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Abstract 

 

Cyber-physical systems (CPS) have become increasingly prevalent in industrial production as they 

integrate sensing, computation, control, and networking into physical objects and infrastructure. 

One of the branches of CPS, additive manufacturing (AM) – also known as 3D printing – enables 

the fabrication of geometrically precise items layer by layer. This technology has revolutionized 

the manufacturing industry by allowing for more efficient and cost-effective production of 

complex and customized parts. 

 However, the widespread integration of physical facilities with the internet has amplified 

the risk of malicious activity, leaving entire systems vulnerable to cyber threats. As a result, 

concerns over security breaches in CPS within the Internet of Things (IoT) have escalated. While 

the security challenges in AM are multi-fold, this research specifically focuses on detecting cyber-

physical threats and performing a side-channel attack to reconstruct the model, which may result 

in the theft of Intellectual Property (IP). By providing different contributions to solving these 

issues, the research aims to enhance the security of CPS and prevent unauthorized access, theft, or 

tampering of sensitive information. 

 With side-channel power monitoring, a novel intrusion detection method is proposed to 

counter threats in cyber-physical manufacturing systems. One of the potential malicious attacks in 

this context is the covert insertion of voids during printing, which can have severe consequences. 

To address this challenge, we propose a novel power-monitoring model based on Dynamic Time 

Warping (DTW) to detect malicious activity in a polymer AM process. Our results demonstrate 

that this approach not only facilitates rapid alteration detection compared to the other methods but 

also enables precise identification of void location down to a specific layer. Furthermore, we have 
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extended the application of the model to another machine, enabling us to verify the print’s 

authentication remotely. 

A physical-to-cyber domain attack is when information gathered from the physical domain 

is exploited to reveal sensitive information about the cyber domain. To illustrate the vulnerability 

of AM to such attacks, we propose a novel method for reconstructing the geometric form of a 

model using side-channel information obtained from the rotation of the motors. Our research 

highlights the need for preventive measures against Intellectual Property (IP) theft in AM and 

reveals that the model has been restored, closely matching the original CAD design. 

This study contributes to the subject of the security domain in cyber-physical 

manufacturing systems, with an emphasis on intrusion detection as well as protection against 

possible vulnerabilities. Some limitations and future works are also provided here as proof of 

concept for further expansion into other security topics in CPS. 
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1. Introduction 

In the past four decades, additive manufacturing (AM) technologies have undergone rapid 

evolution since their initial introduction in the 1980s [1]. An impressive average annual growth 

rate of 27.4% for the AM industry has further solidified its position as a vital component of the 

manufacturing landscape [2]. According to Wohler's Report 2021 [3], despite the challenges posed 

by COVID-19, the industry experienced significant growth of 7.5% in 2020, reaching a total value 

of $12.8 billion. This growth is a testament to the increasing adoption of AM in contemporary 

manufacturing systems.  

 Furthermore, the demand for Internet integration in both additive and subtractive 

manufacturing has given rise to the emergence of Cyber-Physical Systems (CPS) [4]. These 

systems involve the seamless integration of computing and communication systems with the 

physical realm, enabling more efficient and interconnected manufacturing processes [5]. This 

integration has led to improved control, monitoring, and optimization of AM processes, resulting 

in enhanced productivity and quality.  

 The increasing accessibility of the Internet has made connected systems vulnerable to 

cyber-related attacks, posing a higher risk of disruptive interventions against AM from various 

adversaries. According to the 2021 Global Threat Intelligence Report [6], the manufacturing 

industry moved from being the eighth most targeted industry by cyber attackers to the second, 

behind only finance and insurance, with a reported 300% increase in attacks in a single year. 

Potential CPS challenges originating from both cyberspace and physical surroundings caused by 

attacks will impact quality, intellectual property (IP), and physical safety [7]. Consequently, 

critical infrastructure security for both cyber and physical aspects has become an active research 

area in recent years [8]. Therefore, the necessity for a deep exploration of security issues in AM 



 2 

inspires this dissertation and motivates researchers’ awareness of system defects in the design 

process [9]. To further expand the security topics in AM, three major contributions have been 

proposed to bring new ideas for researchers: 

 

(1) Detection of Sabotage Attacks for Additive Manufacturing.  

We present a novel power monitoring method to detect sabotage attacks on an AM system. 

The proposed method evaluates the current signals from motors when printing both the 

benign control group and the altered group caused by malicious activities. This layer-to-

layer comparison enables the detection of any anomalies or deviations in the motor signals 

between the two groups. 

 

(2) Side-channel Attack on Additive Manufacturing Systems.  

To reveal the potential vulnerabilities in AM systems, we present a novel rotation side-

channel attack technique that enables the accurate reconstruction of model dimensions 

without requiring direct access to the original design. By analyzing the rotational data from 

these motors, we can precisely track the movement and position of the printing head, 

allowing for a highly accurate reconstruction of the model's dimensions.  

 

 (3) Signal Variation Based on Complexity and Print Validation Across AM Platforms.  

By analyzing the variances of the signals between the two machines, the relationship 

between prints' increased complexity and signal variation can be built.  Furthermore, 

utilizing the previously developed anomaly detection method, we can compare the current 
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signals from each machine to effectively detect any abnormalities in the geometry. This 

research ensures the authenticity of prints from diverse sources. 

 

 The remainder of this dissertation is organized as follows. Chapter 2 discusses the related 

background information. Chapter 3 presents the literature review. Chapter 4 describes the proposed 

power-monitoring model based on Dynamic Time Warping (DTW). Chapter 5 presents a method 

of reverse engineering a CAD model of a part using the motor rotation side channel. Chapter 6 

introduces a new experiment to investigate signal variances between the benchmark and the 

alternative machine. Chapter 7 summarizes the conclusions and provides ideas for future works.  
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2. Background 

Additive manufacturing (AM) provides unique advantages over conventional manufacturing 

processes [10,11]. One such advantage is the ability to customize specialized parts to a high degree 

of precision, ensuring an exact fit for specific applications [12,13]. This customization capability 

reduces the need for excess material, minimizing material waste and lowering costs [14-17]. 

Another benefit of AM is the ability to rapidly produce dies with complex geometries that would 

be difficult or even impossible to realize with conventional manufacturing methods [18-22]. The 

intricate design possibilities of AM, enabled by the layer-by-layer printing process, allow for the 

creation of parts with complex internal structures and fine details, providing more functionality 

and reducing the need for assembly [23]. 

 For example, NASA has already developed 3D-printed solar wings to lighten the load and 

reduce costs with a 3D-printed recycler [24]. The sustainability of long-duration space missions is 

accomplished through processing raw materials like polyethylene and converting plastic trash into 

reusable feedstock [25]. Moreover, 3D printing is widely used for air ducts [26], tooling prototypes 

[27], and even fuel injection nozzles for General Electric jet engines [28]. These examples 

demonstrate the transformative potential of AM in a variety of application areas. 

 By the International Organization for Standardization (ISO/ASTM 52900) [29], additive 

manufacturing technologies are categorized into seven types: (1) Vat photopolymerization, (2) 

Directed energy deposition, (3) Sheet lamination, (4) Powder bed fusion, (5) Binder jetting, (6) 

Material jetting, and (7) Fused deposition modeling (FDM). FDM is the most commonly used 

type, accounting for over 70% market share as of July 2018 [30]. According to Wohler’s Report, 

an industry-leading annual survey, A.M. continues the expansion of 7.5% to nearly $12.8 billion 

in 2020, even though negatively impacted by Covid-19 [31].  
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Additive manufacturing (AM) is at a higher risk of economic loss due to security failures 

compared to traditional manufacturing methods because all the essential parameters of the process, 

from design models to printed parts, are centralized in a single file [32-35]. Significant profits from 

unlawfully acquired commercial secrets make AM an attractive target for attackers [36]. Security 

protection is crucial as IP-intensive AM industries is expected to expand at a compound annual 

growth rate (CAGR) of 20.8% from 2022 to 2030 [37-39]. Currently, most AM security issues 

occur through the cyber domain, but information leakage through the physical domain still exists 

[40]. Similarly, integration of the virtual and physical aspects of the AM process fundamentally 

transforms it into a CPS.  

The modernization of critical infrastructure merging with CPS also raises concerns about 

cyber-physical threats [41-44]. The security matters for CPS in additive manufacturing are mainly 

composed of two categories, as depicted in Figure 1. These categories are the (1) Cyber scope and 

(2) Physical scope. For the cyber scope, the interconnectedness of various technologies installed 

in cyber systems can be a cause of concern, as it creates potential vulnerabilities that can be 

exploited by cyber attackers [45]. Industrial environments are exposed to a wide range of risks, 

including cyber threats that can impact people, data, and physical processes, and are among the 

most prevalent concerns in modern manufacturing [46-48]. For the physical scope, unauthorized 

exploitation of systems can lead to the theft of intellectual property, making it easy for models to 

be reconstructed through reverse engineering with the process information emitted as side-

channels during operation. These types of attacks are often launched through physical channels 

[49,50].  

However, the traditional IT-based security measures don’t entirely apply to CPS [51]. 

Cybersecurity systems and CPS are related in computation, communication, and networking [52]. 
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The key difference between cyber-physical attacks and traditional cyber-attacks is that the former 

adds an extra layer of complexity with physical equipment in which the attack will influence the 

elements in both cyber and physical domains [53]. Consequently, common updates and IT security 

patches are incompatible with legacy CPS equipment [54,55]. According to Yampolskiy et al. [56], 

multiple attack vectors that compromise one or more AM workflow components can be roughly 

divided into five groups: (1) Actors or workflow roles, (2) Firmware and software, (3) Network 

communications, (4) Physical supply chain, and (5) Power supply.  

 

 

Figure 1. Different attack channels in the cyber and physical scopes for 3D printers. 

 

 

The typical AM workflow from design to a finished part is also described in Figure 1. Each step 

may become part of vulnerable channels that could be exploited for attack [57]. After being 

designed with a Computer-Aided Design (CAD) tool such as SolidWorks, the file is converted to 

a STereoLithography (STL) file [58,59]. A slicing software, like Cura, converts the STL file into 

G code to be used by a 3D printer [60]. During printing, the firmware Marlin in the 3D printer 

translates the G-code into toolpath coordinates and other real-time activities of the machine until 

the part is eventually printed [61-63]. However, side-channels like acoustic emission [64], 

temperature [65], image [66], and vibration [67] carry useful information that describes the 

machine’s activity. If these side-channel signals are illegally obtained by continuously monitoring 

manufacturing parameters, the leaked information can be used to speculate on the operations that 
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are not intended to be known by outsiders [68]. Consequently, intellectual property such as the 

geometric design can be reconstructed through reverse engineering [69]. Therefore, intrusion 

detection and attack methods through system monitoring are the focus of this dissertation.  
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3. Literature Review 

Cyber-physical attacks typically start in digital format and infiltrate through a cyber network, 

potentially causing physical components such as machines, equipment, parts, assemblies, and 

products to experience over-wearing, breakage, scrap, or other changes that deviate from the 

original design [70]. As a result, it’s necessary to have a thorough understanding of CPS security 

issues. This section reviews the literature on cyber-physical attacks, detection, and security 

incidents, involving cyber-physical manufacturing systems.  

Research publications about cyber-physical security can be divided into four categories as 

shown in Figure 2: 1) Attack Detection, 2) Attack Methods, 3) Security Model Evaluation, and 4) 

Security Taxonomy.  

 

 

Figure 2. Identified categories for the cyber-physical security research publications in CPS. 

 

The remainder of this section will describe each of these publication categories in detail. 

 

3.1 Attack Detection 

 

Inadequate security during the transfer of data can create vulnerabilities for the theft of technical 

data and execution of sabotage attacks. As a result, protecting the physical modalities is crucial in 

detecting any unlawful activities that aim to disrupt normal operations. Understanding system 

vulnerabilities and the various forms of attack methods is the primary focus of this section. 
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 Yu creates a detection system that can accurately perceive the abnormal status by 

continuously comparing the collected side-channel data with the unmodified information [71]. 

Vincent builds a structural health monitoring system with piezoelectric materials to detect a 

possible malicious Trojan in the production of integrated circuits [72]. A real-time online process 

monitoring approach is also proposed by Vincent to defend against cyber-physical attacks by 

analyzing the data collected from sensory devices such as accelerometers, magnetometers, and 

video cameras [73]. Wu proposes a method to correlate cyber and physical alerts to detect cyber-

physical attacks [74]. Chhetri builds up a method to model the behavior of the system 

through statistically estimating functions that map the relationship between analog 

emissions (audio) and corresponding cyber domain data (G-code) [75]. Brandman uses a physical 

hash to take a Q.R. code that contains a hash string of the nominal process parameters and toolpath 

to strengthen security [76].  

 J. Straub focuses on the detection of an object that is incorrectly positioned on the printer’s 

build plate. He used an image-based solution by comparing the differences between the expected 

CAD file and produced object pictures to identify the discrepancies [77]. Straub also suggests a 

method in a 3D printing system to prevent material misuse [78] . Belikovetsky quantitatively 

introduces an object verification system to detect attacks with a digital side channel (audio 

signature) [79]. Gatlin suggests an approach based on the continuous monitoring of current 

supplied to individual stepper motors during a print and detects anomalies after comparing with a 

benign process [80]. Prakash introduces an image processing technique that analyzes 

the amplitude and phase variations in a series of sequential still images that represent frames of 

animation to filter if the intentionally introduced error sample has been detected [81].  
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3.2 Attack Methods 

 

The extensive use of computerized systems in manufacturing processes and their broad application 

areas make CPS an attractive target for attacks. For example, in April 2021, hackers breached the 

Colonial Pipeline using a compromised password and forced the oil giant to pay $4.4 million as a 

ransom [82]. AM, being a highly information-integrated industry, is more vulnerable to these types 

of attacks. Therefore, a comprehensive understanding of attack methods is crucial for ensuring the 

security of AM systems [83]. 

 Al Faruque is the first to successfully reconstruct a simple prototype by using the extracted 

audio data from the 3D printer at work, which draws attention to the vulnerability of additive 

manufacturing [84,85]. Backes has recovered 72 % of all the words printed by a dot-matrix printer 

with a microphone [86]. Burgess replicates the keyways with a 3D printer by taking a picture of 

the lock [87]. Mahan uses a simulation method based on G-code to accurately predict the physical 

output of a fused deposition modeling additive manufacturing machine in terms of both physical 

and digital artifacts [88]. Sturm introduces a technique focusing on attacking STL files and 

inserting voids in the tensile specimen, which affects the strength of the specimen [89]. Moore 

installs malicious firmware on the 3D printer replacing previous versions of the software to prove 

the vulnerabilities in the design of the data transferring process could cause an accident in 

industrial production. Quang Do proposes an attack method through protocols between clients and 

3D printers. They impersonate a legitimate client using a Raspberry Pi connected to the network 

so that the printers can be remotely manipulated. 
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3.3 Security Taxonomy and Overview 

 

In this section, we present a paper review on security taxonomies for multiple domains to specify 

the nature of attacks, with a focus on AM attacks and data theft. We also introduce security 

overviews and defense measures from various application areas. 

 Yampolskiy et al. thoroughly summarize all the publications on AM security in recent 

years [90]. Attack method and attack targets are both discussed in the way of taxonomy in two 

major security concerns: theft of technical data and sabotage of the AM process. Yampolskiy et al. 

outline the additive and subtractive manufacturing workflows [91]. He also proposes a framework 

for analyzing attacks on or using additive manufacturing systems and presents the major threat 

categories. The differences between the two workflows are identified to compare the two 

manufacturing paradigms from a security perspective, and the attack analysis framework is applied 

to demonstrate how the differences grow into threats. The analysis reveals that, while there is 

significant overlap concerning security, fundamental differences in the two manufacturing 

paradigms require a separate investigation of additive manufacturing security. 

 Elhabashy et al. propose an attack taxonomy that governs the relationships between quality 

control (QC) systems, manufacturing systems, and cyber-physical attacks in the context of 

malicious process changes [92]. The taxonomy was developed from a quality control perspective. 

The research is created from the attacker's perspective to aid manufacturers in understanding 

existing vulnerabilities and securing production systems against cyber-physical attacks. 

 Wu et al. propose a taxonomy for cross-domain attacks on cyber manufacturing systems 

(CMS) in four dimensions: attack vector, attack impact, attack target, and attack consequence [93]. 

This work provides a common language for cross-domain attacks in the manufacturing discipline 
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and helps researchers from both cyber security and manufacturing fields to better understand the 

nature of attacks in a CMS environment.  

 Lun et al. aim to identify, classify, and analyze existing research on CPS security with 118 

primary studies as a result of the systematic mapping study [94]. This work presents a powerful 

comparison framework for existing and future research on this topic. It provides a reusable 

comparison framework for understanding, classifying, and comparing methods or techniques for 

CPS security. Besides, the proposed systematic review of current methods and techniques for CPS 

security is useful for both researchers and practitioners.  

 

3.4 Security Models and Evaluation 

 

Researchers have proposed various models to simulate or evaluate CPS vulnerabilities under 

various attacks, in order to identify optimal defense strategies [95]. System parameters such as 

reliability, availability, and stability are tested to improve CPS integrity [96]. 

 Yu et al. utilize generalized stochastic Petri nets to model the system with three metrics: 

reliability, availability, and security to quantitatively measure the trustworthiness of the system 

[97]. A dynamic model that considers the spread of the malicious software is used to simulate the 

possible cyberattacks to analyze the system's behavior while under attack. As a result, the 

trustworthiness of the systems can be evaluated. 

 Zarreh et al. create a model using game theory to qualitatively analyze manufacturing 

systems rather than quantitative methods to address cyber-security threats. This method mainly 

focuses on finding the optimal defense strategy to defend against cyber threats. They use a zero-

sum theory to model the trustworthiness of a system under cyber threats and analyze the different 

defense policies to encounter these attacks [98]. 
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 DeSmit et al. propose a systematic method for assessing cyber-physical vulnerability [99]. 

They represent manufacturing processes as intersection maps of different entity types. He uses 

decision tree analysis to evaluate the impact of vulnerabilities. The paper provides an approach for 

systematically identifying cyber-physical weaknesses and analyzing their potential impact on 

intelligent manufacturing systems in each intersection node. 

 Orojloo et al. suggest a new method that captures the dynamic behavior of CPS with and 

without attacks as well as models the impact propagation of attacks [100]. With the decision-

making trial and evaluation laboratory (DEMATEL) method, the proposed method ranks the 

critical assets of CPS based on their sensitivity to disturbances and measures the direct and indirect 

consequences of attacks against them. 

 In general, protection, detection, and mitigation are the three fundamental approaches for 

countering attacks when developing treatment models [101]. However, none of the existing works 

offer a fast and accurate model for detecting anomalies in cyber-physical systems with signal 

power monitoring. Hence, we propose a novel power-monitoring model based on Dynamic Time 

Warping (DTW) to detect malicious activity in a polymer AM process. Building on this foundation, 

signals from other machines with the same make and model could be utilized to compare with the 

signal from the prototype machine, allowing for remote verification of the model's accuracy. 

Moreover, a reverse engineering approach other than the acoustic channel is proposed to expose 

the potential weakness in information integrity to prevent data leaking and IP theft. The primary 

objective of this dissertation is to develop a detection system and identify vulnerabilities in cyber-

physical systems that could be unlawfully exploited, thereby contributing to enhancing CPS 

security. 
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4. Smart Voids Detection 

The combination of digital and physical representation in 3D-printed objects increases their 

complexity and potential risks [102]. Once the system is compromised, the corrupted file may 

result in product failures, leading to injuries, litigation, or product recalls [103]. Malicious attacks 

in AM can cause potential quality issues, some of which are visible, while others like secretly-

placed voids, may be intentionally concealed and remain unnoticed on the surface [104]. The voids 

can significantly affect the mechanical properties of the printed parts under load [105]. The 

invisibility of voids within the printed parts poses a significant challenge to quality assurance, as 

they may pass inspection and quality checks [106]. To mitigate these risks, an efficient and precise 

method is proposed for detecting anomalies during production. 

 

4.1 Proposed Model Methodology 

 

We propose a power monitoring model based on dynamic time warping (DTW) to monitor the 

current signals to detect voids in an AM part and determine the minimum detectable size of the 

voids. In this section, we outline the basic concept for the proposed power monitoring model and 

explain the detail of the current signal slicing and DTW.  

 

4.1.1 Model Overview 

 

The overall framework of the proposed model is illustrated in Figure 3. The moving direction of 

the Fused Filament Fabrication (FFF) nozzle is controlled by the combination of X-axis, Y-axis, 

and Z-axis motors. The current signal on each motor can be collected as a channel of current data 

to develop a data-driven model [107]. Each part geometry corresponds to specific current signals 

from those motors, so any geometric modification in one layer will alter the signal. Therefore, the 

deviation can be detected by comparing the corresponding data obtained by the printed part in each 
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channel with the signal in normal conditions. The detection of attacks is achieved by evaluating 

the signal discrepancy with thresholding.  

 

 

Figure 3. The framework of the proposed methodology. 

 

4.1.2 Model Design 

 

Any abnormal geometry of the printed part can be indicated by the current signals of the motors. 

Figure 4 shows the discrepancy between the current signals for an original part and the signals for 

an attacked part from all channels. (a) original signals from three sensor channels on the normal 

part; (b) signals on the attacked part. The discrepancy is indicated in the black box. All the signal 

data from the original part serve as a benign or control group for comparison. We propose a power 

monitoring model based on DTW to detect the deviation caused by possible sabotage attacks in 

the part geometry. DTW is an algorithm for measuring the similarity between two temporal 

sequences (e.g., current signals). DTW has the following advantages in modeling [108]: (1) it 

compares the similarity between two temporal data sequences with different lengths; (2) it has 
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high precision on the result; (3) it enables faster calculation by parallel computation. DTW has 

many applications, including speech, handwriting, and gesture recognition [109]. It is particularly 

useful in situations where two sequences have different lengths or are distorted in some way, as it 

can handle temporal variations and deformations. 

 

 

Figure 4. Original signal comparison between the normal and altered prints.  

 

During the AM printing process, the motor moving along the Z-axis will lift the nozzle by 

one layer height and start printing the next layer when one layer is finished printing. That is the 

time when the peaks occur in the current signal on channel Z for the entire process, as shown in 

Figure 4. The small fluctuation between the peaks is caused by noise in the oscilloscope and probe 

system.  

The duration between peaks in Z channels indicates the printing on a layer. It means motors 

on the X-axis and Y-axis are moving while the motor on the Z-axis is idle. Therefore, the time at 

these peaks is used to slice the signals the X and Y channels. Each sliced signal is for a specific 

layer, as shown in Figure 5. Each interval in the Z signal forms a black box. The first layer in the 

original group compares to the first layer in the altered group, continuing until the last layer. 
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Figure 5. Comparison procedures.  

 

After slicing, we compare the original signals (in the X channel and Y channel) of the 

normal part to the altered signals of the attacked part. The DTW algorithm is adopted to calculate 

the similarity for each sliced signal sequentially. Any abnormality will give rise to an increase in 

the comparison result from the DTW calculation. Given the layer-by-layer comparison 

mechanism, this DTW-based monitoring model not only detect the attack but also identify layers 

on which the anomaly exists. 

 

4.1.3 Model Development and Algorithm Design 

 

The proposed power-monitoring model based on DTW has two stages of signal processing. The 

first stage (Table 1) is to segment the current signals for the normal part and the attacked part and 

the second stage (Table 2) is to compare and calculate the similarity using DTW.  

Taking current signals in channel X as an example, Table 1 implements signal 

segmentation, and its pseudo-code is shown below.  
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Table 1: Segment by peaks. 

 

In Lines 2 to 6, the time stamps when the peaks on the signals in channel Z occur are 

marked on the timeline, and they are used to determine the changes in layers. The total number of 

peaks must equal the number of layers of the part.  Two parameters from these timestamps are set 

to identify the position of the potential voids (caused by attacks): the peak threshold and the 

window size between two peaks in channel Z. Both parameters need to be properly set so that all 

the peaks of the current signals in channel Z can be correctly recognized. Otherwise, the 

unrecognized peak will lead to missing the counted number of layers. Line 7 to 12 depicts how the 

signals in channel X are segmented according to the same time indexes obtained from channel Z. 

Line 13 stores all the segmented signals in a list.   

In Table 2, the segmented signals for the normal part and the attacked part in channel X 

denoted as 𝑆𝑒𝑔𝐵𝑒𝑛𝑖𝑔𝑛𝑋𝑡  and 𝑆𝑒𝑔𝑋𝑡 , are sequentially compared using DTW. DTW works by 

measuring the distance between corresponding elements of the two sequences at each time point 

and then finding the optimal path that connects these points with minimum cumulative distance. 

Even if the signals have different lengths and are not aligned in time, DTW aligns the two 
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sequences in a way that minimizes the distance between them. The distance metric between 

corresponding elements used here is Euclidean distance. 

 

 
Table 2: Seriatim comparison. 

 

The formed m-by-n grid is calculated by the alignment of 𝑋[𝑖] and 𝐵𝑒𝑛𝑖𝑔𝑛𝑋[𝑗]. The 

warping path maps the elements in the grid to find the minimum distance. Line 2 to 7 is the optimal 

path computed by Equation 1, where 𝑑 is the Euclidean distance [110]: 

𝐷𝑚𝑖𝑛(𝑖𝑘, 𝑗𝑘) = min
𝑖𝑘−1,𝑗𝑘−1

𝐷𝑚𝑖𝑛(𝑖𝑘−1, 𝑗𝑘−1) + 𝑑(𝑖𝑘, 𝑗𝑘|𝑖𝑘−1, 𝑗𝑘−1) (1) 

Line 10 is the overall distance between the two signals by Equation 2 and adds them to a 

list 𝐿𝑖𝑠𝑡𝑃𝐸𝐴𝐾𝑆.  

 

 

When the list length equals the total number of layers, all signals are correctly segmented. 

The generated minimum distance is the final similarity result to the specific layer. The last step is 

to normalize the comparison result. The calculated DTW result for each segment will be divided 

by its length to represent the dissimilarity in proportion.  

𝐷 = ∑ 𝑑(𝑖𝑘, 𝑗𝑘)
𝑘

 
 

(2) 
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4.2 Experiment And Analysis 

In this section, we present our experimental setup and analyze the data collected from the current 

sensors. Additionally, the threshold that is used to determine the abnormality of a layer is 

identified. We also evaluate the detection capability of the proposed method by inserting different 

voids into AM parts.  

 

4.2.1 Experimental Platform Setup 

 

Figure 6 shows the experimental platform for the data acquisition system. Capturing current data 

is a non-invasive process. Three current probes (Picotech 60A (TA018)) are utilized, each of which 

converts the current flowing through a conductor into a voltage that can be observed and measured 

on the PicoScope 5000 series oscilloscope. The remainder of the experimental apparatus consists 

of a laptop and a FFF printer (LulzBot TAZ 6) with 2.85mm PolyLite PLA filament. For the 

software, we use Autodesk Fusion 360 to design the printed part. Marlin firmware in the Lulzbot 

printer translates the G-code created by the slicing tool Cura-Lulzbot into commands for the 

printer.  

 

Figure 6. Experimental platform: (a) Oscilloscope, (b) Current Clamp, (c) 3D printer. 
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To save printing and data processing time, we set the “infill rate” of the printing process to 

20% for all experiments. All other parameters of the printer are the default settings in the conducted 

experiments. According to Nyquist–Shannon theorem, the sampling rate of the oscilloscope is 

running at 100KS/s to be at least twice the highest non-noise frequency of the original signal [111]. 

 

4.2.2 Conducted Experiments 

 

Among all the quality failures in FFF, a maliciously-placed hollow void inside a part can lead to 

destructive consequences in load-bearing applications [112]. The voids hidden inside the part 

geometry cannot be found easily since the exterior remains unchanged. The mechanical 

performance of the prints, like hardness, will be compromised. We will target such malicious 

attacks on FFF parts in the experiments.   

The dimension for all the printed parts is designed to be 10mm×10mm×20mm. The internal 

geometry of the modified part contains two hollow voids at size 5mm×5mm×4mm. Figure 7 is the 

CAD model of the attacked part, and Figure 8 shows the actual printed part.   

 

Figure 7. Perspective view for the altered part from the CAD model. 
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Figure 8. FFF Printed part with two voids inside. 

 

Two types of CAD model is printed. One is the parts without a void, constituting the benign 

group under normal conditions. The other is the parts with two voids, constituting the altered group 

after the malicious attack. After getting the comparison result, we use a threshold value to 

determine the abnormal signals in channel X and channel Y, indicating the voids at certain printed 

layers. To find the smallest detectable size of the void, we gradually shrink its size in our 

experiments while keeping the exterior unchanged. 

   

4.2.3 Detection Results 

 

As the comparison result has been normalized, the y-axis represents proportions, i.e., the 

dissimilarity level. Figure 9 is the two detection results for benign to benign and benign to altered 

groups with void size 4mm×4mm×4mm. The abrupt increases in the discrepancy in channel X and 

channel Y indicate the locations of the two voids, i.e., the layers in the parts. The first detected 

void appears at layer 10 (highlighted by the red circle). According to the CAD model in Figure 7, 

the actual void should be 4mm away from the bottom of the part, i.e., layer 16, considering each 
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layer height is 0.25mm. There is a six-layer difference between the CAD model and the final 

detection result.  

 

 

Figure 9. Detection results for “benign to benign groups” and “benign to altered groups”. 

 

Figure 10 is the actual infill rate layout when the default value is 20% for the benign part 

and the altered part. Due to the overhang [113] above the void, the infill rates for the layers around 

the voids are automatically increased to 100% to build a supporting plate so that later material can 

be deposited to create the voids.  

 

 

Figure 10. CAD models for the benign and altered parts with actual infill rate layout at 20%. 
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4.2.4 Criteria for Identifying Sabotage Activity  

 

To identify the abnormal layer, we use a threshold from an 𝑥̅ Chart (also known as an 

Individual Chart) [114]. The discrepancies between benign signals are calculated. We use 60% of 

the data as a training set to obtain the threshold, and the remaining 40% is used to evaluate the 

threshold. The following are the detailed steps: 

First, we gather a pool of 240 benign data samples, and after removing data with significant 

noise, we retain 234 samples. When the motor is idle, the signal typically fluctuates within a range 

of -0.4 to +0.4 (A). However, any signals that exceed this range are considered outliers and are not 

included in our dataset. Then we use uniform distribution to randomly pick two of the samples 

without replacement and compare them to get an upper control limit (UCL) for both X and Y 

channels. For a single experiment, the discrepancy for two benign signals is calculated to obtain 

the UCL, as shown in Figure 11. The UCL in Individual Chart for X and Y Channel works as the 

threshold values. 

Second, we calculate the average value for the 117 pairs of UCL results from 234 samples 

and get 0.098 for X and 0.097 for Y, with standard deviations of 0.013 and 0.015, respectively. 

Then we select the 0.098 UCL as the threshold, as shown in Table 3. The threshold here is the 

strictest criterion to claim whether it is an anomaly. Since the training data are all benign samples, 

we could adjust the threshold within three sigmas to incorporate all points below the threshold.  

Third, we collect 60 altered data with voids and 60 benign as our test dataset. We use four 

different sizes of voids 1mm×1mm×1mm, 0.75mm×0.75mm×0.75mm, 0.5mm×0.5mm×0.5mm, 

0.25mm× 0.25mm × 0.25mm. Each pair of voids are placed inside 15 different symmetrical 

positions. The reason we use a symmetrical structure is there might be a chance that an outlier 

appears in the void position, “pretending” to be detected. But the symmetrical structure can cancel 
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out this randomness as it’s impossible that the detection are all caused by the outliers. Then we 

apply the threshold in the testing data to seek the detection rate in the next part. 

 

 

Figure 11. The threshold in UCL for X and Y Channels. 

 

 

 

Channel Training Data  Average Threshold Testing Data 

X 234 0.098 120 

Y 234 0.097 120 

Table 3: The dataset and threshold from X charts in channel X and channel Y. 
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4.2.5 Model Accuracy 

 

In the testing data set, we provide 60 altered data for four void sizes at 15 positions. Then we 

randomly pick 15 benign data in sequence with uniform distribution from 60 benign datasets to 

match with each of the four void sizes groups. To find the detection rate of our method, we use 15 

benign data to respectively compare with the 15 altered data for each of the four different void 

sizes and compare 15 benign data with another 15 benign data. The result is shown in Table 4.  

 

Channel 
Void 

sizes 

No. of 

samples with 

voids (altered) 

Correctly 

Detected 
TP Rate 

No. of samples 

without voids 

(benign) 

Correctly 

Detected 
TN Rate 

X 

0.25 mm 15 14 93.3% 15 15 100% 

0.50 mm 15 15 100% 15 15 100% 

0.75 mm 15 15 100% 15 15 100% 

1.00 mm 15 15 100% 15 15 100% 

Y 

0.25 mm 15 14 93.3% 15 15 100% 

0.50 mm 15 15 100% 15 15 100% 

0.75 mm 15 15 100% 15 15 100% 

1.00 mm 15 15 100% 15 15 100% 

Table 4: Comparison results for different void sizes from X and Y channels. 

 

For void sizes 0.50 mm, 0.75 mm, and 1.00 mm, the results are all correctly detected or classified 

in both X and Y channels, so the True Positive (TP) and True Negative (TN) rates are 100% [115]. 

But for 0.25mm size, there is one specimen that fails to be detected in the X channel, and one 

specimen that fails to be detected in the Y channel. Actually, “the failed-to-be-detected specimens” 

for 0.25mm is two different ones or at two different void positions. In other words, one altered 

specimen is detected with voids by X channel but fails to be detected by Y channel, while the other 

altered specimen is detected with voids by Y channel but fails to be detected by X channel. The 

15 specimen results for the 0.25 mm void is shown in Table 5. To clarify, when we refer to "X and 

Y," it means the signal is detected by both the X and Y channels simultaneously. On the other 

hand, when we mention "X or Y," it means signal is detected by either the X channel or Y channel.    



 27 

Consequently, the number of correctly detected specimens is 13 for "X and Y" and 15 for 

"X or Y." “Yes” means the void is successfully detected, while “No” means the void is not detected 

 

Altered Specimens 

Number 
1 2 3  15 

No. of Correct 

Result 

X Yes No Yes … Yes 14/15 

Y No Yes Yes … Yes 14/15 

X and Y No No Yes … Yes 13/15 

 X or Y Yes Yes Yes … Yes 15/15 

Table 5: Detection results of 15 specimens for 0.25mm void. 

 

 

To measure the detection rate, we utilize the accuracy of the confusion matrix as a representation. 

Table 6 is the confusion matrix for the altered data with 0.25 mm voids in channel X. Since the 

detection result is the same as that of channel X, the confusion matrix for the Y channel is also the 

same. The accuracy is 96.7%.  

 

Truth 
Prediction 

Altered Benign 

Altered 14 0 

Benign 1 15 

Table 6: Confusion matrix for X/Y channel in 0.25mm void. 

 

Table 7 is built using all the data from the X channel, and the same applies to the Y channel. The 

accuracy is 99.2%.  

 

Truth 
Prediction 

Altered Benign 

Altered 59 0 

Benign 1 60 

Table 7: Confusion matrix for X/Y channel in all void sizes. 
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Table 8 combines the data from channel X and channel Y using the "X or Y" criterion to accurately 

detect and classify every altered or benign data instance. The accuracy is 100%.  

 

Truth 
Prediction 

Altered Benign 

Altered 120 0 

Benign 0 120 

Table 8: Confusion matrix for all data (“X or Y”). 

 

If an attack truly happens, the signal X and Y will usually follow the same trend in both affected 

and unaffected sections. When employing the power-monitoring method, if the deviation in either 

channel X or channel Y exceeds the threshold, it indicates the presence of abnormal layers that 

may have been compromised by potential malicious activity.  

 

0.25mm Detection Rate Single Channel Detection Rate Overall Detection Rate 

96.7% 99.2% 
100% 

96.7% 99.2% 

Table 9: Detection rate for different levels. 

 

 

This criterion eliminates the possibility that one of the signals is accidentally lower than the 

threshold to be detected. Therefore, we decide to take “X or Y” as the final detection rate. As a 

result, the detection rate for each level, from low to high, is presented in Table 9. 

 

4.2.6 Detection Capability 

To find the detection limit of the proposed power-monitoring method, we gradually reduce the size 

of the inner voids. Detection outcomes for four different void sizes are presented in Figure 12. 

Their sizes are (a) 0.25mm×0.25mm×1mm, (b) 0.25mm×0.25mm×0.75mm, (c) 

0.25mm×0.25mm×0.5mm, and (d) 0.25mm×0.25mm×0.25mm. It is noted in Figure 12 that the 
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number of data points above the threshold for each void is reduced by one as the void size 

decreases. For example, for voids with size 0.25mm×0.25mm×1mm, the height should contain 

four layers (layer height is 0.25mm), as shown in Figure 12 (a).  

 

 

Figure 12. Detection outcomes for four different void sizes.  

 

For the voids with a height smaller than 0.25mm, Figure 13 shows the proposed method 

cannot effectively detect them because this feature is too small, given the filament size of the 

additive process.  
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Figure 13. The detection outcome for a void smaller than 0.25mm. 

 

Therefore, the minimum detectable height of the voids is equal to the filament size in this 

process. The minimum detectable width and length will also correspond to 0.25mm or equivalent 

to the filament size. The size of the largest printable and detectable void in the current FFF part is 

9mm×9mm×18mm due to the dimensions of the nominal part. 

 

4.3 Case Study Analysis  

 

This section presents the case study in Figure 14 to demonstrate the method’s effectiveness. In 

Case 1, we insert a minimum void inside of the original part and set the infill rate for the entire 

part to 20%. In addition, a new shape is designed with two random voids at a 100% infill rate to 

test the method’s detectability under different circumstances. In Case 2, we set the infill rate to 

100% to cancel out the surrounding auto-filling, allowing us to test whether the voids’ position is 

aligned with the detection result. 
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Figure 14. Outline for case study under different conditions. 

 

For Case 1, we deliberately introduced a single void whose size is 

0.25mm×0.25mm×0.25mm within the part, as depicted in Figure 15. This particular void size was 

selected to assess the limits of the proposed method. If the proposed method can effectively detect 

the minimum void size, it implies that any voids larger than the minimum size will also be detected 

accurately. The detection capability demonstrated with the smaller void establishes the method's 

sensitivity and reliability, providing the fact that it will successfully identify larger voids as well.  

 

 

Figure 15. CAD view for the original shape with one void. 
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Figure 16 validates the model's detection capability by correctly identifying that only one 

data point should exceed the threshold.  

 

 

Figure 16. Detection result for original shape with one void. 

 

Then we use a random shape (e.g., a cylinder) in Figure 17 with two voids 

(0.25mm×0.25mm×0.25mm) and increase the infill rate to 100%. It shows that the proposed 

power-monitoring model still performs well with the correct detection of the two voids in Figure 

18.   

 

Figure 17. CAD view for random shape with two voids. 
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Figure 18. Detection result for random shape with two voids. 

 

For Case 2, we design two voids (4mm×4mm×4mm) in the center position (4mm from the 

bottom and top) of the FFF part. We use the infill rate 100% to better mimic a real solid part, 

including the areas around the voids. Figure 19 shows the detected abnormal layers perfectly match 

the designs.  
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Figure 19. Signal alignment with 100% infill rate. 

 

Compared with the width of the voids in Figure 9, the width in Figure 19 is narrower 

because the infill rate around the voids is the same as that in the benign part. Consequently, the 

proposed model will detect a narrow abnormal area due to the smaller width of the voids. For the 

other infill rate between 20% and 100%, the result will be the same as Figure 9, as their surrounding 

infill rates will all automatically increase to 100% regardless of the set value.  

 

4.4 Contribution Summary  

 

In this contribution, we propose a novel power monitoring method based on DTW to detect 

sabotage attacks on an AM system, specifically inserting unwanted voids inside FFF parts. To 

detect such voids, the current signals from the benign control group and altered group caused by 

malicious activity are evaluated through layer-to-layer comparison. If the discrepancy for any layer 



 35 

exceeds the threshold, it is identified as the abnormal layer. The minimum void that can be detected 

is 0.25mm×0.25mm×0.25mm, with the height equal to the layer thickness. In the case study, the 

detection accuracy of the proposed method is at least 96.7%. Moreover, the model reveals the 

specific layers where the voids locate. With the layer-to-layer comparison mechanism, the method 

is particularly suitable for the FFF. This work will provide guidelines and significance of reference 

for sabotage attack detection in FFF and other AM processes.    

In the future, multiple aspects of the current research can be expanded. For instance, the 

approach can be applied to temperature-related sabotage [116], which significantly impacts overall 

quality. One of the possible sabotage attacks is changing the temperature setting. For example, the 

default temperature for the nozzle is reduced, causing a material jam in the extruder nozzle. Future 

research will adopt another current clamp to monitor the extruder motor. Any block inside the 

nozzle will increase the workload on the extruder motor [117], affecting the current trace. 

Furthermore, the proposed method can be extended to other sabotage attacks on the extrusion of 

the nozzle listed in Table 10 by monitoring changes in the current signal or G-code.  

 

Sabotage Tricks Detectable  

Travel Speed Yes 

Code Insertion Yes 

Code Deletion  Yes 

Scaled Subject Yes 

Material Extrusion Malfunction   No 

Tampered Temperature  No 

Table 10: Detectability for other sabotage attacks. 

 

Finally, the proposed power-monitoring method could be improved to be a real-time 

corrective system to correct the process once the anomaly is detected. Such a system is a pressing 

need for the industry to achieve high-quality products because of the potential savings in time and 
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resources in production. Likewise, with the demonstrated performance of anomaly detection, the 

approach has the potential to be adapted in metal AM systems where the majority of commercial 

parts are manufactured.  
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5. Rotary Side-Channel Attacks from Rotation on AM 

In this chapter, we propose a novel side-channel approach for reconstructing the geometric form 

of a model. The direction of the nozzle is controlled by the X, Y, and Z motors, with each rotor 

movement dictated to the G-code instructions [118]. The printed dimensions of the model are 

determined by the combined rotation numbers of the rotors, resulting in a strong correlation 

between the nozzle and each rotor's movement. To capture this information, our method utilizes 

three sensors to collect the rotation data, which is then converted into corresponding coordinates. 

This allows us to determine the position of the nozzle at any given moment. In addition, our method 

is non-invasive, imposing no additional load on the nozzle, and requires no access to the internal 

hardware. Through this work, we have identified a vulnerability in AM that could potentially lead 

to intellectual property (IP) theft [119]. This work sheds light on the potential risks associated with 

AM and emphasizes the importance of safeguarding against unauthorized access to sensitive 

information [120-122]. 

 

5.1 Motivation 

The increasing prevalence of additive manufacturing (AM) systems has exposed the information-

intensive industry to a range of potential attacks from both cyber and physical domains. In the 

event that the printing process is compromised, the consequences can be severe, with the risk of 

intellectual property (IP) theft leading to significant economic losses [123]. It is therefore 

imperative to address and mitigate these risks in order to protect the integrity and security of the 

industry. 

 Traditionally, IP theft has been associated with cyber attacks [124]. However, recent 

studies have revealed that IP information can also be leaked from the physical domain [125]. 

Researchers have introduced a novel approach utilizing an acoustic side-channel to reconstruct G 



 39 

code from a 3D printer [126]. This innovative attack demonstrates the potential for adversaries to 

exploit acoustic signals emitted during the printing process to extract sensitive information, posing 

a significant security concern [127]. This finding highlights the importance of developing 

countermeasures to protect against acoustic side-channel attacks and reinforcing the security of 

3D printing systems. However, a new vulnerability that may lead to IP theft is discovered with the 

method proposed in this section. Using the approach, we reconstruct the dimensions of the design 

based on the rotor movement, which can be processed by reverse engineering to restore the 

geometric information.  

 

5.2 Attack Model 

A 3D printer usually possesses four stepper motors. One of these motors is responsible for 

extruding the filament during printing, while the remaining three motors control the movement of 

the nozzle. The specific coordinates in the G code for the extruder are achieved through the 

combined rotation of the X, Y, and Z motors along each respective axis. Since each motor operates 

independently during the printing process, it is possible to collect the rotation angles of the rotors 

within each motor. As the rotation angle is linear to the travel distance on the specific axle, the 

nozzle’s travel information is correlated with the dimension of the CAD design. The design can 

be reconstructed if we know each rotor’s rotation angle at every moment. 
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Figure 20. Stepper motor. 

 

In Figure 20, the motor shaft is exposed through a small hole at the end cap. To determine the shaft 

rotation of X, Y, and Z, we attach a special radial magnet, as shown in Figure 21, to all the motor 

shafts to generate a magnetic field that follows the shaft's rotation.  

 

 

Figure 21. Radially magnetized magnet.   

            

Consequently, the sensor, called a magnetic encoder, as shown in Figure 22 can detect the change 

in rotation angle. If the sensor on the extruder fails to detect any signal, it signifies that there is no 

active extrusion of material taking place.   
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Figure 22. Working diagram for magnetic encoder. 

 

To establish the relationship between the rotation angle and the travel distance of the nozzle along 

each axis, it is necessary to determine the specific distance traveled per degree of rotation. We 

conducted individual runs of the X, Y, and Z motors, with each motor running distances of 1mm, 

5mm, 10mm, and 20mm, to determine the rotation degree per unit of measure. Then we divided 

the rotation degrees obtained for each motor by 1, 5, 10, and 20, respectively. Finally, we 

calculated the average unit rotation degree for each motor and compiled the results in Table 11. 

 

Motor 1mm/1 5mm/5 10mm/10 20mm/20 
Average Ratio 

(Unit: mm/°) 

X 11.3mm 11.2mm 11.2mm 11.2mm 11.2 

Y 9.1mm 9.3mm 9.2mm 9.2mm 9.2 

Z 178.5mm 179.1mm 179.0mm 178.9mm 178.8 

Table 11: Travel distance per degree for all the motors. 

 

Algorithm 1 provides the pseudo code for plotting the trajectory of the printed part in Table 12. 

Line 2 to 6 determine if the moving direction is forward or backward. Line 7 calculates the travel 

distance on each axle by multiplying the ratio in Table 12. Lines 8 to 11 describe the behavior of 
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the signal from the extruder sensor. Given the sufficiently high sampling rate and the limitation 

that the rotation angle between two adjacent data points is never larger than 300°, we can employ 

this value as a threshold to determine the rotation direction. If the difference between consecutive 

data points is no greater than 300°, the magnet's rotation direction is considered clockwise; 

otherwise, it is counterclockwise. 

 

 

Table 12: Dimension plot. 

 

If the signal changes, it signifies the creation of the dimensions. Conversely, if the signal remains 

constant, it indicates that the nozzle is in motion without any material being actively extruded. In 

such cases, the movement of the nozzle does not contribute to the actual printing process. This 

distinction between signal changes and constant signals allows us to differentiate between printing 

actions and simple nozzle movements during the printing. 
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5.3 Experimental Setup 

Figure 23 depicts the testbed utilized for data collection purposes. The magnetic field information 

is collected using a rotary encoder (AS5048A), which detects position and speed by converting 

rotating mechanical displacements into electrical impulses [128]. The AS5048A is an absolute 

encoder with a 360° angle position sensor, offering a high-resolution output of 14 bits and a Serial 

Peripheral Interface (SPI) [129]. The encoder achieves a maximum rotation accuracy of 0.02° 

[130]. To ensure stable and precise data acquisition, we have designed a bridge setup as depicted 

in Figure 24. This setup allows the sensor to be securely attached to the bridge while maintaining 

a 5mm distance from the magnet. Four sensors are placed on the X, Y, Z, and extruder motors to 

capture the respective magnetic field information. 

 

 

Figure 23. Testbed setup. 
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Figure 24. Sensor bridge. 

 

The open-source electronics platform we use is Arduino Adafruit Metro [131] and a breadboard 

connecting wires and sensors. The time interval between data collection is set to 50 milliseconds 

to avoid missing any geometry-related detail. The 3D printer is LulzBot TAZ 6, an FDM type 

using Polymaker PLA as the filament [132]. Additionally, it is equipped with the open-source 

firmware Marlin, which runs on the 3D printer's main board. Marlin is responsible for managing 

all real-time activities of the printer according to the G code, including motor control and overall 

coordination of the printing process. The slicing software Cura installed on the Dell laptop controls 

the parameters of the print jobs and converts the model to G code. 
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5.4 Results 

In this section, we present the reconstructed contour of the model using the rotation data. Due to 

the existing noise in the signal collection, the signal data may contain outliers that will interfere 

with the final result. Therefore, pre-processing is applied to eliminate the outliers and smooth the 

signal data. Then several different shapes are reconstructed to demonstrate the efficacy of the 

proposed method. 

 

5.4.1 Pre-processing 

 

Before finalizing the shape, preprocessing eliminates all outliers in the data collection [133]. The 

data obtained from the sensors indicate that the maximum distance between two adjacent points 

along any of the X, Y, and Z axes is no greater than 0.07 mm. However, for outliers, the distance 

can easily exceed 5.00 mm. To remove the outliers, we establish a threshold of 0.07 to identify 

and filter the outliers. If the difference between the second value and the first value exceeds 0.07, 

we consider the second value as an outlier and exclude it from the dataset. Figure 25 is the raw 

shape before pre-processing. Each data point is positioned in accordance with the algorithm’s 

computed coordinates. The whole shape is formed by connecting all the coordinate points with 

blue lines. The significantly protruding lines are where the outliers exist.   
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Figure 25. Reconstructed shape before pre-processing. 

 

The signal from the extruder motor works as a flag to control if the point should be connected with 

blue lines. If the signal is in a state of change, that means the material is undergoing extrusion, 

resulting in connecting behavior. Then the flag is up, and the coordinate value is assigned to a 

queue for plotting, indicating this coordinate is connectable during the plot connecting. If the signal 

remains unchanged, we will set the flag as non-connectable, and the coordinate will no longer be 

added to the queue. Dimensions for different models are reconstructed, and the printed parts are 

also presented in Figure 26.  
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                                    (a) 

 

                        (b) 

 

                                  (c) 

 

                   (d) 

Figure 26. Reconstructed printing path of the object after pre-processing (unit: mm). 
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5.4.2 Deviation Extent 

 

Though the images above could largely reveal the shapes, the rebuilt dimensions of the models do 

not perfectly match the actual prints. Since each coordinate is based on the previous location, each 

layer may not perfectly align with the preceding one, leading to slight discrepancies. As the 

discrepancies accumulate, the formed shape deviates slightly from the actual prints within a layer 

and between layers.  

 To quantify the degree of deviation from the nominal CAD design, the Euclidean distance 

serves as the primary index. Before effectively comparing the restored model with the CAD model, 

two assumptions need to be made.  

 First, we define the centroid of the first layer in the restored model as our reference 

coordinate, which is shared by the two models from two different systems. In other words, the 

centroid of the first layer from the rebuilt model is used as the centroid of the first layer from the 

CAD model for future comparison. In this case, two models are placed in the same coordinate 

system. For every subsequent centroid, its theoretical position is determined relative to the 

reference centroid. In Figure 27, the green dot indicates the position of the first layer's centroid in 

the restored model. Second, each layer in the model is assumed to have the same shape and be 

vertically well-aligned so that the centroid for each layer can be confirmed. Otherwise, that will 

be too complex or impossible to know the exact theoretical centroid position for each layer if we 

don’t know the shape details of the CAD model.  
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Figure 27. Deviation calculation between restored and CAD model. 

 

 Since the layer height is 0.25mm, we can determine the theoretical position of the centroids 

for each subsequent layer by adding 0.25mm to the current vertical coordinate, represented by the 

red dots. These red dots constitute all the reference coordinates for each layer. By utilizing data 

from the sensor, we know the actual position of the centroid for each layer, represented by the 

black dots. Consequently, we can calculate the average Euclidean distance as the final deviation 

index for the overall model by comparing the positions of the black dots with their corresponding 

reference coordinates layer by layer, as shown in Equation 3. From the equation, 𝑑𝑖  is the 

Euclidean distance for the 𝑖th layer, n is the total number of layers, and 𝐷 is the average deviation 

index.  

                                                                          𝐷 = ∑
𝑑𝑖

𝑛

𝑛

𝑖=0
               (3) 
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 Table 13 displays the deviation extent of the aforementioned comparison. As the printing 

time for models (c) and (d) is much longer than models (a) and (b), we just run 35 for each. It is 

observed that the deviation extent increases with increasing complexity of the models.  

 

No. of Experiments 45 40 35 35 

Model (a) (b) (c) (d) 

Standard Deviation 0.07 0.15 0.27 0.46 

Average Deviation 

Extent (Unit: mm) 
0.24 0.38 0.64 1.21 

Table 13: Deviation extent for the different models. 

 

 To provide a clear understanding of the relationship between deviation and layer, we 

present the deviation values along the layers in Figure 28. To further visualize and compare the 

performance of different models, box plots are used in Figure 29. These box plots display the 

distribution of deviation values for each model, highlighting the range, median, and quartiles. As 

all the comparison result of the deviation range is very similar, one-time experiments for different 

models is also provided in the box plot. The deviation range becomes larger as the model 

complexity increases.  
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                                                  (a)                                                          (b) 

  

                                                (c)                                                             (d) 

 

Figure 28. Deviation plots along layers for different models. 
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Figure 29. Boxplot comparison for different models. 

 

The deviation values along the layers provide insights into how the deviation varies throughout 

the structure. As the height of the model increases, the restored peripheral dimension along the 

vertical direction becomes less accurate due to the accumulation of discrepancies. Therefore, the 

range in the boxplot becomes higher as the number of layers increases. 

 

5.5 Limitations and Future Works 

During the data collection stage, we observe that the signal fluctuates with a narrow range. The 

presence of noise can be attributed to two factors. First, there is inherent noise originating from 

the sensor itself [134]. Second, noise can also arise from the stability of the system structure. 

 The AS5048a sensor exhibits jitter ranging from 0.001° to 0.007° when the Pulse Width 

Modulation (PWM) signal is converted into an angle, particularly in relatively quiet testing 

environments [135]. The minor instability arising from the intrinsic properties of the sensor does 

not significantly impact the required accuracy. However, the majority of noise is generated by the 

vibrations originating from the 3D printer. Due to the supporting bridge where the sensor is 
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attached being tightly fixed on the motor, the vibration caused by the 3D printer will directly 

aggravate the signal instability with the internal noise that is generated by the sensors themselves. 

Consequently, the sensor signal slightly affected by these factors will experience subtle 

fluctuations. Furthermore, since the coordinates for each data point are derived based on the 

preceding values, the error accumulates over time and causes the global form to be skewed or 

jagged rather than a smooth contour. 

 In the future, we aim to develop a contactless structure where sensors are installed 

independently to eliminate the influence of vibrations. Leveraging this approach, our data 

collection system will be independent of the 3D printer system, leading to significantly enhanced 

stability and precision in the obtained data. Consequently, the reconstructed dimensions will 

closely align with the actual prints. 

 To ensure optimal experimental conditions, it is essential to maintain an isolated and silent 

environment, as even sound waves can induce minute vibrations that may affect the accuracy of 

the measurements.  

 The data collection positions for the X, Y, and Z channels are fixed. As the sensor on the 

extruder motor needs to move along with the printing head, it cannot be part of an independent 

system. To mitigate the impact of vibrations, we plan to introduce a buffer mechanism by placing 

soft materials between the bridge and the motor. This setup will help partially counteract the 

vibrations and minimize the effects. 

 

5.6 Contribution Summary  

The widespread adoption of AM in various industries is driven by its flexibility over conventional 

production methods. However, this increased adoption has also attracted the attention of hackers, 

leading to concerns regarding security risks such as IP theft. In order to identify potential 
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vulnerabilities in the system, we present a rotation side-channel attack aimed at accurately 

reconstructing the dimensions of a model without requiring access to the original design. This 

attack method poses a risk of IP theft for AM systems. 

 Our approach relies on utilizing rotation information from the X, Y, and Z motors to 

decipher the coordinates of the printing head at each moment and then connecting them using 

information from the extruder motor. We further apply preprocessing techniques to improve the 

shape reconstruction. Additionally, we propose several challenges and areas for future research to 

enhance the accuracy of these methods. However, achieving high accuracy in restoring the model's 

dimension with high complexity becomes challenging due to various factors, such as vibrations 

and sensor noises that are present during the data collection process. 

 This work highlights the existence of significant loopholes in AM systems that need to be 

addressed, serving as a warning to manufacturers to take measures to prevent the leakage of IP 

information. We believe that our work contributes to the development of novel ideas for IP 

protection in AM security research and encourages designers to consider side-channel leakage 

when securing their systems. 
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6. Signal Validation and Variances for Independent Additive Platforms 

The rise in the complexity and frequency of attacks against cyber-physical systems (CPS) has 

driven the development of attack detection and protection approaches to address modern 

manufacturing vulnerabilities. With the proposed power monitoring method in Chapter 4, we could 

detect the geometry anomaly caused by malicious activity. However, the proposed detection 

system only utilizes the data collection from a specific machine, making it uncertain whether the 

method will be effective for other similar or identical platforms. In order to broaden the application 

in possible remote scenarios, we incorporate an additional identical additive manufacturing 

platform to assess the continued suitability of the proposed method. Moreover, the current signal 

from the two machines will be compared to highlight the variances when parts of varying 

complexity are printed. Based on the established method for Chapter 4, we collect the data for the 

same prints from both the new and original machines to perform the experiments. The result proves 

that the differences in signals between the machines become larger when the complexity of the 

part increases. Meanwhile, our detection method is demonstrated to be applicable to a similar 

model of a 3D printer when detecting anomalies, so it has the potential to provide a remote 

validation process.  

 

6.1 Motivation 

AM has demonstrated its advantages in providing flexibility in complex design and rapid 

prototyping. The increasing adoption of 3D printing in many safety-critical applications exposes 

both 3D printers and their processes to potential cyber-physical attacks. Breaches in the AM 

system could result in the theft of sensitive information and inflict damage upon the 3D printer, 

thereby diminishing production efficiency. More importantly, malicious activity can undermine a 

printing process by secretly altering key parameters, leading to a degradation in the mechanical 
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properties of the produced parts [136]. These defective or malfunctioning parts may appear to pass 

inspection but are prone to failure during actual operation, resulting in disastrous outcomes. For 

example, the yield load of a tensile test specimen can be decreased if an inconspicuous vacancy 

(less than 1 mm in size) is inserted into the 3D design [137].   

 Several proposed techniques focus on securing digital assets in order to counteract this 

rising security risk. However, the AM system consisting of interconnected hardware components 

will emit key side-channel information during the operation process such as current, acoustics, 

vibration, electromagnetic radiation, magnetic field, and power. If any malicious activity attempts 

to compromise the system, the corresponding side-channel signals will also change. Therefore, 

those signals can serve as indicators to reveal the printing status.    

 Instead of using a single machine such as in Chapter 4, we introduce another FDM machine 

to explore the differences between signals generated by the two machines. In this chapter, two 

major parts are proposed. First, signals from different sources are compared to find the relationship 

between the signal variation and model complexity. Second, we introduce another machine to 

collect the current data and compare it with the original machine for anomaly detection. 

Collectively, this approach is a first step towards the remote authentication of AM parts produced 

on a similar platform.   

 

6.2 Proposed Methods 

In Chapter 4, we proposed a power monitoring method to detect maliciously inserted voids and 

determined the minimum detectable size of these voids. In this section, our initial focus will be on 

examining the signal variances between the previously utilized machine and a new AM platform 

with nearly identical specifications and features. Furthermore, we will proceed by prioritizing the 

investigation of voids to assess the detectability of the method on the new machine. 
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6.2.1 Signal Variances in Different Machines 

 

For the test machine, we use Lulzbot Workhorse and take Lulzbot Taz 6 as the benchmark machine. 

Both printers are designed for FFF 3D printing and are built on open-source Marlin firmware and 

software platforms. While the test and benchmark machines utilize the same model of motors, 

there are slight differences in their design. Workhorse desktop system builds upon the foundation 

of the previously released Taz 6 model but incorporates some feature upgrades that distinguish it 

from Taz 6. The Workhorse has a larger build volume compared to the TAZ 6, providing a larger 

space for printing objects. The Workhorse features an automatic bed leveling system, which helps 

ensure the print bed is properly leveled before each print. The TAZ 6, on the other hand, uses 

manual bed leveling, requiring the user to adjust the bed manually. The Workhorse incorporates 

an upgraded hot end, known as the LulzBot Modular Tool Head System, which offers enhanced 

performance and reliability. The TAZ 6 uses the previous generation's hot end. 

 To investigate whether these firmware and hardware discrepancies contribute to variations 

in output, signals are collected from each machine and analyzed to assess the differences. 

 In this section, two experiments are performed here. The first involves collecting data from 

each machine and comparing them using the Dynamic Time Warping (DTW) algorithm to quantify 

the extent of their similarities. The second involves exploring the signal variations across 

increasing part complexity when the prints have the same number of layers.  

 

6.2.1.1 Comparison Strategy 

As a high sampling rate is employed during current signal acquisition, the data volume becomes 

substantial, especially when the print time is long. If we use the Euclidean distance to calculate the 

differences between the two signals, the variance in the signal length renders the method 

ineffective due to desynchronization issues. Moreover, the presence of noise within the signal can 
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further impact the accuracy of the results. Hence, attempting to calculate the entire dataset with 

such a method would lead to inaccuracies. To solve the synchronization problem, we will employ 

DTW as our major metric to quantify the differences between the signals. DTW offers the 

advantage of accounting for temporal variations and aligning the signals, ensuring accurate 

comparisons. By considering the temporal aspect, DTW overcomes the synchronization problem 

and accurately assesses the differences between the signals. In this approach, we still take the 

“layer-to-layer” comparison strategy to calculate the differences by DTW individually. The next 

section is to compare different parts with the same height but varying complexities to explore the 

relationship between complexity and signal differences. By examining these variations, we aim to 

uncover any patterns or correlations that may exist between the complexity of the geometric 

features and the observed differences in the signals.  

 The following steps outline the procedures to measure the difference between the two data 

sets, incorporating some similar steps from Chapter 4:  

 Step One (Cutting): Since the data collection is synchronized in X, Y and Z channels, we 

use the Z channel signal to cut the X and Y channels. The time interval between the triggered 

signal in the Z-axis corresponds to the moment when the signal is generated for that specific layer 

in the X and Y channels. The signal content for the X and Y channels for each layer is accurately 

assigned to the corresponding layer number, based on the time interval between the triggered signal 

in the Z-axis. 

 Step Two (Comparing): Once we have cut the X and Y signal, the DTW value is applied 

to calculate the difference for each layer. Consequently, we will have the value for signal 

difference along the layer number for two channels X and Y.  
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 Step Three (Normalizing): In order to accurately represent the differences in terms of 

percentages, it is necessary to normalize the data. Normalization will ensure the signals are 

adjusted to a common scale, allowing for a fair and meaningful comparison of the observed 

differences. We will use Equation 4 to normalize the data. In the equation, 𝐷(𝑋, 𝑌) is the DTW 

value for X and Y channels, and 𝑀 is the maximum distance of 𝐷(𝑋, 𝑌). Therefore, 𝑆(𝑋, 𝑌) is the 

normalized dissimilarity measure for X and Y channels.   

𝑆(𝑋, 𝑌) =
𝐷(𝑋, 𝑌)

𝑀
 

(4) 

6.2.1.2 Result 

For the first experiment, the dimension we print is 10mm×10mm×20mm. The result is shown in 

Figure 30. As the comparison result has been normalized, the y-axis represents proportions, i.e., 

the maximum dissimilarity is no greater than 0.1 or 10%. During the operation of a 3D printer, the 

motor that controls the Z channel remains idle most of the time. Due to the substantial presence of 

noise in the data obtained from the Z channel, we chose not to include it in the comparison. Since 

the Z channel predominantly consists of noise rather than meaningful information, it would not 

provide valuable insights or contribute to the analysis. Hence, our analysis primarily focused on 

analyzing the X and Y channels, which contain the essential data for our comparisons. 
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Figure 30. Comparison results about X and Y channels for new and benchmark machine. 

 

For the second experiment, we will keep the height consistent for all the parts and focus on altering 

the base shape. In order to explore the relationship between discrepancy and complexity, we will 

design different base shapes, ranging from low to high complexity. The following base shapes will 

be utilized: rectangle, triangle, circle, random shape, and octopus. This experiment aims to analyze 

how the complexity of the base shape affects the signal discrepancy. To simplify the comparison 

result across complexity, we use average discrepancy from all layers DTW as the final metric.  By 

using this averaged metric, we can effectively assess the impact of complexity on the overall signal 

differences. We run each model ten times to get the average value in Figure 31. It shows that as 

the complexity increases, the average discrepancy becomes higher, as a more complicated part 

tends to generate a more complicated signal.  
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Figure 31. The average discrepancy for different base shapes with the same number of layers. 

 

The complexity of a 3D printed model refers to its intricacy, level of detail, and structural 

complexity [138-140]. For example, the signal for printing a line is more stable than printing a part 

that needs to frequently change the printing direction. When printing complex models, the 

differences between two 3D printers can become more pronounced due to several factors. The first 

factor is precision and accuracy. Higher complexity models require greater precision and accuracy 

in the printing process [141-143]. If there are variations in the printers' capabilities or calibration, 

it can lead to differences in the printed output, resulting in higher signal differences [144]. 

The second factor is layer adhesion and support structures. Complex models often involve 

overhangs, intricate geometries, or support structures [145,146]. The printers' ability to properly 
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adhere the layers and generate the necessary supports can vary, leading to differences in the final 

print quality and resulting in higher signal differences. The third factor is filament flow and 

extrusion. The flow of filament and extrusion control can impact print quality, especially for 

complex models [147-149]. Differences in filament properties, extruder performance, or 

temperature control can cause variations in the printed layers. The fourth factor is print settings 

and parameters. Complex models may require specific print settings, such as layer height, print 

speed, or cooling, to ensure optimal results. Variations in these settings between the printers can 

affect the final output [150]. 

 Overall, as the complexity of the 3D printed model increases, the printers' ability to 

accurately reproduce the intricate details becomes more critical. Any variations in printer 

capabilities, calibration, or print settings can result in higher signal differences between the printed 

models. 

 

6.2.2 Anomaly Detection in Different Machines 

 

The movement direction of the nozzle is determined by the combination of the X, Y, and Z motors. 

Consequently, the current signals from each motor can be individually collected to construct a 

data-driven model. Specific geometries correspond to distinct current signals from these motors, 

meaning that modifying the geometry in a particular layer will induce changes in the current 

signals. By comparing the acquired data from each channel with the original data, the deviation 

can be determined. If two sets of signals in a specific layer exhibit significant inconsistencies, it 

indicates the presence of abnormal geometry, which could potentially be attributed to sabotage 

activity. 
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6.2.2.1 Comparison Strategy 

In Chapter 4, the data source was obtained from a single 3D printer. There are two sets of signals 

involved. One is generated as a benign set working as a control group, while the other works as an 

“altered” or “attacked” group. Our work has proved that the alteration in the G code or model 

design will be detected through our current-based method.  

 Based on the previous analysis, it can be concluded that when using the square shape as 

the specimen, the difference in signal between the X and Y channels is approximately 7%. This 

relatively small variation suggests that we can proceed with obtaining altered data generated by a 

new machine. This data can then be used to test whether the proposed method is still capable of 

detecting anomalies, as discussed in this chapter. The general method for the comparison 

mechanism is shown in Figure 32. This experiment allows us to determine if our method remains 

applicable in detecting anomalies across different machines.  

 

  

Figure 32. Comparison mechanism. 
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All the printed parts have a dimension of 10mm×10mm×20mm. To simulate malicious activity, 

we incorporate two voids within the altered part for comparison with the benign part. Additionally, 

we systematically reduce the size of the void while keeping the exterior dimensions unchanged in 

order to determine the smallest detectable void size. Additionally, a threshold is established beyond 

which we can claim a particular segment signal differs from the benign one. 

 

6.2.2.2 Experimental Setup 

The method to acquire the current signals from X, Y and Z motors is a non-invasive measurement 

without any hardware connection. The test machine (LulzBot TAZ Workhorse) and benchmark 

machine (LulzBot TAZ 6) share the same experimental setup shown in Figure 33. Three current 

probes (Picotech 60A (TA018)) are utilized for each printer. Each probe converts the current 

flowing through a conductor into a voltage that can be observed and measured on the PicoScope 

5000 series oscilloscope. The remaining experimental apparatus includes a laptop and 2.85mm 

PolyLite PLA filament. Autodesk Fusion 360 software is utilized for designing the model. Marlin 

firmware in the Lulzbot printer translates the G code generated by the slicing tool Cura-Lulzbot 

into commands for the printer. To ensure accuracy, all the Cura parameters controlling the printing 

properties are set to be identical for both printers. 
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Figure 33. Experimental Setup for benchmark machine (left) and test machine (right). 

 

6.2.2.3 Comparison Results 

The experimental prints have a standardized size of 10mm×10mm×20mm, but the size of the inner 

double voids within the altered part may vary. The test machine is responsible for printing the 

altered part, while the benchmark machine is used to print the benign part. We first compare the 

altered one with a benign part, and then we gradually shrink the inner hollow part’s volume to test 

the method’s performance to find the detection limit. The comparison technique in 4.1.3 Model 

Development and Algorithm Design in Chapter 4 will be employed in this section. 

 Figure 36 is the comparison result for double voids with 2mm×2mm×2mm under different 

infill rates. In fact, the G code converted from the STL file does not entirely reflect all the details 

of the CAD model.  
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Figure 34. Comparison results for different infill rates. (a) 20% infill rate (b) 100% infill rate. 

                               

 In the case of a 20% infill rate set in Cura, the actual infill rates for the surrounding areas 

of the hollow sections are automatically increased to 100% to create a supporting plate for 

subsequent material deposition. As a result, two bulges appear in the front and back of each void, 

as depicted in Figure 34 (a). When the infill rate for the entire part is set to 100%, the surrounding 

section will be the same as the benign part (also 100% infill rate), so the bulges disappear in Figure 

34 (b). 

To establish a threshold for identifying abnormal layers, we employ the statistics method 

X Chart (also known as Individual Chart). This chart displays the mean and variance of the process 

based on individual samples taken over a specific period. For determining the threshold, we utilize 

the X Chart with the comparison results of two benign signals under different infill rates. The 

upper control limit (UCL) is chosen as the threshold. The resulting threshold values are 0.104 for 

the 20% infill rate and 0.092 for the 100% infill rate. 

 

(a) (b) 
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Figure 35. Comparison results for the minimum detectable void 0.25mm×0.25mm×0.5mm. 

 

 Regarding the minimum size for detectable voids, we gradually decrease the dimensions 

in height, width, and length until all calculation results fall below the threshold. We are going to 

Figure 35 shows the outcome for a void measuring 0.25mm×0.25mm×0.5mm. In this case, only 

one point exceeds the threshold, indicating that any smaller size would not be detected. In 

conclusion, we confirm that the detectability limit is 0.25mm×0.25mm×0.5mm. 

 

6.3 Discussion 

We have examined the variation among the signals generated by different machines and 

investigated the relationship between signal variances and model complexity. Additionally, our 

research validates the effectiveness of the proposed method in accurately detecting abnormal 

patterns caused by malicious activities on the new platform. The proposed method enables the 

possibility that remote model printing data can be monitored and validated by an on-site machine. 

This approach proves that comparing signals from different sources is a feasible way to detect 

anomalies, allowing for possible efficient and reliable remote validation processes.  
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 This research represents an extension of the approach outlined in Chapter 4, where the 

comparison subject was collected from the same machine. In this contribution, we expand the 

scope by collecting data from different machines, enhancing the applicability and generalizability 

of our findings.  

 Considering the current signal is collected as a side-channel of the motors, signal amplitude 

has a tight relationship with the electronic hardware. However, the accuracy of the current signals 

is directly influenced by the Marlin firmware, which is responsible for controlling motor rotation. 

Both 3D printers adopt NEMA 17 stepper motors with a 1.8-degree step angle (200 

steps/revolution). But the Z axis for Workhorse is 500 steps/mm, while the Lulzbot Taz 6 is 700 

steps/mm. As the Workhorse is less accurate than the Taz 6, the Workhorse can’t create as small 

of details as the Taz 6 in terms of the minimum detectable void size. The Lulzbot Taz 6 is capable 

of detecting the minimum void size as  0.25mm×0.25mm×0.25mm, while the Lulzbot Workhorse 

is only capable of 0.25mm×0.25mm×0.5mm. In addition to this hardware difference, the built-in 

configuration for the Marlin firmware and Cura software is also not exactly the same. Despite our 

efforts to maintain parameter consistency, there may be slight variations between the current 

signals. These differences contribute to the disparity between the comparison results and the 

conclusions drawn in our previous work. However, these variations do not undermine the 

effectiveness of the power monitoring method in detecting anomalies.  

 

6.4 Future Work 

 

Since we have concluded a threshold on the detectability of the method, any smaller voids cannot 

be detected. However, in cases where these smaller voids are dispersed within the part and do not 

accumulate in close proximity, the proposed method may not detect them, resulting in the potential 

passing of inspection. As a result, the mechanical properties of the part could be affected by these 
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clustered voids. In future research, we will perform a tensile test to explore the extent to which 

these voids may decrease the mechanical properties.  

 Currently, both machines employ the same model of motors. To broaden the scope of 

application, we will also incorporate some machines that have significantly different specifications 

of motors to compare with our benchmark machines to test if the proposed method is still 

applicable. 

 At present, our proposed method begins to process the data after the experiments are 

completed. Our future objective for this research is to develop a real-time model validation process 

that enables continuous remote monitoring. Once an anomaly is detected during the printing 

process, our goal is to ensure a rapid response and issue timely warnings. This will enable prompt 

intervention and mitigation measures to be taken, minimizing any potential adverse effects. 

 

6.5 Contribution Summary 

AM exposes various attack surfaces, making it challenging to identify attacks and prevent 

tampering with critical data. Our method has proved its effectiveness in detecting anomalies in the 

same machine. To validate the applicability of the proposed method on a different platform, we 

integrate another machine and apply the approach to assess its effectiveness. This allows us to 

gather insights into the method's performance across various platforms. Due to the variance in the 

motor specifications, the threshold is not the same as the scenario when data is collected and 

compared from the same machine. The result shows that the tiny alteration inside the part can still 

be detected, and the threshold for the smallest detectable size is as small as 

0.25mm×0.25mm×0.5mm. Therefore, our method still has the potential to validate the system 

remotely. Overall, the method has the following advantages: (1) Capable of precisely tracking 

anomaly position; (2) Applicable to a different machine with similar motors; (3) Non-invasive 
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measurements; and (4) ease of use. In addition, we have shown the signal variations between the 

two machines and confirmed that a more complex part would produce increased variation between 

the signals. The demonstrated anomaly detection performance and the potential applicability to 

remote AM inspection systems make the proposed approach an important contribution to ensuring 

AM security in safety-critical systems.  



lxxi 

 

7. Conclusion 

The development of robust authentication mechanisms, encryption protocols, intrusion detection 

systems, and anomaly detection techniques tailored specifically for CPS brings a new angle to 

security issues. These advancements aim to protect CPS from unauthorized access, data breaches, 

tampering, and other malicious activities. 

 This dissertation introduced a novel current monitoring approach for anomaly detection 

and a new channel of reversing engineering a geometric design for an AM system. In this final 

chapter, a summary of the conclusions, contributions, and broad impact of this research is provided. 

Additionally, the limitations of the study and future research are presented. 

 However, the field of CPS security is still evolving, and new threats continue to emerge. 

As technologies advance and attackers become more sophisticated, it is essential to adopt a 

proactive and adaptive approach to CPS security. This includes continuous monitoring, timely 

updates and patches, threat intelligence sharing, and collaboration between researchers, industry 

experts, and policymakers. 

 Future research in CPS security should focus on addressing emerging threats such as 

Cloud-based threats, supply chain attacks, and Machine learning and AI-based attacks. 

Additionally, the development of standardized security frameworks and best practices specific to 

CPS will play a pivotal role in ensuring a consistent and high level of security across different 

systems. 

 To summarize, the security of CPS is an ongoing and ever-evolving challenge. By 

recognizing the unique characteristics of CPS and investing in research and development, we can 

build robust and resilient security measures to protect these systems. By ensuring the security of 
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CPS, we can harness their full potential and drive innovation while maintaining the trust and 

integrity of our critical infrastructure and social well-being. 

 

7.1 Summary 

In view of its wide application in manufacturing systems, the importance of the security protection 

of CPS becomes crucial to protect critical infrastructure, sensitive data, and public safety. 

Identifying deviations or abnormalities in the operation of CPS components, such as sensors, 

actuators, communication networks, and control systems, plays a crucial role in ensuring the 

integrity, reliability, and security of the overall CPS infrastructure. If abnormal activity is not 

detected in the AM manufacturing industry, poor-quality products will be made even though they 

may pass inspection. Moreover, undetected abnormal activity can impact the functionality and 

stability of systems, leading to malfunctions or complete failures. To protect AM systems from 

sabotage activity,  anomaly detection is proposed to identify and respond to abnormal behavior or 

events that deviate from the normal patterns within the system. Additionally, our method could 

accurately track the affected position to layer level, making the remedial measures more targeted.  

 However, the measures of anomaly detection are not enough to provide complete 

protection for CPS and prevent the leakage of process information. Due to the fact that IP is highly 

centralized in a single file in AM, it’s crucial to safeguard a company's competitive differentiation 

and innovative creations, making it imperative to protect against infringement. To enhance the 

system's integrity, it is necessary to identify and address any loopholes that may release the key 

information. In this dissertation, we also proposed a novel side-channel approach for 

reconstructing the geometric form from motor rotation information. Our work serves as a reminder 

to system designers of the essential measures required to prevent information theft in AM.  
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 To implement the possible remote model validation in the future, the differences between 

different FFF 3D printers need to be identified. The results of this dissertation show that signal 

variation increases when the print model complexity is higher, even on the same model of AM 

platform.  Given that the observed variation is not significantly high, we utilize the DTW 

comparison method to analyze the data collected from both machines. This approach enables us to 

assess the applicability of anomaly detection and explore its potential for remotely verifying the 

authenticity of a part of the reference model. 

 

7.2 Contributions  

Researchers have consistently made significant contributions to AM security community. Most 

security studies concentrate on defense strategies, attack methods, mitigation techniques, detection 

mechanisms, and system monitoring. In terms of defensive strategies, countermeasures in intrusion 

scenarios aim to achieve protection, detection, and mitigation. When considering the purposes of 

attacks on CPS, the two primary effects are typically destruction and intellectual property (IP) theft. 

These two objectives are commonly associated with malicious actions targeting CPS. Therefore, 

three contributions are made in this dissertation to detect possible sabotage attacks on the AM and 

reveal the vulnerability in AM through side channels. Additionally, a new FDM 3D printer is 

introduced to test the applicability of the proposed method on a new platform. Contribution details 

are summarized in the following part.  

(1) Detection of Malicious Cyber-Physical Attacks for Additive Manufacturing with Dynamic 

Time Warping: In this contribution, we present a novel power monitoring method utilizing 

the Dynamic Time Warping algorithm to detect sabotage attacks on an AM system. 

Specifically focusing on the insertion of unwanted voids within FFF parts. The proposed 

method evaluates the current signals from both the benign control group and the altered 
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group caused by malicious activities through layer-to-layer comparison. If the discrepancy 

for any layer surpasses the predefined threshold, it is identified as an abnormal layer 

indicating the presence of voids. The minimum detectable void size is 0.25mm × 0.25mm 

× 0.25mm, with the height equal to the layer thickness. Through a case study, the proposed 

method demonstrates a detection accuracy of over 96%. Furthermore, the model provides 

insight into the specific layers where the voids are located. Given the layer-to-layer 

comparison, the method is especially well-suited for FFF. This research serves as a 

valuable reference and offers practical guidelines for detecting sabotage attacks in FFF and 

other AM processes. 

(2) Magnetic Field Side-channel Attack on Additive Manufacturing Systems: This study 

reveals the vulnerabilities in AM systems in which process information can be illicitly 

obtained. To disclose the potential risk, we introduce a rotation side-channel attack that 

aims to reconstruct the dimensions of a model with high accuracy without the need for 

direct access to the original design. This attack method poses the risk of IP theft. Our 

approach utilizes rotation information from the X, Y, and Z motors to determine the precise 

coordinates of the printing head at each moment. These coordinates are then connected 

using information from the extruder motor. To enhance the accuracy of shape 

reconstruction, we apply additional preprocessing techniques. The results of our 

experiments demonstrated that the restored model dimensions could achieve an accuracy 

of approximately 90% on average when compared with the CAD design. Relevant 

protection measures are also provided to prevent the unauthorized disclosure of IP 

information. This work reminds designers to consider side-channel leakage when securing 
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their systems, and we believe that our study contributes to the development of novel ideas 

for IP protection in AM security space.  

(3) Signal Variation Based on Complexity and Print Validation Across Multiple AM Platforms: 

A new FFF 3D printer is introduced to work as a test platform to compare with the 

benchmark machine. By comparing the variances of the signals between the machines, we 

can conclude that a more complex part would produce increased variation between the 

different machine signals.  Furthermore, we compare the current signal from each machine 

to detect any abnormalities in the geometry. The results have shown the DTW power 

monitoring method is still applicable to the new machine. Due to the hardware differences, 

the new machine is not able to provide as much detail as the benchmark machine. Therefore, 

the minimum detectable void size is 0.25mm × 0.25mm × 0.5mm. Our signal detection 

method can be used to remotely validate the authenticity of a print if the differences in the 

motor and hardware specification are not significant.  

Throughout this study, we have examined the unique security challenges AM systems pose and 

explored the methodologies and techniques employed to safeguard the systems. However, some 

limitations in the experimental design restrict the method to be performed under specific conditions, 

and there is still room for improvement in the experiments. These limitations and future works will 

be discussed in further detail.  

 

7.3 Limitations 

In the data collection for different machines, the signals used in the comparison technique are all 

generated by the motors with identical models or specifications. If the machine is installed with a 

different type of motor, the signal will be significantly different, making it challenging to detect 

the minor change caused by the anomalies in the geometry.  
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 So far, our method is only implemented on the FFF platform. There exist some non-FFF 

platforms like Stereolithography (SLA) or Selective Laser Sintering (SLS). These machines 

employ fundamentally different technology and different materials, which alters the method of 

signal collection and generation. As a result, the proposed method is not applicable to the new 

power supply mechanism in these platforms. 

 The proposed method based on DTW has a threshold for detecting the voids in the prints. 

The minimum detectable size is 0.25mm. Any smaller size of the voids below the threshold will 

not be detected as the dimension is too small to generate valid signals. Consequently, our current 

method would not be effective in detecting such attacks. 

 

7.4 Future Work 

Based on the contributions of this dissertation, we will also explore the possible application of the 

proposed method to detect other attack types beyond geometry alteration. In terms of key 

parameters affecting printing quality, if the temperature parameter for the nozzle is secretly altered, 

it can lead to material jams due to inadequate melting. This type of attack will help to determine 

the effectiveness and applicability of our approach in a broader range of scenarios. 

 For tiny “smart voids” under the derived threshold, we will continue improving the method 

for the case when they are small but discretely accumulating in mass. It’s unclear how much the 

formed porous structure will negatively impact the integral structural strength. As a result, we will 

take the tensile test as part of the experiments to test if those small smart voids will produce damage 

to the mechanical property.  

 The previous design for the experimental prints all shares the same shape in each layer, so 

we can use a single line to measure if the whole print is free from abnormal activity. But this 

measurement is not suitable for prints with different shapes in each layer. Because every shape of 
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layer has a unique threshold below which the layer can be claimed to be normal. In this scenario, 

utilizing partitioned lines or a curved structure may be more suitable for the part, as opposed to 

using a single line. 

 Due to their high precision nature, rotary encoders are susceptible to shock and vibration. 

The installation of sensors directly on the machine exposes them to significant interference from 

the vibrations generated by the machine, which greatly disrupts the normal signal collection 

process. In future research, we consider detaching the data collection system from the machine 

and building another collection system with sensors to avoid the vibration’s direct impact.  

For sensors that cannot be separated from the machine, we will employ a buffer mechanism to 

mitigate the effects of vibration. 
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