878 0.812 0.706 

XYZ XYZ Poinsettia1 0.733 0.933 0.821 0.697 

XYZ XYZ Onion1 0.500 0.676 0.575 0.404 

XYZ XYZ Poinsettia2 0.845 0.986 0.910 0.835 

XYZ XYZ Onion2 0.793 0.983 0.878 0.783 

Average 
  

0.718 0.895 0.796 0.680 

 

Table S4. Complete segmentation accuracy metrics obtained by two-dimensional instance segmentation and 

noise removal with DBSCAN for the truncated scans. 

Training  

View(s) 

Prediction  

View(s) 

Plant  Precision Recall Dice IoU 

Z Z Poinsettia1 0.813 0.835 0.824 0.700 

Z Z Onion1 0.559 0.799 0.658 0.490 

Z Z Poinsettia2 0.849 0.950 0.897 0.812 

Z Z Onion2 0.723 0.945 0.819 0.694 

Average  
  

0.736 0.882 0.799 0.674 

XYZ X Poinsettia1 0.833 0.536 0.652 0.484 
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XYZ X Onion1 0.819 0.704 0.757 0.609 

XYZ X Poinsettia2 0.845 0.918 0.880 0.786 

XYZ X Onion2 0.727 0.866 0.791 0.654 

Average  
  

0.806 0.756 0.770 0.633 

XYZ Y Poinsettia1 0.849 0.630 0.723 0.566 

XYZ Y Onion1 0.713 0.524 0.604 0.432 

XYZ Y Poinsettia2 0.812 0.920 0.863 0.759 

XYZ Y Onion2 0.774 0.882 0.825 0.702 

Average  
  

0.787 0.739 0.754 0.615 

XYZ Z Poinsettia1 0.787 0.804 0.796 0.661 

XYZ Z Onion1 0.838 0.743 0.788 0.649 

XYZ Z Poinsettia2 0.881 0.927 0.904 0.824 

XYZ Z Onion2 0.816 0.883 0.848 0.736 

Average  
  

0.831 0.839 0.834 0.718 

XYZ XY Poinsettia1 0.793 0.812 0.803 0.670 

XYZ XY Onion1 0.686 0.848 0.758 0.611 

XYZ XY Poinsettia2 0.759 0.957 0.847 0.734 

XYZ XY Onion2 0.591 0.955 0.730 0.575 

Average  
  

0.707 0.893 0.784 0.648 

XYZ XZ Poinsettia1 0.745 0.864 0.800 0.667 

XYZ XZ Onion1 0.727 0.873 0.793 0.657 

XYZ XZ Poinsettia2 0.808 0.960 0.878 0.782 

XYZ XZ Onion2 0.634 0.956 0.763 0.616 

Average  
  

0.729 0.913 0.808 0.681 

XYZ YZ Poinsettia1 0.747 0.849 0.795 0.659 
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XYZ YZ Onion1 0.699 0.850 0.767 0.622 

XYZ YZ Poinsettia2 0.791 0.945 0.861 0.757 

XYZ YZ Onion2 0.669 0.952 0.786 0.647 

Average  
  

0.727 0.899 0.802 0.671 

XYZ XYZ Poinsettia1 0.707 0.880 0.785 0.645 

XYZ XYZ Onion1 0.654 0.893 0.755 0.606 

XYZ XYZ Poinsettia2 0.749 0.967 0.844 0.730 

XYZ XYZ Onion2 0.574 0.965 0.720 0.562 

Average  
  

0.671 0.926 0.776 0.636 
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