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Since the mid-1990s, the radio industry has actively focused on implementing 
more and more radio functions in the digital domain. This has been furthered by 
availability of high speed, high performance data converters and faster digital processors. 
In 1993, Joe Mitola, III coined the term 'Software Radio (SR)' for a radio system that uses 
DSP primitives to perform signal manipulation instead of the traditional analog hardware. 
Such a system is more robust, compact, power-efficient and highly reconfigurable. An 
ideal Software Radio system consists of a transmitting/receiving antenna, high speed data 
converter and a powerful digital processor. However, the state of current technology is 
such that this can only be partially achieved. Due to speed and performance limitations of 
existing data converters and digital processors, it is customary to use an RF front-end 
between the antenna and the data converter. Such a system is then termed as a Software-
Defined Radio (SDR). 
vi 
This thesis deals with the design and implementation of a low-cost SDR receiver 
which bandpass samples AM Intermediate Frequency (IF) and demodulates it in real-time 
using quadrature demodulation. The system uses an AM/FM trainer kit to obtain an AM 
IF, a high speed PCI-based data acquisition (DAQ) card for analog-to-digital (A/D) 
conversion, MATLAB to perform signal processing in the digital domain and a sound 
card to produce the demodulated analog signal. A Graphical User Interface (GUI) is 
developed which allows the user to start/stop the program, select a suitable bandpass 
sampling frequency and view the time and frequency domain representation of the 
demodulated signal. This work also discusses bandpass sampling and quadrature 
demodulation followed by a rigid mathematical analysis to point out advantages and 
disadvantages of the two techniques. 
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CHAPTER 1 
INTRODUCTION 
 
Prior to the infusion of digital signal processing technology, most of the functions 
in a radio system were implemented using analog circuitry. This had several limitations. 
First of all, such a system was not reconfigurable. Any modification was possible only 
through physical intervention. Secondly, complex communication algorithms were 
difficult to implement in the analog domain due to the size of the components, associated 
costs and power consumption. Also, performance of analog radio was dependent on 
external parameters like noise, temperature, etc. With increase in speed of data converters 
and signal processors, it became possible to implement analog functions in the digital 
domain. The ultimate goal was to directly digitize the RF signal at the output of the 
receiving antenna and implement all receiver functions in either digital hardware or 
software. This gave birth to the software-defined radio (SDR) concept.  An SDR system 
is a radio communication system which uses software for modulation and demodulation 
of radio signals [3].  
This thesis presents the design of a low-cost SDR receiver which bandpass 
samples an AM Intermediate Frequency (IF) and demodulates it in digital domain using 
quadrature demodulation. This work can form the foundation of an undergraduate 
2 
wireless education or a graduate wireless research laboratory. The thesis is organized as 
follows: 
i. Chapter 1 is a primer on the SDR concept, its advantages and potential 
applications. An overview of the SDR system designed and implemented for this 
project is also presented. 
ii. Chapter 2 is a literature review of different RF front-end architectures, sampling 
techniques and signal processing options.  
iii. Chapter 3 explains the system design of the SDR receiver. The components used 
for building the system are explained in detail. 
iv. Chapter 4 deals with the algorithms used in this project and the mathematics 
behind them. Bandpass sampling and quadrature demodulation are discussed in 
detail here. 
v. Chapter 5 explains the implementation of the algorithms in MATLAB using its 
Data Acquisition Toolbox. It also explains the Graphical User Interface (GUI) 
created for the end user. 
vi. Chapter 6 presents the results and suggests future improvements. 
vii. Appendix contains the entire MATLAB code along with appropriate comments. 
 
1.1 Software Defined Radio (SDR) 
 As suggested in [4], radio systems can be classified into 5 tiers depending upon 
their capability and flexibility. Tier 0 includes strictly a Hardware Radio (HR) which can 
be modified through physical intervention only. All traditional analog radio systems with 
no software element are included in this group. Tier 1 includes a Software Controlled 
3 
Radio (SCR) which has limited functions changeable using software. Tier 2 includes 
Software Defined Radio (SDR) which uses software for the modulation and 
demodulation of radio signals. Some RF front-end processing is still necessary in such a 
system. Tier 3 includes Ideal Software Radio (ISR) which eliminates the RF front-end 
processing completely. The antenna is directly connected to the data converter in this 
system. Tier 4 includes Ultimate Software Radio (USR) which is a fully programmable 
radio which can support broad range of frequencies and multiple air-interfaces. 
 Figure 1.1.1 illustrates an ISR. Here, the DSP does the modulation and 
demodulation in addition to baseband signal processing, thus eliminating the need of RF 
front end. The user can alter the functionality of the radio simply by reprogramming the 
DSP. However in practicality, it is not possible to attach the antenna directly to the data 
converter due to a variety of reasons (discussed in Chapter 2). Use of RF front end 
therefore becomes necessary converting the radio from ISR to SDR. 
 
 
Figure 1.1.1: An Ideal Software Radio (ISR) 
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Figure 1.1.2: A Software-Define Radio (SDR) 
 
 Figure 1.1.2 illustrates a practical SDR architecture. In the receive path, the 
antenna signal is amplified by the Low Noise Amplifier (LNA). It is then mixed and 
bandpass filtered (BPF) to generate the IF signal. This IF signal is then digitized by a 
high speed ADC. The DSP downconverts the IF signal to baseband and subsequently 
demodulates it in digital domain. The demodulated signal is played on a speaker. 
 Likewise, in the transmit path, the DAC outputs the modulated signal at the IF 
frequency. It is then upconverted and bandpass filtered to generate the RF signal. The RF 
signal is further amplified by the Power Amplifier (PA) and fed to the antenna. 
 Radios built using SDR concept have the following advantages: 
1) Increased system performance, flexibility and cost efficiency as the digitization is 
done at an early stage. 
2) A standard architecture can be used for a wide range of communication products [4]. 
Hence, interoperability is possible. 
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3) Increased adaptability. The radio can be reprogrammed to improve performance or 
add more functionality. 
4) Software modifications can be done at a fraction of the time of hardware 
modifications. This can drastically reduce time to market and life-cycle costs. 
 
1.2 Applications of SDR 
Software defined radios have significant use in military and wireless industry 
because both of them have a variety of changing radio protocols in real time. One of the 
first software defined radios was a US military project called SPEAKeasy [3]. The goal 
of the project was to develop a radio for US military that could operate from 2 MHz to 2 
GHz. Its architecture was identical to Fig. 1.1.2. It was one of the first projects to use 
Field Programmable Gate Arrays (FPGA) for digital signal processing of radio data.  
Another project, called Joint Tactical Radio Systems (JTRS), is a US and allied 
program to make radios which provide flexible and interoperable communications. It is 
based on the Software Communications Architecture (SCA). 
A potential application of SDR is in the automotive industry. Many OEM 
manufacturers, including Siemens VDO Automotive, are researching the option of 
eliminating bulky RF tuners in car radio and digitizing entire AM/FM bands. Multiple 
AM/FM channels can be demodulated simultaneously in digital domain. This will allow 
playing of one radio channel on the main radio and another on Rear Seat Entertainment 
(RSE). 
In academia, research in SDR field is being in pursued in top universities like 
Georgia Tech, MIT and UCLA. MIT is investigating the use of SDR in Radio Frequency 
6 
Identification (RFID) where devices use various communication protocols to operate on 
various frequencies. Recently, UCLA introduced a practical SDR receiver which can tune 
and detect any desired RF signal in the 800MHz to 5GHz band [12]. Key blocks for the 
receiver are wideband LNA, highly linear low-flicker mixer, wide tuning range 
synthesizer, and programmable anti-aliasing filters. 
SDR has also crept in the amateur radio field. In [13], a PC-based SDR is 
described that downconverts RF to low-IF in the audio frequency range. It then uses PC 
sound card to sample and demodulate the signal. The FlexRadio SDR-1000 [14], shown 
in Fig. 1.2.1, is based on this concept. It can demodulate desired RF signal from 12 kHz 
to 60 MHz. 
 
Figure 1.2.1: FlexRadio SDR-1000 
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 The basic block diagram of the low-cost SDR receiver designed for this project is 
shown in Fig. 1.2.2. The AM/FM trainer kit is used to convert the AM signal to amplified 
AM IF signal. It is then undersampled using the high speed ADC of Measurement 
Computing's PCI-based DAS4020/12 data acquisition board. Quadrature demodulation is 
used to demodulate the signal in and play it in real-time on PC speakers. DSP algorithms 
are written in MATLAB which is a simulation and mathematical software from The 
Mathworks Inc.  
 
 
Figure 1.2.2: Software Defined Radio Receiver for AM Band 
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CHAPTER 2 
BACKGROUND AND LITERATURE REVIEW 
 
This chapter discusses common RF front-end architectures and uniform sampling 
techniques used in radio receivers. It also talks about the data conversion challenges for 
software-defined radio implementation. Finally it concludes with digital signal processing 
alternatives for SDR. 
  
2.1 RF Front-end Architectures 
The primary criteria in selecting any RF front-end architecture are complexity, 
cost, power distribution and number of external components. There are three RF front-
end architectures in popular use today. They are heterodyne (or superhetrodyne), 
homodyne (or direct conversion or zero-IF) and low-IF (or digital-IF) architecture.  
 
2.1.1 Heterodyne Architecture 
In heterodyne architecture, the RF signal is translated to lower IF frequencies in 
multiple stages by mixing it with a local oscillator signal. Figure 2.1.1 depicts such a 
design. The RF signal is passed through the BPF and amplified by the LNA. Before the 
signal is mixed with first local oscillator (fLO1) to generate first IF (fIF1), it is passed 
through the image reject filter (IRF). The IRF rejects the image frequency located at the 
sum of the LO and IF frequencies (fLO + fIF1). If the image is not rejected then it will fall 
9 
directly on the IF after mixing and corrupt the signal information. The channel select 
filter rejects adjacent channels and improves channel selectivity. The first IF signal is 
mixed with second local oscillator (fLO2) to obtain the second IF signal (fIF2). 
The major disadvantage of heterodyne topology is the number of required 
components. For example, a two stage heterodyne receiver employs two mixers, two 
local oscillators, one image reject filter and two channel select filters. The choice of IF 
also depends on trade-offs among three parameters: the amount of image noise present, 
the spacing between the desired band and the image and the loss of the image-reject filter 
[5]. A low IF allows great suppression of nearby interferers whereas a high IF leads to 
better image rejection. Thus heterodyne topology exhibits tradeoff between selectivity 
and sensitivity. Another problem which exits is the half IF effect due to the second order 
non-linearity in the RF and IF paths. Assume that there is a strong interferer at half of the 
IF from the desired band towards the LO ((fin + fLO)/2) and it undergoes second order 
distortion in the RF path. If the LO signal contains its second harmonic then the interferer 
falls on the IF (|2fLO ? (fin - fLO)| = fIF) after mixing. Another possibility is that the 
interferer gets translated to (fin - fLO)/2 = fIF/2. If the IF path exhibits second order non-
linearity then the interferer will still fall on the IF. 
Most AM/FM radios use heterodyne architecture with two stages of 
downconversion. The second IF frequency for AM and FM band is 455 kHz and 10.1 
MHz respectively. 
10 
 
Figure 2.1.1: Heterodyne (or superheterodyne) architecture 
 
2.1.2 Homodyne Architecture 
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The simplicity of the homodyne topology has its own advantages and 
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lower frequencies and their monolithic integration is possible. The channel filtering can 
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is not infinite. There is a finite amount of feedthrough from the LO to these inputs called 
as LO leakage [5]. The leakage signal mixes with the LO signal to produce a DC offset. 
This can cause corruption of the baseband signal and can saturate the following stages of 
a receiver. A similar effect is seen when a strong interferer leaks from the LNA or mixer 
input to the LO and mixes with itself. In phase and frequency modulation schemes, where 
quadrature downconversion is employed, amplitude and phase mismatch between I and Q 
can corrupt the downconverted signal. Also if the architecture is implemented using MOS 
devices, then flicker noise (1/f noise) can be a potential source of corruption. 
 
 
 
 
Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture 
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Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing 
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more than half the sampling frequency will fold over in the digital domain. This can 
cause baseband corruption. 
 
 
Figure 2.1.3: Low-IF (or digital-IF) architecture 
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F (f) is repeated at integral multiples of the sampling frequency, fs. In other words, F (f) 
becomes periodic. This is shown in Fig. 2.2.1 (a), (b). 
The four commonly used uniform sampling techniques are ? Nyquist sampling, 
over-sampling, quadrature sampling and bandpass sampling. 
 
2.2.1 Nyquist sampling 
 The Nyquist sampling theorem says that exact reconstruction of a continuous time 
analog signal from its samples is possible if the signal is bandlimited and the sampling 
frequency is greater than twice the signal bandwidth. The sampling frequency at twice the 
signal bandwidth is called as Nyquist frequency or Critical frequency. If fmax is the 
maximum frequency component of an analog signal then spectrum of the signal sampled 
at the Nyquist frequency is shown in Fig. 2.2.1 (b). 
 If the signal is sampled at less than the Nyquist frequency (called undersampling), 
the spectral replicas overlap causing aliasing. The sampled signal gets corrupted and 
cannot be exactly recovered. Figure 2.2.1 (d) depicts aliasing due to undersampling. In 
order to avoid aliasing, an anti-aliasing filter is used before the ADC. The cut-off 
frequency of the anti-aliasing filter is one half of the sampling frequency. Nyquist 
sampling demands an extremely sharp cut-off anti-aliasing filter. Unfortunately, practical 
realizable filters cannot provide this type of ?brickwall? response. 
Even in Nyquist sampling, if an undesired (i.e. out-of-band) signal is present 
along with the analog signal, it folds over and causes spectral overlap thus corrupting the 
signal of interest. This is shown in Figure 2.2.2. The anti-aliasing filter serves the purpose 
of attenuating the undesired signal too.  
15 
2.2.2 Oversampling 
 In oversampling, the signal is sampled at much more than twice the Nyquist rate. 
As depicted in Fig. 2.2.1 (c), the main advantage of this technique is that the spectral 
replicas of the sampled signal are spaced further apart from each. This relaxes the steep 
cut-off frequency requirements of the anti-aliasing filter.  
 
2.2.3 Quadrature sampling 
 As explained in section 2.1.2, the homodyne architecture for phase and frequency 
modulated systems use quadrature downconversion to generate the 'I' and 'Q' quadrature 
components. These are complex valued signals and contain twice the information as the 
real valued signal. Hence, they can be sampled at one half the sampling rate of the real 
valued signal. This type of sampling is called as quadrature sampling. The only 
disadvantage is that ADC needs to have two input channels for digitizing the two 
components. 
 
 
 
Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal 
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 Figure 2.2.1: (b) Spectrum of the signal sampled at f
s = 2fmax 
 
 
 
 
Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax 
 
 
 
 
Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax 
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Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component 
 
Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax 
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 For bandpass sampling to work effectively, a very steep roll-off bandpass filter is 
required to attenuate undesired signals outside the band of interest. Another severe 
limitation is that the ADC should be able to effectively operate on the highest frequency 
component in the RF signal. 
 Like most other SDR projects, this project also uses bandpass sampling to sample 
the AM IF signal. 
 
  
Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF 
 
Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF 
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The critical limiting factor in software radio implementation is the sluggish ADC 
technology. The antenna cannot be hooked directly to the ADC because it doesn?t have 
sufficient analog input bandwidth and dynamic range to digitize the RF signal directly. 
Fs (f) 
??. 
fIF,trans fIF,trans + fs fIF,trans + 2fs fIF,trans + 3fs fIF,trans + 4fs 
??. 
fIF 
F (f) 
0 
fs < fIF 
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Another important limitation is the power consumption of the ADC. A common Figure of 
Merit (FoM) used for ADCs is: 
ADC
ENOB
P
BWFoM ?= ?22                                                          (2.3.1) 
where ENOB = Effective Number of Bits 
BW = Full?power Analog Input Bandwidth of the ADC 
PADC = Power Consumption of the ADC 
ENOB is directly proportional to the signal-to-noise and distortion ratio (SINAD) of the 
ADC. Full-power analog input bandwidth is the range from DC to the frequency where, 
for a full-scale input, the amplitude of the output of the ADC falls to 3 dB below the 
maximum output level [7].  Equation (2.3.1) indicates that for a given FoM, the power 
consumption of the ADC increases as ENOB and BW increase.  
 There is a strong trade-off between ADC sampling frequency and its performance. 
Normally, as the sampling frequency of the ADC increases its performance decreases. In 
radio receivers using IF or RF digitization, the ADC should have high linearity, signal-to-
noise ratio (SNR) and spurious free dynamic range (SFDR). SFDR is defined as the ratio 
of the signal power to the peak power of the largest spurious product. Whereas SNR 
indicates ADC?s sensitivity to small signals, SFDR is a measure of the ADC?s capability 
to reject undesired interferers. SNR is inversely proportional to the aperture jitter and 
sampling frequency of the ADC. Aperture jitter is the variation in time of the exact 
sampling instant.  
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 In comparison, DAC technology is not much of a limiting factor in software radio 
development. The operating frequencies of the current DACs surpass the ability of 
current lower-power signal processors. 
 
2.4 Digital Signal Processing Alternatives 
 The alternatives available for digital signal processing are - Application Specific 
Integrated Circuits (ASIC), Digital Signal Processors (DSP) and field programmable gate 
arrays (FPGA).  
 ASICs are integrated circuits customized to accomplish specific tasks at high 
performance levels. They are unrivaled in speed, power efficiency and computational 
density. Because of their high design and production cost, they are usually used in high 
volume designs. The major disadvantage is that they are not reconfigurable. They can be 
used for implementing limited to standard static functions. Because of these limitations, 
their use in SDRs is limited. 
 A DSP is a specialized microprocessor designed specifically for digital signal 
processing, generally in real-time computing. It has an optimized signal processing 
instruction set and can be programmed using high level programming languages like C 
and C++. On a performance matrix, DSPs fall in between ASICs and FPGAs. They have 
moderate costs but very short times to market. They are the backbone of most SDR 
systems today. Many leading semiconductor companies are currently developing SDR 
specific DSPs. Texas Instruments (TI) is one of them. 
 An FPGA is a semiconductor device containing programmable logic components 
and programmable interconnects. The functionality of basic logic gates (AND, OR, XOR, 
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NOT) or more complex combinational functions such as decoders and simple math 
functions can be duplicated by programming logic components of the FPGA. Most 
FPGAs today include memory blocks too. Different logic components are connected 
together by a hierarchy of programmable interconnects. Hardware descriptive languages 
like VHDL or VERILOG are used to program FPGAs. They are generally slower than 
the ASICs and more power hungry. Many SDRs today use FPGAs for signal processing. 
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CHAPTER 3 
SYSTEM DESIGN 
 
This chapter gives a brief system level overview of the SDR receiver. The four 
major components that make the system are: AM/FM Trainer kit, PCI-DAS4020/12 DAQ 
card, MATLAB with DAQ toolbox and PC with soundcard. 
 
3.1 AM/FM Trainer Kit 
This trainer kit, manufactured by Elenco Electronics, Inc., is a low cost receiver 
kit used in undergraduate laboratories for demonstrating principles of communication. It 
is a superheterodyne receiver of the standard AM and FM frequencies. Figure 3.1.1 (a) 
shows the assembled AM/FM Trainer kit and Fig. 3.1.1 (b) shows its schematic [8].  
 
Figure 3.1.1 (a): Assembled AM/FM Trainer kit 
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 Figure 3.1.1 (b): Schematic of AM/FM Trainer kit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.2: Block diagram of AM section of the kit 
 
Figure 3.1.2 shows the block diagram of the AM section of the receiver. The 
antenna signal is fed to the mixer which downconverts the RF signal to an IF of 455 kHz. 
This is accomplished by heterodyning the RF signal with the Local Oscillator (LO) 
signal. The weak IF signal from the mixer is amplified by the first IF amplifier which is 
tuned to 455 kHz. The first IF amplifier has a variable gain which depends upon the 
Mixer 
LO 
First IF 
Amplifier 
Second IF 
Amplifier 
AM 
Detector 
Audio 
Amplifier 
AGC 
Speaker 
Antenna To 
DAS4020/12 
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voltage of the AGC (Automatic Gain Control) stage. The AGC stage feeds back a DC 
voltage to the first AM IF amplifier in order to maintain a near constant level of audio at 
the detector. The second IF amplifier is also tuned to 455 kHz and has a fixed gain of 
about 50. It selectively amplifies the IF signal and feeds it to the AM Detector. The AM 
Detector converts the IF signal to a low level audio signal. The Audio Amplifier stage 
increases the power of the demodulated audio signal received from the AM Detector to a 
power level capable of driving the speaker. 
For this project, the IF signal is taped out at the output of the second IF amplifier. 
The gain is set so that the IF signal at the output of second IF amplifier is in the range of 
+/- 1V. 
 
3.2 DAS4020/12 PCI-based DAQ Card 
The AM IF signal from the AM/FM trainer kit is converted into digital domain by 
Measurement Computing (MMC)'s DAS4020/12 PCI-based DAQ card. Figure 3.2.1 (a) 
and Figure 3.2.1 (b) depict the card and its block diagram respectively [9]. 
The PCI-DAS4020/12 is a high speed, analog data acquisition board for PCI bus 
computers.  Its features are: 
1. Wide analog BW - 20MHz total throughput rate  
2. 12-bit A/D resolution 
3. 4 analog input channels 
4. Software selectable input ranges 
5. One A/D Converter per Channel 
6. Dual 12-bit D/A Converter 
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7. Fully Plug-and-Play  
8. Fully Autocalibrating 
9. Data acquisition through MATLAB, LabVIEW, Visual Studio.net 
The main advantage of using this card is its seamless operation with standard 
engineering softwares like MATLAB and LabVIEW. Most undergraduate / graduate 
schools use these softwares in their laboratories. Table 3.2.1 lists some electrical 
specifications that are of relevance to this project. 
 
 
Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card 
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Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12 
 
Sr No Parameter Value 
1 Minimum sampling frequency 1 kHz 
2 Input programmable range ?5 V, ?1 V (software configurable) 
3 Input impedance 1.5MOhm (default), 50Ohm 
4 Typical Accuracy ?3.0 LSB error (either range) 
5 SNR (Signal-to-Noise Ratio) 66.6dB 
6 SFDR (Spurious Free Dynamic Range)  80dB 
7 THD (Total Harmonic Distortion) 80dB 
8 ENOB (Effective Number Of Bits) 10 
 
Table 3.2.1: Electrical specifications of the DAQ card 
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3.3 MATLAB with Data Acquisition Toolbox (DAQ) 
MathWorks' MATLAB is a high-level technical computing language and 
interactive environment for algorithm development, data visualization, data analysis, and 
numeric computation [10]. It has command line, scripting, modular, and graphical 
programming modes. In this project modular and graphical programming is employed. 
Add-on toolboxes like DAQ Toolbox, Signal Processing Toolbox, Communications 
Toolbox, etc extend the MATLAB environment to solve problems pertaining to the areas 
of signal/image processing, communications and control design.  
For this project we use MATLAB's DAQ Toolbox to control and communicate 
with the DAQ card and PC soundcard.  The DAQ Toolbox provides a complete set of 
tools for analog input, analog output and digital I/O from a variety of PC-compatible data 
acquisition hardware including those from Measurement Computing [11]. The toolbox 
allows configuring external hardware devices, reading data into MATLAB for immediate 
analysis, and sending out data. Together, MATLAB and DAQ Toolbox offer a single, 
integrated environment to support the entire data acquisition and analysis process. 
MATLAB's Graphical User Interface Development Environment (GUIDE) is 
used to build the Graphical User Interface (GUI). GUIDE provides a set of tools that 
simplify the process of laying out and programming GUIs. 
 
3.4 PC with Speakers 
 A PC is required to run MATLAB to acquire data, perform signal processing and 
output the processed data to the speakers through the soundcard. For this work, the PC 
28 
used is a standard 2.4 GHz Pentium desktop with 512 MB RAM, standard soundcard and 
options from Dell Computer Corporation. 
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CHAPTER 4 
DSP ALGORITHMS 
 
 This chapter discusses the DSP algorithms used to sample and demodulate the 
AM IF signal. Bandpass sampling and quadrature demodulation are discussed along with 
mathematical analysis.  
 
4.1 Bandpass Sampling 
 Chapter 2, discussed different sampling techniques that can be used for directly 
digitizing RF / IF signal. The usual method of sampling at twice the Nyquist rate is not 
practically feasible due to system limitations. The MCC DAQ card has a very wide 
bandwidth and can easily sample AM RF or IF signal at more than twice the Nyquist rate. 
For example, in the AM IF case this sampling rate could 1 MHz. But the amount of data 
that MATLAB would have to handle and process will put it out of sync with the sound 
card. In other words, a real time system implementation will not be possible. 
Data per sample = 1.5 Bytes (12 bits) 
Samples / second = 1 M 
Total data / second = 1.5 Bytes * 1 M = 1.5 MB 
Soundcard Output rate = 8 kS / second 
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This means that MATLAB + DAQ will have to process 188 kB data in less than 125?s 
and output it to the sound card. Given the current CPU and MATLAB speed, this is not 
feasible. Hence bandpass sampling is used in this project. 
Bandpass sampling is the technique of undersampling a modulated signal to 
achieve frequency translation by intentional aliasing. As stated in [6], the mathematical 
relationship describing the translation of the actual IF fIF frequency and translated IF 
frequency fIF,trans is: 
( )
( )sIFstransIF
sIFtransIF
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IF
ffremffodd
ffremfevenfffix
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    (4.1.1) 
Here, fix (a) is the truncated portion of argument a and rem (a, b) is the remainder after 
dividsion of a by b. Associated with this translated IF are the corresponding modulation 
sidelobes that contain information bandwidth of interest. It is important to make sure that 
no portion of the information bandwidth of the signal folds on top if itself, creating 
interference. Hence the following two constraints should be met. 
 
2,
BWf
transIF >      (4.1.2) 
22,
BWff s
transIF ?<      (4.1.3) 
 
For AM frequencies, fIF = 455 kHz and BW = 10 kHz. Based on equation (4.1.1), 
Appendix A.1 lists the translated AM IF frequencies for the sampling frequencies from 1 
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kHz to 100 kHz. It also specifies whether constraints (4.1.2) and (4.1.3) are satisfied or 
not. The lower limit of 1 kHz is set by the minimum sampling rate of the DAQ card. The 
higher limit of 100 kHz is decided by maximum processing speed that would make the 
system real time. It is dependent on DSP algorithm and processor speed.  
Table 4.1.1 lists the useful bandpass sampling frequencies in the 1 kHz - 100 kHz 
range and their corresponding translated frequencies for 455 kHz AM IF. These 
frequencies are used in the GUI of SDR. User can select any of these sampling 
frequencies to demodulate the incoming signal.  
 
Actual IF, fIF = 455 kHz 
BW = 10 kHz 
 
Useful Bandpass Sampling 
Frequency, 
fs (kHz) 
 
 
Translated IF frequency, 
fIF,trans (kHz) 
28 7 
29 9 
31 10 
32 7 
33 7 
37 11 
39 13 
42 7 
44 15 
47 15 
49 14 
52 13 
55 15 
56 7 
58 9 
59 17 
62 21 
63 14 
32 
64 7 
66 7 
67 14 
68 21 
69 28 
71 29 
72 23 
73 17 
74 11 
77 7 
78 13 
79 19 
80 25 
81 31 
84 35 
85 30 
86 25 
87 20 
88 15 
89 10 
93 10 
94 15 
95 20 
96 25 
97 30 
98 35 
99 40 
 
 
Table 4.1.1: Useful bandpass sampling frequencies and the corresponding translated 
frequencies for 455 kHz AM IF 
 
4.2 Quadrature Demodulation 
In this project, the digitized AM IF signal is demodulated using quadrature 
demodulation. Quadrature demodulation has some interesting properties when used for 
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AM demodulation. To appreciate these properties, it is necessary to understand the 
scheme mathematically. 
 
 
Figure 4.2.1: Quadrature demodulation architecture for AM band 
Figure 4.2.1 depicts the quadrature demodulation scheme. The AM IF signal is 
mixed with the local oscillator to directly convert to baseband. The output is passed 
through a low-pass filter (LPF) to reject all the high frequency components. It is then 
squared and fed to the adder. Likewise the AM IF signal is also mixed with the 
quadrature component of the local oscillator. The output is then passed through LPF, 
squared and fed to the adder. The adder outputs the summation of the two inputs which is 
then square-rooted to produce the demodulated signal. The reason for squaring, adding 
and then finally square-rooting will become clear soon. 
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For the sake of argument, consider that the AM IF signal and local oscillator 
signal are continuous and have unit amplitude.  The input AM IF signal can then be 
ideally represented as: 
])cos[(21])cos[(21)cos( ?+?+?+++?+= twwtwwtwx mIFmIFIF            (4.2.1) 
where  wIF = AM carrier frequency 
   wm = modulating signal 
? = phase difference between the carrier frequency and the  
local oscillator frequency 
This signal mixes with the local oscillator signal to give, 
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Similarly, at point b we have, 
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The output of the mixer is passed through the LPF whose cut-off frequency is at least 
(|wIF - wO| + wm). Thus, at point c we have, 
(4.2.4)                                                        )]cos(1[  ])sin[(21                  
])sin[(41])sin[(41])sin[(21)(
twtww
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Similarly, at point d we have, 
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Squaring and adding we get, at point g, 
 )]cos(1[  41 2twfeg m+=+=      (4.2.6) 
Taking square-root results in demodulated AM signal with dc offset which can be easily 
removed,  
)]cos(1[  21 twgy m+==     (4.2.7) 
An identical mathematical analysis proves that this demodulation scheme works for 
single sideband (SSB) as well as double sideband suppressed carrier (DSB-SC) 
transmissions.  
 From the above analysis, one can conclude that so long as (|wIF - wO| + wm) is 
passed by the LPF, the signal can be demodulated using quadrature demodulation. When 
this scheme is implemented in digital domain, the LO is an accurate digitally generated 
sine wave. For AM signal, maximum fm is 5 kHz. If the LPF cut-off is at 10 kHz, then so 
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long as the offset between the IF and local oscillator frequency is less than 5 kHz, signal 
can be successfully demodulated. In other words, the AM IF at input of the ADC need 
not be exactly 455 kHz. This is a very useful property of quadrature demodulation as it 
relaxes the tight requirements on the LO in the RF front-end. 
Also, if the above architecture is implemented in digital domain, self-mixing can 
be avoided and I / Q mismatch can be minimized. 
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CHAPTER 5 
MATLAB IMPLEMENTATION 
 
This chapter deals with the MATLAB implementation of the SDR. It explains the 
MATLAB code used to initialize and run the DAQ card, digitally process the acquired 
data using the DSP algorithms discussed earlier and output the processed data through the 
soundcard. There is also a brief explanation of creating GUI using GUIDE. Only relevant 
MATLAB code is shown here in italics. The entire MATLAB code is included in the 
Appendix A.2. 
 
5.1 DAQ Devices Hardware Setup 
As discussed in Chapter 3, the DAQ card and soundcard can be configured using 
MATLAB's DAQ toolbox. Before doing that, it is necessary to reset all the data 
acquisition hardware present.  
daqreset; 
Since the system has to operate in real time, both the DAQ devices need to be 
initialized and they should work in tandem. Data acquisition objects for these devices are 
created by issuing the following commands. 
ai=analoginput('mcc',2); 
ao=analogoutput('winsound'); 
38 
First command creates an analog data input object called 'ai' that communicates with card 
#2 from mcc. mcc is the hardware vendor that MATLAB has assigned for Measurement 
Computing boards. ai configures and controls various parameters of the DAQ card. 
Likewise, the second command creates an analog data output object called ao that 
communicates with the sound card.  
Since DAQ card has four input channels, it is necessary to tell MATLAB which 
ones to use for acquisition. In this project, Channel 2 is used to acquire data. Similarly, 
for soundcard Channel 1 is used. 
addchannel(ai,2); 
addchannel(ao,1); 
Next, the input range of the DAQ card is set to + 1V using the following command. 
ai.Channel.InputRange=[-1 1]; 
The input and output sampling rates are set by using the following functions. 
set(ai,'SampleRate',fs); 
set(ao,'SampleRate',fs_out); 
Here fs and fs_out are MATLAB variables which are initialized to 80k and 8k 
respectively. The GUI allows the user to change the value of fs but not the value of 
fs_out. 
The type of trigger for the data acquisition objects is decided by the TriggerType 
property. When set to Manual, the trigger occurs immediately after the trigger function is 
issued. 
set([ai ao],'TriggerType','Manual'); 
The number of input samples to be acquired per trigger is set by using the command: 
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set(ai,'SamplesPerTrigger',inf); 
Since the SamplesPerTrigger is set to infinity, the DAQ card acquires samples for 1 
second and transfers them from its hardware FIFO to PC memory. This is repeated 
infinitely until the device is stopped.  
For soundcard, the SamplesOutputFcn property decides which function to call 
after outputting # Output_samples samples. When SamplesOutputFcnCount equals 
Output_samples, function qmoredatanew is called with hObject passed as a parameter. 
hObject is handle to the figure of the GUI. 
set(ao,'SamplesOutputFcn',{'qmoredatanew', hObject})  
set(ao,'SamplesOutputFcnCount',Output_samples); 
The card is set to Direct Memory Access (DMA) transfer mode. This allows the 
DAQ card to access system memory independently of the CPU. The CPU can therefore 
concentrate on DSP related tasks. The size of the contiguous memory allocated for DMA 
transfer is decided by the software provided by MCC. This allocation is performed during 
the PC bootup sequence. 
set(ai,'TransferMode','DMA'); 
After setting all the parameters, the DAQ devices can be started and triggered to 
start acquiring data and logging it to memory. 
start([ai ao]); 
trigger([ai ao]); 
The start command will inform the devices to acquire data. DAQ card's internal clock 
will start. The trigger command will start the process of data acquisition. 
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The data logged into memory is retrieved by the DAQ Toolbox using getdata() 
function. It returns data and absolute time at which each sample was taken in a matrix 
format. The processed data is written to sound card using putdata() function. 
[y t]=getdata(ai,fs); 
putdata(ao,y) 
The data acquisition can be halted by using the stop() function. 
stop([ai ao]) 
 
5.2 Finding Translated IF frequency 
Though the translated IF frequency, fIF,trans, can be known from Table 4.1.1, it can 
also be determined from the Fast Fourier Transform (FFT) of the bandpass sampled 
signal. The peak of the FFT will occur at the translated IF frequency, fIF,trans. The 
following code takes the FFT of the sampled signal, finds the peak of the FFT and the 
corresponding frequency associated with the peak. 
fft_y=fft(y);                                            % Find FFT of the bandpass sampled signal 
[m,imax]=max(abs(fft_y(1:end/2)));      % Index of max peak 
freq_vec=fs*(1:length(y))/length(y);      % Generate frequency vector 
freq_carrier=freq_vec(imax);                % Find IF frequency 
 
5.3 Demodulation 
As discussed in Chapter 4, Quadrature demodulation scheme is used in this 
project. First the in-phase and out-phase components of the local oscillator are created to 
downconvert the translated IF to baseband. 
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fo=sin(2*pi*freq_carrier.*t);     % In-phase component 
fo_90=cos(2*pi*freq_carrier.*t);  % Out-phase component 
The input sampled signal is averaged out to filter the dc component and then normalized.  
y=y-mean(y); 
y=y/max(abs(y)); 
The normalized signal is then mixed with the in-phase and out-phase component 
of local oscillator and the product is passed through a low pass filter (LPF). The LPF is a 
50th order FIR filter with a linear phase and cut-off frequency, fc, of 10 kHz.  
b1=fir1(50,10e3/fs); 
The magnitude and phase response of the filter for a sampling frequency of 80 kHz is 
shown in Fig. 5.3.1. 
x1=filter(b1,1,fo.*y);                        % Multiplication with in-phase and subsequent LPF 
x2=filter(b1,1,fo_90.*y);                  % Multiplication with out-phase and subsequent LPF 
The two outputs are then squared, summed up and square rooted to get the 
demodulated output. 
x=sqrt(x1.^2+x2.^2); 
 
5.4 Downsampling and Normalization 
The demodulated output is downsampled from the bandpass sampling rate to the 
output sample rate. It is then averaged out and normalized to remove the dc component. 
z=x(1:(fs/fs_out):length(x)); 
z=z-mean(z); 
z=z/max(abs(z)); 
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Figure 5.3.1: Magnitude and Phase response of 50th order FIR filter with fc = 5 kHz 
 
5.5 Graphical User Interface (GUI) 
The GUI for SDR is shown in Fig. 5.51. The pop menu at the left-hand side 
allows the user to select one of the appropriate bandpass sampling frequencies listed in 
table 4.1.1. If nothing is selected then sampling is done at the default rate of 80 kS/s. 
After selecting the frequency, the user has to press the ON/OFF toggle button to start the 
DAQ devices. The time domain representation of the demodulated signal is displayed in 
the top plot. The X-axis range is for 1 second. The bottom plot shows the frequency 
domain representation. The Y-axis range is from -4 kHz to 4 kHz as the demodulated 
data is sent to the soundcard at the rate of 8 kHz. To stop the devices, the user has to 
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depress the ON/OFF button. The following GUIDE components are used to build the 
GUI: 
1. Popup Menu 
2. Axes 
3. Toggle Button 
4. Static Text 
Their details can be found in [10] and are not discussed here. 
 
 
Figure 5.5.1: SDR GUI 
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CHAPTER 6 
RESULTS AND FUTURE IMPROVEMENTS 
 
The results of the project are presented in this chapter. Qualitative aspect of the 
SDR performance is also discussed. Though this project is fully functional, by no way it 
is a complete one. There is plenty of room for improvement. Continuous improvement is 
needed in the areas of RF downconversion, sampling and efficient DSP algorithms. 
 
6.1 Results 
The AU SDR (AM Band) v4.0 is used to demodulate WAUD 1230 AM which is 
Auburn's local station. Figure 6.1.1 shows the GUI display for a sampling frequency of 
80 kHz. 
The demodulated signal appears a little noisy as can also be seen from its 
frequency spectrum. This is because the signal reception is not very good in the 
laboratory where this test was run. Also the receiver is a low-cost radio and hence has a 
relatively poor performance for weak signals. There is no noise reducing DSP algorithm 
implemented in this project.  
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Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz 
 
Figure 6.1.2 shows the demodulated WAUD 1230 AM station for a sampling 
frequency of 32 kHz. Here it can also be seen that that there is a peak at about 4 kHz 
which causes a whistling sound in audio output. The source of this peak is still unknown 
but it is a matter of further investigation. 
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Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz 
 
6.2 Future Improvements 
Instead of converting RF to IF, the whole AM band could be bandpass sampled. 
This will allow demodulation of multiple AM channels at the same time. As per the 
equations given in Chapter 4, the minimum bandpass sampling frequency for AM band 
(530 kHz - 1710 kHz) would be 3421 kHz (assuming that the sampling can be adjusted in 
steps of 1 kHz). However this will require an amplifier with a sharp bandpass response to 
reject all out-of-band signals. This amplifier will be placed between the antenna and the 
DAQ card. 
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The project could be extended to include other modulation schemes as well like 
FM, SW, CB, etc. Quadrature demodulation can be used for FM if two analog input 
channels are available. Noise canceling / squelch algorithms can also be implemented to 
further improve signal to noise ratio. 
MATLAB is a powerful computing tool but it is very resource hungry. It is not as 
efficient as C/C++ for performing DSP tasks like FFT. Also the use of GUI in MATLAB 
slows down signal processing further. The efficiency can be significantly improved if the 
coding is done entirely in C/C++. The code will then be portable to other operating 
systems. To make the system even more portable, USB based data-acquisition can be 
used. 
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APPENDIX 
 
A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF 
Actual IF, fIF = 455 kHz 
BW = 10 kHz 
 
Sampling 
Frequency, 
fs (kHz) 
 
 
Translated IF 
frequency, 
fIF,trans (kHz) 
 
Equation 
(4.1.2) satisfied 
 
Equation 
(4.1.3) satisfied 
 
Equations 
(4.1.2) and 
(4.1.3) 
satisfied 
1 0 FALSE FALSE FALSE 
2 1 FALSE FALSE FALSE 
3 1 FALSE FALSE FALSE 
4 1 FALSE FALSE FALSE 
5 0 FALSE FALSE FALSE 
6 1 FALSE FALSE FALSE 
7 0 FALSE FALSE FALSE 
8 1 FALSE FALSE FALSE 
9 4 FALSE FALSE FALSE 
10 5 FALSE FALSE FALSE 
11 4 FALSE FALSE FALSE 
12 1 FALSE FALSE FALSE 
13 0 FALSE TRUE FALSE 
14 7 TRUE FALSE FALSE 
15 5 FALSE FALSE FALSE 
16 7 TRUE FALSE FALSE 
17 4 FALSE FALSE FALSE 
18 5 FALSE FALSE FALSE 
19 1 FALSE TRUE FALSE 
20 5 FALSE FALSE FALSE 
21 7 TRUE FALSE FALSE 
22 7 TRUE FALSE FALSE 
23 5 FALSE TRUE FALSE 
24 1 FALSE TRUE FALSE 
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25 5 FALSE TRUE FALSE 
26 13 TRUE FALSE FALSE 
27 4 FALSE TRUE FALSE 
28 7 TRUE TRUE TRUE 
29 9 TRUE TRUE TRUE 
30 5 FALSE TRUE FALSE 
31 10 TRUE TRUE TRUE 
32 7 TRUE TRUE TRUE 
33 7 TRUE TRUE TRUE 
34 13 TRUE FALSE FALSE 
35 0 FALSE TRUE FALSE 
36 13 TRUE FALSE FALSE 
37 11 TRUE TRUE TRUE 
38 1 FALSE TRUE FALSE 
39 13 TRUE TRUE TRUE 
40 15 TRUE FALSE FALSE 
41 4 FALSE TRUE FALSE 
42 7 TRUE TRUE TRUE 
43 18 TRUE FALSE FALSE 
44 15 TRUE TRUE TRUE 
45 5 FALSE TRUE FALSE 
46 5 FALSE TRUE FALSE 
47 15 TRUE TRUE TRUE 
48 23 TRUE FALSE FALSE 
49 14 TRUE TRUE TRUE 
50 5 FALSE TRUE FALSE 
51 4 FALSE TRUE FALSE 
52 13 TRUE TRUE TRUE 
53 22 TRUE FALSE FALSE 
54 23 TRUE FALSE FALSE 
55 15 TRUE TRUE TRUE 
56 7 TRUE TRUE TRUE 
57 1 FALSE TRUE FALSE 
58 9 TRUE TRUE TRUE 
59 17 TRUE TRUE TRUE 
60 25 TRUE FALSE FALSE 
61 28 TRUE FALSE FALSE 
62 21 TRUE TRUE TRUE 
63 14 TRUE TRUE TRUE 
64 7 TRUE TRUE TRUE 
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65 0 FALSE TRUE FALSE 
66 7 TRUE TRUE TRUE 
67 14 TRUE TRUE TRUE 
68 21 TRUE TRUE TRUE 
69 28 TRUE TRUE TRUE 
70 35 TRUE FALSE FALSE 
71 29 TRUE TRUE TRUE 
72 23 TRUE TRUE TRUE 
73 17 TRUE TRUE TRUE 
74 11 TRUE TRUE TRUE 
75 5 FALSE TRUE FALSE 
76 1 FALSE TRUE FALSE 
77 7 TRUE TRUE TRUE 
78 13 TRUE TRUE TRUE 
79 19 TRUE TRUE TRUE 
80 25 TRUE TRUE TRUE 
81 31 TRUE TRUE TRUE 
82 37 TRUE FALSE FALSE 
83 40 TRUE FALSE FALSE 
84 35 TRUE TRUE TRUE 
85 30 TRUE TRUE TRUE 
86 25 TRUE TRUE TRUE 
87 20 TRUE TRUE TRUE 
88 15 TRUE TRUE TRUE 
89 10 TRUE TRUE TRUE 
90 5 FALSE TRUE FALSE 
91 0 FALSE TRUE FALSE 
92 5 FALSE TRUE FALSE 
93 10 TRUE TRUE TRUE 
94 15 TRUE TRUE TRUE 
95 20 TRUE TRUE TRUE 
96 25 TRUE TRUE TRUE 
97 30 TRUE TRUE TRUE 
98 35 TRUE TRUE TRUE 
99 40 TRUE TRUE TRUE 
100 45 TRUE FALSE FALSE 
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A.2 MATLAB Software Code 
 This is the main file (IF455_SDR_GUI_v4.m) which creates and controls the 
GUI, takes user input, calls different signal processing functions and displays messages 
on the MATLAB command window. 
 
function varargout = IF455_SDR_GUI_v4(varargin) 
% IF455_SDR_GUI_V4 M-file for IF455_SDR_GUI_v4.fig 
%      IF455_SDR_GUI_V4, by itself, creates a new IF455_SDR_GUI_V4 or raises the  
%      existing  singleton*. 
%      H = IF455_SDR_GUI_V4 returns the handle to a new IF455_SDR_GUI_V4 or  
%      the handle to the existing singleton*. 
%      IF455_SDR_GUI_V4('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in IF455_SDR_GUI_V4.M with the given input  
%      arguments. 
%      IF455_SDR_GUI_V4('Property','Value',...) creates a new IF455_SDR_GUI_V4 or  
%     raises the existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before IF455_SDR_GUI_v4_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to IF455_SDR_GUI_v4_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
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% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help IF455_SDR_GUI_v4 
% Last Modified by GUIDE v2.5 17-Sep-2006 13:58:24 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @IF455_SDR_GUI_v4_OpeningFcn, ... 
                   'gui_OutputFcn',  @IF455_SDR_GUI_v4_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before IF455_SDR_GUI_v4 is made visible. 
 
function IF455_SDR_GUI_v4_OpeningFcn(hObject, eventdata, handles, varargin) 
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% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to IF455_SDR_GUI_v4 (see VARARGIN) 
clc; 
% Declare parameters shared between different functions as global 
global fs fs_out Output_samples flag; 
warning off; 
% Display welcome message on MATLAB command prompt 
fprintf('Welcome to Auburn University SDR (AM Band) v4.0 program.');  
fprintf('\nSelect the appropriate sampling frequency and then press ON/OFF... 
button to start.\n'); 
% Set default sampling rate as 80 kHz. This can be changed by end user using GUI 
fs=80e3; 
% Set output sample rate as 8 kHz. This is fixed and cant be changed by end  user 
fs_out=8e3; 
Output_samples=8e3; 
% Assign a flag to determine ON/OFF. flag = 1 means ON, flag = 0 means OFF 
flag=1; 
% Generate a 50 Hz sine wave and its FFT 
t = 0:1.25e-4:(1-1.25e-4); 
x=sin(2*pi*50*t); 
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N=length(x); 
Ts=length(t); 
% Frequency vector 
ssf=(-N/2:N/2-1)/(N/fs_out);                    
% Do FFT 
fx=fft(x(1:N));                             
% Shift it for plotting 
fxs=fftshift(fx);                           
% Get structure of handles.  
handles = guihandles(hObject);  
%Plot the sine wave in time and frequency domain. 
axes(handles.axes1) 
plot(t,x) 
set(handles.axes1,'XMinorTick','on') 
set(handles.axes1,'XMinorGrid','on') 
grid on 
axes(handles.axes2) 
plot(ssf,abs(fxs)); 
set(handles.axes2,'XMinorTick','on') 
set(handles.axes2,'XMinorGrid','on') 
grid on 
% Choose default command line output for IF455_SDR_GUI_v4 
handles.output = hObject; 
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% Update handles structure 
guidata(hObject, handles); 
% UIWAIT makes IF455_SDR_GUI_v4 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
% --- Outputs from this function are returned to the command line. 
function varargout = IF455_SDR_GUI_v4_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
% --- Executes on button press in togglebutton1. 
function togglebutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to togglebutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
handles=guihandles(hObject); 
global ai ao fs fs_out Output_samples freq_carrier b1 flag; 
% Get toggle state of ON/OFF button 
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button_state = get(hObject,'Value'); 
if button_state == get(hObject,'Max') 
    % Disable popup menu which selects sampling frequency 
    set(handles.popupmenu1,'Enable','off'); 
    % Reset DAQ devices 
    daqreset; 
    % Configure the DAQ devices  
    ai=analoginput('mcc',2); 
    ao=analogoutput('winsound'); 
    addchannel(ai,2); 
    addchannel(ao,1); 
    ai.Channel.InputRange=[-1 1]; 
    % Determine the translated carrier frequency; 
    freq_carrier=findcarrier(fs,Output_samples);  
    % Determine corfficients of 50th order FIR LPF with cut-off frequency at 5 kHz 
    b1=fir1(50,10e3/fs); 
    set(ai,'SampleRate',fs); 
    set(ao,'SampleRate',fs_out);  %setting the soundcard to 8k out 
    set([ai ao],'TriggerType','Manual'); 
    set(ai,'ManualTriggerHwOn','Trigger'); 
    set(ai,'SamplesPerTrigger',inf); 
    set(ao,'SamplesOutputFcn',{'qmoredatanew',hObject}) 
    set(ao,'SamplesOutputFcnCount',Output_samples); 
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    set([ai ao],'StopFcn',@daqstopped); 
    set(ai,'TransferMode','DMA'); 
    
    % Workaround to get the DAQ devices running in sync 
    y=zeros(Output_samples,1); 
    putdata(ao,y); 
    start([ai ao]); 
    trigger([ai ao]); 
    pause(5); 
    stop([ai ao]); 
 
    % Start the actual Data acquistion 
    putdata(ao,y); 
    start([ai ao]); 
    fprintf('Program started. Press ON/OFF button to stop.\n'); 
    trigger([ai ao]); 
 
elseif button_state == get(hObject,'Min') 
    flag = 0; 
end 
 
% --- Executes during object creation, after setting all properties. 
function axes1_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to axes1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: place code in OpeningFcn to populate axes1 
 
 
% --- Executes on mouse press over axes background. 
function axes1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to axes1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% --- Executes during object creation, after setting all properties. 
function axes2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axes1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: place code in OpeningFcn to populate axes2 
 
% --- Executes on mouse press over axes background. 
function axes2_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to axes1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
 
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
global fs fs_out Output_samples; 
% Contents  
contents = get(hObject,'String'); 
index_selected = get(hObject,'Value'); 
fs = 1e3*str2double(contents(index_selected)); 
 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
The main file calls the following function (findcarrier.m) to compute FFT on 'N' 
samples and find out the exact translated carrier frequency after downsampling the input 
at 'fs' kHz. 
 
function freq_carrier=findcarrier(fs,N) 
global ai; 
duration=N/fs; 
set(ai,'SampleRate',fs); 
set(ai,'SamplesPerTrigger',N); 
set(ai,'TriggerType','immediate'); 
start(ai); 
y=getdata(ai); 
fft_y=fft(y); 
[m,imax]=max(abs(fft_y(1:end/2)));      % Index of max peak 
freq_vec=fs*(1:length(y))/length(y);    % Generate frequency vector 
freq_carrier=freq_vec(imax);            % Find IF frequency 
stop(ai); 
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The following function (qmoredatanew.m) is called by the main file to perform 
quadrature demodulation of the AM signal if 'flag' is set to 1 and to stop the DAQ devices 
if 'flag' is set to 0.  
 
function qmoredatanew(obj,event,hObject) 
global ai ao fs fs_out Output_samples freq_carrier b1 flag; 
handles=guidata(hObject); 
if (flag==0) 
    stop([ai ao]); 
    set(handles.popupmenu1,'Enable','on'); 
    fprintf('Program stopped. Press ON/OFF button to start again.\n'); 
    flag=1; 
else 
     [y t]=getdata(ai,fs); 
    y=y-mean(y); 
    y=y/max(abs(y)); 
    fo=sin(2*pi*freq_carrier.*t);        % In-phase component 
    fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component 
    x1=filter(b1,1,fo.*y);                     % Multiplication with in-phase and subsequent LPF 
    x2=filter(b1,1,fo_90.*y);              % Multiplication with out-phase and subsequent LPF 
    x=sqrt(x1.^2+x2.^2); 
    z=x(1:(fs/fs_out):length(x)); 
    z(1)=z(4); z(2)=z(4); z(3)=z(4); 
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    z=z-mean(z); 
    z=z/max(abs(z)); 
    N=length(z);                                    % length of the signal z 
    t1=t(1:(fs/fs_out):length(x)); 
    ssf=(-N/2:N/2-1)/(N/fs);                 % frequency vector 
    fz=fft(z(1:N));                                % Perform DFT/FFT 
    fzs=fftshift(fz);                               % shift it for plotting 
    plot(handles.axes1,t1,z) 
    set(handles.axes1,'XMinorTick','on') 
    set(handles.axes1,'XMinorGrid','on') 
    set(handles.axes1,'YGrid','on') 
    plot(handles.axes2,ssf,abs(fzs)) 
    set(handles.axes2,'XMinorTick','on') 
    set(handles.axes2,'XMinorGrid','on') 
    set(handles.axes2,'YGrid','on') 
    putdata(obj,z); 
end 

