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Abstract 
 

 
 The utilization of deep learning models for sleep scoring has become an increasingly 

promising area of research due to their potential to automate and enhance the accuracy of this 

crucial task. Sleep scoring involves categorizing a patient's polysomnography (PSG) data into 

different sleep stages, which plays a vital role in diagnosing sleep disorders and understanding an 

individual's sleep patterns. 

In this study, two significant sources of data were employed: actigraphy and PSG 

recordings. Actigraphy, a non-invasive method, captures physical activity and light exposure, 

enabling sleep/wake prediction. PSG, on the other hand, incorporates various physiological 

signals, such as EEG, ECG, and EOG recordings, providing comprehensive insights into brain 

activity, cardiac activity, and eye movements during sleep [1]. 

To address the complexity of sleep scoring and improve accuracy, three deep learning 

architectures were chosen for evaluation: Convolutional – Long Short-Term Memory (CNN-

LSTM), Extreme Gradient Boosting (XGBoost), and LSTM. These models were assessed on a 

dataset comprising 109 subjects for actigraphy sleep/wake prediction and 30 subjects for PSG 

sleep staging. Each subject's dataset consisted of five nights of sleep data, offering diverse 

samples. 

The integration of actigraphy and PSG data proved to be a valuable strategy, providing a 

more comprehensive understanding of an individual's sleep architecture. By utilizing the power 

of deep learning models and incorporating multi-modal data, clinicians and researchers can 

significantly improve sleep disorder diagnosis and treatment. The potential for automating the 

sleep scoring process promises to enhance the efficiency of sleep studies, allowing healthcare 

professionals to focus on tailored treatment plans and better patient care. 
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As the availability of large-scale sleep datasets and computational resources continues to 

grow, the future of sleep scoring with deep learning models holds great promise. With ongoing 

research and advancements, these models have the potential to become indispensable tools in 

sleep medicine, empowering healthcare providers to optimize sleep health and overall well-being 

for their patients. 
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Chapter 1: Introduction 

 

1.1 Background 

Sleep is a fundamental biological process that is crucial for maintaining overall health and 

well-being. It plays a vital role in various physiological functions, such as memory consolidation, 

immune system regulation, and emotional well-being. The sleep-wake cycle is composed of 

different stages, including rapid eye movement (REM) sleep and non-rapid eye movement 

(NREM) sleep, each characterized by distinct brain activity patterns and physiological changes. 

Disruptions in these sleep stages or the occurrence of sleep disorders can have significant 

impacts on an individual's quality of life and overall health. 

Sleep disorders, such as sleep apnea, insomnia, restless legs syndrome, and narcolepsy, 

are prevalent conditions affecting a substantial portion of the population worldwide. These 

disorders are associated with daytime sleepiness, impaired cognitive function, mood 

disturbances, and an increased risk of chronic conditions, including cardiovascular disease, 

obesity, and diabetes. Accurate and timely diagnosis of sleep disorders is crucial for appropriate 

treatment and management, as it allows healthcare professionals to target the underlying causes 

and alleviate the associated symptoms effectively. 
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1.2 Motivation 

Traditionally, sleep scoring, the process of identifying and categorizing different sleep 

stages, has been performed manually by trained clinicians through visual analysis of 

polysomnography (PSG) data, which includes electroencephalography (EEG), 

electrooculography (EOG), electromyography (EMG), and other physiological signals. However, 

manual scoring is a time-consuming and labor-intensive task that is subject to inter-rater 

variability, leading to inconsistencies in the results. These limitations can hinder the efficiency 

and accuracy of sleep disorder diagnosis and subsequent treatment decisions. 

With recent advances in deep learning techniques and the availability of large-scale sleep 

datasets, there is an opportunity to leverage the power of artificial intelligence to automate the 

sleep scoring process. Deep learning models, such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), have demonstrated remarkable success in various domains, 

including computer vision, natural language processing, and speech recognition. The application 

of these models to sleep scoring holds the potential to overcome the limitations of manual 

scoring, providing faster and more consistent results. 

Furthermore, the integration of actigraphy data, which captures physical activity and light 

exposure, with PSG data could enhance the accuracy of sleep scoring. Actigraphy offers a non-

invasive and cost-effective method for monitoring sleep patterns in real-life settings, making it 

suitable for large-scale studies and long-term monitoring. Combining actigraphy with PSG data 

can provide a more comprehensive understanding of an individual's sleep architecture, 

facilitating a more accurate characterization of sleep disorders. 

Therefore, this study aims to explore the capabilities of deep learning models in automating the 

sleep scoring process. By comparing the performance of different models, including CNN-
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LSTM, XGBoost, and LSTM, and utilizing both actigraphy data for sleep/wake prediction and 

PSG data for sleep staging, this research seeks to identify the optimal model for each task and 

assess their accuracies. The findings will provide valuable insights into the potential of deep 

learning models for sleep scoring, contributing to the improvement of current methods and 

ultimately benefiting the diagnosis and treatment of sleep disorders. 

 

1.3 Contributions 

The primary objective of this research was to explore the capabilities of deep learning 

models in automating the sleep scoring process, specifically focusing on sleep/wake prediction 

using actigraphy data and sleep staging using polysomnography (PSG) data. The study aimed to 

identify the optimal model for each task and compare the accuracies of different deep learning 

architectures, including Convolutional – Long Short-Term Memory (CNN-LSTM), Extreme 

Gradient Boosting (XGBoost), and LSTM. 

For sleep/wake prediction, the study found that the XGBoost model (SleepWakeNet-v1) 

achieved the highest accuracy of 92%. The model effectively utilized raw signal data from 

accelerometer sensors in the x, y, and z axes to predict sleep and wake states. This result 

highlights the superiority of XGBoost over LSTM for sleep/wake prediction using actigraphy 

data. 

In contrast, for sleep staging, the Time Distributed CNN model (SleepScoreNet-v1) 

outperformed the other architectures, achieving an accuracy of 87%. The model effectively used 

spectrogram representations obtained from PSG data, combining Time Distributed CNN layers 

for parallel spatial feature extraction. This finding emphasizes the effectiveness of the Time 

Distributed CNN approach for sleep staging using polysomnography data. 



 

 13 

 

The integration of actigraphy data with PSG data also proved to be a valuable strategy, 

providing a more comprehensive understanding of an individual's sleep patterns. The 

combination of advanced machine learning techniques and multi-modal data showcased the 

potential to revolutionize the diagnosis and treatment of sleep disorders, offering faster and more 

consistent results compared to manual scoring by trained clinicians. 

Overall, the study's contributions lie in its comprehensive evaluation and comparison of 

deep learning models for sleep scoring. By identifying the optimal models for sleep/wake 

prediction and sleep staging tasks, this research provides valuable insights for healthcare 

professionals, researchers, and developers seeking to leverage artificial intelligence and machine 

learning to enhance sleep disorder diagnosis and improve patients' overall health and well-being. 

These contributions pave the way for further research and applications in the domain of sleep 

medicine, ultimately benefiting individuals by optimizing sleep health and well-being. 

 

 

 

 

 

 

 

 

 

 



 

 14 

Chapter 2: Related Works 

 

2.1 Machine Learning Algorithms for Sleep Scoring 

Early approaches to automatic sleep scoring and sleep/wake classification involved 

machine learning algorithms, such as the Support Vector Machine (SVM). SVMs demonstrated 

the ability to achieve accurate classification results [9]. However, compared to more recent 

methods that leverage advancements in machine learning, SVMs have limitations in terms of 

training efficiency and tuning [3, 6, 8]. An alternative option for large datasets is the utilization 

of a multi-layer perceptron (MLP), which offers easier model calibration and can deliver 

improved results [2]. MLPs are the foundation of feedforward neural networks commonly used 

in machine learning applications. While a simple MLP model can provide a solution, its 

accuracies may be lower when compared to state-of-the-art sleep scoring approaches [3]. 

 

2.2 Sleep Scoring with Recurrent Neural Networks (RNNs) 

Expanding on the capabilities of MLPs, researchers have explored the use of recurrent 

neural networks (RNNs) for sleep scoring [7]. RNNs have the ability to capture contextual 

dependencies by analyzing patterns in sequential data. This is particularly advantageous for time-

series forecasting tasks, such as sleep scoring, where the context of previous inputs can 

significantly impact future predictions. By leveraging the sequential nature of sleep data, RNNs 

enable deeper contextual analysis and have shown promise in improving sleep scoring accuracy. 
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2.3 Sleep Scoring with Extreme Gradient Boosting (XGBoost) 

Another approach that has garnered attention in sleep scoring is Extreme Gradient 

Boosting (XGBoost). XGBoost combines decision trees and gradient descent, similar to a neural 

network, to minimize the loss function and achieve high accuracies with reduced computational 

complexity. The XGBoost method has demonstrated its effectiveness in various domains and has 

the potential to enhance sleep scoring performance [6]. 

 

2.4 Sleep Scoring with Convolutional Neural Networks and Long Short-Term Memory 

(CNN-LSTM) 

Recent studies have explored the integration of Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory (LSTM) networks for sleep scoring tasks. This approach has 

shown significant promise, particularly when dealing with large multi-dimensional inputs, such 

as images or spectrograms [3]. CNNs excel at extracting relevant features and reducing input 

dimensionality through feature extraction, while LSTMs are adept at processing sequential data 

and capturing temporal dependencies. By combining the strengths of both CNNs and LSTMs, 

the CNN-LSTM architecture can achieve higher accuracies in sleep scoring compared to using 

either model individually. 

 

2.5 Related Works Summary 

In summary, various machine learning approaches have been explored for sleep scoring 

and sleep/wake classification tasks. Early methods utilizing SVMs provided accurate results, but 

recent advancements in machine learning have paved the way for improved approaches. MLPs 

offer versatility and ease of calibration, while RNNs enable deeper contextual analysis by 



 

 16 

capturing sequential dependencies. XGBoost, with its gradient boosting and decision tree 

ensemble technique, achieves high accuracies with reduced computational complexity. The 

integration of CNNs and LSTMs in the CNN-LSTM architecture has shown exceptional 

performance in capturing both spatial and temporal features, resulting in improved sleep scoring 

accuracies. These advancements in machine learning techniques hold great potential for 

automating sleep scoring and enhancing the diagnosis and treatment of sleep disorders. 
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Chapter 3: Datasets and Feature Preparation 

 

3.1 Sleep Scoring Dataset 

The dataset used for sleep scoring in this study was obtained from the "Dreem Open 

Datasets: Multi-Scored Sleep Datasets to compare Human and Automated sleep staging." It 

comprised a subset of 27 participants with 25 nights of sleep recordings. The participants were 

divided into two groups: 15 participants for training and 12 participants for testing. 

Each participant's sleep recordings included 16 signals, including EEG, ECG, and EOG data. 

These signals provide valuable insights into brain activity, cardiac activity, and eye movements 

during sleep. The dataset also provided labels indicating the sleep stage for each 30-second 

epoch. 

To prepare the data for model processing, each signal was divided into segments with 

7500 timesteps. These segments were transformed into spectrograms using the short-time Fourier 

transform (STFT), which converts the signals from the time domain to the frequency domain. 

The resulting spectrograms served as input for a CNN model to process spatial features. Figure 3 

illustrates an example of a spectrogram derived from the dataset. 

 

3.2 Sleep/Wake Prediction Dataset 

For sleep/wake prediction, the training data was obtained from the NSRR dataset titled 

"Urban Poor in India." This dataset included actigraphy data recorded from accelerometer 

sensors in the x, y, and z axes, capturing physical activity patterns. Binary labels of 1 and 0 were 

provided to indicate sleep and wake states, respectively. 
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To create a training and testing split, 15 participants with labeled actigraphy data, 

representing days of recorded activity, were selected for training. Two additional participants 

were reserved for testing the accuracy, F1 score, recall, and precision metrics of each model. 

Figure 2 presents a visualization of the actigraphy data from a testing sample, displaying the 

accelerometer readings and the corresponding sleep/wake labels. 

 

3.3 Feature Preparation 

The datasets used in this study required specific feature preparation techniques. The sleep 

scoring dataset transformed the signals into spectrograms, representing the data in a 2D format 

suitable for CNN processing. The actigraphy data in the sleep/wake prediction dataset was 

already in a suitable format, consisting of accelerometer readings in the x, y, and z axes. 

The datasets, along with their respective prepared features, provide the foundation for training 

and evaluating the deep learning models in the subsequent chapters. 

 

 

Figure 1 - Hypnogram visualization of session 1’s ground truth sleep scores. 
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Figure 2 - Actigraphy data visualization on subject 5021, day 5. Axes 1-3 are x, y, and z 

accelerometer sensors. 

 

 

Figure 3 - PSG spectrogram visualization. 
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Chapter 4: Methods 

 

4.1 Model Pipelines 

For sleep scoring, four models are compared: LSTM, XGBoost, CNN, and CNN-LSTM. 

All models are trained and tested on the same samples. The evaluation metric for these models is 

the accuracy of the generated hypnogram compared to the ground truth sleep stages. 

 

4.1.1 LSTM Model Pipeline 

The LSTM model takes raw signal data as input for both sleep scoring and sleep/wake 

prediction tasks. For sleep scoring, the model utilizes 16 PSG signals, while for sleep/wake 

prediction, it uses 3-axis accelerometer signals (x, y, and z). The LSTM model is designed to 

capture temporal dependencies in the data. The architecture of the LSTM model remains the 

same for both tasks. 

 

4.1.2 XGBoost Model Pipeline 

Similar to the LSTM model, the XGBoost model also takes raw signal data without 

transforming it into a spectrogram. However, unlike the LSTM model, the input shape for the 

XGBoost model is flattened or 1D. The XGBoost model employs a decision tree ensemble 

technique and gradient descent to minimize the loss function. The model requires manual tuning 

of hyperparameters, such as the tree depth and learning rate. 
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4.1.3 CNN-LSTM Model Pipeline 

The CNN-LSTM model preprocesses the signal data to create a 2D spectrogram 

representation. This is achieved using the Short-Time Fourier Transform (STFT) algorithm, 

which extracts features from the signal before feeding it into the model. The benefit of using a 

2D input, similar to an image, is the ability to apply CNN layers for feature extraction before 

passing the data to LSTM cells to capture temporal features. The CNN layers enhance the 

model's understanding of the input by extracting 2D features before considering temporal 

information. 

 

4.2 Sleep/Wake Prediction Models 

The LSTM, XGBoost, and CNN-LSTM will be employed for sleep/wake prediction. The 

evaluation metric for these models is the accuracy of the sleep/wake predictions generated over 

the ground truth sleep/wake labels. 
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4.2.1 SleepWakeNet-V0 (Baseline LSTM) 

SleepWakeNet-V0 represents the baseline LSTM model for sleep/wake classification. It 

comprises a single LSTM layer with three temporal cells, each representing the x, y, and z 

accelerometer signals. A Dense layer with one unit is added for binary classification. The model 

is trained using binary cross-entropy loss, and the learning rate is scaled with the Adam 

optimizer during training. 

 

Figure 4 - SleepWakeNet-v0 architecture on sleep/wake prediction from 3 axis (x, y, z) 

accelerometer signals. 
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4.2.2 SleepWakeNet-V1 (XGBoost) 

SleepWakeNet-V1 uses the XGBoost model for sleep/wake classification. This model is 

trained for 20 rounds and has a decision tree with a depth of 10 and learning rate of 0.7. The 

parameters for this model were determined by performing a parameter sweep on the number of 

rounds, tree depth, and learning rate.  

 

4.2.3 SleepWakeNet-V2 (CNN-LSTM) 

SleepWakeNet-V2 takes a time-distributed input to carry out three 3-layer CNNs on each 

spectrogram obtained from the x, y, and z accelerometer signals. The output of the CNN layers is 

then fed into a single LSTM layer with three temporal cells, each comprising 256 units. Finally, 

a Dense layer with one neuron is added for binary classification. The model is trained using 

binary cross-entropy loss, and the learning rate is scaled with the Adam optimizer during 

training. 
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Figure 5 - SleepWakeNet-v2 architecture on sleep/wake prediction from 3 axis (x, y, z) 

accelerometer signals. 

 

4.3 Sleep Stage Classification Models 

The LSTM, CNN, and CNN-LSTM models were used for sleep scoring. The evaluation 

metric for these models is the accuracy of the hypnogram generated from testing data over the 

ground truth hypnogram. 

 

4.3.1 SleepScoreNet-V0 (Baseline LSTM) 

SleepScoreNet-V0 serves as the baseline architecture for sleep scoring. It takes 16 PSG 

signals as input and consists of a single LSTM layer with 16 temporal cells, each comprising 256 

units. A Dense layer with five neurons is added for categorical classification. The model is 

trained using categorical cross-entropy loss, and the learning rate is scaled with the Adam 

optimizer during training. 
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4.3.2 SleepScoreNet-V1 

SleepScoreNet-V1 employs a time-distributed input to process 16 3-layer CNNs on each 

PSG spectrogram. The output from the time-distributed CNN is flattened to 1 x 4096 and sent to  

a Dense layer with five neurons for categorical classification. The model is trained using 

categorical cross-entropy loss, and the learning rate is scaled with the Adam optimizer during 

training. 

 

Figure 6 - SleepScoreNet-v1 sleep scoring architecture from 16 PSG signals. 

 

 

4.3.3 SleepScoreNet-V2 

SleepScoreNet-V2 utilizes a time-distributed input to process 16 3-layer CNNs on each 

PSG spectrogram. The output is then passed to a single LSTM layer with 16 temporal cells, each 

comprising 256 units. A Dense layer with five neurons is added for categorical classification. 
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The model is trained using categorical cross-entropy loss, and the learning rate is scaled with the 

Adam optimizer during training. 

 

 

Figure 7 - SleepScoreNet-v2 sleep scoring architecture from 16 PSG signals. 

 

By evaluating these additional model configurations, the study aims to compare their 

performances and identify the most effective approaches for sleep scoring and sleep/wake 

prediction tasks.  
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Chapter: 5 Evaluation Metrics for Model Performance 

 

In this chapter, we discuss the evaluation metrics used to assess the performance of 

various models on the testing data. To gauge the effectiveness of each model's predictions, we 

calculate several key components, including True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). These components form the foundation for computing 

essential metrics, such as Recall, Precision, F1, and Accuracy. 

Each model will be evaluated with the same testing data per domain. For sleep/wake 

classification, each model will be scored on precision, recall, and F1 accuracy on the same 

testing data from the NSRR, which is 30% of the dataset and is not used during training. Table 1 

shows the results for each sleep/wake classification model. For sleep scoring or sleep stage 

prediction, each model will be scored on 30% of the dataset from Dreem on classification of 

Wake, NREM1-3, and REM stages. Table 2 shows the results for each sleep scoring model. 

 

5.1 True Positives, True Negatives, False Positives, and False Negatives 

True Positives (TP) represent the number of positive instances that were correctly 

identified as positive by the model. On the other hand, True Negatives (TN) are the number of 

negative instances that were correctly identified as negative by the model. Conversely, False 

Positives (FP) denote the number of negative instances that were incorrectly predicted as 

positive, and False Negatives (FN) indicate the number of positive instances that were 

incorrectly predicted as negative. 
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5.2 Recall (Sensitivity or True Positive Rate) 

Recall, also known as Sensitivity or True Positive Rate, quantifies the ability of the 

model to correctly identify positive instances. It is defined as the ratio of True Positives to the 

sum of True Positives and False Negatives: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

A higher Recall value indicates that the model is proficient at capturing positive instances, 

minimizing the occurrence of false negatives. 

 

5.3 Precision (Positive Predictive Value) 

Precision, often referred to as Positive Predictive Value, assesses the accuracy of positive 

predictions made by the model. It is calculated as the ratio of True Positives to the sum of True 

Positives and False Positives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

 

A high Precision value suggests that the model has a low rate of false positives, and the positive 

predictions are reliable. 
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5.4 F1 Score (F1 Measure) 

The F1 Score, also known as the F1 Measure, is the harmonic mean of Precision and 

Recall. It offers a balanced evaluation of the model's performance, considering both false 

positives and false negatives. The F1 Score is given by: 

 

𝐹1 = 	
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

 

This metric is particularly useful when there is an uneven class distribution, as it strikes a 

balance between Precision and Recall. 

 

5.5 Accuracy 

Accuracy measures the overall correctness of the model's predictions, encompassing both 

positive and negative instances. It is calculated as the ratio of the sum of True Positives and True 

Negatives to the total number of instances: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

A high Accuracy value indicates that the model is making correct predictions for both positive 

and negative instances. 
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In conclusion, by evaluating and comparing these metrics, we gain valuable insights into the 

performance of each model on the testing data. High Recall and Precision are essential for 

applications where false negatives and false positives carry significant consequences, 

respectively. The F1 Score provides a balanced evaluation, while Accuracy serves as a general 

measure of overall correctness. The comprehensive analysis of these metrics enables us to make 

well-informed decisions regarding the suitability of each model for the task at hand. 

 

 

 

 

 

Table 1 – Sleep/wake classification accuracy scores. 

 

 

 

 

 

 

Table 2 – Sleep stage classification accuracy scores. 

 

 

 

 

Model Sleep Wake Classification Model Metrics 
Precision Recall F1 Accuracy 

SleepWakeNetv0 0.86270 0.80028 0.83032 0.88871 

SleepWakeNetv1 0.86484 0.90080 0.88245 0.91664 

SleepWakeNetv2 0.73799 0.68421 0.71008 0.81018 

Model Sleep Stage Classification Model Metrics 
Precision Recall F1 Accuracy 

SleepScoreNetv0 0.31940 0.42133 0.34455 0.42133 

SleepScoreNetv1 0.88701 0.87856 0.87998 0.87856 

SleepScoreNetv2 0.87162 0.85111 0.85653 0.85111 
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Chapter 6: Discussion and Conclusion 

 

The performance of different deep learning models for sleep scoring using actigraphy and 

polysomnography (PSG) data was evaluated. The study aimed to identify the optimal model for 

each task, comparing the accuracies of Convolutional – Long Short-Term Memory (CNN-

LSTM), Extreme Gradient Boosting (XGBoost), and LSTM deep learning architectures. 

For sleep/wake classification, the XGBoost model (SleepWakeNet-v1) achieved the highest 

accuracy of 92%. It utilized raw signal data from accelerometer sensors in the x, y, and z axes, 

effectively predicting sleep and wake states. 

In contrast, for sleep scoring, the Time Distributed CNN model (SleepScoreNet-v1) 

outperformed the others, achieving an accuracy of 87% accuracy. The model used spectrogram 

representations obtained from PSG data, combining Time Distributed CNN layers for parallel 

spatial feature extraction. 

The findings indicate that XGBoost is a promising approach for sleep/wake classification, 

while the Time Distributed CNN proves to be the optimal model for sleep staging. These deep 

learning models have the potential to automate the sleep scoring process, alleviating the time-

consuming and labor-intensive manual scoring performed by trained clinicians. 

The integration of actigraphy data with PSG data further enhances the accuracy of sleep 

scoring, providing a more comprehensive understanding of an individual's sleep architecture. 

The combination of advanced machine learning techniques and multi-modal data can 

revolutionize the diagnosis and treatment of sleep disorders, offering faster and more consistent 

results. 
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Overall, this study demonstrates the potential of deep learning models in the field of sleep 

scoring and opens new avenues for future research and applications in the domain of sleep 

medicine. The results provide valuable insights for healthcare professionals, researchers, and 

developers seeking to leverage artificial intelligence and machine learning to improve sleep 

disorder diagnosis and ultimately enhance patients' overall health and well-being. 
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Appendix 

 

1. Source Code: https://github.com/omarzanji/AU_ECE_Health 


