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Abstract

Writing style can be traced back to a specific author with the use of authorship attribution

techniques. These techniques use machine learning algorithms to classify the authors. This

document discusses research focused on creating adversarial text to conceal an author’s iden-

tity. A tool, AuthorCAAT, that performs adversarial authorship to assist in the anonymization

of text using feature sets, language translations, and other transformation methods is utilized

throughout this work. This tool is compared with other anonymization techniques while at-

tempting to circumvent detection by high performing authorship attribution algorithms. We

also explore combining anonymization methods to further improve the performance against the

authorship attribution algorithms. This work is extended by using the anonymization methods

in a partially observable environment where the authorship attribution algorithms are incorpo-

rated into the process of creating the adversarial text.

Another focus of this work is developing a more general framework for adversarial au-

thorship. This is done by first examining the problem points of our tool then designing a user

interface that mitigates the issues that contribute to a poor user experience. We then work to

improve on the components of the framework by utilizing document clustering, deep learning

and model interpretability.
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Chapter 1

Introduction

Sharing information through the use of social media and blogs has become a part of everyday

life. We give up a lot more about ourselves than we may realize. Every post that is written,

liked, or upvoted divulges our opinions and interests. This information can be collected and

used for targeted advertising and the spread of disinformation. We have seen something similar

to this being done by Cambridge Analytica where they obtained data from 87 million Facebook

user profiles and used it for targeted political advertising [1][2].

Regardless of if a user has their actual name attached to their internet profiles or not, they

can be identified by their writing style. Stylometric analysis can be done on these online posts

to reveal the author. There are some cases where the ability to reveal the identity of an author

who wishes to remain anonymous can be detrimental such as in the realms of journalism and

activism. Threats to privacy and anonymity can deter individuals from exposing information

regarding the wrongdoings of an organization out of fear of retaliation.

Adversarial stylometry has been used as a method for authors to evade attribution. Ad-

versarial stylometry [3] is eluding authorship attribution by altering writing style. Adversarial

stylometry appears in the forms of imitation, translation, and obfuscation. Anonymization

efforts have been made by[5] by way of a framework called Anonymouth that gives users sug-

gestions on how to alter their documents for anonymization. They found that when using a

complex feature set, users had a difficult time making the suggested changes to the document

which led to them not being as successful at anonymizing their documents as they were with a

simpler feature set.

Another method used for anonymization is adversarial authorship. Adversarial author-

ship was introduced by [6] in the form of AuthorCAAT-I (Author Cyber Analysis Advisement
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Tool). AuthorCAAT-I utilized iterative paraphrasing and iterative language translation before

adding in AuthorWebs in the second version of AuthorCAAT. An AuthorWeb shows the rela-

tionship between authors and their writing samples. AuthorCAAT-III [7] introduced interactive

evolutionary hill-climbing and author target clusters.

AuthorCAAT-III was able to evade attribution of the Writeprints (Limited) feature set

50% of the time. While AuthorCAAT has shown to be an effective tool for anonymization,

there are issues pertaining to its usability. Using AuthorCAAT can be a very tedious process.

There are many steps and long waiting periods. The purpose of this research is to design,

develop, and evaluate a human-AI collaborative system for adversarial authorship, JohariMAA

(Johari Model for Adversarial Authorship). JohariMAA aims to maintain the effectiveness of

AuthorCAAT while offering a more pleasant user experience. This document presents research

conducted on methods to evolve adversarial text to conceal the identity of an author. This

document also presents a generic framework for adversarial authorship that not only makes it

easier to evaluate adversarial authorship methods, but also allows for more flexibility in the

composition of these methods.

The remainder of this document is arranged as follows. Chapter 2 includes a review of

literature on genetic algorithms, interactive evolutionary computation, genetic & evolutionary

feature selection, authorship attribution, adversarial stylometry, adversarial authorship, and in-

teraction design. Chapter 3 discusses the datasets used in our work. Chapter 4 presents a study

of AuthorCAAT-V and the potential for a human-AI hybrid for adversarial authorship. Chap-

ter 5 builds on the work from the previous chapter by performing adversarial authorship in a

partially observable environment. Chapter 6 discusses our reasoning for moving away from

AuthorCAAT and towards JohariMAA. Chapter 7 discusses the design and implementation of

JohariMAA. Chapter 8 explores utilizing the interpretability of deep learning models for ad-

versarial text generation and document clustering as a potential way to further improve the

obfuscation of a document. Chapter 9 presents future directions that this research could take.
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Chapter 2

Literature Review

2.1 Genetic Algorithms

Genetic algorithms [19] are search algorithms that are used to solve optimization problems. In

a genetic algorithm, a population of individual chromosomes (or candidate solutions) is contin-

uously evolved to find the best individual [45]. The main components of a genetic algorithm are

selection, crossover, mutation and the fitness function. Each individual is usually represented

by an array of either binary or floating point numbers and given a fitness value based on some

fitness function. Individuals, referred to as parents, are selected from the population to create

offspring. Parents are often selected based on how fit of an individual they are. They can also

be randomly selected. Some selection methods include tournament selection and fitness pro-

portionate selection [45]. For tournament selection a group of individuals is randomly selected

from the population and the best individual from the group is chosen. For fitness proportion-

ate selection the probability of an individual becoming a parent is proportional to its fitness.

Once the parents are selected, crossover is performed to create the offspring. Some crossover

operators include uniform crossover and multi point crossover [47]. Uniform crossover is done

by inheriting each gene from a parent randomly. Multi point crossover is done by breaking

the chromosome into multiple segments and alternating which segment is inherited from which

parent. Mutation maintains the diversity of the population by randomly making changes to

the genes of an offspring. Some mutation operators are swap mutation and scramble mutation

[47]. Swap mutation is done by randomly selecting to genes and then swapping their alleles.

Scramble mutation is done by selecting a subset or the entire chromosome and scrambling the
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positions of the alleles. After crossover and mutation is performed on the offspring, the off-

spring replaces the least fit individual. The process is repeated until a termination condition is

met. The termination condition could simply be a finite number of fitness function evaluations

or the population has not improved after a certain number of fitness function evaluations.

2.2 Interactive Evolutionary Computation

Interactive Evolutionary Computation (IEC) [12] involves a human’s subjective evaluation in

the optimization of a system. IEC is useful for problems that may not be easily evaluated with

a fitness function such as design and music generation problems. In [46] they used IEC in a

genetic algorithm that generates jazz solos called the GenJam. GenJam has a population of 48

phrases population and 64 measures. The user evaluates each measure of the generated solo by

rating it as good or bad. The user rating increments or decrements the fitness score of the solo.

The main issue that arises with the addition of a human element into the evolutionary process

is user fatigue. A user is only able to perform a finite number of evaluations. Some problems

may not reach an optimal solution before the user is fatigued. The GenJam is configured to

receive user feedback per an entire measure rather than per note, which helps to alleviate user

fatigue.

2.3 Genetic Evolutionary Feature Selection

Genetic Evolutionary Feature Selection (GEFeS) is a feature selection method that uses a

steady-state genetic algorithm [19][20][21]. It is used to evolve a population of feature masks.

These feature masks are subsets of the features of a specific dataset. GEFeS is used to find the

subset of features that are the most important. The feature masks are represented by chromo-

somes consisting of binary values that indicate which features are turned on (1’s) and off (0’s).

The fitness for each feature mask is determined by accuracy and the percentage of features that

are turned on. GEFeS was used in [48][49][50] with feature sets that covered sentiment analy-

sis and topic modeling to evolve more useful feature masks. A multilayer perceptron (MLP), a

radial basis function support vector machine (RBFSVM), and a linear support vector machine
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(LSVM) were the classifiers used for testing the feature masks. In [48], the use of GEFeS with

the sentiment analysis feature set improved the accuracy of all of the classifiers by 31-39%

while using only 21-25% of the features. The greatest improvement occurred with the LSVM.

In [49], they tested GEFeS with two feature sets, stic Inquiry and Word Count (LIWC) and sen-

timent analysis (SA). The feature sets were evaluated separately and combined as one larger

feature set. The use of GEFeS improved the accuracy for all three feature sets. It increased the

accuracy for SA and LIWC by 38% and 17% respectively. For the combined feature set, the

accuracy was increased by 30%. There was a 1% difference between the accuracy of LIWC and

the combination of LIWC and SA. They also tested how effective these feature masks are on a

set of adversarial texts that were generated using character unigrams. They saw that they could

reduce the adversarial effectiveness when performing authorship attribution with a feature set

that differs from the feature set used to create the adversarial text. In [50], GEFeS was tested

with LIWC, sentiment analysis (SA), and topic modelling (TM). They tested the four possible

combinations of the three feature sets. When combining all three feature sets and classifying

with the RBFSVM, they were able to achieve 100% attribution accuracy with as few as 17.8-

56.4% of features being used. These results show that using GEFeS improves performance in

authorship attribution systems.

2.4 Authorship Attribution

Authorship attribution refers to the act of identifying the author of an unknown document[3].

Authorship attribution could be used to aid in forensic investigations and plagiarism detection.

In [8], The Brennan-Greenstadt dataset (all English text) was used along with samples from

two French and four Dutch authors. The feature set used was built from a combination of

features from the Basic 9 and Writeprints. They called this the “Translation Feature Set.”

JStylo was used for authorship attribution. Bing and Google translators were used to translate

the samples from the Brennan-Greenstadt dataset. It was done in three different sequences:

from the original text to German and then back to English; from the original text to Japanese

and then back to English; from the original text to Japanese, then German, and then back to

English. Google Translate, Language Weaver, Systran were used to translate the samples from
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the French Dutch authors to English. The results showed that the more translations a text went

through, the easier it was to attribute the correct translator to the text. Japanese translations

were also attributed more accurately than German translations when attributing translators.

Most of the author attributions for the Google and Bing translations had accuracies above 90%.

The texts that went through Japanese and German before going back to English had accuracies

below 90%. The French samples were attributed to the correct author 100% of the time for all

translators. The Dutch samples performed the worst. This is possibly because all the authors’

samples are on the same topics. The Translation Feature Set had higher accuracy than all other

feature sets in Jstylo for both author and translator attribution.

Herz and Bellaachia [31] take 37 of Obama’s speeches and attributes them to four speech-

writers. The speeches are preprocessed in four different ways: stemmed with augmented

term weighting, un-stemmed with augmented term weighting, stemmed with normalized term

weighting, and un-stemmed with normalized term weighting. Function words is the only fea-

ture that is used. Analysis of variance was done on the frequencies of the function words of

each set to select distinguishable feature vectors. Each set was classified using Naı̈ve Bayes,

k-nearest neighbors on the projections of Principal Component Analysis, Linear Discriminant

Analysis, and feed-forward neural networks. Leave one out cross validation was used to test

the accuracy of each classifier. Linear discriminant analysis performed the worst, being around

the accuracy of random chance. The most successful classifier was the k-nearest neighbor with

principal component analysis. It had accuracies around 68-78% for all four sets. There was

some trouble identifying the speeches of one writer. He had the fewest speeches (five) and they

seemed to be more of a collaborative effort than the speeches of the other three speechwriters.

Removing his speeches from the set significantly improved the accuracy of all the classifiers.

The results for the k nearest neighbors classifier was still the highest at 81-91%. The classifiers

performed best on the un-stemmed sets.

In[3] they assessed the performance of several authorship attribution algorithms. Two of

the best performing algorithms were referred to as teahan03 and koppel11. Teahan03 [27] uses

Prediction by Partial Matching text compression for text categorization. An author is attributed

by obtaining the cross-entropy for the categories and then selecting the author with the lowest
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cross-entropy. Koppel11 [28] works by iteratively selecting random subsets of a feature set and

using cosine similarity to find the top match. The text is attributed to the author that is selected

as the top match the most.

2.5 Adversarial Stylometry

[3] defined five subtasks of stylometry (authorship attribution, authorship verification, author-

ship profiling, stylochronometry, and adversarial stylometry) and gives an overview of feature

categories and common classification methods. Authorship verification deals with deciding if

two documents were written by the same author. This problem is approached with either the

many-candidates method or with one-class classification. Authorship profiling deals with an-

alyzing a document to determine the demographics of its author (i.e. gender) without actually

identifying the author. Stylochronometry is the study and detection of changes in authorial

style over time. Stylochronometry isn’t as reliable as authorship attribution and verification

because it hasn’t been studied as much. Adversarial stylometry is the altering of one’s writ-

ing style in order to evade authorship attribution. The three forms of adversarial stylometry

are imitation, obfuscation, and translation. An overview of the feature categories was given

along with two feature extraction techniques was given. Lexical, syntactic, semantic, struc-

tural, and domain specific features are described and examples of each was given. Lexical

features are the most basic category and can be character-based or word-based. Next, various

methods of classification were discussed. Machine learning algorithms are a common approach

to classification. Some algorithms used are decision trees, support vector machines, and logis-

tic regression. Support vector machines are popular because of their ability to handle large

amounts of data. Nearest-neighbor is a method where the similarity between the unknown text

and known texts is measured. Distance can be measured in several ways including Delta, Chi-

Square, and Kullback-Leibler Divergence. Probabilistic models are also used for classification.

Performance of the subtasks can be analyzed using a few different metrics. Some of the most

common metrics include accuracy, recall, and precision. The CASIS dataset was used for test-

ing. The dataset has 4,000 blog samples from 1,000 authors. Each sample is a short blog post.

The dataset was then broken down into subsets with different amounts of authors, samples and
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sentences (i.e. CASIS-5 has 378 authors and 6,691 samples with 5 sentences per post). Bag-

of-words features were extracted. They tested authorship verification on the CASIS dataset and

its subsets using five-fold cross validation and observed that there was an increase in the equal

error rate as there was a decrease in the number of sentences per post. Fourteen algorithms

for authorship attribution were tested against the datasets. Lower-level features (i.e. byte and

character-level) performed better than higher-level features (i.e. syntactical and word-level).

The performance of all algorithms decreased as the text lengths decreased from 20 sentences

per post to sentences per post across the sets. They then move on to address challenges faced

within the research of stylometry. There is a need for a large dataset consisting of documents

of varying types and topics. Authorship attribution becomes challenging when working with

posts from blogs and social networks because of anonymity and the use of slang or improper

grammar. There is an issue with not being able to scale a solution from a small, balanced

dataset to a larger, less stable dataset. Machine translation can cause problems because of the

possible loss of meaning from the original text.

In [32] they used data from underground forums to test an algorithm that detects the iden-

tity of one user across multiple accounts. Some of the features used includes frequency of

language-specific parts-of-speech and function words, percentage of leetspeak per document.

The feature set excludes word n-grams but includes all other n-grams. Principal Component

Analysis was used to weight and select features with high variance. The algorithm that they

used to identify multiple identities of an author calculated the probability that one author’s doc-

ument would be attributed to a second author and that the document of the second author would

be attributed to the first author. They then combine the two probabilities and if they are higher

than a certain threshold the two authors are the same. They tested the algorithm on the two

German forums Carders L33tCrew. They were able to use email addresses to find common

members between the forums. 28 pairs of authors were tested and a result of .85 precision with

.82 recall was produced with 4 false positives. The algorithm was also tested on the private

messages of users from just Carders where they manually analyzed the top 21 pairs that had the

highest probability score to validate their results. 13 of the 21 were decided to be either true or

probably true.
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Adversarial stylometry is the act of altering one’s writing style to avoid authorship at-

tribution. In [9], the strength of select stylometry methods against obfuscation and imitation

are tested. Each of the 15 participants submitted pre-existing sample writings of 5,000 words

for their dataset. They were asked to create an obfuscation sample on a specific topic and a

sample imitating another author (all imitating the same author) on a specific topic in the third

person. The training text was the sample taken from the author that was being imitated. Three

authorship attribution methods were used. For the statistical method, the features used were

word lengths, letter usage, and punctuation. The sample text was compared with each author’s

dataset the chi-square of the two was summed. The lowest chi-square value of the pairs was

selected as the author. For the neural networks method, nine features were extracted using

Textalyser (lexical density, Gunning-Fog readability, sentence count, etc.). For the synonym-

based classifier method, a match value was calculated by summing the number of synonyms

a word has multiplied by the shared frequency of the word between sample text training text

of a known author for all shared words between the two texts. Authorship was attributed to

the author with the highest match value. All methods were tested with groups of 2, 3, 4, and

5 authors. For obfuscation, the methods performed at random chance for most of the tests.

There were only 3 instances where the accuracy was slightly better than random chance. All

performed significantly worse against imitation than they did for obfuscation. Authorship was

attributed to the author being imitated most of the time. All three methods performed far below

random chance in every instance.

In [10] the three techniques of adversarial stylometry (imitation, obfuscation, and trans-

lation) are tested against stylometry techniques. Human subjects were used to test imitation

and obfuscation while a machine was used for translation. Manual adversarial stylometry was

shown to have performed better than machine adversarial stylometry. The Brennan-Greenstadt

Adversarial Stylometry Corpus consists of a large collection of texts from 12 unique authors

and adversarial texts written by the same authors. Each author submitted at least 5,000 words

from professional or academic preexisting texts, an obfuscation sample and a sample imitating

the writing style of Cormac McCarthy. All authors wrote about two specific topics for both

the obfuscation and imitation samples. The Extended Brennan-Greenstadt Corpus was created
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with 45 authors, all submitting at least 6,500 words of scholarly preexisting texts. Three sty-

lometry techniques were used to test the adversarial techniques. First was a neural network

with the Basic-9 feature set. This was considered a basic technique. Second, they tested a

synonym-based method where the only feature used was the vocabulary frequency. Then they

tested a support vector machine with Writeprints-Static. Writeprints-Static is a hybrid of the

Writeprints baseline and extended feature sets created to reduce computation costs. It consists

of 557 features. The support vector machine used was a sequential minimization optimization.

1,000 unique test sets of authors from the Extended Brennan-Greenstadt Corpus was used to

train the classifiers. The test sets had varying amounts of authors in them (i.e. 5, 10, 15, etc.).

For obfuscation, the only method that was able to attribute authorship correctly above that of

random chance was the support vector machine. For imitation, the attribution accuracy was

below random chance for all methods. Two translation methods were tested: one-step and

two-step. For one-step, they translated English to German and then back to English and from

English to Japanese and back to English. For two-step, they translated from English to German

then to Japanese and back to English. Google Translate and Bing Translator were the tools used

to do this. The one-step translations for both German and Japanese were not effective at hid-

ing the author’s style. The two-step translation was generally no more effective than two-step.

Synonym-based classification performed the best on all 3 experiments. Machine translation is

not a very effective adversarial technique.

Anonymouth is a program that helps one to make their writings anonymous by offering

suggestions to alter the document [5]. The user submits the document they want to anonymize,

other samples of their writing, and samples from three other authors. Features are then extracted

from all of these sample groups and then groups the features by these three groups plus a fourth

group consisting of the combination of features extracted from the user and other authors. The

top features are calculated from the fourth group. The features from the other authors’ samples

are clustered and are used to create target values for the user’s final document configuration.

A user is then presented with a list of suggestions for changes that they can make to reach

these target values. When changes are made the document is reclassified to see how close

it is to its target values. This process continues, making changes and reclassifying, until the
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document’s values reach the target values. They had ten participants test the program and eight

of them were able to make their document anonymous. Of the two whose documents weren’t

anonymous, one didn’t make any changes and the other’s original document wasn’t attributed

to him as an author.

JStylo was used to check the anonymity of the participants’ final documents. The Brennan-

Greenstadt dataset was used as a background dataset. They tested the documents with six au-

thors and then all 13 from the dataset. The change of the background dataset changed the

anonymization of the documents. The participants were only able to make the changes sug-

gested by the Basic 9 feature set, as the Writeprints (Limited) feature set’s suggestions were

too complex. Larger feature sets are more difficult to use because the changes they suggest

aren’t easy for a user to apply. With using the Basic 9 feature set to make changes to their

document and for attribution, 80% of participants were able to evade attribution. When at-

tempting to attribute the same documents using Writeprints (Limited), all of the participants

were correctly attributed.

The changes made to Anonymouth are explained in [11]. They added two-way translations

that are applied to each sentence in 15 different languages. The translated sentences are sorted

by which one is the most likely to provide anonymity based on feature frequencies, information

gain, and target values. The user can then select a sentence and make any edits needed. An

“Anonymity Bar” was added for the user to gauge their progress. The target values that are

possibly the best are tested against the classifier before being chosen as the target values.

2.6 Adversarial Authorship

AuthorCAAT (Author Cyber Analysis Advisement Tool) is an instance of a (1 + 1) IEC

[?][13][14][15][16] that allows a human to interactively evolve adversarial text. Adversarial

text helps to preserve privacy and anonymity. The goal of AuthorCAAT is not only to con-

ceal the identity of the author through the creation of adversarial text, but to also preserve the

context of the original text. The first version of AuthorCAAT utilized iterative language trans-

lation (ILT) and iterative paraphrasing as mutation methods [6][17]. The languages used for

translations were English, Spanish, and Chinese.
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AuthorCAAT-II included AuthorWebs [18]. AuthorWebs are developed through Entropy-

Based Evolutionary Clustering (EBEC). An AuthorWeb is made up of authors, their writing

samples, and vectors of the features extracted from the writing samples. They are used to

visualize nodes that have arcs directed to and from them. The arcs represent writing samples

where each node represents an author. Each arc is directed towards the node that it is closest

to with respect to the extracted feature vector. The arcs directed to a node are referred to as an

author cluster. In AuthorCAAT-II a user can select which author cluster that they would like to

right towards or away from.

AuthorCAAT-III introduced ILT hill-climbing to the IEC process as an additional mutation

method [52]. The languages used for translation are Spanish, Chinese, Japanese, Korean, Rus-

sian, Arabic, French, and German. In ILT hill-climbing, ILT is done with all eight languages

for a number of iterations. After these iterations, the resulting translation that is closest to the

selected author target is presented to the user. The user can select this translation to replace the

current text or modify the current text and resubmit it to the ILT hill-climbing process.

2.7 Interaction Design

Ceaparu et al. [24] conducted a study where they had 111 students perform their regular tasks

on a computer for a couple of hours and log their frustrating experiences in a time diary. The

frustrating experiences were broken down into five categories: internet, application, operating

system, hardware, and other. Some of the most common frustrating experiences involved error

messages, long download time, connection issues, and missing or hard to find features. One-

third to one half of the time spent on the computer was wasted due to the frustrating experiences.

This time was calculated by adding the time spent solving the problem and the time spent

recovering the work that was lost because of the problem. They also found that the majority of

frustrating experiences encountered by the participants happen on a regular basis.

A similar study was done in [25] with 50 participants in the workplace. The most common

frustrating experiences were system crashes caused by specific applications and the operating

system. The time wasted solving and recovering from the problem was around 40%. Some

of the frustrating experiences caused by applications include uncontrollable pop-up windows,
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unpredictable behavior of the application, unclear error messages, and missing or hard to find

features. While some of these issues may be harder to rectify, the issues relating to the user

interface can be remedied through better usability testing.

When designing an application it is important to take into account its usability. Usability

refers to the ease of use of the application. It is defined by [26] as having five components:

Learnability, Efficiency, Memorability, Errors, and Satisfaction. These five components are

important to keep in mind when designing an application because they contribute to the user

having an overall good experience, thus increasing the chance that they will continue use of the

application. It is imperative that the usability of the application is evaluated by performing user

testing with a group of users that represent the target audience of the application. When adding

the element of artificial intelligence to a program, it is important to take into account how it

affects the user experience. In [29] they examined the effect of having artificial intelligence

involved at varying amounts in a program called DuetDraw where a user collaborates on draw-

ings with artificial intelligence. There are five functions that can be carried out by the artificial

intelligence of DuetDraw: the AI can automatically complete a user’s drawing; draw an object

that is similar to an object that was drawn by the user; draw an object that makes sense with

what the user has already drawn; locate an empty space on the canvas; and add color to the

sketches based on the colors chosen by the user. Four setups were tested where two different

communication styles (detailed or basic instructions) were paired up with two different initia-

tive styles (lead or assist). The detailed instructions walk the user through each step whereas

the basic instructions only show an icon (e.g. a pen). For the lead initiative style the user does

the majority of the drawing while the AI handles the smaller tasks. For the assist initiative style

the user takes on the smaller tasks while the AI does the majority of the drawing. 30 partici-

pants were asked to create five drawings each, one drawing for each of the four combinations

of initiative and communication styles as well as a fifth setup where there was no AI. User

feedback was gathered through the think aloud method, post survey, and semi-structured inter-

views. The participants preferred detailed instructions over the basic instruction when paired

with both initiative styles. They also found that most users wanted to take the lead. The users

felt that the more repetitive tasks should be left to the AI. The setup that did not include AI had
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the best scores for predictable, comprehensible, and controllable. The detailed instruction style

performed better than the basic instruction style in these areas.

In [30] the relationship between controllability and accuracy is explored by varying the

accuracy of the AI and the controllability of the crane movement in a crane simulator. The

objective of the crane simulator is to use the crane to stack boxes. AI is used to locate the target

segment where the box should be placed, called the Box Detection System. How accurately

the box detection system locates the target is dependent on the accuracy factor. They tested

five accuracy values ranging from 0.1 to 0.9. The controllability of the crane depends on how

much the crane moves with each manual command, called the step. They tested five step

values ranging from 0.8 to 32. Each step value was paired with each accuracy value to make

25 conditions. The participants had five practice trials and 50 measured trials. Afterwards they

were given a survey to fill out. The participants had three possible rectification approaches:

manual controls only, automation only, or both manual controls and automation. Participants

preferred manual rectification for 21 out of the 25 conditions. They found that users preferred

to move the crane manually even when the controllability was low and less time efficient than

the autonomous option.
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Chapter 3

Datasets

The CASIS-1000 (Center for Advanced Studies in Identity Science) dataset [3] is made up

of 1,000 authors, each having four blog samples for a total of 4,000 blog samples. The blog

samples are written in English by non-native English speakers. There is an average of 13

sentences per author. The CASIS-25 dataset is a subset of the CASIS-1000 dataset. It consists

of the first 25 authors of the CASIS-1000 dataset, therefore it is 100 samples. The Bot Detection

dataset comes from the PAN author profiling task for 2019 [51]. The dataset is made up of

tweets from bots and humans. It consists of an English set and a Spanish set, we only focus

on the English set. There are 3,380 bots and an equal number of humans, so a total of 6,760

authors. The humans are evenly split at 1,690 each for males and females. There are 100

tweets per author. Some of the bots they used were pulled from other datasets and others they

found on their own by searching on Twitter with phrases like “I’m a bot.” They were able to

break the bots down into four categories: template, feed, quote, and advanced. The bots in

the template category respond to tweets that are of a specific topic while the bots in the feed

category retweets or shares news on a specific topic. The bots in the quote category tweets

quotes from famous people or works (e.g. music, books, etc.). The tweets from the bots in the

advanced category are generated in a more complex manner (e.g. Markov chains). The humans

in the dataset come from the datasets used in the author profiling task in 2017 and 2018. Bots-

25 is a subset of this dataset that is made up of 25 authors. Nine of the authors are bots and the

other 16 are human (8 male, 8 female). There are five samples per author, giving a total of 125

sample. There are 20 tweets per sample.
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The Enron dataset consists of emails from employees of Enron ??. The full dataset has

158 authors and 200,399 samples. On average, there are 757 samples per author. The Extended

Brennan-Greenstadt Adversarial Stylometry Corpus includes 45 authors and a minimum of

6,500 words per author [10]. Twenty-five authors were taken from each dataset and used to

create models for each feature set in JohariMAA.
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Chapter 4

Towards a Human-AI Hybrid for Adversarial Authorship

4.1 Introduction

According to Shou [55], one of the imminent threats to the anonymity of our cyber identities

is that it is difficult for current AI systems to ‘forget’ our digital exhaust – the data that has

been collected from us. Even if one could develop methods that would allow AI systems to

forget, there may still be some who would refuse to eradicate the digital exhaust of others.

This is an ever-growing problem with respect to Internet users and their privacy. AI systems

for Authorship Attribution [3][4] are now becoming ever more sophisticated and efficient in

identifying individuals based on their writing style. One method that can be used to preserve

the privacy of internet user, with respect to their writing style, is known as of Adversarial Au-

thorship. Some forms of Adversarial Authorship include Adversarial Stylometry and Author

Obfuscation/Masking. For each of these methods, the objective is to mask the true identity of

an author. In this paper, we compare a number of methods for Adversarial Authorship in an

effort to determine their effectiveness in developing adversarial texts in an effort to conceal the

identity of an author against a number of well-known authorship attribution systems (AASs). In

this chapter, we also present a human-AI hybrid for Adversarial Authorship that outperforms

a number of state-of-the-art author masking techniques (AMTs). Hybridizing human intelli-

gence with artificial intelligence can potential to provide better perform than just relying on

human intelligence or artificial intelligence alone [56]. Such collaborative systems allow for

the strengths of both humans and AI to be utilized in a complementary way. AI can provide a
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quick analysis of large amounts of data, while a human’s intuition is invaluable when it comes

to decision making.

4.2 AuthorCAAT-V

The process for creating adversarial text with AuthorCAAT-V begins with the user entering

their parent text that they wish to anonymize. The user picks an author target from a list of

25 that they would like to move towards or away from and they pick a feature set that they

would like to focus on. The feature sets available are character unigrams, sentiment analy-

sis, Linguistic Inquiry and Word Count (LIWC), topic model, bag of words, and stylometry.

AuthorCAAT-V uses multiple feature sets because changing a document based on one feature

set may not provide anonymity when an authorship attribution system classifies using a differ-

ent feature set than the one that was used to make changes to the document [33].

LIWC is a program that extracts information from text that provides an understanding of

the psychological state of an author [22]. The words from the text are taken and compared

to LIWC’s dictionary of 6400 words. These 6400 words belong to different hierarchical cat-

egories. Each word from the sample text that is found in the dictionary counts towards the

category associated with the word from the dictionary. For the topic model feature set we use

the MALLET program to extract a set number of topics that are specific to the group of doc-

uments being analyzed [23]. Topics are groupings of words that have been determined to be

related because they commonly appear together in a set of documents. MALLET gathers the

topics by analyzing the document using the topic modeling algorithm latent Dirichlet alloca-

tion (LDA) and Gibbs sampling. The program returns the words with their associated topics

and the distribution of the topics in each document. OpinionFinder is the program used for

the sentiment analysis feature set [34][35][36][37]. It allows users to observe the polarity and

subjectivity of the text. OpinionFinder examines the words of the documents and compares

them to its dictionary. The words in the dictionary have an assigned polarity and subjectivity.

AuthorCAAT-V uses GEFeS (Genetic Evolutionary Feature Selection) for off-line feature

selection. GEFeS allows for the evaluation of various subsets of a feature set in order to deter-

mine the best features for a specific dataset [19][20][21]. AuthorCAAT-V also utilizes a linear
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support vector machine because it has shown to perform well in [33] and [38] when used with

multiple feature sets.

Once an author target or feature set has been selected, a visual representation of the fitness

scores for all 25 authors is displayed. The numerical value for the selected author target is

displayed under the parent text. The higher the score is the closer the text is to the author

target. These values change depending on the selected feature set. The user then mutates

their text using two-way translations or iterative language translation hill-climbing (steepest

ascent or descent). The languages used for translating are Spanish, Chinese, Arabic, Japanese,

Russian, Korean, German, and French. After running one of these methods a mutated text is

produced along with a fitness score for the mutation. Like the score for the parent text, this

score is relative to the selected author target. The user can then decide if the mutated text is

good enough to become the parent text or if they would like to mutate the parent text again.

Once a satisfactory mutated text has been created, the user can copy this text to the main text

box where they can make modifications and restart the process. Figure 4.1 depicts the process

of using AuthorCAAT-V.

4.3 Experiment

AuthorCAAT-V was used to create 25 adversarial texts. Three other author masking techniques

(AMTs), Castro [40], Mihaylova [41], and Rahgouy [42], were also used individually and to-

gether in a system called AIM-IT to create sets of adversarial texts. The technique referred to

as Castro uses a simple method for masking the original text in an attempt to shorten it. This is

primarily done through contraction replacement, synonym substitution, and sentence simplifi-

cation. The technique referred to as Mihaylova targets many different style indicators typically

used in author identification. The authors present three main categories: text transformations,

noise, and general transformations. Text transformation consists of methods such as adding or

removing punctuation, splitting or merging sentences, etc. Noise consists of replacing Amer-

ican English words with their British English counterparts and vice versa as well as adding

or removing function words at beginnings of sentences. The general transformation consists
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Figure 4.1: Flowchart of AuthorCAAT-V Process
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Keselj2003 Teahan2003 Koppel2011 CNN
Original 0.60 0.92 0.76 0.84

Table 4.1: Comparison of the AASs on the CASIS-25 Dataset

of techniques like contraction replacement, replacing possessive phrases using regular expres-

sions, etc. All of these methods are used to push the features of a given text toward the average

of a specified training corpus. The technique referred to as Rahgouy is a method similar to Mi-

haylova. Rahgouy used word replacement, phrase replacement, contraction replacement, and

either sentence splitting or merging, in order to transform their text samples.

In our experiment, we compare the masking performances of the five AMTs presented

earlier on their ability to mask the first 25 instances of the CASIS-1000 dataset. The masking

performance of a method is simply the change in accuracy, [54], given by the original text when

classified by the following authorship attribution systems:

1. Keselj-2003,

2. Teahan-2003,

3. Koppel-2011,

4. CNN [44].

Table 4.1 shows the baseline performance of the four AASs on the CASIS-25 dataset.

4.4 Results

The results presented were generated by applying the adversarial authorship techniques to the

fourth writing instances of the first 25 authors of the CASIS-1000 dataset. The adversarial

authorship techniques were ‘blind’ in that they had no prior interaction with author attribu-

tion or verification systems. After the AMTs ‘evaded’ classification of their internal author

identification systems, the resulting adversarial texts were submitted to the set of author AASs

systems.

Table 4.2 provides the results of our experiment. The first column contains the names

associated with the authorship attribution systems and the change in accuracy, ∆Acc using only
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the writing samples of the first 25 authors of the CASIS-1000 dataset (referred to as CASIS-

25). The entries within the first column of Table 4.2 corresponding to the authorship attribution

systems are: Keselj2003, Teahan2003, and Koppel2011. The next five columns of Table 4.2

correspond to the five following AMTs presented earlier: Castro, Mihaylova, Rahgouy, AIM-

IT, and AuthorCAAT-V. Castro, Mihaylova, and Rahgouy were selected because of the top ten

AMTs presented in [54], they were ranked 1st, 2nd, and 3rd respectively. The last column

corresponds to the AuthorCAAT-V + AIM-IT hybrid. The hybrid adversarial text were formed

by taking the adversarial texts developed by AuthorCAAT-V and running them through AIM-

IT. In Table 4.2, with respect to the first five AMTs, one can see that AuthorCAAT-V had the

best performance against three AASs while Castro, Mihaylova, Rahgouy, and AIM-IT had the

best performance against 0, 0, 1, and 2 AASs respectively. In Table 4.2, one can see that the

hybrid has the best performance against three of four the AASs. Notice also, that on the three

for which the hybrid has the best performance, that the hybrid dramatically reduces the iden-

tification accuracy. In terms of the average reduction against the four well-known AASs, the

hybrid has the greatest average reduction (-32%), followed by AuthorCAAT-V (-14%), AIM-

IT (-11%), Rahgouy (-10%), Mihaylova (-8%), and Castro (4%). Tables 4.3 and 4.4 show the

detailed results of the classification of the adversarial texts when submitted to the three AASs

(Table 4.3) and the CNN (Table 4.4). The leftmost column of each table shows the name of

each of the 25 adversarial texts followed by the change in accuracy for each AAS, the average

change in accuracy of the three systems for each author masking technique, the accuracy for

each attribution system with respect to the AMT, and the average accuracy for each attribution

system. In the tables, ‘✗’ means neither the original nor the adversarial texts were correctly

classified, ‘✓’ means both the original and the adversarial texts were correctly classified, ‘TF’

means the original text was correctly classified and the adversarial text was incorrectly clas-

sified, and ‘FT’ means the original text was incorrectly classified and the adversarial text was

correctly classified. In Tables 4.3 and 4.4, the last four rows represent the change in accuracy

given an AAS or the CNN (denoted as ∆ Acc.), the average change in accuracy (denoted as ∆

Acc. Avg.), the reduced adversarial accuracy (denoted as RAA), and the average RAA (denoted

as RAA Avg.). In Table 4.3, one can see that had a total of 10 TFs, 47 ✓s, and 1 FT. This can be

22



Castro Mihaylova Rahgouy AIM-IT AuthorCAAT-V AuthorCAAT-V + AIM-IT
Keselj2003 -0.12 -0.16 -0.16 -0.20 -0.20 -0.16
Teahan2003 0.00 -0.04 -0.12 0.84 -0.08 -0.32
Koppel2011 0.00 -0.04 0.04 0.84 -0.08 -0.52

CNN 0.00 -0.08 -0.08 -0.08 -0.20 -0.28

Table 4.2: Results of the Reduction in Accuracy Based on the Adversarial Texts

AuthorCAAT-V AIM-IT Mihaylova Rahgouy Castro AuthorCAAT-V + AIM-IT
Keselj03 Teahan03 Koppel11 Keselj03 Teahan03 Koppel11 Keselj03 Teahan03 Koppel11 Keselj03 Teahan03 Koppel11 Keselj03 Teahan03 Koppel11 Keselj03 Teahan03 Koppel11

1000 4 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ FT ✓ ✓

1001 4 ✗ TF ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ TF ✗

1002 4 TF ✓ TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

1003 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF TF TF
1004 4 ✓ ✓ ✓ TF ✓ ✓ ✓ ✓ ✓ TF TF ✓ ✓ ✓ TF TF TF TF
1005 4 TF TF TF TF ✓ TF TF ✓ ✓ ✓ ✓ ✓ TF ✓ ✓ ✓ ✓ ✓

1006 4 TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF
1007 4 TF ✓ ✓ ✓ ✓ ✓ TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF ✓ TF
1008 4 FT ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ FT TF
1009 4 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ FT ✓ ✓

1010 4 ✗ ✓ ✗ ✗ TF FT ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ FT ✓ ✓

1011 4 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

1012 4 ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ FT ✓ ✓ ✗ ✓ ✓ ✗

1013 4 TF ✓ ✓ TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF ✓ TF
1014 4 ✗ ✓ ✗ ✗ TF ✗ ✗ ✓ ✗ ✗ TF ✗ ✗ ✓ ✗ FT ✓ ✗

1015 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF
1016 4 ✓ ✓ ✓ ✓ ✓ ✓ TF ✓ TF TF ✓ ✓ ✓ ✓ ✓ TF TF TF
1017 4 ✗ ✓ ✓ ✗ TF ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ TF TF
1018 4 ✓ ✓ ✓ ✓ ✓ ✓ TF ✓ ✓ TF ✓ ✓ TF ✓✓ TF TF TF
1019 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1020 4 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ FT ✓ ✓

1021 4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

1022 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF TF TF
1023 4 ✓ ✓ ✓ TF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ TF TF TF
1024 4 TF ✓ ✗ TF ✓ ✗ ✓ ✓ ✗ TF ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

∆ Acc -20% -8% -8% -20% -12% 0% -16$ -4% -4% -16% -12% 4% -12% 0% 0% -16% -32% -52%
∆ Acc. Avg -12% -11% -8% -8% -4% -33%

RAA 40% 84% 68% 40% 80% 76% 44% 88% 72% 44% 80% 80% 48% 92% 76% 44% 60% 24%
RAA Avg. 64% 65% 68% 68% 72% 43%

Table 4.3: Detailed Authorship Attribution Results

represented using the following notation, <10, 47, 1>. Similarly, the performances of AIM-IT,

Mihaylova, Rahgouy, Castro, and the hybrid can be represented as <8, 47, 1>, <6, 51, 0>,

<7, 49, 1>, <4, 52, 1>, and <30, 27, 5>. Given these results one can see that the hybrid

dramatically outperforms the other AMTs in terms of evading detection by the AASs (with 30

TFs) while having only 27 ✓s. However, this improvement in performance of the hybrid comes

at the cost of an increased number of FTs. In Table 4.4, one can see the performances of the

five AMTs are as follows <5, 16, 0> for AuthorCAAT-V, <3, 19, 0> for AIM-IT, <2, 19, 0>

for Mihaylova, <2, 19, 0> for Rahgouy, <1, 20, 1> for Castro, and <7, 14, 0> for the hybrid.

Overall, the performance of AIM-IT and AuthorCAAT-V was equal to or better than the

performances of three state-of-the-art AMTs. Furthermore, our results show that the hybridiza-

tion of AuthorCAAT-V and AIM-IT provides a greater reduction in the identification rate

against three of the four well-known AASs. See Tables 4.5 and 4.6 for examples of adver-

sarial text generated using AuthorCAAT-V and the hybrid configuration of AuthorCAAT-V

and AIM-IT.
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AuthorCAAT-V AIM-IT Mihaylova Rahgouy Castro AuthorCAAT-V + AIM-IT
CNN

1000 4 ✓ ✓ ✓ ✓ ✓ ✓

1001 4 TF ✓ TF ✓ ✓ TF
1002 4 TF ✓ ✓ ✗ ✓ TF
1003 4 ✓ ✓ ✓ ✓ ✓ ✓

1004 4 ✓ ✓ ✓ ✓ ✓ ✓

1005 4 TF TF ✓ ✓ ✓ TF
1006 4 ✓ ✓ ✓ ✓ ✓ ✓

1007 4 ✓ ✓ ✓ ✓ ✓ ✓

10084 ✗ ✗ ✗ ✗ ✗ ✗

1009 4 ✓ ✓ ✓ ✓ ✓ ✓

1010 4 ✓ ✓ ✓ ✓ ✓ ✓

1011 4 ✓ ✓ ✓ ✓ TF ✓

1012 4 ✗ ✗ ✗ ✗ ✗ ✗

1013 4 ✗ ✗ ✗ ✗ FT ✗

1014 4 TF TF ✓ TF ✓ TF
1015 4 ✓ ✓ ✓ ✓ ✓ ✓

1016 4 ✓ ✓ ✓ ✓ ✓ ✓

1017 4 ✓ ✓ ✓ ✗ ✓ ✓

10184 ✓ TF ✓ TF ✓ ✓

1019 4 ✓ ✓ ✓ ✓ ✓ ✓

1020 4 ✓ ✓ TF ✓ ✓ TF
1021 4 ✗ ✗ ✗ ✗ ✗ ✗

1022 4 ✓ ✓ ✓ ✓ ✓ ✓

1023 4 TF ✓ ✓ ✓ ✓ TF
1024 4 ✓ ✓ ✓ ✓ ✓ TF
∆ Acc -20% -12% -8% -8% 0% -28%

∆ Acc. Avg -20% -12% -8% -8% 0% -28%
RAA 64% 72% 76% 76% 84% 56%

RAA Avg. 64% 72% 76% 76% 84% 56%

Table 4.4: Detailed Convolutional Neural Network Results

Text
Original India affirms to be a country which is elusive and mysterious because of the

innumerable features that it houses within its terrain. Nobody can pen down
all of the alluring facets that India beholds as it is a nation which is blessed
with profound beauty that words can’t describe.

Adversarial Because of its myriad benefits, India declares itself as a distant and mys-
terious state. Everyone can not penetrate all the attractive aspects of the
attractive country India sees and this country has beauty that can not be ex-
pressed in words.

Table 4.5: Adversarial Text Created with AuthorCAAT-V
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Text
Original In an analysis which is difficult to understand in a presidential race in Ghana,

Asiedu Nketia stated that Nana Akufo – Addo won four regions in the 2008
election against Prof John Evans Atta Mills but got only two regions in 2012
elections against President John Dramani Mahama. One is advised to refrain
from arguments that tend to link us to regionalism, ethnicity and tribalism.

Adversarial In an incomprehensible analysis of the Ghanaian presidential campaign,
Asidou Nkia said Nana Akufo-Addo won four election in the 2008 gen-
eral election against Professor John Evans Atta Mills, but there were only
two district won in the 2012 election. Arguments concerning regionalism,
ethnicity and tribalism are not recommended.

Table 4.6: Adversarial Text Created with AuthorCAAT-V + AIM-IT

4.5 Summary

In this chapter, our goal was to evolve adversarial text that preserved context and concealed

the identity of the author. We compared five AMTs for adversarial authorship. All of the

performances with respect to ∆Acc were fairly close. Overall, the performance of AIM-IT and

AuthorCAAT-V was equal to or better than the performances of three state-of-the-art AMTs.

Furthermore, our results show that the hybridization of AuthorCAAT-V and AIM-IT provides

a greater reduction in the identification rate against three of the four well-known AASs.
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Chapter 5

Towards a Human-AI Hybrid for Adversarial Authorship in a Partially-Observable
Environment

5.1 Introduction

We have previously seen how these systems respond to adversarial authorship attempts when

these author masking systems are effectively in the dark. Now we are going to explore ex-

actly how these systems respond to adversarial authorship when someone finally turns on the

lights. Creating adversarial text without knowing what features an AAS is focusing on when

attributing text can be difficult. The features changed when creating the adversarial text may

not correspond with the features that are being analyzed by the AAS. In this chapter, we at-

tempt to improve the effectiveness of adversarial text by using AASs in conjunction with our

masking techniques to create a partially observable environment in which we can traverse. Ad-

ditionally, we seek to explore the interaction between some AASs and what relationships can

be discovered to help future efforts in adversarial authorship.

In the previous chapter we saw that teahan03 and koppel11 performed significantly better

than keselj03. We noticed that whenever keselj03 correctly attributed a text at least teahan03 or

koppel11 were also able to correctly attribute it. Using this information, we can conclude that

teahan03 and koppel11 form a minimal set of AASs that are needed for accurate attribution.

When examining these AASs, it is important to understand how each of the systems work

and how this could affect the minimal set relationship. Koppel11 is an n-gram method using

4-grams and a limit of the 20,000 most common features. An author profile is created of

the candidate authors. Then, a random subset of the unknown text is compared to the author

profiles using cosine similarity. This process is done 100 times, and the candidate author with
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the most votes is chosen as the author of the unknown text. Teahan03 also uses n-grams, but

is using unigrams to create author profiles for the candidate authors. The unknown text is then

compared against the author profiles using cross-entropy, and the author of the unknown text

is predicted. Due to the random nature of the pieces of text chosen in koppel11, the results

are not deterministic. To counter this, we run the system five times and use majority voting to

determine an author. This value was determined to be the lowest value to give a deterministic

author identification through our evaluation.

5.2 Experiments

Here we examine a partially observable approach to creating adversarial text with two masking

approaches; AuthorCAAT-VI, AIM-IT. It is partially observable because of the AASs being

used within the process of creating the adversarial text. In [39] only support vector machines

built in to each masking system were used for classification. We compare the effects of using

AASs that are in the minimal set within the process of creating adversarial text with the masking

systems. We also try a combination of the AASs that are both in and not in the minimal set.

In AuthorCAAT-V the 25 authors are the first 25 authors of the CASIS-1000 dataset, but

in AuthorCAAT-VI a dataset of any 25 authors can be uploaded. AuthorCAAT-VI also adds

the option of mutating the text by way of paraphrasing.

In these experiments, each of the two masking systems were used in collaboration with the

two AASs that form the minimal set to create adversarial texts. We used three of the texts that

were used for creating adversarial texts in [39]. These texts come from three different authors

in CASIS-25, a subset of the CASIS-1000 dataset. For further testing of AIM-IT we created

adversarial text using all of the same texts that were used in the experiment from the previous

chapter. All three of the combinations of the two aforementioned AASs were used with the two

masking methods. The configurations include:

1. Teahan03,

2. Koppel11,

3. Teahan03 and Koppel11
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The adversarial text was then tested using the two AASs. It should be noted that when

using the Koppel11 attribution algorithm, the process was completed a number of times and

the results were averaged. This is because of the random seed generated by the system that is

used in part of the attribution. For our purposes, the number of runs used to average the results

was 5, as it has proven to be the lowest number of runs to give consistent and repeatable results.

When creating adversarial text with AuthorCAAT-VI we would go through the regular

process of using the system, as described previously, but we would periodically run the AAS(s)

after changes were made to the text. If the AAS(s) correctly attribute the text then we would

continue making changes to the text. Once the text was classified wrong, it was saved as the

adversarial text. If it is classified wrong the majority of those times it is then saved. The

CASIS-25 dataset was also used for the set of the 25 author targets in AuthorCAAT-VI. While

AuthorCAAT-VI doesn’t use GEFeS for the datasets that are uploaded (all features are used),

we were able to utilize the feature masks created with GEFeS for the CASIS-25 dataset.

We hoped that by using the various AASs for training and evaluating its effects on testing,

we could find a connection between the AASs that could be exploited to advance the research

for a minimal set spanning all AASs. Previously, we stated that keselj03 was shown to not be

in the minimal set, and similar data might be obtainable when the AASs are available during

training.

5.3 Results

The results were generated by applying the adversarial authorship techniques to the fourth

writing instances of three authors from the CASIS-1000 dataset. Tables I and III provide the

results of our experiment. The first column contains the names of the three samples that were

used to create the adversarial text followed by the change in accuracy for each of the AASs.

The top row represents which AAS or set of AASs were used in the process of creating the

adversarial text. The next row shows the name of the AASs used for testing. The values in

these tables are formatted in the same manner as in the previous chapter. In the tables, ‘’ means

neither the original nor the adversarial texts were correctly classified, ‘’ means both the original

and the adversarial texts were correctly classified, ‘TF’ means the original text was correctly
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classified and the adversarial text was incorrectly classified, and ‘FT’ means the original text

was incorrectly classified and the adversarial text was correctly classified.

Tables 5.1 through 5.3 provide the results of our experiment. Tables 5.1 and 5.3 show the

classification of the five texts when being masked with AuthorCAAT-VI and AIM-IT respec-

tively. The first column contains the names of the five samples that were used to create the

adversarial text. The top row represents which AAS or set of AASs were used in the process of

creating the adversarial text. The next row shows the name of the AASs used for testing. The

bottom row shows the change in accuracy from the original to the adversarial texts. Table 5.2

mirrors the previously mentioned tables, but it contains the results for AIM-IT being run on the

entirety of the test set.

One important relationship we determine is the conditional probability of incorrect attribu-

tion. We examine the probability of incorrect attribution using koppel11 given that it was incor-

rectly attributed using teahan03, and vice versa. We found that, when using AuthorCAAT-VI,

the probability of incorrect attribution using koppel11 given that it was incorrectly attributed

using teahan03 is 93%. As it so happens, the probability of incorrect attribution using tehan03

given that it was incorrectly attributed using koppel11 is also 93%. We found that, when using

AIM-IT, the probability of incorrect attribution using koppel11 given that it was incorrectly at-

tributed using teahan03 is 100%. As it so happens, the probability of incorrect attribution using

tehan03 given that it was incorrectly attributed using koppel11 is also 100%. When run on the

entirety of the test set, AIM-IT yields more useful results. We found that using AIM-IT on the

full test set the probability of incorrect attribution using koppel11 given that it was incorrectly

attributed using teahan03 is 64%. As it so happens, the probability of incorrect attribution using

teahan03 given that it was incorrectly attributed using koppel11 is also 78%.

In each of the tables, there is a column titled “LSVM” that represents the respective results

from [39] where the training process was aided by a linear support vector machine as opposed

to the work of this paper where the training process was aided by AASs. As you can see, the

performance of AuthorCAAT-VI and AIM-IT are both superior when operating in a partially

observable environment. Table 5.1 shows that AIM-IT performs at least as well if not better
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Train LSVM teahan03 koppel11 teahan03, koppel11
Test teahan03 koppel11 teahan03 koppel11 teahan03 koppel11 teahan03 koppel11

1002 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1004 4 ✓ ✓ TF TF TF TF TF TF
1005 4 ✓ TF ✓ ✓ ✓ ✓ ✓ ✓

1007 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1009 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

∆ Acc. 0% -20% -20% -20% -20% -20% -20% -20%

Table 5.1: AIM-IT RESULTS

than the blind environment. Table 5.2 shows that AIM-IT performs better in all cases when op-

erating in a partially-observable environment. Table 5.3 shows that AuthorCAAT-VI performs

much better in a partially observable environment and was able to cause incorrect attribution in

all instances of the AAS it was using to train. The current state-of-the-art in author masking is

proposed by PAN @ CLEF to be 10-12% [54] and both AuthorCAAT-VI and AIM-IT exceed

these performance benchmarks.

As previously mentioned, the attribution performance of keselj03 can be achieved between

a combination of koppel11 and teahan03. The results above demonstrate that koppel11 and tea-

han03 are closely connected when attempting to classify adversarial texts. The ultimate goal of

was to discover the relationships between AASs and the potential to exploit these relationships

to the advantage of anonymity moving forward. The vast number of AASs currently known to

the public is so large that it would be nearly impossible to learn to evade them all individually.

Also, it would be considerably difficult just to run all of these systems in a reasonable amount

of time. However, there may exist a subset of AASs whose performances subsume that of all

other AASs. In this case, it would not be necessary to use all of the AASs for training in order

to evade attribution. Rather, we could just use those dominant systems to achieve the same

result in a fraction of the time.

Note that AIM-IT is capable of generating a much larger volume of adversarial texts than

its counterpart AuthorCAAT-VI. This is only achievable due to the automation driving AIM-IT

and the lack of human oversight needed to generate the texts. The tables demonstrate that those

adversarial texts generated by AuthorCAAT-VI typically outperform those of AIM-IT head-to-

head. This superior performance is likely a result of the human interaction and intelligence

30



Train LSVM teahan03 koppel11 teahan03, koppel11
Test teahan03 koppel11 teahan03 koppel11 teahan03 koppel11 teahan03 koppel11

1000 4 ✓ ✓ ✓ TF ✓ TF ✓ ✓

1001 4 ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

1002 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1003 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1004 4 ✓ ✓ TF TF TF TF TF TF
1005 4 ✓ TF ✓ ✓ ✓ ✓ ✓ ✓

1006 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1007 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1008 4 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

1009 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1010 4 TF FT TF ✓ TF TF TF TF
1011 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1012 4 ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

1013 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1014 4 TF ✗ TF ✗ ✓ ✗ TF ✗

1015 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1016 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1017 4 TF ✓ ✓ ✓ ✓ ✓ ✓ ✓

1018 4 ✓ ✓ TF ✓ TF TF TF TF
1019 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1020 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1021 4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

1022 4 ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

1023 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1024 4 ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

∆ Acc. -12% 0% -16% -8% -12% -16% -16% -12%

Table 5.2: COMPLETE AIM-IT RESULTS

Train LSVM teahan03 koppel11 teahan03, koppel11
Test teahan03 koppel11 teahan03 koppel11 teahan03 koppel11 teahan03 koppel11

1002 4 ✓ TF TF ✓ TF TF TF TF
1004 4 ✓ ✓ TF TF TF TF TF TF
1005 4 TF TF TF TF ✓ TF TF TF
1007 4 ✓ ✓ TF TF TF TF TF TF
1009 4 ✓ ✓ TF TF TF TF TF TF
∆ Acc. -20% -40% -100% -80% -80% -100% -100% -100%

Table 5.3: AUTHORCAAT-VI RESULTS
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that is at the very core of AuthorCAAT-VI. It should be noted that when running AIM-IT, the

system has the option to terminate running if a text is incorrectly attributed or the masking

efforts have stalled. This varies from the way AuthorCAAT-VI, which is run until the text is

incorrectly attributed. This method could not be used with AIM-IT because this would very

likely cause the system to run indefinitely. But these results perfectly demonstrate the viability

of a hybrid system that retains the performance of AuthorCAAT-VI and the speed of AIM-IT.

5.4 Summary

In this chapter we built on the work of chapter 4 by utilizing the AASs in our approach to

creating adversarial text. As previously mentioned, the attribution performance of keselj03 can

be achieved between a combination of koppel11 and teahan03. The results above demonstrate

that koppel11 and teahan03 are closely connected when attempting to classify adversarial texts.

The ultimate goal of this work is to discover the relationships between AASs and the

potential to exploit these relationships to the advantage of anonymity moving forward. The vast

number of AASs currently known to the public is so large that it would be nearly impossible

to learn to evade them all individually. Also, it would be considerably difficult just to run all

of these systems in a reasonable amount of time. However, there may exist a subset of AASs

whose performances subsume that of all other AASs. In this case, it would not be necessary to

use all of the AASs for training in order to evade attribution. Rather, we could just use those

dominant systems to achieve the same result in a fraction of the time.

Note that AIM-IT is capable of generating a much larger volume of adversarial texts than

its counterpart AuthorCAAT-VI. This is only achievable due to the automation driving AIM-IT

and the lack of human oversight needed to generate the texts. The tables demonstrate that those

adversarial texts generated by AuthorCAAT-VI typically outperform those of AIM-IT head-to-

head. This superior performance is likely a result of the human interaction and intelligence that

is at the very core of AuthorCAAT-VI.

It should be noted that when running AIM-IT, the system has the option to terminate

running if a text is incorrectly attributed or the masking efforts have stalled. This varies from the

way AuthorCAAT-VI, which is run until the text is incorrectly attributed. This method could not
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be used with AIM-IT because this would very likely cause the system to run indefinitely. But

these results perfectly demonstrate the viability of a hybrid system that retains the performance

of AuthorCAAT-VI and the speed of AIM-IT.
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Chapter 6

The JohariMAA Concept

6.1 Attempts to Further Improve AuthorCAAT’s Mutation Process

After seeing how well the adversarial texts performed in [39] when they were created in

AuthorCAAT-V and then ran through AIM-IT, we tried incorporating the author masking tech-

niques into AuthorCAAT. AuthorCAAT-VII adds Castro, Mihaylova, and Rahgouy to the list

of operations that the user can choose from to create the CT. We attempted to add Castro,

Mihaylova, and Rahgouy into the Hill-Climbing as well. This addition resulted in the Hill-

Climbing taking several minutes longer to run due to each of the author masking techniques

taking over a minute to run individually. They also did not improve the quality of the texts that

were created with the Hill-Climbing. So not only did adding Castro, Mihaylova, and Rahgouy

increase the time it took do a single run of Hill-Climbing, it prolonged the overall time it took

to use the system because the Hill-Climbing would need to be ran more times to get a suitable

CT. The paraphraser was added into the Hill-Climbing, as the time it takes to run is similar to

that of the languages and the CT that is created does not seem to be negatively affected by its

addition.

6.2 Limitations of AuthorCAAT

Using AuthorCAAT can be a very tedious process. AuthorCAAT has several steps that require

the user to select from a list of options. Because of this, there are many different combinations

of choices that can be made which could be overwhelming for a user.
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AuthorCAAT displays multiple windows which gives the user more information than nec-

essary. There is also the issue with how long it takes to anonymize text with the system. The hill

climbing process can take several minutes to run and it also may need to be ran multiple times

before a text is anonymized. With these long wait periods, a user can experience an increase

in frustration and fatigue. A user might also decide to work on another task while waiting for

their text to finish mutating which could lead to a longer time spent using the application.

Figures 6.1, 6.2, and 6.3 show the user interface of AuthorCAAT-VI and VII. There are

three windows. The main window is where the user enters the text and assists in the anonymiza-

tion process. The author scores window displays a visual representation of how similar the

parent text is to each of the 25 authors from the background dataset based on the selected

feature set. The authorship attribution window is where the user has the option to check the

anonymity of their text against three authorship attribution systems: keselj03, koppel11, tea-

han03. AuthorCAAT currently has 10 buttons, three dropdown menus, and three windows. All

of these components can be a bit overwhelming for the user. The way AuthorCAAT has been

constructed leaves a very narrow opening for innovation.

6.3 Vision for JohariMAA

Our main goal is to create a human-AI collaborative system that performs adversarial author-

ship effectively. Our basic idea for JohariMAA is a very straightforward, streamlined design.

The framework of JohariMAA consists of three main components: selection, mutation, and

prediction. This framework gives more flexibility to explore different methods of performing

adversarial authorship while maintaining the same interface. Keeping the process of using Jo-

hariMAA uniform as we explore various configurations of the framework components will be

helpful for testing purposes. It will allow for users to produce adversarial text samples more

easily as they will not have a complicated process to learn with each configuration change.
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Figure 6.1: The AuthorCAAT-V Interface
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Figure 6.2: The Author Scores Window of the AuthorCAAT-VI Interface
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Figure 6.3: The Authorship Attribution Window of the AuthorCAAT-VI Interface
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Chapter 7

The Interaction Design of JohariMAA: Reducing the Complexity of Design

7.1 Examining the Usability of AuthorCAAT

We conducted a preliminary study on AuthorCAAT-V. For the study we used AuthorCAAT-V

because it is the last stable version and proved effective in performing Adversarial Author-

ship [39]. AuthorCAAT-V does not include the authorship attribution window that is included

in AuthorCAAT-VII. We asked participants to use AuthorCAAT-V to create an adversarial

text. We gave a set of instructions to the participants that guided them through their usage

of AuthorCAAT-V. Participants began the process within an initial text sample from the CASIS

dataset.The experimental process is to modify this text sample with the aid of AuthorCAAT in-

teractively. After the experiment, a survey was completed consisting of the ten questions from

the System Usability Scale [53] and asked participants about any issues encountered when

using the program.

Our study gave us a more in depth look at the usability issues within AuthorCAAT. One

of the issues users experienced was the program failing. When this would happen the user

would only be able to identify the cause of the error if they ran the program from the command

line because AuthorCAAT would just stop responding without any error messages. This would

cause the user to have to close the program and restart it.

Some users still experienced confusion about the process of using AuthorCAAT even

though instructions were given and were unable to complete the task of creating adversarial

text. There were ten steps included within the instructions to run AuthorCAAT. Some of the

steps are not as straightforward as others. For example, after users enter the text that they would
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like to anonymize and choose which feature set they would like to utilize, they must look at the

25 author scores and select an author target that they would like their text to mimic. This choice

is entirely up to the user. While there is not necessarily a correct choice, there can be choices

that are unhelpful in the anonymization process. For example, if a chosen target is too far away

from the original, getting the text identified as the chosen author’s target could be impossible.

But this could also be the case if the choice is too close to the original author. This part of the

process is a bit of trial and error. The user picking an unhelpful choice leads to prolonging their

time spent using the program. One user reported spending over three hours trying to create

the adversarial text before giving up. Some of the other decisions left up to the user include

the mutation method and whether or not they will accept the resulting text as their new PT. All

of these decisions made by the user influences the process significantly. The more unhelpful

choices the user makes, the longer the process takes. The longer the process takes, the more

fatigued the user becomes. To give the users a better chance of creating adversarial text, and

doing so in a reasonable amount of time, we need to reduce the potential for unhelpful choices.

7.2 Designing JohariMAA

Now that we have examined the usability issues within AuthorCAAT, we will use this section

to discuss the three designs we went through to create the user interface for JohariMAA. Johari-

MAA is meant to be a generalized playground used by researchers to experiment with various

approaches to adversarial authorship. The functional requirements for JohariMAA include:

1. User should be able to enter text

2. User should be able to select a feature set

3. System should be able to calculate a list of author scores when given a text and feature

set

4. User should be able to select an author target

5. User should be able to mutate text
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6. User should be able to replace the parent text with the mutated text

Improving the flow of information is a key factor in improving how the user experiences a

program. Using either multiple pages or combining and simplifying options to reduce the clut-

ter should make it easier for a user to understand how to properly use the program. Displaying

every option at once can be confusing for the user, especially when there is no clear labeling to

show the order that the steps are to be completed. Giving only the necessary information and

steps in a program like JohariMAA will make learning the program easier for the user.

The design will also need to include several other features that were missing from Au-

thorCAAT, such as displaying error messages and better error handling. Having a tutorial

option and tooltips can assist with the learnability of the program. Instead of displaying the

hill-climbing trace to notify the users that the mutation process is in progress, we can display

processing messages. The user experience would benefit from a reduction in choices for the

author target. This could be done by presenting the user with a reduced set of potential author

targets based on the feature set that they select. Another possibility to explore is getting rid of

the choice entirely and just running the mutation function for each author target in the reduced

set and presenting the user with the mutated text for each option.

Figure 7.1 shows our first iteration of the design for JohariMAA’s user interface. Our main

goal with the initial design was to reduce the number of windows being used. We combined

the author scores window with the main window by eliminating the hill climbing trace panel.

If we’re going to have a more generalized user interface, we would need to remove the hill

climbing trace panel so that we can experiment with approaches to mutation that do not involve

the hill climbing search algorithm. This design keeps the two horizontal text boxes for the

parent and mutated text. The panel in between the text boxes has the dropdown menu for the

feature sets to the left of the author target label. These items appear in the opposite ordering of

AuthorCAAT because the feature set should be selected before the author target, being that the

author prediction scores are based on the selected feature set. The author target label changes

based on the selection made by the user. As previously mentioned, we removed the hill climb-

ing trace panel and replaced it with the list of potential author targets. Each author target option

consists of a numbered author label and a bar used to visualize the prediction score. Once the
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Figure 7.1: Initial interface design for JohariMAA.

user selects an author target from the panel, the author number and the numerical representa-

tion of the prediction score is presented in between the feature set dropdwon and mutate button.

The button to copy the mutated text to the parent text box is located below the text box for the

mutated text.

Figures 7.2, 7.3, and 7.4 show another iteration of the design for JohariMAA where we

moved further away from the AuthorCAAT design. Both text boxes for the parent and mutated

texts are now displayed vertically side by side. Between these two text boxes lies a column

of four buttons. The buttons are ordered so that the button on top is the first action that the

user takes after entering their text. The user then proceeds through the process in the order that

the buttons appear. Clicking the first button triggers a dropdown menu to pop up that presents

the user with the available feature sets. Once the user makes a selection, the dropdown menu

closes and the author scores are calculated. Then the author scores button can be clicked so that

another dropdown menu opens to present the user with a list of potential author targets. Each
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Figure 7.2: The main view of the second iteration for the interface design of JohariMAA.

author target option consists of a numbered author label and a radial progress bar depicting the

prediction score converted to a percentage.

The design shown in Figure 7.5 is most similar to our final design for JohariMAA. This

design consists of a text box where users can enter their text and view the mutated texts by

using the tabs labeled for each mutation. The tabs for the mutated text will appear dynamically

depending on how many mutations the user chooses to create. Once a tab is selected for the

mutated text there will be an option to move that text to the parent tab. To the right of the text

box is three buttons that each expand into a panel of more options and information about each

step of the process. Above this set of buttons is a menu button. The menu button gives users

access to options like downloading the adversarial text and instructions for the program. A user

can only select a step in the process if the previous step has been configured (e.g. a user can

only select author target(s) if they select a feature set first). The buttons that are unavailable for

use will be denoted by being a lighter color. When you click the first button it expands into a
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Figure 7.3: View of the feature selection function for the second iteration of the interface design
for JohariMAA.
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Figure 7.4: View of the author target selection function for the second iteration of the interface
design for JohariMAA.
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Figure 7.5: The main view of the interface design for JohariMAA.

panel that shows a dropdown bar consisting of all the available feature sets (see Figure 7.6).

After making the feature set selection, the panel collapses back into a button, and the button

for the next step is then available to be selected. These are some of the potential design choices

that are meant meant to lead the user through the process without them having to guess what

step is next. The options are concealed for each step until they are in use to minimize interface

clutter.

We decided that it would be best to get rid of multiple buttons for mutation and use a

single mutate button that performs steepest ascent hill climbing. Steepest ascent hill climbing

was chosen as the sole mutation method because using a single language to translate does not

change the text enough so that the prediction scores are affected. The steepest descent hill

climbing button also was less effective than steepest ascent hill climbing. When using steepest

descent hill climbing, we experienced longer run times and incomprehensible text.
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Figure 7.6: JohariMAA interface design depicting the select feature set button expanding into
a dropdown menu.

7.3 Implementation

JohariMAA was developed in Microsoft Visual Studio 2022 using the Windows Presentation

Foundation (WPF) framework. WPF was chosen because of the way it separates design and

programming with XAML and C#. Python 3 is also used in JohariMAA to script some func-

tionalities. The XAML version of the Material Design UI library was utilized for the user

interface. AuthorCAAT was previously developed in Apache Netbeans using Java. Java Swing

and Abstract Window Toolkit were used for the user interface. For our initial implementation of

JohariMAA, we used the same approach to adversarial authorship as AuthorCAAT since it has

proven to be successful for anonymization. This means that we are still using machine transla-

tion within a hill climbing algorithm. Also, we are using the same feature sets and datasets for

the list of author target options.

Figures 7.7, 7.8, 7.9, and 7.10 show the JohariMAA user interface. The text boxes for

the parent and mutated texts are organized in a tabbed format. The selection for feature sets
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Figure 7.7: The user interface of JohariMAA.

and author targets are located in two expandable areas. The application starts with only the

area for the feature sets expanded to help reduce any confusion that the user may have on

which order selections need to be made. When the user makes their selection and clicks the

”Analyze Features” button, step 2 expands and step 1 collapses. A circular progress bar is used

to visualize the author identification scores. The numerical values next to them indicate the

similarity in the form of a percentage. Previously in AuthorCAAT, we had a separate window

depicting the author score and the selection of the author target would be done in the main

window. In JohariMAA, we combine these two components so the user just clicks directly on

the author target. Once the text is mutated, the second tab appears where the mutated text is

displayed. The ”Make New Parent” button is only enabled when the mutation tab is selected.

This button copies the text from the mutation tab to the parent tab and deletes the mutation tab.

7.3.1 Feature Extraction and Prediction

We created models for each feature set. The character unigram and LIWC models were created

in Python using scikit-learn. The model for the topic model feature set was created in C# using
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Figure 7.8: Selecting a feature set in JohariMAA.

Figure 7.9: Selecting an author target in JohariMAA.
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Figure 7.10: Mutation in JohariMAA.

the ML.NET machine learning library. The models are created for every feature set and dataset

(mentioned in chapter 3) pair.

For our author identification system we use a python script that loads the previously men-

tioned models and passes the feature vector representing the text into the model to return the

scores from the decision function for each author. In AuthorCAAT, the models were not saved.

This meant that each time we were to run the prediction script, we preprocessed the features of

the entire dataset before passing in the feature vector of the text we were trying to predict. We

also got rid of some unnecessary overhead by sending the feature vector directly to the python

script whereas in AuthorCAAT the feature vector was written to a file that was read by the

python script.

7.3.2 Mutation

Our method for mutating the text employs the Google Translate API for our hill climbing

algorithm. Our hill climbing algorithm starts by taking the user’s text and passing it to the
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Figure 7.11: A single mutation iteration within the hill climbing algorithm.

Google Translate API to translate it to one of eight foreign languages (Spanish, German, Chi-

nese, Korean, Arabic, Japanese, French, Russian) before passing this translation back to the

Google Translate API to retrieve the English translation. Features are then extracted from this

new English text and then passed through the pretrained model to get the author identification

scores (see Figure 7.11). This is done for each language and the text where the author target’s

prediction score has improved the most is chosen as the text to send back through the Google

Translate API for each language.

In AuthorCAAT, the hill climbing algorithm would run for a single language at a time, or

synchronously. For JohariMAA we have made the algorithm asynchronous. This means that

all of the calls to the Google Translate API for each language will start immediately rather than

waiting on one language to completely go through the translation and prediction process before

moving on to the next language.

7.3.3 Offline Version

We created a separate version of JohariMAA that does not rely on APIs so that it can be used

without an internet connection. This means that the APIs for the LIWC feature set and Google

Translate were removed and replaced. In the place of LIWC, we use Empath[57]. Empath is

a feature set similar to LIWC that consists of 194 built-in topical and emotional categories of

59,690 words that were generated by using the neural embeddings of approximately 1.8 billion

words of fiction and the resulting vector space to determine their cosine similarity. Empath also

offers the option to generate new categories with seed terms given by the user. Some examples

of categories within Empath include school, fear, contempt, and social media.

The Google Translate API was replaced with an mBART model that has been fine-tuned

for multilingual machine translation [58]. This model allows for translations between any pair
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of 50 langauges. We used the same languages that were used with the Google Translate API

(Spanish, German, Chinese, Korean, Arabic, Japanese, French, Russian).

7.4 Summary

In this chapter, we evaluated AuthorCAAT and observed issues within the tool that contributed

to user frustration and fatigue. Some of those issues were directly related to the user interface

while others were more so related to the tool’s functionality. These issues were taken into ac-

count when designing and implementing JohariMAA. AuthorCAAT’s user interface had many

components that we reduced to a less complex, more user-friendly design. The latest version of

AuthorCAAT consisted of 10 buttons, three dropdown menus, and three windows. JohariMAA

consists of four buttons, one dropdown menu, and one window. We organized the layout in

a way that is less cluttered, therefore making the program easier to navigate. We also made

sure to include better feedback to the user through error messages and loading messages. We

improved the hill climbing algorithm by implementing it asynchronously as opposed to the

synchronous configuration in AuthorCAAT. We were able to reduce the time complexity of

the hill climbing algorithm from quadratic time to linear time. We also improved the author

identification mechanism by utilizing saved models rather than recreating them each time.
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Chapter 8

Leveraging Model Interpretability for Adversarial Authorship

8.1 Introduction

In this chapter, we begin looking into ways to make improvements on the components of the

JohariMAA framework. We examine how clustering documents before performing adversarial

authorship affects the ability of the classifier to correctly attribute a text to its original author.

We do this by comparing a dataset that has been labeled in three different ways: by the original

author, by clustering based on the TF-IDF representation, and by clustering based on a word

embedding representation. We finetuned three DistilBERT models with these 3 sets of labels

from the same dataset. We then utilize an model interpretability library to perform an attack

on each model. Our hope is that mimicking a cluster rather than an individual author could

potentially help better obfuscate an author by hiding amongst a more generalized feature profile

and making it more difficult to pinpoint a specific author. It could also offer an opportunity to

use a larger, more diverse dataset to make generating adversarial texts for different types of text

(e.g. emails, blog posts, tweets, etc.) easier.

8.2 Dataset

Our experiments were performed on the C50 dataset from PAN [63]. The C50 dataset consists

of 50 authors where each author has 100 samples. The dataset was split 60% for training,

20% for validation, and 20% for testing. Stratified sampling was used to keep the authors

balanced across each set. The C50 dataset was preprocessed by removing URLs, emails, and

extra whitespace. When clustering the datasets we tried two different representations for the
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texts: Term Frequency–Inverse Document Frequency (TF-IDF) and word embeddings. TF-

IDF is used to represent the words in a set of documents based on how rare they are in the

set. Words that are rarer are given more weight whereas words that are common are assigned a

lower weight. For the word embeddings, we utilized the Gensim library with a pretrained word

vector model from the FastText library [64][66]. The pretrained model consists of 1 million

word vectors trained with subword information from Wikipedia 2017, UMBC webbase corpus,

and statmt.org news dataset. Each word embedding is 300 dimensions. For dimensionality

reduction, we used truncated singular value decomposition (SVD).

For clustering the TF-IDF and word embedding representations of our dataset, we used

K-means clustering. To determine a viable number of clusters we evaluated K values first by

their silhouette score to narrow down our search to a few different K values, then we evaluated

them using the Calinski-Harabaz Index and the Davies-Bouldin Index. For TF-IDF we went

with a K value of 6 and for the word embeddings we went with a K value of 5.

8.3 Adversarial Text Generation Approach

For our initial attempt we trained a machine learning model on the embedding representation

of our dataset using a pretrained FastText model with Gensim and then proceeded to perform

synonym substitution on the words that were most influential on the prediction of the model.

This approach did not work because the synonyms have similar embedding values, therefore

the embedding representation would appear practically unchanged to the classifier even if the

actual words were different. This would lead to none of the substitutions causing the classifier

to misclassify the texts.

Our method leverages the interpretability of a transformer model. We use pretrained Dis-

tilBERT models for our experiments. DistilBERT is a smaller, faster version of BERT. This

version of DistilBERT has six layers and 66 million parameters rather than the original ver-

sion’s 12 layers 110 million parameters. We use a library called Transformers Interpret that

uses PyTorch’s model interpretability tool Captum [68][69]. Captum provides the ability to

interpret neural networks at the feature level. Transformers Interpret simplifies the process of

using Captum with the transformers library. When a sample is passed to the interpreter, we
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Figure 8.1: Word Attributions Returned When Running Transformer Interpret on a Text Sample

can see exactly which tokens contribute to the prediction of the classifier both negatively and

positively. These tokens are given scores where a positive number is indicative of a positive

contribution and a negative number is indicative of a negative contribution to a predicted class.

The sum of these scores is called the attribution score. The interpreter also offers you the abil-

ity to visualize the classifier’s prediction by highlighting both the positive and negative words

in green and red, respectively. Figures 8.2 and 8.3 highlight both the positive and negative

attributions within a prediction. Figure 8.1 shows the words broken down into tokens and their

contribution values.

For our method, we take the list of tokens and their scores to determine which words

contribute to a text sample being correctly classified so that we will know which words to focus

on when generating the adversarial sample. Because we are using a BERT language model,

when the text is tokenized it uses a WordPiece tokenizer. This type of tokenizer breaks words

down into subwords based on their frequency and distribution within the training data. The

list of tokens that are returned by the interpreter consists of words and subwords along with

their individual attribution scores. Before we know definitively which words have the highest

scores, we recombine the tokens that are subwords into complete words and add their scores

accordingly. Being that we are trying to get our classifier to misclassify the text, we are only
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Figure 8.2: A visualization of the attribution of a correctly classified text using the Transformer
Interpret Library

Figure 8.3: A visualization of the attribution of an incorrectly classified text using the Trans-
former Interpret Library

focusing on the words with positive scores. We take the list of positive words and get a set

of synonyms for each word. We ignore stop words and named entities. For synonym retrieval

we tried both WordNet and a pretrained word vector model from FastText [65][66]. We then

went through the synonyms for each word one by one and replaced the original word within

the text sample and reclassified the sample with the interpreter. If the synonym changed the

classification of the text or decreased the overall attribution score, it would stay in the text

sample. This process was repeated for each word that positively contributed to the correct

attribution made by the classifier until the classification changed or every word had been tested

in the text sample. The number of synonyms for each word was limited to 5.

8.4 Experiments

For our experiments, we finetuned three DistilBERT models for the task of text classification

[67]. We used the Transformers library by HuggingFace and PyTorch to finetune the models.

The first of our 3 classification models was trained on the 50 authors of the C50 datasets for

25 epochs using a dropout rate of 0.14 with the AdamW optimizer with a weight decay value

of 0.02 and a learning rate of 0.00001. Figure 8.4 depicts a plot of the accuracy of the model

during finetuning and 8.5 depicts a confusion matrix for the accuracy per class of the test set.
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Figure 8.4: Accuracy while Finetuning a DistilBERT Model with the Author Labels of the C50
Dataset

The second model was trained on the 5 clusters of authors that were formed using K-means

clustering on the C50 dataset where the text samples were transformed using the TF-IDF. Figure

8.6 depicts a plot of the accuracy of this model during finetuning and 8.7 depicts a confusion

matrix for the accuracy per class of the test set. This model was trained for 25 epochs using

a dropout rate of 0.14 and the RMSprop optimizer with a weight decay value of 0.01 and a

learning rate of 0.00001. Another model was trained on 6 clusters of authors that were formed

using K-means clustering of the C50 dataset where the text samples were transformed into word

embeddings using a pretrained FastText model. This model was trained for 25 epochs using a

dropout rate of 0.14 and the AdamW optimizer with a weight decay value of 0.01 and a learning

rate of 0.00001. Figure 8.8 depicts a plot of the accuracy of this model during finetuning and

8.9 depicts a confusion matrix for the accuracy per class of the test set.
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Figure 8.5: Normalized Confusion Matrix of the DistilBERT Model Finetuned with the Author
Labels
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Figure 8.6: Accuracy while Finetuning a DistilBERT Model with the Author Labels of the C50
Dataset
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Figure 8.7: Normalized Confusion Matrix of the DistilBERT Model Finetuned with the TF-IDF
Cluster Labels
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Figure 8.8: Accuracy while Finetuning a DistilBERT Model with the Author Labels of the C50
Dataset
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Figure 8.9: Normalized Confusion Matrix of the DistilBERT Model Finetuned with the Word
Embedding Cluster Labels
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Label Accuracy
Author 71%

TF-IDF Cluster 81%
Word2Vec Cluster 85%

Table 8.1: Accuracies of Each Finetuned Model on the Test Sets

Original Adversarial
the british government on thursday referred a
proposed merger of key crosschannel ferry ser-
vices provided by britains pampo and swedens
stena line to its main competition watchdog for
investigation

the britsh government on thursday referred a
proposed merger of key crosschannel ferry ser-
vices provided by britains pampo and swedens
stena line to its main competition watchdog for
investigation

america online inc said monday it was starting
a major expansion of its online network and
planned to spend 250 million through the end
of its fiscal year in june to build capacity and
improve service

america on-line inc said monday it was starting
a major expansion of its on-line network and
planned to spend 250 million through the end
of its fiscal year in june to build capacity and
improve service

Table 8.2: Adversarial Text Created Using Our Adversarial Text Generation Algorithm

After training each model, we take their respective test sets and classify them. As shown in

Table 8.1, the model finetuned with the author labels reached an accuracy of 71%. The model

finetuned with the TF-IDF cluster labels reached an accuracy of 81%. The model finetuned for

the word embedding clusters also reached an accuracy of 85%. The texts that were correctly

classified were then taken and used in our algorithm to generate the adversarial texts. We also

took the adversarial texts that were generated from our cluster classification models and used

our author classification model to see how well moving from one cluster to another affects the

the classification at the author level.

8.5 Results

The test set with author labels initially had 71% of texts correctly classified. When we ran

those correctly classified samples through our adversarial text generator, we were able to cause

the classifier model to misclassify 49% of the texts when using WordNet to retrieve synonyms

and 56% of them when using pretrained word vectors. We then took these misclassified texts

and evaluated them using cosine similarity and BLEU score. For the texts generated with the

synonyms from WordNet, 98% of the misclassified texts had a cosine similarity score of at
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WordNet FastText
Misclassified Overall 49% 56%
Cosine Sim (≥ 0.9) 98% 99%

BLEU (≥ 0.7) 57% 69%
Cosine Sim & BLEU 57% 69%

Cosine Sim & BLEU Overall 28% 38%

Table 8.3: Misclassification Rates for the Adversarial Text with the Author Classification
Model

least 0.9 and 57% of the misclassified texts had a BLEU score of at least 0.7. 41% of the texts

had both a cosine similarity score of at least 0.9 and BLEU score of at least 0.7. For the texts

generated with the synonyms from the pretrained word vectors, 99% of the misclassified texts

had a cosine similarity score of at least 0.9 and 69% of the misclassified texts had a BLEU score

of at least 0.7. 49% of the texts had both a cosine similarity score of at least 0.9 and BLEU

score of at least 0.7. See Table 8.3.

The test set that was labeled with respect to the cluster of the TF-IDF representation of

each text belonged to initially had 83% of texts correctly classified. When we ran those cor-

rectly classified samples through our adversarial text generator, we were able to cause the clas-

sifier model to misclassify 58% of the texts when using WordNet to retrieve synonyms and 57%

of them when using pretrained word vectors. We then took these misclassified texts and evalu-

ated them using cosine similarity and BLEU score. For the texts generated with the synonyms

from WordNet, 99% of the misclassified texts had a cosine similarity score of at least 0.9 and

40% of the misclassified texts had a BLEU score of at least 0.7. 41% of the misclassified texts

had both a cosine similarity score of at least 0.9 and BLEU score of at least 0.7. For the texts

generated with the synonyms from the pretrained word vectors, 100% of the misclassified texts

had a cosine similarity score of at least 0.9 and 40% of the misclassified texts had a BLEU score

of at least 0.7. 40% of the texts had both a cosine similarity score of at least 0.9 and BLEU

score of at least 0.7. See Table 8.4.

The test set that was labeled with respect to the cluster of the word embedding representa-

tion of each text belonged to initially had 85% of texts correctly classified. When we ran those

correctly classified samples through our adversarial text generator, we were able to cause the
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WordNet FastText
Misclassified Overall 58% 57%
Cosine Sim (≥ 0.9) 99% 100%

BLEU (≥ 0.7) 40% 40%
Cosine Sim & BLEU 40% 40%

Cosine Sim & BLEU Overall 23% 23%

Table 8.4: Misclassification Rates for the Adversarial Text with the TF-IDF Cluster Classifica-
tion Model

WordNet FastText
Misclassified Overall 34% 33%
Cosine Sim (≥ 0.9) 99% 100%

BLEU (≥ 0.7) 75% 76%
Cosine Sim & BLEU 74% 76%

Cosine Sim & BLEU Overall 25% 25%

Table 8.5: Misclassification Rates for the Adversarial Text with the Word Embedding Cluster
Classification Model

classifier model to misclassify 34% of the texts when using WordNet to retrieve synonyms and

33% of them when using pretrained word vectors. We then took these misclassified texts and

evaluated them using cosine similarity and BLEU score. For the texts generated with the syn-

onyms from WordNet, 99% of the misclassified texts had a cosine similarity score of at least 0.9

and 75% of the misclassified texts had a BLEU score of at least 0.7. 74% of the misclassified

texts had both a cosine similarity score of at least 0.9 and BLEU score of at least 0.7. For the

texts generated with the synonyms from the pretrained word vectors, 100% of the misclassified

texts had a cosine similarity score of at least 0.9 and 76% of the misclassified texts had a BLEU

score of at least 0.7. 76% of the misclassified texts had both a cosine similarity score of at least

0.9 and BLEU score of at least 0.7. See Table 8.5.

Label Accuracy Drop
Author 44% -27%

TF-IDF Cluster 62% -19%
Word2Vec Cluster 64% -21%

Table 8.6: Accuracy of Test Set After Applying the Adversarial Text Generation Algorithm
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Label Original Adversarial
TF-IDF (WordNet) 81% 78%
TF-IDF (FastText) 85% 84%

Word2Vec (WordNet) 85% 77%
Word2Vec (FastText) 83% 77%

Table 8.7: Adversarial Texts Generated from the Cluster Models and then Classified Using the
Author Classification Model

Table 8.6 summarizes the best results for each model. These results come from applying

the adversarial text generation algorithm to each test set using the synonyms obtained with

the FastText pretrained word embeddings. We also are only considering the samples that had

the cosine similarity score of at least 0.9 and the BLEU score of at least 0.7. The model

trained on the word embedding clusters had the most significant change in accuracy when

applying the adversarial text generation algorithm. It should be noted that the same pretrained

word embedding model was used when creating the clusters and selecting synonyms within the

algorithm. The Author classification had the largest drop in accuracy at 27%. This could be

due to the fact that there are 50 author labels, whereas the cluster models only had five or six

labels.

Table 8.7 shows the results from taking the adversarial texts that were created from the

cluster models and then using their original author as a label to test how well moving from one

cluster to another aides in obfuscating the original author. The two sets of adversarial texts that

were generated from the word embedding based clusters had the largest drops in accuracy with

an 8% drop for the adversarial text generated using WordNet and 6% for the adversarial text

generated using the FastText embeddings.

8.6 Summary and Future Work

In this chapter, we finetuned DistilBERT models for the task of text classification. One model

was trained using author labels, while the other two models were trained using labels that

were based on the texts being clustered in two different ways: TF-IDF and word embedding

representation. Once these models were trained, interpretations of their predictions were used

in an algorithm to generate adversarial texts. Utilizing the interpretations helped us drop the
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Original Adversarial
apple computer inc said tuesday it will consol-
idate its independent marketing and develop-
ment units into fewer groups to cut costs and
to concentrate on selling computers in key mar-
kets

pears computer inc said tuesday it will consol-
idate its independent marketing and develop-
ment units into fewer groups to cut costs and
to concentrate on selling computers in key mar-
kets

the chinese authorities acted decisively on fri-
day to stop extraordinary price movements on
the countrys two stock markets by imposing
a limit of 10 percent in the movement of any
stock on one day

the non-Chinese authorites acted decisively on
friday to stop extraordinary price movements
on the countrys two stock markets by imposing
a limit of 10 percent in the movement of any
stock on one day

Table 8.8: Adversarial Text Generated With Poor Substitutions

accuracies of all three models by as much as 27%. When we classified the adversarial texts

generated using the interpretations from the cluster classification models by predicting their

original author with our author classification model, we were able drop the accuracy of the

author classification model by as much as 8%. The adversarial texts generated from the word

embedding clusters contributed the largest drops in accuracy.

For future work, more experimentation needs to be done with different word embedding

models and other datasets. We plan on observing how different datasets can be clustered to-

gether and subsequently classified. Being able to combine datasets for clustering would be

very useful when it comes to data gathering for adversarial authorship. It is difficult to find

individual authors with a sufficient amount of text samples. While looking for a dataset to

finetune our DistilBERT models, we had trouble finding one with, both, enough authors and

an adequate amount of texts per author. Two datasets we tried to finetune, a blog dataset and a

tweet dataset, failed to achieve over 40% accuracy. We also plan on finetuning other sequence

classification models to see how various parameters affect the classification. There also needs

to be work done to improve the text generated when using the word embeddings to retrieve

the synonyms. Because the nearest word embeddings do not just include synonyms but also

include antonyms, sometimes the adversarial text that is generated loses it’s meaning (see Fig-

ure 8.8). Every potential substitution candidate should be checked for contextual and semantic

similarity to ensure the meaning of the text is not altered.
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Chapter 9

Summary and Future Work

9.1 Summary

In this dissertation, we begin by presenting a method for creating adversarial text in an effort

to conceal an author’s identity for online privacy. We demonstrate the efficacy of our adver-

sarial authorship method that utilizes machine translation in a hill climbing algorithm. We

tested this method, along with other successful AMTs, against high performing authorship at-

tribution algorithms. Our method was able to drop the accuracy of the authorship attribution

algorithms by as much as 20%. We also demonstrated that when pairing our tool with an al-

gorithm that combines the AMTs, and automates the creation of adversarial text, we were able

to drop the accuracy of the authorship attribution algorithms by as much as 52%. We pro-

ceeded by incorporating the authorship attribution algorithms within our adversarial authorship

methods (AuthorCAAT, AIM-IT, and the hybrid) to demonstrate that performance improves

within a partially observable environment. Additionally, we explore the challenges of operat-

ing AuthorCAAT before designing a framework for adversarial authorship, JohariMAA, that

allows for a uniform user experience regardless of the adversarial authorship approach being

implemented. Finally, we repackage the functionality of AuthorCAAT within the implementa-

tion of our framework while being mindful of AuthorCAAT’s shortcomings. We then make a

move to improve the author selection and prediction aspects of the JohariMAA framework and

utilize the interpretability of deep learning models to implement an algorithm for generating

adversarial text.
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9.2 Future Work

JohariMAA allows us to continue exploring different methods of adversarial authorship through

its framework. The framework gives us the ability to explore approaches for mutation methods

beyond a hill climbing configuration and machine translation in general.

9.2.1 Author Selection

Future work should focus on improving the ability to target a specific author rather than just

moving away from the original author. In AuthorCAAT, targeting an author did not necessarily

lead to the adversarial text being identified as the specified author target. There should also

be work done to examine a method for automating the selection of an author target, as a user-

selected author target may not be the best option.

Future work should also examine how using groups of authors, or clusters, as the potential

author targets can affect the detection of an author by authorship attribution algorithms. This

work should explore clustering authors from various datasets and document types (e.g. blogs,

emails, etc.).

9.2.2 Mutation Methods

Future work should explore more approaches to mutating text. This work should include meth-

ods that utilize word embeddings. When developing mutation approaches, there should be a

focus on preserving semantics in an effort to minimize the user’s need for editing the text.

This can be explored using WordNet and HowNet. Mutation methods that utilize language

models should also be explored. In recent years, the transformer, a deep learning model that

uses a self-attention mechanism within a encoder-decoder architecture, has become popular

within the field of natural language processing [60]. Pre-trained transformer models like BERT

(Bidirectional Encoder Representations with Transformers) and GPT-n (Generative Pre-trained

Transformer) are trained on large datasets and serve as base models that are fine-tuned for

specific tasks [61][62].

69



9.2.3 Author Identification

Future work should also focus on strengthening the underlying author identification mecha-

nism. This will improve the anonymity of the adversarial text by making it more difficult for

an author to be undetected. Having a higher threshold for being anonymized could help the

adversarial text evade more authorship attribution algorithms. Ensemble learning should be

considered when constructing a more robust author identification approach. State of the art

authorship attribution algorithms should be considered when exploring approaches for author

identification.
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