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Abstract

Evaluation metric is a crucial part to improve the performance of any system. An accurate

evaluation metric is capable to detect and compare multiple different models and thus serving

the user’s need in a specific domain. Ranking in Information Retrieval (IR) and text summa-

rization in Natural Language Processing (NLP) are two important tasks and often served as a

key component within an intelligent system. For instance, a search engine uses a ranking algo-

rithm to determine the order in which the search results are displayed. The ranking algorithm

analyzes various factors to evaluate the relevance and quality of web pages and then assigns

them a ranking based on their perceived value to the user. Although many different evaluation

metrics had been proposed for a better understanding of the ranking/summarization models and

to improve an intelligent system, empirical evaluation is still a challenge.

While original IR evaluation metrics are normalized in terms of their upper bounds based

on an ideal ranked list, a corresponding expected value normalization for them has not yet been

studied. We present a framework with both upper and expected value normalization, where

the expected value is estimated from a randomized ranking of the corresponding documents

present in the evaluation set. We next conducted two case studies by instantiating the new

framework for two popular IR evaluation metrics (e.g., nDCG, MAP ) and then comparing

them against the traditional metrics. For the NLP domain, we specifically consider ROUGE

and BERTScore in the text summarization evaluation and conducted the two case studies by in-

stantiating the new framework for ROUGE/BERTScore to observe the implications, where the

expected ROUGE/BERTScore is calculated by an expected summary given a source document,

resulting in an instance-level penalty for each source document.

For the ranking task, experiments on two Learning-to-Rank (LETOR) benchmark data

sets, MSLR-WEB30K (includes 30K queries and 3771K documents) and MQ2007 (includes

1700 queries and 60K documents), with eight LETOR methods (pairwise & listwise), demon-

strate the following properties of the new expected value normalized metric: 1) Statistically
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significant differences (between two methods) in terms of original metric no longer remain

statistically significant in terms of Upper Expected(UE) normalized version and vice-versa,

especially for uninformative query-sets. 2) When compared against the original metric, our

proposed UE normalized metrics demonstrate an average of 23% and 19% increase in terms of

Discriminatory Power on MSLR-WEB30K and MQ2007 data sets, respectively. We found sim-

ilar improvements in terms of consistency as well; for example, UE-normalized MAP decreases

the swap rate by 28% while comparing across different data sets and 26% across different query

sets within the same data set.

For the text summarization task, we also conducted the expected value normalization on

two widely used metrics, ROUGE and BERTScore. Experiments on CNN/Daily Mail datasets

with 12 different abstractive summarization models also demonstrate the following properties

of the new expected value normalized metric: 1) When compared against the original metric,

our proposed UE normalized BERTScore demonstrate higher human correlation w.r.t. four im-

portant perspectives (Consistency, Coherence, Relevance, Fluency) across 12 abstractive sum-

marization methods, especially in Heterogeneous documents, 2) Human judgment favors Upper

expected value normalized BERTScore against original version across comparison of 6 extrac-

tive summarization methods. On the other hand, for the ROUGE metric, UE normalization

does not help much in terms of human correlation with abstraction summarization methods,

though it improves the human correlation with extractive summarization methods. These find-

ings suggest that the IR and NLP community should consider UE normalization seriously when

computing nDCG, MAP, ROUGE and BERTScore, more in-depth study of UE normalization

for general IR and NLP evaluation is warranted.
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Chapter 1

Introduction

In the current landscape of AI advancements, choosing one model over another is as important

as designing a new one, even more difficult. The key point lies in the evaluation metric, a

pivotal measure of a model’s performance. Nevertheless, the task of designing an appropriate

evaluation metric becomes intricate due to varying standards for model quality, contingent on

individual goals and objectives. This diversity of perspectives presents a challenge in creating

a well-crafted evaluation metric. This thesis centers on the absence of a prior evaluation met-

ric design which we call ”expected value normalization.” We extensively conduct experiments

using four distinct metrics within the domains of Information Retrieval (IR) and Natural Lan-

guage Processing (NLP) to form the basis of this research. The ultimate goal is to advocate

for the adoption of expected value normalization to enhance model selection and utilization for

practitioners and researchers alike.

1.1 Evaluation in IR

Empirical evaluation is a key challenge for any information retrieval (IR) system. The suc-

cess of an IR system largely depends on the user’s satisfaction, thus an accurate evaluation

metric is crucial for measuring the perceived utility of a retrieval system by real users. While

original nDCG [38], MAP [15] etc. metrics are normalized in terms of their query-specific

upper bounds based on an ideal ranked list, a corresponding query-specific expected value nor-

malization for them has not yet been studied. For instance, the normalization term in nDCG

computation is the Ideal DCG at cut-off k, which converts the metric into the range between

1



0 and 1. On the other hand, MAP is normalized by the maximum possible Sum of Precision

(SP) scores at cut-off k. Thus, Ideal DCG and Sum of Precision (SP) scores essentially serve as

the query-specific upper-bound normalization factor for metric nDCG and MAP, respectively.

Interestingly, the above two popular metrics do not include a similar query-specific ex-

pected value normalization factor (the current widely used assumption for expected value is

zero across all queries). However, each query is different in terms of its difficulty (informa-

tive/uninformative/distractive), user’s intent (exploratory/navigational), distribution of relevant

labels of its associated documents (hard/easy), and user’s perceived utility at different cut-off

k, essentially implying different expected values for each of them. Therefore, an accurate es-

timation of an evaluation metric should not only involve an upper-bound normalization (e.g.,

Ideal DCG, SP, etc.) but also a proper query-specific expected value normalization.

Consider the case of re-ranking where an initial filtering has already been performed given

a query and as expected, a large number of associated documents in the filtered set are highly

relevant. In this case, even just a random ranking of those documents will yield a high accuracy

as most of the documents are highly relevant anyway. This means that even if a ranker does not

learn anything meaningful and merely ranks documents randomly, it can still achieve a very

high score in terms of the original metric. In other words, the expected value of the original

metric, in this case, is very high because of the skewed relevance label distribution of the asso-

ciated documents and this factor should be accounted for while measuring the ranker’s quality.

In summary, a proper expected value normalization is essential for IR evaluation metrics to

accurately measure the quality of a ranker as well as for a fairer comparison across multiple

ranking methods.

What does query-specific expected value normalization mean for an IR evaluation metric?

How can we come up with a more realistic expected value for each query and include it with

the original IR metric computation? One way to address this issue is to introduce a penalty

term inside the formula of different IR evaluation metrics which will penalize queries with

high expected values of the same metric. In other words, given a query, we propose to use

the expected value of the particular evaluation metric as a query-specific expected value of the

2



same metric for that query, which can yield customized expectations for different queries and

thus, ensure fairer treatment across all queries with different difficulty levels.

With the observation that both nDCG and MAP metrics only involve query-specific upper-

bound normalization (e.g., normalization with ideal DCG for nDCG computation, while MAP

is normalized by the maximum possible Sum of Precision); none of them include a query-

specific expected value normalization. In this thesis, we proposed a new general framework

for IR evaluation with both upper and expected value normalization and instantiated the new

framework for two popular IR evaluation metrics: nDCG and MAP by computing a more

reasonable(non-zero) expected value. Specifically, we introduce two different variants of the

framework, i.e., V1, and V2, which are essentially two different ways to introduce a penalty

in terms of normalization with a query-specific upper and expected value of the metric (see

section 5 for more details). We then show how we can compute a more realistic query-specific

expected value for the two metrics by computing its expectation for each query in case of a

randomized ranking of the corresponding documents, and then, use this expected value as a

penalty term while computing the new metric. The intuition here is that an intelligent rank-

ing method should perform at least as well as a random-ranking algorithm, which naturally

inspired us to use the expectation in case of random ranking as our expected value. Finally,

for each metric, we also theoretically prove the correctness of the expected value (Derivation

details can be found in each case-study section).

Next, we investigated the implications of upper expected value normalization on the orig-

inal IR metric. How it may impact IR evaluation in general and more importantly, which

metric is better? Why should we care? To answer these questions, we have conducted ex-

tensive experiments on two popular Learning-to-Rank (LETOR) data-sets with eight LETOR

methods including RankNet [13], RankBoost [28], AdaRank [92], Random Forest [9], Lamb-

daMART [12], CoordinateAscent [54], ListNet [14] and L2 regularized Logistic Regression [27,

50]. Experimental results demonstrate that a significant portion of the queries in popular bench-

mark data-sets produced a high expected value normalization factor, verifying that expected

value normalization can indeed alter the relative ranking of multiple competing methods (con-

firmed by Kendall’s τ tests [72, 70]) and thus, should not be ignored. At the same time, for
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a number of closely performing LETOR method-pairs, statistically significant differences in

terms of original metric no longer remain statistically significant in terms of expected value

normalized metric and vice-versa, especially for uninformative query-sets (see section 3.5 for a

concrete definition), suggesting expected value normalization yields different conclusions than

the original metric.

Next, we compare the original metric against the UE normalized version from two per-

spectives: Distinguishability and Consistency. In the case of discriminative power, we fol-

lowed [70, 73] to use the student’s t-test as well as computed “Percentage Absolute Differ-

ences” to quantify distinguishability and found that UE normalized version can better distin-

guish between two closely performing LETOR methods in case of uninformative queries. For

consistency, we performed swap rate tests and found that MSPUE provides better performance

in terms of Consistency while DCGUE does not compromise in terms of Consistency.

These findings suggest that the community should rethink IR evaluation and consider ex-

pected value normalization seriously. In summary, we make the following contributions to the

thesis in the IR domain:

1. We propose an extension of traditional IR evaluation metrics which includes an expected

value normalization term, and systematically perform two case studies by showing how

expected value normalization can be materialized for nDCG and MAP.

2. We propose two different variants of the proposed UE normalized version for two popular

IR evaluation metrics.

3. We show how we can compute a more realistic query-specific expected value for two IR

evaluation metrics by computing its expectation for each query in case of a randomized

ranking of the document collection and also theoretically prove its correctness.

4. We conducted extensive experiments to understand the implications of the expected value

normalized metric and compared our proposed metric against the original metric from two

important perspectives: Distinguishability and Consistency.

5. Our proposed framework is very general and can be easily extended to other IR evaluation

metrics.
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1.2 Evaluation in NLP

Automatic evaluation of natural language generation is an important component to improve the

natural language understanding system such as text summarization, machine translation, and

caption generation [101]. Text summarization, for instance, can be considered as a text-to-text

task where the input is a long document and the output is the corresponding summary which is

shorter, human-readable, and only generated from the source document. Previous researchers

had proposed many different text summarization evaluation metrics such as ROUGE [51]

which is based on n-gram overlapping and more advanced metrics such as BERTScore and

BARTScore [99] which utilized the large language model and transformers to improve the

understanding of the semantic meaning of source document that results in the higher human

correlation.

With a similar question, as we had from IR evaluation, these two (ROUGE and BERTScore)

important and widely used evaluation metrics had neither expected nor upper-value normaliza-

tion. Using our proposed two frameworks, we conducted the upper and expected value nor-

malization toward two metrics by proposing different expected scores. For ROUGE, which

measures the number of overlapping textual tokens, we leverage a unigram language model

to generate the expected token based on the distribution of words in the source document. For

BERTScore, we use a transformer encoder to tokenize the source document and get the similar-

ity/contribution of each token w.r.t. the entire document, then generate the expected summary

based on the similarity.

Different from the IR evaluation metric, the key point of understanding the performance in

NLP is the human correlation [25, 1, 99]. In this thesis, we use the [25] dataset and calculate

the human correlation of our proposed metrics from 4 perspectives w.r.t. 12 abstractive text

summarization methods. We also conducted the human correlation w.r.t. 6 extractive text sum-

marization which was annotated by three NLP Ph.D. experts. The empirical results indicate that

our UE-BERTScore achieves a higher correlation on 12 abstractive summarization methods as

well as 6 extractive summarization methods. In particular, we found UE normalization involves
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the maximum improvement for documents with heterogeneous contextualization (HeteDoc), in

which the contextualized word embedding are different from contextualized document vector.

These findings suggest that the community should also consider expected value normal-

ization in the NLP evaluation task. In summary, we make the following contributions to the

thesis in the NLP domain:

1. We propose two different variants of the proposed UE normalized version for two popular

NLP evaluation metrics, BERTScore and ROUGE.

2. We show how we can compute a more realistic instance-specific expected value for two

NLP evaluation metrics separately: For ROUGE, we use an instance-specific unigram lan-

guage model to sample the expected summary while for BERTScore, we greedily select the

word from original source document based on contextualized word embedding to generate

the expected summary. For both metrics, we use their expected summary to calculate the

expected ROUGE/BERTScore individually.

3. We conducted extensive experiments to understand the implications of the expected value

normalized metric and compared our proposed metric against the original metric from the

Human Correlation perspective.

4. Our proposed framework is very general and can be easily extended to other NLP evaluation

metrics.

1.3 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 reviews related works from the past

literature. Chapter 3 provides essential background about our four experimental metric compu-

tations and motivation for expected value normalization. Chapter 4 provides the details about

data-sets and LETOR/Summarization methods that have been conducted in our experiment.

Chapter 5 presents our proposed framework with instance-specific upper and expected value

normalization. In Chapter 6, we first present how to compute a reasonable expected DCG by

computing the corresponding score of a randomly ranked document collection in the case of

each individual query. Then show the implications of our two proposed upper and expected
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value normalized DCG, i.e., DCGUL
V1,2

. Chapter 7 follows the same format as chapter 6 to

demonstrate our experimental results concerning another popular IR evaluation metrics: MAP.

In Chapter 8, we first explain how we understand the expected score should be calculated in

the case of BERTScore and demonstrate the UE normalization impact from the perspective of

human correlation. Chapter 9 shows the results of UE normalization in ROUGE, which is our

last case study in this thesis.

Finally, Chapter 10 discusses our current implementations on the traditional Information

Retrieval domain and NLP domain. Nevertheless, this is not a destination but another beginning

of a wonderful journal. I will also discuss and set my future plan in Chapter 11 from two

perspectives to continue this work.
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Chapter 2

Related Work

In this Chapter, we will go over previous literature related to the customization of traditional

evaluation metrics, more specifically, about nDCG, MAP, ROUGE and BERTScore in Infor-

mation Retrieval and NLP. We also discuss the limitations of the above four metrics and how

previous researchers tried to solve them. Then we explain how our work is distinct from prior

studies.

2.1 Evaluation in IR

Traditional IR evaluation metric: Many metrics have been introduced for the IR system evalua-

tion [53] in recent years. The two most frequent and basic metrics for the performance evalua-

tion of the IR system are precision and recall. Empirical studies of retrieval performance have

shown a tendency for precision to decline as recall increases [10]. Due to the trade-off between

the two basic calculations, researchers also use other complex single metrics such as F-measure

which can evenly weight the precision and recall. Other popular metrics such as MAP (Mean

Average Precision), Normalized Discounted Cumulative Gain (nDCG), and Expected Recip-

rocal Rank (ERR) are also widely used as offline evaluation standards. Different metrics have

different hyper-parameters for users to choose from based on their own preferences.

nDCG: nDCG is the normalized version of Discounted Cumulative Gain (DCG), where the

normalization term is essentially a query-specific upper-bound (i.e., normalization with Ideal

DCG), which converts the metric into the range between 0 and 1 [38]. The benefit of nDCG

is it can be applied to multi-level relevance judgments and is also sensitive to small changes
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in a ranked list. Many researchers have investigated its properties (see, e.g., [95, 66, 87]).

The fact that the general concept of nDCG can be implemented in a variety of ways was

recognized in the previous work [42], where the authors scrutinized how to choose from a

variety of discounting functions and different ways of designing the gain function to optimize

the efficiency or stability of nDCG [44]. Previous research has also shown that with different

gain functions, nDCG may lead to different results and the discounting coefficients do make a

difference in evaluation results as compared to using uniform weights [85]. Regarding nDCG

cutoff-depths, Sakai and others [71] have researched the reliability of nDCG by establishing

that it is highly correlated with average precision if the cutoff-depth k is big enough. According

to a recent research [43], conventional nDCG score results in a significant variance in response

to the k value and urged for query-specific customization of nDCG to acquire more trustworthy

conclusions. Additionally, [32] proposed a measure to explicitly reflect a system’s divergence

by comparing the query-level nDCG with a randomized ranked nDCG, which they called

RNDCG.

MAP: Average precision (AP) is another popular indicator for evaluating ranked output in

IR experiments for a number of reasons as it is already known to be stable [11] and highly

informative measure [3]. Whereas Mean Average Precision (MAP) [15] is the average AP

of each class which can reflect the overall performance among multiple topics. However, the

assumption behind MAP is that retrieved documents can be considered as either relevant or non-

relevant to the user’s information need, which is not accurate. Previous researchers have studied

the properties of MAP in terms of different relevance judgments. [94], for instance, proposed

different variants of AP for addressing incomplete and imperfect relevance judgments, where

they consider the document collection is dynamic, as in the case of web retrieval, and they

use an expectation of random sample from the depth-100 pool. Furthermore, [67] proposed

an extended Average Precision named Graded Average Precision (GAP) which can tackle the

cases of multi-graded relevance.

Query Specific Customization for General IR Evaluation: Previous work has explored how to

incorporate query-specific customization for IR evaluation metrics in general. Recently, [18]
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proposed a framework for query-level evaluation metrics by incorporating the anchoring effect

into the user model and achieving a better correlation with user satisfaction. [16] proposed

query reformulation aware metric as query reformulating behaviors may reflect user’s search

intents. [48] presented a Best-Feature Calibration (BFC) strategy for analyzing learning to

rank models and used this strategy to examine the benefit of query-level adaptive training,

which demonstrated the importance of query-specific parameters in IR evaluation once again.

[56] followed by [5] argued that user behavior varies on a per-topic basis depending on the

nature of the underlying information need, and hence that it is natural to expect that evaluation

parameterization should also be variable. Billerbeck et.al. studied the optimal number of top-

ranked documents that should be used for extraction of terms for expanding a query [8]. Such

work has shown the need to employ a ranking function for each individual query. [24] demon-

strated precision, recall, fallout, and miss as a function of the number of retrieved documents

and their mutual interrelations.

IR Evaluation with Variable Parameterization: Query specific customization can be viewed as

a special case of variable parameterization for IR evaluation metrics, which has been explored

previously. [68] studied the effect of the choice of relevance scales on the evaluation of IR

system. [88] explored the role that the metric evaluation depth k plays in affecting metric

values and system-versus-system performances for two popular families of IR evaluation met-

rics: i.e., recall-based and utility-based metrics. Study by [40] showed that the adaptive effort

metrics can better indicate user’s search experience compared with conventional metrics. [96]

showed users are more likely to click on relevant results and also examined the differences be-

tween searcher’s effort (dwell time) and assessor’s effort (judging time) on results, and features

predicting such effort [97]. [74] modeled a user population to assess the appropriateness of

different evaluation metrics.

2.2 Evaluation in NLP

Traditional evaluation in NLP: Natural Language text generation task such as text summariza-

tion is commonly evaluated using annotated references. Given a golden reference and model
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generation, a better evaluation metric can achieve a higher human correlation. In the early

stage, the metric for text summarization is to count the n-gram that occurs in the reference and

model generation, which is a simple overlapping matching process. Due to the simplicity, the

most commonly used metric is ROUGE [51] (Recall-Oriented Understudy for Gisting Evalu-

ating) which measures the number of overlapping units (n-grams) between golden reference

and model generation even though many limitations have been discovered [1, 33, 22]. Other

variants of ROUGE such as ROUGE-WE [58], ROUGE-L had been proposed to capture longer

overlapping. However, those N-gram-based metrics ignored contextualized information from

source and reference documents resulting in a lower human correlation. Meanwhile, ROUGE

also suffered an NLP task called Semantic Overlap Summarization (SOS) which focuses on

generating a summary from multiple alternative narratives. To solve this issue, [6] proposed a

new sentence-level precision-recall style automated evaluation metric called SEM-F1 (Seman-

tic F1) which can achieve a higher correlation with human judgment.

BERTScore: Existing Pre-trained model-based metrics can be categorized into three paradigms:

matching, regression, and generation [79]. As a matching-based evaluation metric, BERTScore

utilized the BERT or other pre-trained model (such as RoBERTa) to capture the contextual in-

formation from reference and model generation at a token level and greedily maximize the

cosine similarity between contextualized token embeddings from BERT. Although this metric

can achieve higher human correlation, previous researchers had investigated the property and

the implementation on different domains [91, 69]. For instance, [79] demonstrated the popular

pre-trained language model-based metrics exhibit significantly higher social bias than tradi-

tional metrics on six sensitive attributes. Other concerns regarding the sensitivity of BERTScore

on translation tasks where the incorrect penalization was included when lexical similarity exists

between the translations and references [35].

Distinction from Prior Work: Our work completely differs from the previous effort as our goal

is to investigate the impact of expected value normalization on the prominent evaluation met-

rics. To the best of our knowledge, there has never been a systematic study of instance-level

(query-specific) expected value normalization for IR and NLP evaluation metrics. Furthermore,
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our work is groundbreaking in that it proposes a generic upper expected value normalization

framework and effectively applies it to four prominent evaluation metrics, crossing two im-

portant domains. We additionally compute the expectations over a randomized ranked list to

estimate a more realistic expected value and also give the derivation for IR; while also propos-

ing metric-specific expected scores in two text summarization evaluation tasks. Our research

clearly articulates the effects of such expected value normalization on four popular evaluation

metrics and lays the foundation for future research in this direction.

2.3 Chapter Summary

This chapter briefly reviews the customization for IR and NLP evaluation metrics from past

literature and also explains how our proposal is different from previous studies. The next chap-

ter will talk about the background information of IR and NLP evaluation metrics are conducted

in this thesis.
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Chapter 3

Background of Original IR and NLP Evaluation Metrics

In this Chapter, we start by providing some essential background about nDCG, MAP, ROUGE

and BERTScore computation and then introduce our motivation of expected value normal-

ization for the four metrics based on our observation that none of above metrics involve an

instance-level expected value bound normalization.

3.1 Computation of the Standard nDCG

The principle behind Normalized Discounted Cumulative Gain (nDCG) is that documents

appearing lower in a search result list should contribute less than similarly relevant documents

that appear higher in the results [38]. This is accomplished by introducing a penalty term

that penalizes the gain value logarithmically proportional to the position of the result [87].

Mathematically:

DCG@k =
k∑

i=1

2Ri − 1

logb(i+ 1)
(3.1)

Here, i denotes the position of a document in the search ranked list and Ri is the rele-

vance label of the i− th document in the list, cutoff k means DCG accumulated at a particular

rank position k, the discounting coefficient is to use a log-based discounting factor b to un-

evenly penalize each position of the search result. nDCG@k is DCG@k divided by maximum

achievable DCG@k, also called Ideal DCG(IDCG@k), which is computed from the ideal

ranking of the documents with respect to the query.
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nDCG@k =
DCG@k

IDCG@k
(3.2)

3.2 Computation of the Standard MAP

For our third case study, we selected another popular evaluation metric called Mean Average

Precision (MAP ). In the field of information retrieval, precision is the fraction of retrieved

documents that are relevant to the query. The formula is given by: Prec = TP/(TP + FP ),

where, TP and FP stands for True Positive and False Positive, respectively. Precision at cutoff

k is the precision calculated by only considering the subset of retrieved documents from rank

1 through k. However, the original precision metric is not sensitive to the relative order of the

ranked documents, hence, we do not consider it for our exploration.

A related popular metric, which is sensitive to the relative order of the ranked documents,

is Average Precision, which computes the sum of precision scores at each rank where the

corresponding retrieved document is relevant to the query.

AP@k =
1

k

k∑
i=1

Prec(i) ·Ri (3.3)

Here, Ri is an indicator variable that says whether ith item is relevant (Ri = 1) or non-

relevant (Ri = 0). From Formula 3.3, we can see AP@k is already normalized by the maxi-

mum possible Sum of Precision (SP), which is k in this case by assuming a precision value of

1.0 for every position from 1 to k. Thus, AP@k is already an upper-bound normalized version

of SP@k, like nDCG@k is for DCG@k. Finally, the Mean Average Precision (MAP ) of a

set of queries is defined by the following formula, where |Q| is the number of queries in the set

and AP (q) is the average precision (AP ) for a given query q.

MAP =

∑|Q|
q=1AP (q)

|Q|

In summary, AP is essentially an upper-bound normalized version of Sum of Precision

(SP ), which is defined as follows:
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Sum of Precision (SP): SP computes the summation of the precision scores at all ranks (from

1 to rank k), where the retrieved document is relevant to the query without any upper or lower

bound normalization.

SP@k =
k∑

i=1

Prec(i) ·Ri (3.4)

3.3 Computation of the standard ROUGE

Our first NLP evaluation metric is the Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) scoring algorithm which calculates the similarity between a candidate document

and a collection of reference documents. [51] introduced a ROUGE package with four differ-

ent ROUGE measures: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. We specifically

introduce ROUGE-N, which is the N-gram Co-Occurrence statistics. For more details, refer to

[51]. Formally, ROUGE-N is an n-gram recall between a candidate summary and a set of refer-

ence summaries. Where n stands for the length of the n-gram, gramn, and Countmatch(gramn)

is the maximum number of n-grams co-occurring in a candidate summary and a set of reference

summaries. ROUGE-N is computed as follows:

=

∑
S∈References

∑
gramn∈S Countmatch(gramn)∑

S∈References

∑
gramn∈S Count(gramn)

(3.5)

3.4 Computation of the standard BERTScore

For the second NLP evaluation metric, we utilize the recently introduced model-based metric,

BERTScore. Given a reference sentence X = < x1, .....xk > and a candidate sentence X̂ =

< x̂1, .....x̂k >, BERTScore uses contextual embeddings to represent the tokens, and compute

matching using cosine similarity [101]. The BERTScore Recall, Precision, and F1 scores are

below:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j (3.6)

15



RBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j (3.7)

FBERT = 2
PBERT .RBERT

PBERT +RBERT

(3.8)

The complete score matches each token in X to a token in X̂ to compute recall and each

token in X̂ to a token in X to compute precision. They use greedy matching to maximize the

matching similarity score, where each token is matched to the most similar token in the other

sentence. Then combine the precision and recall to compute the F1 score. In this thesis, all

BERTScore results are using the BERTScore-F1 score.

3.5 Motivation for Expected Value Normalization in IR

A closer look into the formula of conventional nDCG and MAP shows that the two metrics

incorporate only a query-specific upper-bound normalization (i.e., IDCG is actually an upper-

bound normalization term). However, as mentioned in section 1, each query is different in terms

of difficulty (hard/easy), informativeness (informative/uninformative/ distractive), user’s intent

(exploratory/navigational); as such, they have different expected values of different evaluation

metrics. Thus, an accurate estimation of average nDCG and MAP should include different

expected values for different queries.

Our research objectives stem from this critical observation discussed above. More specif-

ically, how can we develop a more realistic expected value for each query and include it in the

original metric computation? What is the effect of query-specific expected value normalization

on the IR evaluation metric? These are the research questions we systematically study in this

paper. In other words, The main objective of our work is to relax the incorrect assumption of

uniform expected values (of nDCG and MAP ) across all queries while evaluating IR systems.

We propose that an accurate evaluation metric should customize for each query and normal-

ize with respect to both query-specific upper and expected values. A follow-up question that

arises immediately is the following: How can we estimate a realistic expected value of an IR

evaluation metric? While the original implementation of the above two metrics assumes zero
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as the expected value, previous work proposed to use the worst possible ranking score as the

expected value [31] to achieve a standardized range; we argue that this expected value can be

further constrained by using the score of a randomly ranked list for each query. The justifi-

cation behind this choice is that a reasonable ranking function should be at least as good as

the method that ranks documents merely randomly and should be penalized in cases where it

performs worse than random.

To better motivate UE normalization, we first define the following types of queries, which

we will use throughout the rest of the thesis:

1. Informative Queries: These are queries where a reasonable ranking method performs sig-

nificantly better than a pure random ranking system. Essentially, these are queries that

contain the “right” keywords to find out the most relevant documents according to the user’s

information needs. Therefore, the actual evaluation metric scores are much higher than the

expected value (the lower triangle region of the plot 3.1).

Ideal Queries: These are special cases of Informative queries where the difference between

the actual evaluation metric score and random ranked metric score (expected value) is the

largest.

2. Uninformative Queries: These are queries where a reasonable ranking method performs

close to a pure random ranking system. In other words, these are queries which does not of-

fer much value in finding out the most relevant documents. Therefore, the actual evaluation

metric scores are similar to the expected value (the region around the diagonal line). There

are two special cases for Uninformative queries as defined below:

(a) Hard Queries: Hard queries are special cases of Uninformative queries, where both

reasonable ranking methods, as well as pure random ranking systems, demonstrate

poor performance. This usually happens in cases where there are no/very few relevant

documents in the entire corpus.

(b) Easy Queries: Easy queries are special cases of Uninformative queries, where both

reasonable ranking methods, as well as pure random ranking systems, demonstrate

very high performance. This usually happens in cases where there are a lot of relevant
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documents in the corpus (for example, in case of re-ranking in multi-stage ranking

systems [2, 20, 81]) and there is little room for improving beyond random ranking.

Figure 3.1: Query types with different expected values of evaluation metric.

Figure 3.1 shows an illustration of different types of queries with different combinations

of evaluation metric expected value and actual metric score. As apparent from Figure 3.1,

the proposed UE normalization is expected to have a large penalty on uninformative queries

including special cases like hard queries (lack of relevant document scenarios) and easy queries

(re-ranking scenarios). On the other hand, expected value normalization will have minimal

impact in the case of Ideal queries as the expected value tends to zero and the actual metric

score is very high. However, as demonstrated by our experiments, real-world queries are not

Ideal always and hence, a proper expected value normalization is necessary while computing

nDCG and MAP scores because 1) It better captures the difficulty as well as variations across

different queries. 2) It makes comparisons and averaging across different queries fairer.

3.6 Motivation for Expected Value Normalization in NLP

As we can see from the formula of ROUGE, the original ROUGE score has neither upper nor

expected value bound which assumes the expected ROUGE score should be 0, an inaccurate

assumption that we want to argue with. Think about the process of extracting the word from
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the source document to generate the summary, because ROUGE omits the order sensitivity,

words that occur more often are more likely to be picked up during a random selection and the

sequence of words does not affect the ROUGE value. Thus, an expected value with a random

extraction should be high if those words occur equally high in both original source document

and reference because a random extraction can still achieve a reasonable ROUGE score, a

customized penalty should be involved for different cases.

Although BERTScore has been designed to be bounded between 0 to 1, which means

there is an upper bound, there is no expected value bound normalization. However, different

source document has a different distribution of dominant words, which can be considered as

keywords that would mostly impact the entire document, making the difficult for contextual

understanding differently and further, generating the expected summarization.

Due to the existence of different types of documents, the expected value normalization

is necessary because 1) it can better capture the order sensitivity as well as variations across

different source documents. 2) it makes fairer comparisons and averaging across different

documents.

3.7 Chapter Summary

In this Chapter, we first provide some basic information about the two IR evaluation metrics,

nDCG, MAP, and two text summarization evaluation metrics, ROUGE and BERTScore. Then,

we explain our motivation for this expected value normalization and also provide the justifica-

tion. The next chapter will discuss the details of our experimental design such as data-sets and

ranking/summarization methods.
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Chapter 4

Experimental Design

This chapter provides some background information on the two data-sets and eight LETOR

methods used in our IR experiments as well as CNN/DailyMail data set and extractive/abstractive

summarization methods in text summarization experiments. We also give the criteria of human

correlation from four perspectives and how we collect the human annotation from 5 pairs of

comparison.

4.1 Data Set

4.1.1 Data Set in IR

We used two LETOR benchmark data-sets, i.e., “MSLR-WEB30K” [63] and ”MQ2007” [62]

for our experiments. The first and second data-set includes 30,000 and 1,700 queries respec-

tively and have widely been used as benchmarks for LETOR tasks [29, 78, 39, 45].

In these data-sets, each row corresponds to a query-document pair. The first column rep-

resents the relevance label of the pair, the second column is the query id, and the rest of the

columns represent features. The relevance scores are represented by an integer scale between

0 to 4 for “MSLR-WEB30K” and between 0 to 2 for “MQ2007”, where 0 means non-relevant

and 4(2) means highly relevant. The larger the value of the relevance label, the more relevant

the query-document pair is. Features related to each query-document pair are represented by

a 136-dimensional feature vector for “MSLR-WEB30K” and a 46-dimensional feature vector

for “MQ2007” data-set [43]. For more details on how the features were constructed, see [62]

and [63]. Table 4.1 shows the number of queries, documents, and features for each data-set
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Data set # Documents # Queries # Features
MSLR-WEB30K 3771 K 31531 136
MQ2007 65323 1692 46

Table 4.1: IR data set statistics

Algorithm Short form Algorithm Short form
RankNet [13] RNet LambdaMART [12] LMART

RankBoost [28] RBoost CoordinateAscent [54] CA
AdaRank [92] ARank ListNet [14] LNet

Random Forest [9] RF Logistic Regression [27] L2LR

Table 4.2: Popular learning to rank algorithms

[45]. The documents in MQ2007 are retrieved from 25 million pages in the Gov2 web page

collection [64] for queries in the million Query track of TREC 2008 while MSLR-web30K is

created from a retired labeling set of the Bing search engine.

Both two data-sets come with five folds, where each fold has a test, train, and validation

set. We used the train set of each fold for training the models and reporting the average results

across test sets of all folds.

We randomly sampled 10,000 queries from the “MSLR-WEB30K” and 1000 queries from

“MQ2007” individually. For “MSLR-WEB30K”, the average number of documents associated

with each query was 119.06; while for “MQ2007”, the number was 41.47. We kept all the

features available (136 for “MSLR-WEB30K” and 46 for “MQ2007”) for all experiments con-

ducted in this paper.

4.1.2 Data Set in NLP

We used CNN/Daily Mail [36] data-set and the human correlation from [25] to conduct our

text summarization experiment. In this benchmark paper, Fabbri assembled and re-evaluated

14 evaluation metrics in a comprehensive and consistent fashion and using expert and crowd-

sourced human annotations as a golden reference, addressed the existing shortcoming of sum-

marization evaluation methods. The human annotations were evaluated along the following

four dimensions, as in [46]:
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CNN Daily Mail
train valid test train valid test

# months 95 1 1 56 1 1
# docs 90,166 1,220 1,093 196,961 12,148 10,397
# queries 380,298 3,924 3,198 879,450 64,835 53,182
Max # entities 527 187 396 371 232 245
Avg # entities 26.4 26.5 24.5 26.5 25.5 26.0
Avg # tokens 762 763 716 813 774 780
Vocab size 118,497 208,045

Table 4.3: Corpus statistics. Articles were collected starting in April 2007 for CNN and June
2010 for the Daily Mail, both until the end of April 2015. Validation data is from March, and
test data from April 2015. Articles of over 2000 tokens and queries whose answer entity that
did not appear in the context were filtered out.

1. Coherence: We follow the dimension with DUC quality question [21] of structure and

coherence whereby “the summary should be well-structured and well-organized”.

2. Consistency: the factual alignment between the summary and the summarized source. A

factually consistent summary contains only statements that are entailed by the source docu-

ment. Annotators were also asked to penalize summaries that contained hallucinated facts

3. Fluency: the quality of individual sentences. Drawing again from the DUC quality guide-

lines, sentences in the summary ”should have no formatting problems, capitalization errors,

or obviously ungrammatical sentences (e.g., fragments, missing components) that make the

text difficult to read.”

4. Relevance: selection of important content from the source. The summary should include

only important information from the source document.

Human Annotation

We use the human annotations collection from [25] which contains summary evaluations of 16

recent neural summarization models solicited from crowd-sourced and expert judges. Annota-

tions were collected for 100 articles randomly picked from CNN/Daily Mail test set. Statistical

information of CNN/Daily Mail can be found in table 4.3. We also have extra human annota-

tion w.r.t 5 pair of extractive summarization methods comparison which are annotated by three

NLP Ph.D. experts for our experiments.
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4.2 Methods

4.2.1 Learning to Rank (LETOR) Methods

Learning to rank is the application of machine learning algorithms in the construction of rank-

ing tasks for information retrieval systems. In general, the three major approaches to learning

to rank tasks are known as pointwise, pairwise, and listwise. In this proposal, we use the bench-

mark collection for research on Learning to Rank(LETOR) for Information Retrieval [64] and

select eight popular LETOR methods as our evaluation target. Table 4.2 contains our selected

eight prominent LETOR approaches along with popular classification and regression methods

used for ranking applications. We also assign acronyms to each approach for notational con-

venience, which we will use throughout the rest of the proposal. Basic information related to

each LETOR method is listed below:

RankNet: A pairwise approach introduced by Burges et al. where [13] proposed a proba-

bilistic cost for training systems to learn ranking functions using pairs of training examples and

explored the implementation using a neural network formulation.

LambdaMART: A pairwise approach [90] that is a combination of LambdaRank and MART [12].

While MART leveraged a gradient-boosted decision tree to tackle the prediction task. Lamb-

daMART improved this technique by introducing a cost function derived from LambdaRank

on the gradient-boosted decision tree to order any ranking task.

RankBoost: A pairwise approach proposed by Freund et al. [28] that can iteratively create and

aggregates a collection of “weak rankers” to build an effective ranking procedure.

Coordinate Ascent: A listwise approach described as an optimization method in the paper

[54]. This method optimizes through minimization of measure-specific loss, more specifically,

the mean average precision (MAP).

AdaRank: Xu et al. [92] proposed this listwise approach within the framework of boosting,

which can minimize a loss function directly defined on the performance measures. AdaRank

repeatedly constructs ’weak rankers’ on the basis of reweighted training data and finally linearly

combines the weak rankers for making ranking predictions.
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ListNet: A listwise approach proposed by Cao et al.from [14] where they employed a new

learning method for optimizing the listwise loss function based on top one probability, with the

neural network as model and gradient descent as an optimization algorithm.

Random Forest: A pointwise approach proposed by Breiman [9]. Random forests are a

combination of tree predictors such that each tree depends on the values of a random vector

sampled independently and with the same distribution for all trees in the forest

Logistic Regression: In this proposal we also provide ranking results of l2-regularized logistic

regression which is a simple but popular classifier that has been used in ranking tasks [27].

4.2.2 Abstractive Text Summarization Methods

Pointer Generator: [77] propose a variation of encoder-decoder models, the Pointer Genera-

tor Network, where the decoder can choose to generate a word from the vocabulary or copy a

word from the input. A coverage mechanism is also proposed to prevent repeatedly attending

to the same part of the source document.

Fast-abs-rl: [19] propose a model which first extracts salient sentences with a Pointer Network

and rewrites these sentences with a Pointer Generator Network.

Bottom-Up: [30] introduce a bottom-up approach whereby a content selection model restricts

the copy attention distribution of a pre-trained Pointer Generator Network during inference.

Improve-abs: [47] extend the model of [60] by augmenting the decoder with an external

LSTM language model and add a novelty RL-based objective during training.

Unified-ext-abs: [37] propose to use the probability output of an extractive model as sentence-

level attention to modifying word-level attention scores of an abstractive model, introducing an

inconsistency loss to encourage consistency between these two levels of attention.

ROUGESal: [59] propose a keyphrase-based salience reward as well as an entailment-based

reward in addition to using a ROUGE-based reward in a REINFORCE setting, optimizing

rewards simultaneously in alternate mini-batches.

Multi-task (Ent + QG ): [34] propose question generation and entailment generation as aux-

iliary tasks in a multi-task framework along with a corresponding multi-task architecture.
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Closed book decoder: [41] build upon a Pointer Generator Network by adding copy-less

and attention-less decoders during training time to force the encoder to be more selective in

encoding salient content

T5: [65]perform a systematic study of transfer learning techniques and apply their insights to

a set of tasks all framed as text-input to text-output generation tasks, including summarization.

GPT-2: [102] build off of GPT-2 and fine-tune the model by using human labels of which of

four sampled summaries are the best to direct fine-tuning in a reinforcement learning frame-

work.

BART: [49]introduce a denoising autoencoder for the pretraining sequence to sequence tasks

which are applicable to both natural language understanding and generation tasks.

PEGASUS: [100] introduce a model pre-trained with a novel objective function designed for

summarization by which important sentences are removed from an input document and then

generated from the remaining sentences.

4.2.3 Extractive Text Summarization Methods

BERT: [23] designed pre-train deep bidirectional representations from the unlabeled text by

joint conditioning on both left and right context in all layers.

MobileBERT: [80] is a thin version of BERT-LARGE, while equipped with bottleneck struc-

tures and a carefully designed balance between self-attentions and feed-forward networks.

DistilBERT: [75] is a small, fast, cheap, and light Transformer model based on the BERT

architecture. Knowledge distillation is performed during the pre-training phase to reduce the

size of a BERT model by 40%.

RoBERTa: [52] builds on BERT and modifies key hyperparameters, removing the next-sentence

pretraining objective and training with much larger mini-batches and learning rates.

XLNet: [93] is an extension of the Transformer-XL model pre-trained using an autoregressive

method to learn bidirectional contexts by maximizing the expected likelihood over all permu-

tations of the input sequence factorization order
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4.3 Chapter Summary

This chapter introduces the basic information about the three data-sets used in our experiment

(two in the IR task and one in the text summarization task). We also provide some background

of each LETOR method, 12 abstractive text summarization methods, and 6 extractive text sum-

marization methods conducted in our implication experiment.
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Chapter 5

Evaluation with Joint Upper & Expected value Normalization

This chapter defines the general framework with both upper and expected value normalization

for our evaluation metrics in IR and NLP system and briefly explain the intuition behind this

consideration.

5.1 General Framework for IR:

Assume that A@k is the standard evaluation metric and k is the cutoff rank. Before introducing

the generic IR evaluation framework with both upper & expected value (UE) normalization, we

first define the following terms.

• IUB[A@k]: Given a particular query and an associated collection of documents (each

with a distinct relevance labels), IUB[A@k] (Ideal Upper Bound for A@k) is the value

that A@k assumes in case of perfect ranking of the document collection.

• REB[A@k]: Given a particular query and an associated collection of documents (each

with a distinct relevance label), REB[A@k] (Randomized Expected Bound for A@k)

is the value that A@k assumes in case of random ranking (E[A@k]) of the document

collection.

• Upper-Bound Normalization: Given a particular query and an evaluation metric A@k,

Upper-bound normalization of the metric is defined as [A@k]U = A@k
IUB[A@k]

.

Now, we introduce two different variations of Joint Upper & Expected Value Normaliza-

tion, which is denoted by, [A@k]UE . We call the two versions as V1, V2.
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[A@k]UE
V1

=

(
A@k

IUB[A@k]

)(
A@k

(A@k +REB[A@k])

)
(5.1)

[A@k]UE
V2

=



A@k−REB[A@k]
IUB[A@k]−REB[A@k]

, if A ≥ REB

A@k−REB[A@k]
REB[A@k]

, otherwise

(5.2)

In the first Equation 5.1, we introduce a linear penalty term for Upper Expected Value

Normalization while in the second Equation 5.2 we introduce a non-linear penalty term. The

intuition of the above two Equations is that we want to penalize methods for queries where it

performs close to a random ranking method, i.e., the difference between A@k and REB[A@k]

is minimal (the uninformative queries): |A@k − REB[A@k]| ≡ 0. Even if a ranker achieves

high A@k in this case, it does not necessarily mean it is an “intelligent” ranker as the “vanilla”

random ranking method can achieve similar performance as well. So, the reward for the method

in this case should be discounted. Therefore, to truly distinguish between an “intelligent” and

“vanilla” ranking method, it is important to penalize the traditional metric with a more realistic

expected value, e.g., score w.r.t. a randomly ranked collection. In other words, for a ranking

algorithm to claim a high A@k score, it must perform significantly better than the random

ranking baseline.

5.2 General Framework for NLP:

Now, we introduce two different variations of Joint Upper & Expected Value Normalization

for NLP, which is denoted by [A]UE . We still call the two versions as V1, V2. The difference

between IR and NLP evaluation is we do not have a cutting position K, instead, we could

calculate the expected value for each instance. Thus, the only difference is omitting K in our

V1 and V2 from IR domain, the following equations can show the framework for NLP UE

normalization:

[A]UE
V1

=

(
A

IUB[A]

)(
A

(A+REB[A])

)
(5.3)
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[A]UE
V2

=



A−REB[A]
IUB[A]−REB[A]

, if A ≥ REB

A−REB[A]
REB[A]

, otherwise

(5.4)

5.3 Range of expected value normalized Metric:

It should be noted that V1 and V2 are just two different ways to introduce the penalty for higher

REB and obviously, more variants are possible while the basic idea remains the same. As can

be seen from Equation 5.1, V1 includes an additional multiplicative term that penalizes the orig-

inal metric with the REB term in the denominator and the range of the metric is still bounded

between 0 and 1. V2 (Equation 5.2) works as follows: instead of range [0, 1], it extends the

range from negative to positive real numbers yielding negative numbers for a ranking method

which performs worse than the random ranking baseline. In summary, for Equation 5.1, the

range is still [0, 1]; while for Equation 5.2, the range of the metric is extended from −1 to +1

where, +1 means perfect ranking, 0 means randomized ranking and −1 means all irrelevant

results. The range of UE in IR is the same as the range of UE in NLP.

5.4 Chapter Summary

This chapter provides detailed explanations of our general framework which involve both up-

per and expected value normalization. We also discuss the intuition and range of this framework

for both IR and NLP domains.
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Chapter 6

nDCG with Joint Upper & Expected Value Normalization

In this chapter, we will introduce our first case study that we implement our general framework

to nDCG, a widely used evaluation metric for IR systems. We first describe how to compute a

more realistic Expected value for DCG, i.e., the expected DCG in case of a randomly ranked

document for a particular query. Then discuss the implications of the new proposed upper and

expected value normalized DCG.

6.1 Expected DCG@k:

Note that, nDCG is already an upper-bound normalized version of DCG. Therefore, we start

with the original metric DCG@k, where, REB[DCG@k] is the expected DCG@k computed

based on a randomly ranked list. Thus, we use the terms E[DCG@k] and REB[DCG@k]

interchangeably throughout the proposal.

Let R be a random variable denoting the relevance label of a query-document pair and R

can assume values from a discrete finite set ϕ = {0,1,2,3...,r}. Also let the current query be q

and the total number of documents that need to be ranked for the current query q is n, let us

denote this set by Dq. To derive the formula of E[DCG@k], we start with the definition of

expectation in probability theory.

E[DCG@k] = E

[
k∑

i=1

2Ri − 1

logb(i + 1)

]
=

k∑
i=1

E
[
2Ri − 1

]
logb(i + 1)
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So, the computation of E[DCG@k] is based on the computation of E[2Ri − 1], which is

the expected relevance label of the retrieved document at position i. Below we show how to

estimate E[2Ri − 1] and first begin with the definition of expectation.

E[2Ri − 1] =
r∑

j=0

(2j − 1) · Pr(Ri = j)

Here, Pr(Ri = j) is the probability that the retrieved document at position i in a ran-

domized ranking would assume a relevance label of j with respect to the current query. Let us

assume that nj is the number of documents with relevance label j, where j ∈ ϕ, with respect

to the current query. Thus, the constraint
∑r

j=1 nj = n holds, where n is the total number of

documents in Dq. Thus, Pr(Ri = j) can essentially be computed by counting all the possible

rankings which contain a document with relevant label j (with respect to the current query) at

position i and dividing it by the total number of possible rankings up to position k. Below we

show the exact formula which is based on the permutation theory.

E[2Ri − 1] =
r∑

j=0

(2j − 1) ·
[
njP1 ·n−1 Pk−1

nPk

]
=

r∑
j=0

(2j − 1) ·

[ nj !

(nj−1)!
· (n−1)!
(n−k)!

n!
(n−k)!

]

=
r∑

j=0

(2j − 1) ·
(nj

n

)
=

r∑
j=0

(2j − 1) · Pr(R = j) = E[2R − 1]

Note that, E[2R − 1] is different from E[2Ri − 1] because the former is independent of

the position of a document in the ranked list, while the latter is dependent. However, the

above derivation reveals that E[2Ri − 1] is indeed independent of the position i and equals to

E[2R − 1] for any i. Thus, the final formula for computing E[DCG@k] boils down to the

following formula:

E[DCG@k] = E[2R − 1] ·
k∑

i=1

1

log2(i+ 1)
(6.1)

31



nDCG@
Method 5 10 15 20 30
ARank 0.321 0.349 0.370 0.389 0.423
LNet 0.153 0.182 0.206 0.228 0.268

RBoost 0.306 0.334 0.357 0.377 0.414
RF 0.383 0.411 0.432 0.449 0.479

RNet 0.154 0.183 0.207 0.229 0.269
CA 0.398 0.413 0.428 0.442 0.470

L2LR 0.197 0.237 0.269 0.297 0.344
LMART 0.436 0.454 0.470 0.485 0.513

Table 6.1: nDCG scores of different LETOR methods for variable k on MSLR-WEB30K data-
set.

nDCG@
Method 5 10 15 20 30
ARank 0.3881 0.4156 0.448 0.4797 0.5372
LNet 0.3767 0.4035 0.4384 0.4687 0.5282

RBoost 0.3834 0.414 0.449 0.4807 0.5355
RF 0.4035 0.4286 0.4609 0.4914 0.5476

RNet 0.3809 0.4131 0.4451 0.4764 0.536
CA 0.3928 0.4207 0.4544 0.4824 0.5399

L2LR 0.3873 0.4159 0.4474 0.4779 0.538
LMART 0.3931 0.4206 0.4535 0.4857 0.5441

Table 6.2: nDCG scores of different LETOR methods for variable k on MQ2007 data-set.

6.2 nDCG Case-Study Observations

This section discusses some observed differences between the original nDCG and proposed

DCGUE . For deeper analysis, we also created two special sub-sets of queries, i.e., 1) Unin-

formative query-set and 2) Ideal query-set, based on how close their average (of eight LETOR

methods and five cut-off k) expected nDCG is to the average real nDCG. To achieve this, we

computed both average expected nDCG and average real nDCG for eight LETOR methods

and five different cut-offs. Specifically, we followed the steps from [43] to compute baseline

nDCG scores. Table 6.1 and 6.2 summarize the average (original) nDCG scores of different

LETOR methods for different values of k, i.e., k = [5, 10, 15, 20, 30] for “MSLR-WEB30K”

and “MQ2007” data-sets, respectively. One general observation from Table 6.1 and 6.2 is that

average nDCG@k obtained by each method increases as we increase k and the extent of this

change is indeed significant. For example, RankNet achieves nDCG value of 0.154 and 0.269
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DCGUE
V1

@ DCGUE
V2

@
Method 5 10 15 20 30 5 10 15 20 30
ARank 0.249 0.261 0.271 0.281 0.299 0.237 0.253 0.264 0.276 0.296
LNet 0.097 0.112 0.125 0.138 0.161 0.046 0.060 0.072 0.083 0.104

RBoost 0.232 0.247 0.260 0.270 0.290 0.221 0.237 0.250 0.262 0.285
RF 0.304 0.318 0.328 0.336 0.350 0.308 0.326 0.338 0.347 0.365

RNet 0.098 0.113 0.126 0.138 0.162 0.047 0.061 0.072 0.084 0.105
CA 0.318 0.320 0.325 0.330 0.342 0.325 0.328 0.334 0.340 0.354

L2LR 0.137 0.160 0.180 0.198 0.227 0.098 0.124 0.147 0.167 0.199
LMART 0.354 0.358 0.364 0.370 0.381 0.367 0.374 0.382 0.390 0.405

Table 6.3: Upper & Expected Value Bound Normalized DCG (V1,V2) scores of different
LETOR methods for variable k: Each cell shows a particular DCGUE

V score with a particu-
lar k on MSLR-WEB30K data-set

DCGUE
V1

@ DCGUE
V2

@
Method 5 10 15 20 30 5 10 15 20 30
ARank 0.2882 0.2991 0.3157 0.3314 0.3558 0.1348 0.2092 0.2587 0.2995 0.3638
LNet 0.2777 0.2886 0.3068 0.3213 0.3481 0.1141 0.1872 0.2485 0.284 0.3453

RBoost 0.2822 0.2975 0.3161 0.3317 0.3542 0.1359 0.2061 0.2633 0.3042 0.3635
RF 0.2992 0.3095 0.3262 0.3409 0.3642 0.1681 0.2356 0.2859 0.3223 0.3866

RNet 0.2791 0.2957 0.3133 0.3271 0.3536 0.1177 0.2044 0.2554 0.2908 0.3573
CA 0.2911 0.3031 0.32 0.3335 0.3582 0.1512 0.2214 0.2762 0.3029 0.3666

L2LR 0.2858 0.2991 0.315 0.3295 0.3562 0.1331 0.2097 0.2599 0.3001 0.368
LMART 0.2901 0.3019 0.3192 0.3355 0.361 0.1636 0.2311 0.2806 0.3183 0.3801

Table 6.4: Upper & Expected Value Bound Normalized DCG (V1,V2,) scores of different
LETOR methods for variable k: Each cell shows a particular DCGUE

V score with a particu-
lar k on MQ2007 data-set
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for k = 5 and k = 30 respectively with an increase of 74.6% (Table 6.1, “MSLR-WEB30K”

data-set).

Next, we computed the expected nDCG score for each query according to equation 6.1.

Figure 6.1 shows the histogram of expected nDCG scores of 10, 000 queries from the “MSLR-

WEB30K” data-set. It is interesting to note that, a large portion of “MSLR-WEB30K” queries

indeed demonstrates a large variance with high values in the ranges [0.5 − 0.6]. This justifies

our position that expected value for each query can be very different and therefore, expected

value normalization should not be ignored while evaluating ranking performances.
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Figure 6.1: Histogram of expected nDCG scores of 10, 000 queries from the “MSLR-
WEB30K” data-set

Subsequently, we created two special sub-sets of queries based on the difference between

their expected nDCG and the average real nDCG obtained by eight LETOR methods, as defined

below:

• Uninformative Query-set: These are the top 1, 000 queries among the 10, 000 “MSLR-

WEB30K” pool (500 in case of MQ-2007 data-set), where difference between the expected

nDCG and the average real nDCG is minimal. In other words, these are the top 1, 000 (500)

queries where the LETOR methods struggle to perform better than the random baseline.
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Kendall’s τ
Data-set Version All uninform. Ideal

MSLR-WEB30K nDCG vs V1 1 0.928 1
nDCG vs V2 1 0.850 1

MQ2007 nDCG vs V1 1 1 1
nDCG vs V2 0.785 0.928 1

Table 6.5: Kendall’s τ rank correlations between LETOR method ranks based on nDCG and
two DCGUE on All, uninformative or ideal query sets from two data-sets.

• Ideal Query-set: These are the top 1, 000 queries among the 10, 000 “MSLR-WEB30K”

pool (500 in case of MQ-2007 data-set), where difference between the Expected nDCG and

the average real nDCG is maximal. In other words, these are the top 1, 000 (500) queries

where the LETOR methods outperforms the random baseline by the largest margin.

6.3 Expected value normalized nDCG yields different rankings compare to Original nDCG

for Uninformative query-set:

We first test whether our proposed metrics generate different ranking results compared with the

original nDCG or not. Table 6.5 shows the Kendall’s τ rank correlations between two rank-

ings induced by nDCG and DCGUE scores in All, Uninformative or Ideal query collections

from the two data-sets. We can notice that for both data-sets, DCGUE
V2

and nDCG generate

different rankings for Uninformative queries resulting the Kendall’s τ less than 1 (i.e. 0.85

and 0.928). While for DCGUE
V1

, it generates different rankings for Uninformative queries in

‘MSLR-WEB30K” but not in “MQ2007”. Also, as expected in case of Ideal collections, there

was no difference between nDCG and DCGUE in both data-sets(Kendall’s τ is 1). Another

interesting observation is while we use all query collections, only DCGUE
V2

generate different

ranking results in case of “MQ2007”.

6.4 Statistical Significance Test Yields Different Outcomes for Original nDCG Vs Expected

value normalized nDCG:

Next we conducted statistical significance tests for every pair of LETOR methods based on their

original nDCG and DCGUE scores to see how many times the two metrics disagree on the
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Conflict Cases
Data-set Version All uninform. Ideal

MSLR-WEB30K nDCG vs V1 0 18 0
nDCG vs V2 0 46 0

MQ2007 nDCG vs V1 0 20 1
nDCG vs V2 6 24 8

Table 6.6: We used Student’s t-test to verify whether statistically significant difference occurred
between a pair of LETOR methods while using nDCG and DCGUE and counted the total
number of disagreements on All, uninformative or ideal query sets from two data-sets.

relative performance between two competing LETOR methods. Specifically, we followed the

bootstrap Studentised Test (student’s t-test) from [70] to verify whether the observed difference

has occurred due to mere random fluctuations or not for each pair of LETOR methods. Using

the most widely used confidence value of 0.05 as the threshold, a p-value larger than 0.05 means

the two distributions are statistically same, otherwise the pair of distributions are statistically

different. More specifically, we compared each pair of LETOR methods (8C2 = 28 pairs in

total) with respect to five cut-off k, i.e., k = [5, 10, 15, 20, 30]. Thus, the total number of

comparisons is 28× 5 = 140.

Table 6.6 summarizes the number of disagreements between nDCG and DCGUE in two

data-sets. For instance, based on student’s t-test, DCGUE
V2

disagreed with original nDCG on 46

(32%) pairs of LETOR methods for Uninformative query set from “MSLR-WEB30K”, while

zero disagreements for Ideal query set. In “MQ2007”, we can also observe 24(17%) pairs of

disagreements for Uninformative query set as well as there are 8 pairs of conflicts in Ideal query

set. In particular, we also see DCGUE
V2

disagreed with original nDCG on 6 pairs for all query

set from “MQ2007”.

Given the difference in outcomes and disagreements between the original nDCG metric

and its expected value normalized version, a natural follow-up question now is: which metric is

better? To answer this question, we compared the nDCG and DCGUE metrics in terms of their

Discriminative power and Consistency [70]. These are two popular methods for comparing

evaluation measures.
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6.5 Distinguishability of UE in nDCG:

We first focus on the implication of expected value normalization in terms of its capability to

distinguish among multiple competing LETOR method pairs. To quantify distinguishability,

we first utilize the discriminative power , which is a popular method for comparing evaluation

metrics by performing a statistical significance test between each pair of LETOR methods and

counting the number of times the test yields a significant difference [17, 98, 70]. Note that

discriminative power is not about whether the metrics are right or wrong: it is about how often

differences between methods can be detected with high confidence [73]. We again follow [70]

to use student’s t-test to conduct this experiment and again use 0.05 as our threshold. Using the

aforementioned Uninformative and Ideal query collections, Table 6.7 shows the total number

of statistically significant differences that can be detected between pairs of LETOR methods in

case of All queries, Uninformative queries and Ideal queries (from both data-sets), individually

by the nDCG and two DCGUE metrics.

Number of Stat-Sig difference
Data-set Version All uniform. Ideal

MSLR-WEB30K
nDCG 133 33 130

V1 133 51 130
V2 133 78 130

MQ2007
nDCG 0 9 7

V1 0 29 8
V2 6 33 15

Table 6.7: Student T-test induced total number of statistically significant differences detected
based on nDCG and DCGUE on All, uninformative or ideal query sets from two data-sets.

On “MSLR-WEB30K” Uninformative query set, nDCG could detect only 33 (23%) sig-

nificantly different pairs. In contrast, both two proposed DCGUE
V1

and DCGUE
V2

can detect more

cases of significant differences. Additionally, DCGUE
V2

achieve the best performance which

detected 78 (55%) significantly different pairs on the same set. On the other hand, on “MSLR-

WEB30K” Ideal query-set, both nDCG and two DCGUE detected 130 significantly different

pairs. It is evident that, both two DCGUE can better distinguish between two LETOR methods

than nDCG on “MSLR-WEB30K” data-set, while not compromising distinguishability in case
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of Ideal queries, which is desired. We also observed similar improvements by DCGUE in case

of “MQ2007” data-set. More importantly, DCGUE not only improves the distinguishability in

case of uninformative query set, it can also detect more different cases while using All query

set (for DCGUE
V2

) and Ideal query set (for both DCGUE), which is a bonus.

We also computed another metric to quantify distinguishability: Percentage Absolute Dif-

ferences (PAD). More specifically, we computed the percentage absolute differences between

pairs of LETOR methods in terms of their original nDCG and DCGUE scores, separately. The

intuition here is that metrics with higher distinguishability will result in higher percentage of

absolute differences between pairs of LETOR methods. To elaborate, we first calculated the

average value of both nDCG and DCGUE with varying k ( k = {5, 10, 15, 20, 30} ) for each

LETOR method and then, computed the percentage absolute difference between each pair of

LETOR methods in terms of those two metrics separately (one percentage for nDCG and an-

other for DCGUE), then we calculated the average of those percentage absolute differences.

This experiment was performed on both data-sets. Mathematically, we used the following for-

mula for percentage absolute differences (PAD) in terms of original nDCG:

PAD(nDCG) =
|nDCGavg

M1
− nDCGavg

M2
|

max
(
nDCGavg

M1
, nDCGavg

M2

) × 100% (6.2)

Here, M1 and M2 are two different LETOR methods and nDCGavg
M1

is the average nDCG

score obtained by method M1 with respect to varying k. The equation for PAD(DCGUE) is

similar and thus omitted. Besides, we use this equation for the PAD calculation of our sec-

ond case-study. Table 6.8 shows these average percentage absolute differences of all possible

LETOR method pairs in terms of original nDCG and DCGUE scores on our two data-sets.

From this table, we can observe that while using DCGUE , the PAD score of DCGUE

is higher than the same for original nDCG for all types of query collections, i.e., using All

queries, Uninformative and Ideal query sub-sets. For instance, the average PAD of nDCG

on “MQ2007” is 1.74; while for DCGUE
V2

, the score is 6.42 (using all query). Similarly, we

discovered that for Uninformative query-set, DCGUE achieves a significant boost compared to

the same in Ideal query-set in both data-sets.
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These results show that the proposed UE normalization enhances the distinguishability of

the original nDCG metric and can differentiate between two competing LETOR methods with

a larger margin, which is a nice property of UE normalization.

PAD score
All Query Uninformative Ideal

Metrics MSLR MQ2007 MSLR MQ2007 MSLR MQ2007
nDCG 31.000 1.740 7.390 5.850 35.740 1.610

DCGUE
V1

35.700 3.600 9.980 7.825 40.210 1.980

DCGUE
V2

46.700 6.420 41.750 44.810 44.530 2.980

Table 6.8: Percentage Absolute Difference between pairs of LETOR methods in terms of aver-
age nDCG and DCGUE scores on All, uninformative or ideal query sets from two data-sets.

6.6 Consistency of UE in nDCG:

This experiment focuses to compare the relative ranking of LETOR methods in terms of their

nDCG and DCGUE scores, separately, across different data-sets (“MQ2007” Vs “MSLR-

WEB30K”) as well as across Uninformative and Ideal query collections within the same data-

set. The goal here is to see which metric yields a more stable ranking of LETOR methods across

various types of documents and queries as well as across diverse sets of data-sets. We computed

swap rate [70] to quantify the consistency of rankings induced by nDCG and DCGUE metrics

across different data-sets. The essence of swap rate is to investigate the probability of the event

that two experiments are contradictory given an overall performance difference.

Table 6.9 shows our swap rate results for nDCG and DCGUE across the two data-sets,

“MSLR-WEB30K” and “MQ2007”. Note that in our original setup, we selected Uninforma-

tive/ Ideal 1000 queries from “MSLR-WEB30K”. To make our results comparable, in this

experiment we select 500 Uninformative/Ideal queries from “MSLR-WEB30K” and compare

the ranking result with the one from “MQ2007”. It can be observed that both nDCG and

DCGUE share an identical swap rate probability when we conduct the experiment on the

All/Uninformative/Ideal query collection (swap rate across data-sets is 0.107, 0.42 and 0.35

for both metrics).
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Swap Rate
Metric All Uninform. Ideal
nDCG 0.107 0.420 0.350

DCGUE
V1

0.107 0.420 0.350

DCGUE
V2

0.107 0.420 0.350

Table 6.9: Swap rates between method ranks on All/ uninform/Ideal queries across “MSLR-
WEB30K” and “MQ2007” data-sets.

Swap Rate
Metric MSLR-WEB30K MQ2007
nDCG 0.210 0.500

DCGUE
V1

0.250 0.500

DCGUE
V2

0.210 0.500

Table 6.10: Swap rates between method ranks on MSLR-WEB30K/MQ2007 data-sets across
“uninformative” and “Ideal” query collections.

Table 6.10 also shows our swap rate results for nDCG and DCGUE across Uninformative

Vs Ideal queries from the same data-set. We can still observe that both nDCG and DCGUE

generate the identical swap rate probability when we compare the ranking results across Unin-

formative and Ideal sets, except for DCGUE
V1

(generate a higher swap rate in “MSLR-WEB30K”).

Alternative Query and Document Partitioning: To further test the stability of the pro-

posed UE normalization technique across different sets of queries and documents, we con-

ducted two additional experiments. These experiments are inspired by previous works that

have studied robust evaluation of IR systems by randomly partitioning queries and documents

(see, e.g., [86, 26, 55]); we present the corresponding experiment details and results below.

In the first experiment, we investigated whether the proposed UE normalization is can be

effective for other criteria of defining the “difficulty” of queries (besides our previously defined

“Uninformative” and “Ideal” query sets). To achieve this, we borrowed the threshold-based

strategy proposed by [57] to define the difficulty of a query. To be more specific, we used the

proportion of highly relevant documents (in the evaluation set) as the threshold to partition the

original “MSLR-WEB30K” data set into “Broad” and “Focused” query sets. Formally, a query

is labeled as “broad” if at least 50% of its associated documents have a relevance label greater
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or equal to 2 in the testing set. Otherwise, the query is labeled as “focused” because of the few

number of relevant documents associated with it. Intuitively, a “broad” query is much easier

to rank due to its high proportion of high-relevant documents, whereas, for the exact opposite

reason, it is more challenging to rank documents for a “focused” query. We also keep the

number of “broad” and “focused” queries balanced in our testing data-set to ensure fairness.

Next, we conducted the same “Consistency” experiments for the nDCG metric. Table 6.11

concludes the swap rate (consistency) results between method ranks across “broad” and “fo-

cused” query sets while using nDCG and DCGUE for the “MSLR-WEB30K” data-set. In-

terestingly, we still observe that both nDCG and DCGUE generate the identical swap rate

probability when we compare the ranking results across Broad and Focused sets, indicating

that our proposed metric does not sacrifice consistency while comparing across different query

partitions, where the partitions were created based on query difficulty.

Our second experiment takes a closer look at the consistency property of the UE normal-

ization technique while using replicates, i.e., different document partitions. We followed [86],

who proposed an approach to obtain the required replicate measurements by randomly splitting

the documents into n partitions and evaluating each of the document set partitions. Due to the

relatively low average number of documents (119.06) associated with each query in “MSLR-

WEB30K” data set, we divided the documents into just two parts, referred to as the “left” and

“right” document sets, using a random split.

Table 6.12 shows the swap rate (consistency) results between method ranks across “left”

and “right” document sets while using nDCG and DCGUE for the “MSLR-WEB30K” data-

set. We can observe that both nDCG and DCGUE hold the same ranking while evaluating

methods on the “left” and “right” partitions of documents, resulting in the swap rate as 0 for

both metrics. This again shows that the proposed UE normalization technique does not reduce

the consistency of the original nDCG metric.

6.7 Chapter Summary

This chapter demonstrates the application of using our proposed framework on nDCG. We

first provide how to compute a reasonable Expected value bound of DCG, then theoretically
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Swap Rate
Metric MSLR-WEB30K
nDCG 0.25

DCGUE
V1

0.25

DCGUE
V2

0.25

Table 6.11: Swap rates between method ranks on MSLR-WEB30K data-sets across “broad”
and “focused” query collections.

Swap Rate
Metric MSLR-WEB30K
nDCG 0.25

DCGUE
V1

0.25

DCGUE
V2

0.25

Table 6.12: Swap rates between method ranks on MSLR-WEB30K data-sets across “left” and
“right” document collections.

prove its correctness. Then we demonstrated the usefulness of expected value normalization in

terms of two important perspectives: consistency and discriminative power.
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Chapter 7

MAP with Joint Upper & Expected Value Normalization
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Figure 7.1: Histogram of expected AP scores of 10, 000 queries from the “MSLR-WEB30K”
data-set

For our second case study, we selected another popular evaluation metric called Mean

Average Precision (MAP ). However, original MAP computation needs binary label while

our two data-sets are multi-relevance label. For consistency, in this paper, we only consider 0

relevance score as negative and others are positive for both two data-sets. Table 7.1 and 7.2

show the original MAP scores from two data-sets. Below, we will first present how we can

compute a realistic expected value for Sum Precision (SP ) by computing its expected value in

case of a randomly ranked list of documents. Then, demonstrate our findings of expected value
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normalized MAP. Again, expected value normalized MAP essentially means upper expected

value normalized MSP.

First, we also show the histogram of expected AP score for 10,000 queries from “MSLR-

WEB30K” data-sets. Figure 7.1 shows the histogram of expected AP scores of 10, 000 queries

from the “MSLR-WEB30K” data-set. We can still observe that a large variance of high ex-

pected AP appeared in this data-set, indicating that can not be ignored. Noted that we again

created two special sub-sets of queries based on the difference between their Expected AP and

and average real AP obtained by eight LETOR methods to define Uninformative query-set

and Ideal query-set( Details in 6.2).

7.1 Expected Value of SP (SP for Random Ranking):

Given a query q, assume that Np is the total number of relevant documents , Nn is the number of

non-relevant document for query q. Also, assume Np > k and Nn > k, k is the cutoff variable.

Prec(i) is the precision at position i and Ri is the relevance at position i. Then, expectation of

SP@k in case of random ranking is the following:

E[SP@k] =
k∑

i=1

E[Prec(i) ·Ri]

Now assuming Prec(i) and Ri are independent, we have

E[SP@k] =
k∑

i=1

E[Prec(i)] · E[Ri], where,

E[Ri] = P [Ri = 1] · 1 + P [Ri = 0] · 0 = P [Rr = 1] =
Np

Np +Nn
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Thus, E[Prec@i] = Np

Np+Nn
, Hence:

E[SP@k] =
k∑

i=1

E[Prec(i)] · E[Ri] =
k∑

i=1

(
Np

Np +Nn

)2

= k

(
Np
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Now, we will use induction to prove the following:

i∑
j=1
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)(
Nn
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)
i

(
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(7.1)

Base case: For i = 1, L.H.S = 1
(
Np

1

)(
Nn

1−1

)
= Np

R.H.S =

(
Np

Np +Nn

)
1

(
Np +Nn

1

)
=

Np

Np +Nn

(Np +Nn) = Np

So, equation 7.1 is true for i = 1

Induction step: Now, Let’s assume equation 7.1 is true for i = i-1, then we get the fol-

lowing:

i−1∑
j=1

j

(
Np

j

)(
Nn

i− 1− j

)
=

Np

Np +Nn

(i− 1)

(
Np +Nn

i− 1

)
(7.2)
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7.2 Expected value normalized MAP yields different rankings compare to Original MAP for

Uninformative query-set:

Table 7.5 shows the Kendall’s τ rank correlations between two rankings induced by MAP

and MSPUE scores in All, Uninformative or Ideal query collections for the two data-sets.

Firstly, we can notice that for both data-sets, MSPUE
V1

and MAP generate identical rankings

for different query set which indicate that there is no difference between MAP with MSPUE
V1
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MAP@
Method 5 10 15 20 30
ARank 0.541 0.494 0.472 0.459 0.449
LNet 0.320 0.299 0.293 0.291 0.294

RBoost 0.544 0.496 0.475 0.461 0.452
RF 0.621 0.571 0.543 0.524 0.505

RNet 0.321 0.300 0.293 0.291 0.295
CA 0.623 0.563 0.530 0.510 0.490

L2LR 0.356 0.335 0.333 0.335 0.345
LMART 0.648 0.592 0.561 0.541 0.519

Table 7.1: MAP scores of different LETOR methods for variable k on ’MSLR-WEB30K’
data-set.

MAP@
Method 5 10 15 20 30
ARank 0.3066 0.2923 0.302 0.3173 0.3624
LNet 0.3379 0.3233 0.3328 0.3468 0.3905

RBoost 0.3467 0.3366 0.3477 0.3636 0.4035
RF 0.3674 0.352 0.3585 0.3736 0.414

RNet 0.3281 0.3175 0.3275 0.3443 0.3878
CA 0.3597 0.3457 0.356 0.3716 0.4127

L2LR 0.3543 0.3386 0.3458 0.3607 0.404
LMART 0.3582 0.3459 0.3539 0.3692 0.4101

Table 7.2: MAP scores of different LETOR methods for variable k on ’MQ2007’ data-set.

in terms of Kendall’s τ rank test. While for MSPUE
V2

, it generates different rankings for all

kinds of query collections in both two data-sets. For instance, in “MQ2007”, Kendall’s τ

correlation between MAP and MSPUE
V2

are 0.785, 0.624 and 1 for all, uninformative and

ideal query set, suggesting that MSPUE
V2

achieves different outcomes. In addition, the impact

is more prominent in case of uninformative compared with ideal.

7.3 Statistical Significance Test Yields Different Outcomes for Original MAP Vs expected

value normalized MAP:

We again conducted statistical significance tests for every pair of LETOR methods based on

their original MAP and MSPUE scores to see how many times the two metrics disagree on

the relative performance between two competing LETOR methods.

Table 7.6 summarizes the number of disagreements between MAP and MSPUE in two

data-sets. For instance, based on student’s t-test, MSPUE
V2

disagreed with original MAP on 36
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MSPUE
V1

@ MSPUE
V2

@
Method 5 10 15 20 30 5 10 15 20 30
ARank 0.385 0.338 0.315 0.301 0.286 0.347 0.305 0.279 0.261 0.237
LNet 0.197 0.173 0.164 0.159 0.157 -0.072 -0.057 -0.050 -0.045 -0.038

RBoost 0.390 0.342 0.319 0.305 0.290 0.350 0.301 0.275 0.256 0.233
RF 0.457 0.407 0.379 0.359 0.336 0.478 0.427 0.390 0.360 0.322

RNet 0.198 0.174 0.165 0.160 0.158 -0.071 -0.055 -0.049 -0.045 -0.038
CA 0.459 0.400 0.367 0.347 0.323 0.483 0.412 0.367 0.338 0.297

L2LR 0.226 0.201 0.196 0.195 0.198 -0.022 -0.004 0.014 0.031 0.055
LMART 0.482 0.426 0.394 0.374 0.348 0.525 0.463 0.421 0.389 0.346

Table 7.3: Upper & Expected Value Bound Normalized MSP (V1,V2) scores of different
LETOR methods for variable k: Each cell shows a particular MSPUE

V score with a particu-
lar k on MSLR-WEB30K data-set

MSPUE
V1

@ MSPUE
V2

@
Method 5 10 15 20 30 5 10 15 20 30
ARank 0.2366 0.219 0.2222 0.2287 0.2478 0.0392 0.0778 0.0116 0.14 0.1905
LNet 0.2676 0.2492 0.2519 0.257 0.2744 0.0909 0.1315 0.1638 0.1846 0.2257

RBoost 0.2738 0.2603 0.2647 0.2714 0.2853 0.123 0.154 0.188 0.213 0.2513
RF 0.2914 0.2732 0.2739 0.28 0.2941 0.1586 0.1904 0.206 0.226 0.2729

RNet 0.259 0.2443 0.2476 0.2552 0.2724 0.085 0.1308 0.1567 0.1825 0.222
CA 0. 2863 0.2689 0.2728 0.2794 0.2941 0.1422 0.1741 0.198 0.2204 0.2584

L2LR 0.2806 0.2622 0.2633 0.2693 0.2861 0.1232 0.1548 0.1846 0.2093 0.2543
LMART 0.2829 0.2673 0.2691 0.2755 0.2905 0.1541 0.1949 0.2138 0.2369 0.2725

Table 7.4: Upper & Expected Value Bound Normalized MSP (V1,V2) scores of different
LETOR methods for variable k: Each cell shows a particular MSPUE

V score with a particu-
lar k on MQ2007 data-set

Kendall’s τ
Data-set Version All uninform. Ideal

MSLR-WEB30K MAP vs V1 1.000 1.000 1.000
MAP vs V2 0.928 0.857 0.928

MQ2007 MAP vs V1 1.000 1.000 1.000
MAP vs V2 0.785 0.624 1.000

Table 7.5: Kendall’s τ rank correlations between LETOR method ranks based on MAP and
two MSPUE on All, uninformative or ideal query sets from two data-sets.
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Conflict Cases
Data-set Version All uninform. Ideal

MSLR-WEB30K MAP vs V1 0 15 2
MAP vs V2 0 36 4

MQ2007 MAP vs V1 1 2 3
MAP vs V2 8 21 17

Table 7.6: We used Student’s t-test to verify whether a statistically significant difference oc-
curred between a pair of LETOR methods while using MAP and MSPUE and counted the
total number of disagreements on All, uninformative or ideal query sets from two data-sets.

Number of Stat-Sig difference
Data-set Version All uniform. Ideal

MSLR-WEB30K
MAP 129 61 122
V1 129 76 124
V2 129 81 122

MQ2007
MAP 45 0 71
V1 50 2 74
V2 59 21 88

Table 7.7: Student T-test induced total number of statistically significant differences detected
based on MAP and MSPUE on All, uninformative or ideal query sets from two data-sets.

(26%) pairs of LETOR methods for Uninformative query set from “MSLR-WEB30K”, while

4 disagreements for Ideal query set. Although none of MSPUE disagree with original MAP

while using All query set from “MSLR-WEB30K”, there are still 1 and 8 conflicts appeared in

“MQ2007” for two UE normalized version respectively.

Given the difference in outcomes and disagreements between the original MAP metric

and its expected value normalized version, we still trying to compare these two metrics in

terms of their Discriminative power and Consistency just like what we did in nDCG.

7.4 Distinguishability of UE in MAP:

We again follow [70] to use student’s t-test to conduct this experiment and use 0.05 as our

threshold. Using the aforementioned Uninformative and Ideal query collections, Table 7.7

shows some interesting results of these statistical tests for different query sets in ‘MSLR-

WEB10K‘ and”“MQ2007” data-sets.
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PAD score
All Query uninform Ideal

Metrics MSLR MQ2007 MSLR MQ2007 MSLR MQ2007
MAP 25.570 5.910 12.280 5.890 30.180 6.770

MSPUE
V1

31.840 6.860 16 7.190 35.530 8.040

MSPUE
V2

97.630 20.010 25.650 28.270 48.290 13.490

Table 7.8: Percentage Absolute Difference between pairs of LETOR methods in terms of aver-
age MAP and MSPUE scores on All, uninformative or ideal query sets from two data-sets..

On “MSLR-WEB30K” Uninformative query set, although MAP detect 61 (43%) signif-

icantly different pairs, both two proposed MSPUE
V1

and DCGUE
V2

can detect more cases of

significant differences. What can be clearly seen is MSPUE
V2

still achieve the best performance

which detected 81 (57%) significantly different pairs on the same set. On the other hand, on

“MSLR-WEB30K” Ideal query set, both MAP and two MSPUE detected around 122 signif-

icantly different pairs. More interestingly, in “MQ2007”, while original MAP detect 45 cases

of different pairs using all query set, MSPUE indeed improve this performance (for MSPUE
V1

is 50 and MSPUE
V2

is 59). Specifically in uninformative query set, MAP can not detect any

significantly different pairs. However, MSPUE
V2

can detect 21 pairs of difference, which is very

important. On the other hand, MSPUE
V2

can even detect more cases in the ideal query set. It

is evident that both two MSPUE can better distinguish between two LETOR methods than

MAP on two data-sets, while not compromising distinguishability in case of Ideal queries

(even improve the distinguishability in “MQ2007”).

Again, we use the formula 6.2 to compute the percentage of absolute differences between

pairs of LETOR methods in terms of their original MAP and MSPUE , separately. Here, X

represents MAP and MSPUE
V1,2

. (Details of PAD can be found in 6.5).

Table 7.8 illustrates the PAD score in case of MAP and proposed two MSPUE from two

data-sets for different query collections. From this table, we can still observe that while using

MSPUE can achieve higher PAD score than the same for original MAP for all types of query

collections, i.e., using All queries, Uninformative and Ideal query sub-sets. For instance, the

average PAD of MAP on “MSLR-WEB30K” is 25.57; while for MSPUE
V2

, the score is 97.63

(using all query). Similarly, we can still discovered that for Uninformative query-set, both
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Swap Rate
Metric All Uninform. Ideal
MAP 0.250 0.357 0.285

MSPUE
V1

0.250 0.321 0.250

MSPUE
V2

0.178 0.250 0.321

Table 7.9: Swap rates between method ranks on All/ uniform/Ideal queries across “MSLR-
WEB30K” and “MQ2007” data-sets.

MSPUE versions achieve a significant boost compared to the same in Ideal query set in both

data-sets.

These results show that the proposed UE normalization again improve the distinguishabil-

ity of original MAP and can better differentiate between the quality of two LETOR methods

with a larger margin.

7.5 Consistency of UE in MAP:

This experiment again focuses to compare the relative ranking of LETOR methods in terms of

their MAP and MSPUE scores, separately, across different data-sets (“MQ2007” Vs “MSLR-

WEB30K”) as well as across Uninformative and Ideal query collections within the same data-

set. We computed swap rate to quantify the consistency of rankings induced by MAP and

MSPUE metrics across different data-sets. Table 7.9 shows our swap rate results for MAP and

MSPUE across the two data-sets, “MSLR-WEB30K” and “MQ2007”. In contrast to identical

swap rate scores in nDCG and DCGUE , MSPUE
V2

can achieve a overall lower swap rate(swap

rate of MAP is 0.25 while 0.178 for MSPUE
V2

) across a data-sets comparison while considering

all query set.

Table 7.10 also shows our swap rate results for MAP and MSPUE across Uninformative

Vs Ideal queries from the same data-set. Similarly, we can still observe that MSPUE
V2

can

obtain a more consistent ranking results across different query collection, which is very useful

for an evaluation metric.
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Swap Rate
Metric MSLR-WEB30K MQ2007
MAP 0.142 0.392

MSPUE
V1

0.142 0.392

MSPUE
V2

0.107 0.285

Table 7.10: Swap rates between method ranks on MSLR-WEB30K/MQ2007 data-sets across
“uninformative” and “Ideal” query collections.

Swap Rate
Metric MSLR-WEB30K
MAP 0.03

MSPUE
V1

0.03

MSPUE
V2

0.00

Table 7.11: Swap rates between method ranks on MSLR-WEB30K data-sets across “broad” and
“focused” query collections.

Alternative Query and Document Partitioning: We also conducted two additional ex-

periments to measure the stability/consistency of expected value normalization on MAP . Us-

ing the aforementioned “broad” and “focused” query partitions, we conducted the same con-

sistency experiment as in section 6.2. Table 7.11 shows the swap rate numbers for MAP and

MSPUE between method ranks for “MSLR-WEB30K” data set between “broad” and “fo-

cused” query partitions. Interestingly, we can notice that MSPUE
V2

even shows better consis-

tency (swap rate is 0) compared to the original MAP (swap rate is 0.03). Similarly, in Ta-

ble 7.12, we can see that both MAP and MSPUE maintain the same rank when evaluating

methods on the “left” and “right” document partitions (see section 6.2 for definitions of “left”

and “right” partitions).

Swap Rate
Metric MSLR-WEB30K
MAP 0

MSPUE
V1

0

MSPUE
V2

0

Table 7.12: Swap rates between method ranks on MSLR-WEB30K data-sets across “left” and
“right” document collections.
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7.6 Chapter Summary

This chapter demonstrates the application of using our proposed framework on our second

case study target: MAP. We first provide how to compute a reasonable Expected Value of SP

and theoretically prove its correctness by using induction. Finally, we analyze the implications

of these new metrics by comparing them with the original MAP in terms of two important

perspectives: consistency and discriminative power.
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Chapter 8

BERTScore with Joint Upper & Expected Value Normalization

For our first case study in NLP, we selected one popular evaluation metric for text summariza-

tion, BERTScore. As we have discussed in the previous chapter, BERTScore utilized contex-

tual embeddings, such as BERT [23] and ELMo [76]. Figure 8.1 illustrates the computation.

Figure 8.1: Illustration of the computation of the recall metric RBERT . Given the reference x
and candidate x̂, BERTScore leverages BERT embeddings and pairwise cosine similarity. [101]

8.1 Heterogeneous Vs Homogeneous:

To better explain our proposed expected value normalization in BERTScore, we also define the

following two types of document which we will use throughout the thesis:

1. Heterogeneous document: These are documents with heterogeneous contextualization,

where the contextualized word embeddings are different from the document vector in a

maximum margin.

2. Homogeneous document: These are documents with homogeneous contextualization, where

contextualized word embeddings are aligned with the document vector in a maximum mar-

gin.
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Figure 8.2 shows an illustration of the sensitivity of our defined two types of documents:

heterogeneous document (HeteDoc) and homogeneous document(HomoDoc). For heteroge-

neous documents, the difference between two expected BERTScores which are generated by

sorting words ( from original source document) from Best (most similar) to Worst (least sim-

ilar) (or vice versa) is minimum. Which we call the difference between B2W (Best 2 worst)

and W2B(Worst 2 Best). While the homogeneous documents, the difference is maximum. As

we can see, the heterogeneous documents essentially are order-insensitive documents because

changing the order of words can not change the expected BERTScore while the homogeneous

documents are order-sensitive documents in which reordering words would generate very dif-

ferent BERTScore.

After the sorting, we then calculated the similarity between contextualized word embed-

ding and document embedding and calculated the standard deviation along the most heteroge-

neous documents and most homogeneous documents, we found that for heterogeneous docu-

ments, there is a higher variance in the similarity between contextualized word embedding and

document embedding compared with homogeneous documents.
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Figure 8.2: Document types with different order sensitivity.
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8.2 Expected BERTScore:

As we can see from the figure 8.1, BERTScore essentially calculated the contextual information

at a token level and tried to compare the similarity of the semantic knowledge between reference

and candidate. An initiative idea to generate an expected summary of original source document

is to select these contextualized keywords that contain the maximum information (most similar

to the contextualized document information ). For instance, given a sentence: ”It is freezing

today”, the word ”freezing” should be more important than ”it” in terms of the information

provided. Thus, we propose our greedy algorithm 1 to generate the expected summary from a

source document. Note that this greedy algorithm just generates the text summary based on the

idea of BERTScore, then we can directly use this expected summary to calculate the expected

BERTScore:

Algorithm 1 Greedy algorithm to generate the Expected Summary
Require: : Hyperparameter: length of generated summary k

D ← dictionary
S ← EmptyString
Calculate the Sentence Embedding of Source Document
for <each token in source document> do

<Calculate Cosine Similarity between token embedding and
Sentence Embedding>

<D[token] = similarity>
end for
Sort the Dictionary by value in an increasing order
for <selection first k token in Dictionary > do

<append token to S>
end for
Output is the expected summary S

Algorithm 1 explained how to generate the expected summary based on the source doc-

ument. First, we use pre-trained models such as BERT or RoBERTa to get the sentence em-

bedding of the source document. Then we calculate the similarity between source document

embedding and each token embedding, greedily using the first K similar (where K is a hy-

perparameter that determines how long summary we want to generate) tokens to generate the

expected summary. Although our expected summary may not be meaningful from a human

perspective (no sequence), since BERTScore calculates the contextual information [101], our
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generated summary can be considered an expected version from an embedding level. Then we

use the expected summary and the given golden reference to calculate the expected BERTScore.

Using our proposed V1 and V2 framework, we can get the Upper expected value normalized

BERTScore. Note that the range of V1 is between 0 to 1 and the range of V2 is between −1 to

1.

8.3 UE normalized BERTScore increase the Human correlation

This section discusses some observed differences between the original BERTScore and pro-

posed BERTScoreUE . Since NLP and IR are two different domains and the method to demon-

strate the performance of evaluation metrics are totally different. We utilize the most widely

used perspective, that is human correlation, to show the performance of UE normalization in

BERTScore. For deeper analysis, we also created two special sub-sets of source documents:

i.e., 1) diverse document-set and 2) uniform document-set, based on how many special words

(keyword) exist in the source document. The special words are the most informative words that

can determine the contextual information of entire sentence embedding. We follow [25] to use

the 100 annotated summarization data-set that were randomly picked from CNN/DailyMail

test set and evaluate our proposed metrics as well as original BERTScore metrics from four

dimensions. Specifically, we use hashcode = “roberta-large-L17-no-idf-version=0.3.12(hug-

trans=4.254.0)” in the computation of BERTScore.

Table 8.1 demonstrated the human correlation of original BERTScore and our proposed

Upper expected value normalized BERTScore from 4 perspectives, averaged 100 source doc-

uments, and 12 abstractive summarization models. Clearly, we can see our metrics achieve

higher human correlation in general. For instance, for our BERTScore V1, human correlation

w.r.t. coherence improved from 0 to 0.03 and the same for Fluency (improved from 0.167 to

0.25) and Relevance (−0.03 to 0.06). Although, V1 did not achieve higher human correlation in

Consistency (dropped from−0, 106 to−0, 198). Our V2 essentially competed against the orig-

inal BERTScore for all four perspectives in a maximum range, especially for consistency and

relevance, original BERTScore achieved a negative correlation with human annotation while

UE BERTScore V2 achieves a much higher correlation (0.045 and 0.18 respectively).
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Human Correlation For 100 documents
Coherence Consistency Fluency Relevance

BERTScore 0 -0.106 0.167 -0.03
BERTScore V1 0.03 -0.198 0.25 0.06
BERTScore V2 0.15 0.045 0.44 0.18
PAI V1 3 -86.79 49.7 300
PAI V2 15 142 163 700
Average of V1 and V2 160

Table 8.1: Human Correlation of summaries along four evaluation dimensions averaged 100
documents and 12 abstractive summarization models. The difference between V1/V2 and
BERTScore is the PAI and we calculate the average PAI of the two versions

We also calculated the percentage absolute increase (PAI) of our proposed version com-

pared with the original BERTSocre. Mathematically, we used the following formula 8.1 for

percentage absolute increasing (PAI) in terms of original BERTScore, the formula to calcu-

late the PAI for V2 is the same and omits in this case:

PAI(V 1) =
BERTScoreV 1−BERTScore

|BERTScore|
× 100% (8.1)

8.4 UE normalized BERTScore has maximum impact in Heterogeneous document than Ho-

mogeneous document

To better understand the implication of the Upper expected value normalization impact on

BERTScore, we want to know for which kind of document, our UE normalization can involve

the maximum impact. More specifically, according to the definition of section 3.6, for the 100

documents, we sort those documents based on how the contextualized word embeddings are

aligned with the document embedding which we define the Heterogeneous documents are

documents with heterogeneous contextualization, where the contextualized word embeddings

are different from the document vector in a maximum margin. On the other hand, Homoge-

neous document set includes documents with homogeneous contextualization, where contex-

tualized word embeddings are aligned with the document vector in a maximum margin. Below

is the algorithm 2 to show the process to select Heterogeneous documents Vs Homogeneous

documents:
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Algorithm 2 Algorithm to sort the document based on the number of keywords that exist
Require: : Hyperparameter: length of generated summary k

D ← dictionary
for <each document in source documents> do

<Get the most k similar words>
<Get the least k similar words>
<use Algorithm 1 to get the expected BERTScores based on

most k and last k similar words>
<get the absolute difference between two Expected

BERTScores, that’s the difference>
D[document] = difference

end for
Sort the Dictionary by value in an increasing order
Output is the dictionary of documents with an order from most “Heterogeneous document”
to “Homogeneous document”

From algorithm 2, we first select the most k and last k words from original documents that

are most/least relevant to the source document based on how similar the contextualized word

embedding to the document embedding is to generate the expected document. If a document is a

heterogeneous contextualization, which means the words in the document are heterogeneously

contextualized with the entire document, the difference between B2W and W2B(see the defi-

nition in section 3.6 ) is minimum, indicating these documents are order-insensitive because

shuffling the order of words from these document does not change the expected BERTScore

much, in which our expected value normalization should involve the maximum impact because

a random selection can amplify the order sensitivity of Heterogeneous documents which help

the human correlation with human judgment. On the other hand, the UE normalization should

have minimum impact on the Homogeneous documents or even negative performance because

those documents are homogeneous contextualized which are already order sensitive.

After the sorting, we also call “the most Heterogeneous documents” as “First 20 docu-

ments ” and “the most Homogeneous documents” as “Last 20 documents”. Table 8.2 and 8.3

show the Upper expected value normalization impact on the first 20 documents and last 20

documents if we use the algorithm 2 to sort the documents. We also use the average of PAI

to indicate the impact of upper expected value normalization. First, we compare these two ta-

bles: PAI in V1 of the first 20 documents achieves the maximum scores. For example, the UE

BERTScore V2 gets the relevance human correlation as 0.303, resulting 605 PAI score. The
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Human Correlation For most 20 HeteDoc Document
Coherence Consistency Fluency Relevance

BERTScore -0.198 0.03 0.29 -0.06
BERTScore V1 -0.076 0.09 0.351 0.06
BERTScore V2 0.106 0.151 0.412 0.303
PAI V1 61 200 21 200
PAI V2 153 403 42 605
Average of V1 and V2 210

Table 8.2: Human Correlation of summaries along four evaluation dimensions averaged the
most 20 HeteDoc documents and 12 abstractive summarization models. The difference be-
tween V1/V2 and BERTScore is the PAI and we calculate the average PAI of the two versions

Human Correlation For most 20 HomoDoc Documents
Coherence Consistency Fluency Relevance

BERTScore -0.18 -0.3 -0.2 -0.24
BERTScore V1 -0.18 -0.24 -0.11 -0.3
BERTScore V2 -0.21 -0.39 -0.078 -0.39
PAI V1 0 20 45 -25
PAI V2 -16 -30 61 -62.5
Average of V1 and V2 -1.02

Table 8.3: Human Correlation of summaries along four evaluation dimensions averaged the
most 20 HomoDoc documents and 12 abstractive summarization models. The difference be-
tween V1/V2 and BERTScore is the PAI and we calculate the average PAI of the two versions

average PAI of two versions is 210 for the first 20 documents, which proves our hypothesis that

our UE normalization has maximum impact for Heterogeneous documents. On the other hand,

for the last 20 documents (Homogeneous documents), the average PAI is -1.02 and essentially

lowers the original BERTScore performance in human correlation from multiple perspectives,

such as relevance and consistency, showing that for the document with homogeneous contex-

tualization, our UE normalization would provide opposite impact.

Second, we compare Table 8.1 and Table 8.2. In the overall document set, our UE normal-

ization has a positive impact (PAI is 160). For the first 20 cases, our UE normalization achieves

even higher PAI which is because the first 20 are the most diverse documents. Although the

UE normalization has a negative impact on the last 20 documents, essentially it will increase

the human correlation for the entire document set.
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Win Lost Tie
V1 Vs BERTScore 24% 10% 66%
V2 Vs BERTScore 24% 10% 66%

Table 8.4: Statistics for UE normalized BERTScore wins, losses, and ties against BERTScore.
Results report the average of 5 pairs (BERTbase vs. MobileBERT, MobileBERT vs. Distil-
BERT, DistilBERT vs. RoBERTa, RoBERTa vs. XLNet and XLNet vs. GPT-2) evaluated by
humans.

8.5 Human judgment favors UE normalized BERTScore

We next took a deeper look into the cases where UE normalized BERTScore disagreed with

the original BERTScore while comparing two extractive summarization models. We asked

humans to blindly evaluate the quality of the summaries generated by two models and make a

judgment on which summary was better as suggested by [61, 1]. Specifically, we considered

5 pairs of models (BERTbase vs. MobileBERT, MobileBERT vs. DistilBERT, DistilBERT vs.

RoBERTa, RoBERTa vs. XLNet, and XLNet vs. GPT-2) and provided humans with outputs for

each pair of models, hiding the model’s name. We asked the annotators to say which extractive

summary is better and matched their decision against both BERTScore and two UE normalized

BERTScore’s conclusions. Our annotators were three doctoral students all working in NLP. We

took the majority voting judgment from annotators and the results are reported in Table 8.4. As

summarized in Table 8.4, blind evaluation by humans indicated UE normalized BERTScore

was more accurate than original BERTScore in the case of disagreements between the two, thus

confirming that UE normalized BERTScore captures semantics better than BERTScore.

8.6 Explanation of UE normalization in BERRScore from Attention perspective

Attention mechanisms [4] are the fundamental component in NLP tasks such as text gener-

ation. The purpose of attention is to allow a model to focus on specific parts of the input

when processing or generating the output. [83] shows a simple network architecture based

solely on attention mechanism and achieves huge improvement on two machine translation

tasks. While people debate the relationship between utilizing attention and its impact on per-

formance [89, 7, 82], people still use attention to understand the philosophy of inner part of
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deep neural network [84]. We specifically discovered the last layer and average of 16 heads

attention of our encoder (RoBERTa-large) and calculated the similarity between each contex-

tualized token attention with the document vector, then we calculated their standard deviation/

mean score, for Heterogeneous document and Homogeneous document respectively.

Figure 8.3 illustrates the information of attention inside the encoder. However, we can not

claim that there is a huge difference between the distribution of attention within two opposite

document types from this figure. For instance, according to the standard deviation, both two

document types show an increasing trend to an identical degree.
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Figure 8.3: Heterogeneous/Homogeneous documents Standard Deviation and the mean score
of attention distribution in the source document. Heterogeneous document Standard Deviation
and mean score are slightly higher than the same of Homogeneous document for most docu-
ments

8.7 Hypothesis for the improvement of UE normalization in BERTScore.

As we can see the empirical experimental results from 8.2 and 8.3. Our proposed UE nor-

malization can involve boosting improvement in terms of documents with heterogeneous con-

textualization (given the PAI score of 210) while slightly negative performance in terms of

documents with homogeneous contextualization (given the PAI score of -1.02). Due to the or-

der insensitivity of the Heterogeneous document, our randomized expected normalization can
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amplify the order sensitivity of the Heterogeneous document which helps the human corre-

lation with human judgment. On the other hand, the Homogeneous document itself exhibits

sensitivity to order, making further normalization (UE normalization) resulting in a slightly

negative performance. Noted that this is a reasonable hypothesis but still needs to be proved in

our further experiments.

8.8 Chapter Summary

In this chapter, we implemented our general Upper expected value normalization framework

to a widely used text summarization metric, BERTScore. We found that UE normalization is

able to greatly increase the human correlation of BERTScore while comparing the abstractive

summarization methods. Meanwhile, human judgment favors UE normalization while com-

paring extractive summarize. However, the interpretability of the boosting improvement is

still unclear based on the current implementation. Although people use attention to show the

correlation between the inner part and downstream performance, in our case, we can not use

attention to explain. Further experiments are needed to better understand the secret behind the

empirical results.
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Chapter 9

ROUGE with Joint Upper & Expected Value Normalization

The previous chapter has demonstrated that our expected value normalization involves impact

if a metric is order sensitive. To better prove our hypotheses, in this chapter, we focused on

ROUGE, a widely used simple metric for text generation tasks without considering the order

of generation. We first introduce how to calculate the expected ROUGE score, then show the

experimental results.

9.1 Expected ROUGE:

As we have discussed in the previous chapter, we specifically use a unigram language model

that has been trained on source documents to generate the expected summary, then we use the

expected summary to calculate a ROUGE score, which is our expected ROUGE. To make the

generation process more general, we do not use the history information while directly utilizing

the occurrence of each word. The unigram model is defined as follows:

p(wi|w1...wi−1) ≈ p(wi) =
c(wi)∑
w̃ c(w̃)

(9.1)

9.2 UE normalized ROUGE not help in Human correlation

First, we focus on the human correlation of abstractive summarization. Table 9.1 demonstrated

the human correlation of original ROUGE and our proposed Upper expected value normalized

ROUGE from 4 perspectives, averaged 100 source documents, and 12 abstractive summariza-

tion models. Compared with UE normalization in BERTScore, we can see our proposed metric
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Human Correlation For 100 documents
Coherence Consistency Fluency Relevance

ROUGE 0.08 0.09 0.04 0.13
ROUGE V1 0.08 0.1 0.04 0.12
ROUGE V2 0.08 0.1 0.4 0.12
PAI V1 -1.9 1.12 8.34 -5.2
PAI V2 -0.84 1.5 6.2 -3
Average of V1 and V2 0.77

Table 9.1: Human Correlation of summaries along four evaluation dimensions averaged 100
documents and 12 abstractive summarization models. The difference between V1/V2 and
ROUGE is the PAI and we calculate the average PAI of the two versions

essentially generate identical results against the original ROUGE score. Specifically, except

for consistency, UE normalized ROUGE v1 and v2 are equal to the human correlation for 100

documents for the other three perspectives, resulting in the final PAI (for PAI the definition, see

section 8.1 ) score of 0.77.

Noted that we did not specifically select the Heterogeneous document and Homogeneous

document while conducting the ROUGE score because the calculation of ROUGE does not

involve the contextualized word/document embedding, thus we did not implement similar ab-

lation experiments here.

9.3 Human Judgement favors UE normalized ROUGE

Although we did not observe the improvement of UE normalization in ROUGE in terms of

abstraction summarization method human correlation, we next took a deeper look into the

cases where UE normalized ROUGE disagreed with the original ROUGE while comparing two

extractive summarization models. We again utilize our collected human annotations for the 5

pairs of models (BERTbase vs. MobileBERT, MobileBERT vs. DistilBERT, DistilBERT vs.

RoBERTa, RoBERTa vs. XLNet, and XLNet vs. GPT-2) and match the human decision against

both ROUGE and two UE normalized ROUGE’s conclusions. We also took the majority voting

judgment from annotators and the results are reported in Table 9.2. As summarized in Table

9.2, blind evaluation by humans indicated UE normalized ROUGE was more accurate than

the original ROUGE in the case of disagreements between the two, thus confirming that UE

65



Win Lost Tie
V1 Vs ROUGE 32% 12% 56%
V2 Vs ROUGE 32% 14% 54%

Table 9.2: Statistics for UE normalized ROUGE wins, losses, and ties against ROUGE. Results
report the average of 5 pairs (BERTbase vs. MobileBERT, MobileBERT vs. DistilBERT,
DistilBERT vs. RoBERTa, RoBERTa vs. XLNet and XLNet vs. GPT-2) evaluated by humans.

normalized ROUGE captures semantics better than ROUGE. Essentially, we can observe that

UE normalized ROUGE wins original ROUGE more than UE normalized BERTScore wins

original BERTScore in both our two versions (32% Vs 24%).

9.4 Chapter Summary

This chapter summarized the experimental results of the implementations of upper expected

value normalization on another popular NLP domain metric, ROUGE. An interesting observa-

tion from ROUGE is although we did not see the improvement from human correlation accord-

ing to the four perspectives, UE normalized ROUGE essentially beats original ROUGE from

our human judgment where the human judgment reflects a more general understanding from a

human perspective. A further interesting study could focus on finding which type of documents

that UE normalized ROUGE would involve the maximum positive impact.
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Chapter 10

Discussions

In this thesis, we presented a novel perspective on the evaluation of Information Retrieval (IR)

and Natural Language Processing systems(NLP). Specifically, we performed two case study on

nDCG and MAP (IR), both are widely popular metrics for IR evaluation, and two case studies

on ROUGE and BERTScore for text summarization task. We started with the observation that

traditional nDCG and MAP computation does not include a query-specific expected value nor-

malization although they include a query-specific upper-bound normalization. For ROUGE and

BERTScore, there is neither upper nor expected value normalization. In other words, the cur-

rent practice is to assume a uniform expected value (zero) across all queries while computing

nDCG and MAP, and a uniform expected value across all documents while computing ROUGE

and BERTScore, an assumption that is incorrect.

This limitation raises a question mark on the previous comparative studies involving mul-

tiple ranking/summarization methods where an average evaluation metric score is reported,

because Uninformative vs. Informative vs. Ideal queries are rewarded equally in traditional

IR evaluation metric computation and the expected value of the evaluation metric is ignored.

In the NLP domain, documents with heterogeneous contextualization and documents with ho-

mogeneous contextualization are treated equally as well, even though their order sensitivity is

different. How can we incorporate query-specific (instance level) expected value normalization

into IR/NLP evaluation metrics and how will it impact IR/NLP evaluation in general? This is

the central issue we investigated in this thesis.

Conceptual Leap: To address the aforementioned issue, we proposed to penalize the tradi-

tional evaluation metric score of each query with an expected value normalization term specific
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to that instance. To achieve this, we introduced a joint upper and expected value normaliza-

tion (UE-normalization) framework and instantiated two versions of the UE-normalization, V1

V2, for two popular IR evaluation metric nDCG and MAP , and two summarization metric

BERTScore essentially creating eight new evaluation metrics.

The next challenge in the IR domain was to estimate a more realistic query-specific ex-

pected value for the above two metrics. For this estimation, we argued that a reasonable ranking

method should be at least as good as a random ranking method, so a more realistic expected

value should be the score expected by a mere random ranking of the document collection rather

than the current practice of assuming zero as an expected value across all queries. Using proba-

bility and permutation theory, we derived a closed-form formula to compute the expected DCG

in case of random ranking. The proof was completed by showing that the expected relevance

label of a document at position i is actually independent of the position and can be replaced by

the expected relevance label of the document collection associated with the particular query in

the validation data-set. For expected SP , we also use probability and induction to prove the

correctness of our assumption. The derivation details can be found in each case study section.

For the challenge in the NLP domain, we also have to consider the expected value accord-

ingly. In BERTScore, which utilizes contextualized word embedding similarity, intuitively, to

generate a summarization, the most important words should be selected. Based on this simple

hypothesis, we greedily select the most important/dominant words from the source document

and use them to generate the expected summary, then calculate the expected BERTScore based

on the expected summary. Due to the simple overlapping consideration in ROUGE calculation,

we also use the unigram language model which is trained from each instance to generate a

expected summary that can be directly used to calculate the expected ROUGE score.

Depth of Impact: For IR, we use two publicly available web search and learning-to-rank data-

sets to conduct extensive experiments with eight popular LETOR methods to understand the

implications DCGUE and MSPUE . For NLP, we use the most recent human-annotated dataset,

12 abstractive summarization, and 6 extractive summarization methods to test the human cor-

relation from 4 perspectives: Coherence, Consistency, Fluency, and Relevance. We also have 3

NLP Ph.D. experts to provide the extractive human judgment annotation.
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The implications of IR are briefly summarized as follows:

1. Kendall’s τ rank correlation coefficient test on two different rankings of multiple LETOR

methods, where the ranks are induced by both traditional metric (i.e.nDCG and MAP ) vs

UE-normalized metrics(i.e. DCGUE and MSPUE ) yields different conclusions regarding

the relative ranking of multiple LETOR methods.

2. Statistical Significance tests can lead to conflicting conclusions regarding the relative per-

formance between a pair of LETOR methods when comparing them in terms of traditional

metrics vs UE-normalized metrics scores.

3. The above two observations are more prominent in the case of Uninformative query collec-

tion.

Next, we systematically compared the traditional evaluation metric and UE-normalized

metrics from two important perspectives: distinguishability and consistency. The findings are

briefly summarized below.

1. Discriminative power analysis and PAD scores suggest that our metric can better distinguish

between two closely performing LETOR methods. These results were confirmed through

the Student’s t-test and PAD score analysis.

2. For consistency, MSPUE
V2

achieves the lowest swap rate across a data-sets comparison as

well as the lowest swap rate while we compare the ranking results from uninformative vs.

ideal query sets. On the other hand, the proposed DCGUE metric is identical to the original

nDCG metric in terms of consistency across different data-sets as well as across Uninfor-

mative/ Ideal query sets within the same data-set.

3. All above experiments reveal that the impact of expected value normalization is more sub-

stantial in case of “Uninformative” queries in comparison to “Ideal” queries, suggesting,

expected value normalization is crucial when the validation set contains a large number of

Uninformative queries (i.e., the ranking methods fail to perform significantly better than the

randomly ranked output).

In ROUGE and BERTScore, the implications are briefly summarized as follows:
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1. Upper expected value normalized BERTScore increases the human correlation from 4 im-

portant perspectives.

2. Based on empirical experimental results, upper expected value normalized BERTScore has

maximum impact in the document with heterogeneous contextualization than a document

with homogeneous contextualization. Although we can not properly explain this perfor-

mance from a deeper perspective (such as attention mechanisms).

3. Human judgment favors Upper expected value normalized BERTScore and ROUGE score

across 5 pair-wise extractive summarizer comparisons.

Breadth of Impact: The proposed expected value normalization technique is very general and

can be potentially extended to other evaluation metrics like ERR (in IR) and BARTScore (in

NLP), which is an exciting future direction.

Final Words: The key takeaway message from this thesis is the following: The IR/NLP com-

munity should consider expected value normalization seriously while evaluating any IR/NLP

system. Our work takes a first step in this important direction and can serve as a pilot study to

demonstrate the importance and implications of expected value normalization.
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Chapter 11

Future Plan

As we can see from this thesis that our proposed upper and expected value normalization frame-

work is quite general and easy to be implemented in many different domains. Thus, an intrigu-

ing future direction will be to investigate UE normalization for additional evaluation metrics

such as ERR in IR and BARTScore in NLP. This particular direction consists of the following

sub-tasks: 1) propose a reasonable expected value normalization term of a particular metric,

2) introduce both upper and expected value normalization terms into the original metric, 3)

conduct the proposed metric to evaluate different text summarization results of several models.

4) systematically compare the original metric with the new metric from different perspectives

and conclude the implications.

One limitation of current experiments in BERTScore is the difficulty of explanation. Al-

though we have achieved a huge improvement in terms of human correlation and also discov-

ered the particular documents that our UE normalization would involve maximum impact, we

did not explain it from a deeper level, that is, which is one important direction we want to do in

the future.

Another limitation of expected value normalization is the expected value should be derived

separately for different evaluation metrics, which requires domain knowledge of different met-

rics. Thus, one interesting follow-up work is to analyze a general expected value in a particular

task. That is, task-specific instead of metric-specific.

Meanwhile, since we have been doing the evaluation metric and expected value normal-

ization during my Ph.D. program for a long time, we really want to do a survey about the

normalization technique in different domains.
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