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Thesis Abstract
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62 Typed Pages

Directed by John Y. Hung

A method to extend the travel range of electrostatically actuated MEMS is presented.

A gap closing actuator (GCA) is used to demonstrate the method. An output (position)

feedback controller is presented, along with two variable structure controllers. The forced-

damping variable structure controller uses two stable structures, and the sliding mode (hy-

brid) controller uses an unstable structure and a stable structure. An adaptive controller

is also presented for devices that have adequate natural damping. A design methodol-

ogy for nonlinear mechanical springs is presented. The mechanical nonlinearity offsets the

electrostatic nonlinearity to extend the device travel range without feedback.
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Chapter 1

Introduction

Micro-Electro Mechanical Systems or MEMS devices combine sensors, actuators, me-

chanical structures, electronics, and optics on a single substrate and combine technological

advances from fields that were previously unrelated, such as biology and microelectronics

[1]. MEMS have the advantage of being smaller, having a higher Q, low insertion loss,

and lower power consumption compared to traditional construction, among several other

advantages [2].

MEMS actuators can be driven a multitude of ways. Thermal, piezoelectric, and elec-

trostatic are the most common. In electrostatic actuation there are two classes, linear

actuators and nonlinear actuators. In linear actuators the electrostatic force is only depen-

dent on the drive voltage. In nonlinear devices, the electrostatic force varies nonlinearly with

respect to position. These nonlinear devices are the focus of this thesis. For a typical device

the actuation range in open loop operation is limited to a fraction of the potential range

due to a phenomenon called ”pull-in”, where the nonlinear electrostatic force overwhelms

the mechanical spring force. Although research has been performed to extend this travel

range by eliminating pull-in there are still physical limitations [3]. Nonlinear electrostatic

MEMS devices can be used in the communication industry to replace traditional switches,

varactors, phase shifters, filters, and resonators. They also have potential in many optical

applications and are currently being used in high definition televisions.
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1.1 Chapter Overview

1.1.1 Chapter 1: Introduction

The first sections in chapter 1 cover the governing equations of nonlinear electrostatic

MEMS devices, introduce the device-input formulation for such systems, and review some

of the previous research done to improve the performance of such devices.

The last sections in chapter 1 apply the device-input formulation to a gap closing ac-

tuator (GCA). Static stability (force balance) is used to determine the slope-intersection

requirements of the device-input functions to ensure stability. Input function design con-

siderations are covered and a simple, linear controller is proposed. Lastly, an analysis is

presented that illustrates how modifying the linear controller gains can modify the local

stiffness of the system.

1.1.2 Chapter 2: Variable Structure Technique

Chapter 2 covers two variable structure techniques applied to the GCA using the lin-

ear controller from chapter 1. The first technique is based on switching between two stable

structures with varying stiffness. The second technique is based on stable-unstable switch-

ing, and forms a sliding mode under certain circumstances. The two variable structure

controllers are shown to improve the dynamic performance of the GCA system, even in the

absence of natural damping.

1.1.3 Chapter 3: Adaptive Controller

Chapter 3 introduces an adaptive technique based on the GCA system and linear

controller from chapter 1. A proportional-integral (PI) method is used to adjust the slope

2



gain of the linear controller. This chapter concludes with a robustness analysis of the

controllers presented in chapters 2 and 3.

1.1.4 Chapter 4: Device Function Design

The first 3 chapters were concerned with modifying the input function to improve

device performance. Chapter 4 looks at how the device function can be modified to im-

prove system performance. The first section explores design considerations for closed loop

operation. Next, a nonlinear mechanical force equation is determined that allows for full

range operation without feedback. The nonlinearity is introduced using an interference

profile that limits beam deflection. A beam analysis method is proposed for determining

the interference profile required.

1.1.5 Chapter 5: Extension to Other Systems

Chapter 5 shows the utility of the method by showing how it can be applied to other

nonlinear MEMS. The method is used to demonstrate how the series capacitor method can

be used to extend the travel range of the GCA at the cost of higher actuation voltage. Next

the method is applied to a torsional device, with similar conclusions to that of the GCA

example.

1.2 Nonlinear Electrostatic MEMS Actuators

Electrostatic MEMS actuators can be divided into two types, linear and nonlinear.

For both cases the electrostatic force is determined by the energy-displacement relationship

associated with the device capacitance:

3



Fe(x) =
1
2
V 2 d

dx
C(x) (1.1)

For linear devices like comb-drive actuators the capacitance varies linearly with dis-

placement so that the electrostatic force is independent of displacement. For nonlinear

devices the capacitance is inversely proportional to displacement so that the electrostatic

force contains inverse-squared terms.

1.3 Governing Equations

A generalized form of the governing equation for all electrostatic MEMS devices is

given.

mẍ + b(x, ẋ)ẋ + k(x, ẋ)x = f0(x)V (x, ẋ)2 (1.2)

Where x is the dependent variable (position or rotation), m is a constant inertia term,

b is the damping term, k is the spring term, f0 is an input term, and V is the input voltage.

In systems with multiple degrees of freedom, equations in the form of (1.2) typically apply

to each DOF.

In the bulk of this thesis, the idea of force balance or static equilibrium is employed

regularly. Equation (1.2) can be expressed under steady state equilibrium as the intersection

of two curves.

fe(x, ẋ)
def
= V (x, ẋ)2 (1.3)
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fd(x, ẋ)
def
=

k(x, ẋ)x
f0(x)

(1.4)

fe(x, ẋ) = fd(x, ẋ) (1.5)

Where fe is defined as the feedback or input function of the system. In open loop it

is the constant value of the input voltage squared, V 2. The second function, fd, can be

defined as the device function, and is determined by device geometry and material. By

manipulating these two functions, devices and controllers can be designed to perform as

required.

1.4 Previous Research

As MEMS technology has developed many control and design methodologies have de-

veloped to improve performance. Feedback control was first introduced in MEMS sensors

in order to enhance measurement accuracy. In some cases designers modified the open-loop

control signals using dynamic models. These pre-shaped control methods improved the

dynamic behavior without the need of feedback but are highly tailored to each device, have

limited application range, and require accurate models [4].

Various geometrical methods have also been researched. These fall mostly into two

categories; multiple electrode arrangements [5] and leveraged bending methods [6]. While

these methods have their benefits, complications can arise due to complex control and

switching requirements for a large number of electrodes, and high actuation voltage using

leveraged bending. Closely related to leveraged bending is the use of strain-stiffening springs

5



to increase travel range. This effect introduces a mechanical nonlinearity to compensate

for the electrical nonlinearity that causes pull-in. Current methods rely on residual axial

stresses in the mechanical springs and are highly problematic.

A wide variety of feedback techniques have been proposed. Some of the more popular

methods include capacitor feedback, current/charge control [7] (also an open loop method),

and voltage controllers [4]. Force balance methods have also been used in designing feedback

algorithms in micro-mirrors [8]. Traditional nonlinear techniques have also been explored

[9]. Force balance techniques were also the basis for the method discussed here. Original

developments concerned bi-directional operation of a GCA fabricated at Auburn University

[10].

In order to familiarize the reader with the control methodology being used, the tech-

nique will be demonstrated on a gap closing actuator (GCA) comprised of interlocked

comb-like structures. Figure 1.1 shows the device layout along with sign conventions.

As a voltage is applied across the moving and stationary combs an electrostatic force

moves the actuator in the positive x direction. A balancing mechanical spring force acts in

the opposite direction if the actuator is in static equilibrium.

1.5 Governing Equation

The dynamic model of the GCA system is given by:

mẍ = −Bẋ−Kx+

εoεrAV 2

2

(
1

(xo − x)2
− 1

(yo + x)2

)
(1.6)

6



Figure 1.1: Gap Closing Actuator

Where m is the proof mass, B is the damping constant, εo is the free-space permittivity,

εr is the relative permittivity of air, A is the actuator area, V is the applied voltage, xo is

the nominal positive gap distance, yo is the nominal negative gap distance, and K is the

system spring constant. Values of model parameters are shown in Table 1.1.

1.6 Input and Device Functions

By rewriting the force equation under static equilibrium, the following is observed:

V 2(x) =
2Kx

εoεrA

(
1

(xo − x)2
− 1

(yo + x)2

)−1

(1.7)

fe(x) = fd(x)

7



Table 1.1: Nomenclature and parameter values
Variable Parameter Value Units
m mass 3.6519× 10−7 kg
B damping 2.45× 10−4 N-sec/m
εo free space permittivity 8.854× 10−12 F/m
εr relative permittivity 1 NA
A area 5.85× 106 µm2

xo nominal small gap 10 µm
yo nominal large gap 25 µm
K spring constant 103.125 N/m

The left hand side of (1.7) is the input function, and is referred to as fe(x). The right

hand side of (1.7) is the device function, and is referred to as fd(x). The intersection(s)

of these two functions are the locations of the equilibrium points occurring in the travel

region. Figure 1.2 shows the device function for the given device. The input function is

arbitrary and is not shown; however for a constant voltage, it would be a horizontal line.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

100

200

300

400

500

600

Device Function

x/x0

V
2

f
d

Figure 1.2: Device Function
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1.7 Static Analysis: Equilibrium and Stability

Stability of equilibrium points can be determined by examining properties of fe(x)

and fd(x). By looking at the net force vs. displacement graph, the equilibrium points are

located where the net force is equal to zero (Fnet = 0). The stable equilibrium points are

equilibrium points that have negative slopes ( d
dxFnet < 0). This implies that a perturbation

in one direction yields a net force in the opposite direction to push the actuator back toward

the equilibrium point. Requirements for the static stability of the system can be expressed

in terms of fe(x) and fd(x).

Fnet =
εoεrA

2

(
1

(xo − x)2
− 1

(yo + x)2

)
V 2 −Kx (1.8)

Fnet =
εoεrA

2

(
1

(xo − x)2
− 1

(yo + x)2

)
(fe − fd) (1.9)

Isolating (fe− fd) to one side of the equation and taking the derivative with respect to

x:

d

dx
(fe − fd) =

dFnet

dx

2
εoεrA

(
1

(xo − x)2
− 1

(yo + x)2

)−1

+

Fnet
2

εoεrA

d

dx

(
1

(xo − x)2
− 1

(yo + x)2

)−1

(1.10)
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Since the net force is zero at an equilibrium point and d
dxFnet < 0, equation (1.10) can

be simplified to the following.

d

dx
(fe − fd)

(
1

(xo − x)2
− 1

(yo + x)2

)
< 0 (1.11)

The sign of the augmenting function depends on the value of x, but can easily be

determined, yielding the following result:

For

x <
x2

o − y2
o

2(yo + xo)
→ d

dx
(fe − fd) > 0

For

x >
x2

o − y2
o

2(yo + xo)
→ d

dx
(fe − fd) < 0

So for equilibrium points in the positive region of motion to be stable, dfd
dx > dfe

dx , for

equilibrium points in the negative region to be stable, dfe

dx > dfd
dx .

1.7.1 Open Loop Considerations

During open loop operation the input function is constant with respect to displacement.

Because dfe

dx = 0, the only stable equilibrium points exist in the positive operation range

where the slope of the device function is greater than zero. Figure 1.3 shows the positions

of the equilibrium points and how they move with increasing voltage input.

When a voltage is applied, two equilibrium points are formed in the positive range of

motion. As the voltage increases, these stable and unstable equilibrium points gravitate

10
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Figure 1.3: Device and Input Functions in Open Loop

toward each other and combine into an unstable equilibrium point when dfd
dx = 0, resulting

in pull-in.

1.7.2 Closed Loop Considerations

One method of extending the travel range of the device is to employ feedback to the

system by forcing the voltage to be a function of x. Figure 1.4 shows the stable and unstable

equilibrium points for the device with an arbitrary periodic input function.

Regardless of the input function, the equilibrium voltage is always on the device func-

tion curve. The equilibrium points are where the input function intersects the device func-

tion, and the slopes of the two functions at those points determine whether the points are

stable or unstable. In theory, the device range is the entire gap distance in the positive di-

rection. In the negative direction no equilibrium points can exist where the device function

11
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Figure 1.4: Device and Input Functions with Closed Loop

is negative (0 > x > x2
o−y2

o
2(yo+xo)). Otherwise travel is possible throughout the negative region

with proper feedback.

1.8 Dynamic Analysis: Equilibrium and Stability

In general, by knowing the device function one can determine the required input func-

tion to establish a stable equilibrium point in the regions described (anywhere in the positive

direction, in a limited range in the negative direction). However, it is helpful to understand

the dynamics of the system in order to design an adequate input function.

1.8.1 Static Force Plots

Static equilibrium has been the heart of the analysis, so examining the net force plots

is insightful. Figure 1.5 shows the net force plot for the feedback function in Figure 1.4.

Only the positive region is shown for clarity.

12
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Figure 1.5: Net Force Function for Fig 2.4

Figure 1.5 gives a rough picture of the dynamic stability of the system. Near the

stable equilibrium points exist regions of positive and negative force that drive the system

back toward the equilibrium point. In these regions the system can oscillate about the

equilibrium point as long as there is insufficient energy to reach an adjacent (unstable)

equilibrium point. Dynamic stability is limited by these unstable equilibria.

1.8.2 Force Potential Barriers

The area bounded under the force curve is a measure of the electro-mechanical potential

energy in the system, similar to the spring potential energy in a mechanical system. Ne-

glecting any damping, all this potential energy is converted to kinetic energy of the moving

mass. Figure 1.6 is given for an example.

Initially the actuator is at rest at a stable equilibrium point with potential barriers

Er and El to the right and left of the equilibrium point respectively. If the actuator is

13
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perturbed with an energy less than either barrier, it will oscillate about the equilibrium

point as the energy is converted back and forth between the kinetic energy of the mass

and the potential energy of the field. However, if the actuator is perturbed with an energy

greater than either barrier, it will leave the region of the current equilibrium point.

In designing an input function the position of the unstable equilibrium points and the

potential barriers need to be taken into account to avoid problems associated with the

dynamic stability of the system.

1.9 Design of a Linear Controller

A linear controller can be designed to meet the desired criteria. The general form of

the feedback function is:
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V (x) = Ψ(x− χ) (1.12)

Where Ψ is the slope and χ is the x-intercept.

1.9.1 Satisfying Device-Input Static Requirements

In order to establish the desired equilibrium point, the device and input function are

equated at the desired point.

(Ψ(xe − χ))2 =
2Kxe

εoεrA

(
1

(xo − xe)2
− 1

(yo + xe)2

)−1

(1.13)

Solving for Ψ:

Ψ = ±

√
2Kxe

εoεrA(xe − χ)2

(
1

(xo − xe)2
− 1

(yo + xe)2

)
(1.14)

Where the sign determines whether negative or positive voltage is used. In order to

satisfy the slope condition for positive region operation xe < χ ≤ xo. For the negative

region χ needs to be less than xe by very little. The slope of the device function is relatively

large in the negative region, so selecting the intercept must be done carefully.
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1.9.2 Positive Region Operation

Figure 1.7 and Figure 1.8 show the position output and voltage input for positive

operation with χ = xo. The input voltage was also limited to be in the range 0≤V≤26V

to ensure the system has only one (stable) equilibrium point. Large overshoots due to poor

damping require either small steps or a ramp input in order to prevent the device from

colliding with the stationary combs when x = xo. Interestingly, the linear controller is

mathematically equivalent to charge controllers like that proposed in [11] when χ = xo and

yo →∞.
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Figure 1.7: Output Position for Linear Controller, Positive Region

The choice of the x-intercept, χ, is somewhat arbitrary. However, in choosing χ, the

following facts need to be considered; 1) an intercept closer to the equilibrium point yields

larger potential barriers, 2) an intercept closer to xo yields lower local stiffness.
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Figure 1.8: Input Voltage for Linear Controller, Positive Region

1.9.3 Negative Region Operation

Figure 1.9 and Figure 1.10 show the position output and voltage input for negative

operation with χ = −yo + 2
3(yo + xe). Again, large overshoots due to poor damping require

either small steps or a ramp input to prevent the device from colliding with the stationary

combs x = −yo.

Similar considerations to the positive region operation are required when choosing χ

for negative region operation. The choice of χ also needs to satisfy the slope requirements

for stable operation. One should also note that operation in the negative region will be

somewhat more difficult than operation in the positive region due to the non-existence of

equilibrium points in the region of (0 > x ≥ x2
o−y2

o
2(yo+xo)). Either an external force or dynamic

excitation would have to be used to initialize the device for negative region operation. In

Figure 1.9 the device was initialized at -10µm for example.
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Figure 1.9: Output Position for Linear Controller, Negative Region
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Figure 1.10: Input Voltage for Linear Controller, Negative Region
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1.9.4 χ’s Effect on Localized Stiffness

At this point it is beneficial to look at χ’s effect on the localized stiffness of the system.

Only positive region operation will be considered, however a similar argument can be made

for negative region operation.

Figure 1.11 and Figure 1.12 show the device-plant functions and net force functions

for 3 different intercept values respectively . The input functions are half parabolas with a

saturation characteristic (fe ≤ 262 and fe = 0 for x ≥ χ). With χ = xo the input function

is the widest parabola possible to establish one stable equilibrium point. As χ → xe, the

parabolas narrow and in the limiting case the feedback looks like a relay.
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Figure 1.11: Device-Input Function for Various Chi Values

Figure 1.12 shows how the localized stiffness varies with the choice of χ. Linearizing the

system about the equilibrium point, dF
dx

∣∣∣
xe

= k. For a linear system k would be the spring

constant or stiffness. The minimal system stiffness occurs when χ = xo, as χ decreases the

stiffness increases and in the limiting case the stiffness approaches infinity.

19



0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

Norm x

N
or

m
 F

Net Force Plot with Various Intercepts

chi=6e−6
chi=8e−6
chi=10e−6

k
6

k
10

k
8
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Because the localized stiffness of the system can be modified by choice of controller

gains, a variable structure technique can be used to improve system performance.
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Chapter 2

Variable Structure Technique

The control methodology up to this point does a good job of controlling the system

under ideal conditions. Even under these circumstances, stabilizing the system can be

problematic for systems with low mechanical damping. For zero damping, the system is

only marginally stable. Because many MEMS devices have low damping and any real system

has uncertainties, delays, and noise, a more robust control method may be required.

One solution is to use variable structure control. Variable structure control works

by switching between 2 or more different control structures to improve performance. For

example Figure 2.1 and Figure 2.2 show the phase response for the same system, the first

having a feedback with low stiffness (low frequency), the second having a feedback with

high stiffness (high frequency).
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Figure 2.1: Low Stiffness Phase Portrait
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Figure 2.2: High Stiffness Phase Portrait

Both systems are marginally stable. However, by switching between the two structures

the system becomes asymptotically stable as shown in Figure 2.3. The switching criteria is

to use the high stiffness system if the position-velocity product is greater than 0, otherwise

the low stiffness system is used.
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Figure 2.3: Mixed System Phase Portrait
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2.1 Available Structures

There are 6 different types of structures available for second order system equilibrium

points. By linearizing the system an the equilibrium point and determining the eigenvalues

of the linearized system the type can be determined. Because the damping coefficient is

so low for the GCA system, it can be ignored without affecting the analysis. With zero

damping, there are only 2 possible structures to switch between, an unstable saddle point

and the marginally stable center point. This fact can be attributed to the physics of the

system, forces either pushing the actuator away from or toward the equilibrium point.

Figure 2.4 shows the phase portrait for the system with a constant input voltage with the

two types of equilibrium points.

Figure 2.4: Constant Voltage, Zero Damping Phase Portrait

2.2 GCA Variable Structure Controllers

Both the stable and unstable equilibrium behavior can be used to implement variable

structure control for the GCA system. Switching between two marginally stable systems

works similarly to the controller shown in Figure 2.3, where the system stiffness can be
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varied as discussed previously. This forced damping method can be implemented using 2

or 4 different structures. Using 2 structures improves damping when the system dynamics

are well known. Using 4 structures also improves damping and also makes the system more

robust in cases where there are many unknowns present.

Switching between a marginally stable structure and an unstable structure results in a

sliding mode controller, where the phase trajectory is forced toward the switching surface.

Again, 2 or 4 structures can be used, with similar reasons as stated above. Under some

circumstances, this type of variable structure controller outperforms the forced damping

type.

2.2.1 Stable-Stable (Forced Damping) Switching

To demonstrate how the forced damping controller improves system response absent

of system uncertainties the linear controller previously described is used. The high stiffness

structure uses χ = xe + xo−xe
10 , the low stiffness structure uses χ = xo. The switch sample

time was set at 1 µs for simulations.
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Figure 2.5: Stable-Stable Phase Portrait
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2.2.2 Stable-Unstable (Sliding Mode) Switching

To demonstrate how the sliding mode controller improves system response absent of

system uncertainties the linear controller previously described is used. The stable structure

uses χ = xe + xo−xe
4 , the unstable structure uses χ = 5xo. The switch sample time was set

at 1 µs for simulations.
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Figure 2.8: Stable-Unstable Phase Portrait

Figure 2.8 shows that the system only reaches the sliding mode on the last few equi-

librium points. The structures chosen form a hybrid system, partially forced-damping,

partially sliding-mode, depending on where in the travel range the device is located. The

switching surface also needed to be modified to ensure proper controller performance.
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2.2.3 Switching Surface Considerations

For the forced-damping controller, only the position-velocity product needed to be

known to determine if the high-stiffness or low-stiffness structure was engaged. In order

to make the sliding-mode controller work properly the switching criteria had to be slightly

modified. For the stable structure to be engaged:

(mx1 + x2)x1 > 0 (2.1)

Where m ≥ 0 is the slope of the switching surface. Otherwise the unstable structure

was engaged. For the stable-unstable method described in the last section m = 15000

was chosen using trial and error. A more rigorous method of determining the correct

slope to ensure a sliding mode would be forcing σσ̇ < 0 where the switching surface is

σ = mx1 + x2. However, understanding the shape of the phase portraits of both structures

is less cumbersome than doing the math.

The quadrant switching (m = 0) used with the stable-stable controller could also

be modified. There might be certain cases where such switching is beneficial, although

theoretically it is not necessary.
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Chapter 3

Adaptive Controller

The control methods described thus far have assumed perfect knowledge of system dy-

namics. Due to fabrication imperfections, modeling uncertainties, and other similar effects,

the system is never perfectly known. For example, deep reactive ion etching is one of the

best fabrication techniques to generate vertical side-walls. However, even small angular

errors can affect the capacitance, [12] notes that even the relatively small aspect angle of

α < 1◦ can have a dramatic effect on capacitance. The equation for a simple (not quite)

parallel plate capacitor is given:

C(α)
C(0)

=
d

2T tanα
ln

d

d− 2T tanα
(3.1)

Where d top side gap width, α is the under-etch angle, and T is the depth of the etch

(device thickness). An attempt was made to determine exactly how (3.1) modifies the device

function, but the form of the equation makes that analysis very difficult. Despite this fact,

it should be clear that the effects of aspect ratios, fringe fields, and other effects generate

some relatively large uncertainties in the device function, so any proposed controller should

be quite robust. The linear controller works well because the input function slope and

intercept can be varied to compensate for any uncertainties.
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V (x) = Ψ(x− χ) (3.2)

Solving for Ψ is not possible when the device function is unknown. To compensate

for this a simple adaptive algorithm can be implemented using a PI (proportional-integral)

method:

Ψ = P

(
xe − x + I

∫ t

0
xe − x dτ

)
(3.3)

In order for the adaptive controller to work properly, natural damping must be present

since the controller cannot force damping like the controllers previously discussed. In cases

with low damping the adaptive gains need to be decreased so that the natural damping

has time to eliminate transients. Simulations use the damping given in Table 1.1, and an

intercept of χ = xo, and PI gains of (1× 1012, 1× 103) respectively.
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Table 3.1: Approximate parameter values for robustness study
Variable Parameter Value Units
m mass 3.561× 10−7 kg
B damping 2.39× 10−4 N-sec/m
εo free space permittivity 8.854× 10−12 F/m
εr relative permittivity 1 NA
A area 5.042× 10−6 m2

xo nominal small gap 9.563 µm
yo nominal large gap 27.23 µm
K spring constant 115.2 N/m

3.1 Robustness Comparison

In order to compare the robustness of the different controllers discussed, the controller

parameters were randomly varied by ±20%. Control signals were generated using the pa-

rameters given in Table 3.1. System dynamics were still set by the parameter values given

in Table 1.1. Figure 3.4 and Figure 3.5 show the output responses and phase portraits for

all three controllers respectively.
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While the adaptive controller provides zero steady state error, the dynamic response

leaves something to be desired. The two variable structure controllers respond quickly,

but have steady state errors. The reason being the variable structure controllers switch

between two structures with feedback functions that intercept the device function at two

different locations. For any desired equilibrium point, the adaptive algorithm has only

one equilibrium point it settles upon, however, the variable structure algorithms have two

equilibrium points they switch between. This switching causes a very complicated dynamic

that can cause instability if the equilibrium points are too far away from each other.
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Chapter 4

Device Function Design

Considering all the aspects that would need to be addressed when designing a MEMS

device is too much to cover here. However, there are a handful of items to keep in mind

when designing a system to be controlled using feedback. Once again the GCA will be used

for example, but similar arguments can be make for any nonlinear electrostatic device. The

input-device function for the GCA can be written:

V 2 =
2Fm

εoεrA

(
1

(xo − x)2
− 1

(yo + x)2

)−1

(4.1)

Where Fm = Kx is the mechanical force for the typical linear spring model. When

designing the spring, minimizing the spring constant, K, has two benefits. The first benefit

is that it minimizes the actuation voltage required for both open loop and closed loop

operation. The second benefit is it minimizes the forces (mechanical and electrical) acting

on the system mass when using feedback control. If there are any time delays in the loop,

then smaller forces prevent instability due to slower system dynamics. Increasing the mass

or inertia of the device has a similar effect. However, the resultant lowering of the natural

frequency of the device can make it susceptible to external vibration [13].
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4.1 Nonlinear Springs

Theoretically, the open loop travel range can be extended by offsetting the electrical

force nonlinearity with a mechanical force nonlinearity. This can be done by designing the

mechanical force curve Fm(x) so that:

d

dx

2Fm(x)
εoεrA

(
1

(xo − x)2
− 1

(yo + x)2

)−1

> 0 (4.2)

One possible solution is:

Fm(x) =


Kx (0 < x < xl)

γ(x− α)
(

1
(xo−x)2

− 1
(yo+x)2

)
(xl < x < xo)

(4.3)

Where xl is in the stable range of open loop operation for the linear mechanical force.

The variables γ and α are used to ensure continuity in the force function and set the slope

of the device function. To ensure force continuity:

α = xl −
Kxl

γ

(
1

(xo − xl)2
− 1

(yo + xl)2

)−1

(4.4)

Using the GCA device as a template, a nonlinear spring system was simulated for

xl = 3µm, γ = 7.5× 10−9Nm, and α = 2.46µm.
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Figure 4.1: System Response with Nonlinear Spring

Once Fm(x) has been determined, the nonlinear spring has to be designed. The design

is based on determining an interference profile to prevent beam deflection once the displace-

ment reaches a set value. An iterative method was used along with standard beam theory.

Using the beam variables from the GCA example where the beam length L = 1200µm,

the beam width w = 15µm, and the beam depth d = 75µm. The modulus of elasticity for

silicon is E = 176GPa. Using the beam element in Figure 4.2 the displacement and slope

equations can be determined.

y(l) =
F

EI

[
1
6
l3 − 1

4
Ll2

]
+ sl

[
1− l

2L

]
+ yo (4.5)

dy(l)
dl

=
F

EI

[
1
2
l2 − 1

2
Ll

]
+ s

[
1− l

L

]
(4.6)
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Figure 4.2: Beam Element for Nonlinear Spring Design

Where y(l) is the beam deflection along the beam element, yo and s are the element

deflection and slope at the left end of the element, and EI is the sectional stiffness of

the beam. The iteration method starts with determining the deflection and slope at the

first interference point using the force from equation (4.3) at x = xl. These new boundary

conditions are then applied to a new element with a desired force from equation (4.3) making

sure the displacement at the right end of the beam matches the displacement input to the

force equation. The results are shown in Figure 4.3. The blue line is the interference profile,

the black lines are the beam profiles for different mass deflections, and the red line is an

example of a beam profile without interference (linear spring).

4.2 Implementation Issues

Modifying the device function using nonlinear springs looks promising because the

travel range is extended to the entire range of motion in open loop operation. However,

implementation would be problematic. First of all, higher stresses might cause mechanical

failure in the beams. Secondly, device function uncertainty would make designing the

interference profile difficult. A more aggressive interference profile could be designed to

compensate (say by shifting the entire profile towards the proof mass), but this would
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likely increase the actuation voltage. Thirdly, depending on fabrication technology, not all

nonlinear electrostatic devices could use interference profiles.

Planar SOI (silicon on insulator) devices would be prime candidates for implementa-

tion (like the GCA example). However, even this technology would have implementation

difficulties. Photolithography (mask) restrictions would limit the resolution of the inter-

ference profile. Fabrication issues would further degrade the profiles (over-etching, etc.).

Stiction could also be a problem, a continuous interference profile providing a large con-

tact area. The profile could be approximated using discrete contact points, but even this

causes problems. Discrete contact points can cause an intermediate pull-in phenomenon.

Figure 4.4 shows the device function for such an arrangement. When the slope of the device

function is zero a localized pull-in occurs to the next intersection point. This would cause

a complicated hysteresis behavior that would extend the travel range in a limited manner

with erratic behavior near pull-in locations.
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Other methods have been shown to produce nonlinear mechanical springs. For example,

instead of using contact forces from an interference profile, additional electrodes could be

implemented to create forces on the beam that changes the spring characteristic. Another

example is given in [14], where controlling motion in a cross direction effects the spring

constant in the direction of interest.
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Chapter 5

Extension to Other Systems

In order to demonstrate the scope of the method, it will be used to demonstrate how

the series capacitor method extends the travel range of the GCA example. The method will

also be applied to a tilt actuator example.

5.1 Series Capacitor Method

The series capacitor method is an open loop approach to extend the travel range of

nonlinear electrostatic MEMS actuators. The method works by forming a voltage divider

that acts like a closed loop system. The voltage across the device, Vd, is given:

Vd =
Vs

1 + Cd
Cs

(5.1)

Where Vs is the supply voltage across the series pair, Cd is the variable capacitance

of the device, and Cs is the series capacitor. Using a series capacitor of 1/4 the nominal

capacitance of the device:

Cs =
εoεrA

4

(
1
xo

+
1
yo

)
Vd(x) =

Vs(xo − x)(yo + x)
(xo − x)(yo + x) + 4xoyo

(5.2)
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Where V 2
d (x) is the input function that meets the slope criteria previously discussed

for stable equilibrium points. Figure 5.1 is the device-input plot and Figure 5.2 is the net

force plot for 3 different supply voltages.
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Figure 5.1: Series Capacitor Device-Input Plot

The plots show that the series capacitor shown is too large to provide full range of

motion. Decreasing the value of the series capacitor would increase the travel range, but

at the cost of higher actuation voltage. Using the series capacitance given, the actuation

voltages are relatively high, pull-in occurring around Vs = 182.5V at a displacement roughly

x = 8µm. Work has been done by Dr. Robert N. Dean and Dr. John Y. Hung at Auburn

University to improve the series capacitor feedback using analog circuitry to increase travel

range without increasing the supply voltage. Improved feedback has also been reported

using MOS capacitors [15].
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5.2 Torsional Devices

The method can also be applied to torsional devices. The only functional difference

between a torsional device with GCA is the electrostatic force nonlinearity. The capacitance

of a torsional device is given [16] as:

C(θ) =
εoεrh

θ
ln

(
a + b

a

)
(5.3)

Where θ is the angle between the two electrodes, a is the lesser radial electrode dimen-

sion, b is the electrode length, and h is the out of plane dimension of the electrode. For

most torsional devices, rotations are assumed to occur about a fixed point located a gap

distance, g, above the stationary electrode. In order for this fixed point to remain constant:
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a(θ) =
g

sin θ
− b (5.4)

The electrostatic torque can then be found:

Te(θ) =
1
2
V 2 d

dθ
C(θ)

d

dθ
C(θ) =

εoεrh

θ

[
b cos θ

g − b sin θ
− 1

θ
ln

(
1 +

b sin θ

g − b sin θ

)]
(5.5)

Figure 5.3 and Figure 5.4 show the normalized device-input plots and net torque plots

respectively. The shape of the device function does differ slightly from that of the GCA,

but the same slope conditions apply for stability.

The same controller used for the GCA can be used for a torsional device:

V (θ) = Ψ(θ −Θ) (5.6)

Setting Θ to be the maximum angular displacement of the device, the normalized

device-input plot and net torque plots were generated using various values of Ψ.

Like the GCA, the travel range of a torsional actuator can be extended to the full range

using the linear controller. No further analysis has be done, however the variable structure

and adaptive techniques described earlier could be applied to torsional systems.
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Figure 5.3: Torsional Device-Input Plot: Open Loop
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Figure 5.5: Torsional Device-Input Plot: Closed Loop
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Chapter 6

Conclusion and Discussion

6.1 Overview

Static stability is at the heart of the method discussed. Using static stability, the device-

input formulation was developed by setting the derivative terms to zero in the governing

equation and isolating the input voltage term V 2 to one side of the resultant equality. The

utility of the method rests in the fact that the input voltage can be manipulated given any

device to ensure static stability. The method also provides insight into how the device itself

can be designed to improve both open and closed loop performance.

Once the device-input formulation was established, a simple, linear controller was pro-

posed. This controller guaranteed the existence of only one stable equilibrium point for the

system as long as xe < χ ≤ xo (positive operation). An adaptive controller was proposed

based on the linear controller the can adapt to the correct slope, Ψ, for a given intercept

with no additional system information required.

The proposed linear controller was also used to develop two variable structure meth-

ods to improve system performance. Controller gains determined the structures that were

switched between. The first variable structure proposed used two stable systems to force

damping. By switching between two systems with high or low localized stiffness overall per-

formance was improved dramatically. The second variable structure proposed used stable

and unstable systems to form a hybrid sliding mode controller. Switching was done between

two input functions, the first where xe < χ ≤ xo, had only one stable equilibrium point.
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The second, where χ >> xo had two equilibrium points, one stable, one unstable. The rea-

son the system is best described as hybrid is because for equilibrium points where dfd
dx > 0

a stable-stable switching is present, where dfd
dx ≤ 0 stable-unstable switching is present and

a sliding mode controller was observed.

Next, focus was shifted from the input function to the device function. Design consid-

erations for devices that are intended to operate under closed loop control were covered.

Then, a method that extends the positive slope range of the device function was proposed.

Extending the positive slope range of the device function extends the open loop travel range

by offsetting the electrostatic nonlinearity with a mechanical nonlinearity.

After showing how the method can be used to design controllers and devices based on

the GCA example, the method was extended to other MEMS in order to demonstrate the

utility of the method. The first system was the GCA in series with a dummy capacitor. In

open loop, this system extends the travel range of the device at the cost of higher actuation

voltage. The second system was a 1-dimensional torsional actuator. The device function

was determined and a similar analysis showed that input functions just like the GCA’s could

be used to extend the travel range of the system. Variable structure and adaptive methods

could also be applied to the torsional actuator.

Aside from the numerous benefits of the method, there are many issues that would

need to be addressed in any future work. The following sections attempt to introduce the

most predominate of these issues.
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6.2 Output vs State Feedback

The bulk of the method relies on output feedback, assuming the system output is the

displacement of the actuator. There are two reasons for this: 1) the static stability analysis

only requires this type of feedback, and 2) velocity measurements can be difficult on this

scale [17]. Parasitic capacitance, fabrication uncertainties, and measurement issues make

position measurement difficult enough. The only proposed controller that requires accurate

velocity measurement is the sliding mode controller where the switching surface has been

rotated in the phase plane. The other forced-damping technique only required the sign of

the velocity-position product, which is easier to estimate. The method is robust in terms

of workability without accurate velocity information. However, the output measured from

most of these devices is in terms of capacitance, not position. While the transformation

between capacitance and position should be fairly simple for 1-1 relationships, it might be

enlightening to formulate the device-input functions where capacitance is the independent

variable. This is one potential direction of future research.

6.3 Multi-Dimensional Actuators

It would be interesting to apply the method to multi-dimensional devices such as micro-

mirrors with two rotational axes. Cross axis coupling could make the work-energy formula-

tion of the electrostatic torques difficult, but it should be possible. An additional problem

would be choosing the number of actuation electrodes. With luck the method might be

powerful enough to allow full range of motion with only 4 electrodes. Instinctively, it makes

sense that the device function would be a surface with the two independent variables being

the rotation axes. Input function(s) would also likely be surface(s) over the two rotation
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variables, however the input-output function relations for equilibrium and stability are not

immediately clear. Research along these lines would be interesting, however, there is no

guarantee this method would work for systems with multiple degrees of freedom.

6.4 Final Discussion

Overall, the methods described are based on static equilibrium analysis. These meth-

ods were developed in a somewhat ad-hoc manner, with the intent to tie them into a more

traditional type of control system analysis. However, as the method developed, the choice

was made to keep things simple by not complicating the analysis using Lyapunov or a lin-

earization technique. Static stability based controllers ensure that for a given displacement,

a constant voltage is converged upon. While there are cases where a state of dynamic

stability can be reached with wild input voltage fluctuations (like the switching controllers

with device function uncertainty), thorough understanding of these complex dynamics are

unnecessary for slow actuation requirements.

Most implementation aspects have not been addressed. Quantization and time delays

do cause considerable problems for the designed GCA device. Simulations show that these

problems could be reduced by increasing the mass of the device, or decreasing the stiffness.

Another aspect that has not been modeled is the RC dynamics of the system, finite charge

rates will no doubt effect overall system dynamics.

The methods described show much promise, but additional work needs to be done.

Implementation, using analog or digital circuitry, is the biggest hurdle. Implementation

issues will likely present problems not addressed in this analysis, however, these methods

should improve performance for most devices.

49



Bibliography

[1] B. Borovic, F. L. Lewis, W. McCulley, A. Q. Liu, E. S. Kolesar, and D. O. Popa,
“Control issues for microlectromechanical systems,” IEEE Control Systems Magazine,
vol. 26, no. 2, pp. 18–21, April 2006.

[2] C. T.-C. Nguyen, “Frequency-selective MEMS for miniaturized low-power communica-
tion devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8,
pp. 1486–1503, August 1999.

[3] E. S. Hung and S. D. Senturia, “Extending the travel range of analog-tuned electrostatic
actuators,” Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 497–505,
December 1999.

[4] L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Using dynamic voltage drive in a
parallel-plate electrostatic actuator for full-gap travel range and positioning,” IEEE
Journal of Microelectromechanical Systems, vol. 15, no. 1, pp. 69–83, February 2006.

[5] J. Chiou and Y. Lin, “A novel capacitance control design of tunable capacitor us-
ing multiple electrostatic driving electrodes,” Nanoelectronics and Giga-Scale Syatems
(Special Session), no. M3.1, October 2001.

[6] E. S. Hung and I. Stephen D. Senturia, Fellow, “Extending the travel range of analog-
tuned electrostatic actuators,” IEEE Journal of Microelectromechanical Systems, vol. 8,
no. 4, pp. 497–505, December 1999.

[7] J. I. Seeger and B. E. Boser, “Charge control of parallel-plate, electrostatic actuator
and the tip-in instability,” Journal of Microelectromechanical Systems, vol. 12, no. 5,
pp. 656–671, October 2003.

[8] J. Chen, W. Weingartner, A. Azarov, and R. C. Giles, “Tilt-angle stabilization of
electrostatically actuated micromechanical mirrors beyond the pull-in point,” IEEE
Journal of Microelectromechanical Systems, vol. 13, no. 6, pp. 988–997, December
2004.

[9] D. H. S. Maithripala, J. M. Berg, and W. P. Dayawansa, “Nonlinear dynamic output
feedback stabilization of electrostatically actuated mems,” in Proceedings of 42nd IEEE
Conference on Decision and Control, vol. 1, December 2003, pp. 61–66.

[10] J. E. Rogers, P. M. Ozmun, J. Y. Hung, and R. N. Dean, “Bi-directional gap closing
MEMS actuator using timing and control techniques,” in Proceedings of 32nd Annual
Conference of IEEE Industrial Electronics Society, November 2006, pp. 3149–3154.

50



[11] D. H. S. Maithripala, J. M. Berg, and W. P. Dayawansa, “Capacitive stabilization
of an electrostatic actuator: output feedback viewpoint,” in Proceedings of the 2003
Americal Control Conference, vol. 5, June 2003, pp. 4053–4058.

[12] B. Borovic, F. L. Lewis, A. Q. Liu, E. S. Kolesar, and D. Popa, “The lateral instability
problem in electrostatic comb drive actuators: modeling and feedback control,” Journal
of Micromechanics and Microengineering, vol. 16, pp. 1233–1241, 2006.

[13] R. Dean, G. Flowers, S. Hodel, K. MacAllister, R. Horvath, A. Matras, G. Robertson,
and R. Glover, “Vibration isolation of mems sensors for aerospace applications,” in
IMAPS International Conference and Exhibition on Advanced Packaging and Systems,
Reno, NV, March 2002, pp. 166–170.

[14] M. T.-K. Hou, G. K.-W. Huang, J.-Y. Huang, K.-M. Liao, R. Chen, and J.-L. A.
Yeh, “Extending displacements of comb drive actuators by adding secondary comb
electrodes,” Journal of Mircomechanics and Microengineering, vol. 16, no. 16, pp. 684–
691, February 2006.

[15] J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical
devices,” in Proceedings of the Ninth International Conference Solid State Sensors and
Actuators, Chicago, IL, June 1997, pp. 1133–1136.

[16] R. N. Dean, J. Y. Hung, and B. M. Wilamowski, “Advanced controllers for microelec-
tromechanical actuators,” in Proceedings of 2005 IEEE International Conference on
Industrial Technology, Kowloon, Hong Kong, December 14-16, 2005.

[17] R. N. Dean, G. Flowers, R. Horvath, N. Sanders, A. S. Hodel, J. Y. Hung, and T. A.
Roppel, “A relative velocity sensor for improved electrostatic parallel plate actuator
control,” IEEE Sensors Journal, vol. 7, no. 4, pp. 496–561, April 2007.

51


