
DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO
RECEIVER FOR AM BAND

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

Kalpesh Anil Shetye

Certificate of Approval:

______________________________ _____________________________
Bogdan M. Wilamowski Richard C. Jaeger, Chair
Professor Distinguished University Professor
Electrical and Computer Engineering Electrical and Computer Engineering

______________________________ _____________________________
Fa Foster Dai Ramesh Ramadoss
Associate Professor Assistant Professor
Electrical and Computer Engineering Electrical and Computer Engineering

 Joe F. Pittman
 Interim Dean
 Graduate School

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO
RECEIVER FOR AM BAND

Kalpesh Anil Shetye

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Masters of Science

Auburn, Alabama
August 4, 2007
iii
DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO
RECEIVER FOR AM BAND

Kalpesh Anil Shetye

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

Signature of Author

Date of Graduation

iv
VITA

Kalpesh Shetye was born in Mumbai, India, on June 14, 1980. He is the eldest son of
Anil and Maya Shetye. He completed his Bachelor of Engineering in Electronics degree
from University of Mumbai, India in 2002. After completing his Bachelors he pursued
his Masters program at Auburn University in Spring 2003, where he started working on
Analog / Mixed-signal circuit design and subsequently Software-Defined Radio concepts.
His primary areas of interest are Analog / Mixed-signal circuit design, RF IC design and
DSP for Software Defined Radio. He is currently employed with Siemens VDO
Automotive, Huntsville as Design Engineer ? Electrical R&D.

v
THESIS ABSTRACT

DESIGN AND IMPLEMENTATION OF A SOFTWARE DEFINED RADIO
RECEIVER FOR AM BAND
Kalpesh Shetye
Master of Science, August 4, 2007
(Bachelor of Engineering, University of Mumbai, 2002)

75 Typed Pages

Directed by Richard C. Jaeger

Since the mid-1990s, the radio industry has actively focused on implementing
more and more radio functions in the digital domain. This has been furthered by
availability of high speed, high performance data converters and faster digital processors.
In 1993, Joe Mitola, III coined the term 'Software Radio (SR)' for a radio system that uses
DSP primitives to perform signal manipulation instead of the traditional analog hardware.
Such a system is more robust, compact, power-efficient and highly reconfigurable. An
ideal Software Radio system consists of a transmitting/receiving antenna, high speed data
converter and a powerful digital processor. However, the state of current technology is
such that this can only be partially achieved. Due to speed and performance limitations of
existing data converters and digital processors, it is customary to use an RF front-end
between the antenna and the data converter. Such a system is then termed as a Software-
Defined Radio (SDR).
vi
This thesis deals with the design and implementation of a low-cost SDR receiver
which bandpass samples AM Intermediate Frequency (IF) and demodulates it in real-time
using quadrature demodulation. The system uses an AM/FM trainer kit to obtain an AM
IF, a high speed PCI-based data acquisition (DAQ) card for analog-to-digital (A/D)
conversion, MATLAB to perform signal processing in the digital domain and a sound
card to produce the demodulated analog signal. A Graphical User Interface (GUI) is
developed which allows the user to start/stop the program, select a suitable bandpass
sampling frequency and view the time and frequency domain representation of the
demodulated signal. This work also discusses bandpass sampling and quadrature
demodulation followed by a rigid mathematical analysis to point out advantages and
disadvantages of the two techniques.

vii
ACKNOWLEDGEMENTS

I am grateful to my parents Anil and Maya, my brother Akshay and my close
relatives for providing me financial and emotional support to study in United States. I
thank my friends Anjani, Gautham, Pradeep, Kashi, Shaman, Santosh and Nitin for
providing me accommodation during my weekend trips to Auburn.
My deepest respect and appreciation goes out to my advisor, Dr. Richard C.
Jaeger, without whose support this work could not be completed. He strongly encouraged
me to accept the job offer at Siemens VDO Automotive and continue studies while
working. I greatly acknowledge his technical guidance and financial support which was
necessary to complete this work. I am also grateful to Dr. Fa Foster Dai, Dr. Bogdan
Wilamowski and Dr. Ramesh Ramadoss for having served on my committee and for their
valuable inputs and suggestions. I wish to thank Mr. Joe Haggerty for his advice and help
on electronics equipment. Last but not the least, I express my gratitude to Siemens VDO
mentor Mr. Paul Evans and manager Mr. Blane McCoy who motivated me to complete
my Masters.
I would like to dedicate this thesis to my spiritual guru, Paramahansa Yogananda,
whose life and teachings have had a significant impact on me during my stay in United
States.
 viii
Format of body: Auburn University Graduate School: Guide to preparation and
submission of theses and dissertations.
Computer software used: Microsoft Office Professional 2003
 MATLAB Release 14
 ix
TABLE OF CONTENTS
LIST OF FIGURES x
LIST OF TABLES xi
INTRODUCTION .. 3
1.1 Software Defined Radio (SDR) .. 2
1.2 Applications of SDR... 5
BACKGROUND AND LITERATURE REVIEW .. 8
2.1 RF Front-end Architectures .. 8
2.2 Sampling Techniques.. 13
2.3 Data Conversion Challenges... 18
2.4 Digital Signal Processing Alternatives ... 20
SYSTEM DESIGN ... 22
3.1 AM/FM Trainer Kit .. 22
3.2 DAS4020/12 PCI-based DAQ Card ... 24
3.3 MATLAB with Data Acquisition Toolbox (DAQ) 27
3.4 PC with Speakers .. 27
DSP ALGORITHMS.. 29
4.1 Bandpass Sampling... 29
4.2 Quadrature Demodulation... 32
MATLAB IMPLEMENTATION... 37
5.1 DAQ Devices Hardware Setup ... 37
5.2 Finding Translated IF frequency... 40
5.3 Demodulation.. 40
5.4 Downsampling and Normalization ... 41
5.5 Graphical User Interface (GUI) .. 42
RESULTS AND FUTURE IMPROVEMENTS .. 44
6.1 Results... 44
6.2 Future Improvements.. 46
REFERENCES ... 49
APPENDIX... 51
A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF.......... 51
A.2 MATLAB Software Code... 54

 x
LIST OF FIGURES
Figure 1.1.1: An Ideal Software Radio (ISR) ... 3
Figure 1.1.2: A Software-Define Radio (SDR) .. 4
Figure 1.2.1: FlexRadio SDR-1000 .. 6
Figure 1.2.2: Software Defined Radio receiver for AM Band.. 7
Figure 2.1.1: Heterodyne (or superheterodyne) architecture .. 10
Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture.......... 11
Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing 12
Figure 2.1.3: Low-IF (or digital-IF) architecture.. 13
Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal 15
Figure 2.2.1: (b) Spectrum of the signal sampled at fs = 2fmax ... 16
Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax.. 16
Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax ... 16
Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component ... 17
Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax ... 17
Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF.. 18
Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF 18
Figure 3.1.1 (a): Assembled AM/FM Trainer kit ... 22
Figure 3.1.1 (b): Schematic of AM/FM Trainer kit.. 23
Figure 3.1.2: Block diagram of AM section of the kit.. 23
Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card ... 25
Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12.. 26
Figure 4.2.1: Quadrature demodulation architecture for AM band 33
Figure 5.3.1: Magnitude and Phase response of 50th order FIR filter with fc = 5 kHz 42
Figure 5.5.1: SDR GUI ... 43
Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz 45
Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz 46

 xi
LIST OF TABLES
Table 3.2.1: Electrical specifications of the DAQ card .. 26
Table 4.1.1: Bandpass sampling frequencies and the corresponding translated frequencies
 for 455 kHz AM IF ... 32

 1
CHAPTER 1
INTRODUCTION

Prior to the infusion of digital signal processing technology, most of the functions
in a radio system were implemented using analog circuitry. This had several limitations.
First of all, such a system was not reconfigurable. Any modification was possible only
through physical intervention. Secondly, complex communication algorithms were
difficult to implement in the analog domain due to the size of the components, associated
costs and power consumption. Also, performance of analog radio was dependent on
external parameters like noise, temperature, etc. With increase in speed of data converters
and signal processors, it became possible to implement analog functions in the digital
domain. The ultimate goal was to directly digitize the RF signal at the output of the
receiving antenna and implement all receiver functions in either digital hardware or
software. This gave birth to the software-defined radio (SDR) concept. An SDR system
is a radio communication system which uses software for modulation and demodulation
of radio signals [3].
This thesis presents the design of a low-cost SDR receiver which bandpass
samples an AM Intermediate Frequency (IF) and demodulates it in digital domain using
quadrature demodulation. This work can form the foundation of an undergraduate
2
wireless education or a graduate wireless research laboratory. The thesis is organized as
follows:
i. Chapter 1 is a primer on the SDR concept, its advantages and potential
applications. An overview of the SDR system designed and implemented for this
project is also presented.
ii. Chapter 2 is a literature review of different RF front-end architectures, sampling
techniques and signal processing options.
iii. Chapter 3 explains the system design of the SDR receiver. The components used
for building the system are explained in detail.
iv. Chapter 4 deals with the algorithms used in this project and the mathematics
behind them. Bandpass sampling and quadrature demodulation are discussed in
detail here.
v. Chapter 5 explains the implementation of the algorithms in MATLAB using its
Data Acquisition Toolbox. It also explains the Graphical User Interface (GUI)
created for the end user.
vi. Chapter 6 presents the results and suggests future improvements.
vii. Appendix contains the entire MATLAB code along with appropriate comments.

1.1 Software Defined Radio (SDR)
 As suggested in [4], radio systems can be classified into 5 tiers depending upon
their capability and flexibility. Tier 0 includes strictly a Hardware Radio (HR) which can
be modified through physical intervention only. All traditional analog radio systems with
no software element are included in this group. Tier 1 includes a Software Controlled
3
Radio (SCR) which has limited functions changeable using software. Tier 2 includes
Software Defined Radio (SDR) which uses software for the modulation and
demodulation of radio signals. Some RF front-end processing is still necessary in such a
system. Tier 3 includes Ideal Software Radio (ISR) which eliminates the RF front-end
processing completely. The antenna is directly connected to the data converter in this
system. Tier 4 includes Ultimate Software Radio (USR) which is a fully programmable
radio which can support broad range of frequencies and multiple air-interfaces.
 Figure 1.1.1 illustrates an ISR. Here, the DSP does the modulation and
demodulation in addition to baseband signal processing, thus eliminating the need of RF
front end. The user can alter the functionality of the radio simply by reprogramming the
DSP. However in practicality, it is not possible to attach the antenna directly to the data
converter due to a variety of reasons (discussed in Chapter 2). Use of RF front end
therefore becomes necessary converting the radio from ISR to SDR.

Figure 1.1.1: An Ideal Software Radio (ISR)
Antenna
Switch

ADC

DAC

Digital
Signal
Processing
(DSP)
Speaker
User
Interface
Microphone
fin
fout
4

Figure 1.1.2: A Software-Define Radio (SDR)

 Figure 1.1.2 illustrates a practical SDR architecture. In the receive path, the
antenna signal is amplified by the Low Noise Amplifier (LNA). It is then mixed and
bandpass filtered (BPF) to generate the IF signal. This IF signal is then digitized by a
high speed ADC. The DSP downconverts the IF signal to baseband and subsequently
demodulates it in digital domain. The demodulated signal is played on a speaker.
 Likewise, in the transmit path, the DAC outputs the modulated signal at the IF
frequency. It is then upconverted and bandpass filtered to generate the RF signal. The RF
signal is further amplified by the Power Amplifier (PA) and fed to the antenna.
 Radios built using SDR concept have the following advantages:
1) Increased system performance, flexibility and cost efficiency as the digitization is
done at an early stage.
2) A standard architecture can be used for a wide range of communication products [4].
Hence, interoperability is possible.
LO
User
Interface
Antenna

BPF
LO
Switch
ADC

DAC

Digital
Signal
Processing
(DSP)
Speaker
Microphone

BPF
fIF
fIF
X
X
Mixer
Mixer
fLO
fLO

LNA
PA
fin
fout
5
3) Increased adaptability. The radio can be reprogrammed to improve performance or
add more functionality.
4) Software modifications can be done at a fraction of the time of hardware
modifications. This can drastically reduce time to market and life-cycle costs.

1.2 Applications of SDR
Software defined radios have significant use in military and wireless industry
because both of them have a variety of changing radio protocols in real time. One of the
first software defined radios was a US military project called SPEAKeasy [3]. The goal
of the project was to develop a radio for US military that could operate from 2 MHz to 2
GHz. Its architecture was identical to Fig. 1.1.2. It was one of the first projects to use
Field Programmable Gate Arrays (FPGA) for digital signal processing of radio data.
Another project, called Joint Tactical Radio Systems (JTRS), is a US and allied
program to make radios which provide flexible and interoperable communications. It is
based on the Software Communications Architecture (SCA).
A potential application of SDR is in the automotive industry. Many OEM
manufacturers, including Siemens VDO Automotive, are researching the option of
eliminating bulky RF tuners in car radio and digitizing entire AM/FM bands. Multiple
AM/FM channels can be demodulated simultaneously in digital domain. This will allow
playing of one radio channel on the main radio and another on Rear Seat Entertainment
(RSE).
In academia, research in SDR field is being in pursued in top universities like
Georgia Tech, MIT and UCLA. MIT is investigating the use of SDR in Radio Frequency
6
Identification (RFID) where devices use various communication protocols to operate on
various frequencies. Recently, UCLA introduced a practical SDR receiver which can tune
and detect any desired RF signal in the 800MHz to 5GHz band [12]. Key blocks for the
receiver are wideband LNA, highly linear low-flicker mixer, wide tuning range
synthesizer, and programmable anti-aliasing filters.
SDR has also crept in the amateur radio field. In [13], a PC-based SDR is
described that downconverts RF to low-IF in the audio frequency range. It then uses PC
sound card to sample and demodulate the signal. The FlexRadio SDR-1000 [14], shown
in Fig. 1.2.1, is based on this concept. It can demodulate desired RF signal from 12 kHz
to 60 MHz.

Figure 1.2.1: FlexRadio SDR-1000
7

 The basic block diagram of the low-cost SDR receiver designed for this project is
shown in Fig. 1.2.2. The AM/FM trainer kit is used to convert the AM signal to amplified
AM IF signal. It is then undersampled using the high speed ADC of Measurement
Computing's PCI-based DAS4020/12 data acquisition board. Quadrature demodulation is
used to demodulate the signal in and play it in real-time on PC speakers. DSP algorithms
are written in MATLAB which is a simulation and mathematical software from The
Mathworks Inc.

Figure 1.2.2: Software Defined Radio Receiver for AM Band

Speaker
Antenna
ADC of
DAS4020
/12
PC with
MATLAB
and its
DAQ
toolbox
RF to IF
frontend
Elenco AM/FM
Trainer Kit
AM IF
8
CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

This chapter discusses common RF front-end architectures and uniform sampling
techniques used in radio receivers. It also talks about the data conversion challenges for
software-defined radio implementation. Finally it concludes with digital signal processing
alternatives for SDR.

2.1 RF Front-end Architectures
The primary criteria in selecting any RF front-end architecture are complexity,
cost, power distribution and number of external components. There are three RF front-
end architectures in popular use today. They are heterodyne (or superhetrodyne),
homodyne (or direct conversion or zero-IF) and low-IF (or digital-IF) architecture.

2.1.1 Heterodyne Architecture
In heterodyne architecture, the RF signal is translated to lower IF frequencies in
multiple stages by mixing it with a local oscillator signal. Figure 2.1.1 depicts such a
design. The RF signal is passed through the BPF and amplified by the LNA. Before the
signal is mixed with first local oscillator (fLO1) to generate first IF (fIF1), it is passed
through the image reject filter (IRF). The IRF rejects the image frequency located at the
sum of the LO and IF frequencies (fLO + fIF1). If the image is not rejected then it will fall
9
directly on the IF after mixing and corrupt the signal information. The channel select
filter rejects adjacent channels and improves channel selectivity. The first IF signal is
mixed with second local oscillator (fLO2) to obtain the second IF signal (fIF2).
The major disadvantage of heterodyne topology is the number of required
components. For example, a two stage heterodyne receiver employs two mixers, two
local oscillators, one image reject filter and two channel select filters. The choice of IF
also depends on trade-offs among three parameters: the amount of image noise present,
the spacing between the desired band and the image and the loss of the image-reject filter
[5]. A low IF allows great suppression of nearby interferers whereas a high IF leads to
better image rejection. Thus heterodyne topology exhibits tradeoff between selectivity
and sensitivity. Another problem which exits is the half IF effect due to the second order
non-linearity in the RF and IF paths. Assume that there is a strong interferer at half of the
IF from the desired band towards the LO ((fin + fLO)/2) and it undergoes second order
distortion in the RF path. If the LO signal contains its second harmonic then the interferer
falls on the IF (|2fLO ? (fin - fLO)| = fIF) after mixing. Another possibility is that the
interferer gets translated to (fin - fLO)/2 = fIF/2. If the IF path exhibits second order non-
linearity then the interferer will still fall on the IF.
Most AM/FM radios use heterodyne architecture with two stages of
downconversion. The second IF frequency for AM and FM band is 455 kHz and 10.1
MHz respectively.
10

Figure 2.1.1: Heterodyne (or superheterodyne) architecture

2.1.2 Homodyne Architecture
In homodyne architecture, the RF signal is directly translated to baseband by
mixing it with LO signal whose frequency is same as the carrier frequency. This is
illustrated in Fig. 2.1.2 (a). For double-sided AM signal, this technique works well
because it overlaps positive and negative parts of the input spectrum. However for FM
and phase-modulated signals, quadrature downconversion (In-phase ?I? and Quadrature
?Q?) is necessary to avoid loss of information. This is shown in Fig. 2.1.2 (b).
The simplicity of the homodyne topology has its own advantages and
disadvantages. No image reject filter is required. Also, the LPF and amplifier operate at
lower frequencies and their monolithic integration is possible. The channel filtering can
be done in digital domain provided the ADC has high linearity and sufficient spurious-
free dynamic range (SFDR). A serious disadvantage of homodyne topology is self-
mixing of the LO signal. The isolation between the LO and inputs of the LNA and mixer
Channel
Select
Filter

BPF

LO1

BPF
fLO1

BPF

fIF1 X
Image
Reject
Filter
Band
Select
Filter
Channel
Select
Filter
 LNA
 AMP
Mixer
X

BPF

fIF2
LO2
fin
fLO2
Antenna
11
is not infinite. There is a finite amount of feedthrough from the LO to these inputs called
as LO leakage [5]. The leakage signal mixes with the LO signal to produce a DC offset.
This can cause corruption of the baseband signal and can saturate the following stages of
a receiver. A similar effect is seen when a strong interferer leaks from the LNA or mixer
input to the LO and mixes with itself. In phase and frequency modulation schemes, where
quadrature downconversion is employed, amplitude and phase mismatch between I and Q
can corrupt the downconverted signal. Also if the architecture is implemented using MOS
devices, then flicker noise (1/f noise) can be a potential source of corruption.

Figure 2.1.2: (a) Simple homodyne (or direct conversion or zero-IF) architecture

Antenna

ADC
LO

LPF
fLO
fin fIF X
 LNA AMP
Mixer
fin = fLO
12

Figure 2.1.2: (b) Homodyne architecture with quadrature downmixing

2.1.3 Low-IF Architecture
 The low-IF architecture is hybrid of heterodyne and homodyne architectures.
Here, the RF signal is converted into a low-IF signal and then digitized. Downconversion
from low-IF to baseband takes place in the digital domain. This is shown in Fig. 2.1.3.
Unlike the homodyne topology, problem of self-mixing does not exist. Also I and Q
mismatch can be minimized due to digitization of the IF signal. Mixing and filtering can
be done efficiently in the digital domain. However, the ADC requirements are more
stringent. The ADC should have sufficient input analog bandwidth. The dynamic range of
the ADC must be wide enough to accommodate variations in the signal level due to path
loss and multipath fading. Also, the SFDR should be sufficiently high to keep the
baseband signal from getting corrupted. The BPF filter before the ADC should have
sharp cut-off frequencies to attenuate out-of-band signals. Any signal with frequency
Mixer
Antenna

ADC
LO

LPF

LPF
+90?
I
Q
X
X
Mixer
fLO
f'LO
fin
 AMP
 AMP
 LNA f
in = fLO
LNA
13
more than half the sampling frequency will fold over in the digital domain. This can
cause baseband corruption.

Figure 2.1.3: Low-IF (or digital-IF) architecture

 Because of the advantages listed above, the low-IF architecture is the most
commonly used architecture in SDRs like in [13], [14] and in this project.

2.2 Sampling Techniques
The sampling process is very important in radio receivers using digitization at the
RF or IF. The content of the sampled signal is mainly dependent upon the sampling rate
and the minimum and maximum frequency components of the analog input signal [7].
When a continuous time signal is uniformly sampled, the spectrum of the original signal
Antenna

ADC
LO

LPF Q I

BPF

BPF
DIGITAL
SINEWAVE
GENERATOR

LPF

+90?
Low fIF X
Mixer
X X Digital Mixer Digital Mixer
 LNA
fLO1 f'LO1
fIF fIF
fIF = fLO1
fin
fLO
14
F (f) is repeated at integral multiples of the sampling frequency, fs. In other words, F (f)
becomes periodic. This is shown in Fig. 2.2.1 (a), (b).
The four commonly used uniform sampling techniques are ? Nyquist sampling,
over-sampling, quadrature sampling and bandpass sampling.

2.2.1 Nyquist sampling
 The Nyquist sampling theorem says that exact reconstruction of a continuous time
analog signal from its samples is possible if the signal is bandlimited and the sampling
frequency is greater than twice the signal bandwidth. The sampling frequency at twice the
signal bandwidth is called as Nyquist frequency or Critical frequency. If fmax is the
maximum frequency component of an analog signal then spectrum of the signal sampled
at the Nyquist frequency is shown in Fig. 2.2.1 (b).
 If the signal is sampled at less than the Nyquist frequency (called undersampling),
the spectral replicas overlap causing aliasing. The sampled signal gets corrupted and
cannot be exactly recovered. Figure 2.2.1 (d) depicts aliasing due to undersampling. In
order to avoid aliasing, an anti-aliasing filter is used before the ADC. The cut-off
frequency of the anti-aliasing filter is one half of the sampling frequency. Nyquist
sampling demands an extremely sharp cut-off anti-aliasing filter. Unfortunately, practical
realizable filters cannot provide this type of ?brickwall? response.
Even in Nyquist sampling, if an undesired (i.e. out-of-band) signal is present
along with the analog signal, it folds over and causes spectral overlap thus corrupting the
signal of interest. This is shown in Figure 2.2.2. The anti-aliasing filter serves the purpose
of attenuating the undesired signal too.
15
2.2.2 Oversampling
 In oversampling, the signal is sampled at much more than twice the Nyquist rate.
As depicted in Fig. 2.2.1 (c), the main advantage of this technique is that the spectral
replicas of the sampled signal are spaced further apart from each. This relaxes the steep
cut-off frequency requirements of the anti-aliasing filter.

2.2.3 Quadrature sampling
 As explained in section 2.1.2, the homodyne architecture for phase and frequency
modulated systems use quadrature downconversion to generate the 'I' and 'Q' quadrature
components. These are complex valued signals and contain twice the information as the
real valued signal. Hence, they can be sampled at one half the sampling rate of the real
valued signal. This type of sampling is called as quadrature sampling. The only
disadvantage is that ADC needs to have two input channels for digitizing the two
components.

Figure 2.2.1: (a) Spectrum of a bandlimited continuous time analog signal
-fmax fmax
F (f)
0
16
 Figure 2.2.1: (b) Spectrum of the signal sampled at f
s = 2fmax

Figure 2.2.1: (c) Spectrum of the signal sampled at fs > 2fmax

Figure 2.2.1: (d) Spectrum of the signal sampled at fs < 2fmax

Fs (f)
0 fs 2fs -fs -2fs
fs < 2fmax
??. ??.
-fmax fmax
Fs (f)
0 fs 2fs -fs -2fs
fs > 2fmax
??. ??.
-fmax fmax
Fs (f)
0 fs 2fs -fs -2fs
fs = 2fmax
??. ??.
17

Figure 2.2.2: (a) Spectrum of a bandlimited analog signal with undesired component

Figure 2.2.2: (b) Spectrum of the signal sampled at fs = 2fmax

2.2.4 Bandpass Sampling
 RF signals are typically bandpass signals. The information bandwidth of an RF
signal is much less than it?s RF or IF frequency. Bandpass sampling is the technique of
undersampling a modulated signal to achieve frequency translation by intentional aliasing
[6]. Here, the sampling frequency is based on the information bandwidth of the RF signal
and not on the carrier or IF. Radio receivers that digitize at RF or IF usually use bandpass
sampling. The concept is graphically depicted in Fig. 2.2.3. The mathematical
relationship between the sampling frequency fs and the translated RF or IF frequency
fIF,trans is explained in detail in Chapter 5. Since aliasing takes place, it is necessary to
make sure that no portion of the information bandwidth of the signal folds on top if itself,
creating interference.
-fmax fmax
Fs (f)
0 fs 2fs -fs -2fs
fs = 2fmax
??. ??.
F (f)
-fmax fmax 0
Desired signal
Undesired signal
18
 For bandpass sampling to work effectively, a very steep roll-off bandpass filter is
required to attenuate undesired signals outside the band of interest. Another severe
limitation is that the ADC should be able to effectively operate on the highest frequency
component in the RF signal.
 Like most other SDR projects, this project also uses bandpass sampling to sample
the AM IF signal.

Figure 2.2.3: (a) Spectrum of a bandpass signal centered at IF

Figure 2.2.3: (b) Spectrum of the signal bandpass sampled at fs < fIF

2.3 Data Conversion Challenges
The critical limiting factor in software radio implementation is the sluggish ADC
technology. The antenna cannot be hooked directly to the ADC because it doesn?t have
sufficient analog input bandwidth and dynamic range to digitize the RF signal directly.
Fs (f)
??.
fIF,trans fIF,trans + fs fIF,trans + 2fs fIF,trans + 3fs fIF,trans + 4fs
??.
fIF
F (f)
0
fs < fIF
19
Another important limitation is the power consumption of the ADC. A common Figure of
Merit (FoM) used for ADCs is:
ADC
ENOB
P
BWFoM ?= ?22 (2.3.1)
where ENOB = Effective Number of Bits
BW = Full?power Analog Input Bandwidth of the ADC
PADC = Power Consumption of the ADC
ENOB is directly proportional to the signal-to-noise and distortion ratio (SINAD) of the
ADC. Full-power analog input bandwidth is the range from DC to the frequency where,
for a full-scale input, the amplitude of the output of the ADC falls to 3 dB below the
maximum output level [7]. Equation (2.3.1) indicates that for a given FoM, the power
consumption of the ADC increases as ENOB and BW increase.
 There is a strong trade-off between ADC sampling frequency and its performance.
Normally, as the sampling frequency of the ADC increases its performance decreases. In
radio receivers using IF or RF digitization, the ADC should have high linearity, signal-to-
noise ratio (SNR) and spurious free dynamic range (SFDR). SFDR is defined as the ratio
of the signal power to the peak power of the largest spurious product. Whereas SNR
indicates ADC?s sensitivity to small signals, SFDR is a measure of the ADC?s capability
to reject undesired interferers. SNR is inversely proportional to the aperture jitter and
sampling frequency of the ADC. Aperture jitter is the variation in time of the exact
sampling instant.
20
 In comparison, DAC technology is not much of a limiting factor in software radio
development. The operating frequencies of the current DACs surpass the ability of
current lower-power signal processors.

2.4 Digital Signal Processing Alternatives
 The alternatives available for digital signal processing are - Application Specific
Integrated Circuits (ASIC), Digital Signal Processors (DSP) and field programmable gate
arrays (FPGA).
 ASICs are integrated circuits customized to accomplish specific tasks at high
performance levels. They are unrivaled in speed, power efficiency and computational
density. Because of their high design and production cost, they are usually used in high
volume designs. The major disadvantage is that they are not reconfigurable. They can be
used for implementing limited to standard static functions. Because of these limitations,
their use in SDRs is limited.
 A DSP is a specialized microprocessor designed specifically for digital signal
processing, generally in real-time computing. It has an optimized signal processing
instruction set and can be programmed using high level programming languages like C
and C++. On a performance matrix, DSPs fall in between ASICs and FPGAs. They have
moderate costs but very short times to market. They are the backbone of most SDR
systems today. Many leading semiconductor companies are currently developing SDR
specific DSPs. Texas Instruments (TI) is one of them.
 An FPGA is a semiconductor device containing programmable logic components
and programmable interconnects. The functionality of basic logic gates (AND, OR, XOR,
21
NOT) or more complex combinational functions such as decoders and simple math
functions can be duplicated by programming logic components of the FPGA. Most
FPGAs today include memory blocks too. Different logic components are connected
together by a hierarchy of programmable interconnects. Hardware descriptive languages
like VHDL or VERILOG are used to program FPGAs. They are generally slower than
the ASICs and more power hungry. Many SDRs today use FPGAs for signal processing.

22
CHAPTER 3
SYSTEM DESIGN

This chapter gives a brief system level overview of the SDR receiver. The four
major components that make the system are: AM/FM Trainer kit, PCI-DAS4020/12 DAQ
card, MATLAB with DAQ toolbox and PC with soundcard.

3.1 AM/FM Trainer Kit
This trainer kit, manufactured by Elenco Electronics, Inc., is a low cost receiver
kit used in undergraduate laboratories for demonstrating principles of communication. It
is a superheterodyne receiver of the standard AM and FM frequencies. Figure 3.1.1 (a)
shows the assembled AM/FM Trainer kit and Fig. 3.1.1 (b) shows its schematic [8].

Figure 3.1.1 (a): Assembled AM/FM Trainer kit
23
 Figure 3.1.1 (b): Schematic of AM/FM Trainer kit

Figure 3.1.2: Block diagram of AM section of the kit

Figure 3.1.2 shows the block diagram of the AM section of the receiver. The
antenna signal is fed to the mixer which downconverts the RF signal to an IF of 455 kHz.
This is accomplished by heterodyning the RF signal with the Local Oscillator (LO)
signal. The weak IF signal from the mixer is amplified by the first IF amplifier which is
tuned to 455 kHz. The first IF amplifier has a variable gain which depends upon the
Mixer
LO
First IF
Amplifier
Second IF
Amplifier
AM
Detector
Audio
Amplifier
AGC
Speaker
Antenna To
DAS4020/12
24
voltage of the AGC (Automatic Gain Control) stage. The AGC stage feeds back a DC
voltage to the first AM IF amplifier in order to maintain a near constant level of audio at
the detector. The second IF amplifier is also tuned to 455 kHz and has a fixed gain of
about 50. It selectively amplifies the IF signal and feeds it to the AM Detector. The AM
Detector converts the IF signal to a low level audio signal. The Audio Amplifier stage
increases the power of the demodulated audio signal received from the AM Detector to a
power level capable of driving the speaker.
For this project, the IF signal is taped out at the output of the second IF amplifier.
The gain is set so that the IF signal at the output of second IF amplifier is in the range of
+/- 1V.

3.2 DAS4020/12 PCI-based DAQ Card
The AM IF signal from the AM/FM trainer kit is converted into digital domain by
Measurement Computing (MMC)'s DAS4020/12 PCI-based DAQ card. Figure 3.2.1 (a)
and Figure 3.2.1 (b) depict the card and its block diagram respectively [9].
The PCI-DAS4020/12 is a high speed, analog data acquisition board for PCI bus
computers. Its features are:
1. Wide analog BW - 20MHz total throughput rate
2. 12-bit A/D resolution
3. 4 analog input channels
4. Software selectable input ranges
5. One A/D Converter per Channel
6. Dual 12-bit D/A Converter
25
7. Fully Plug-and-Play
8. Fully Autocalibrating
9. Data acquisition through MATLAB, LabVIEW, Visual Studio.net
The main advantage of using this card is its seamless operation with standard
engineering softwares like MATLAB and LabVIEW. Most undergraduate / graduate
schools use these softwares in their laboratories. Table 3.2.1 lists some electrical
specifications that are of relevance to this project.

Figure 3.2.1 (a): MCC's PCI-DAS4020/12 DAQ card
26

Figure 3.2.2 (b): Block diagram of PCI-DAS4020/12

Sr No Parameter Value
1 Minimum sampling frequency 1 kHz
2 Input programmable range ?5 V, ?1 V (software configurable)
3 Input impedance 1.5MOhm (default), 50Ohm
4 Typical Accuracy ?3.0 LSB error (either range)
5 SNR (Signal-to-Noise Ratio) 66.6dB
6 SFDR (Spurious Free Dynamic Range) 80dB
7 THD (Total Harmonic Distortion) 80dB
8 ENOB (Effective Number Of Bits) 10

Table 3.2.1: Electrical specifications of the DAQ card
27
3.3 MATLAB with Data Acquisition Toolbox (DAQ)
MathWorks' MATLAB is a high-level technical computing language and
interactive environment for algorithm development, data visualization, data analysis, and
numeric computation [10]. It has command line, scripting, modular, and graphical
programming modes. In this project modular and graphical programming is employed.
Add-on toolboxes like DAQ Toolbox, Signal Processing Toolbox, Communications
Toolbox, etc extend the MATLAB environment to solve problems pertaining to the areas
of signal/image processing, communications and control design.
For this project we use MATLAB's DAQ Toolbox to control and communicate
with the DAQ card and PC soundcard. The DAQ Toolbox provides a complete set of
tools for analog input, analog output and digital I/O from a variety of PC-compatible data
acquisition hardware including those from Measurement Computing [11]. The toolbox
allows configuring external hardware devices, reading data into MATLAB for immediate
analysis, and sending out data. Together, MATLAB and DAQ Toolbox offer a single,
integrated environment to support the entire data acquisition and analysis process.
MATLAB's Graphical User Interface Development Environment (GUIDE) is
used to build the Graphical User Interface (GUI). GUIDE provides a set of tools that
simplify the process of laying out and programming GUIs.

3.4 PC with Speakers
 A PC is required to run MATLAB to acquire data, perform signal processing and
output the processed data to the speakers through the soundcard. For this work, the PC
28
used is a standard 2.4 GHz Pentium desktop with 512 MB RAM, standard soundcard and
options from Dell Computer Corporation.

29
CHAPTER 4
DSP ALGORITHMS

 This chapter discusses the DSP algorithms used to sample and demodulate the
AM IF signal. Bandpass sampling and quadrature demodulation are discussed along with
mathematical analysis.

4.1 Bandpass Sampling
 Chapter 2, discussed different sampling techniques that can be used for directly
digitizing RF / IF signal. The usual method of sampling at twice the Nyquist rate is not
practically feasible due to system limitations. The MCC DAQ card has a very wide
bandwidth and can easily sample AM RF or IF signal at more than twice the Nyquist rate.
For example, in the AM IF case this sampling rate could 1 MHz. But the amount of data
that MATLAB would have to handle and process will put it out of sync with the sound
card. In other words, a real time system implementation will not be possible.
Data per sample = 1.5 Bytes (12 bits)
Samples / second = 1 M
Total data / second = 1.5 Bytes * 1 M = 1.5 MB
Soundcard Output rate = 8 kS / second
30
This means that MATLAB + DAQ will have to process 188 kB data in less than 125?s
and output it to the sound card. Given the current CPU and MATLAB speed, this is not
feasible. Hence bandpass sampling is used in this project.
Bandpass sampling is the technique of undersampling a modulated signal to
achieve frequency translation by intentional aliasing. As stated in [6], the mathematical
relationship describing the translation of the actual IF fIF frequency and translated IF
frequency fIF,trans is:
()
()sIFstransIF
sIFtransIF
s
IF
ffremffodd
ffremfevenfffix
,,
,,
2
,
,
?==
==
??
?
?
?
?
??
?
?
?
?
 (4.1.1)
Here, fix (a) is the truncated portion of argument a and rem (a, b) is the remainder after
dividsion of a by b. Associated with this translated IF are the corresponding modulation
sidelobes that contain information bandwidth of interest. It is important to make sure that
no portion of the information bandwidth of the signal folds on top if itself, creating
interference. Hence the following two constraints should be met.

2,
BWf
transIF > (4.1.2)
22,
BWff s
transIF ?< (4.1.3)

For AM frequencies, fIF = 455 kHz and BW = 10 kHz. Based on equation (4.1.1),
Appendix A.1 lists the translated AM IF frequencies for the sampling frequencies from 1
31
kHz to 100 kHz. It also specifies whether constraints (4.1.2) and (4.1.3) are satisfied or
not. The lower limit of 1 kHz is set by the minimum sampling rate of the DAQ card. The
higher limit of 100 kHz is decided by maximum processing speed that would make the
system real time. It is dependent on DSP algorithm and processor speed.
Table 4.1.1 lists the useful bandpass sampling frequencies in the 1 kHz - 100 kHz
range and their corresponding translated frequencies for 455 kHz AM IF. These
frequencies are used in the GUI of SDR. User can select any of these sampling
frequencies to demodulate the incoming signal.

Actual IF, fIF = 455 kHz
BW = 10 kHz

Useful Bandpass Sampling
Frequency,
fs (kHz)

Translated IF frequency,
fIF,trans (kHz)
28 7
29 9
31 10
32 7
33 7
37 11
39 13
42 7
44 15
47 15
49 14
52 13
55 15
56 7
58 9
59 17
62 21
63 14
32
64 7
66 7
67 14
68 21
69 28
71 29
72 23
73 17
74 11
77 7
78 13
79 19
80 25
81 31
84 35
85 30
86 25
87 20
88 15
89 10
93 10
94 15
95 20
96 25
97 30
98 35
99 40

Table 4.1.1: Useful bandpass sampling frequencies and the corresponding translated
frequencies for 455 kHz AM IF

4.2 Quadrature Demodulation
In this project, the digitized AM IF signal is demodulated using quadrature
demodulation. Quadrature demodulation has some interesting properties when used for
33
AM demodulation. To appreciate these properties, it is necessary to understand the
scheme mathematically.

Figure 4.2.1: Quadrature demodulation architecture for AM band
Figure 4.2.1 depicts the quadrature demodulation scheme. The AM IF signal is
mixed with the local oscillator to directly convert to baseband. The output is passed
through a low-pass filter (LPF) to reject all the high frequency components. It is then
squared and fed to the adder. Likewise the AM IF signal is also mixed with the
quadrature component of the local oscillator. The output is then passed through LPF,
squared and fed to the adder. The adder outputs the summation of the two inputs which is
then square-rooted to produce the demodulated signal. The reason for squaring, adding
and then finally square-rooting will become clear soon.
X
X
)sin(twO
)cos(twO
LPF
LPF
2) (

2) (

a
+
b
c
d
e
f
 g y x

AM IF
Signal
34
For the sake of argument, consider that the AM IF signal and local oscillator
signal are continuous and have unit amplitude. The input AM IF signal can then be
ideally represented as:
])cos[(21])cos[(21)cos(?+?+?+++?+= twwtwwtwx mIFmIFIF (4.2.1)
where wIF = AM carrier frequency
 wm = modulating signal
? = phase difference between the carrier frequency and the
local oscillator frequency
This signal mixes with the local oscillator signal to give,
(4.2.2)])sin[(41])sin[(41
])sin[(41])sin[(41
])sin[(21])sin[(21
)sin(w])cos[(21)sin(w])cos[(21)sin(w)cos(OOO
?+????+?++
?++???++++
?+???++=
?+?+?+++?+=
twwwtwww
twwwtwww
twwtww
ttwwttwwttwa
mOIFmOIF
mOIFmOIF
OIFOIF
mIFmIFIF

Similarly, at point b we have,
(4.2.3)])cos[(41])cos[(41
])cos[(41])cos[(41
])cos[(21])cos[(21
)cos(w])cos[(21)cos(w])cos[(21)cos(w)cos(OOO
?+?++?+??+
?++++?++?+
?++??+?=
?+?+?+++?+=
twwwtwww
twwwtwww
twwtww
ttwwttwwttwb
mOIFmOIF
mOIFmOIF
OIFOIF
mIFmIFIF

35
The output of the mixer is passed through the LPF whose cut-off frequency is at least
(|wIF - wO| + wm). Thus, at point c we have,
(4.2.4))]cos(1[])sin[(21
])sin[(41])sin[(41])sin[(21)(
twtww
twwwtwwwtwwaLPFc
mOIF
mOIFmOIFOIF
+?+??=
?+????++???+??==

Similarly, at point d we have,
(4.2.5))]cos(1[])cos[(21
])cos[(41])cos[(41])cos[(21)(
twtww
twwwtwwwtwwbLPFd
mOIF
mOIFmOIFOIF
+?+?=
?+??+?++?+?+?==

Squaring and adding we get, at point g,
)]cos(1[41 2twfeg m+=+= (4.2.6)
Taking square-root results in demodulated AM signal with dc offset which can be easily
removed,
)]cos(1[21 twgy m+== (4.2.7)
An identical mathematical analysis proves that this demodulation scheme works for
single sideband (SSB) as well as double sideband suppressed carrier (DSB-SC)
transmissions.
 From the above analysis, one can conclude that so long as (|wIF - wO| + wm) is
passed by the LPF, the signal can be demodulated using quadrature demodulation. When
this scheme is implemented in digital domain, the LO is an accurate digitally generated
sine wave. For AM signal, maximum fm is 5 kHz. If the LPF cut-off is at 10 kHz, then so
36
long as the offset between the IF and local oscillator frequency is less than 5 kHz, signal
can be successfully demodulated. In other words, the AM IF at input of the ADC need
not be exactly 455 kHz. This is a very useful property of quadrature demodulation as it
relaxes the tight requirements on the LO in the RF front-end.
Also, if the above architecture is implemented in digital domain, self-mixing can
be avoided and I / Q mismatch can be minimized.

37
CHAPTER 5
MATLAB IMPLEMENTATION

This chapter deals with the MATLAB implementation of the SDR. It explains the
MATLAB code used to initialize and run the DAQ card, digitally process the acquired
data using the DSP algorithms discussed earlier and output the processed data through the
soundcard. There is also a brief explanation of creating GUI using GUIDE. Only relevant
MATLAB code is shown here in italics. The entire MATLAB code is included in the
Appendix A.2.

5.1 DAQ Devices Hardware Setup
As discussed in Chapter 3, the DAQ card and soundcard can be configured using
MATLAB's DAQ toolbox. Before doing that, it is necessary to reset all the data
acquisition hardware present.
daqreset;
Since the system has to operate in real time, both the DAQ devices need to be
initialized and they should work in tandem. Data acquisition objects for these devices are
created by issuing the following commands.
ai=analoginput('mcc',2);
ao=analogoutput('winsound');
38
First command creates an analog data input object called 'ai' that communicates with card
#2 from mcc. mcc is the hardware vendor that MATLAB has assigned for Measurement
Computing boards. ai configures and controls various parameters of the DAQ card.
Likewise, the second command creates an analog data output object called ao that
communicates with the sound card.
Since DAQ card has four input channels, it is necessary to tell MATLAB which
ones to use for acquisition. In this project, Channel 2 is used to acquire data. Similarly,
for soundcard Channel 1 is used.
addchannel(ai,2);
addchannel(ao,1);
Next, the input range of the DAQ card is set to + 1V using the following command.
ai.Channel.InputRange=[-1 1];
The input and output sampling rates are set by using the following functions.
set(ai,'SampleRate',fs);
set(ao,'SampleRate',fs_out);
Here fs and fs_out are MATLAB variables which are initialized to 80k and 8k
respectively. The GUI allows the user to change the value of fs but not the value of
fs_out.
The type of trigger for the data acquisition objects is decided by the TriggerType
property. When set to Manual, the trigger occurs immediately after the trigger function is
issued.
set([ai ao],'TriggerType','Manual');
The number of input samples to be acquired per trigger is set by using the command:
39
set(ai,'SamplesPerTrigger',inf);
Since the SamplesPerTrigger is set to infinity, the DAQ card acquires samples for 1
second and transfers them from its hardware FIFO to PC memory. This is repeated
infinitely until the device is stopped.
For soundcard, the SamplesOutputFcn property decides which function to call
after outputting # Output_samples samples. When SamplesOutputFcnCount equals
Output_samples, function qmoredatanew is called with hObject passed as a parameter.
hObject is handle to the figure of the GUI.
set(ao,'SamplesOutputFcn',{'qmoredatanew', hObject})
set(ao,'SamplesOutputFcnCount',Output_samples);
The card is set to Direct Memory Access (DMA) transfer mode. This allows the
DAQ card to access system memory independently of the CPU. The CPU can therefore
concentrate on DSP related tasks. The size of the contiguous memory allocated for DMA
transfer is decided by the software provided by MCC. This allocation is performed during
the PC bootup sequence.
set(ai,'TransferMode','DMA');
After setting all the parameters, the DAQ devices can be started and triggered to
start acquiring data and logging it to memory.
start([ai ao]);
trigger([ai ao]);
The start command will inform the devices to acquire data. DAQ card's internal clock
will start. The trigger command will start the process of data acquisition.
40
The data logged into memory is retrieved by the DAQ Toolbox using getdata()
function. It returns data and absolute time at which each sample was taken in a matrix
format. The processed data is written to sound card using putdata() function.
[y t]=getdata(ai,fs);
putdata(ao,y)
The data acquisition can be halted by using the stop() function.
stop([ai ao])

5.2 Finding Translated IF frequency
Though the translated IF frequency, fIF,trans, can be known from Table 4.1.1, it can
also be determined from the Fast Fourier Transform (FFT) of the bandpass sampled
signal. The peak of the FFT will occur at the translated IF frequency, fIF,trans. The
following code takes the FFT of the sampled signal, finds the peak of the FFT and the
corresponding frequency associated with the peak.
fft_y=fft(y); % Find FFT of the bandpass sampled signal
[m,imax]=max(abs(fft_y(1:end/2))); % Index of max peak
freq_vec=fs*(1:length(y))/length(y); % Generate frequency vector
freq_carrier=freq_vec(imax); % Find IF frequency

5.3 Demodulation
As discussed in Chapter 4, Quadrature demodulation scheme is used in this
project. First the in-phase and out-phase components of the local oscillator are created to
downconvert the translated IF to baseband.
41
fo=sin(2*pi*freq_carrier.*t); % In-phase component
fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component
The input sampled signal is averaged out to filter the dc component and then normalized.
y=y-mean(y);
y=y/max(abs(y));
The normalized signal is then mixed with the in-phase and out-phase component
of local oscillator and the product is passed through a low pass filter (LPF). The LPF is a
50th order FIR filter with a linear phase and cut-off frequency, fc, of 10 kHz.
b1=fir1(50,10e3/fs);
The magnitude and phase response of the filter for a sampling frequency of 80 kHz is
shown in Fig. 5.3.1.
x1=filter(b1,1,fo.*y); % Multiplication with in-phase and subsequent LPF
x2=filter(b1,1,fo_90.*y); % Multiplication with out-phase and subsequent LPF
The two outputs are then squared, summed up and square rooted to get the
demodulated output.
x=sqrt(x1.^2+x2.^2);

5.4 Downsampling and Normalization
The demodulated output is downsampled from the bandpass sampling rate to the
output sample rate. It is then averaged out and normalized to remove the dc component.
z=x(1:(fs/fs_out):length(x));
z=z-mean(z);
z=z/max(abs(z));
42

Figure 5.3.1: Magnitude and Phase response of 50th order FIR filter with fc = 5 kHz

5.5 Graphical User Interface (GUI)
The GUI for SDR is shown in Fig. 5.51. The pop menu at the left-hand side
allows the user to select one of the appropriate bandpass sampling frequencies listed in
table 4.1.1. If nothing is selected then sampling is done at the default rate of 80 kS/s.
After selecting the frequency, the user has to press the ON/OFF toggle button to start the
DAQ devices. The time domain representation of the demodulated signal is displayed in
the top plot. The X-axis range is for 1 second. The bottom plot shows the frequency
domain representation. The Y-axis range is from -4 kHz to 4 kHz as the demodulated
data is sent to the soundcard at the rate of 8 kHz. To stop the devices, the user has to
43
depress the ON/OFF button. The following GUIDE components are used to build the
GUI:
1. Popup Menu
2. Axes
3. Toggle Button
4. Static Text
Their details can be found in [10] and are not discussed here.

Figure 5.5.1: SDR GUI

44
CHAPTER 6
RESULTS AND FUTURE IMPROVEMENTS

The results of the project are presented in this chapter. Qualitative aspect of the
SDR performance is also discussed. Though this project is fully functional, by no way it
is a complete one. There is plenty of room for improvement. Continuous improvement is
needed in the areas of RF downconversion, sampling and efficient DSP algorithms.

6.1 Results
The AU SDR (AM Band) v4.0 is used to demodulate WAUD 1230 AM which is
Auburn's local station. Figure 6.1.1 shows the GUI display for a sampling frequency of
80 kHz.
The demodulated signal appears a little noisy as can also be seen from its
frequency spectrum. This is because the signal reception is not very good in the
laboratory where this test was run. Also the receiver is a low-cost radio and hence has a
relatively poor performance for weak signals. There is no noise reducing DSP algorithm
implemented in this project.
45

Figure 6.1.1: Demodulated WAUD 1230 AM station with fs = 80 kHz

Figure 6.1.2 shows the demodulated WAUD 1230 AM station for a sampling
frequency of 32 kHz. Here it can also be seen that that there is a peak at about 4 kHz
which causes a whistling sound in audio output. The source of this peak is still unknown
but it is a matter of further investigation.

46

Figure 6.1.2: Demodulated WAUD 1230 AM station with fs = 32 kHz

6.2 Future Improvements
Instead of converting RF to IF, the whole AM band could be bandpass sampled.
This will allow demodulation of multiple AM channels at the same time. As per the
equations given in Chapter 4, the minimum bandpass sampling frequency for AM band
(530 kHz - 1710 kHz) would be 3421 kHz (assuming that the sampling can be adjusted in
steps of 1 kHz). However this will require an amplifier with a sharp bandpass response to
reject all out-of-band signals. This amplifier will be placed between the antenna and the
DAQ card.
47
The project could be extended to include other modulation schemes as well like
FM, SW, CB, etc. Quadrature demodulation can be used for FM if two analog input
channels are available. Noise canceling / squelch algorithms can also be implemented to
further improve signal to noise ratio.
MATLAB is a powerful computing tool but it is very resource hungry. It is not as
efficient as C/C++ for performing DSP tasks like FFT. Also the use of GUI in MATLAB
slows down signal processing further. The efficiency can be significantly improved if the
coding is done entirely in C/C++. The code will then be portable to other operating
systems. To make the system even more portable, USB based data-acquisition can be
used.
49
REFERENCES

[1] J. Mitola III, ?Software Radios Survey, Critical Evaluation and Future
Directions,? IEEE AES Systems Magazine, pp. 25-35, April 1993

[2] J. Mitola III, ?Software Radio Architecture,? IEEE Communications Magazine,
pp. 26-36, May 1995

[3] Wikipedia, http://en.wikipedia.org/wiki/Software_defined_radio

[4] SDR Forum, http://www.sdrforum.org

[5] B. Razavi, ?RF Microelectronics,? Upper Saddle River, NJ: Prentice Hall PTR,
1998, Chapter 5

[6] Dennis M. Akos, Michael Stockmaster, James B. Y. Tsui, Joe Caschera, ?Direct
Bandpass Sampling of Multiple Distinct RF Signals,? IEEE Trans. on
Communications, vol. 47, pp. 983-988, July 1999

[7] Jeffery A. Wepman, ?Analog-to-Digital Convereters and Their Application in
Radio Receivers,? IEEE Communications Magazine, pp. 39-45, May 1995

[8] Elenco Electronics, Inc., ?AM/FM Radio Kit Assembly and Instruction,? 150
Carpenter Ave, Wheeling, IL 60090

[9] Measurement Computing Corporation, "PCI-DAS4020 User's Guide," 10
Commerce Way, Norton, MA 02766

[10] The Mathworks, Inc., http://www.mathworks.com/access/helpdesk/help/techdoc/

[11] The Mathworks, Inc., "Data Acquisition Toolbox for Use with MATLAB User?s
Guide Version 2," The Mathworks Inc., 2001

[12] Rahim Bagheri, Ahmad Mirzaei, Mohammad E. Heidari, Saeed Chehrazi, Minjae
Lee, Mohyee Mikhemar, Wai K. Tang, and Asad A. Abidi, ?Software-Defined
Radio Receiver: Dream to Reality,? IEEE Communications Magazine, pp. 111-
118, August 2006

50
[13] Flex Radio Corporation, http://www.flex-radio.com, 12100 Technology Blvd,
Austin, TX 78727
[14] Fraidun Akhi, ?Design and implementation of a software radio testset for research
and laboratory instruction.? MS Thesis, Auburn University, 2003

51
APPENDIX

A.1 Bandpass Sampling Frequencies and their Translated IFs for AM IF
Actual IF, fIF = 455 kHz
BW = 10 kHz

Sampling
Frequency,
fs (kHz)

Translated IF
frequency,
fIF,trans (kHz)

Equation
(4.1.2) satisfied

Equation
(4.1.3) satisfied

Equations
(4.1.2) and
(4.1.3)
satisfied
1 0 FALSE FALSE FALSE
2 1 FALSE FALSE FALSE
3 1 FALSE FALSE FALSE
4 1 FALSE FALSE FALSE
5 0 FALSE FALSE FALSE
6 1 FALSE FALSE FALSE
7 0 FALSE FALSE FALSE
8 1 FALSE FALSE FALSE
9 4 FALSE FALSE FALSE
10 5 FALSE FALSE FALSE
11 4 FALSE FALSE FALSE
12 1 FALSE FALSE FALSE
13 0 FALSE TRUE FALSE
14 7 TRUE FALSE FALSE
15 5 FALSE FALSE FALSE
16 7 TRUE FALSE FALSE
17 4 FALSE FALSE FALSE
18 5 FALSE FALSE FALSE
19 1 FALSE TRUE FALSE
20 5 FALSE FALSE FALSE
21 7 TRUE FALSE FALSE
22 7 TRUE FALSE FALSE
23 5 FALSE TRUE FALSE
24 1 FALSE TRUE FALSE
52
25 5 FALSE TRUE FALSE
26 13 TRUE FALSE FALSE
27 4 FALSE TRUE FALSE
28 7 TRUE TRUE TRUE
29 9 TRUE TRUE TRUE
30 5 FALSE TRUE FALSE
31 10 TRUE TRUE TRUE
32 7 TRUE TRUE TRUE
33 7 TRUE TRUE TRUE
34 13 TRUE FALSE FALSE
35 0 FALSE TRUE FALSE
36 13 TRUE FALSE FALSE
37 11 TRUE TRUE TRUE
38 1 FALSE TRUE FALSE
39 13 TRUE TRUE TRUE
40 15 TRUE FALSE FALSE
41 4 FALSE TRUE FALSE
42 7 TRUE TRUE TRUE
43 18 TRUE FALSE FALSE
44 15 TRUE TRUE TRUE
45 5 FALSE TRUE FALSE
46 5 FALSE TRUE FALSE
47 15 TRUE TRUE TRUE
48 23 TRUE FALSE FALSE
49 14 TRUE TRUE TRUE
50 5 FALSE TRUE FALSE
51 4 FALSE TRUE FALSE
52 13 TRUE TRUE TRUE
53 22 TRUE FALSE FALSE
54 23 TRUE FALSE FALSE
55 15 TRUE TRUE TRUE
56 7 TRUE TRUE TRUE
57 1 FALSE TRUE FALSE
58 9 TRUE TRUE TRUE
59 17 TRUE TRUE TRUE
60 25 TRUE FALSE FALSE
61 28 TRUE FALSE FALSE
62 21 TRUE TRUE TRUE
63 14 TRUE TRUE TRUE
64 7 TRUE TRUE TRUE
53
65 0 FALSE TRUE FALSE
66 7 TRUE TRUE TRUE
67 14 TRUE TRUE TRUE
68 21 TRUE TRUE TRUE
69 28 TRUE TRUE TRUE
70 35 TRUE FALSE FALSE
71 29 TRUE TRUE TRUE
72 23 TRUE TRUE TRUE
73 17 TRUE TRUE TRUE
74 11 TRUE TRUE TRUE
75 5 FALSE TRUE FALSE
76 1 FALSE TRUE FALSE
77 7 TRUE TRUE TRUE
78 13 TRUE TRUE TRUE
79 19 TRUE TRUE TRUE
80 25 TRUE TRUE TRUE
81 31 TRUE TRUE TRUE
82 37 TRUE FALSE FALSE
83 40 TRUE FALSE FALSE
84 35 TRUE TRUE TRUE
85 30 TRUE TRUE TRUE
86 25 TRUE TRUE TRUE
87 20 TRUE TRUE TRUE
88 15 TRUE TRUE TRUE
89 10 TRUE TRUE TRUE
90 5 FALSE TRUE FALSE
91 0 FALSE TRUE FALSE
92 5 FALSE TRUE FALSE
93 10 TRUE TRUE TRUE
94 15 TRUE TRUE TRUE
95 20 TRUE TRUE TRUE
96 25 TRUE TRUE TRUE
97 30 TRUE TRUE TRUE
98 35 TRUE TRUE TRUE
99 40 TRUE TRUE TRUE
100 45 TRUE FALSE FALSE

54
A.2 MATLAB Software Code
 This is the main file (IF455_SDR_GUI_v4.m) which creates and controls the
GUI, takes user input, calls different signal processing functions and displays messages
on the MATLAB command window.

function varargout = IF455_SDR_GUI_v4(varargin)
% IF455_SDR_GUI_V4 M-file for IF455_SDR_GUI_v4.fig
% IF455_SDR_GUI_V4, by itself, creates a new IF455_SDR_GUI_V4 or raises the
% existing singleton*.
% H = IF455_SDR_GUI_V4 returns the handle to a new IF455_SDR_GUI_V4 or
% the handle to the existing singleton*.
% IF455_SDR_GUI_V4('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in IF455_SDR_GUI_V4.M with the given input
% arguments.
% IF455_SDR_GUI_V4('Property','Value',...) creates a new IF455_SDR_GUI_V4 or
% raises the existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before IF455_SDR_GUI_v4_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to IF455_SDR_GUI_v4_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
55
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help IF455_SDR_GUI_v4
% Last Modified by GUIDE v2.5 17-Sep-2006 13:58:24
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @IF455_SDR_GUI_v4_OpeningFcn, ...
 'gui_OutputFcn', @IF455_SDR_GUI_v4_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before IF455_SDR_GUI_v4 is made visible.

function IF455_SDR_GUI_v4_OpeningFcn(hObject, eventdata, handles, varargin)
56
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to IF455_SDR_GUI_v4 (see VARARGIN)
clc;
% Declare parameters shared between different functions as global
global fs fs_out Output_samples flag;
warning off;
% Display welcome message on MATLAB command prompt
fprintf('Welcome to Auburn University SDR (AM Band) v4.0 program.');
fprintf('\nSelect the appropriate sampling frequency and then press ON/OFF...
button to start.\n');
% Set default sampling rate as 80 kHz. This can be changed by end user using GUI
fs=80e3;
% Set output sample rate as 8 kHz. This is fixed and cant be changed by end user
fs_out=8e3;
Output_samples=8e3;
% Assign a flag to determine ON/OFF. flag = 1 means ON, flag = 0 means OFF
flag=1;
% Generate a 50 Hz sine wave and its FFT
t = 0:1.25e-4:(1-1.25e-4);
x=sin(2*pi*50*t);
57
N=length(x);
Ts=length(t);
% Frequency vector
ssf=(-N/2:N/2-1)/(N/fs_out);
% Do FFT
fx=fft(x(1:N));
% Shift it for plotting
fxs=fftshift(fx);
% Get structure of handles.
handles = guihandles(hObject);
%Plot the sine wave in time and frequency domain.
axes(handles.axes1)
plot(t,x)
set(handles.axes1,'XMinorTick','on')
set(handles.axes1,'XMinorGrid','on')
grid on
axes(handles.axes2)
plot(ssf,abs(fxs));
set(handles.axes2,'XMinorTick','on')
set(handles.axes2,'XMinorGrid','on')
grid on
% Choose default command line output for IF455_SDR_GUI_v4
handles.output = hObject;
58
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes IF455_SDR_GUI_v4 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = IF455_SDR_GUI_v4_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in togglebutton1.
function togglebutton1_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles=guihandles(hObject);
global ai ao fs fs_out Output_samples freq_carrier b1 flag;
% Get toggle state of ON/OFF button
59
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
 % Disable popup menu which selects sampling frequency
 set(handles.popupmenu1,'Enable','off');
 % Reset DAQ devices
 daqreset;
 % Configure the DAQ devices
 ai=analoginput('mcc',2);
 ao=analogoutput('winsound');
 addchannel(ai,2);
 addchannel(ao,1);
 ai.Channel.InputRange=[-1 1];
 % Determine the translated carrier frequency;
 freq_carrier=findcarrier(fs,Output_samples);
 % Determine corfficients of 50th order FIR LPF with cut-off frequency at 5 kHz
 b1=fir1(50,10e3/fs);
 set(ai,'SampleRate',fs);
 set(ao,'SampleRate',fs_out); %setting the soundcard to 8k out
 set([ai ao],'TriggerType','Manual');
 set(ai,'ManualTriggerHwOn','Trigger');
 set(ai,'SamplesPerTrigger',inf);
 set(ao,'SamplesOutputFcn',{'qmoredatanew',hObject})
 set(ao,'SamplesOutputFcnCount',Output_samples);
60
 set([ai ao],'StopFcn',@daqstopped);
 set(ai,'TransferMode','DMA');

 % Workaround to get the DAQ devices running in sync
 y=zeros(Output_samples,1);
 putdata(ao,y);
 start([ai ao]);
 trigger([ai ao]);
 pause(5);
 stop([ai ao]);

 % Start the actual Data acquistion
 putdata(ao,y);
 start([ai ao]);
 fprintf('Program started. Press ON/OFF button to stop.\n');
 trigger([ai ao]);

elseif button_state == get(hObject,'Min')
 flag = 0;
end

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
61
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes1

% --- Executes on mouse press over axes background.
function axes1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function axes2_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: place code in OpeningFcn to populate axes2

% --- Executes on mouse press over axes background.
function axes2_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
62
% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
global fs fs_out Output_samples;
% Contents
contents = get(hObject,'String');
index_selected = get(hObject,'Value');
fs = 1e3*str2double(contents(index_selected));

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
63
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

The main file calls the following function (findcarrier.m) to compute FFT on 'N'
samples and find out the exact translated carrier frequency after downsampling the input
at 'fs' kHz.

function freq_carrier=findcarrier(fs,N)
global ai;
duration=N/fs;
set(ai,'SampleRate',fs);
set(ai,'SamplesPerTrigger',N);
set(ai,'TriggerType','immediate');
start(ai);
y=getdata(ai);
fft_y=fft(y);
[m,imax]=max(abs(fft_y(1:end/2))); % Index of max peak
freq_vec=fs*(1:length(y))/length(y); % Generate frequency vector
freq_carrier=freq_vec(imax); % Find IF frequency
stop(ai);

64
The following function (qmoredatanew.m) is called by the main file to perform
quadrature demodulation of the AM signal if 'flag' is set to 1 and to stop the DAQ devices
if 'flag' is set to 0.

function qmoredatanew(obj,event,hObject)
global ai ao fs fs_out Output_samples freq_carrier b1 flag;
handles=guidata(hObject);
if (flag==0)
 stop([ai ao]);
 set(handles.popupmenu1,'Enable','on');
 fprintf('Program stopped. Press ON/OFF button to start again.\n');
 flag=1;
else
 [y t]=getdata(ai,fs);
 y=y-mean(y);
 y=y/max(abs(y));
 fo=sin(2*pi*freq_carrier.*t); % In-phase component
 fo_90=cos(2*pi*freq_carrier.*t); % Out-phase component
 x1=filter(b1,1,fo.*y); % Multiplication with in-phase and subsequent LPF
 x2=filter(b1,1,fo_90.*y); % Multiplication with out-phase and subsequent LPF
 x=sqrt(x1.^2+x2.^2);
 z=x(1:(fs/fs_out):length(x));
 z(1)=z(4); z(2)=z(4); z(3)=z(4);
65
 z=z-mean(z);
 z=z/max(abs(z));
 N=length(z); % length of the signal z
 t1=t(1:(fs/fs_out):length(x));
 ssf=(-N/2:N/2-1)/(N/fs); % frequency vector
 fz=fft(z(1:N)); % Perform DFT/FFT
 fzs=fftshift(fz); % shift it for plotting
 plot(handles.axes1,t1,z)
 set(handles.axes1,'XMinorTick','on')
 set(handles.axes1,'XMinorGrid','on')
 set(handles.axes1,'YGrid','on')
 plot(handles.axes2,ssf,abs(fzs))
 set(handles.axes2,'XMinorTick','on')
 set(handles.axes2,'XMinorGrid','on')
 set(handles.axes2,'YGrid','on')
 putdata(obj,z);
end

