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Abstract

Restricted secant varieties of Grassmannians are constructed from sums of points corre-

sponding to k-planes with the restriction that their intersection has a prescribed dimension.

This thesis calculates dimensions of restricted, cyclic, and path geometric secants of Grass-

mannians and relate them to the analogous question for secants of Grassmannians via an

incidence variety construction. Next, it defines a notion of expected dimension and gives a

formula, which holds if the BDdG conjecture [7, Conjecture 4.1] on non-defectivity of Grass-

mannians is true, for the dimension of all restricted secant varieties of Grassmannians. It

also demonstrates example calculations in Macaulay 2 and points out ways to make these

calculations more efficient. The thesis also shows a potential application to coding theory.
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Chapter 1

Introduction

Secant varieties are fundamental objects in algebraic geometry. Given a projective

variety X ⊂ Pn, the k-secant variety is the closure of all points that have X-rank ≤ k, i.e.

those of the form [v] = [x1+ · · ·+xk] with [xi] ∈ X for all i. Such decompositions have many

applications since one can view anX-rank decomposition as recovering the information stored

in the [xi] from [v] [6, 23]. However, it is often not possible to choose the xi independently

and this could lead to defectivity of the secant variety.

For X ⊂ PV invariant under the action of a subgroup G ⊂ GL(V ) secant varieties of

X inherit this G-invariance. Hence secant varieties can be part of a classification of orbits

[1,5,29,36]. One seeks easy ways to compute invariants that permit the separation of orbits,

perhaps the first of which is dimension.

Terracini’s lemma [37] reduces the dimension of the secant variety of a variety X to a

dimension count for a sum of linear spaces. This count is usually correct (as long as the

spaces don’t intersect), so when it fails for the k-secant variety one says that X is k-defective.

The problem of finding defectivity of varieties dates back to the 19th century with

the proof of the defectivity of the Veronese surface and was studied by classical algebraic

geometers; for example see the works of F. Palatini, A. Terracini and G.Scorza [30, 32–35].

While work in this area continued, the 1990s saw two major breakthroughs that reinvigorated

the study of defectivity of varieties. First, Zak’s 1993 work [37] studied tangential and secant

varieties and classified Severi varieties via a connection to defectivity of σ2(X). From there,

Alexander and Hirschowitz [3,4] completely classified the dimensions of the Veronese variety,
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proving that apart from the quadratic Veronese varieties and four specific cases, all higher

secant varieties of Veronese varieties have expected dimension.

Though the Veronese case is completely resolved, the non-symmetric (Segre) and skew-

symmetric (Grassmann) analogues are still open. In this thesis we focus on the Grassmann

case. In 2002, Geramita and Gimigiliano proved that σ3(Gr(3, 7)) and σ4(Gr(3, 9)) are

defective [13]. Using a combination of theory and computation, Baur, Draisma and de Graaf

in [7] conjectured that the list of known counterexamples was complete:

Conjecture 1.0.1. Baur-Draisma-de Graaf [7] The only cases where the secant variety of

the Grassmannian σs(Gr(k, n)) is defective are the following:

1. σk(Gr(2, n)) (skew sym-

metric matrices),

2. σ3(Gr(3, 7)),

3. σ4(Gr(3, 9)),

4. σ3(Gr(4, 8)),

5. σ4(Gr(4, 8)).

In 2013, Boralevi improved the list of known cases and gave the following theorem which

is the current state of known non-defective cases of secants of Grassmannians [11].

Theorem 1.0.2. If k ≥ 3, k ≤ n
2
then σs(Gr(k, n) has the expected dimension:

1. for n ≥ 15, all k and s, except (k, n; s) = (3, 7; 3), (4, 8; 3), (4, 8; 4), (3, 9; 4);

2. for n > 15, k ≥ 7, s ≤ max{111, n−k+3
3

};

3. for n > 15, 3 ≤ k ≤ 6, as follows:

(a) k = 3, s ≤ max{12, n
3
}

(b) k = 4, s ≤ max{30, n−1
3
}

(c) k = 5, s ≤ max{59, n−2
3
}

(d) k = 6, s ≤ max{90, n−3
3
}.
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A unifying feature of the defective cases and some of the larger cases that have not

been classified is a complex intersection structure that affects the dimension. Fulton and

Harris in their textbook on representation theory offer, as exercise [17, Ex. 15.44], an initial

direction to follow in studying this more complicated intersection structure. A collection of

k-planes that are all forced to share an r-dimensional overlap is called a restricted secant

of Grassmannians. These restricted secants as well as secants of Grassmannians whose

intersection structures resemble a path or cycle graphically, can be entirely described in

terms of secants of Grassmannians. The techniques and constructions used within are a

part of a larger program attempting to show that computing the dimension of secants of

Grassmannians with more complex intersection structures can be reduced to computing

dimensions of secants of Grassmannians.

In Chapter II basic definitions and concepts used to study Grassmannians, secants, and

tensors are established. Notation is defined and the description of the necessary background

information and proof of basic lemmas occurs. The focus is on inheritance, and this results

in a proof of a version of the orbit-stabilizer theorem for subspaces to show how after a

certain value of n, families of k-planes have the expected dimension and can be expressed in

terms of the specific dimension at step n and a correction term.

The next section provides the algorithmic approach used to compute the dimension of

a parameterized variety with a computer algebra software, in this case Macaulay2 [18]. It

also highlights the drawbacks of the built in functions of M2 for the problem and provides

the code to get around those. Next, is the classification of restricted secants of varieties.

For a specific case of the restricted chordal variety, σ1
2(Gr(3, n)), a version of Terracini’s

lemma is used to calculate the dimension which mimics the known approach. After this is

a classification of the other restricted chordal varieties. Shifting to higher order restricted

secants of Grassmannians, the main theorem of the work is provided. This is then used, along

with the BDdG conjecture, to define the dimension of restricted secants of Grassmannians
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problem as a secant of Grassmannian problem. The section ends with an application to

coding theory. Given the relevant definitions, creating a linear code using a restricted secant

of Grassmannians is defined. For a specific code over a binary field, the code is shown to

be identifiable, its orbits are classified, and it validates the construction utilized in the main

theorem.

Chapter III is a study of two different intersection structures originating in graph theory.

These Grassmannians have a Schouten diagram represented by a cycle or a path. Dimension

of both cyclic and path secants of Grassmannians are classified again entirely in terms of

secant of Grassmannians. The proof techniques in this chapter give a second description of

the restricted chordal varieties.

Chapter VI is a collection of unsolved problems that will be the focus of future work.

Within the appendix, there is a collection of Macaulay2 code used to generate examples.
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Chapter 2

Restricted Secant Varieties of Grassmannians

Chapter 2 is taken from joint work completed with Dr. Luke Oeding [10].

2.1 Preliminaries and Notation

Let V,W denote complex finite-dimensional vector spaces. Given a projective vari-

ety X ⊂ PV let X̂ denote the cone in V . The Grassmann variety is the collection of

k-dimensional subspaces of V denoted Gr(k, V ), or Gr(k, n) if the ambient space V is n-

dimensional. The Plücker embedding maps Gr(k, V ) into P
∧kV as follows. Given a k-plane

E, select a basis e1, . . . , ek of E and send it to the class of the wedge product [e1 ∧ · · · ∧ ek].

We will write Ê = e1 ∧ · · · ∧ ek for a representative on that line. One checks that this map

is well-defined independent of the choice of basis of E, and that it is an embedding.

Since we work in projective space and have a skew-symmetric product we often insist

that i1 < i2 < · · · < ik. The general linear group acts transitively on the set of k-planes,

hence the Grassmannian is also the GL(V )-orbit

Gr(k, V ) = GL(V ).[e1 ∧ · · · ∧ ek].

Any nonzero element δ ∈
∧nV induces an isomorphism

∧kV →
∧n−kV given by contrac-

tion on simple elements and extending through linearity. For instance, if δ = e1∧· · ·∧en, then

δ(eI) = sgn(I, I⋆)eI⋆ , where ⋆ denotes complement on multi-indices, and sgn(I, I⋆) denotes
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the sign of the corresponding permutation of [n]. This induces a duality on Grassmannians

Gr(k, V ) ∼= Gr(dim(V )− k, V ), or Gr(k, n) ∼= Gr(n− k, n). (2.1)

For parametrized varieties the differential-geometric view of the tangent space is useful:

Definition 2.1.1. Let x ∈ X be a smooth point on an algebraic variety X ⊂ PW . The cone

over the tangent space to X at x is

T̂xX = {γ′(0) | γ : C1−→X, γ(0) = x}.

It is a standard exercise in [24, Ch. 6] for instance to verify the following expression:

T̂E Gr(k, V ) = E + E∗ ⊗ V/E,

where E∗ is the dual vector space, and V/E is the quotient. One finds other useful charac-

terizations of this tangent space in [14]. We prefer the following description. The tangent

space to the Grassmannian at E is spanned by e1 ∧ · · · ∧ ek and all square-free monomials of

the form eI\{i}∪{j}, where I = {1, . . . , k}, i ∈ I and j ∈ {k + 1, . . . , n}. This description has

an interpretation using simplices. Recall that the set of multi-indices of length k, denoted

Sk = {J ⊂ [n] | |J | = k}, parametrizes the space of k-simplices. There is a discrete distance

function called the Hamming distance dH on Sk, which is defined as dH(I, J) the size of the

symmetric difference of I and J .

The indices that occur in the monomials in T̂E Gr(k, V ) correspond to all simplices in a

Hamming ball of radius 1 centered at the standard k-simplex, which one can show contains

k(n− k) + 1 simplices.
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Given a variety X ⊂ PV , the X-rank of a point [p] ∈ PV is the minimal number s of

points [x1], . . . , [xs] such that p lies in the span of the xi. One notion of tensor rank (the

CP rank) is defined when X is the variety of rank-1 tensors (indecomposable tensors). The

s-secant variety of X, denoted σs(X), is the Zariski closure of the points of PV with X-rank

s. Points in σs(X) are said to have X-border rank s. While X-rank is not semi-continuous,

X-border rank is semi-continuous by construction.

Restricted secant varieties of Grassmannians generalize [17, Ex. 15.44] as follows:

Definition 2.1.2. The r-restricted s-secant variety of Gr(k, V ) in P
∧kV , is

σr
s(Gr(k, V )) =

{
[λ1Ê1 + · · ·+ λsÊs] | Ei ∈ Gr(k, V ), [λ] ∈ Ps−1, dim(

⋂s
i=1Ei) ≥ r

}
.

Note that it is necessary to define the dimension of the intersection as being ≥ r rather

than = r to ensure the variety is non-empty. When more than 2 k-planes are involved the

intersection structure is more complicated and is not in general characterized by a single

number. We find it already interesting to study this case.

2.1.1 Inheritance and orbit stability

Given a family F of algebraic varieties one can ask what properties a variety inherits

from its subvarieties coming from the same family. For example, we define an orbit family

F = F(W•, G•, X•) by the data: a chain of vector subspaces W• = W0 ⊂ · · · ⊂ Wi ⊂ · · · ⊂

Wn, a family of groups G• with Gi ⊂ GL(Wi) and a family of varieties X• with Xi ⊂ PWi

and we require the property that Gj.Xi ⊂ Xj whenever i ≤ j. We say that orbit stability

occurs at step p if Gj.Xi = Xj whenever p ≤ i ≤ j [13]. When orbit stability occurs, we

can use this structure to compute the dimensions of the Xi for i ≥ p precisely. Specifically,

when the varieties Xi are defined by the closure of a single orbit, orbit stability at step p

implies that all Xi for i ≥ p have the same normal form (representative of an orbit on a
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full-dimensional open set) n ∈ Xi. Hence, we can describe the tangent spaces to the Xi at

n as follows for all i ≥ p:

T̂nXi = T̂nXp + a correction term.

To determine this correction term, we recall the following version of an orbit-stabilizer

theorem for subspaces (see [24, 6.9.4] for the case when V is a line, and G.V = G/P is a

homogeneous variety).

Proposition 2.1.3. Let G be a connected compact complex semisimple Lie group contained

in GL(W ). Given a G-module V ⊂ W , set H = StabG(V ). Then

dim(G.V ) = dim(G/H) + dim(V ). (2.2)

Proof. The orbit G.V can be seen as a parametrization:

G× V → W

(g, v) 7→ g.v

The tangent space at v = Id.v can be computed via the Lie algebra action:

T̂vG.V = v + [g, V ], (2.3)

see [22, Prop. 3.18]. The decomposition W = V ⊕ V/W induces a decomposition of the

endomorphisms:

End(W ) = W ∗ ⊗W = (V ∗ ⊗ V )⊕ (V ∗ ⊗W/V )⊕ (W/V ∗ ⊗ V )⊕ (W/V ∗ ⊗W/V ).
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Define the corresponding subspaces gij of g ⊂ End(W ) via restriction. Seen as a matrix,

g =

g00 g01

g10 g11

 .

In addition, h = g00 ⊕ g01 ⊕ g11 is the subalgebra of g that stabilizes V . Hence

[g, V ] = [g00 ⊕ g10 ⊕ g01 ⊕ g11, V ] = [g00, V ]⊕ [g10, V ]⊕ [g01, V ]⊕ [g11, V ]

= [g00, V ]⊕ [g10, V ]. (2.4)

Since V is aG-module it is also a g00-module and [g00, V ] = V . Moreover v ∈ V so v+[g, V ] =

v + [g00, V ]⊕ [g10, V ] = V ⊕ [g10, V ]. Finally, g/h = g10, so dim(G/H) = dim([g10, V ]).

We can then apply this to the family of varieties with symmetry.

Proposition 2.1.4. Suppose an orbit family F achieves orbit stability at step p, and that

Gi acts transitively on the set of dim(Vp)-planes for each i ≥ p. Define a fiber bundle

Ξ → Gr(dim(Vp), Vi) with each fiber over E ∈ Gr(dim(Vp), Vi) equal to a copy of Xp ⊂ PE.

Then for all i ≥ p, Xi is birational to the total space of Ξ, and in particular

dim(Xi) = dim(Xp) + dim(Gr(dimVp, Vi)). (2.5)

Proof. We will show that Xi is birational to the fiber bundle Ξ defined in the statement.

Then the total space of Ξ has dimension equal to the dimension of the general fiber plus the

dimension of the base, or dim(Xp) + dim(Gr(dimVp, Vi)), so the “moreover” part follows.

Let [x] ∈ Xi be a general point, so we can assume x is on the orbit Gi.xi. Because of

orbit stability at step p we can take x to be the normal form for Xp, x = xp ∈ Xp. Consider

the vector space T̂xpXp and take its orbit under the action of Gi. Since Gi acts transitively
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on dim(Xp)-planes, this orbit is Gr(dim(Vp), Vi), so we can send xp to the pair (T̂pXp, xp),

this is a rational mapping.

For the other direction, suppose we have a pair (E, x) ∈ Ξ with x ∈ X̃p, where X̃p

denotes a copy of Xp in E. Then by the assumption that Gi acts transitively on dim(Vp)-

planes we can assume that the linear space E is a Gi translate of T̂xpXp, hence x ∈ g.Xp ⊂

g.T̂nXp, with g ∈ Gi. What is left to show is that the composition of the two maps is the

identity. Let [x] ∈ Xi be a general point. Because of orbit stability, x = xp ∈ Xp. Apply

the first map. Take the orbit of xp under the action of Gi. This produces a pair (T̂xpXp, xp).

Then, it is true that xp ∈ Xp and not just X̃p, where X̃p was a copy of Xp in E. Further,

since Gi acts transitively on dim(Vp)-planes, applying the second map and acting on T̂xpXp

by Gi means xp ∈ g.T̂xpXp. But we had xp = x, therefore we arrive back at [x].

We’re interested in the case for fixed k, r, s with Wi =
∧kVi, with V0 ⊂ · · · ⊂ Vn

and Vi
∼= Ci, Gi = GL(Vi) and Xi = σr

s Gr(k, Vi). We denote this family by G(r, s, k) =

(
∧kV•,GL(V•), σ

r
s Gr(k, V•)). These varieties are defined as orbit closures, and in this partic-

ular case orbit stability implies stability of normal forms.

Proposition 2.1.5. The family G(r, s, k) obtains orbit stability (at least) when p = r+s(k−

r).

Proof. Note the condition that G(r, s, k) obtains orbit stability at step p, where p = dim(Vp)

and σr
s(Gr(k, Vp)) can be guaranteed at the first instance where there are enough linearly

independent basis vectors to define a general point x ∈ σr
s(Gr(k, Vp)) with no additional

intersection. Now count independent parameters. For a given, r, s, k there is an r-dimensional

overlap which accounts for r elements ei ∈ V and additionally each of the s copies of the

Grassmannian requires k − r more ei elements for a total of r + s(k − r). These ei ∈ V can

be chosen independently if n ≥ p = r + s(k − r).
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Proposition 2.1.6. Suppose G(r, s, k) attains orbit stability at step p. For all n ≥ p we

have

dim(σr
s Gr(k, Vn)) = dim(σr

s Gr(k, Vp)) + dim(Gr(p, n))

= r(p− r) + s((k − r)(p− k)) + s− 1 + p(n− p). (2.6)

Proof. When orbit stability occurs there exists a birational morphism:

Gj ×Xj 99K Xj

Using the orbit-stabilizer theorem 2.1.3 we obtain a dimension count: r(p−r)+s((k−r)(p−

k)) + s− 1 + p(n− p).

Example 2.1.7. Apply this argument above to the 1-restricted case for σ1
s(Gr(3, V )). We

have the following chain of inclusions

Gr(k, a) ⊂ P
∧kCa ⊂ P

∧kCn.

Then, σ1
s(Gr(k, V )) can be found by taking the appropriate orbits of σ1

s(Gr(k, a)):

GL(n).σ1
s(Gr(k, a)) ⊂ σ1

s(Gr(k, n)).

Consider σ1
3(Gr(3, n)) and take a = 7 in this case. So, σ1

3(Gr(3, V )) is birational to Gr(7, V ))×

σ1
3(Gr(3, 7)). Therefore,

dim(σ1
3(Gr(3, n))) = dim(Gr(7, n)) + dim(σ1

3(Gr(3, 7))).

So, since σ1
3(Gr(3, 7)) = 20 we have dim(σ1

3(Gr(3, n))) = 7 · (n− 7)+20 = 7n− 29 for n ≥ 7.
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This leads to other explicit formulas for 1-restricted chordal varieties such as:

dim(σ1
2(Gr(4, n))) = 7n− 24, for n ≥ 7,

and

dim(σ1
2(Gr(5, n))) = 9n− 40, for n ≥ 9.

The following result of Boralevi has a similar flavor to the work in this section:

Theorem 2.1.8 ([11]Lem. 3.2, Thm. 3.3). If σs(Gr(k, n)) has the expected dimension and

does not fill its ambient space then σs(Gr(k, n + t)) and σs(Gr(k + t, n + t)) both have the

expected dimension for every t ≥ 0.

2.2 Computing Dimensions Using Macaulay2

A standard method to compute the dimension of a parametrized projective variety is

via differentials. Recall a parametrization is a rational mapping

φ : PM → PN ,

defined on a non-trivial open subset U ∈ PM . That the map φ is rational means that

[φ(x)] = [φ0(x) : . . . : φN(x)] with φi(x) a rational function for each coordinate i. Recall

that the image X of a rational mapping φ is the Zariski closure φ(U) and note that the

definition doesn’t depend on which non-trivial open subset we choose as long as φ is defined

on that set. Work on the cone over U and take the total differential (the Jacobian):

dφ : Û → CN+1,
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noting that T̂pU = CM+1, and T̂φ(p)CN+1 = CN+1. At a point [p] ∈ U , the linear mapping

dφp : CM+1 → CN+1,

may be represented by a matrix with (i, j) entry ∂φi

∂xj
(p), with 0 ≤ i ≤ N and 0 ≤ j ≤ M .

The image of dφp for general [p] ∈ U is the tangent space T̂φ(p)X, and hence the rank of dφp

computes the dimension of the cone X̂.

In summary, to compute the dimension of a parametrized variety we may

1. Generate sufficiently many random points [p] of the source.

2. Compute the partial derivatives ∂φi

∂xj
(p) and populate the matrix dφp.

3. Compute the rank of the matrix dφp.

2.2.1 Computing dimensions of σr
s Gr(k, n)

We verified the calculation of dimension for several families of restricted chordal varieties

with Macaulay2 [18]. An example computation can be found in the ancillary files associated

with the arXiv version of this article.

Since any k-dimensional subspace of an n-dimensional space can be represented as the

row space of a k × n matrix, a parametrization for σs(Gr(k, n)) is given by

φ : P(Ck×n)×s → P
∧kCn,

which takes an s-tuple of k×n matrices (up to scale) to the sum of their vectors of k-minors.

The open set we work on is the one where all of the matrices in question have full rank.

The Jacobian at a point p is a linear mapping

dφ : (Ck×n)×s →
∧kCn,

13



whose coordinates are evaluations of derivatives of sums of minors. Its size is
(
n
k

)
× (kns).

We write dφ(A) (and similar) to indicate a symbolic Jacobian, and dφC to indicate the

evaluation at a point parametrized by an s-tuple of matrices C.

Similarly, a parametrization φr for σr
s(Gr(k, n)) is given by restricting the source of φ

to a set where the s-tuple of matrices mutually share r row vectors. This restricted source is

(Cr×n)× (C(k−r)×n)×s,

where the first factor is the shared rows. So the Jacobian dφr has size
(
n
k

)
× (rn+(k− r)ns).

Focus on the case s = 2 for the moment, the case of general s is similar. Given two

symbolic matrices A and B in Ck×n with the first r rows of B the same as those of A (to

reflect the overlap in their row spaces) we can represent the structure of the sum of the

Jacobians of their Plücker images. So dφ(A + B) = dφ(A) + dφ(B). Let A = (aij) with

0 ≤ i ≤ k − 1, 0 ≤ j ≤ n − 1 and B = (bij), with 0 ≤ i ≤ k − r − 1, 0 ≤ j ≤ n − 1. Let

d =
(
n
k

)
and AI represent the maximal minor of A with columns I and order the multi-indices

I lexicographically and re-name them m1, . . . ,md. The Jacobians of the Plücker maps of A

and B are the following.

dφ(A) =


∂Am1

∂a00
· · · ∂Amd

∂a00
...

. . .
...

∂Am1

∂a(k−1)(n−1)

· · · ∂Amd

∂a(k−1)(n−1)



dφ(B) =


∂Bm1

∂a00
· · · ∂Bm1

∂a(r−1)(n−1)

∂Bm1

∂b00
. . .

∂Bm1

∂b(k−r−1)(n−1)

...
. . .

...
...

. . .
...

∂Bmd

∂a00
· · · ∂Bmd

∂a(r−1)(n−1)

∂Bmd

∂b00
. . .

∂Bmd

∂b(k−r−1)(n−1)



⊤
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Therefore, dφ(A) + dφ(B) =


∂Am1

∂a00
+

∂Bm1

∂a00
· · · ∂Am1

∂a(r−1)(n−1)

+
∂Bm1

∂a(r−1)(n−1)

∂Am1

∂a(r−1)(n−1)+1

· · · ∂Am1

∂a(k−1)(n−1)

∂Bm1

∂b00
· · · ∂Bm1

∂b(k−r−1)(n−1)

...
. . .

...
...

. . .
...

...
. . .

...

∂Amd

∂a00
+

∂Bmd

∂a00
· · · ∂Amd

∂a(r−1)(n−1)

+
∂Bmd

∂a(r−1)(n−1)

∂Amd

∂a(r−1)(n−1)+1

· · · ∂Amd

∂a(k−1)(n−1)

∂Bmd

∂b00
· · · ∂Bmd

∂b(k−r−1)(n−1)



⊤

. (2.7)

We use this block structure to make our computations more efficient.

We generate a collection C = (C1, . . . , Cs) of random matrices Ci ∈ Ck×n with the

appropriate overlap of their row spaces. Via Terracini’s Lemma the Jacobian dφC is the sum

of the differentials of the Plücker maps, dφC(Ai). The rank of the resulting matrix is equal

to the dimension of that restricted chordal variety (as long as the initial choice of C was

sufficiently general, which it will be with probability 1).

2.2.2 Computing the dimension of secants in M2

A naive implementation to compute the dimension of a secant variety of the Grassman-

nian in M2 is given below:

testnk = (n,k) -> (

R = QQ[a_(0,0)..a_(k-1,n-1),b_(0,0)..b_(k-1,n-1)];

A = transpose genericMatrix(R, a_(0,0), n,k);

B = transpose genericMatrix(R, b_(0,0), n,k);

fun = matrix{apply(subsets(n,k), s-> det A_s + det B_s )};

jac = diff(transpose basis(1, R), fun);

val = map(QQ,R, random(QQ^1,QQ^(dim R)));

rank val jac

)
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The first 3 lines define the source variables (ring) and matrices. It then defines the

mapping, fun, and differentiates with respect to the column vector of variables to calculate

the Jacobian as a matrix. Note M2 also has a command for Jacobian.

This gives us a set of polynomials which we can evaluate and then find the rank of the

corresponding numerical matrix. Note that in this case with negligible computational time

we see that the rank is 26, which is indeed the dimension of the cone over the secant of the

Grassmannian σ2(Gr(3, 7)).

One can modify the procedure as follows to handle the restricted secant case:

n = 7; k=3; r=1;

R = QQ[a_(0,0)..a_(k-1,n-1),b_(0,0)..b_(k-r-1,n-1)];

A = transpose genericMatrix(R, a_(0,0), n,k);

B = A^{0..r-1}||transpose genericMatrix(R, b_(0,0), n,k-r);

Note there are fewer variables needed because of the overlap, and we force the matrices

to share an r dimensional overlap (the first r rows). The exact same functions as before

compute the Jacobian and its rank. For example, in the case of k = 3, n = 7, r = 1 we find

the dimension of the cone over σ1
2(Gr(3, 7)) is 20. We tested this straightforward calculation

for r = 1, 2 and k, n = 2, . . . , 10, as well as for s = 3, r = 1, k, n = 2, . . . , 10.

2.2.3 Computational efficiency

The above naive implementation for calculating the dimension of the restricted chordal

variety is not efficient enough to handle larger computations. There is a trade-off of easy-

to-implement formulas that ignore redundancy versus more careful implementation that is

aware of these redundancies. In addition, we should pay attention to the order of operations

for evaluation, in order to limit the size of intermediate computations.

In the naive implementation we take s symbolic matrices with the required r-dimensional

overlap, and for each of those matrices determine the symbolic Jacobian, and then evaluate
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at a random point. However, the corresponding computation of differentials of minors is very

inefficient for even very small cases. For example, a case as small as s = 2,r = 1,k = 8,n = 10

has Jacobian consisting of more than 100, 000 total terms and takes at least 20 minutes on a

local system to evaluate. This inefficiency can be avoided noting redundancies from the fact

that the differential of a minor is a linear combination of smaller minors and representing

these entries as unevaluated determinants, or subfunctions, (rather than sums of monomials).

This point is illustrated by the following. Suppose A is a matrix of variables, and φ is

the determinant function. Compute the Jacobian of φ in this case. We don’t need to expand

a determinant and then take derivatives in order to find an expression for the derivative

∂ detA
∂aij

. Instead use Laplace expansion on the i-th row,

det(A) =
n∑

j=1

aijCij =⇒ ∂ det(A)

∂aij
= Cij

where Cij is the cofactor corresponding to the entry, which does not use the variable aij.

Now we can treat Cij as an unevaluated subfunction. For sums of determinants this same

general principle can be applied. Every entry of equation 2.7 has this format.

Another efficiency consideration is order of operations, particularly evaluation and minor

determinants. Generally, it is better to compute the determinant of a numerical matrix

instead of evaluating it determinant at a point.

Return to our example. The coordinate functions are (sums of) minors, and hence

their partial derivatives are also (sums of) minors. Realizing this allows us to define the

Jacobian with subfunctions that evaluate these minors rather than compute the minors as

derivatives. Computing a vector of minors at a point allows one to make use of reductions

like Gaussian elimination which speed the computation of determinants greatly (on the order

of n3 operations rather than n!).
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To implement this idea, we wrote functions (essentially linear combinations of determi-

nants) to populate the entries of the Jacobian, instead of relying on functions from M2 like

diff or jacobian. To replace our use of diff we explicitly populated the Jacobian matrix

utilizing appropriate subfunctions (cofactors) depending on the row and column labels. The

Jacobian has column labels representing differentiation with respect to variables and row

labels representing maximal minors.

Specifically, we populate this matrix utilizing these rules: in row mi and column xij we

put a 0 if maximal minor Ami
does not contain the variable xij, or we put the (numerical)

determinant of the Ami
cofactor. This procedure, for each of the s matrices, defines the

Jacobian with respect to the collection of variables defined only by that individual matrix

and not the variables defined by every one of the s matrices. This directly produces the

block structure (seen at (2.7)) of the Jacobian. Then we add the numerical Jacobians of

each of the matrices together and calculate the rank.

Here is an implementation of this strategy as a function that eats a matrix M and spits

out the column of the Jacobian of the Plücker map at M corresponding to the differential

with respect to variable (i, j) for M .

par = (j, s) -> (

c=0;

for i to (length(s) -1) do(

if j ==s_i then return i

else continue;);

return c);

The function par determines the sign of the cofactor. We loop over the subsets representing

the maximal minors. The if-then statement determines whether or not the given minor

contains the variable at (i, j) and sends it to 0 if it doesn’t otherwise it evaluates the necessary
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numerical cofactor. We compute the full numerical Jacobian by using the function dM to

populate the relevant non-zero columns.

t = set(0..k-1);

dM = (i,j,M)->apply(subsets(n,k),s->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*

det(submatrix(M,toList(t-set{i}),toList(s-set{j}))));

Remark 2.2.1. With these changes we notice the following differences in speed (on a laptop)

for computing the dimension of σ1
2(Gr(8, 10)): after 20 minutes we force the code for the

naive implementation to end with no answer, while the new code calculated the dimension

in .09 seconds.

2.3 Dimensions of 1-Restricted Chordal Varieties

The main tool used to calculate the dimension of the secant variety is:

Lemma 2.3.1 (Terracini[33]). Suppose X ⊂ PW is an algebraic variety and suppose [x1], . . . , [xs]

are smooth general points of X such that [x1 + · · ·+ xs] is a smooth general point of σs(X).

Then

T̂x1+···+xsσs(X) =
〈
T̂x1X, . . . T̂xsX

〉
.

There is a one-to-one correspondence between nonzero k-vectors eI := ei1 ∧ei2 ∧· · ·∧eik

and square-free monomials ei1 . . . eik , so we often omit the ∧ symbols. For shorthand, we

write T̂i1,...,ik := ̂Tei1 ,...,eik
Gr(k, V ).

2.3.1 The case of 2-planes

Asking for too much overlap causes collapsing, such as the following.
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Proposition 2.3.2. Suppose r ≥ k − 1 and dim(V ) = n ≥ k. Then,

σr
s(Gr(k, n)) = Gr(k, n). (2.8)

Proof. When r ≥ k then the proof is trivial. Now consider the case r = k − 1. An open

subset of points in the cone ̂σk−1
s (Gr(k, V )) can be written as

v1 · · · vk + v1 · · · vk−1vk+1 + · · ·+ v1 · · · vk−1vk+s−1,

for vi ∈ V . This expression factors as

v1 · · · vk−1vk+1(vk + · · · vk+s−1),

which is clearly an element of ̂Gr(k, V ). So, the result follows.

2.3.2 The case of 3-planes

The first non-trivial case of restricted secant varieties is that of the 1-restricted chordal

variety of Gr(3, V ), with dim(V ) ≥ 5.

Proposition 2.3.3. Consider X = Gr(3, V ) with dim(V ) = n ≥ 5. Then the following hold:

1. T̂e1e2e3+e1e4e5σ
1
2(X) = V · {e2e3 + e4e5, e1e2, e1e3, e1e4, e1e5},

2. T̂e1e2e3+e4e5e6σ2(X) = T̂e1e2e3+e1e4e5σ
1
2(X)⊕ {eie2e3 − eie4e5 | i ≥ 6}\(T̂123 ∩ T̂145),

3. and dim(σ1
2(X)) = 5n− 16 and σ1

2(X) has codimension n− 1 in σ2(X).

Remark 2.3.4. Note that T̂123∩T̂145 = e1 ·{e3e4, e2e4, e3e5, e2e5} = C4 and that dim(σ1
2(X)) =

5n− 16 = dim(σ2(X))− 4− (n− 5), where the “4” in the right-hand side signifies an extra

intersection. It is also notable that the monomials in (1) correspond to the triangles in a

square triangulated by adding a central point and all edges to that point.
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Proof. We mimic how one would prove Terracini’s lemma. First we recall how to compute

the cone over the tangent space to the Grassmannian. Use Def. 2.1.1 and construct a curve

γ(t) = e1(t)e2(t)e3(t) such that ei(0) = ei and let e′i denote e′i(0), for 1 ≤ i ≤ 3. Then

γ(t)′|t=0 = e′1e2e3 + e1e
′
2e3 + e1e2e

′
3.

Since the vectors e′i are arbitrary in V ,

T̂123 = V · {e1e2, e1e3, e2e3} ∼= {e1e2e3} ⊕ (V/{e1, e2, e3}) · {e1e2, e1e3, e2e3} ∼= C(n−3)3+1,

which agrees with the description given in [14, p 638]. The spaces T̂145 and T̂456 are similarly

defined. Now let γ(t) = e1(t)e2(t)e3(t)+ e1(t)e4(t)e5(t) = e1(t)(e2(t)e3(t)+ e4(t)e5(t)). Then

γ(t)′|t=0 = e′1(e2e3 + e4e5) + e1e
′
2e3 + e1e2e

′
3 + e1e

′
4e5 + e1e4e

′
5,

with ei(0) = ei and e′i(0) = e′i for 1 ≤ i ≤ 5. Since e′i are arbitrary in V , we arrive at (1).

For (2), note that by a similar calculation we have

T̂e1e2e3+e4e5e6σ2(X) = V · {e1e2, e1e3, e2e3, e4e5, e4e6, e5e6}.

Compare the tangent spaces T̂e1e2e3+e1e4e5σ
1
2(X) and T̂e1e2e3+e4e5e6σ2(X). The required overlap

on σ1
2(X) forces elements of the form {eie2e3 − eie4e5 | i ≥ 6} to be excluded. Therefore,

T̂e1e2e3+e4e5e6σ2(X) = T̂e1e2e3+e1e4e5σ
1
2(X)⊕ {eie2e3 − eie4e5 | i ≥ 6}.

Now we prove (3). In the case n = 5, one shows that a general point on σ2(Gr(3, 5))

can be written (after a possible change of basis) as [e1e2e3+ e1e4e5], which is in σ1
2(Gr(3, 5)),

hence σ2(Gr(3, 5)) = σ1
2(Gr(3, 5)).
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For n ≥ 6, a general point of σ2(X) is (up to a change of basis) e1e2e3+e4e5e6. Therefore,

we obtain orbit stability, and by Proposition 2.1.6 we get the dimension count 6k − 17.

So, by Terracini’s lemma and Grassmann’s formula

T̂e1e2e3+e4e5e6σ2(X) = T̂123 + T̂456 = {T̂123 ∪ T̂456} − {T̂123 ∩ T̂456} = {T̂123 ∪ T̂456}.

Now compare the two tangent spaces, and notice that

T̂e1e2e3+e4e5e6σ2(X) = T̂e1e2e3+e1e4e5σ
1
2(X)⊕ {eie2e3 − eie4e5 | i ≥ 6}

= T̂123 ⊕ T̂456 = (T̂123 + T̂145)⊕ {eie2e3 − eie4e5 | i ≥ 6}

= T̂123 ⊕ T̂456 = ((T̂123 ∪ T̂145)− (T̂123 ∩ (T̂145)))⊕ {eie2e3 − eie4e5 | i ≥ 6}. (2.9)

So the formula for (3) follows by noting that the “−4” comes from (1) and the “−(n− 5)”

comes from the complement on the right hand side of (2.9).

Examples like these and computations done in M2 led to the generalizations in Sec-

tion 2.4.

2.4 Dimensions for r-restricted secant varieties

Recall for varieties X, Y ⊂ PV the abstract join variety is

J(X, Y ) = {([x], [y], [p]) | p ∈ span{x, y}} ⊂ PV × PV × PV,

where the overline denotes Zariski closure. The abstract s-secant variety of X is denoted

Σs(X) ⊂ (X)×s × PV and can be constructed inductively as the s-fold join of X with itself:

Σs(X) = {([x1], [x2], . . . , [xs], [p]) | p ∈ span{x1, . . . , xs}} ⊂ PV ×s × PV.
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The embedded s-secant variety is the projection to the last factor, denoted σs(X) ⊂ PV . The

virtual dimension of the s-secant variety is the dimension of the abstract s-secant variety:

v.dim(σs(X)) = dim(Σs(X)) = s · dim(X) + s− 1.

The expected dimension of σs(X) is

exp . dim(σs(X)) = min{dim(PV ), dim(Σs(X))} = min{dim(PV ), s dim(X) + s− 1}.

Similarly, the abstract r-restricted s-secant variety is the incidence variety

I ⊂ Gr(r, V )×Gr(k − r, V )×s × P
∧kV,

defined by

I := {(E,F1, . . . , Fs, [z]) | z ∈ span{Ê ∧ F̂1, . . . , Ê ∧ F̂s}}.

This incidence variety is natural as it mimics the way one might choose a point in σr
s(Gr(k, n)).

That is, select an r-plane for the overlap, then select the s (k− r)-planes in the complement.

Finally, select the (s− 1) points needed to define the secant variety. However, what we say

is “expected” should change based on how many k-planes we are trying to fit into a vector

space V with an r-dimensional overlap, and we handle this in several cases.

As the restricted secant variety depends on the intersection of s linear spaces, Grass-

mann’s formula calculates the size of the intersection of exactly two vector spaces. We apply

this to the case of the restricted chordal variety below, where let E ∈ Gr(r, V ) and V/E to

respectively denote the r-dimensional space and its quotient.

Remark 2.4.1. Recall that the set of skew-symmetric matrices of rank ≤ r corresponds to

the secant variety σr(Gr(2, V )), which is always defective.
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Proposition 2.4.2. Let n = k + 2 and r = max(r, 2k − n). Then,

exp. dim(σr
2(Gr(k, n))) = min

{(
n

k

)
− 1, r(n− r) + 2((k − r)(n− k)) + 1

}
,

v. dim(σr
2(Gr(k, n))) = min

{(
n

k

)
− 1, r(n− r) + 2((k − r)(n− k))− 3

}
.

Further σr+1
2 (Gr(k, n))) = Gr(k, n).

Proof. Let n = k + 2. This case handles spaces that have greater than a one-dimensional

overlap (2k−(k+2) = k−2). The corresponding incidence variety is composed of a secant of

Grassmannian of lines σ2(Gr(2, V )), which are known to be defective. Redefine, if necessary,

r := max(r, 2k − n). An isomorphic incidence variety to the one given in the proposition

above has the form

I ⊂ Gr(r, V )×Gr(k − r, V/E)×2 × P
∧kV.

Let N =
(
n
k

)
− 1. The expected dimension is

exp. dim(σr
2(Gr(k, V ))) :=min{dim(I), N}

=min{r(n− r) + (k − r)(n− (k − r)) + 1, N}.
(2.10)

Consider another representation of the same restricted chordal variety in the form

I ⊂ Gr(r, V )× σ2(Gr(k − r, n− (k − r))).

All secant varieties of lines are defective [14]. Therefore, as these restricted chordal

varieties are composed of a Grassmannian and a point in P
∧kV which have full dimension and

one piece that is defective, namely the secant variety of lines, the restricted chordal variety is

defective. Then, by direct calculation the actual dimension is the expected dimension minus

one copy of Gr(k − r, n− (k − r)).
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Example 2.4.3. Consider σ1
2(Gr(6, 8)). By Grassmann’s formula any pair of 6-dimensional

subspaces of an 8-dimensional space has at least a 4-dimensional intersection. Therefore

σi
2(Gr(6, 8)) with 1 ≤ i ≤ 4 are all equal. Those varieties have dimension 21 but from the

incidence description the expected dimension would be 16+(4+4+1) = 25. This is exactly

the known defect for σs(Gr(2, V ) which is 2s(s− 1) or 4 when s = 2 [14].

Proposition 2.4.4. Let k = r + 2. Then, σr
2(Gr(k, n)) is defective, with defect 2s(s− 1).

Proof. Let k = r+2. Then, σr
2(Gr(k, n)) is defective. Here the removal of the r-dimensional

overlap leaves σ2(Gr(k − r, V/E)) and k − r = 2 meaning it is also a secant variety of a

Grassmannian of lines which is known to be defective. Construct the incidence variety as

follows:

I ⊂ Gr(r, V )× σ2(Gr(k − r, V/E)).

The incidence variety for this restricted chordal variety is also composed of a secant variety

of lines which we know to be defective. The expected and virtual dimension counts are then

exactly the same as 2.4.2, however σr+1
2 (Gr(k, n))) ̸= Gr(k, n).

Proposition 2.4.5. Suppose 2k − 1 ≤ n ≤ k + 2 and r = max(r, 2k − n). Then the virtual

and expected dimensions for σr
2(Gr(k, n)) are:

v. dim(σr
2(Gr(k, V ))) := dim(I) = r(n− r) + 2(k − r)(n− k) + 1,

and

exp. dim(σr
2(Gr(k, V ))) = min

{
v. dim(σr

2(Gr(k, V ))),

(
n

k

)
− 1

}
.

Proof. When n ≥ 2k − 1, count parameters in the following manner. First, choose E ∈

Gr(r, V ), then choose F1, F2 ∈ Gr(k − r, V/E), and finally z on the line {Ê ∧ F̂1, Ê ∧ F̂2}.

This gives the dimension counts listed in the proposition.
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The r-restricted chordal variety may also be defined as the following orbit closure

σr
2(Gr(k, V )) := GL(V ).[e1e2 . . . er(er+1 . . . ek + ek+1 . . . e2k−r)],

which is equivalent to Def. 2.1.2. The dimension of σr
2(Gr(k, V )) is the dimension of the

tangent space at a general point (i.e., on the orbit).

Remark 2.4.6. We also have a nice description of the tangent space of the restricted chordal

variety using I, that is it is the image of the tangent space to I under the projection:

T̂E Gr(r, V )× (T̂AGr(k − r, V ) + T̂B Gr(k − r, V ))

π

,,

⊂
∧rV ×

∧k−rV ⊂
∧rV ⊗

∧k−rV

∧kV

It turns out that restricted secant varieties are birational to a fiber bundle, which can

be used to understand their dimension. It may be possible to further exploit this connection

like what was done in [25], which applied Weyman’s Geometric Technique to a similar partial

desingularization to obtain generators of the ideal.

Theorem 2.4.7. Let dim(V ) = n and r, s,≥ 0 and 0 ≤ k ≤ n. Then the restricted secant

variety σr
s(Gr(k, V )) is birationally isomorphic to the fiber bundle, denoted Ξ, with base

Gr(r, V ) and whose fiber over a point E ∈ Gr(r, V ) is σs(Gr(k − r, V/E)).

Proof. Let Ξ denote the fiber bundle in the statement of the theorem. Recall the tautological

sequence of bundles over the Grassmannian Gr(r, V ):

0 // S // V // Q // 0

where over a point E ∈ Gr(r, V ) the fiber of the subspace bundle S is E, the fiber of the

trivial bundle V is V and the fiber of Q is V/E. Applying the Schur functor
∧k−r we obtain
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a vector bundle: ∧k−rQ

��
Gr(r, V )

whose fiber over E is
∧k−r(V/E). In each fiber we have (a copy of) σs(Gr(k− r, V/E)). We

depict this in the following diagram.

σs(Gr(k − r, V/E)) �
� //

((

P
∧k−rV/E �

� // P
∧k−rQ

��
E ∈ Gr(r, V )

The total space of the fiber bundle Ξ consists of pairs (E, [t]) with [t] ∈ σs(Gr(k− r, V/E)),

and on an open subset we can assume that t has rank at most k (not just border rank

k). Select such a pair (E, [t]). For E ∈ Gr(r, V ) ⊂ P
∧rV we write E = [e1 ∧ · · · ∧ er] for

independent elements ei ∈ V . Elements in an open subset of σs(Gr(k − r, V/E)) are of the

form [t] = [t(1) + · · ·+ t(k)], with [t(i)] = [a
(i)
1 ∧ · · · ∧ a

(i)
k−r] ∈ Gr(k − r, V/E) for each i.

Define a rational map Φ: Ξ 99K σr
s Gr(k, V ) via

Φ(E, [t]) = [e1 ∧ · · · ∧ er ∧ t]

on the open subset of points (E, [t]) in Ξ such that e1∧· · ·∧er∧t is non-zero and rank t ≤ k−r.

The image is indeed in σr
s(Gr(k, V )) since the collection (Ê ∧ t(1), . . . , Ê ∧ t(s)) is a set

of forms representing k-planes with (at least) an r-dimensional intersection. This mapping

is dominant because an open subset of points of σr
s Gr(k, V ) have a representation as [Ê ∧ t].

Now we describe a rational map Ψ: σr
s(Gr(k, V )) 99K Ξ. Choose a basis {v1, . . . , vn} of

V and volume form ΩV := v1 ∧ · · · ∧ vn ∈
∧nV . This induces isomorphisms

∧jV →
∧n−jV ∗

via contraction (Hodge star) with ΩV . This mapping is graded in the following sense.
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Lemma 2.4.8. Suppose A,B are respectively vector spaces of dimensions a, b, and let A⊕B

denote their external direct sum. Let α ∈
∧iA and β ∈

∧jB. Then α ∧ β ∈
∧i+j(A ⊕ B).

Moreover,

ΩA⊕B(α ∧ β) = (−1)i+jΩA(α) ∧ ΩB(β),

in
∧a−iA∗ ⊗

∧b−jB∗ ⊂
∧a+b−(i+j)(A⊕B)∗.

Proof. Since the mappings ΩA⊕B,ΩA,ΩB are all linear, it suffices to prove the statement on

rank-one elements, α = a1 ∧ · · · ∧ ai and β = b1 ∧ · · · ∧ bj. We may choose an adapted basis

{a1, . . . , aa, b1, . . . , bb} of A⊕B so that the first a vectors come from A and the next b vectors

come from B. Moreover, we can select the first i vectors from the terms of α, and extend to

a basis of A to obtain the next a− i vectors. Similarly, for the last b be choose a basis of B

starting from the terms of β. We also choose a dual basis {a1 · · · aa, b1 · · · bb} of (A ⊕ B)∗.

Now apply the contraction operator to α ∧ β = a1 ∧ · · · ∧ ai ∧ b1 ∧ · · · ∧ bj:

ΩA⊕B(α ∧ β) = (−1)i+j × a1 ∧ · · · ∧ aa−i ∧ b1 ∧ · · · ∧ bb−j.

where (−1)i+j defines the sign of the permutation that passes the ai’s through the bj’s to

get it in the form a1 ∧ · · · ∧ aa−i ∧ b1 ∧ · · · ∧ bb−j. Then, as ΩA(α) = a1 ∧ · · · ∧ aa−i and

ΩB(β) = b1 ∧ · · · ∧ bb−j, substituting into the right-hand side yields:

ΩA⊕B(α ∧ β) = (−1)i+jΩA(α) ∧ ΩB(β).

One checks that the result is independent of the choice of bases of A and B.

Now let [w] ∈ σr
s(Gr(k, n)) be a general point, so that

w =
s∑

i=1

e
(i)
1 ∧ · · · ∧ e

(i)
k ,
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with Ei = [e
(i)
1 ∧· · ·∧e(i)k ] ∈ Gr(k, n) for each i, and with ∩iEi = E an r-dimensional subspace

of V . More explicitly, let π denote the projection from the abstract secant variety. General

points are selected from the complement of the following closed subset:

{π(E1, . . . , Es, [w]) | rank(Ei) < k for some i or dim(∩iEi) < r}.

We wish to find an expression (after a possible change of basis) like

w = e1 ∧ · · · ∧ er ∧ (a
(1)
1 ∧ · · · ∧ a

(1)
k−r) + · · ·+ e1 ∧ · · · ∧ er ∧ (a

(s)
1 ∧ · · · ∧ a

(s)
k−r),

which factors as

w = e1 ∧ · · · ∧ er ∧
(
a
(1)
1 ∧ · · · ∧ a

(1)
k−r + · · ·+ a

(s)
1 ∧ · · · ∧ a

(s)
k−r

)
,

and hence can be readily seen to be an element in
∧rE ⊗

∧k−rV/E. If we can do this, then

the mapping from such a point to Ξ will be clear.

Apply ΩV to this expression for w to obtain (via Lemma 2.4.8)

ΩV (w) = ΩE(e1 ∧ · · · ∧ er) · ΩV/E(
(
a
(1)
1 ∧ · · · ∧ a

(1)
k−r + · · ·+ a

(s)
1 ∧ · · · ∧ a

(s)
k−r

)
.

We can take the scalar factor ΩE(e1 ∧ · · · ∧ er) to be equal to 1 so that

ΩV (w) = ΩV/E

(
a
(1)
1 ∧ · · · ∧ a

(1)
k−r + · · ·+ a

(s)
1 ∧ · · · ∧ a

(s)
k−r

)
,

and by construction the summands in ΩV (w) live in
∧n−rV/E. Moreover,

[ΩV (w)] ∈ σs(Gr(n− r, V/E)).
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Note that ΩV (w) ∈
∧n−rV/E in particular. Consequently, one can find E from ΩV (w) as

the annihilator in the dual of the kernel of the 1-flattening defined for T ∈
∧n−rV ∗ as

FT : V →
∧n−r−1V ∗

applied to T = ΩV (w). Once E = kerFΩV (w) is found, one can find an expression for

[t] ∈ σk(Gr(n− k, V/E)) by applying the projection operator ΩV/E to ΩV (w).

This process gives a method for producing from [w] ∈ σr
s Gr(k, V ) a pair (E, [t]) ∈ Ξ.

In particular Ψ([w]) 7→ (E, [ΩV/E(ΩV (w))]), with E = kerFΩV (w). By construction the

composition of these two mappings is the identity on the open sets where they are defined.

The description of the restricted secant varieties suggests the following regarding the

minimal defining equations of the ideals of secants of restricted secant varieties, which was

studied in the case of usual secants by one of us [15].

Conjecture 2.4.9. Consider X = σr
s(Gr(k, n)) with parameters s, r, k, n so that X is non-

trivial. Then the ideal of X is generated by two types of polynomials:

1. polynomials inherited from the ideal of σs(Gr(k−r, n−r)), i.e. the polynomials coming

from the condition that Ω(w) ∈ σs(Gr(k − r, n− r)) for w ∈ σr
s(Gr(k, n));

2. polynomials coming from the (r+1)×(r+1) minors of the 1-flattening FT : V →
∧n−r−1

for T = Ω(w).

Some consequences of this birational isomorphism are the following.

Corollary 2.4.1. The restricted secant σr
s(Gr(k, n)) has the expected dimension if and only

if σs(Gr(k − r, n− r)) is not s-defective.

The BDdG conjecture [7, Conjecture 4.1] has the following implication.
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secant

variety

secant

defect

defective

restricted secant
reference

σs(Gr(2, n)) 2s(s− 1) σr
2(Gr(k, 2k − 2)) Prop. 2.4.2

for 2s ≤ n σr
s(Gr(2 + r, n)) Prop. 2.4.4

σ3(Gr(3, 7)) 1 σr
3(Gr(3 + r, 7 + r)) Thm. 2.4.7

σ3(Gr(4, 8)) 1 σr
3(Gr(4 + r, 8 + r)) Thm. 2.4.7

σ4(Gr(4, 8)) 4 σr
4(Gr(4 + r, 8 + r)) Thm. 2.4.7

σ4(Gr(3, 9)) 2 σr
4(Gr(3 + r, 9 + r)) Thm. 2.4.7

Table 2.1: The conjecturally complete list of defectivity for secants of Grassmannians [7,14]
and the consequences for restricted secants assuming r, s ≥ 0 and 0 ≤ k ≤ n.

Corollary 2.4.2. If [7, Conjecture 4.1] is true, then σr
s(Gr(k, V )) has no additional defect

other than the defect coming from (usual) secant varieties of Grassmannians, see Table 2.1.

Non-defectivity is known to hold in several cases listed below. Different authors use

different conventions on projective and affine dimensions, so we have translated the results

in the references to the conventions we use in this article.

Corollary 2.4.3. In each of the cases listed below and outside the defective cases listed in

Table 2.1 it is known that σs(Gr(k, n)) is not defective and hence for those values of k, n we

also have σr
s(Gr(k + r, n+ r)) is not defective for all r.

• [11] If n ≤ 15 and s ≤ 14.

• [11] If n > 15, k ≥ 7, and s ≤ max{111, n−k+3
3

}, and in this case σr
s(Gr(k + r, n+ r))

is not defective except for σk−2
s (Gr(k, n)).

• [11] If n > 15, 3 ≤ k ≤ 6, and any of the following

1. k = 3, s ≤ max{12, n
3
},

2. k = 4, s ≤ max{30, n−1
3
},

3. k = 5, s ≤ max{59, n−2
3
},

4. k = 6, s ≤ max{90, n−3
3
}.

• Asymptotically: s ≤
(
n−k
3

)
+ 1 [1], and s ≤

(
n
r

)⌊log2(k−1)⌋
, (better for k ≥ 5) [26].
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A conjecturally complete list (from [7]) of known defective secant varieties of Grass-

mannians can be found at Table 2.1. We can combine the considerations above with the

BDdG-Conjecture [2,7,11,26,27] to say that the defectivity of r-restricted higher order secant

varieties only depends on the usual notion of k-defectivity of secant of Grassmannians.

Corollary 2.4.2. If [7, Conjecture 4.1] is true, then σr
s(Gr(k, V )) has no additional defect

other than the defect coming from (usual) secant varieties of Grassmannians, see Table 2.1.

Proof. Let σr
s(Gr(k, V )) be the r-restricted s-secant variety and define the corresponding

incidence variety I ⊂ Gr(r, V ) × σs(Gr(k − r, V/E)). We showed in Theorem 2.4.7 that

the restricted secant is birational to this incidence variety, and its dimension is completely

determined by the dimension of the usual secant variety. Therefore, any defect must come

from σs(Gr(k − r, V/E)). The current list of known defective cases are exactly those in the

BDdG conjecture.

The following is the special case of Corollary 2.4.2 for r-restricted chordal variety.

Proposition 2.4.10. The projection from the incidence variety

I ⊂ Gr(r, V )× σ2(Gr(k − r, V/E)) → P(
∧kV ),

whose image is σr
2(Gr(k, V )), has finite fibers. Hence given the BDdG conjecture σr

2(Gr(k, V ))

has no additional defect other than the defect coming from (usual) secant varieties of Grass-

mannians. The only defective restricted chordal varieties of Grassmannians are when n =

k + 2 or when k − r = 2.

We confirmed this statement for those r-restricted chordal varieties composed of Gr(2, n)

for several examples in Macaulay2. We also calculated the dimension for several other known

cases. For example, σ1
3(Gr(4, 8)) which is composed of σ1

3(Gr(3, 7)) has dimension 40, however
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its expected dimension is 45 indicating it is in fact defective. We also performed similar checks

of other r-restricted chordal varieties composed of a defective secant variety.

2.5 Coding Theory

Let us recall several relevant coding theory definitions from [20]. Let F denote an

alphabet, which is a set of digits. A sequence of digits from F is called a codeword. The

length of a codeword is the number of digits in the codeword. The collection of codewords,

denoted C, is called a dictionary. A code of length n is a collection of codewords. A code is

called a binary code if F = {0, 1} =: F2. A code is transmitted by sending the digits of its

codewords in sequence across a channel. The Hamming distance between two codewords of

equal length u, v ∈ C, denoted d(u, v), is the number of places that u and v differ. For a

codeword u, the weight of u is defined as, w(u) = d(u, 0) where 0 corresponds to the 0 digit

in the given alphabet. Abo-Ottaviani-Peterson gave the following connection to geometry.

Theorem 2.5.1. [1, Theorem 4.1] Let A(n, 6, w) be the cardinality of the largest binary

code of length n, constant weight w, and Hamming distance between any two codewords at

least 6. If s ≤ A(n+ 1, 6, k + 1) then σs(Gr(k, n)) has the expected dimension.

A Grassmann code is a special case of a linear code. Let Fq denote the field with q

elements. Then, it is well-known that GrFq(k, n) contains P points where

P =
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
. (2.11)

To define the Grassmann code as a linear code first pick a Plücker representative of each

of the P points as a column vector in (Fq)
I for I =

(
n
k

)
and form an I × P matrix M (the

generator matrix) with these P vectors as columns. Grassmann codes (in the identifiable

case) correspond to sums of k-fold wedge products [8,28,31]. Vectors in the Plücker embed-

ding of Gr(k, n) are the codewords in a Grassmann code. So a general x ∈ σs(Gr(k, n)) can
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be thought of as an unordered collection of s codewords [16]. The codewords are uniquely

recoverable as long as Gr(k, n) is identifiable in rank s, which we expect is true for small s

[9, 12].

The Grassmannian distance for A,B ∈ Gr(k, n) is dG(A,B) = k − dim(A ∩ B). Note,

points of the restricted chordal variety σr
2(Gr(k, n)) are of the form [Â+ B̂], with dG(A,B) =

k − r.

A code corresponding to a point of σr
s(Gr(k, n)) (again assuming identifiability), consists

of a collection of s codewords with the restriction that (pairwise) codewords must have

distance k − r between them, and that the intersection is the same for all pairs. This leads

to a trade-off between redundancy and the capacity of the coding scheme. The restriction

limits the number of possible codewords available, corresponding to an increase in the amount

of information necessary to ensure accurate decoding. The max number of codewords in a

signal for a given coding scheme can be considered the capacity of the channel, which is,

in turn, found by determining the dimension of the variety (i.e. dim(σr
s(Gr(k, n))) and

dim(σs(Gr(k, n)))) corresponding to the coding scheme.

Section 2.4 provides a method involving the contraction operator to determine whether

a given point lies on a restricted chordal variety. The contraction determines the common

intersection and the remaining information could be computed separately by tensor decom-

position. Therefore, with an appropriate choice of collections of codewords on restricted

secants one could build extra information for decoding as redundancies in each codeword.

This redundancy could permit an error-correcting mechanism.

Theorem 2.4.7 says the following in terms of the coding theory. Codes for restricted

secants of Grassmannians can be thought of as Grassmann codes except that the codewords

are padded with an additional overlap. Therefore, [1, Theorem 4.1] says: Let A(n, 6, w) be

the cardinality of the largest binary code of length n, constant weight w, and distance 6. If

s ≤ A(n+ 1, 6, k + 1) then σr
s(Gr(k + r, n+ r)) has the expected dimension.
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We end this section with an extended example.

Example 2.5.2. Consider binary codes in the case of Gr(3,F6
2) ⊂ P

∧3F6
2. By (2.11) there

are 1, 395 points in Gr(3,F6
2). The corresponding linear code has a 20 × 1, 395 generator

matrix, M , whose columns are the Plücker coordinates of each of the 1, 395 points. Then,

one encodes a message b as the product Mb.

Special subsets of possible messages come from points of a given orbit (like the secant

or restricted secant, or tangent to the Grassmannian). For a variety X “the orbit” is the

set, denoted X◦, of points that are equivalent to the normal form on the respective variety

up to change of coordinates by SL6(F2). We are interested in the numbers of points in each

orbit.

For a pair of codewords x, y ∈ Gr(3,F6
2), construct the message b consisting of two

non-zero entries. This represents a code in σ2(Gr(3,F6
2)). Changing the codewords x, y ∈

Gr(3,F6
2) so that they share an r-dimensional overlap results in a message in σr

2(Gr(3,F6
2)).

Here we can completely describe the SL6(F2)-orbits in
∧3F6

2. To count the number

of points in an orbit of a finite matrix group we repeatedly apply random non-singular

matrices to the set of known points in the orbit until the number of unique elements in

the set stabilizes. This indicates that it is likely that all the points in that orbit have been

obtained. To see the code for this and an explanation see Appendix A.0.4 If the list of

orbits obtained this way fills out the entire ambient space we are ensured that no points

were missed. On the other hand, if there are missing points one can take the orbit of a point

not already on a known orbit, and compute its orbit. The results are listed in Table 2.2.

X◦ 0 Gr(3,F6
2)

◦ σ1
2(Gr(3,F6

2))
◦ τ(Gr(3,F6

2))
◦ σ2(Gr(3,F6

2))
◦ Z◦

#X◦ 1 1,395 54,684 468,720 357,120 166,656

Table 2.2: The orbits of
∧3F6

2 under the SL6(F2)-action.
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The classical orbit closures are linearly ordered: Gr(3,F6
2) ⊂ σ1

2 Gr(3,F6
2) ⊂ τ(Gr(3,F6

2)) ⊂

σ2(Gr(3,F6
2)) = P

∧3F6
2. We found precisely one new orbit, with normal form:

ξ = e1e2e4 + e0e3e4 + e0e2e5 + e0e3e5 + e1e3e5 = (e1e2 + e0e3)e4 + (e0e2 + (e0 + e1)e3)e5.

Taking a limit that sends e5 → 0 one sees that the closure of Z contains σ1
2 Gr(3, 6). Ex-

periments suggest that that Z is not contained in τ . Indeed, the Grassmann discriminant

[21, Ex. 6.1], the defining polynomial for the hypersurface τ(Gr(3,F6
2)), evaluates at ξ to

15 ̸≡ 0 mod 2, hence implying non-membership: τ , i.e. Z ̸⊂ τ(Gr(3,F6
2)).

We note a bijection between σ1
2(Gr(3,F6

2))
◦ and Gr(1,F6

2)
◦ × σ2(Gr(2,F5

2))
◦ = (F6

2 \ 0)×

P
∧2F5

2 \ Gr(2,F5
2)), which is the fiber bundle from Theorem 2.4.7. The number of points

of the latter is, using (2.11), (26 − 1) · (2(
5
2) − (25−1)(24−1)

22−1
) = 54, 684, which agrees with the

exhaustive count. Further, we have an identifiability over F2 for σ
1
2(Gr(3,F6

2))
◦, whose points

correspond uniquely to pairs of a non-zero vector in F6
2 and a full rank skew-symmetric 5×5

matrix over F2.
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Chapter 3

Graph Theoretic Intersection Structures and Related Problems

3.1 Tensors and Related Problems

Tensors are an important object of study not only in mathematics but in physics and

chemistry as well because representing information as a multi-dimensional array is necessary.

There are two common ways to define a tensor that will be listed below as sometimes it is

more convenient to use one definition in comparison to the other. For each definition, the

tensor product will be defined on 3 arbitrary vector spaces, and it will generalize. As the

tensor product is an associative operator, the tensor product without coordinates is the

vector space A ⊗ B ⊗ C. This is the F -linear span of a ⊗ b ⊗ c where a ∈ A, b ∈ B, c ∈ C.

With coordinates, let {c1, . . . , cn} be a basis of C and A and B be vector spaces. The tensor

product can be thought of in terms of a basis of A⊗B ⊗ C defined as:

{[ai ⊗ bj ⊗ ck | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p} ⊂ P
∧kV.

A first order tensor is a vector and a tensor of order 2 is a matrix. For an arbitrary

tensor, T , its’ rank is the minimum number r such that T can be written as the sum of r

rank one tensors. These rank one tensors are the building blocks and decomposing a tensor

is a hard and unsolved question in most cases.

One reason to define all of the relevant information about tensors and tensor rank is that

tensor rank corresponds to generic rank, which for a given projective variety X, corresponds

to the first r for which σr(X) fills the ambient space over C. Therefore, the question of

tensor decomposition is synonymous to studying secant varieties. Given a tensor space like
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Cn1×···nk , one might want to find the number of rank 1 tensors that fits in the sum of an

element in that space. This question can be asked in the most obvious sense where all

terms are required to be completely independent. But it also can be asked where the only

requirement is that all the terms must be identifiable. The restricted secant case falls under

this question. As shown in the restricted secant section, one has complete identifiability, at

least in the initial case of Gr(3,F6
2) and it might be expected in many others as well. This

happens because the contraction operator can separate the r-plane the restricted secants

share from the independent parts that are left.

3.2 Description of Defective Secants of Grassmannians

In an attempt to describe the entire list of defective secants of Grassmannians, the

first family of defective cases is the family of skew symmetric matrices that have the form

σ2(Gr(k, n)). Up to s = 15 there are only 4 other defective cases. Connecting these cases

to one another has been elusive, however a connection from σ3(Gr(3, 7)) to skew symmetric

matrices has been found utilizing the Schouten diagrams. Each Schouten diagram can be

thought of as graph G where the vertices are basis vectors of V , and the edges represent a

wedge product of two basis vectors they connect. Therefore, a side of 3 vertices and two

edges can be thought of as ei ∧ ej ∧ ek.

3.2.1 σ3(Gr(3, 7))

Let V be a vector space such that the dim(V ) = 7 and a corresponding basis be e1 . . . e7.

There is a one-to-one correspondence between nonzero k-vectors eI := ei1 ∧ ei2 ∧· · ·∧ eik and

square-free monomials ei1 . . . eik , so we often omit the ∧ symbols. The expected dimension

of σ3(Gr(3, 7)) is 34 with 33 being the actual dimension.

From the Schouten diagram of σ3(Gr(3, 7)), (see Figure 3.1) a general point in the variety

can be expressed as: e1e2e3+e3e4e5+e5e6e1+e2e6e7. However, this can be constructed in the
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•

• • •

• • •

Figure 3.1: A Schouten diagram corresponding to a point
e1 ∧ e2 ∧ e3 + e3 ∧ e4 ∧ e5 + e5 ∧ e6 ∧ e1 + e2 ∧ e6 ∧ e7

following manner. Let X = σ1
2(Gr(3, 7)), Y = Gr(1, 7), and Z = Gr(1, 7), where X ∈ P

∧3C7

and Y, Z ∈ P
∧1C7. Within the Schouten diagram, this corresponds to the outer “v” shape,

then the two single points left.

Take the incidence variety constructed as follows: I ⊂ (X × (Y × Z × P1)× P1) ×

P
∧3C7, defined by

I := {([x], ([y], [z], [p1]), [p2]), [p3] | p1 ∈ span{y, z}, p2 ∈ span{x, p1}, p3 ∈ span{p1, p2}}

Then, by taking the projection of π : I → P
∧3C7, the calculation of the dimension of

the fiber gives an upper bound on the dimension of the corresponding secant variety. Since

the expected dimensions of the varieties are dim(X) = 19, dim(Y ) = 6, and dim(Z) = 6,

the dimension count is:

dim(X + (Y + Z + 1) + 1 = 19 + (6 + 6 + 1) + 1 = 33

However, the expected dimension of σ3(Gr(3, 7)) was 34 and the upper bound found

here is 33, thus explaining the defectivity.
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3.2.2 Other defective cases

There are 3 other defective cases not included in the family of skew symmetric matrices.

However, since σ3(Gr(4, 8)) is defective and σ4(Gr(4, 8)) is not the entire ambient space it

must also be defective so there are really two cases that need to be studied in the same

way as σ3(Gr(3, 7)). At this point, utilizing M2 code and the list of normal forms found in

[22, 36], normal forms for σ3(Gr(4, 8)) and σ4(Gr(3, 9)) have been found. The normal forms

are respectively: e2345+e1347+e1567+e1268 and e123+e456+e789+e149+e157+e168+e247+e348.

The next steps are to factor these normal forms and define maps that contain pieces which

are skew-symmetric matrices.

3.3 Schouten Diagrams

Schouten graphs are used as a way to describe the orbits of GL6 acting on trivectors

of a 6-dimensional vector space. Call the generalization of these graphs Schouten diagrams

[1,19]. More specifically, for
∧kCn, a Schouten diagram is a discrete geometry on points with

labels from {1, . . . , n}, and lines each consisting of k points. One associates an expression of

a point of
∧kCn with a Schouten diagram D via a sum-product formula:

D 99K
∑

ℓ a line in D

∏
e∈ℓ

e,

where the product is the wedge product and the direction on the line is given by the following

rule: for ei, ej ∈ ℓ, ei leads to ej if i < j. It is clear that such a discrete set of objects,

Schouten diagrams, cannot be sufficient to enumerate all orbits of GLn acting on
∧kCn for

k ≥ 8. However, certain families of secants of Grassmannians are still interesting to study.
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Figure 3.2: A Schouten diagram corresponding to a point
e1 ∧ e2 ∧ e3 + e3 ∧ e4 ∧ e5 + e5 ∧ e6 ∧ e1

3.3.1 Cyclic Schouten Diagrams

In this note the focus is on the family of cyclic Schouten diagrams, and the algebraic

varieties associated to the orbits of their associated forms in
∧kCn. A cycle is a diagram that

has only one path and begins and ends at the same vertex. From this, define a cyclic secant

of Grassmannians in the following way:

Definition 3.3.1. Let dim(V ) ≥ sk − js. The cyclic s-secant variety of Gr(k, V ) is

σ
cj
s (Gr(k, V )) =

cl
{
[E1 + · · ·+ Es] | [Ei] ∈ Gr(k, V ), dim(

⋂s−1
i=1Ei ∩ Ei+1) = j and dim(Es ∩ E1) = j)

}
⊂ P

∧kV.

Theorem 3.3.2. Given s ≥ 4, k ≥ 4, n ≥ 12 the cyclic Secant of Grassmannian σ
cj
s (Gr(k, n))

is birationally isomorphic to σs(Gr(k − j, n)).

Proof. Suppose V is a vector space with basis {e1, . . . , en}. Let E1+E2+· · ·+Es be an general

element in (an open subset of) σc
s(Gr(k, n)). Then, up to change of coordinates assume that

the Ei are spanned by basis vectors such that ∀i, i+1 ∈ {1 · · · s}, dim(Ei∩Ei+1) = j as each

k-plane intersects the adjacent one at exactly j distinct points by construction. Now, define

the rational map γ : σ
cj
s (Gr(k, n)) 99K σs(Gr(k − j, n)) by

γ(E1 + E2 + · · ·+ Es) =
E1

E1 ∩ E2

+
E2

E2 ∩ E3

+
Es−1

Es−1 ∩ Es

+ · · · Es

Es ∩ E1

,
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where the quotient Ei

Ei∩Ei+1
is identified with the subspace (Ei ∩Ei+1)⋆Ei ⊂ Ei ⊂ V where ⋆

denotes contraction.

Then, mapping the basis vectors, σ(e1∧· · ·∧ek+ek−j+1∧· · ·∧e2k−j+· · ·+e(s−1)(k−j)+1 · · ·∧

e1 ∧ · · · ej) 7→ (e1 ∧ · · · ∧ ek−j + ek−j+1 ∧ · · · ∧ e2k−2j + · · ·+ e(s−1)(k−j)+1 ∧ · · · ∧ esk−sj). But

this is exactly an element in σs(Gr(k − j, n)).

For the other direction, up to a change of coordinates a general point in σs(Gr(k− j, n))

is of the form Ẽ1+Ẽ2+· · ·+Ẽs = e1∧· · ·∧ek−j+ek−j∧· · ·∧e2s−2j+· · ·+e(s−1)(k−j)+1 · · ·∧esk−sj.

Then, for each Ẽi select an l- plane, li, corresponding to a Gr(j, k−j) ∈ ẼI . Define a rational

map Φ: σs(Gr(k − j, n)) 99K σ
cj
s (Gr(k, n)) via

Φ(Ẽ1 + Ẽ2 + · · · Ẽs, (l1, l2, · · · ls)) = (Ẽ1 ∧ l2 + Ẽ2 ∧ l3 + · · · Ẽs ∧ l1).

Note that each ẼI ∧ lJ is now a k-plane that, by choice of the lj, is forced to intersect the

adjacent k-plane in a j-dimensional space. This new element must be in σ
cj
s (Gr(k, n)) and

the result follows.

Theorem 3.3.2 requires k > 3. If the theorem above were to hold then the expected map

would send σc
3(Gr(3, n)) 99K σ3(Gr(2, n)). Note that this is a defective secant of Grassman-

nians with defect 12. Calculating an expected dimension, including the defect, the formula

would be 6n − 22. This is incorrect because the formula is 6n − 18 matching [1] when

n = 7 for the dimension of the tangential variety τ(Gr(3, 7)). To explain this note that the

normal form of σc
3(Gr(3, n)) is (up to scale) e1e2e3 + e3e4e5 + e5e6e1. Following the map-

pings set up in Theorem 3.3.2, rewrite this normal form as e1(e2 + e6) + e3e4e5. However,

e1(e2+e6) ∈ σ1
2(Gr(2, n)). But σ1

2(Gr(2, n)) = Gr(2, n), so the two points collapse into a sin-

gle 2-plane. Therefore, the supposed normal form in σp
3(Gr(3, n)) really gives only 2 2-planes

after the collapse. But the rational map in the theorem sends s k-planes to s k − 1 planes.

So, the mapping does not apply. Taking this one step further, there is a conjectured known
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list of defective restricted secants of Grassmannians. When looking at the normal form of a

σs(Gr(k, n)) that has a more complicated intersection structure, if there exists some subset

of the k-planes that form a defective variety it gives a criterion for defectivity of the larger

variety.

This description and proof of the cyclic secant variety combined with the discussion on

defectivity of normal forms gives a second way to define restricted chordal varieties strictly

as a join of two different sized Grassmannians.

Theorem 3.3.3. Let σ1
2(Gr(k, n)) be a restricted chordal variety not given in Table 2.1.

Then, for (X, Y ) ∈ (
∧kCn,

∧k−1Cn.), take the Cartesian product (X×Y ) in
∧kCn×

∧k−1Cn.

By, Theorem 3.3.2 there exists a birational map from σ1
2(Gr(k, n)) 99K X × Y .

Proof. Let e1 · · · ek + e1ek+1 · · · e2k−1, up to relabeling, be a general point in σ1
2(Gr(k, n)).

By, Theorem 3.3.2 there exists a map that sends the point to e1 · · · ek + ek+1 · · · e2k−1. This

is in X × Y where e1 · · · ek ∈ Gr(k, n) = X and ek+1 · · · e2k−1 ∈ Gr(k − 1, n) = Y . For the

other direction, take e1 · · · ek ∈ Gr(k, n) and ek+1 · · · e2k−1 ∈ Gr(k − 1, n). Next, take the

Cartesian product to get e1 · · · ek + ek+1 · · · e2k−1. By, Theorem 3.3.2 there exists a map to

σ1
2(Gr(k, n)) sending the point to e1 · · · ek + e1ek+1 · · · e2k−1. This completes the proof.

This corollary allows for the derivation of the formula for dim(σc
3(Gr(3, n))). Suppose

the two varieties are X = σ1
2(Gr(3, n)) and Y = Gr(1, n− 2). Then, dim(X) = 5n− 16 and

dim(Y ) = n−3. Calculating the dimension of the join, dim(J(X, Y )) = 5n−16+n−3+1 =

6n− 18.

3.3.2 Schouten Diagrams that Form Paths

Within the language of graph theory, define a path to be a collection of lines, each

having the same number of points in the geometry, that are connected in sequence and no

lines are used more than once. As a result of that definition, every cycle has a path but
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• • •

•

• • •

Figure 3.3: A Schouten diagram corresponding to a point
e1 ∧ e2 ∧ e3 + e3 ∧ e4 ∧ e5 + e5 ∧ e6 ∧ e7

every path does not have a cycle. To turn a cycle into a path, simply remove the last edge.

Therefore, considering a collection of k-planes whose intersection structure forms a path

should be studied independently. To define this, remove one condition from the definition of

cyclic secants of Grassmannians.

Definition 3.3.4. Let dim(V ) ≥ sk−js. The path s-secant variety of Gr(k, V ) is σ
pj
s (Gr(k, V )) =

cl
{
[E1 + · · ·+ Es] | [Ei] ∈ Gr(k, V ), dim(

⋂s−1
i=1Ei ∩ Ei+1) = j)

}
⊂ P

∧kV.

For motivation, consider the singular locus of the 3rd secant, Sing(σ3(Gr(3, 7)), whose

Schouten diagram can be seen in [1], and below, and has normal form e1e2e3+e3e4e5+e5e6e7.

This, when viewed as a graph is a 1-path. A combination of the previous techniques

used and theorems proved allow us to say the following.

Theorem 3.3.5. Given s ≥ 2, k ≥ 3, n ≥ 3 the path geometric secant of Grassmannians

σ
pj
s (Gr(k, n)) is birationally isomorphic to J(σs−1(Gr(k − j, n)), Gr(k − j + 1, n)).

Proof. Since the given Grassmannians are of different sizes, given (U,W ) ∈ (σs−1(Gr(k −

j, n),Gr(k, n)) use the Plucker embedding to map it to
∧k−jV

⊕∧kV . Let e1 ∧ · · · ∧ ek +

ek−j ∧ e2k−j + · · · + e(s−1)(k−j)+1 · · · ∧ esk−sj represent a point on an s secant variety whose

Schouten diagram is represented by a path, up to a change of coordinates. Then, taking

the first (s − 1) k − j-planes, by the birational map in Theorem 3.3.2, this is birationally

isomorphic to σs−1(Gr(k − j, n)). This leaves a k − j + 1-plane. Next, take a point in the

span of the spaces found above. The result follows.
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Consider the following example from [1] as an example of counting the dimension in an-

other way. The dimension for Sing(σ3(Gr(3, 7))) is 30. This is also, σp1
3 (Gr(3, 7)). Calculating

the dimension

dim(σ2(Gr(2, 7)) + dim(Gr(3, 7)) + 1 = 17 + 12 + 1 = 30.

which is expected.
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Chapter 4

Future Works

Below are planned areas of future research.

A restricted Grassmann code is an extension of the Grassmann code. An obvious next

step is to fully flesh out the encoding and decoding scheme as well as understanding the ca-

pacity of such a code. With the use of the contraction operator, one can find the overlapping

r-dimensional space shared by the s k-dimensional linear spaces. Therefore, one potential

idea is to utilize the overlap as the extra information to send for error correction and then

with the contraction operator decode and remove it after it has been sent. A point of interest

still not fully understood is the ideal situation of when to use such a code, as the tradeoff is

not fully understand. A restricted Grassmann code by definition has reliably less information

it is able to send. Yet, by optimizing the code words chosen and the overlap longer messages

still have the possibility of being sent. Determining for what values of s, r, k, n σr
s(Gr(k, n))

is a more effective space to work in versus σs(Gr(k, n)) is an open question.

The research done up to this point shows a direct connection between restricted secant

varieties and secant varieties through the incidence variety. Every variety in turn can be

defined by a series of equations which forms an ideal. Determining the ideal for this space

and the syzygies associated with it is another area yet to be explored.

Terracini’s Lemma is a tool for computing dimensions of varieties constructed as joins

or secants by viewing their tangent spaces as sums of linear spaces. Linear spaces are

parameterized by the Grassmannian and can be evaluated with tools from linear algebra.

Therefore, this can lead to the development of an algorithm for testing defectivity as follows.

First, parameterize a variety as a set of linear spaces. Next, determine which Grassmannian
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or restricted chordal Grassmannian it corresponds to. If it is defective determine if that is

enough to say the initial variety is defective. This was done with the first known defective

Veronese varieties, and it worked. Another motivation from this same line of thinking is

attempting to prove the BDdG conjecture. Reminder, this says the expected list of defective

secants of Grassmannians should be exactly those they provided [1]. Yet, one attempt toward

a solution could be as follows. Start with the known defective cases. Construct the secant

variety of Grassmannians as an incidence variety composed of the restricted chordal variety

as these cases all have actual dimension less than the expected dimension. Then, from what

is known about the restricted secant varieties, if that restricted secant variety is defective

or it can further be decomposed into a defective secant variety then an algorithm exists.

Upon the existence of a concrete connection, this could reverse engineer another defectivity

or show that the list is complete.

The method of calculating the dimension of spaces with certain types of intersections can

be extended to other more complex intersections. A simple extension of the work currently

in progress involves r-restricted higher order secant varieties of Grassmannian’s. Results

have been generated for r = 1, s = 3, and k, n ≤ 10, and. Attempts to find the formula for

the virtual dimension in this case and others are in progress.

Our initial results focus on the collection of spaces that all had the same r-dimensional

subspace in common. However, suppose the slight change was made, so that for a collection

of three or more spaces pairwise they share an r-dimensional subspace. What could be said

about the dimension of those spaces? This is one specific example of a generalized problem.

Also, one approach that is currently being studied involves the known defective cases that

are not the skew symmetric matrices. The goal is to find a unifying feature that they all

share.

The underlying techniques used to develop this theorem are transmitted into any type of

study on defective varieties and dimensions. Given a variety, parameterize it and calculate a
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collection of test cases. Attempt, by incidence correspondence, to map the unknown variety

to one where the dimension is known. A simple first result is to find defective cases. Next,

if there are none, attempt to write a proof for the equality of the expected dimension and

actual dimension. Otherwise, work towards a proof of the entire list of defective cases or at

least conjecture one to start. One place to apply this process is Seg((Gr(k1, n1)×Gr(k2, n2).

This is the case when there is a product of Grassmannians.
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Chapter 5

Appendix

5.1 Naive Implementation for the cone over secant of Grassmannians

testnk = (n,k) -> (

R = QQ[a_(0,0)..a_(k-1,n-1),b_(0,0)..b_(k-1,n-1)];

A = transpose genericMatrix(R, a_(0,0), n,k);

B = transpose genericMatrix(R, b_(0,0), n,k);

fun = matrix{apply(subsets(n,k), s-> det A_s + det B_s )};

jac = diff(transpose basis(1, R), fun);

val = map(QQ,R, random(QQ^1,QQ^(dim R)));

rank val jac

5.1.1 Improved Computation for cone over restricted secant of Grassmannians

R=QQ[x]

M=random(QQ^8,QQ^10);

N= M^{0}||random(QQ^7,QQ^10);

ss = subsets(10,8);

t={0,1,2,3,4,5,6,7}

par = (j, s) -> (c=0; for i to (length (s) -1) do

( if j ==s_i then return i else continue;); return c);
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A=apply(ss,s->flatten apply(8,i->

apply(10,j->if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(M,toList(t-set{i}),toList(s-set{j}))))));

B=apply(ss,s->flatten apply(8,i->

apply(10,j->if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(N,toList(t-set{i}),toList(s-set{j}))))));

F=transpose matrix(A);

G= transpose matrix(B);

C=map(R^70,R^45,0);

D=F||C;

E=submatrix(G,{0..9},)||C||submatrix(G,{10..79},);

L=matrix(entries(D+E));

rank(L)

5.1.2 The dimension of the cone over cyclical secant of Grassmannians

R=QQ[x]

M=random(QQ^4,QQ^9);

N= M^{3}||random(QQ^3,QQ^9);

O= M^{0}||N^{3}||random(QQ^2,QQ^9);

ss = subsets(9,4);

t=deepSplice{0..3};

par = (j, s) -> (c=0; for i to (length (s) -1) do

( if j ==s_i then return i else continue;); return c);

A=apply(ss,s->flatten apply(4,i->

apply(9,j->if not member(j,s) then 0 else

(-1)^(par(j,s)+i)*det(submatrix(M,toList(t-set{i}),toList(s-set{j}))))));
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B=apply(ss,s->flatten apply(4,i->

apply(9,j->if not member(j,s) then 0 else

(-1)^(par(j,s)+i)*det(submatrix(N,toList(t-set{i}),toList(s-set{j}))))));

C=apply(ss,s->flatten apply(4,i->

apply(9,j->if not member(j,s) then 0 else

(-1)^(par(j,s)+i)*det(submatrix(O,toList(t-set{i}),toList(s-set{j}))))));

D=transpose matrix(A);

E= transpose matrix(B);

F=transpose matrix(C);

G=map(R^27,R^126,0);

H=map(R^18,R^126,0);

I=D||G||H;

J=G||E||H;

K=submatrix(F,{0..8},)||G||H||submatrix(F,{9..35,);

L=(I+J+K);

rank(T)

5.1.3 Classifying the orbits of
∧3F6

2 under the SL6(F2)-action

The code below gives the user one way to classify the orbits of
∧3F6

2 under the SL6(F2)-

action. It is very much a brute force approach to find everything in the orbits that are

already known and then from there determine what is left and see if it matches the number

of points in
∧3F6

2. The first section defines functions to calculate the Plucker coordinates,

and also maps for the tangential, restricted secant, and secant variety. The next block of

code generates the list of the 1395 matrices (points) in Gr(3,F2
6). It then takes pairs of those

points, finds the differential, adds them together and uses the rank of the resulting matrix

to store its’ Plucker coordinates in the list representing the orbit it lies in. After sorting
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these lists and combining them into one unique bigList the code has to find a representative

for the orbit, or potentially orbits, that are unaccounted for. To do this, we need to take a

random matrix of the right size, calculate its’ Plucker coordinates, and compare them to the

bigList. If it is already in the list we continue until we find something new. Once the new

element was found, calculating the number of elements in that orbit gave us all points that

were missing and completed the entire classification of the orbits in this specific case.

R = ZZ/2[e_0..e_5,SkewCommutative => true]

plucker = M -> sum(subsets(6,3), ss-> (det M_ss^{0,1,2})*product(ss, s-> e_s));

tanMap = M -> sum(subsets(6,3), ss-> (det M_ss^{0,1,2})*product(ss, s-> e_s)) +

sum(subsets(6,3), ss-> (det M_ss^{0,3,4})*product(ss, s-> e_s)) +

sum(subsets(6,3), ss-> (det M_ss^{1,3,5})*product(ss, s-> e_s));

rsMap = M -> sum(subsets(6,3), ss-> (det M_ss^{0,1,2})*product(ss, s-> e_s)) +

sum(subsets(6,3), ss-> (det M_ss^{0,3,4})*product(ss, s-> e_s));

sMap = M -> sum(subsets(6,3), ss-> (det M_ss^{0,1,2})*product(ss, s-> e_s)) +

sum(subsets(6,3), ss-> (det M_ss^{3,4,5})*product(ss, s-> e_s));

L = toList {0,0,0,0,0,0}..{1,1,1,1,1,1};

rowVecs = drop(L,1);

time rk3 = for xx in subsets(rowVecs,3) list

if rank(matrix xx) ==3 then sub(matrix xx,R) else continue;

grassMats = {};

grassPlucker = {};

time for xx in rk3 do ( tmpPl = plucker xx; if not member(tmpPl,grassPlucker) then(

grassMats = append(grassMats,xx);
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grassPlucker = append(grassPlucker, tmpPl);

));

#grassMats

grassPairs = for i to 1395 list

if grassPlucker#i !=0 then {sub(grassMats#i,ZZ/2),grassPlucker#i}

else continue;

#grassPairs

grassPairs#0#1

secant = {};

restrictedSecant = {};

tangential = {};

for AB in subsets(grassPairs, 2) do(

tmpA = AB#0#0;

tmpApl = AB#0#1;

tmpB = AB#1#0;

tmpBpl = AB#1#1;

tmpM = tmpA||tmpB;

tmpMpl = tmpApl + tmpBpl;

if rank tmpM == 5 then if not member(tmpMpl, restrictedSecant) then (

restrictedSecant = append(restrictedSecant, tmpMpl);

);

if rank tmpM == 6 then(

if not member(tmpMpl, secant) then (

secant = append(secant, tmpMpl);

);
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if not member(tanMap tmpM, tangential) then (

tangential = append(tangential, tanMap tmpM);

);

)

);

#restrictedSecant

#tangential

#secant

#grassPlucker

member(0, restrictedSecant)

member(0, tangential)

member(0, secant)

#restrictedSecant + #tangential + #secant + #grassPlucker

2^20

perms = permutations(6);

p2 = map(R, R, (basis(1, R))_(perms_2))

shuffle = f -> sub(f, apply(flatten entries basis(3,R), ee-> ee=> p2 ee))

g2 = p2 \ grassPlucker;

sort g2 == sort grassPlucker

sort p2 secant == sort secant

sort p2 restrictedSecant == sort restrictedSecant

perms = permutations(6);

time for perm in perms do (
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print(#tangential);

p2 = map(R, R, (basis(1, R))_(perm));

tan2 = p2 \ tangential;

tangential = unique ( tan2| tangential);

)

time for perm in perms do (

print(#secant);

p2 = map(R, R, (basis(1, R))_(perm));

sec2 = p2 \ secant;

secant = unique ( sec2| secant);

)

time for perm in perms do (

print(#restrictedSecant);

p2 = map(R, R, (basis(1, R))_(perm));

rsec2 = p2 \ restrictedSecant;

restarictedSecant = unique ( rsec2| restrictedSecant);

)

time bigList = sort(grassPlucker|restrictedSecant|tangential|secant);

#bigList

newList = {};

for i to 100 do (

M = random(R^9,R^6);
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pt = (plucker M^{0,1,2}) + (plucker M^{3,4,5}) + (plucker M^{6,7,8});

if not member(bigList,pt) then newList = unique append(newList, pt);

)

newList

5.1.4 Finding the Normal Forms of Defective Secants of Grassmannians

Calculating a normal form for each of the known defective secants of Grassmannians

allows the Schouten Diagram and the contraction operator to be used as tools to study those

cases for commonalities. One brute force approach that worked to find these normal forms

was to use the tables provided in [36] and [21] to check each normal form listed with the

appropriate dimension restrictions. Below, the Macaulay2 code checking the dimension of

the specific normal form for each defective case is provided.

FINAL CODE for Normal Form \sigma_3(Gr(3,7))

restart

R=QQ[x]

M=random(QQ^3,QQ^7);

N= M^{2}||random(QQ^2,QQ^7);

O= N^{2}||random(QQ^1,QQ^7)||M^{0};

P= M^{1}||O^{1}||random(QQ^1,QQ^7);

ss = subsets(7,3);

t=deepSplice{0..2};

par = (j, s) -> (c=0; for i to (length (s) -1) do

( if j ==s_i then return i else continue;); return c);

A=apply(ss,s->flatten apply(3,i->apply(7,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(M,toList(t-set{i}),toList(s-set{j}))))));
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AA=apply(ss,s->flatten apply(3,i->apply(7,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(N,toList(t-set{i}),toList(s-set{j}))))));

B=apply(ss,s->flatten apply(3,i->apply(7,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(O,toList(t-set{i}),toList(s-set{j}))))));

BB=apply(ss,s->flatten apply(3,i->apply(7,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(P,toList(t-set{i}),toList(s-set{j}))))));

D=transpose matrix(A);

DE=transpose matrix(AA);

E= transpose matrix(B);

EF=transpose matrix(BB);

G=map(R^14,R^35,0);

GG=map(R^21,R^35,0);

GGG=map(R^7,R^35,0);

GGGG=map(R^28,R^35,0);

H=D||GGGG;

I=G||DE||G;

II=submatrix(E,{14..20},)||GG||submatrix(E,{0..13},)||GGG;

J=GGG||submatrix(EF,{0..6},)||GG||submatrix(EF,{7..20},);

K=matrix(entries(H+I+II+J));

rank(K)
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FINAL CODE for Normal Form \sigma_4(Gr(3,9))

restart

R=QQ[x]

M=random(QQ^3,QQ^9);

N= M^{0}||random(QQ^2,QQ^9);

O= M^{0}||random(QQ^2,QQ^9);

P= random(QQ^1,QQ^9) ||M^{1}||N^{2};

PP=random(QQ^1,QQ^9)||M^{1}||O^{2};

MMM=M^{0}||P^{0}||random(QQ^1,QQ^9);

NNN=M^{1}||N^{1}||O^{1};

OOO=O^{2}||N^{2}||M^{2};

ss = subsets(9,3);

--t is list of row indices

t=deepSplice{0..2};

par = (j, s) -> (c=0; for i to (length (s) -1) do

( if j ==s_i then return i else continue;); return c);

A=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(M,toList(t-set{i}),toList(s-set{j}))))));

AA=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(N,toList(t-set{i}),toList(s-set{j}))))));

B=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(O,toList(t-set{i}),toList(s-set{j}))))));
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BB=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(P,toList(t-set{i}),toList(s-set{j}))))));

C=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(PP,toList(t-set{i}),toList(s-set{j}))))));

CCC=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(MMM,toList(t-set{i}),toList(s-set{j}))))));

CCCC=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(NNN,toList(t-set{i}),toList(s-set{j}))))));

CCCCC=apply(ss,s->flatten apply(3,i->apply(9,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(OOO,toList(t-set{i}),toList(s-set{j}))))));

D=transpose matrix(A);

DE=transpose matrix(AA);

E= transpose matrix(B);

EF=transpose matrix(BB);

F=transpose matrix(C);

FG=transpose matrix(CCC);

FFG=transpose matrix(CCCC);

FFGG=transpose matrix(CCCCC);

G=map(R^18,R^84,0);

GG=map(R^27,R^84,0);
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GGG=map(R^9,R^84,0);

GGGG=map(R^36,R^84,0);

H=submatrix(D,{0..8},)||G||submatrix(D,{9..17},)||GGGG||submatrix(D,{18..26},);

I=submatrix(DE,{0..8},)||GG||submatrix(DE,{9..17},)||GGG||submatrix(DE,{18..26},)||G;

II=submatrix(E,{0..8},)||GGGG||submatrix(E,{9..17},)||GGG||submatrix(E,{18..26},)||GGG;

J=GGG||submatrix(EF,{0..8},)||GGG||submatrix(EF,{9..17},)||G||submatrix(EF,{18..26},)||G;

JJ=G||submatrix(F,{0..17},)||GG||submatrix(F,{18..26},)||GGG;

KK=FG||GG||GG;

LL=GG||FFG||GG;

MM=GG||GG||FFGG;

K=matrix(entries(H+I+II+J+JJ+KK+LL+MM));

rank(K)

--FINAL CODE for Normal Form \sigma_3(Gr(4,8))

restart

R=QQ[x]

M=random(QQ^4,QQ^8);

N= random(QQ^1,QQ^8)||M^{1}||M^{2}||random(QQ^1,QQ^8);

O= N^{0}||M^{3}||random(QQ^1,QQ^8)||N^{3};

P= N^{0}||M^{0}||O^{2}||random(QQ^1,QQ^8);

ss = subsets(8,4);

t=deepSplice{0..3};

par = (j, s) -> (c=0; for i to (length (s) -1) do
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( if j ==s_i then return i else continue;); return c);

A=apply(ss,s->flatten apply(4,i->apply(8,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(M,toList(t-set{i}),toList(s-set{j}))))));

AA=apply(ss,s->flatten apply(4,i->apply(8,j->

if not member(j,s) then 0

else (-1)^(par(j,s)+i)*det(submatrix(N,toList(t-set{i}),toList(s-set{j}))))));

B=apply(ss,s->flatten apply(4,i->apply(8,j->

if not member(j,s) then 0 else

(-1)^(par(j,s)+i)*det(submatrix(O,toList(t-set{i}),toList(s-set{j}))))));

BB=apply(ss,s->flatten apply(4,i->apply(8,j->

if not member(j,s) then 0

else(-1)^(par(j,s)+i)*det(submatrix(P,toList(t-set{i}),toList(s-set{j}))))));

D=transpose matrix(A);

DE=transpose matrix(AA);

E= transpose matrix(B);

EF=transpose matrix(BB);

G=map(R^16,R^70,0);

GG=map(R^24,R^70,0);

GGG=map(R^8,R^70,0);

GGGG=map(R^32,R^70,0);

H=GGG||D||GG;

I=submatrix(DE,{0..7},)||GGG||submatrix(DE,{8..23},)||G||submatrix(DE,{24..31},)||GGG;
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II=submatrix(E,{0..7},)||GG||submatrix(E,{8..31},)||GGG;

J=submatrix(EF,{0..15},)||GG||submatrix(EF,{16..23},)||GGG||submatrix(EF,{24..31},);

K=matrix(entries(H+I+II+J));

rank(K)
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