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Abstract

As the power grids worldwide transition from fossil fuel-based power plants to an era

dominated by renewable energy sources (RESs), new operational challenges and uncertainties

emerge, particularly for Independent System Operators (ISOs) responsible for grid reliability.

The unpredictable nature of RESs introduces challenges in energy production, as evidenced

by effects like solar power surges and wind ramping effects. Stochastic modeling can effec-

tively address these challenges, aiming to optimize performance metrics such as expected value,

worst-case scenario, and risk. Therefore, the development of new models to handle these un-

certainties is necessary.

In power system operations, ISOs must ensure the operability and reliability of the system.

This is done by planning the energy generation schedule during the day-ahead market in a

process known as market clearing. ISOs guarantee a competitive interplay between energy

supply and demand in this process, resulting in an energy generator schedule and a competitive

market price. This is done by solving the Unit Commitment Problem (UCP), a mathematical

optimization problem that guarantees system operability and reliability at a minimal cost.

When planning the energy generation schedule, uncertainties such as demand, energy

production from RES, and contingencies must be considered. This is usually done using a

scenario-based approach, where realizations of uncertainties are generated from fitted probabil-

ity distributions to be incorporated into the UCP. Thus, the commitment schedule is generated,

such as minimizing the expected cost. However, the quality and complexity of solutions depend

on the number of scenarios. As uncertainty rises with increased RESs projects, energy gener-

ation becomes unpredictable, necessitating more scenarios for accurate cost approximation.

This, in turn, increases computational complexity, highlighting the limitations of the scenario

generation method. Therefore, it has become critical to devise new approaches to model this

problem in the face of such uncertainty.
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This dissertation provides a new methodology to model the Stochastic Unit Commitment

Problem (SUCP) that relies directly on the probability distribution of the random variables,

the so-called statistical SUCP. In Chapter 2, a dispatch cost function is derived considering a

two-stage approach where the commitment decisions are made in the first stage and remain

fixed during the planning horizon. In the second stage, the energy is dispatched based on the

commitment decisions of the first stage and the random variables. Then, the expected dispatch

cost is derived using the probability distribution of the random residual demand. Thus, an an-

alytical function of the expected dispatch cost is formulated. Since this function is nonlinear,

a piecewise linear approximation method is used to linearize the model. The breakpoints of

the piecewise linear approximation are determined by stability analysis. A sensitivity analysis

is performed to assess the behavior of the expected cost under different levels of hourly cor-

relations of the residual demand. Moreover, a reliability analysis assesses the Loss of Load

Probability of the resulting commitment schedule. In Chapter 3, another layer of realism is

included in the model by incorporating ramping constraints, ensuring a smooth transition in

power output levels from fuel-based generators. Since adding these constraints increases the

complexity of the model, different solving strategies are proposed to solve realistic instances

of the SUCP. Finally, in Chapter 4, a comparison is made between the proposed statistical

SUCP and the scenario-based SUCP to assess the computational complexity, optimality, and

stability of the solutions. The comparison is evaluated based on various power system sizes,

breakpoints, and scenarios, offering insightful knowledge about the benefits of each model.

This dissertation delivers valuable advancements for modeling the SUCP, adding another

perspective for ISOs and decision-makers when planning the day-ahead energy generation

schedule. The benefits of this research extend to further optimizing power grid operations,

reducing costs, and ensuring a reliable transition to renewable energy sources.
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Chapter 1

Introduction

In electric power systems, the decision-making process involves several challenges mainly as-

sociated with uncertain factors present during the planning horizons. In particular, decisions

must be made in advance for different planning horizons to provide households with electric

energy. These decisions can be categorized into four specific stages: long-term, medium-term,

short-term, and real-time [1]. During the long-term stage, critical investment and facility siz-

ing decisions are made. This process involves planning and determining the size and capacity

of power plants, photovoltaic facilities [2], wind farms [3], and battery storage systems [4].

These strategic decisions lay the foundation of a resilient power grid that satisfies future energy

demands. Transitioning into a medium-term horizon, decisions are related to system main-

tenance, ensuring optimal functionality and longevity of the infrastructure [5, 6]. Lastly, the

short-term and real-time horizons involve a dynamic decision-making process where various

agents interact to secure the right to generate energy, ensuring a steady electricity supply to

end consumers [7]. The operation of the power system takes place during these two planning

horizons.

1.1 Energy market clearing

In power system operations, the Independent System Operator (ISO) must ensure the operabil-

ity and reliability of the system. This is done by planning the energy generation schedule that

specifies which energy generators owned by competitive Generation Companies (GENCOs)

will operate to ensure a reliable and economical power supply. This schedule is generated
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during the day-ahead market in a process known as market clearing [8]. Before this process

materializes, GENCOs submit daily bids to the wholesale market, competing to acquire the

right to dispatch energy according to the mandate of the ISO. Thus, the ISO clears the market,

ensuring the correct interplay between energy supply and demand. As a result, by clearing the

market, the ISO provides the day-ahead energy market price and the energy generator schedule.

In particular, the market clearing process is done by solving the Unit Commitment Prob-

lem (UCP), a mathematical optimization problem designed to establish an energy dispatch

schedule that guarantees system operability and reliability at a minimal cost. The UCP con-

siders several technical requirements, including generator unit capacity, mandatory minimum

durations for units to remain online and offline, and energy production between periods. This

process helps to maintain a steady, cost-effective supply of electricity while adhering to strin-

gent operational and reliability requirements [9].

1.2 Challenges associated to using RES

During the last century, energy production has been generated by fossil-fuel-based generators

that require resources such as coal and petroleum. Nevertheless, incentives for using other

sources arose since they significantly impact the environment and depend on the worldwide

economic context. Thus, producing energy from natural sources such as sun, wind, and biomass

started to be attractive for different energy actors due to technological advances during the last

two decades [10, 11]. In addition, several policies have been released by governments and

world organizations promoting the development of renewable energy projects. For example,

in the US, the Inflation Reduction Act promotes incentives to reduce renewable energy costs

for several organizations. In Europe, the Green Deal Industrial Plan accelerates Europe’s net-

zero transition by supporting the scaling up of manufacturing capacity for climate-friendly

technologies. Therefore, it is expected to observe more projects to reach the green transition.

Despite the benefits of energy from natural sources such as sun, wind, and river valleys,

these natural sources can generate energy if the right environmental and local conditions allow

it. Nevertheless, the natural conditions are not known in advance and can vary during daily

operations. Hence, several models have been proposed to deal with uncertainty. In particular,
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stochastic modeling is a technique that allows accounting for the inherent uncertainty of certain

phenomena in a model. In the context of optimization, by including uncertainty, the decision-

maker uses estimations that are accounted as parameters in the optimization model. Thus,

different performance metrics, such as expected value, worst-case scenario, and risk, can be

optimized using stochastic programming, robust optimization, and chance-constrained methods

[12].

In particular, the growth of RESs projects has brought new challenges related to high

uncertainty on renewable sources. One example is the duck curve effect observed in power

systems with high solar photovoltaic generation. This effect is characterized by a significant

drop in electricity demand during midday when solar generation is at its peak, followed by

a steep increase in demand during the evening [13, 14]. Similarly, the wind ramping effect in

power systems with significant wind energy production leads to sudden and substantial changes

in wind power output [15]. Thus, new models and methodologies are needed to overcome

uncertainty issues due to the expected increase of variability in energy power generation.

1.3 Uncertainty in the UCP

The energy generation schedule is currently built by solving the UCP, a nonlinear mixed integer

programming problem. When uncertainty is included in this problem, stochastic programming,

robust optimization, or chance-constrained methods are used to model the uncertainty in the

mathematical model, creating the Stochastic Unit Commitment Problem (SUCP).

When modeling the SUCP using the stochastic programming approach, the mathematical

formulation aims to minimize the expected commitment and dispatch cost using a two-stage

approach. In the first stage, the commitment decisions are made, remaining unchanged dur-

ing the planning horizon. The cost related to this first stage is derived based on the hot and

cold state of the generator units. In addition, there is a cost for having the generator units on

while dispatching minimum capacity. This cost is known in advance based on the commitment

decisions.

The second-stage decision corresponds to the energy dispatch process. Since the com-

mitment schedule is already known, the committed units dispatch the necessary energy after
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observing the random variables. In particular, the dispatch process is determined by solving

an economic dispatch process. Since the realizations of the random variables are not known

when the commitment decisions are being made, the stochastic programming approach relies

on generating a sample of scenarios usually generated from a probability distribution or data.

Even though this method can provide solutions, the quality of them as well as the complexity,

relies on the number of scenarios.

In the literature, the uncertainty is represented using scenario generation approaches when

using stochastic programming. Several scenarios are sampled from the probability distribution

of energy demand and renewable energy production. Then, the expected cost is calculated as

the weighted sum between the cost of the realization and its respective probability. As the levels

of uncertainty increase due to the inclusion of more RESs projects, the energy generation from

these sources becomes more unpredictable. Thus, to obtain a suitable approximation of the

expected cost, more scenarios should be considered, increasing the computational complexity

of the problem.

1.4 Contributions

This thesis contributes by providing a new mathematical model for the SUCP. This new model

does not require scenarios for modeling the expected cost. Instead, the expected cost is derived

directly from the probability distribution of the residual demand.

In Chapter 2, a new stochastic approach is proposed for modeling the SUCP. The pro-

posed model of this chapter addresses the uncertainty by deriving an analytical expression of

the expected cost when the demand and RESs generation are uncertain. Then, the expected

cost is approximated through a piece-wise linear function. Hence, to the best of the author’s

knowledge, it is the first time the SUCP is addressed through this approach.

In Chapter 3, the statistical model is extended to account for ramping constraints. These

constraints ensure that there is a smooth transition to increase/decrease the production of energy

from fuel-based generators. In particular, the ramping constraints are known by increasing the

complexity of both UCP and SUCP. In addition, generating schedules without ramping capabil-

ities can yield infeasible schedules in practice. Thus, this chapter addresses the shortcomings
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of the first model. Since adding ramping constraints increases the complexity of the problem,

solving strategies are proposed. These strategies are characterized by ensuring a better bound

of the relaxation problem. In addition, a heuristic approach is proposed to generate a feasible

solution that can be fed to the solver as a warm-up strategy. Finally, this model is tested on

well-known power systems usually used in the literature for benchmarking.

In Chapter 4, a comparison is made between the statistical SUCP and the scenario-based

SUCP. This comparison assesses the computational complexity of both models in terms of

elapsed time to solve the model and the ability to reach optimality. In addition, we compare

the out-of-sample and in-sample stability of both stochastic models. The comparison is made

by considering power systems of different sizes, breakpoints, and scenarios for the statistical

and scenario-based SUCP. Thus, by determining the benefits of each model, a new tool can be

offered to ISOs when planning the day-ahead energy generation schedule.

This dissertation is structured as follows: Chapter 2 presents a new mathematical model

for the SUCP. In Chapter 3, we extend the previous model by adding ramping constraints and

proposing new solving strategies. In Chapter 4, we compare both the new model with the

current scenario-based SUCP. Finally, conclusions and future work are presented in Chapter 5.
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Chapter 2

Stochastic Unit Commitment Problem: A Statistical Approach

2.1 Introduction

The Unit Commitment Problem (UCP) is a mathematical optimization problem extensively

studied in the power systems and operations research literature. The UCP aims to provide an

energy generation schedule at a minimum cost while meeting technical and environmental con-

straints. The problem has played a relevant role in the liberalization of the electricity market,

reducing the cost of generating electric energy [16]. However, solving the UCP is challenging.

It is an NP-hard problem that must be solved within a tight time frame, considering the nonlin-

earity of the cost function and the utilization of binary variables [17]. In addition, real instances

of this problem involve hundreds to thousands of generator units [18, 19].

Due to the inherent complexity of the UCP, various mathematical formulations and algo-

rithms have been proposed to solve the UCP within the time constraints of ISOs [20, 21, 22].

Thus, it is possible to extend this problem towards more complicated variations. In particular,

the UCP is a stochastic problem in nature due to the random energy demand and renewable

energy production. One of the first studies about the stochastic unit commitment problems

(SUCP) was proposed in [23] and [24]. In both studies, the authors modeled the problem

using stochastic programming and the Monte Carlo simulation method. Under the stochas-

tic programming appraoch, the SUCP is formulated as a two-stage or multistage optimization

problem. Under a two-stage model, the commitment decisions are made in the first stage be-

fore the random variables are observed. Thus, these decisions remain unchanged over the entire

planning horizon. The energy dispatch decisions are made in a second stage in response to the

observed values of the random variables. In the case of multistage models, the commitment
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decisions are made during each period before the random variables are revealed [25]. The

sources of uncertainty in the SUCP are generally the demand, unit failure, and availability of

renewable energy. These sources of uncertainty have been represented by generating several

scenarios, which may increase the computational complexity of the solution algorithms [26].

The most common approaches for solving the SUCP are Lagrangian Relaxation [27], Column

Generation [28, 29], Benders Decomposition [30, 31], and Progressive Hedging [32, 33]. To

date, it has been modeled using other stochastic methods, namely chance-constrained [34, 35],

and robust optimization [36, 29, 37].

In recent years, integrating Renewable Energy Sources (RESs) in the UCP has become

necessary due to the high penetration of these resources in the generation mix. Considering

the variability of wind speed, the stochastic modeling of wind energy has been one of the main

interests of researchers [38]. In [39], the authors studied the impact of wind power forecasting

on the UCP by computing the difference between the estimated cost of the day-ahead Unit

Commitment and the actual cost from the Economic Dispatch once the realization of the wind

speed was observed. In order to show the benefits of using the SUCP, studies to compare

the deterministic UCP and the SUCP have been done [40, 41]. The results have consistently

indicated that adopting the SUCP framework can lead to cost savings by reducing the required

spinning reserves.

Despite recent improvements in algorithms, formulations, and computer capabilities, the

industry has been reluctant to implement stochastic models in their daily operations [32, 42].

An attempt to encourage the industry to implement the SUCP was made in [43]. The authors

solved the SUCP considering wind power as the main source of uncertainty. It was found that

by implementing the stochastic model the pre-set spinning reserve can be reduced as well as

the operating costs. In [33], the authors used a progressive hedging algorithm to speed up

the solving process. Thus, the results showed that the proposed algorithm could solve actual

instances of the SUCP in less than 25 minutes.

Solar power has also been included in the UCP. In [44], the authors proposed a framework

involving a microgrid that produces solar energy generation and a main grid. Under this frame-

work, the main grid imports energy from the microgrid in case of contingency. The authors
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used the Benders decomposition approach to solve the problem where the master problem is

a traditional UC problem, and the subproblem is a stochastic optimal power flow. In [35], the

authors considered wind and PV power generation. The study aimed to reduce the RES fore-

casting error by controlling the risk of intermittent energy generation. Thus, a chance constraint

method was used to ensure that the risk of intermittency was lower than a threshold value.

Another stream of studies has used the advantages of parallel computing in the design

of algorithms. In [45], the authors solved a transmission-constrained UCP using a two-stage

stochastic optimization formulation considering network failures and wind energy. To solve this

problem, a parallel sub-gradient-based algorithm based on the Lagrangian relaxation method

was used. In [46], the authors solved a security-constrained SUCP by taking advantage of the

structure of the problem and decomposing it into small sub-problems using the Lagrangian

relaxation method. The authors highlighted the practical feasibility of implementing the SUCP

by generating only a small set of scenarios. Furthermore, in [26], the authors adopted a different

approach for solving the security-constrained SUCP by decomposing the problem into three

modules: UC, optimal power flow, and a bridge module that enabled communication between

the other modules.

Scenario generation has been commonly used to represent uncertainty when solving small

and large instances of the SUCP. However, the methodology and the number of scenarios must

be carefully assessed to avoid bias in the commitment schedule and prevent increasing the com-

putational burden of the solution algorithms. This Chapter proposes a novel modeling approach

to solve the two-stage SUCP that does not require generating scenarios. Using the probability

distribution of the residual demand, we develop an analytical function of the expected dispatch

cost. To handle the nonlinearity of the function, we use a piecewise linear approximation ap-

proach, resulting in a Mixed Integer Linear Programming (MILP) problem. We validate our

model by evaluating the optimal unit commitment schedule on the analytical function and con-

ducting simulations. In addition, a stability analysis is performed to determine the number of

breakpoints. The Chapter remains as follows: Section 2.2 presents the mathematical model and

the analytical expected dispatch cost. Section 2.3 describes methods to solve the problem and
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the results of the experiments. Finally, we describe the main findings of this Chapter and future

research in section 2.4.

2.2 Formulation

In this section, we provide the mathematical formulation of the SUCP. The model is formulated

using the technical constraints provided in [47], adapting the expected cost given the uncertain

residual demand.

Sets and indices

I Set of units, i ∈ I

T Set of periods, t ∈ T

L Set of breakpoints, l ∈ L

Parameters

Chot
i Hot start-up cost of unit i ∈ I

Ccold
i Cold start-up cost of unit i ∈ I

ci Energy cost of unit i ∈ I

Fi(·) Dispatch cost function for unit i ∈ I in period t ∈ T

Hit(·) Start-up cost function of unit i ∈ I during period t ∈ T

Pmax
i Maximum energy production of unit i ∈ I

Pmin
i Minimum energy production of unit i ∈ I

T on
i Minimum number of periods of unit i ∈ I has to be on

T off
i Minimum number of periods of unit i ∈ I has to keep off

tcoldi Number of periods after unit i ∈ I becomes cold

uprevi Binary parameter that indicates the on/off state of unit i ∈ I before the first period of the

planning horizon

∆i Difference between the maximum and minimum energy capacity Pmax
i and Pmin

i of unit

i ∈ I

κ Cost of buying energy from other energy markets.

τ oni Number of periods unit i ∈ I has been on prior to the first period of the planning horizon
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τ offi Number of periods unit i ∈ I has been off prior to the first period of the planning horizon

Random variables

d̃t Random demand during period t ∈ T

r̃t Random residual demand during period t ∈ T

ω̃t Random production of energy during period t ∈ T

ψ̃t Random residual after first-stage decisions during period t ∈ T

Decision variables

uit Binary variable that indicates if the unit i ∈ I is on/off during period t ∈ T

vit Binary variable that indicates if the unit i ∈ I is turned on during period t ∈ T

wit Binary variable that indicates if the unit i ∈ I is turned off during period t ∈ T

yhotit Binary variable that indicates if the unit i ∈ I starts hot during period t ∈ T

ycoldit Binary variable that indicates if the unit i ∈ I starts cold during period t ∈ T

λitl Continuous variable that weighs the breakpoint l ∈ L of unit i ∈ I during period t ∈ T

ηitl Binary variable that indicates if the interval (l − 1, l) ∈ L is selected for the unit i ∈ I

during period t ∈ T

10



min z =
∑
t∈T

∑
i∈I

Hit(·) +
∑
t∈T

∑
i∈I

E [F (r̃t)] (2.1)

s.t
t∑

j=γon
it

vij ≤ uit ∀i ∈ I, t ∈ T (2.2)

t∑
j=γoff

it

wij ≤ 1− uit ∀i ∈ I, t ∈ T (2.3)

uit = 1 ∀i ∈ I : uprevi = 1 ∀t ∈ {1, ..., θoni } (2.4)

uit = 0 ∀i ∈ I : uprevi = 0 ∀t ∈ {1, ..., θoffi } (2.5)

yhotit + ycoldit = vit ∀i ∈ I, t ∈ T (2.6)

uit −
t−1∑

l=t−tcoldi −1

uil ≤ ycoldit ∀i ∈ I, t ∈ T (2.7)

uit − uit−1 ≤ vit ∀i ∈ I, t ∈ T (2.8)

wit = vit + uit−1 − uit ∀i ∈ I, t ∈ T (2.9)

uit, vit, wit, y
hot
it , y

cold
it ∈ {0, 1} ∀i ∈ I, t ∈ T (2.10)

The objective function (2.1) aims to minimize the commitment and the expected dispatch

costs. The first component, representing the start-up cost, is given by Hit(·) = ahoti yhotit +

acoldi ycoldit . The second component, denoted as the expected dispatch cost (E [Fi(r̃t)]), depends

on the random residual demand during each period. A comprehensive derivation of this cost is

presented in Subsection 2.2.1.

Constraints (2.2) and (2.3) ensure the minimum up and down time requirements, where

γon
it = max{t − T on

i + 1, 1} and γoff
it = max{t − T off

i + 1, 1}. Constraints (2.4) and (2.5)

determine the initial commitment state of the units based on their previous states, where θon
i =

max{1, T on
i − τ on

i + 1} and θoff
i = max{1, T off

i − τ off
i + 1}. Constraint (2.6) ensures that a unit

starts in either a hot or cold state. Additionally, constraint (2.7) states that a unit starts in a cold

state if it has been off for a duration greater than tcoldi . Constraint (2.8) guarantees that a unit is

turned on in the current period if it was turned off in the previous period. Similarly, constraint
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(2.9) ensures that a unit is turned off in the current period if it was on in the previous hour.

Finally, constraint (2.10) states the integrity of the decision variables.

2.2.1 Modeling the expected dispatch cost

In a competitive electricity market, Generation Companies (GENCOS) submit to the market

operator one block with the minimum energy production Pmin
i , maximum energy production

Pmax
i , and the cost ci for each unit i ∈ I . Based on the information submitted by the GENCOS,

we assume that the market operator dispatches the units economically. Thus, the operator

ensures that both the energy demand and the technical constraints are met.

In several markets, RESs operate as non-dispatchable energy. Thus, all the energy they

produce is dispatched, acting as a negative demand with no production cost. As a result, the

remaining demand, corresponding to the difference between the demand and the production of

RESs, is supplied by the thermal units. Hence, the residual demand is given by equation (2.11).

r̃t = d̃t − ω̃t ∀t ∈ T (2.11)

To account for the unmet demand (demand not served by the RESs and thermal units), we

create an auxiliary unit with an unlimited capacity. Thus, the ISO incurs a penalty cost of κ

per-megawatt-hour (MWh) for the unmet demand, representing the energy purchase from other

markets to compensate for the energy shortfall.

The formulation of the dispatch cost follows the same idea as the two-stage stochastic

optimization, where the commitment decisions are made first and cannot be modified during

the planning horizon. Thus, in equation (2.12), we define the residual demand after the first-

stage decisions are made. This residual demand accounts for the difference between the total

demand and the minimum capacity of the activated units.

ψ̃t = r̃t −
∑
i∈I

Pmin
i uit ∀t ∈ T (2.12)
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We present the dispatch cost in equation (2.13), which consists of two components: a fixed

and a variable component. The former is the cost of dispatching the minimum capacity of the

units that are operating. The latter is the cost of dispatching beyond the minimum capacity of

the units, which depends on the random residual demand.

The remaining amount to be dispatched depends on the difference between the residual

demand and the remaining energy of the previous i− 1 cheapest units. If for any period t ∈ T

the difference ψ̃t −
∑i−1

j=1 ∆jujt is positive, the amount to be dispatched corresponds to the

minimum between the residual demand and the remaining energy of unit i ∈ I . Otherwise, the

energy dispatched by the ith unit will be zero.

F (r̃t) =
∑
i∈I

ciP
min
i uit +

∑
i∈I

ci min

[
max(ψ̃t −

i−1∑
j=1

∆jujt, 0),∆iuit

]
+

κ ·max(ψ̃t −
|I|∑
j=1

∆jujt, 0) ∀t ∈ T

(2.13)

Then, when applying expectation to the dispatch cost, equation (2.13) remains as follows:

E [F (r̃t)] =
∑
i∈I

ciP
min
i uit+E

[∑
i∈I

ci ·min

[
max(ψ̃t −

i−1∑
j=1

∆jujt, 0),∆iuit

]]
+

E

κ ·max(ψ̃t −
|I|∑
j=1

∆jujt, 0)

∀t ∈ T

(2.14)

Let I(x) be an indicator function that depends on a nonnegative random variable q, and a

nonnegative value x.

I(x) =

 1 x < q

0 x ≥ q
(2.15)

By applying expectation to the indicator function (2.15), the expected value results in the

survival function of the random variable q as shown in equation (2.16).

E [I(x)] = 1 ·
∫ ∞

x

f(q) dq + 0 ·
∫ x

−∞
f(q) dq = P (q ≥ x) (2.16)
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Let the minimum function between two nonnegative numbers q and p be calculated as the

following definite integral:

min(q, p) =

∫ q

0

I(x) dx (2.17)

Since the resulting values from the minimum and maximum function in equation (2.14)

are nonnegative, the above property can be applied. Thus, equation (2.17) holds. Then, the

expected dispatch cost is calculated as the integral of the indicator function:

∑
i∈I

ci ·
∫ ∆iui

0

E [I(x)] dx+ κ ·
∫ ∞

0

E [I(x)] dx ∀t ∈ T (2.18)

Thus, the expected value in (2.18) is calculated as in (2.16), resulting in the following

expression:

∑
i∈I

ci

∫ ∆iuit

0

P (ψ̃t−
i−1∑
j=1

∆jujt ≥ x) dx+κ

∫ ∞

0

P (ψ̃t−
|I|∑
j=1

∆jujt ≥ x) dx ∀t ∈ T (2.19)

Let S(x) be the survival function of the random variable represented by the difference

between the demand and the production of RESs. Since ψ̃t = r̃t −
∑

i∈I P
min
i uit ∀t ∈ T ,

expression (2.19) is written as follows:

∑
i∈I

ci

∫ ∆iuit

0

St(x+
∑
k∈I

Pmin
k ukt +

i−1∑
j=1

∆jujt) dx+ κ

∫ ∞

0

St(x+
∑
k∈I

Pmin
k ukt +

|I|∑
j=1

∆jujt) dx ∀t ∈ T

(2.20)

Thus, expression (2.20) is the integral of the survival function shifted for each period.

Therefore, it can be centered at the origin as shown in expression (2.21).

∑
i∈I

ci

∫ ∑
k∈I P

min
k ukt+

∑i
j=1 ∆jujt

∑
k∈I P

min
k ukt+

∑i−1
j=1 ∆jujt

St(x) dx+ κ

∫ ∞

+
∑

k∈I P
min
k ukt+

∑|I|
j=1 ∆jujt

St(x) dx ∀t ∈ T

(2.21)

Let Γ(x) be the indefinite integral of the survival function S(x).

Γ(x) =

∫
S(x) dx (2.22)
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Then, expression (2.21) states as follows:

∑
i∈I

ci

[
Γt(

∑
k∈I

Pmin
k ukt +

i∑
j=1

∆jujt)− Γt(
∑
k∈I

Pmin
k ukt +

i−1∑
j=1

∆jujt)

]
+

κ

µt − Γt(
∑
k∈I

Pmin
k ukt +

|I|∑
j=1

∆jujt)

∀t ∈ T

(2.23)

Thus, the expected dispatch cost is a nonlinear function that must be transformed into a

linear expression.

2.2.2 A linear approximation approach

We employ an incremental piecewise linear approximation model to linearize the expected cost

in expression (2.23). This model is based on the method proposed in [48], which introduces a

binary variable for each linear segment. Let L be the set of breakpoints with l − 1 intervals.

The function Γ(x) can be approximated using l breakpoints. Let bl be the breakpoint lth of

the function Γ(x), where bl is nonnegative. Then, any value x that belongs to the domain of

the function Γ(x) can be expressed in linear terms using nonnegative continuous scalars λl that

sum one. Thus, the function Γ(x) is calculated as follows:

x =
∑
l∈L

λlbl (2.24)

Γ(x) =
∑
l∈L

λlΓ(bl) (2.25)

In order to ensure that x has a unique representation, at most two consecutive scalars

have to be nonzero. Then, x has one representation as x = λlbl + λl+1bl+1 if λl + λl+1 = 1.

Thus, a new variable is created. Let ηl be a binary variable that indicates which segment of the

approximated function Γ(x) is selected. Hence, the function Γ(x) is expressed in linear terms

and is included in the objective function. The resulting model is an MILP and is formulated as

follows:

15



min z =
∑
t∈T

∑
i∈I

Hit(·) +
∑
t∈T

∑
i∈I

ciP
min
i uit+

∑
t∈T

∑
i∈I

ci

[∑
l∈L

λitlΓt(btl)−
∑
l∈L

λi−1tlΓt(btl)

]
+

∑
t∈T

κ

[
µt −

∑
l∈L

λ|I|tlΓt(btl)

] (2.26)

s.t (2.2) − (2.10) (2.27)∑
l∈L

λ0tlbtl =
∑
k∈I

Pmin
k ukt t ∈ T (2.28)

∑
l∈L

λitlbtl =
∑
k∈I

Pmin
k ukt +

i∑
j=1

∆jujt ∀i ∈ I, t ∈ T (2.29)

L∑
l=1

λitl = 1 ∀i ∈ I, t ∈ T (2.30)

λit1 ≤ ηit1 ∀i ∈ I, t ∈ T (2.31)

λitl ≤ ηitl−1 + ηitl ∀i ∈ I, t ∈ T, l ∈ {2, . . . , L} (2.32)

λitL ≤ ηitL−1 i ∈ I, t ∈ T (2.33)
L−1∑
l=1

ηitl = 1 ∀i ∈ I, t ∈ T (2.34)

λitl ≥ 0 ∀i ∈ I, t ∈ T, l ∈ L (2.35)

ηitl ∈ {0, 1} ∀i ∈ I, t ∈ T, l ∈ L (2.36)

The objective function (2.26) minimizes the start-up cost and the expected dispatch cost

expressed in linear terms by using the piecewise linear approximation method. Furthermore,

since the survival function has different parameters in each period, |T | functions must be ap-

proximated in a piecewise manner. The set of constraints (2.27) corresponds to the technical

constraints of the UCP described in Section 2.2. Constraint (2.28) and (2.29) set the limits

of the integral (2.21) ensuring that the correct value btl is evaluated in the objective function.

The remaining constraints define the rules for constructing a piecewise linear approximation.

Equation (2.30) ensures that all λl sum up to one. Constraints (2.31), (2.32), and (2.33) indicate
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which λl are nonzeros according to the selected segment. Constraint (2.34) ensures that only

one segment of the piecewise function is selected. Constraints (2.35) and (2.36) correspond to

the integrity constraints.

2.3 Results

The results of this section were obtained using Gurobi 9.5 (64-bit) on a computer running Linux

with an Intel Xeon E5-2670v2 Ivy Bridge 2.5 GHz using 16 cores and 64 GB of RAM at the

Alabama Supercomputer Center. When solving the optimization problems, we set the stopping

criteria at 3,600 seconds after starting the optimization or when the optimizer has found an

optimal solution. All methods and procedures were coded in Python 3.8.

We test the proposed model using a power system consisting of 20, 60, 100, and 200 units

and a planning horizon of 24 hours. The power system data for 20 units is from [49], which is

given in Table 2.1. The system consisting of 60, 100, and 200 units corresponds to the 20-units

system replicated 3, 5, and 10 times. The cost of the unmet demand is assumed to be 100 $
MWh

.

The last column of Table 2.1 is the state of the unit at the beginning of the planning horizon.

It indicates the number of periods the unit has been on/off, represented by the plus/minus sign,

respectively.

Unit Pmax (MWh) Pmin (MWh) c ($/MWh) tup (hour) tdown (hour) ahot ($) acold ($) tcold Initial state
1 455 150 16.19 8 8 4,500 9,000 5 8
2 455 150 16.19 8 8 4,500 9,000 5 8
3 130 20 16.5 5 5 560 1,120 4 -5
4 130 20 16.5 5 5 560 1,120 4 -5
5 130 20 16.6 5 5 550 1,100 4 -5
6 130 20 16.6 5 5 550 1,100 4 5
7 455 150 17.26 8 8 5,000 10,000 5 8
8 455 150 17.26 8 8 5,000 10,000 5 8
9 162 25 19.7 6 6 900 1,800 4 -6
10 162 25 19.7 6 6 900 1,800 4 -6
11 80 20 22.26 3 3 170 340 2 -3
12 80 20 22.26 3 3 170 340 2 -3
13 55 10 25.92 1 1 30 60 0 -1
14 55 10 25.92 1 1 30 60 0 -1
15 55 10 27.27 1 1 30 60 0 -1
16 55 10 27.27 1 1 30 60 0 -1
17 85 25 27.74 3 3 260 520 2 -3
18 85 25 27.74 3 3 260 520 2 -3
19 55 10 27.79 1 1 30 60 0 -1
20 55 10 27.79 1 1 30 60 0 -1

Table 2.1: Power system description
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2.3.1 Modeling the demand and RESs production

In power system operation, the hourly stochastic demand is usually modeled using the fore-

casted value plus an error term which generally fits a Gaussian distribution function with ex-

pected value 0 and standard deviation σ [50]. Thus, the actual demand corresponds to the

forecasted demand “perturbed” by a random error which probability distribution is the normal

distribution function [51, 52], truncated normal distribution function [26, 53], or multivariate

normal distribution function [54].

The production of renewable energy depends on the weather and the technology of the

renewable source. Thus, probabilistic forecasts are methods developed to estimate the wind and

solar power production. When solving the SUCP using scenario generation, the realizations of

the random variables are usually sampled (using the Montecarlo simulation method) from a

known distribution function such as normal [26], truncated normal [53], multivariate normal

[55], uniform [36, 52], beta [56], and Weibull distribution [52].

In our research, we consider a system that includes energy from wind farms. Thus, we

model the stochastic residual demand vector r̃ as shown in equation (2.37). The vector value

µ is the forecasted residual demand, i.e., the difference between the expected demand and the

expected wind energy production. The error term ϵ, is assumed to follow a multivariate normal

distribution with mean vector 0 and covariance matrix Σ.

r̃ = µ+ ϵ (2.37)

Notice that our proposed model does not restrict what forecasting model for the residual

demand is used. Therefore, it is assumed a forecast of the residual demand and estimates

of the parameters of the error term probability distribution are known. Moreover, the RES

production corresponds to solar or wind energy because the forecasted irradiation or wind speed

is estimated. The forecasted residual demand used in our problem instances is given in Table 2.2

and is calculated based on the demand and wind power profile from [49] and [54], respectively.

We compute the covariance matrix Σ using the standard deviation values in Table 2.2 assuming

an Autoregressive model AR(1). Equation (2.38) shows the corresponding covariance matrix
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with |T | periods as the planning horizon. For the instances with 60, 100, and 200 units, the

mean and standard deviation are amplified by 3, 5, and 10 times, respectively.

Σ =



σ2
1 σ1σ2ρ · · · σ1σTρ

T−1

σ2σ1ρ σ2
1 · · · σ2σTρ

T−2

...
... . . . ...

σTσ1ρ
T−1 σTσ2ρ

T−2 · · · σ2
T


(2.38)

Hour Mean (MWh) Std. Dev. (MWh) Hour Mean (MWh) Std. Dev. (MWh)
1 1,214 45.93 13 2,680 84.85
2 1,286 49.83 14 2,370 81.32
3 1,500 54.78 15 2,264 73.27
4 1,700 60.41 16 1,960 64.54
5 1,766 64.40 17 1,766 64.40
6 1,994 69.14 18 1,930 71.31
7 2,084 72.30 19 2,180 75.29
8 2,240 73.76 20 2,558 87.42
9 2,480 78.92 21 2,354 81.79

10 2,686 84.77 22 1,980 69.57
11 2,744 88.39 23 1,624 56.80
12 2,856 91.14 24 1,506 48.91

Table 2.2: Mean and standard deviation of the residual demand

2.3.2 Computing the piecewise linear function and stability analysis

We compute the breakpoints of the functions Γ(x) giving in equation (2.22) using the optimiza-

tion library PWLF [57] in Python 3.8. The optimization library computes the breakpoints by

minimizing the sum-of-square of the residuals using a multi-start gradient optimization method.

In Figure 2.1, we show an example where the function Γ(x) corresponding to hour 5 (µ5 =

1, 766 and σ5 = 64.40) is approximated by a piecewise linear function using 10 breakpoints.

Notice that the multi-start gradient optimization method provides a good fit for the function

Γ(x).

Since the multi-start gradient optimization method is a local search optimizer, it provides

different breakpoints at each run. Therefore, we perform a stability analysis to assess the consis-

tency of this method. Adding breakpoints could increase the computational complexity because

of the additional binary variables and constraints. However, more breakpoints could improve
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Figure 2.1: Piecewise approximation of function Γ5(x) using 10 breakpoints.

the quality of the objective value. Nevertheless, the question is how many points are needed to

obtain a good solution in a reasonable computational time. Thus, we study the in-sample and

out-of-sample stability of the breakpoints generation method.

In [58], the authors proposed a method to assess the suitability of a scenario generation

method when solving a stochastic programming model. Although our approach does not gen-

erate scenarios, it needs to generate a set of breakpoints. Suppose we generate K sets of n

breakpoints and solve the optimization problem for each set. If, upon evaluating the optimal

commitment schedule using expression (2.23), the results yield nearly identical values across

the K sets, the breakpoint generation method is out-of-sample stable. Similarly, the generation

method is in-sample stable if the optimal objective value (2.26) is approximately consistent

across the K sets.

We perform 20 experiments for each combination of units and breakpoints, resulting in

480 experiments. We provide the descriptive statistics of the elapsed computational time and

the MIP gap in Tables 2.3 and 2.4, respectively. Figures 2.2, 2.3, 2.4, and 2.5 show the results

of the stability analysis for 20, 60, 100, and 200 units, respectively. We observe that when

increasing the number of breakpoints, the out-of-sample stability does not considerably change

after incrementing from 5 to 10 breakpoints. Thus, solving the problem using more breakpoints

does not significantly increase the accuracy. In addition, the in-sample stability increases when
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increasing the number of breakpoints, especially when using between 5 to 10 breakpoints.

Some instances of 60, 100, and 200 units with 15 to 30 breakpoints did not find an optimal

solution. Nevertheless, as shown in Figures 2.2a, 2.3a, 2.4a, and 2.5a, the difference in the

results when using between 5 to 15 breakpoints is very small. From the results, we conclude

that the proposed solving method has out-of-sample and in-sample stability for five or more

breakpoints.
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Figure 2.2: Stability analysis for 20 units
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Figure 2.3: Stability analysis for 60 units

In Table 2.3, we show the statistics of the elapsed time, including the time of the PWLF

library to approximate the function Γ(x), and the time the optimizer reaches either the optimum

or the time limit of 3,600 seconds. The SUCP was solved in a few minutes in all test instances

with five breakpoints. When increasing the number of breakpoints from 5 to 10, only the in-

stances with 20 and 60 units found an optimal solution in less than 5 minutes. Nevertheless, the
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Figure 2.4: Stability analysis for 100 units
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Figure 2.5: Stability analysis for 200 units

instance with 100 units was solved in less than 45 minutes for more than 75% of the instances

with 10 breakpoints.

In Table 2.4, we show the descriptive statistics of the MIP gap of the experiments. Notice

that instances that did not found an optimal solution report the optimality gap within 3,600

seconds. Notice that the proposed method scales well to 200 units, considered a medium-

sized system in the literature. The instance with 100 units found an optimal solution with 15

breakpoints in less than 50% of the cases. A similar result was observed with 200 units and 10

breakpoints. It is important to observe from Figures 2.2 - 2.5 and Table 2.4 that our approach

provides a near-optimal solution to the SUCP problem with just five breakpoints.
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Units Breakpoints Average (s) Minimum (s) Median (s) 3rd Quartile (s) Maximum (s)

20

5 8.32 7.62 8.22 8.65 9.30
10 35.92 30.49 36.94 38.09 40.79
15 74.51 56.85 75.79 81.20 86.76
20 123.69 102.33 122.93 129.62 158.41
25 305.12 160.49 184.33 300.03 888.65
30 663.06 254.37 712.80 828.00 1,207.90

60

5 24.17 18.57 20.80 27.55 48.39
10 130.07 69.62 97.32 115.79 426.15
15 926.36 153.02 220.21 1339.29 3671.73
20 2,172.74 213.38 2,598.62 3,712.77 3,752.21
25 3,634.56 1,350.44 3,764.37 3,775.88 3,816.62
30 3,831.10 3,790.68 3,828.43 3,847.84 3,888.63

100

5 53.34 38.18 54.29 63.15 74.61
10 1,430.94 135.86 965.25 2,640.95 3,657.27
15 2,863.74 319.44 3,689.85 3,696.93 3,701.34
20 3,728.40 3,704.37 3,725.75 3,740.07 3,774.00
25 3,770.43 3,734.81 3,771.21 3,778.92 3,803.47
30 3,796.25 3,769.42 3,792.36 3,800.25 3,840.54

200

5 215.44 132.95 219.58 250.29 283.50
10 3,518.58 1,818.96 3,683.96 3,685.52 3,691.16
15 3,716.02 3,694.19 3,707.65 3,714.74 3,839.07
20 3,770.31 3,731.12 3,765.89 3,776.17 3,851.13
25 3,799.16 3,766.23 3,798.11 3,810.99 3,829.53
30 3,851.92 3,815.15 3,851.91 3,867.84 3,889.85

Table 2.3: Elapsed time descriptive statistics

2.3.3 Analyzing the effect of the forecasting error hourly correlation

We study the effect of the forecasting error correlation on the expected cost using the instance

of 100 units and 10 breakpoints. We considered three levels of correlation, namely 0.0, 0.5,

and 0.8, assumming that the model is solved at hour 0. Thus, the error ϵ0 at that hour is known.

Before solving the SUCP, we compute the conditional forecasting error at each hour given ϵ0.

We assume seven different values for ϵ0, namely 0, ±3σ24, ±6σ24, and ±9σ24. The three values

of the forecasting error correlation and the seven values of ϵ0 creates fifteen different SUCP

cases. In Table 2.5, we show the expected cost obtained using the solution of the optimization

method and evaluating the optimal solution using the analytic function (2.23). From Table 2.5,

we observe that the difference between expected costs is small for all values of correlation,

confirming that our approach is suitable for solving the SUCP.

During the commitment scheduling process, the system operator must consider energy

reserves as a backup for generation outages or energy shortages. In deterministic models, the

reserves are set as a fixed percentage of the forecasted demand. We calculate the system reserve

as a percentage of the demand for different values of the error correlation. In Figure 2.6, we

show the system reserve over the planning horizon. Notice that the reserve starts increasing

during hours 15 to 19, due to the minimum up-time of the units after the period of high demand
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Units Breakpoints Average (%) Minimum (%) Median (%) 3rd Quartile (%) Maximum (%)

20

5 0 0 0 0 0
10 0 0 0 0 0
15 0 0 0 0 0
20 0 0 0 0 0
25 0 0 0 0 0
30 0 0 0 0 0

60

5 0 0 0 0 0
10 0 0 0 0 0
15 3 0 0 0 60
20 23 0 0 74 78
25 68 0 76 78 78
30 74 0 78 79 80

100

5 0 0 0 0 0
10 3 0 0 0 66
15 57 0 76 77 79
20 77 74 78 79 79
25 79 75 79 80 80
30 80 76 80 80 81

200

5 0 0 0 0 0
10 64 0 76 77 78
15 77 66 78 79 80
20 80 77 80 80 82
25 81 78 81 81 82
30 82 81 82 82 82

Table 2.4: MIP gap descriptive statistics

Expected cost ($)
ρ ϵ0 Approximation Analytic
0.8 -9σ24 4,033,540 4,028,857
0.8 -6σ24 4,097,542 4,093,358
0.8 -3σ24 4,161,113 4,156,461
0.5 -9σ24 4,187,310 4,182,383
0.5 -6σ24 4,201,660 4,194,226
0.5 -3σ24 4,212,360 4,206,177
0.8 0σ24 4,225,727 4,218,857
0 0σ24 4,223,433 4,219,210

0.5 0σ24 4,227,916 4,220,395
0.5 3σ24 4,238,545 4,231,944
0.5 6σ24 4,252,855 4,246,638
0.5 9σ24 4,261,407 4,256,355
0.8 3σ24 4,289,624 4,284,149
0.8 6σ24 4,351,254 4,348,062
0.8 9σ24 4,421,781 4,415,020

Table 2.5: Effect of forecasting error and hourly correlation

(hours 9 to 14). Thus, in periods of high demand, the system uses most of the available capacity,

resulting in a lower reserve. After the second period of high demand, the optimal solution turns

off units to decrease the dispatching cost.

2.3.4 Analyzing the effect of increasing wind energy production

We assess the impact of both increasing the wind energy production and the unmet demand cost.

We increment the wind energy production of the base case in increments of 10% up to 50% and

the unmet demand cost from 100 to 200, 500, and 1,000 $
MWh

. Table 2.6 shows the expected

cost at different levels of the wind multiplier and unmet demand cost. The results show that
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Figure 2.6: Reserves as a percentage of the forecasted residual demand when ϵ0 = −6σ24

increasing the wind energy production by 50% can reduce up to 5% of the expected cost.

Moreover, when increasing the unmet demand cost, the effect on the expected cost is negligible,

increasing just 1%. Notice that increasing the production of wind energy also increases the

uncertainty from this source.

Increase percentage of wind energy
0% 10% 20% 30% 40% 50%

Unmet
demand cost ($)

100 4,219,150 4,177,789 4,137,185 4,096,726 4,056,402 4,015,829
200 4,221,612 4,181,852 4,139,407 4,099,121 4,059,085 4,018,089
500 4,225,328 4,190,016 4,144,372 4,102,544 4,060,368 4,036,443

1,000 4,246,800 4,214,777 4,152,279 4,111,149 4,068,103 4,065,353

Table 2.6: Expected cost when increasing wind energy production

2.3.5 Assessing the Loss of Load Probability

The Loss of Load Probability (LOLP) is an important metric to assess the reliability of the

system [42]. We study the effect of increasing the cost of unmet demand on the LOLP by

considering four values, namely, 100, 200, 500, and 1,000 $
MWh

. In addition, we test six values

for the standard deviation of the forecast error, namely 3%, 5%, 7%, 10%, 20%, and 30%

of the forecasted residual demand. We calculate the system capacity at every hour using the

optimal commitment schedule of each instance. Then, using the marginal distribution of the

forecast error, we compute the LOLP at each hour. In Table 2.7, we report the average, median,

third quartile, and standard deviation of the LOLP over the planning horizon. We evaluate the

optimal schedule using the analytic function (2.23) to calculate the actual expected cost.

We observe that when the value of sigma is 0.03, increasing the unmet demand cost results

in a slight increment of the expected cost. However, when the value is 0.3, increasing the unmet
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demand cost results in a large increment of the expected cost. When both the forecast error

variability and unmet demand cost are large, the model turns more units on until using the total

capacity of the system. Beyond that limit, the model starts buying energy from other markets.

In terms of the LOLP, we observe that the system is reliable, presenting a LOLP lower than

5% on average. Only when the error variability is 30% of the forecasted residual demand the

LOLP is higher than 5%. Considering that the high penetration of RESs increases the supply

uncertainty [59], a model that provides a less costly and reliable commitment schedule when

including variability is advantageous [60].

LOLP descriptive statistics
Std. Dev. as a

percentage of the mean
residual demand

Unmet
demand cost ($) Average (%) Median (%) 3rd Quartile (%) Std. Dev. (%) Expected cost ($)

3%

100 1 0 1 3 4,218,331
200 1 0 1 1 4,219,215
500 0 0 0 1 4,223,020

1,000 0 0 0 1 4,243,806

5%

100 1 0 2 2 4,227,476
200 1 0 1 1 4,231,235
500 0 0 0 1 4,247,443

1,000 0 0 0 0 4,266,372

7%

100 2 1 3 2 4,241,722
200 1 0 1 1 4,252,557
500 0 0 0 0 4,264,016

1,000 0 0 0 0 4,294,136

10%

100 2 1 3 2 4,273,594
200 1 0 1 1 4,285,507
500 0 0 0 1 4,320,090

1,000 0 0 0 1 4,355,814

20%

100 4 2 5 5 4,429,663
200 4 1 4 6 4,540,944
500 3 0 4 6 4,857,387

1,000 3 0 4 6 5,379,034

30%

100 8 3 12 9 4,705,851
200 7 2 12 9 5,062,468
500 7 2 12 9 6,116,668

1,000 7 2 12 9 7,864,118

Table 2.7: LOLP and expected cost when changing unmet demand cost and standard deviation

2.4 Conclusion

This Chapter proposed a new modeling approach to solve the two-stage SUCP model. This new

approach does not require scenarios. Instead, the multivariate probability distribution of the

error term of the forecasted residual demand was used to model the SUCP. Since the resulting

objective function is nonlinear, a piecewise linear approximation was used to transform the
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nonlinear SUCP into a MILP. The model that includes the technical constraints of the standard

deterministic UCP was solved in a reasonable time using a commercial solver.

We assessed the accuracy of the piecewise linear approximation and determined the num-

ber of breakpoints by performing a stability analysis. Experimental results indicated that the

linear approximation allows solving real-size problems using a few breakpoints. It was ob-

served that increasing the number of breakpoints did not significantly increase the accuracy of

the linear approximation. In addition, in most experiments, the processing time was within the

range required by the ISOs.

The reliability of the system was assessed by studying the LOLP at higher levels of the

forecast error variability. For most of the experiments, the results showed a LOLP on average

of less than 5%. As more renewable energy sources become available, modeling the demand

and supply uncertainty becomes highly relevant.

The main contribution of this Chapter is a novel approach to modeling the uncertainty

within the SUCP and developing a suitable solution method that provides cost-efficient unit

commitment schedules with acceptable levels of reliability. To the best of our knowledge,

this is the first time the SUCP is solved without using scenario generation, which adds a new

formulation for solving this relevant problem. Future research should compare the advantages

and disadvantages of the proposed model to conventional SUCP formulations, which are based

on generating scenarios.
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Chapter 3

Modeling Ramping Constraints for the Statistical Unit Commitment Problem

3.1 Introduction

In power systems operations, the energy generation schedule is generated by solving the Unit

Commitment Problem (UCP), a non-convex mixed-integer linear optimization problem (MILP).

This problem has been studied for over four decades by the Operations Research community,

and with the increasing integration of Renewable Energy Sources (RESs) into the energy ma-

trix, addressing uncertainty has become more relevant when modeling the UCP. Thus, stochas-

tic modeling is a good approach to incorporate uncertainties and account for disturbances im-

pacting normal operations [61].

By including such uncertainties, decision-making processes achieve a higher level of real-

ism that deterministic models cannot capture. Notably, this enables considering various factors,

such as demand management programs, renewable energy production, and outages, which are

essential in addressing the complexity of the UCP [62]. In addition, stochastic models can

handle the variability of RESs, reducing reliance on manual reserves. Regarding reliability,

stochastic schemes outperform deterministic ones due to their ability to accommodate poten-

tial scenarios [63]. Thus, adopting uncertainty through stochastic models can result in more

accurate, flexible, and resilient solutions for power system operations.

The UCP started to be solved using algorithms such as dynamic programming [64, 65],

priority list heuristics [66], and the Lagrangian-relaxation method [67, 68]. However, due to

the progress of off-the-shelf solvers, researchers have focused on improving the mathemati-

cal formulation to speed up the time of the solution algorithms. In particular, most solvers
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use the branch-and-cut algorithm (B&C) to solve Mixed Integer Linear Programming (MILP)

optimization models [69]. The B&C algorithm is an enumerate algorithm that begins solving

a simplified version of the original problem by relaxing integer variables. Because the algo-

rithm starts with a relaxed problem, having tighter formulations can help reduce the number of

potential solutions, tightening the search space. Thus, having a tighter formulation where the

solution of the linear relaxation is closer to the solution of the integer model can speed up the

solving process [70].

Since mathematical formulations directly impact how the B&C algorithm performs, sev-

eral improvements for the deterministic formulation of the UCP have been proposed, focusing

on enhancing the tightness of the commitment and ramping constraints. In [21], the authors

proposed a new formulation for the self-commitment problem that modeled start-up unit tra-

jectory through a tighter and more compact formulation. Later, in [71], the authors extended

the previous work by implementing it in a centralized UCP. This implementation resulted in

tighter and more compact formulation than in [72, 20, 73], leading to faster solving process.

Following the same idea but for the power-based UCP, in [74], the authors derived the convex

hull for operating slow and fast-start units, obtaining integer solutions when solving the UCP

as a linear problem. At the same time, the self-commitment problem has been used to grasp

the improvement of mathematical formulations, which can be extended to centralized UCP

[75, 76]. A comprehensive review of the UCP formulations can be found in [18], where the

authors consolidated into Julia’s programming language library the most relevant formulations

of the UCP. Thus, further computational studies can be done and easily implemented.

Many studies have provided better formulations for the Stochastic Unit Commitment Prob-

lem (SUCP) through valid inequalities. For example, in [77], cutting planes were proposed for

the multi-stage security-constrained UCP. The authors proposed valid lifting and cover inequal-

ities to strengthen the stochastic generation ramping and the load balance polytope. In addition

to valid inequalities, the effort in stochastic optimization relies on proposing optimization meth-

ods that break down the structure of the problem, creating tractable sub problems that lead to

an optimal solution in a reasonable time [78].
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Some aspects of the generator units must be considered in the mathematical formulation

of the UCP, such as the minimum online and offline time, their power, and ramping capacity.

Without considering these elements, the solution could be infeasible in practice, limiting the

applicability of the model. To have a more realistic model, in this Chapter, we model the

ramping constraints for the statistical SUCP, that constrain the power trajectory of the generator

units. We model the nonlinear expected cost using a modeling strategy that yields a logarithmic

number of variables. In addition, different solving strategies are proposed to solve realistic

instances of the SUCP. The remainder of the Chapter is as follows: Section 3.2 describes the

mathematical formulation and Section 3.3 three strategies to solve the problem. We present the

description of the power systems and results in Section 3.4. A case study using a power system

from the California Independent System Operator (CAISO) is tested in Section 3.5. Finally,

conclusions and future research are presented in Section 3.6.

3.2 Mathematical formulation

The following mathematical model minimizes the commitment and expected dispatch costs.

We model the technical constraints using a mathematical formulation called “3bin”. This for-

mulation describes the transition between commitment states using three binary variables [47].

The model is described as follows:

Sets and indices

I Set of units, i ∈ I

T Set of periods, t ∈ T

L Set of breakpoints, l ∈ L

B Set of digits, b ∈ B

Parameters

Chot
i Hot start-up cost of unit i ∈ I

Ccold
i Cold start-up cost of unit i ∈ I

ci Energy cost of unit i ∈ I

Fi(·) Dispatch cost function of unit i ∈ I in period t ∈ T

30



Hit(·) Start-up cost of unit i ∈ I during period t ∈ T

Pmax
i Maximum energy capacity of unit i ∈ I

Pmin
i Minimum energy capacity of unit i ∈ I

RUi Ramping up capacity of unit i ∈ I

RDi Ramping down capacity of unit i ∈ I

T on
i Minimum number of periods of unit i ∈ I has to be on

T off
i Minimum number of periods of unit i ∈ I has to keep off

tcoldi Number of periods after unit i ∈ I becomes cold

uprevi Binary parameter that indicates the on/off state of unit i ∈ I at the beginning of the

planning horizon

∆i Difference between the maximum and minimum energy capacity Pmax
i and Pmin

i of unit

i ∈ I

κ Cost of buying energy from other energy markets.

τ oni Number of periods unit i ∈ I has been on prior to the first period of the planning horizon

τ offi Number of periods unit i ∈ I has been off prior to the first period of the planning horizon

Λ Incidence matrix to model a piecewise linear approximation

Random variables

d̃t Random demand during period t ∈ T

r̃t Random residual demand during period t ∈ T

Decision variables

uit Binary variable that indicates if the unit i ∈ I is on/off during period t ∈ T

vit Binary variable that indicates if the unit i ∈ I is turned on during period t ∈ T

wit Binary variable that indicates if the unit i ∈ I is turned off during period t ∈ T

yhotit Binary variable that indicates if the unit i ∈ I starts hot during period t ∈ T

ycoldit Binary variable that indicates if the unit i ∈ I starts cold during period t ∈ T

pit Dispatch of energy from unit i ∈ I during period t ∈ T

λitl Continuous variable that weighs the breakpoint l ∈ L of unit i ∈ I during period t ∈ T

ηitb Binary variable that indicates if the digit b ∈ B is selected for the unit i ∈ I during period

t ∈ T
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min z =
∑
t∈T

∑
i∈I

Hit(·) +
∑
t∈T

∑
i∈I

Pmin
i ciuit +

∑
t∈T

∑
i∈I

E [F (r̃t)] (3.1)

s.t pit ≤ (Pmax − Pmin)uit ∀i ∈ I, t ∈ T (3.2)

pit − pit−1 ≤ RUi ∀i ∈ I, t ∈ {2, |T |} (3.3)

pit−1 − pit ≤ RDi ∀i ∈ I, t ∈ {2, |T |} (3.4)
t∑

j=γon
it

vij ≤ uit ∀i ∈ I, t ∈ T (3.5)

t∑
j=γoff

it

wij ≤ 1− uit ∀i ∈ I, t ∈ T (3.6)

uit = 1 ∀i ∈ I : uprevi = 1 ∀t ∈ {1, ..., θoni } (3.7)

uit = 0 ∀i ∈ I : uprevi = 0 ∀t ∈ {1, ..., θoffi } (3.8)

yhotit + ycoldit = vit ∀i ∈ I, t ∈ T (3.9)

uit −
t−1∑

l=t−tcoldi −1

uil ≤ ycoldit ∀i ∈ I, t ∈ T (3.10)

uit − uit−1 ≤ vit ∀i ∈ I, t ∈ T (3.11)

wit = vit + uit−1 − uit ∀i ∈ I, t ∈ T (3.12)

pit ≥ 0 ∀i ∈ I, t ∈ T (3.13)

uit, vit, wit, y
hot
it , y

cold
it ∈ {0, 1} ∀i ∈ I, t ∈ T (3.14)

The objective function (3.1) minimizes the expected commitment and dispatch cost. The

first component of the objective function is the start-up cost function, whereHit(·) = Chot
i yhotit +

Ccold
i ycoldit . The second component is the cost of operating the generator units at minimum

capacity. The last component is the expected dispatch cost (E [F (r̃t)]) that depends on the

random residual demand during each period and is presented in the following subsection.

Constraint (3.2) sets the capacity and minimum dispatch of each generator unit. Constraints

(3.3) and (3.4) ensure the ramping capacity of each generator unit. Constraints (3.5) and

(3.6) set the minimum up and down time respectively where γonit = max{t − T on
i + 1, 1} and
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γoffit = max{t− T off
i + 1, 1}. The set of constraints (3.7) and (3.8) determine the initial com-

mitment state of the units, depending on their previous state where θoni = max{1, T on
i −τ oni +1}

and θoffi = max{1, T off
i − τ offi + 1}. Constraint (3.9) ensures that the unit can start either

hot or cold. This constraint is related to constraint (3.10) that indicates that a unit starts cold if

the number of periods being off is greater than tcoldi ∀i ∈ I . Constraint (3.11) ensures a unit is

turned on in the current period if it was off during the previous period. Constraint (3.12) does

the same but for turning off the unit. Finally, constraint (3.13) and (3.14) ensures the integrity

of the variables.

3.2.1 Modeling ramping constraints

This section describes our approach to include ramping constraints on the statistical UCP

model. From Chapter 2, the expected dispatch cost states as follows:

E [F (r̃t)] =
∑
i∈I

ci

∫ ∑
k∈I Pmin

k ukt+
∑i

j=1 ∆jujt

∑
k∈I Pmin

k ukt+
∑i−1

j=1 ∆jujt

St(x) dx+ κ

∫ ∞

∑
k∈I Pmin

k ukt+
∑|I|

j=1 ∆jujt

St(x) dx ∀t ∈ T

(3.15)

In order to include ramping constraints, the energy dispatch has to be controlled by a

continuous variable. In Chapter 2, the dispatch was represented by the term ∆jujt. Thus,

the energy dispatch was 0 or ∆j . However, to provide more flexibility, this parameter can be

transformed into a continuous decision variable pit that controls the dispatch to be between

0 and ∆i. By introducing the variable pit, equation (3.15) can be modified, replacing the

term ∆jujt. This modification allows the model to effectively manage the energy dispatch

between two periods, facilitating the inclusion of ramping constraints. One consequence of

this modification is that each generator unit will dispatch its maximum capacity subject to its

corresponding ramping constraints. Thus, the expected dispatch cost for each period states as

follows:

E [F (r̃t)] =
∑
i∈I

ci

∫ ∑
k∈I Pmin

k ukt+
∑i

j=1 pjt

∑
k∈I Pmin

k ukt+
∑i−1

j=1 pjt

St(x) dx+κ

∫ ∞

∑
k∈I Pmin

k ukt+
∑|I|

j=1 pjt

St(x) dx ∀t ∈ T (3.16)

The expected cost of the new model will be at least the same as the original. Therefore,

the model without ramping constraints provides a lower bound for the model with ramping

constraints. Since the expected dispatch cost (3.16) is nonlinear, a linear approximation is

presented.
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Decimal Gray code
0 000
1 001
2 011
3 010
4 110
5 111
6 101
7 100

Table 3.1: Gray code scheme

3.2.2 Modeling a piecewise approximation with a logarithmic number of variables

In this section, we describe a piecewise linear approximation approach that requires a logarith-

mic number of variables. This approach was proposed in [79], where the authors showed that

the incremental formulation that models Special Order Set of type 2 (SOS2) constraints could

be modified to have a ⌊log2 L⌋ binary variables for each function to be approximated, where

L is the number of breakpoints of the piecewise linear approximation. In order to implement

this modeling approach, we use gray code. Let B be the set of digits in a gray code scheme to

represent cardinal numbers. The number of digits required to represent the nonlinear function

depends on the selected number of breakpoints. For example, Table 3.1 shows the gray code

representation for cardinal numbers from 0 to 7. Thus, 8 breakpoints could be used by the gray

code scheme of Table 3.1.

We present an example using Figure 3.1 to explain this modeling approach. First, since

the function in Figure 3.1 is approximated using 4 breakpoints, we use the first four decimal of

Table 3.1, resulting in only 2 digits of the gray code scheme. We can disregard the first digit

because all the decimals numbers between 0 to 3 have a first digit containing 0. Thus, only

2 binary variables are used. Notice that if we use the incremental approximation piecewise

method, the model would require 4 binary variables [48].

To represent the approximation mathematically on the formulation, we need to couple the

variables λl and η. We create this mathematical relationship using an incidence matrix. Let Λ

be an incidence matrix that indicates if digit b ∈ B of the breakpoint l ∈ L contains the value
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Figure 3.1: Linear approximation represented by gray code scheme

k ∈ {0, 1}. The corresponding incidence matrix of Figure 3.1 is expressed in equation 3.17,

where the row Bij corresponds to the digit i ∈ B with the number j ∈ {0, 1}.

To represent the nonlinear function in Figure 3.1, we explain how to populate the second

column of matrix Λ. By observing Figure 3.1, the second approximation point, λ2 is contained

in both the first and second segments, encoded as 00 and 01 represented by the variables η00

and η01 respectively. Consequently, for λ2, the first digit of variables η00 and η01 only contain

the cardinal number 0. As a result, the first and third rows of the matrix in the second column

are filled with the number 1. Additionally, the second digit of variables η00 and η01 contain the

numbers 0 and 1. Consequently, the second and fourth rows of the second column in matrix

3.17 are filled with 0 and 1, respectively.

Λ =



λ1 λ2 λ3 λ4

B10 1 1 1 0

B11 0 0 1 1

B20 1 1 0 0

B21 0 1 1 1


(3.17)
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Once the incidence matrix is populated, the following equations describe the piecewise

approximation of the function in Figure 3.1.

x =
∑
l∈L

al · λl (3.18)

y =
∑
l∈L

f(al) · λl (3.19)

∑
l∈L

λl = 1 (3.20)

∑
l∈L:Λ(b,0,l)̸=1

λl ≤ ηb ∀b ∈ B (3.21)

∑
l∈L:Λ(b,1,l)̸=1

λl ≤ 1− ηb ∀b ∈ B (3.22)

λl ≥ 0 ∀l ∈ L (3.23)

ηb ∈ {0, 1} ∀b ∈ B (3.24)

By using this approximation scheme, the mathematical model in the previous section is

formulated as follows:
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min z =
∑
t∈T

∑
i∈I

Hi(·) +
∑
t∈T

∑
i∈I

ciP
min
i uit +

∑
t∈T

∑
i∈I

ci

[∑
l∈L

λitlΓt(btl)−
∑
l∈L

λi−1tlΓt(btl)

]
+

∑
t∈T

κ

[
µt −

∑
l∈L

λ|I|tlΓt(btl)

] (3.25)

s.t 3.2− 3.14 (3.26)∑
l∈L

λ0tlbtl =
∑
k∈I

Pmin
k ukt t ∈ T (3.27)

∑
l∈L

λitlbtl =
∑
k∈I

Pmin
k ukt +

i∑
j=1

pjt ∀i ∈ I, t ∈ T (3.28)

L∑
l=1

λitl = 1 ∀i ∈ I, t ∈ T (3.29)

∑
l∈L:Λ(b,0,l)̸=1

λitl ≤ ηitb ∀i ∈ I, t ∈ T, b ∈ B (3.30)

∑
l∈L:Λ(b,1,l)̸=1

λitl ≤ 1− ηitb ∀i ∈ I, t ∈ T, b ∈ B (3.31)

λitl ≥ 0 ∀i ∈ I, t ∈ T, l ∈ L (3.32)

ηitb ∈ {0, 1} ∀i ∈ I, t ∈ T, b ∈ B (3.33)

The objective function (3.25) minimizes the start-up cost and the expected dispatch cost

linearized by using piecewise linear approximation. The set of constraints (3.26) represents

the dispatching and commitment constraints presented in section (3.2). Constraints (3.27) and

(3.28) ensure the correct representation of the limits of the integral in expression (3.16). Con-

straints (3.29), (3.30), and (3.31) ensure that only two consecutive points in each segment of

the approximation are selected. Finally, the integrity of the variables is defined in constraints

(3.32) and (3.33).
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Unit Pmax Pmin ∆ c
1 455 150 305 16.19
3 130 20 110 16.50
2 130 20 110 16.60

Table 3.2: 3-units power system

Breakpoints 1 2 3 4
bl 0 428.94 539.00 715

Γ(bl) 0 422.04 485.62 500

Table 3.3: Breakpoints of function Γ(x) using µ = 500 and σ = 75

3.3 Methods to solve the statistical UCP

3.3.1 Indexing the generator units based on economic order

A tighter mathematical formulation leads to a better linear relaxation closing the gap between

the solutions of the linear relaxation and integer problem. For this mathematical model, a

tighter formulation can be achieved if the units are indexed according to their cost ci before

solving the optimization problem. Consider an example of a 3-unit power system as shown

in Table 3.2. This system is analyzed in a single period of demand parameters µ = 500 and

σ = 75. The breakpoints bl and their respective Γ(bl) function values are described in Table

3.3. For a given schedule Û , we relax the binary variables ηib and solve the economic dispatch

problem consisting of the objective function (3.25) and constraints (3.27)-(3.33). We solve the

described optimization problem using the predefined order from Table 3.2 and by ordering the

units by their cost, ci. We call the former predOrder and the latter econCostOrder.

When using predOrder and econCostOrder, the solutions of the respective linear relax-

ations differ. These solutions are primarily affected by how the weights λl are used to calculate

the linear combination of x and its resulting function value Γ(x). Therefore, we examine these

differences and their implications. The resulting objective function of predOrder and econCos-

tOrder corresponds to z1 = 16, 342.60422 and z2 = 16, 351.82854, respectively. Since z2 > z1,

the econCostOrder method provides a tighter relaxation. In both cases, all units dispatch their

maximum capacity. However, the result of the weight variables λl differ.
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Weights Resulting linear combination
Units λ1 λ2 λ3 λ4 x Γ(x)

0 0.55 0.45 0.00 0.00 190.00 186.94
1 0.00 0.40 0.60 0.00 495.00 460.20
2 0.16 0.00 0.00 0.84 605.00 423.03
3 0.00 0.00 0.00 1.00 715.00 500.00

Table 3.4: Linear relaxation solution using predOrder

In Table 3.4 and Table 3.5, the weights variables λl and the linear combinations of x and

Γ(x) of each unit are presented for predOrder and econCostOrder approach, respectively. The

columns x and Γ(x) are calculated as the sum product between each row of weights and the

values in Table 3.3. Thus, a linear combination between the weights λl and the breakpoints

(bl,Γ(bl)) is calculated.

It is observed in Table 3.4 that when solving the linear relaxation using predOrder, the

results yield a linear combination for the second unit that does not meet the condition of using

only two consecutive λl. Even though there are two non-consecutive λs that result in the proper

value of x. Its corresponding Γ(x) value using λ1 and λ4 is not located in the last segment as

shown in Figure 3.2. The last green dot uses a projection of a segment that passes through the

origin and the last point of the approximation. Thus, when using predOrder, the variables η

must be binary to enforce that the linear combination is always calculated using two consecutive

weights λ.

For the case when using econCostOrder, for all the units, the solution of the relaxed prob-

lem yield two consecutive λl to compute the linear combination of the value of x. Moreover,

the linear combinations also yield the proper value of the function Γ(x). In Figure 3.2, each

orange dot is in each segment of the piecewise linear function. Therefore, using econCostOrder

yields a tighter linear relaxation which could lead to faster convergence of the B&C algorithm

due to higher lower bounds.

3.3.2 Proposing valid cuts for the piecewise approximation

In this section, we introduce a set of valid inequalities to strengthen the formulation that approx-

imates the nonlinear expected cost (3.16). Henceforth, we named this method ValidInequalities
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Weights Resulting linear combination
Units λ1 λ2 λ3 λ4 x Γ(x)

0 0.56 0.44 0.00 0.00 190.00 186.94
1 0.00 0.40 0.60 0.00 495.00 460.20
3 0.00 0.00 0.63 0.37 605.00 500.00
2 0.00 0.00 0.00 1.00 715.00 500.00

Table 3.5: Linear relaxation solution using econCostOrder
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Figure 3.2: Linear combination under two sorting strategies
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Figure 3.3: Correspondence between the linear approximation and the energy production

In the mathematical formulation presented in section 3.2.2, the variables λitl and λitl+1

weights the points btl and btl+1, respectively. These weights are used to create a linear com-

bination, determining the value on the right-hand side of constraints (3.27) and (3.28). By

observing the linear combination in constraints (3.27) and (3.28), an increase in the energy

production using the variable pit results in an increase in the cumulative production. This ob-

servation implies that the cumulative production up to unit i + 1 must be at least equal to the

cumulative production up to unit i, as specified in constraints (3.27) and (3.28). The above is

shown in Figure 3.3 where the initial energy production increases by the value of p1. Thus, the

energy production along the x-axis consistently moves in the positive direction.

An analysis of the linear combination reveals that as the total production approaches the

first breakpoint, the variable λit0 is greater than λit1. Conversely, as the total production in-

creases and approaches the second breakpoint, λit1 increases in weight while λit0 decreases.

Thus, we impose the following constraint:

λit0 ≥ λi+1t0 ∀i ∈ I, t ∈ T (3.34)
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Similarly, as the cumulative production reaches the last breakpoint, the variable λitL in-

creases and λitL−1 decreases. Thus, the following constraint is imposed:

λitL ≤ λi+1tL ∀i ∈ I, t ∈ T (3.35)

By using both constraints, there is an exact correspondence between the variables λitl and

λi+1tl for the first and last breakpoints, resulting in a tighter relaxation when solving the original

problem.

3.3.3 Generating an initial solution using a priority list heuristic

In this section, we present a hybrid heuristic approach, combining the priority list heuristic with

the economic dispatch problem. Thus, a feasible solution is generated and used as a warm-up

strategy before initiating the B&C algorithm.

The priority list heuristic method generates a list of generator units arranged in descending

order of priority. This ranking determines the sequence in which the generators are started until

a specific condition is satisfied. On the other hand, the economic dispatch problem focuses

on optimizing the energy dispatch while adhering to technical constraints. In this context, we

create an initial commitment schedule using the priority list heuristic. Then, the commitment

schedule is fixed in the economic dispatch problem, maximizing the energy dispatch while

meeting capacity and ramping constraints. The resulting solution is used as a warm-up strategy,

serving as an initial solution.

The pseudo-code 1 describes the priority list method. This method generates an initial

schedule by turning on units based on their index and assuming they dispatch maximum ca-

pacity. The energy production of each unit is accumulated in the variable gcum for each period

and is used to check if the probability of meeting the residual demand exceeds the specified

threshold pbb. The heuristic stops when the threshold is met, or all units have been turned on.

This process is repeated for all periods.

The number of units started in each period may vary depending on the residual demand

distribution variance. Higher variance can lead to more units starting up. However, the priority
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Algorithm 1 Priority list
for t ∈ T do

gcum = 0
i = 0
while P (gcum ≥ rt) ≥ pbb and i ≤ |I| do

gcum = gcum + Pmax
i

uit = 1
i = i+ 1

end while
end for

list method does not consider the boundary conditions of each unit expressed in constraints

(3.7) and (3.8) and the minimum up/down constraints (3.5) and (3.6). Thus, a heuristic is used

to repair the schedule based on the method proposed in [80].

Assume θoff = 1, and τ off = 2, which represent the number of periods a unit should

remain off at the beginning of the planning horizon and the number of periods the units must

remain off after is shut down, respectively. After executing Algorithm 1, a unit has the com-

mitment status represented by the first schedule in Figure 3.4 for a planning horizon of 8 hours.

Based on the parameters of this unit, the schedule in Figure 3.4 is infeasible. First, it violates the

time that should remain off at the beginning of the planning horizon (3.8), and the minimum

down constraint (3.6). Thus, the repairing heuristic first ensures that the initial commitment

status constraint is met by modifying the first period, as shown in Figure 3.4. Once the initial

commitment status is repaired, the minimum down constraint is repaired by using the repairing

heuristic 2.

First, the repairing heuristic 2 identifies all sequences of up (down) statuses. Then, each

sequence is verified to ensure that meets the minimum up (down) constraint. To modify a

sequence, equation (3.36) operates by generating a random number between 0 and 1 that is

compared to the proportion of the time the unit is on (off) regarding the required time. For

example, in Figure 3.5, the first sequence starts at period 2 and finishes at period 3. Since the

minimum up constraint is not violated, it continues to the second sequence that starts in period

4. Since the sequence length of the following sequence contains only one period, the minimum

down constraint is not met. Thus, there are two alternatives: first, the unit could be turned off
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at period 5 or turned on at period 4, which is decided based on equation (3.36). Therefore, a

feasible schedule is always generated.

 1 rand(0, 1) ≤ ton(off)

τup(down)

0 rand(0, 1) > ton(off)

τup(down)

(3.36)

1 2 3 4 5 6 7 8
1 1 1 0 1 0 1 1

Hours
Status

1 2 3 4 5 6 7 8
0 1 1 0 1 0 1 1

Figure 3.4: Commitment status of a generator unit

1 2 3 4 5 6 7 8
0 1 1 0 1 0 1 1

Hours
Status

1 2 3 4 5 6 7 8
0 1 1 1 1 0 1 1

1 2 3 4 5 6 7 8
0 1 1 0 0 0 1 1

Figure 3.5: Repairing the commitment schedule of a generator unit

Algorithm 2 Sequence repairing heuristic
for i in units do

Generate sequence of on and off periods
for every sequence do

if sequence on (off) violates minimum up (down) constraint then
Repair sequence based on random number

else
Constraint is not violated, go to next sequence

end if
end for

end for

Once the schedule is generated, the dispatch of each unit is generated by maximizing the

total dispatch subject to the ramping constraints as shown in model (3.37)-(3.41). Thus, a

feasible solution is always generated and can be used as a warm-up solution.
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max z =
∑
t∈T

∑
i∈I

pit (3.37)

s.t pit ≤ (Pmax − Pmin)ûit ∀i ∈ I, t ∈ T (3.38)

pit − pit−1 ≤ RUi ∀i ∈ I, t ∈ {2, |T |} (3.39)

pit−1 − pit ≤ RDi ∀i ∈ I, t ∈ {2, |T |} (3.40)

pit ≥ 0 ∀i ∈ I, t ∈ T (3.41)

3.4 Testing the proposed solution strategies

3.4.1 Describing the power systems and residual demand model

In this section, we present a description of the systems and the residual demand modeling.

We use three power systems to demonstrate the robustness of our methodology. Each system

contains information about the generator units and the residual demand.

The first system, referred to as Kazarlis100, consists of 100 units and is constructed by

replicating five times the 20-unit system detailed in [49]. The second system, named OrLib100

is a synthetic power system containing 100 units sourced from the OR library OR-Lib [81].

Designed to mimic real-world systems, this power system serves as a benchmark for solving

the UCP [64]. Lastly, the Tejada214 system, described in [82], contains 214 units. This system

does not include startup and shutdown costs. All three systems are solved within a 24-hour

planning horizon, with the cost of unmet demand assumed to be 100 $
MWh

.

In this research, the stochastic residual demand, r̃ is modeled as shown in equation (3.42).

The vector value µ corresponds to the forecast of the residual demand, i.e., the difference

between the expected demand and the expected renewable energy production. We assume that

the error term ϵ follows a multivariate normal distribution with mean vector 0 and covariance

matrix Σ.

r̃ = µ+ ϵ (3.42)
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Notice that the model does not restrict what forecasting model for the residual demand is used.

Therefore, it is assumed that a forecast of the residual demand and estimates of the error term

distribution parameters are known. Moreover, the RES production corresponds to solar or wind

energy because the forecasted irradiation or wind speed is estimated.

For these experiments, the residual demand of the Kazarlis100 instance is constructed

based on the demand and wind power profile from [49] and [54], respectively. The other

systems do not consider renewable energy production. Nevertheless, the same assumptions can

be applied. We compute the covariance matrix Σ assuming a standard deviation equivalent to

15% of the mean vector. We assume an Autoregressive model AR(1). Equation (3.43) shows

the corresponding covariance matrix with |T | periods as the planning horizon.

Σ =



σ2
1 σ1σ2ρ · · · σ1σTρ

T−1

σ2σ1ρ σ2
1 · · · σ2σTρ

T−2

...
... . . . ...

σTσ1ρ
T−1 σTσ2ρ

T−2 · · · σ2
T


(3.43)

To compute the breakpoints of the functions Γ(x) given in equation (3.25), we used the

PWLF optimization library [57]. This library determines the breakpoints using a multi-start

gradient method that minimizes the sum-of-squares of residuals. Since this method is a lo-

cal search optimizer, it provides different breakpoints at each run. To ensure accuracy and

consistency, we executed 20 approximations using the PWLF library considering 4, 8, and 16

breakpoints, resulting in 60 instances per system. The reasoning behind the number of break-

points is based on the logarithmic approach to model the piecewise approximation. Using 4, 8,

and 16 breakpoints will result in 2, 3, and 4 binary variables per function.

We reformulate the objective function to eliminate the dependence on constants in the

objective function when solving the model. This approach disregards the constant value and

transforms the objective function into a maximization problem. Thus, instead of minimizing the

original expression, we maximize the negative value of the remaining expression. Maximizing

the negative achieves the same optimization goal while providing interpretable values in the
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objective function. Thus, the objective function to be optimized states as follows:

max z =−
∑
t∈T

∑
i∈I

Hit(·)−
∑
t∈T

∑
i∈I

ciP
min
i uit −

∑
t∈T

∑
i∈I

ci

[∑
l∈L

λitlΓt(btl)−
∑
l∈L

λi−1tlΓt(btl)

]
−

∑
t∈T

κ

[
−
∑
l∈L

λ|I|tlΓt(btl)

] (3.44)

All methods were coded on Python 3.9, and the models were solved using the solver

Gurobi 9.5.1. The stopping condition was set at 600 seconds for all experiments in this section.

The strategies used are as follows:

• BaseCase: The optimization problem is solved without any additional valid inequality or

initial solution. Moreover, the system is used in its predefined order without sorting the

units by their cost.

• validInequalities: The optimization problem is solved using the set of valid inequalities

proposed in Section 3.3.2.

• heuristicInit: The optimization problem is solved by generating an initial solution when

starting the B&C algorithm.

• econCostOrder: The optimization problem is solved ordering the generator units by their

costs.

• hybrid: The optimization problem is solved combining heuristicInit and econCostOrder.

For every power system and breakpoint (4, 8, and 16), we generated a total of 20 instances.

For each generated instance, we recorded the relaxation value at the beginning of the B&C

algorithm and the value of the initial integer solution, which we refer to as the incumbent.

Additionally, we stored the MIP gap upon completing the optimization process, reporting either

a value of 0 if an optimal solution was achieved or the gap reached within the 600-second time

limit. Thus, we calculated the average of these metrics among the corresponding power system

and breakpoint combination.
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3.4.2 Analyzing the upper and lower bounds

In this section, we analyze the upper bound and incumbent of the objective function using the

proposed solving strategies. Figures 3.6, 3.7, and 3.8 show the initial average upper bound and

incumbent values obtained at the start of the B&C algorithm (y-axis) for each solving method

(x-axis) of the Kazarlis100, OrLib100 and Tejada214 power systems, respectively.

Figures 3.6a, 3.6b, and 3.6c show the curves of the upper bound and incumbent value of

the system Kazarlis100 using 4, 8, and 16 breakpoints, respectively. The base case presents

the highest upper bound and the lowest incumbent value when starting the B&C algorithm.

This could lead to a longer time when solving the model due to the time to apply cuts and

close subproblem nodes during the B&C algorithm. The upper bound should be lower to avoid

exploring subproblem nodes that will not lead to an optimal solution.

When using validInequalities, the upper bound is lower than in the base case regardless

of the number of breakpoints. However, the effectiveness decreases when adding more break-

points because the valid inequalities only constrain the transition in the first and last segments

of the piecewise functions. Thus, as the number of breakpoints increases, the valid inequalities

lose their effectiveness in the upper bound of the objective function. See figures 3.6b and 3.6c.

This method produced an unexpected result when applied to systems OrLib100 and Tejada214.

Figure 3.7c shows the upper bound and incumbent values of the OrLib100 system using 16

breakpoints. No feasible solution was found within the specified time limit. The same outcome

is observed in figures 3.8b and 3.8c, corresponding to the Tejada214 system using 8 and 16

breakpoints, respectively. We attribute this outcome to the increased complexity of the relax-

ation problem when additional constraints are introduced. Since the B&C algorithm solves

subproblem nodes iteratively, more constraints lead to prolonged solution times for each sub-

problem. Although the inclusion of valid inequalities enhances the relaxation of the problem,

the base case has fewer constraints. Therefore, it is easier to solve, providing feasible solutions

within the time limit.

When using econCostOrder instead of using validInequalities, the upper bound results in

a lower value compared to the BaseCase and validInequalities methods. This observation is
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Figure 3.6: Average bounds value at root node - Kazarlis100 power system

consistent across different numbers of breakpoints, as shown in figures 3.6a, 3.6b, and 3.6c for

the Kazarlis100 power system. The same results are observed in the OrLib100 and Tejada214

power systems, as shown in figures 3.7 and 3.8, respectively. Using econCostOrder provides a

tighter linear relaxation, starting the B&C algorithm from a lower objective value in the linear

relaxation.

In our discussion, we have presented methods that improve the upper bound without im-

proving the incumbent value. One way to speed up the incumbent value generation is by feed-

ing an initial solution to the solver. Thus, the B&C algorithm may start from a better solution

and provide an estimate of the MIP gap. Figure 3.6a shows that when using heuristicInit, the

initial incumbent value is higher and closer to the upper bound. This situation also occurs when

extending to cases with more breakpoints (see figures 3.6b, and 3.6c). This strategy also leads

to a better incumbent value for the other systems (see figures 3.7 and 3.8).

It is important to note that an optimal solution is reached when both the upper bound and

incumbent are equal. Therefore, we combine both methods to close both curves and speed up

the solving process. It is observed in figures 3.6, 3.7 and 3.8 that by using the hybrid method,

the upper bound and incumbent value are almost the same independently of the number of

breakpoints. Thus, we can guarantee a small MIP gap when using more breakpoints leading to

higher accuracy.

3.4.3 Analyzing the average MIP gap

In this subsection, we analyze the average MIP gap obtained from 20 replicates for each in-

stance, which consisted of the Kazarlis100, OrLib100, and Tejada214 power systems using 4,
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Figure 3.7: Average bounds value - OrLib100 power system
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Figure 3.8: Average bounds value - Tejada214 power system

8, and 16 breakpoints. The MIP gap of each instance was calculated after a maximum elapsed

time of 600 seconds.

Figure 3.9 shows the average MIP gap of the Kazarlis100 power system for the different

methods we used to solve the optimization problem using 4, 8, and 16 breakpoints. For in-

stances with 4 breakpoints, all methods produced an average MIP gap closes to zero. However,

as the number of breakpoints increased to 8 and 16, only the hybrid method achieved an opti-

mal solution. Specifically, when using 16 breakpoints, the optimization process did not find an

optimal solution when using the econCostOrder method. In contrast, an optimal solution was

achieved when using the hybrid method. We attribute this result to the low incumbent value of

this instance, as shown in Figure 3.6c.

Figure 3.10 presents the average MIP gap of the OrLib100 power system. We observed

that using 4 breakpoints, the methods validInequalities, econCostOrder, and hybrid resulted in

an acceptable average MIP gap. However, when using 8 breakpoints, the average MIP gap more

than doubled, indicating a more challenging optimization scenario. Moreover, when utilizing

16 breakpoints, the method validInequalities failed to provide any feasible solution. Notice that
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Figure 3.9: Average MIP gap of the Kazarlis100 power system
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Figure 3.10: Average MIP gap of the OrLib100 power system

if no feasible solution is found, it is not possible to calculate the MIP gap. The MIP gap requires

an incumbent solution as a reference point to compute the distance to the current upper bound.

For the OrLib100 power system, employing econCostOrder or hybrid methods consistently

resulted in optimal solutions for all instances.

Figure 3.11 shows the average MIP gap of the Tejada214 power system. Like the previous

systems, feasible solutions were obtained when using 4 breakpoints. However, when using 8

breakpoints, the validInequalities method failed to provide a feasible solution. Moreover, when

using 16 breakpoints, both BaseCase and validInequalities methods did not produce feasible

solutions. This outcome can be attributed to the size of the Tejada214 system, which consists

of 214 units, more than double the previous systems. Notably, the econCostOrder and hybrid

methods resulted in smaller average MIP gap, indicating near-optimal solutions.
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Figure 3.11: Average MIP gap of the Tejada214 power system

Based on these results, using the econCostOrder method, consistently leads to near-optimal

solutions due to the favorable upper bound obtained through the initialization of the B&C algo-

rithm. However, as the problem complexity increases with additional breakpoints and a larger

number of generator units in the system, relying exclusively on this method may fail to generate

feasible or optimal solutions. To address this issue, an initial solution can be provided to the

solver to handle larger problem instances. In addition, the solver can measure the quality of

this initial solution by computing the MIP gap.

3.4.4 Comparing the logarithmic and incremental piecewise linear approximation methods

In the previous sections, we highlighted the advantages of using the proposed solving strate-

gies to address the statistical UCP, reporting the average upper bound, incumbent value, and

MIP gap as performance measures. However, the results were calculated using a logarithmic

approach to model the piecewise linear model. In this section, we compare the performance of

the SUCP model using two approaches to model the piecewise linear approximation, namely

the incremental and the logarithmic approaches. Given the unfavorable outcomes observed

in the base case and when using valid inequalities, we provide a comparative analysis only

considering the heuristicInit, econCostOrder, and the hybrid strategies.

To perform the comparison, we generated 20 problem instances following the same pro-

cedure as in the previous section. These instances consider the power systems Kazarlis100,

OrLib100, and Tejada214 and 4, 8, and 16 breakpoints. By conducting this comparison, we
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Breakpoints Method Model Optimal Solutions Average MIP Gap (%) Std. MIP Gap (%) Average Run Time (s) Std. Run Time (s) Average Var. Cost ($) Average Var. Cost Analytical ($)

4

Heuristic
3bin 0 10.72 0.16 600 0 4,672,776 4,530,589

3bin + LogApp 0 11.05 0.21 600 0 4,666,729 4,493,503

sortByCost
3bin 20 0.00 0.00 8 0 4,464,508 4,388,865

3bin + LogApp 20 0.00 0.00 6 0 4,464,511 4,385,922

Heuristic + sortByCost
3bin 20 0.00 0.00 7 1 4,464,492 4,389,652

3bin + LogApp 20 0.00 0.00 5 0 4,464,510 4,385,927

8

Heuristic
3bin 0 12.35 0.18 600 0 4,590,384 4,569,713

3bin + LogApp 0 20.67 0.40 600 0 4,570,477 4,548,164

sortByCost
3bin 20 0.00 0.00 110 70 4,360,308 4,339,700

3bin + LogApp 20 0.00 0.00 83 62 4,360,495 4,339,754

Heuristic + sortByCost
3bin 20 0.00 0.00 52 24 4,360,431 4,339,793

3bin + LogApp 20 0.00 0.00 33 8 4,360,392 4,339,798

16

Heuristic
3bin 0 14.99 0.98 600 0 4,853,730 4,845,190

3bin + LogApp 0 25.76 0.72 600 0 4,706,463 4,700,232

sortByCost
3bin 20 0.00 0.00 482 67 4,341,543 4,337,528

3bin + LogApp 0 479.88 137.22 601 0 21,144,847 21,144,031

Heuristic + sortByCost
3bin 20 0.00 0.00 411 103 4,342,611 4,338,568

3bin + LogApp 20 0.00 0.00 445 80 4,341,574 4,337,517

Table 3.6: Comparison between models using the Kazarlis power system

aim to obtain insights into the effectiveness of these two modeling approaches to model piece-

wise linear functions. Henceforth, we call the model using the incremental model as 3binD and

the logarithmic model as 3binLog.

Tables 3.6, 3.7, and 3.8 provide a comparison between the optimization models 3binD

and 3binLog using the Kazarlis100, OrLib100, and Tejada214 power systems and 4, 8, and 16

breakpoints. For each table, the average and standard deviation of the MIP gap are reported

after a maximum of 600 seconds, defined as the stopping condition. If the solver reaches an

optimal solution in less than 600 seconds, the reported time corresponds to the elapsed time

required to find an optimal solution. In addition, the tables provide the average and standard

deviation of the elapsed time. Finally, we assess the accuracy of the statistical UCP approach

by reporting the average expected dispatch cost obtained using the solver and its corresponding

analytical value determined by evaluating each solution on the analytical expression presented

in equation (3.16)

Table 3.6 presents the performance metrics of the optimization model when solving the

Kazarlis100 power system. The results indicate that both models produce similar outcomes

regarding the average MIP gap. However, the 3binLog model did not find an optimal solution

when employing the econCostOrder method on the model with 16 breakpoints. Regarding the

elapsed time, the 3binD model exhibits a slightly higher average and standard deviation, mainly

when using 16 breakpoints and applying the hybrid method. Regarding the analytical cost, by

increasing the number of breakpoints, the optimization model can provide an accurate result,

as the cost by optimization is similar to the analytical one.
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Breakpoints Method Model Optimal Solutions Average MIP Gap (%) Std. MIP Gap (%) Average Run Time (s) Std. Run Time (s) Average Var. Cost ($) Average Var. Cost Analytical ($)

4

Heuristic
3bin 0 44.96 0.77 600 0 14,738,374 14,572,867

3bin + LogApp 0 44.62 0.92 600 0 14,675,589 14,514,742

sortByCost
3bin 20 0.00 0.00 8 1 14,372,166 14,190,458

3bin + LogApp 20 0.00 0.00 7 0 14,372,039 14,190,155

Heuristic + sortByCost
3bin 20 0.00 0.00 10 3 14,372,138 14,190,343

3bin + LogApp 20 0.00 0.00 8 1 14,372,331 14,190,242

8

Heuristic
3bin 0 57.15 0.37 600 0 14,692,048 14,668,771

3bin + LogApp 0 106.90 2.32 600 0 14,847,487 14,824,385

sortByCost
3bin 20 0.00 0.00 17 4 14,194,948 14,170,943

3bin + LogApp 20 0.00 0.00 14 2 14,194,982 14,170,866

Heuristic + sortByCost
3bin 20 0.00 0.00 23 8 14,194,795 14,170,793

3bin + LogApp 20 0.00 0.00 15 1 14,194,915 14,170,855

16

Heuristic
3bin 0 95.97 0.54 600 0 15,499,245 15,492,642

3bin + LogApp 0 134.41 3.25 600 0 14,937,777 14,932,214

sortByCost
3bin 20 0.00 0.00 43 16 14,175,041 14,169,469

3bin + LogApp 20 0.00 0.00 16 2 14,175,117 14,169,516

Heuristic + sortByCost
3bin 20 0.00 0.00 50 42 14,175,004 14,169,456

3bin + LogApp 20 0.00 0.00 23 1 14,174,828 14,169,312

Table 3.7: Computational comparison between models using the OrLib power system

Table 3.7 presents the performance metrics of the optimization model when solving the

OrLib100 power system. As in the previous system, the results when using both models are

similar. Nevertheless, when applying the heuristicInit method with 8 and 16 breakpoints, the

3binD model presents a much lower average MIP gap. Regarding elapsed time, the 3binLog

model can find an optimal solution in a slightly shorter and less variable time. This is observed

when using 16 breakpoints and applying the hybrid method. Regarding the accuracy, when

using 8 breakpoints, the model presents a difference of $ 24,000, representing around 0.1% of

the total cost, and when increasing to 16 breakpoints, this difference is around 0.03%.

Table 3.8 presents the results when solving the model using the Tejada214 power sys-

tem. Since this power system has more generator units, the solver neither found an optimal

nor near-optimal solution as in the previous power systems. For example, when applying the

heuristicInit with 4 breakpoints, the result reported a MIP gap on average above 100%. When

the model 3binLog is solved, the elapsed time presents small variability. As in the previous

systems, increasing the number of breakpoints increases the accuracy levels. For example,

when using the hybrid method with 8 breakpoints in the 3binLog model, the difference be-

tween the cost obtained using optimization and its respective analytical cost is around 0.38%,

and it decreases to 0.19% when increasing the number of breakpoints to 16.

A surprising finding resulted from the analysis of the studied power systems. Tables 3.6,

3.7, and 3.8 show that when using 16 breakpoints and applying the heuristicInit method, the

3binD model presents a smaller MIP gap compared to the 3binLog model. However, this dif-

ference in the average MIP gap is not accurately observed in the objective value. Surprisingly,

despite the smaller gap, the 3binD model produces a higher objective value than the 3binLog
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Breakpoints Method Model Optimal Solutions Average MIP Gap (%) Std. MIP Gap (%) Average Run Time (s) Std. Run Time (s) Average Var. Cost ($) Average Var. Cost Analytical ($)

4

Heuristic
3bin 0 169.66 0.56 600 0 4,761,526 4,552,037

3bin + LogApp 0 167.74 1.08 600 0 4,761,526 4,552,037

sortByCost
3bin 20 0.00 0.00 104 21 3,736,025 3,439,890

3bin + LogApp 20 0.00 0.00 73 13 3,735,636 3,438,373

Heuristic + sortByCost
3bin 20 0.00 0.00 119 24 3,735,895 3,439,192

3bin + LogApp 20 0.00 0.00 84 15 3,735,850 3,438,590

8

Heuristic
3bin 0 171.31 0.63 600 0 4,581,211 4,536,328

3bin + LogApp 0 221.32 26.97 600 0 4,900,765 4,858,031

sortByCost
3bin 3 49.51 12.22 591 41 7,042,444 7,028,761

3bin + LogApp 20 0.00 0.00 201 97 3,427,920 3,414,795

Heuristic + sortByCost
3bin 19 0.03 0.14 334 127 3,435,111 3,422,397

3bin + LogApp 20 0.00 0.00 158 67 3,428,222 3,415,148

16

Heuristic
3bin 0 173.87 0.50 600 0 12,450,469 12,434,011

3bin + LogApp 0 246.54 1.66 600 0 4,584,593 4,561,185

sortByCost
3bin 0 435.15 385.01 610 14 21,629,829 21,622,724

3bin + LogApp 20 0.00 0.00 516 119 3,415,435 3,408,917

Heuristic + sortByCost
3bin 15 0.01 0.01 414 177 3,417,241 3,410,887

3bin + LogApp 20 0.00 0.00 322 34 3,415,545 3,409,125

Table 3.8: Computational comparison between models using the Tejada power system

Power System Breakpoints Model Columns Rows Columns after presolve Rows after presolve

Kazarlis100

4
3binD 33768 40768 20174 26528

3binLog 31344 38344 20282 27097

8
3binD 53160 50464 35749 35288

3binLog 43464 43192 32446 31900

16
3binD 91944 69856 65669 51667

3binLog 65280 48040 57702 40372

Orlib100

4
3binD 33768 40922 17312 23186

3binLog 31344 38498 17314 23209

8
3binD 53160 50618 26758 29389

3binLog 43464 43346 28128 29004

16
3binD 91944 70010 50769 44254

3binLog 65280 48194 57275 39554

Tejada214

4
3binD 72072 87295 46737 57854

3binLog 66912 82135 46748 58634

8
3binD 113352 107935 85435 80080

3binLog 92712 92455 73853 69419

16
3binD 195912 149215 137312 106245

3binLog 139152 102775 120296 79656

Table 3.9: Problem size comparison before and after presolve

model. We attribute this behavior to the relaxation bound of the 3binLog model. The solver

cannot provide a tight bound for the 3binLog leading to a higher MIP gap even though the

integer solution is better than in the other model.

Table 3.9 presents the average size of each system using 4, 8, and 16 breakpoints for the

3binD and 3binLog models, both before and after the presolve. Specifically, the 3binLog model

exhibits a smaller number of columns and rows, indicating a reduced number of variables and

constraints. However, after executing the presolve, both models converge to a similar size.

The most notable distinction arises when employing 16 breakpoints, where the 3binD model

demonstrates a larger size compared to the 3binLog model. Therefore, the similarity in the

elapsed time reported in Tables 3.6, 3.7, and 3.8 can be attributed to the size of the model after

the presolve step.
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3.5 Solving the statistical SUCP on the California ISO system

In this section, a case study analyzes the performance and applicability of the model in a real-

istic power system. The selected system corresponds to the California ISO (CAISO) system,

consisting of 610 generator units, 24 hours of planning horizon, and wind energy production

equivalent on average between 20% to 40% of the energy demand. This system can be found

in [18] and corresponds to the instance named “Scenario400 reserves 0”. This system does not

consider energy reserve, which is the case analyzed in this Chapter. We considered and scenario

for wind energy production corresponding on average to 30% of the energy demand. Regarding

the breakpoints, we calculated 20 replicates for 16 and 32 breakpoints using the PWFL library.

For the residual demand, the standard deviation is considered as 15% of the mean vector.

Considering the results of the previous section, an initial solution is constructed using the

priority list heuristic. Also, we applied the sortByCost method to obtain a tighter linear relax-

ation. Notice that even though the linear relaxation can be good, given the size of the problem,

finding a feasible solution can be complex. Thus, this warming-up strategy can accelerate the

finding of a feasible solution.

Table 3.10 shows the average and standard deviation for the MIP gap and the run time.

Moreover, it presents the average expected variable cost obtained by using the solver and its

corresponding value when evaluating the solution on its nonlinear function. By using 16 and 32

breakpoints, the solver can reach near-optimal solutions independent of the model. However,

the solution results in a high average and variable MIP gap when using 32 breakpoints in the

3binLog model. Although the gap is extremely high, when observing the cost, the 3binD model

is not much higher than the 3binLog model. Thus, the higher gap is attributed to a poor bound

during the optimization. We observe the same result in the previous section when observing

the MIP gap and cost on tables 3.6, 3.7, and 3.8. Regarding the accuracy of the solution, when

using 16 and 32 breakpoints, there is a deviation of 14% and 10%, respectively, regarding the

analytical solution. Thus, higher accuracy levels can be achieved when using more breakpoints.
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Breakpoints Model Optimal Solutions Average MIP Gap (%) Std. MIP Gap (%) Average Run Time (s) Std. Run Time (s) Average Var. Cost ($) Average Var. Cost Analytical ($)

16
3binD 0 0.36 0.01 602 2 33,575,704 29,452,434

3binLog 0 0.36 0.01 602 2 33,546,718 29,407,215

32
3binD 0 0.35 0.03 601 1 31,542,551 28,735,913

3binLog 0 1945.50 839.00 607 4 32,487,493 29,527,021

Table 3.10: Computational comparison between models using the CAISO power system

3.6 Conclusions

This Chapter extended the previous work about the statistical UCP by incorporating ramping

constraints. These constraints ensure that the production of energy meets the ramping capabil-

ity of each unit, incorporating more realism into this model. Furthermore, a new approximation

method based on logarithmic piecewise linear approximation is employed to estimate the ex-

pected dispatch cost. Different solving strategies are proposed, aiming to solve the problem in

a reasonable time. The robustness and applicability of the proposed model are demonstrated by

testing on three synthetic power systems and a real power system obtained from the CAISO.

The experimental results showed improvements in the linear relaxation of the optimiza-

tion problem through the implementation of valid inequalities and the sorting-by-cost strategy.

These improvements led to tighter relaxations, resulting in near-optimal solutions. However,

it was observed that when more breakpoints were used, only the sorting strategy remained ef-

fective in enhancing relaxation and finding an optimal solution. Similarly, when no feasible

solution was found, the warm-up strategy generated an initial solution at the beginning of the

algorithm, improving the incumbent value. Thus, since sorting the units by cost improved

the upper bound and the heuristic approach improved the incumbent, combining both methods

solved the problem across all the instances.

A comparative analysis was conducted between the 3binLog and 3binD models, with the

former using a logarithmic number of variables to represent the piecewise linear approximation.

At the same time, the latter corresponds to the conventional approach. It was observed that the

3binLog model exhibits a significantly reduced number of columns compared to the traditional

3binD model, resulting in slightly shorter computation times and lower variability when solv-

ing the optimization problem through the combined application of the heuristic strategy and

sorting the units by cost. However, it was noticed that when employing an increased number
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of breakpoints while relying only on the sorting strategy, the 3binLog model showed poor re-

laxation, leading to a high MIP gap. This is an interesting finding that must be further studied.

In [79], the authors proved that the logarithmic method provides better linear relaxations than

the disaggregated method. Nevertheless, we found the opposite. Thus, the conditions of the

logarithmic method should be analyzed to determine if the proposed mathematical model has a

characteristic that breaks down the conditions of the logarithmic method.

In general, the combined solving approach of applying the heuristic method and sorting

the units cost-effectively solved all instances, resulting in optimal or near-optimal solutions

within the required solving time frame. Moreover, all the methods also hold for the mathe-

matical model proposed in Chapter 2. Future research should further enhance the realism of

the model by incorporating network constraints and transitioning towards a stochastic security-

constrained approach.
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Chapter 4

A comparison between the Statistical and Scenario-based Stochastic Unit Commitment
Problem

4.1 Introduction

In power systems operations, the ISO must ensure the correct functioning and reliability of the

system. Thus, it must guarantee the correct dispatching of energy from Generation Companies

(GENCOs) to different demand nodes by solving the Unit Commitment Problem (UCP). The

UCP is an optimization problem that provides a feasible energy generation schedule meeting

technical and environmental constraints at minimum cost [83]. Because of the limited compu-

tational power of early computers, the first versions of the UCP did not include the uncertainty

of several factors such as demand and availability of generating units. To overcome the risk

intrinsic in the dispatching of electricity, the ISO included a reserve requirement in the UCP.

Thus, generating an overproduction of energy.

As computers became more powerful, researchers started to propose a stochastic version

of the UCP using modeling approaches such as stochastic programming, robust optimization,

and chance-constrained.In the case of stochastic programming, the demand behavior is mod-

eled by fitting demand data to a probability distribution and then sampling scenarios from this

distribution [28, 84]. Adding renewal energy sources (RES) to the power grid imposes substan-

tially new challenges. Since RESs depend on environmental conditions, the ISO must handle a

higher level of variability during the scheduling process. For instance, when using wind power

generation, the input of the system can vary from high to low production in a short period,

affecting the ramping requirements. Moreover, the correlation between wind power generation
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and the demand may be negative. Periods of low demand could result in curtailments or in

periods of high demand in load shedding [85].

The modeling of uncertainty in power systems operations has relied on approximating the

underlying probability distribution by a set of scenarios which are sampled using techniques

such as the Monte Carlo method [86], the Quasi-Monte Carlo method [87] and Sample Average

Approximation (SAA). In particular, the SAA method leverages the law of large numbers. The

expected value is calculated over many randomly generated scenarios. As the number of scenar-

ios increases, the SAA solution tends to converge to the true solution of the original stochastic

problem [88]. In [89], the authors generated wind power scenarios using SAA. In [90], several

scenarios were created to represent outages in the system. Then, a Loss of Load Probability

(LOLP) chance constraint was included in the model to incorporate load uncertainty.

Although several scenarios are preferred to increase the accuracy of the model, they also

increase the computational burden of the solving method. Nevertheless, scenario reduction

methods can be used to reduce the computational complexity. In [41], the authors used the

WILMAR model to generate a scenario tree. Their method was based on the ARMA time

series, which fitted the regional forecast error and used scenario reduction to have a tractable

problem. In [91], the authors used a forward selection heuristic to reduce the number of sce-

narios based on their cost and reliability impacts. The proposed method outperformed classi-

cal scenario reduction methods, leading to more reliable schedules. When solving the SUCP

using stochastic programming, its inherent structure can be leveraged to address large scale in-

stances effectively. Several decomposition techniques, including Lagrangian relaxation method

[92, 86], column generation [28, 29], Benders decomposition [93], and progressive hedging

[33], can take advantage of this structure to provide solutions efficiently.

Although a vast literature has addressed the SUCP, most of the methods consider the sam-

pling of scenarios to approximate the expected generation costs. Since this approach is the

accepted methodology to solve the SUCP, we use it as a benchmark. In this Chapter, the statis-

tical SUCP presented in Chapter 2 and 3 is compared to the scenario-based model. We consider

different size instances and contributions to real settings based on the elapsed time to find the

optimal solutions and the stability of the solutions.
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The remainder of this Chapter is as follows: Section 4.2 presents the mathematical for-

mulation of both models, statistical and scenario-based. Section 4.3 compares both models

considering a computational and stability analysis. Finally, Section 4.4 presents the final re-

marks of this Chapter and proposed future research.

4.2 Mathematical formulations

This section presents two mathematical formulations to minimize the expected dispatch cost.

The first formulation uses a statistical approach to derive the expected dispatch cost. The

second formulation is the SUCP scenario-based approach. Henceforth, we name these methods

as statistical SUCP and scenario-based SUCP.

Sets and indices

I Set of units, i ∈ I

T Set of periods, t ∈ T

S Set of scenarios, s ∈ S

L Set of breakpoints, l ∈ L

Parameters

Chot
i Hot start-up cost of unit i ∈ I

Ccold
i Cold start-up cost of unit i ∈ I

ci Energy cost of unit i ∈ I

Fi(·) Dispatch cost function of unit i ∈ I in period t ∈ T

Hit(·) Start-up cost of unit i ∈ I during period t ∈ T

Pmax
i Maximum energy capacity of unit i ∈ I

Pmin
i Minimum energy capacity of unit i ∈ I

RUi Ramping up capacity of unit i ∈ I

RDi Ramping down capacity of unit i ∈ I

T on
i Minimum number of periods of unit i ∈ I has to be on

T off
i Minimum number of periods of unit i ∈ I has to keep off

tcoldi Number of periods after unit i ∈ I becomes cold
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uprevi Binary parameter that indicates the on/off state of unit i ∈ I at the beginning of the

planning horizon

∆i Difference between the maximum and minimum energy capacity Pmax
i and Pmin

i of unit

i ∈ I

κ Cost of buying energy from other energy markets.

τ oni Number of periods unit i ∈ I has been on prior to the first period of the planning horizon

τ offi Number of periods unit i ∈ I has been off prior to the first period of the planning horizon

S(x) Survival function of the residual demand.

Γ(x) Indefinite integral of the survival function S(x).

Random variables

d̃t Random demand during period t ∈ T

r̃t Random residual demand during period t ∈ T

Decision variables

uit Binary variable that indicates if the unit i ∈ I is on/off during period t ∈ T

vit Binary variable that indicates if the unit i ∈ I is turned on during period t ∈ T

wit Binary variable that indicates if the unit i ∈ I is turned off during period t ∈ T

yhotit Binary variable that indicates if the unit i ∈ I starts hot during period t ∈ T

ycoldit Binary variable that indicates if the unit i ∈ I starts cold during period t ∈ T

pit Dispatch of energy from unit i ∈ I during period t ∈ T

λitl Continuous variable that weighs the breakpoint l ∈ L of unit i ∈ I during period t ∈ T

ηitb Binary variable that indicates if the digit b ∈ B is selected for the unit i ∈ I during period

t ∈ T

The following mathematical formulation states the constraints for the commitment deci-

sions based on the 3bin model provided in [47].
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min z =
∑
t∈T

∑
i∈I

Hit(·) +
∑
t∈T

∑
i∈I

Pmin
it ciuit +

∑
t∈T

∑
i∈I

E [F (r̃t)] (4.1)

s.t pit ≤ (Pmax − Pmin)uit ∀i ∈ I, t ∈ T (4.2)

pit − pit−1 ≤ RUg ∀i ∈ I, t ∈ {2, |T |} (4.3)

pit−1 − pit ≤ RDg ∀i ∈ I, t ∈ {2, |T |} (4.4)
t∑

j=γon
it

vij ≤ yit ∀i ∈ I, t ∈ T (4.5)

t∑
j=γoff

it

wij ≤ 1− uit ∀i ∈ I, t ∈ T (4.6)

uit = 1 ∀i ∈ I : uprevi = 1 ∀t ∈ {1, ..., θoni } (4.7)

uit = 0 ∀i ∈ I : uprevi = 0 ∀t ∈ {1, ..., θoffi } (4.8)

yhotit + ycoldit = vit ∀i ∈ I, t ∈ T (4.9)

uit −
t−1∑

l=t−tcoldi −1

uil ≤ ycoldit ∀i ∈ I, t ∈ T (4.10)

uit − uit−1 ≤ vit ∀i ∈ I, t ∈ T (4.11)

wit = vit + uit−1 − uit ∀i ∈ I, t ∈ T (4.12)

pit ≥ 0 ∀i ∈ I, t ∈ T (4.13)

uit, vit, wit, y
hot
it , y

cold
it ∈ {0, 1} ∀i ∈ I, t ∈ T (4.14)

The objective function (4.1) aims to minimize the overall expected cost, which includes

commitment and dispatch costs. The fixed cost is denoted by Hit(·) = ahot
i yhot

it + acold
i ycold

it . In

terms of the expected dispatch cost (E [Fi(r̃t)]), we present two models: the statistical SUCP

and the scenario-based SUCP, presented in Sections 4.2.1 and 4.2.2, respectively. Constraint

(4.2) states the capacity and minimum dispatch limits for each generator unit. To ensure ramp-

ing capacity, constraints (4.3) and (4.4) are introduced. Furthermore, constraints (4.5) and

(4.6) enforce the minimum up and down time, respectively, where γonit = max t− T on
i + 1, 1

and γoffit = max t− T off
i + 1, 1. The constraints (4.7) and (4.8) set the initial commitment
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state of units based on their previous state, with θoni = max 1, T on
i − τ oni + 1 and θoffi =

max 1, T off
i − τ offi + 1. Constraint (4.9) ensures that a unit can start either in the hot or cold

state, which relates to constraint (4.10) indicating that a unit starts cold if the number of off pe-

riods exceeds tcoldi . Similarly, constraint (4.11) guarantees that a unit is turned on in the current

period if it was off in the previous period. In contrast, constraint (4.12) performs the opposite

operation for turning off the unit. Finally, constraints (4.13) and (4.14) ensure the integrity of

the variables.

4.2.1 Statistical modeling

The expected dispatch cost can be modeled without using scenarios. Instead, we derived the

expected dispatch cost function using the probability distribution of the residual demand. We

assume that units are dispatched in economic order on their marginal cost ci. Moreover, if the

demand is not met the ISO can buy energy from other markets. The mathematical derivation

can be seen in Section 2.2 of Chapter 2. The expected dispatch cost for a particular period

t ∈ T states as follows:

E [F (r̃t)] =
∑
i∈I

ci

[
Γt(

∑
k∈I

Pmin
k ykt +

i∑
j=1

∆jyjt)− Γt(
∑
k∈I

Pmin
k ykt +

i−1∑
j=1

∆jyjt)

]
+

κ

µt − Γt(
∑
k∈I

Pmin
k ykt +

|I|−1∑
j=1

∆jyjt)

 ∀t ∈ T

(4.15)

Notice that Γ(·) corresponds to the indefinite integral of the probability survival function

of the residual demand S(x). Since this function is nonlinear, we use the piece-wise linear

approximation method to generate a mixed-integer linear problem (MILP). Let L be the set

of breakpoints for the piece-wise approximation method. Let λ be a continuous variable be-

tween 0 and 1 that weights the breakpoints bl to approximate the Γ(·) function as the following
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equations:

x =
∑
l∈L

λlbl (4.16)

Γ(x) =
∑
l∈L

λlΓ(bl) (4.17)

The mathematical formulation of the MILP states as follows:

min z =
∑
t∈T

∑
i∈I

Hi(·) +
∑
t∈T

∑
i∈I

ciP
min
i yit +

∑
t∈T

∑
i∈I

ci

[∑
l∈L

λitlΓt(btl)−
∑
l∈L

λi−1tlΓt(btl)

]
+

∑
t∈T

κ

[
µt −

∑
l∈L

λ|I|tlΓt(btl)

] (4.18)

s.t (4.2) − (4.14) (4.19)
L∑
l=1

λ0tlbtl =
∑
k∈I

Pmin
k ykt t ∈ T (4.20)

L∑
l=1

λitlbtl =
∑
k∈I

Pmin
k ykt +

i∑
j=1

∆jyjt ∀i ∈ I, t ∈ T (4.21)

λitl ∈ SOS2 ∀i ∈ I, t ∈ T, l ∈ L (4.22)

λitl ≥ 0 ∀i ∈ I, t ∈ T, l ∈ L (4.23)

The objective function (4.18) minimizes the start-up cost and the expected dispatch cost

expressed in linear terms by using the piece-wise linear approximation. The set of constraints

(4.19) corresponds to the technical constraints of the UCP presented at the beginning of this

section. Constraint (4.2) and (4.3) ensures that the correct value btl is evaluated in the objective

function. Constraint (4.22) states that the weights to formulate the linear formulation must be

modeled by using special order set of type 2 (SOS2) to ensure that at most two consecutive λl

are used. Finally, Constraints (4.23) ensure the integrity of the approximation variables.
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4.2.2 Scenario-based modeling

We model the scenario-based SUCP as a two-stage problem. In the first stage, the commitment

decisions are made. In the second stage, an economic dispatch problem is solved by using the

committed units. In particular, the recourse function corresponding to the expected dispatch

cost is modeled using a scenario-based approach. Thus, using the SAA method, several scenar-

ios of the random variables are sampled using the Montecarlo sampling method.

Let Ω be the set of sampled scenarios using the Montecarlo method. For each scenario ξ ∈

Ω, a vector for the residual demand is generated. This vector Rξ = (r1ξ, r2ξ, . . . , r|T−1|ξ, r|T |ξ)

corresponds to the residual demand for the |T | periods for the scenario ξ ∈ Ω. In addition,

we create a continuous decision variable pitξ corresponding to the amount of energy to be

dispatched for the unit i ∈ I during period t ∈ T in the scenario ξ ∈ Ω. Then, the expected

cost is computed as the weighted average between the probability of each scenario and its cost.

We have assumed that if the residual demand is not fulfilled, the ISO purchases energy from

other markets. Hence, we create another continuous decision variable, εitξ, that represents the

amount of energy purchased from other markets at a price of κ. The expected cost is represented

as follows:

∑
t∈T

∑
i∈I

E [F (r̃t)] =
∑
t∈T

∑
i∈I

ciP
min
i uit +

∑
ξ∈Ω

∑
t∈T

∑
i∈I

πξ · (ci · pitξ + κ · εtξ) (4.24)
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The following constraints are embedded in the above problem, resulting in the scenario-

based SUCP.

min z =
∑
t∈T

∑
i∈I

Hi(·) +
∑
t∈T

∑
i∈I

ciP
min
i uit +

∑
ξ∈Ω

∑
t∈T

∑
i∈I

πξ · (ci · pitξ + κ · εtξ) (4.25)

s.t (4.5) − (4.14) (4.26)

pitξ ≤ (Pmax
i − Pmin

i )uit ∀i ∈ I, t ∈ T, ξ ∈ Ω (4.27)∑
i∈I

Pmin
i uit +

∑
i∈I

pitξ + εtξ ≥ rtξ ∀t ∈ T, ξ ∈ Ω (4.28)

pitξ − pit−1ξ ≤ RUg ∀i ∈ I, t ∈ {2, |T |}, ξ ∈ Ω (4.29)

pit−1ξ − pitξ ≤ RDg ∀i ∈ I, t ∈ {2, |T |}, ξ ∈ Ω (4.30)

pitξ ≥ 0 ∀i ∈ I, t ∈ T, ξ ∈ Ω (4.31)

The objective function (4.25) minimizes the fixed and expected costs considering the

weighted sum between the probability of occurrence and the cost of each scenario. Constraints

(4.26) correspond to the base formulation that guarantees the commitment constraints. Con-

straint (4.27) sets the upper bound for the dispatch of each unit. Constraint (4.28) ensures that

the residual demand is fulfilled by thermal units or using energy purchased from other markets

in case of shortage using the variable ε. Constraints (4.29) and (4.30) represent the ramping

capability of each unit. Finally, (4.31) states the integrity of the dispatch variable.

4.3 Results

In this section, we present a comparison of both models. To perform the comparison, we use a

modified version of the 20-unit system from [49] replicated 5, 10, and 20 times resulting in a

100, 200, and 400-unit system. We assume the residual demand follows a multivariate normal

distribution with mean vector µ and covariance matrix Σ. The mean vector is calculated as the

difference between the estimated demand and wind energy generation considering profiles from

[49] and [54], respectively. Notice that the original profile of the residual demand corresponds

to the 20-unit system. Thus, we replicate profiles 5, 10, and 20 times to have an appropriate
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residual demand for each system. Finally, the σ vector is calculated as a percentage of the mean

vector, and the cost of the unmet demand κ is assumed to be 100 $
MWh

The results of this section were obtained using Gurobi 9.5 (64-bit) on a Linux computer

with an Intel Xeon E5-2670v2 Ivy Bridge 2.5 GHz using 8 cores and 64 GB of RAM at the Al-

abama Supercomputer Center. When solving the optimization problem, we set the optimization

criteria considering a wall clock of 600 seconds.

We sampled the scenarios directly from the multivariate normal distribution using the

statistical library SciPy [94]. For the statistical model, we used the optimization library PWLF

[57] to determine the points for the piece-wise linear approximation. Using the multi-start

gradient method, the library minimizes the quadratic error between the breakpoints and the

function Γ(x). We model the SOS2 constraints using the logarithmic piecewise approximation

method proposed in [79].

4.3.1 Computational comparison

This section presents a computational analysis comparing the statistical and the scenario-based

models. We generated 20 instances of 4, 8, 16, and 32 breakpoints for the statistical model

using a power system of 100, 200, and 400 units. For the scenario-based model, we generated

20 instances of 50, 100, 200, 500, and 1000 scenarios using a power system of 100, 200, and

400 units.

Table 4.1 presents the descriptive statistics of the MIP gap for both models. The instances

of the statistical model are named using the number of points, i.e., “Stat4,” and the instances

of the scenario generation model are named using the number of scenarios, i.e., “Sce50”. As

the size of the problem increases due to the number of units, breakpoints, and scenarios, the

MIP gap increases, and it is harder to find an optimal solution. In general, the statistical model

found optimal solutions when using 4 and 8 breakpoints in the systems of 100 and 200 units

in 75% of cases. There is an exception when using the model of 400 units, where an optimal

solution Was found only when using 4 breakpoints.

Moreover, when using 16 and 32 breakpoints, the statistical model failed to find an opti-

mal solution, resulting in a poor MIP gap. In particular, the scenario-based model presented
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Units Model Optimal Solutions Average (%) Minimum (%) Median (%) 3rd Quartile (%) Maximum (%)

100

Stat4 20 0 0 0 0 0
Stat8 20 0 0 0 0 0

Stat16 0 79.08 77.6 79.26 79.51 80.51
Stat32 0 81.37 80.91 81.45 81.52 81.87
Sce50 20 0 0 0 0 0

Sce100 20 0 0 0 0 0
Sce200 20 0 0 0 0 0
Sce500 20 0 0 0 0 0.01

Sce1000 0 65.19 0.14 82.51 82.52 82.53

200

Stat4 20 0 0 0 0 0
Stat8 7 6.82 0 0 0 75.74

Stat16 0 80.48 78.65 80.58 80.84 81.45
Stat32 0 81.73 81.37 81.78 81.81 81.97
Sce50 20 0 0 0 0 0

Sce100 20 0 0 0 0 0
Sce200 20 0 0 0 0 0.01
Sce500 0 60.85 0.17 82.51 82.52 82.54

Sce1000 0 99.07 98.95 99.07 99.1 99.17

400

Stat4 20 0 0 0 0 0
Stat8 0 69.29 55.69 76.69 78.7 81.02

Stat16 0 81.84 80.7 82.08 82.26 82.54
Stat32 0 82.34 82.16 82.33 82.42 82.55
Sce50 20 0 0 0 0 0

Sce100 0 0.01 0 0 0.01 0.02
Sce200 0 0.14 0.06 0.14 0.17 0.31
Sce500 0 99.11 98.96 99.13 99.15 99.21

Sce1000 0 - - - - -

Table 4.1: MIP gap descriptive statistics

satisfactory results when using up to 200 scenarios and up to 500 scenarios for the instance of

100 units.

Table 4.2 presents the descriptive statistics of the elapsed time for the different power

systems solved by different instances. The instances of the statistical model are named using

the number of points, i.e., “Stat4,” and the instances of the scenario generation model are named

using the number of scenarios, i.e., “Sce50”. It can be observed that the statistical model using

4 breakpoints was solved in less than 70 seconds for the systems of 100, 200, and 400 units.

Then, when using more breakpoints, the elapsed time increased, taking 600 seconds to finish the

optimization which was the stopping condition. The above is related to the MIP gap presented

in Table 4.1 where the instances using 8, 16, and 32 breakpoints presented higher gaps than

when using 4 breakpoints. In Table 4.2, the instances using the scenario-based model presented

longer times than the statistical model. The model presented competitive times compared to

the statistical model only when 50 scenarios were used.

In general, both models can be accelerated by implementing other solving strategies, such

as initial heuristics in the case of the statistical model or using the Benders decomposition
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Units Model Average (s) Minimum (s) Median (s) Third Quartile (s) Maximum (s)

100

Stat4 5 5 5 5 6
Stat8 112 23 83 148 374

Stat16 601 600 601 601 604
Stat32 603 600 601 601 611
Sce50 125 76 112 148 229

Sce100 225 153 208 247 407
Sce200 454 344 427 509 601
Sce500 601 600 601 601 602

Sce1000 601 600 601 601 603

200

Stat4 27 25 26 27 30
Stat8 543 250 600 601 601

Stat16 601 600 601 601 602
Stat32 601 600 601 601 601
Sce50 302 170 303 338 548

Sce100 533 288 600 601 603
Sce200 601 600 601 601 602
Sce500 602 600 601 602 606

Sce1000 608 602 606 611 626

400

Stat4 60 56 58 64 65
Stat8 603 601 602 603 617

Stat16 601 600 601 602 603
Stat32 603 600 603 604 606
Sce50 577 446 600 601 603

Sce100 601 600 601 601 606
Sce200 601 600 601 601 602
Sce500 606 602 604 606 623

Sce1000 602 602 602 602 606

Table 4.2: Run time descriptive statistics

method to solve the scenario-based model. Nevertheless, comparing without these extra strate-

gies allowed equivalently comparing the computational time and their results.

4.3.2 Stability analysis

The stochastic optimization models presented in Section 4.2 are an approximation of the real

problem due to the use of breakpoints and scenarios. Thus, to compare both models, we assess

the stability of their results using the analytical expected cost described in Equation (4.15). In

[58], the authors proposed a method to assess the suitability of a scenario generation approach

when solving a stochastic programming model. This method evaluates the stability of solutions

obtained from an approximation model compared to the actual stochastic optimization model.
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Hence, to evaluate the stability of both the statistical and scenario-based models, we conduct

a out-of-sample and in-sample stability analyses.

Consider a decision vector x̂ representing a commitment schedule. Let F(x) denote the

true value of the expected dispatch cost, while F̂STAT (x) and F̂SCE(x) are the approximated

values of the expected dispatch cost using the statistical and scenario-based models, respec-

tively. These functions are used for assessing the out-of-sample and in-sample stability of the

models.

Let K denote the number of instances generated, where the statistical model produces

K sets of breakpoints the scenario-based model generates K sets of scenarios. Each instance

is solved, and their resulting solutions are evaluated using the true objective function. We

conclude that out-of-sample stability has been achieved if the solutions have approximately

the same objective value when evaluated with the true objective function. This is described in

equation (4.32).

F(x̂k) ≈ F(x̂l) ∀k, l ∈ {1, . . . , K}, k ̸= l (4.32)

Similarly, in-sample stability is assessed using each of the approximation models. For

each formulation, we expect the solutions of the K optimization models to yield approximately

the same objective value. Thus, in-sample stability is achieved. This is described in equations

(4.33) and (4.34).

F̂STAT (x̂k) ≈ F̂STAT (x̂l) ∀k, l ∈ {1, . . . , N}, k ̸= l (4.33)

F̂SCE(x̂k) ≈ F̂SCE(x̂l) ∀k, l ∈ {1, . . . , N}, k ̸= l (4.34)

Notice that in the statistical model, the source of uncertainty comes from the method that

selects the breakpoints. In contrast, for the scenario-based method, the source of uncertainty

comes from the distribution itself. Thus, due to the presence of randomness in the generation

methods, the outcome is expected to be different every time the piece-wise function is approx-

imated, or a sample of scenarios is generated. Then, when solving the optimization model, the

optimal solution of both models may provide a different value when evaluating the commitment

schedule x̂ in the function F(x).
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To assess the stability, we use a set K of 20 instances for each number of breakpoints and

scenarios. For the statistical model, we used 4, 8, 16, and 32 breakpoints, and for the scenario-

based model, we used sets of 50, 100, 200, 500, and 1000 scenarios. The sets were generated

for each system. Thus, a total of 180 instances were generated for each system. In addition, we

considered two levels for the parameter σ, namely 0.15µ and 0.30µ.

We solved the statistical model using a heuristic described in Chapter 3. This heuristic

generates an initial solution when starting the branch-and-cut algorithm. This presents an ad-

vantage over the scenario-based model. However, this results in more instances within a MIP

gap of 1%.

Figures 4.1, 4.2, and 4.3 show a boxplot comparing the out-of-sample stability between

instances of the statistical and the scenario generation models with 100, 200, and 400 units,

respectively. For visual purposes, we included only the experiments resulting in a MIP gap

below 1%. Some sets were not displayed in the figures because none of their instances were

solved within a gap of 1%. In the figures, the x-axis contains the name of the instances, and

the y-axis the corresponding analytical objective value. The instances of the statistical model

are named using the number of points, i.e., “Stat4,” and the instances of the scenario generation

model are named using the number of scenarios, i.e., “Sce50”.

Figure 4.1a, 4.2a, and 4.3a present a boxplot of the objective values for instances with 100,

200, and 400 units, respectively. The solutions are generated with a standard deviation equal to

15% of the mean residual demand vector. Notice that the solutions became more stable as the

number of breakpoints and scenarios increased. There are some exceptions with the solutions

of “Stat32” and “Sce1000” in Figure 4.1a, “Stat16”, “Stat32”, and “Sce500” in Figure 4.2a and,

“Stat16”, “Stat32” in Figure 4.3a. These instances presented more variability due to a higher

MIP gap than others.

When comparing the stability of both models, the scenario-based model was less stable

than the statistical model. Moreover, the marginal improvement of the stability decreased when

adding more scenarios. Thus, for the 100-unit system, using 16 breakpoints and 200 scenarios

provide a suitable result. For the 200-unit system, 8 breakpoints and 200 scenarios are suitable.

Finally, for the 400-unit system, 8 breakpoints and 100 scenarios are suitable. Adding more
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Figure 4.1: Out-of-sample stability 100-Unit system

breakpoints and scenarios would improve the stability and decrease the value of the analytical,

objective function. Nevertheless, to do so, other solution methods should be used. In particular,

for the scenario-based model, Benders decomposition is usually used to solve the problem with

many scenarios [95].

In Figure 4.1b, 4.2b, and 4.3b, the standard deviation is increased to be 30% of the mean

vector for the system of 100, 200, and 400 units, respectively. Even though there is high

variability, the statistical model is slightly more stable than the scenario-based model. Notice

that the statistical model would need only 8 breakpoints to present better stability than the

model with scenarios. We attribute this result to the source of uncertainty when generating

scenarios. In particular, the source of uncertainty comes directly from the distribution. Thus,

increasing the parameter σ will require more scenarios to reach a stable solution.

Figure 4.4, 4.5 and 4.6 show a boxplot comparing the in-sample stability between instances

of the statistical and the scenario-based models with 100, 200, and 400 units, respectively. The

statistical model is more stable than the scenario-based model for σ = 0.15µ and σ = 0.30µ.

We attribute this result to how the objective functions for both models are derived. For ex-

ample, the statistical model is derived directly from the probability distribution of the residual

demand, and the way is incorporated into the model is by using piecewise linear approximation.

Even though fewer breakpoints can result in a poor approximation, they tend to have the same

objective value. Thus, when adding more breakpoints, a lower objective value is observed. On
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Figure 4.2: Out-of-sample stability 200-Unit system
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Figure 4.3: Out-of-sample stability 400-Unit system
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Figure 4.4: In sample stability 100-Unit system
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Figure 4.5: In sample stability 200-Unit system

the contrary, the objective function of the scenario-based model is derived from samples of the

residual demand. Thus, the sample size is directly related to how stable the objective function

of the model is. Therefore, to present better in-sample stability, the scenario model should be

solved with more than 500 scenarios for the case with σ = 0.15µ. This behavior is more severe

when increasing the variability to σ = 0.3µ.

In general, both models presented similar out-of-sample stability when more breakpoints

and scenarios were used, which means both models led to stable solutions to the actual problem.

However, when observing the in-sample stability, the statistical model is more stable than the
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Figure 4.6: In sample stability 400-Unit system

scenario-based model. Thus, the approximated expected value of the scenario-based model

should not be used to measure the expected cost.

In this section, the objective value of the true value can also be compared using figures 4.1,

4.2, and 4.3. The scenario-based presents less expensive objectives with low and high variabil-

ity in both cases. We attribute this behavior to the piece-wise approximations. Approximating

the objective value could prevent finding some optimal solutions on the MILP formulation

on the true objective value. This could be addressed by using more breakpoints. Nevertheless,

solving instances with more breakpoints is hard and may require other optimization techniques,

such as decomposition methods.

4.4 Conclusions

In this chapter, we performed a comparative analysis between the statistical and the scenario-

based models under a two-stage stochastic programming framework. Within this framework,

the first stage decisions corresponded to the commitment state of the generator units that re-

main fixed throughout the planning horizon. Subsequently, dispatch costs were computed upon

observing the realizations of the random variables. In particular, for the statistical model, the

expected cost was derived directly from the probability distribution of the residual demand,

resulting in a nonlinear objective function. Thus, a piecewise linear approximation was used to
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linearize the model. Conversely, the scenario-based model bases its expected cost on a repre-

sentative sample of scenarios rather than a direct derivation from the probability distribution.

For each scenario, an economic dispatch was performed using the committed units. Thus, the

expected cost was calculated as the weighted sum between the probability of each scenario and

its corresponding cost.

We studied the stability and computational complexity of both the statistical and scenario-

based models. Our findings indicated a dependency on approximation parameters, such as the

number of breakpoints and scenarios. Thus, as these parameters are increased, both mod-

els presented enhanced out-of-sample and in-sample stability. However, the stability of the

scenario-based was significantly influenced by the sample size of the scenario set and the level

of demand variability. The scenario-based model produced volatile in-sample stability results

with a small scenario sample at high variability levels. This result suggests that the resulting

objective value may not offer a reliable measure of the actual stochastic problem, especially un-

der conditions of high uncertainty. This instability was not observed with the statistical model,

which thus establishes itself as an alternative in situations of high variability.

Regarding the solving time, both models presented similar results. In particular, the sta-

tistical model can be solved in shorter times using a few breakpoints, which undermines the

resulting approximation of the actual objective function. However, the proposed statistical ap-

proach can become a valid alternative for a future where there will be higher uncertainty on

energy demand and supply, considering the high penetration of electric vehicles and RESs.

Current scenario generation models will require more scenarios to obtain stable solutions and

a longer computational time.

Future research should consider real power systems and larger sample sizes for the scenario-

based model, which could be solved by applying the Benders decomposition method. In addi-

tion, including other technologies, such as batteries, could be informative regarding the differ-

ences between both models.
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Chapter 5

Summary and future research

In this chapter, a summary of this dissertation is presented. We highlight the main contribution

as well as the contributions of each chapter. In addition, we mention the limitations of this

dissertation and future research.

The accelerating integration of RESs into the energy matrix has revolutionized the field

of power system operations. However, this shift has brought a suite of complex challenges.

Among these challenges, the uncertainty introduced by RESs into the power grid affects mul-

tiple decision-making processes. ISOs prepare the energy generation schedule by solving the

UCP, a complex task influenced by random components such as demand and unstable energy

production from renewable sources. Including these uncertainty elements is required to ensure

the robustness and efficiency of the energy system.

A typical approach for handling uncertainty relies on the generation of multiple scenarios.

Thus, the expected cost is optimized by generating a feasible commitment schedule that meets

technical constraints considering all the scenarios. However, the need for additional scenarios

grows accordingly with rising uncertainty levels. This escalation, in turn, amplifies the com-

putational complexity of the problem. Such a surge could notably restrict the efficiency and

practicality of the problem-solving process.

Considering these challenges, this dissertation proposed a statistical model that does not

require scenarios. Instead, the expected cost was derived using the probability distribution

of the residual demand. In addition, we proposed a mathematical formulation to solve the

proposed model (Chapters 2 and 3). Finally, in Chapter 4, the proposed methodology was

compared to the traditional scenario-based SUCP model.
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Chapter 2 introduced this methodology, premised on the assumption that the units dispatch

energy in an economic order. As such, a dispatching function was proposed using a two-

stage optimization approach where the commitment decisions remain unchanged throughout

the planning horizon. Subsequently, the expected cost of the dispatch function was derived,

resulting in a nonlinear function that was linearized using an incremental mathematical model.

Thus, the mathematical problem could be solved using commercial solvers. The precision of

the piecewise linear approximation was assessed by comparing the resulting objective value

with its analytical counterpart and employing a Monte Carlo simulation.

Experimental findings suggested that the linear approximation enables the resolution of

real-sized problems with only a few breakpoints. Increasing the number of breakpoints did not

notably enhance the accuracy of the linear approximation. Furthermore, in most experiments,

the processing time fell within the range demanded by the ISOs. We also studied the reliability

of the proposed method by analyzing the LOLP with higher levels of forecast error variability.

For most of the experiments, the results showed a LOLP on average of less than 5%. One of

the limitations of this chapter is the assumption of dispatching in an economic order. Generator

units have ramping capabilities, which, in turn, prevent dispatching accordingly to this rule.

However, the main methodology can still be used as it enables another perspective to solve

stochastic optimization problems. We fixed this limitation in Chapter 3.

Ramping constraints ensure proper energy production between consecutive periods. Fail-

ing to account for this characteristic may yield infeasible commitment schedules in practice.

Thus, we implemented ramping constraints in Chapter 3, resulting in a more realistic SUCP.

Since the resulting model became more complex due to ramping constraints, several strategies

were proposed to solve the model, namely, valid inequalities, sorting strategy, and heuristic.

The first two strategies improve the linear relaxation of the mathematical model, resulting in a

tighter version, which in turn speeds up solving the problem. In particular, the heuristic is used

as an initial solution and fed into the solver to improve the incumbent solution. Thus, the pro-

posed strategies helped to accelerate the optimization problem. We tested the strategies using

different power systems data, usually used in the literature for benchmarking. In addition, we

tested the proposed approach using a real power system from CAISO. Therefore, the model is
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shown to be robust in terms of applicability. We noticed that indexing the generator units in an

economic order results in a better linear relaxation, which leads to finding optimal solutions.

Thus, a hybrid approach using a sorting strategy and an initial heuristic leads to a gap of less

than 1%

One of the limitations of this work is that the sorting strategy was proved empirically.

Thus, by proving mathematically, this property can be beneficial and implemented more broadly.

Another limitation is that using an initial heuristic may lead the solver to get stuck in a particular

node of the B&B algorithm, not finding an optimal solution within the required time.

In Chapter 4, we presented a comparative analysis between the statistical and scenario-

based models using a two-stage stochastic programming modeling approach. Since the scenario-

based model is commonly used in the literature, we compared both models to determine the

benefits that the statistical model can present. We compared the computational complexity and

stability using both methods.

The main difference between the models is that the statistical model derives the expected

cost directly from the probability distribution of residual demand. In contrast, the scenario-

based model calculates expected costs by considering a representative sample of scenarios and

their corresponding costs, weighted by their probabilities.

We found that increasing the number of breakpoints and scenarios enhances their out-of-

sample and in-sample stability. However, the stability of the scenario-based model is signif-

icantly influenced by the sample size and demand variability, leading to volatile results with

a small scenario sample under high variability conditions. In contrast, the statistical model

remains stable under such conditions, making it a reliable alternative in high variability situa-

tions. In terms of solving time, both models demonstrate similar performance. However, the

statistical model can be solved faster with a few breakpoints, potentially compromising the ac-

curacy of the objective function approximation. Thus, the statistical approach could be a valid

alternative, considering the expected increase in uncertainty due to electric vehicles and renew-

able energy sources. At the same time, the scenario-based model may require larger sample

sizes and longer computational times.
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This dissertation has some limitations that should be mentioned. The main limitation is

that the proposed statistical model does not include security constraints or transmission net-

works. These constraints ensure proper electricity dispatch. Nevertheless, accounting for those

constraints would require modifying and generating a dispatching function for each network

bus. This could be a challenging modeling task. Another limitation is that the model was not

tested using real data. For example, under the scenario-based approach, one year of data could

be considered as the scenarios without needing to sample from a distribution. This could be

done on the statistical model by estimating an empirical distribution using available data.

Future research should consider the use of batteries in the statistical model. The transition

to green energy production and dispatch is becoming well-established and requires batteries to

replace the current fuel-based generator units. This brings more challenges, as modeling the

functioning of batteries will require including other constraints in the UCP.

This dissertation presented a novel approach to solving stochastic programming problems,

particularly for the SUCP. Thus, the modeling approach could be extended to other areas in the

Operations Research field.
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