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Abstract

Self-localization of mobile nodes is a critical challenge in enabling a wide range of mobile

applications that rely on accurate position information. Traditionally, obtaining precise location

data has required specialized hardware or dedicated infrastructure, such as GPS, UWB, ultrasounds

transceivers, GSM, or WLAN. However, we propose an alternative approach that eliminates the

need for such additional components and infrastructure. Our approach revolves around the concept

of cooperative and opportunistic data exchanges among mobile nodes, which can significantly

enhance and refine the localization process. Consider a scenario where a target node lacks GPS or

any position information. By leveraging communication with multiple nearby mobile peer nodes

that possess some positioning capabilities, we can achieve indoor localization without the need

for specialized hardware or infrastructure support. Specifically, our smartphone-based technique

harnesses the power of IEEE 802.11mc WiFi-based fine time measurement (FTM) capabilities

for indoor navigation and tracking. This cutting-edge technology utilizes smartphones equipped

with WiFi chipsets that support round trip time (RTT) measurements. By leveraging FTM and its

hardware-level timestamping of send and receive events, we can accurately estimate the RTT and,

consequently, infer precise distance measurements.

An advantageous aspect of our technique is its infrastructure independence. It operates au-

tonomously, leveraging the networking capabilities of smartphone devices and facilitating commu-

nication through the formation of device clusters. This is made possible by leveraging the Android

Aware technology, allowing for seamless networking and collaboration among smartphones within

the same vicinity. By employing this smartphone-based approach, we open up new possibilities for

indoor localization and tracking. The technique enables GPS-like operation indoors, overcoming

the limitations of traditional positioning methods. It leverages the ubiquity of smartphones and
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their embedded WiFi capabilities to achieve accurate and reliable indoor localization without the

need for additional hardware or infrastructure support.

In summary, our approach represents the next generation of indoor navigation and tracking.

By leveraging the IEEE 802.11mc WiFi-based FTM capabilities of smartphones, we unlock the

potential for precise indoor localization. The technique capitalizes on cooperative and opportunis-

tic data exchanges among mobile nodes, enabling accurate position estimation without relying on

specialized hardware or dedicated infrastructure. With our infrastructure-independent solution, we

pave the way for a new era of indoor positioning technology.
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Chapter 1

Introduction

In the year 2000, a significant milestone occurred when the Defense Department decided to

remove the intentional degradation of GPS accuracy, resulting in a tenfold increase in accuracy

compared to the previous version available to civilians [1]. This pivotal event spurred the devel-

opment of devices aimed at monitoring and tracking various objects. Over the following decade,

GPS devices became widely adopted, and as their usage increased, so did the demand for improved

accuracy. The latest generation of GPS devices offers significantly enhanced accuracy compared to

their predecessors. However, despite the advancements in GPS technology, one significant limita-

tion remains: satellite signals cannot penetrate through buildings, dense forests, or urban canyons.

As a result, GPS functionality is largely restricted to outdoor environments with a clear line of

sight to satellites. Recognizing this limitation, extensive research has been conducted to address

the challenge and develop a new technology capable of providing accurate monitoring and tracking

in indoor environments [2, 3, 4, 5]. Unfortunately, during the early stages of this research, the lack

of technological support hindered the achievement of acceptable accuracy levels.

In recent years, there has been a resurgence in the importance of monitoring and tracking

devices, primarily driven by technological advancements in the industry. With the support of im-

proved technology, the feasibility of achieving accurate indoor monitoring and tracking has become

more attainable. This renewed focus on indoor localization has been further fueled by the growing

popularity of indoor mobile robots and the increasing demand for AI communication services [6].

The recognition of the limitations of GPS in indoor environments, combined with the advance-

ments in technology and the rising demand for indoor monitoring and tracking, has accelerated

the exploration of innovative solutions. Researchers and industry professionals have directed their

efforts toward developing robust indoor localization technologies that can overcome the challenges
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posed by signal attenuation and obstructions. By leveraging alternative approaches, such as WiFi-

based techniques, ultra-wideband (UWB) technology, or Bluetooth Low Energy (BLE) beacons,

the aim is to achieve accurate and reliable indoor positioning.

Accurate indoor monitoring and tracking have become increasingly significant across various

domains, with far-reaching implications for asset management, indoor navigation, facility security,

and smart building automation. The ability to precisely locate and track objects, assets, and indi-

viduals within indoor environments offers a wealth of benefits and opportunities. In the realm of

asset management, organizations can optimize their operations by effectively monitoring the move-

ment and utilization of valuable resources within indoor spaces. This includes tracking equipment,

inventory, and supplies, enabling efficient allocation, maintenance, and retrieval of assets. Accu-

rate indoor monitoring also contributes to improved inventory management, minimizing losses and

enhancing overall operational efficiency. Indoor navigation is another area greatly influenced by

accurate monitoring and tracking technology. Traditional navigation systems, such as GPS, are

not reliable within buildings, and this limitation hampers wayfinding and navigation in complex

indoor spaces. However, with precise indoor localization capabilities, individuals can seamlessly

navigate within large buildings, airports, shopping malls, hospitals, and other indoor environments.

This enhances visitor experiences, facilitates efficient movement, and opens up opportunities for

location-based services and targeted advertising.

Facility security is yet another domain that benefits from accurate indoor monitoring and

tracking. By precisely tracking the movement of people and assets within a building, security

teams can enhance surveillance, detect anomalies, and respond promptly to potential threats. Real-

time tracking provides valuable insights into security breaches, enabling swift interventions and

preventive measures. Moreover, the integration of accurate indoor monitoring and tracking tech-

nologies with smart building automation systems holds great potential. By continuously monitor-

ing the location and behavior of occupants, energy usage patterns, and environmental conditions,

buildings can dynamically adapt and optimize their operations. This results in improved energy

efficiency, occupant comfort, and overall sustainability.
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A wireless ad-hoc network is a unique type of computer network that operates without rely-

ing on any pre-existing infrastructure or physical wires. Unlike traditional computer networks that

require centralized routers or access points, ad-hoc networks allow individual nodes to commu-

nicate and establish a network on their own. In an ad-hoc network, each node is responsible for

transmitting and forwarding data to other nodes within the network. One of the key advantages

of ad-hoc networks is their flexibility and simplicity in maintenance. Since ad-hoc networks do

not depend on fixed infrastructure, they can be quickly deployed and reconfigured as needed. This

makes them particularly suitable for dynamic or temporary environments where the availability of

infrastructure may be limited or impractical.

While ad-hoc networks can utilize a flooding protocol, where data is forwarded to all neigh-

boring nodes, there are more efficient routing protocols available. These protocols, such as proac-

tive routing, location-based routing, or hybrid routing, optimize the transmission of data by selec-

tively choosing the most suitable paths within the network. By employing these routing protocols,

ad-hoc networks can achieve better efficiency and scalability compared to simple flooding ap-

proaches. The maintenance of an ad-hoc network is fairly simple and flexible compared to other

networks which involve infrastructures [7]. The choice to use an ad-hoc network as our mobile

networking system is driven by its flexibility and adaptability. With an ad-hoc network, our mo-

bile nodes can communicate and establish connections with one another without relying on fixed

infrastructure or central control. This allows for greater mobility and independence, making it

well-suited for scenarios where traditional network infrastructures may not be available or feasi-

ble.

In the context of mobile and ad-hoc networks, having knowledge of the position and trajectory

of individual nodes is crucial for various purposes. This information can be leveraged to optimize

communication protocols, plan efficient paths, and design cooperative tasks among the nodes.

The accuracy of localization estimation is highly dependent on the specific environment and the

technology employed by the devices to determine their positions.
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Some localization techniques rely on inexpensive and widely available technologies that uti-

lize Received Signal Strength Indicator (RSSI) measurements. However, such approaches gener-

ally yield poor localization performance, as demonstrated in studies [8]. On the other hand, more

expensive hardware that compares the Time-of-Arrival (TOA) of radio signals, as discussed in

research [9], can provide better accuracy in localization. However, the adoption of specialized lo-

calization hardware can significantly increase the cost of mobile devices, making it less feasible in

certain scenarios. As a result, there is a need for localization methods that strike a balance between

cost-effectiveness and accuracy. Utilizing low-cost Commercial off-the-shelf (COTS) hardware

that can provide comparable accuracy to expensive alternatives becomes a viable alternative. By

leveraging existing hardware components that are readily available in the market, the cost of mo-

bile devices can be kept reasonable while still achieving satisfactory localization accuracy. The

accuracy of localization estimation depends on the environment and the technology employed.

While expensive hardware solutions can provide better accuracy, they may not be cost-effective

for widespread adoption. Hence, alternative approaches utilizing low-cost Commercial off-the-

shelf hardware with comparable accuracy become more viable options in practice.

Accurate localization or tracking of wireless devices has become a critical requirement in

various emerging location-aware systems. These systems find applications in diverse fields such

as search and rescue operations, medical care, intelligent transportation, location-based billing,

security, home automation, industrial monitoring and control, location-assisted gaming, and so-

cial networking. The demand for accurate localization spans across multiple domains, highlight-

ing the need for robust and reliable solutions. While satellite-based navigation systems like GPS

have achieved widespread adoption and success in open sky scenarios, localization in challeng-

ing environments such as indoors or urban areas remains a persistent challenge. These scenarios

pose unique obstacles that hinder the effectiveness of traditional satellite-based approaches. Con-

sequently, there is a growing demand for a new technology that leverages wireless networks to

provide self-localization capabilities, filling the gap in harsh environments where GPS signals may

not be accessible.
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To address these contemporary needs, we have developed a novel method of localization based

on opportunistic data exchanges. Our approach takes advantage of the cooperative nature of wire-

less networks, allowing mobile devices to exchange data and collaborate in self-localization. By

leveraging the available network infrastructure and the information shared between devices, our

method offers a promising solution to achieve accurate localization even in challenging environ-

ments. The current trend in the field of localization is the integration of heterogeneous technologies

to ensure global coverage and high accuracy across various scenarios. This integration aims to cre-

ate a seamless localization system that is accessible anywhere and anytime. By combining different

technologies and leveraging the power of wireless networks, we can overcome the limitations of

individual approaches and achieve reliable and precise localization in a wide range of situations.

Localization and location-based services have become a worldwide technological need with

the increased use of smartphone devices equipped with GPS and inertial sensors. Although GPS

provides continuous location information with reasonable location accuracy for outdoor environ-

ments, it fails to provide the same for indoor environments. In the past few years, there has been an

increased demand for indoor localization techniques to fulfill the gap created by the GPS technique.

Many techniques have been developed to fulfill the need for an indoor localization technique in the

past decade but most of them are infrastructure dependent and use sophisticated hardware units.

Our indoor localization technique utilizes standard Android smartphones, which are widely

used by millions of people, making them accessible and cost-effective. Unlike other localization

methods, our approach does not rely on specialized hardware or require additional infrastructure

installations. Instead, we leverage the capabilities of the IEEE 802.11mc WiFi protocol, which is

already present in these smartphones. The core principle of our technique is the use of Round-Trip-

Time (RTT) measurements to estimate the distance between two or more devices. By accurately

measuring the time it takes for a signal to travel from a reference node to the target smartphone

and back, we can calculate the distance between them. These distance measurements, combined

with the known position coordinates of the reference node, serve as the input for our sophisticated

algorithms.
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By leveraging the existing WiFi capabilities of standard smartphones and utilizing sophis-

ticated algorithms, our technique offers a practical and accurate solution for indoor localization.

It provides an accessible and cost-effective alternative to specialized hardware-based approaches.

With its reasonable accuracy, our smartphone-based IEEE 802.11mc fine time measurement (FTM)

technique opens up possibilities for a wide range of applications that rely on indoor localization,

including navigation, asset tracking, and location-based services.
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Chapter 2

Motivations and Applications

In this chapter, we delve into the motivations behind the development of our localization

technology and explore its diverse range of applications. By understanding the driving forces and

potential use cases, we gain valuable insights into the significance and practical implications of our

technology.

2.1 Motivation

The motivation for research in indoor navigation and tracking systems stems from the need

to provide accurate and reliable location information for a wide range of applications in indoor

environments. While outdoor navigation systems using GPS and other satellite-based technologies

have become commonplace, similar solutions for indoor environments are much more challenging

to implement. This is due to the fact that GPS signals are typically too weak to penetrate build-

ing walls and roofs, resulting in poor signal quality or no signal at all in indoor environments.

Although indoor tracking has been an important research area since the early 2000s, it has been

difficult to develop a system with the required accuracy. Indoor tracking using Global Positioning

System (GPS) does not work as the GPS satellite signals cannot reach the indoor environment.

As a result, the accuracy of the position is very poor. Also, other research techniques like Ultra-

wideband (UWB) produce acceptable accuracy but it is very expensive to deploy these devices.

Other techniques like Received Signal Strength indicator (RSSI), although very easy to develop

and maintain produces poor accuracy and are unreliable in most cases. This motivated us to de-

velop a new technique to solve the indoor tracking system which can provide better accuracy and

cost-effectiveness to deploy on a large scale.
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Indoor navigation and tracking systems can be used in a variety of settings, such as hospi-

tals, airports, museums, shopping malls, and factories, to help people find their way, track assets,

and optimize workflows. For example, in hospitals, indoor navigation systems can help patients,

visitors, and staff members navigate complex buildings, locate specific departments, and find spe-

cific medical equipment. In factories, indoor tracking systems can help optimize supply chain

management, reduce inventory loss, and improve worker safety by tracking the location of goods

and equipment in real-time. In addition to these practical applications, research in indoor naviga-

tion and tracking systems is also motivated by the potential for new location-based services and

technologies, such as augmented reality, indoor mapping, and indoor positioning in autonomous

robots. As such, there is a growing interest in developing accurate, scalable, and low-cost indoor

navigation and tracking systems that can work in a variety of environments and under different

conditions.

Another key motivation for research in indoor navigation and tracking systems is the increas-

ing demand for location-based services and the growth of the Internet of Things (IoT) market. As

more and more devices become connected to the internet and to each other, the ability to accu-

rately track and locate these devices in indoor environments becomes critical for a wide range of

applications, including home automation, smart buildings, and asset tracking.

Moreover, indoor navigation and tracking systems can also help improve safety and security

in indoor environments. For example, in emergency situations, indoor navigation systems can help

guide people to safety and enable emergency responders to quickly locate and assist those in need.

In addition, indoor tracking systems can be used to monitor the movement of people and assets

in real-time, which can be useful for preventing theft, identifying safety hazards, and optimizing

building layouts. The development of new technologies, such as Bluetooth Low Energy (BLE),

WiFi RTT, ultra-wideband (UWB), and visual-based tracking, has also fueled research in indoor

navigation and tracking systems. These technologies have enabled new methods for tracking the

location of objects and people in indoor environments with greater accuracy and precision, and

have opened up new possibilities for location-based services and applications.
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Overall, the motivation for research in indoor navigation and tracking systems are driven by a

wide range of factors, including practical applications, the growth of the IoT market, the demand

for location-based services, and the development of new technologies. As such, research in this

area is likely to continue to grow in importance and impact in the years to come.

2.2 Applications

Indoor tracking systems have the potential to support a variety of applications, including track-

ing objects and personnel in hospitals, malls, university campuses, and automobile plants. They

can be especially useful in extreme conditions where firefighters need to navigate in low-visibility

environments. Additionally, indoor tracking systems can provide navigation and directions in com-

plex buildings, helping individuals avoid the frustration of getting lost. Overall, the versatility of

indoor tracking systems makes them useful for a wide range of applications in different settings.

We will discuss some of these applications in the following sections.

2.2.1 Hospitals, Industrial Warehouses, and University Campuses

Indoor localization application in Hospitals

Indoor localization technology can significantly improve the efficiency and quality of patient

care in hospitals. By using location-based services, hospitals can track the movement of patients,

medical equipment, and staff within the facility. This can help hospitals optimize resource alloca-

tion, improve patient flow, and reduce waiting times. One of the most significant applications of

indoor localization technology in hospitals is patient tracking. By equipping patients with location-

tracking devices, hospitals can monitor their movement and provide personalized care. This can

help medical staff quickly locate patients, administer medication, and provide urgent care in a

timely manner.

Another application of indoor localization technology in hospitals is asset tracking. Hospitals

can track the movement of medical equipment and supplies, ensuring that they are available when
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needed. This can help reduce equipment loss and theft, improve inventory management, and save

costs by eliminating the need for excess equipment.

Indoor localization technology can also be used to improve hospital security by monitoring

access to restricted areas and detecting any unauthorized movement. This can help ensure that only

authorized personnel have access to sensitive patient data and medical supplies. Moreover, indoor

localization technology can be used to provide real-time navigation and wayfinding services to

patients and visitors. This can help them navigate the complex hospital environment and reduce

the likelihood of getting lost or delayed.

Indoor localization technology can also be used to improve patient safety in hospitals. By

tracking patient movement and interactions with staff and medical equipment, hospitals can iden-

tify potential safety issues and take corrective action in real-time. For example, if a patient with

a high risk of falls is found to be moving towards a high-risk area, such as a staircase or slippery

floor, hospital staff can be alerted to intervene and prevent a fall.

Indoor localization technology can also be used to automate patient check-in and check-out

processes, reducing wait times and improving the patient experience. By using location-based ser-

vices, patients can be automatically checked in when they arrive at the hospital, and their location

can be tracked throughout their stay. This can help hospitals optimize patient flow and reduce wait

times, which can be a significant source of frustration for patients and their families.

Another potential application of indoor localization technology in hospitals is infection con-

trol. By tracking the movement of patients, staff, and medical equipment, hospitals can identify

potential sources of infection and take corrective action to prevent the spread of disease. This can

help reduce the risk of hospital-acquired infections, which can be a significant source of morbidity

and mortality in healthcare settings.

Finally, indoor localization technology can be used to improve hospital operations by provid-

ing real-time data on patient flow, staffing levels, and equipment utilization. This can help hospital

administrators optimize resource allocation and improve operational efficiency, leading to better

patient outcomes and reduced costs.
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Overall, the applications of indoor localization technology in hospitals are diverse and far-

reaching. By improving patient safety, automating patient check-in processes, enhancing infection

control, and optimizing hospital operations, indoor localization technology is becoming an essen-

tial tool for hospitals looking to provide better care to their patients.

Indoor localization application in University Campus

Indoor localization technology can provide several benefits for universities and colleges. One

of the primary applications is campus navigation. Large university campuses can be complex and

difficult to navigate, especially for new students or visitors. By providing real-time location-based

services, universities can guide students and visitors to their destinations with ease. This can

improve the overall experience of students and visitors and reduce the risk of getting lost.

Indoor localization technology can also be used to enhance campus security. By tracking the

movement of students and staff, universities can quickly identify potential security threats and take

appropriate action to mitigate them. For example, if a student is found to be in an unauthorized

area or outside of the designated campus boundaries, campus security can be alerted to intervene.

Another application of indoor localization technology in university campuses is space utilization.

By tracking the use of classrooms, lecture halls, and other facilities, universities can optimize

resource allocation and improve operational efficiency. This can help universities reduce costs and

improve the overall quality of education.

Indoor localization can be used to enhance student engagement on campus. By leveraging

indoor localization technology, universities can provide personalized and interactive experiences

for students. For example, universities can use location-based notifications to provide students

with information about upcoming events or course-related announcements. Indoor localization

technology can help universities manage their facilities more efficiently. By tracking the use of

different rooms and facilities, universities can identify opportunities to optimize the use of space

and reduce energy costs. In addition to enhancing security, indoor localization technology can

be used to monitor the health and safety of students and staff. For example, universities can use
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location data to track the movement of students during emergencies and ensure that everyone is

accounted for. Universities can also use indoor localization technology to improve their marketing

efforts. By tracking the movement of students and visitors, universities can identify popular areas

and tailor their marketing messages accordingly.

Finally, indoor localization technology can be used to support research and development activ-

ities on university campuses. By tracking the movement of researchers and equipment, universities

can optimize the use of lab space and improve the efficiency of research operations. This can help

researchers achieve their goals faster and more efficiently, leading to better research outcomes.

In summary, indoor localization technology has a wide range of applications on university

campuses, from improving campus navigation to enhancing security and optimizing resource al-

location. As the technology continues to advance, we can expect to see even more innovative use

cases emerge in the future.

Indoor localization application in large industrial warehouse

Accurate inventory management is critical for warehouse operations. By using indoor local-

ization technology, warehouses can track the location of goods and products within the facility

in real-time. This helps in keeping track of inventory levels, preventing stock-outs, and reducing

waste. The technology can also be used to alert warehouse personnel when inventory levels fall

below a certain threshold, ensuring that reordering is done in a timely manner. Indoor localiza-

tion technology can help identify bottlenecks in the workflow and optimize the routing of goods

and materials. For example, by tracking the movement of employees and equipment within the

warehouse, the technology can identify areas where congestion is happening and re-route traffic to

avoid it. This results in a more efficient workflow and faster delivery times.

In addition to tracking inventory, indoor localization technology can be used to track the

location of assets such as forklifts, carts, and other equipment. This can help improve efficiency

by reducing the time and effort required to locate these assets. The technology can also be used

to monitor equipment usage and track maintenance needs, ensuring that equipment is properly
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maintained and in good working condition. Indoor localization technology can improve safety

and security in the warehouse by monitoring employee movement and detecting any unusual or

unsafe behavior. The technology can also be used to identify and locate potential hazards in the

warehouse, such as spills or dangerous equipment. Additionally, the technology can be used to

track the movement of unauthorized personnel within the facility, alerting security personnel to

any potential security breaches. Indoor localization technology can help optimize energy use by

turning off lights and HVAC systems in areas that are not in use. By tracking the movement

of people and equipment within the warehouse, the technology can determine which areas are not

being used and adjust energy usage accordingly. This results in cost savings and a more sustainable

warehouse operation.

Overall, indoor localization technology has numerous applications in industrial warehouses,

from improving inventory management to enhancing safety and security. By leveraging this tech-

nology, warehouses can become more efficient, productive, and safe, leading to better business

outcomes.

2.2.2 Airports

Indoor localization has several important applications at airports. One of the most important

is navigation and wayfinding. Airports can be complex and confusing environments, with multiple

levels, terminals, and concourses. Indoor localization can be used to help passengers navigate their

way through the airport, providing turn-by-turn directions to their gate, restaurant, or other desti-

nation. This can be particularly helpful for passengers who are unfamiliar with the airport or who

have visual impairments. Indoor localization can also provide real-time updates on flight informa-

tion, gate changes, and other important information, which can help passengers stay informed and

reduce stress.

Indoor localization can also be used to track the location of airport staff and equipment, which

can help improve efficiency and reduce delays. For example, airport operators can use indoor

localization to track the location of baggage carts and other equipment, to ensure that they are
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in the right place at the right time. Indoor localization can also be used to track the location of

airport staff, such as cleaning crews, maintenance workers, and security personnel, which can help

improve coordination and communication.

Additionally, indoor localization can be used to enhance security at airports, by monitoring

the location of passengers and staff and detecting unauthorized personnel in restricted areas. For

example, airport operators can use indoor localization to track the movement of passengers and

staff through security checkpoints, to ensure that everyone is properly screened before entering

restricted areas. Indoor localization can also be used to detect intruders or other unauthorized

personnel in restricted areas and to alert security personnel to potential threats.

Indoor localization can be used in airport retail settings to track customer movements and be-

havior and to provide targeted advertising or promotions based on the customer’s location within

the airport. For example, airport retailers can use indoor localization to track the location of pas-

sengers and offer personalized discounts or promotions based on their travel itinerary. Indoor

localization can also be used to optimize store layouts and product placements, based on customer

behavior and traffic patterns.

Overall, indoor localization has the potential to improve the airport experience for passengers,

staff, and airport operators alike, by providing accurate and real-time information, improving ef-

ficiency and coordination, enhancing security, and offering personalized services and promotions.

Our indoor navigation system can provide simple directions for navigating inside these buildings

for each individual depending on their flight gate. This reduces the anxiety and pain of being lost

inside complex environments such as an airport.

2.2.3 Indoor Tracking of Firefighters and First Responders

Firefighters work in one of the most dangerous environments and put their lives on the line to

save others. A fire scene usually consists of a lot of chaos and it could be very easy for a firefighter

to get indulged inside the building in fighting a fire or saving life and lose track of his teammates. It

could be very difficult to navigate inside the building as the vision usually will be almost nil along
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with the chaos going on the scene. So, firefighters get lost inside the building more than we can

imagine. Our technology can provide a solution to this critical problem by providing a device that

is capable of tracking all the firefighters on the scene. This way the Chief-in-Office on the scene

can keep track of all the firefighters and if anyone of them loses track of their location, it would be

easy to track the location and rescue them in time to save their lives.

Indoor localization has become an important tool for firefighters who often face the chal-

lenge of navigating through smoke-filled buildings and finding their way to trapped victims. With

the help of indoor localization systems, firefighters can determine their precise location within a

building and navigate through it more efficiently. These systems can provide real-time tracking

of firefighters, enabling incident commanders to keep track of their location and movements and

ensure their safety. The system can also provide important data such as the location of hazardous

materials, fire exits, and other critical information. Additionally, indoor localization can be used

to locate and rescue trapped victims, as well as to improve the overall response time and effective-

ness of firefighting operations. Overall, indoor localization has the potential to greatly enhance the

safety and effectiveness of firefighting operations, and save lives in the process.

2.2.4 Robot localization

Indoor localization is a critical component in robot localization, which is the process of de-

termining the position and orientation of a robot in an indoor environment. Robot localization is

essential for many robotic applications, including autonomous navigation, mapping, and explo-

ration. In these applications, the robot needs to know its location and orientation in order to move

safely and effectively in the environment. Pathfinding and mapping are actually an extension of

localization and are very essential for robot movement to any destination. Robot localization can

be categorized into three groups Global navigation, Local navigation, and Personal Navigation

[10]. Among these three robot localization categories, our indoor tracking system can be useful in

Global and Local Navigation as these two navigation types require human interaction or with other

robots. Our technique is based on opportunistic communication between the nodes so it cannot be
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applied to personal navigation as in this type the robot is alone and does not interact with anything

to navigate around the referenced area.

Robot localization has numerous applications, including search and rescue missions, indus-

trial automation, and delivery services. In search and rescue missions, robots can be used to locate

and rescue people in dangerous or inaccessible locations. In industrial automation, robots can

be used to transport materials or perform complex tasks in factories. In delivery services, robots

can be used to autonomously deliver packages to people’s homes or businesses. Overall, indoor

localization plays a critical role in enabling these and other applications in robot localization.

2.2.5 Museums

Indoor localization technology has revolutionized the way museums operate and provides

a unique experience to visitors. By utilizing location-based services, museums can enhance the

visitor experience in many ways. One of the most significant ways is by providing real-time

information about exhibits and artifacts. With the use of indoor positioning systems, visitors can

access detailed information about the history and significance of a particular exhibit, making the

museum visit more engaging and informative.

Another way that indoor localization technology can enhance the museum experience is

through crowd management. By tracking visitor movement and analyzing visitor flow, museum

staff can optimize exhibit layouts and improve crowd control. This can help reduce congestion in

popular areas and provide a more enjoyable experience for visitors.

Indoor localization technology can also be used to improve security within the museum. Valu-

able artifacts can be equipped with location-tracking devices that allow museum staff to monitor

their movement and ensure their safety. Additionally, indoor positioning systems can be used to

track visitor movement and detect any suspicious behavior.

Moreover, indoor localization technology can improve accessibility for visitors with disabil-

ities. Museums can provide navigation and wayfinding services to visitors with hearing or visual

impairments, making their experience more enjoyable and inclusive.
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Overall, the application of indoor localization in museums has revolutionized the way visitors

experience exhibits and interact with artifacts. By providing personalized information, improving

crowd management, enhancing security, and increasing accessibility, indoor localization technol-

ogy is becoming a crucial tool for museums worldwide. Our indoor navigation technology can

transform each individual mobile device into an interactive tour guide for a museum.

2.2.6 Targeted Advertising

Targeted advertising is a type of advertising to consumers depending on various traits such as

behavior, demographics, etc. Targeted advertising has gained a lot of importance in this decade

and is currently used by many advertising companies to reach appropriate consumers in order to

raise sales. These also help the consumer to get advertisements that are more personalized to them

compared to the previous technique of flooding advertisements to all consumers. Indoor localiza-

tion can be used to support targeted advertising in indoor environments such as shopping malls,

supermarkets, and airports. By tracking the location of a user’s mobile device and combining it

with data on their preferences, shopping history, and demographics, advertisers can deliver per-

sonalized ads and promotions to users when they are in close proximity to relevant products or

services.

For example, a shopping mall could use indoor localization technology to track the location

of a user’s mobile device as they move around the mall. Based on the user’s previous purchase

history and preferences, the mall could then send targeted ads and promotions to the user’s mobile

device when they are near stores or products that they may be interested in.

In addition to targeted advertising, indoor localization can also be used to improve the overall

shopping experience for users. For example, a shopping mall could use indoor localization tech-

nology to provide users with real-time directions to stores, promotions, and events. This can help

users navigate the mall more easily and find the products or services they are looking for. In the
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retail sector, indoor localization can be used to provide users with real-time promotions and dis-

counts based on their location within a store. For example, if a user is browsing a specific section

of a store, they may receive a targeted promotion for products in that section.

Overall, indoor localization has the potential to transform targeted advertising in indoor en-

vironments, enabling advertisers to deliver personalized ads and promotions to users at the right

time and in the right place. Indoor localization has the potential to revolutionize targeted advertis-

ing in indoor environments, providing users with personalized promotions and information while

also helping advertisers gather valuable data on user behavior and preferences. At the same time,

it can also enhance the overall shopping experience for users by providing them with real-time

information and directions.
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Chapter 3

Problem Statement

3.1 Introduction

The need for indoor navigation and tracking systems has grown significantly across diverse

industries, including healthcare, logistics, retail, and manufacturing. These systems play a crucial

role in achieving precise localization and tracking of objects or individuals within indoor environ-

ments, leading to enhanced safety, efficiency, and productivity. Nonetheless, the development of a

dependable and accurate indoor navigation and tracking system based on wireless communication

technology poses a multifaceted challenge that demands innovative solutions.

3.2 Problem Description

The complexity of indoor environments presents a significant challenge in the development

of indoor navigation and tracking systems. Factors such as signal interference, multi-path prop-

agation, and shadowing effects can introduce inaccuracies in localizing and tracking objects or

individuals, which can have critical implications in safety-focused domains like healthcare and

emergency response.

To address this challenge, existing indoor navigation and tracking systems leverage diverse

wireless communication technologies, including WiFi, Bluetooth, RFID, and Ultra-Wideband (UWB).

Each technology offers distinct advantages and limitations that necessitate careful consideration.

For instance, WiFi signals provide broad coverage but are susceptible to signal interference, while

UWB signals enable precise localization at the cost of increased infrastructure and power require-

ments.
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Ensuring real-time and high-accuracy performance is another crucial aspect of developing in-

door navigation and tracking systems. In applications like healthcare and emergency response, any

delays or inaccuracies in localization and tracking can have severe consequences. Therefore, the

system must be meticulously designed to deliver reliable and timely information to users, priori-

tizing the requirements of these critical scenarios.

3.3 Research Challenges

The problem of developing an indoor navigation and tracking system using wireless commu-

nication technology is challenging due to several reasons:

1. Complex indoor environments: Accurately locating and tracking users in indoor environ-

ments can be challenging due to the presence of various obstacles like walls, doors, and

furniture. These physical structures can obstruct or reflect wireless signals, leading to sig-

nal degradation and interference. Consequently, the performance of indoor localization and

tracking systems can be compromised, making it difficult to achieve precise and reliable

results. Overcoming the effects of these obstacles requires innovative techniques and algo-

rithms that can mitigate signal interference and effectively navigate through complex indoor

environments.

2. Interference and noise: Interference and noise from various electronic devices can signif-

icantly impact wireless signals used for indoor localization and tracking. Common devices

like WiFi routers, Bluetooth devices, and microwaves emit signals that can interfere with the

signals used for positioning. This interference introduces errors and inaccuracies in the loca-

tion and tracking data, making it challenging to obtain precise and reliable information about

the user’s position. Developing robust algorithms and signal processing techniques that can

mitigate the effects of interference is essential for improving the accuracy and performance

of indoor navigation and tracking systems.
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3. Limited accuracy and range: The current wireless communication technologies, including

Bluetooth and WiFi, have certain limitations in terms of accuracy and range when it comes

to indoor location and tracking. These technologies are primarily designed for general-

purpose communication rather than precise positioning applications. As a result, they may

not provide the level of accuracy required for detailed indoor localization. The accuracy of

Bluetooth and WiFi-based systems can be affected by factors such as signal strength, signal

propagation characteristics, and environmental conditions. The range of these technologies

is also limited, which means that their signals may not propagate well through walls or other

obstacles commonly found in indoor environments. These limitations can lead to reduced

accuracy and reliability in indoor locations and tracking systems based solely on Bluetooth

or WiFi.

4. Privacy and security concerns: The deployment of indoor navigation and tracking systems

raises valid concerns regarding privacy and security, particularly in sensitive environments

like hospitals or military facilities. It is crucial to address these concerns and implement

measures to ensure the security and privacy of user data. To safeguard privacy, data collection

should be conducted in a transparent and consent-driven manner. Users should have control

over the collection, storage, and usage of their personal information. Implementing strong

data encryption techniques and secure communication protocols can help protect sensitive

data from unauthorized access or interception.

5. Real-time performance requirements: Real-time performance is a critical requirement for

many indoor navigation and tracking applications. The system must be capable of provid-

ing timely and up-to-date information to users, especially in time-sensitive scenarios such

as emergency response or logistics operations. However, achieving real-time performance

while ensuring accuracy and reliability is a significant challenge that needs to be addressed.
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3.4 Research Objectives

The main objective of this study is to develop an indoor navigation and tracking system using

wireless communication technology that provides accurate and reliable localization and tracking

in complex indoor environments. The specific objectives are:

• To review the literature and identify the current state-of-the-art indoor navigation and track-

ing systems using wireless communication technology.

• To evaluate the strengths and weaknesses of different wireless communication technologies

for indoor navigation and tracking.

• To develop new algorithms and techniques to improve the accuracy and reliability of indoor

navigation and tracking systems in complex indoor environments.

• To test the performance of the indoor navigation and tracking system in real-world indoor

environments and evaluate its effectiveness.

• To explore the potential applications of indoor navigation and tracking systems in different

fields and identify the practical benefits.

• To design the indoor navigation and tracking system to provide real-time and high-accuracy

performance.

3.5 Significance of the Study

The development of an indoor navigation and tracking system using wireless communication

technology holds immense practical significance across diverse fields, including healthcare, logis-

tics, retail, and manufacturing. By enhancing the accuracy and reliability of indoor navigation and

tracking, this research endeavor can greatly contribute to the improvement of safety, efficiency, and

productivity within indoor environments. The outcomes of this study have the potential to offer
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valuable insights into the strengths and limitations of various wireless communication technolo-

gies employed for indoor localization and tracking purposes. These insights can serve as guiding

principles for the development of future systems in this domain. Moreover, this study adds to

the existing body of academic literature on indoor navigation and tracking systems, establishing

a solid foundation for further research endeavors in this rapidly evolving field. Through collab-

orative efforts, advancements in wireless communication technology, and continuous exploration

of innovative solutions, the potential for revolutionizing indoor navigation and tracking systems is

substantial.
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Chapter 4

Related Work

In indoor localization, two approaches are commonly used: machine learning and filter-based

methods. Machine-learning methods involve the application of supervised and unsupervised learn-

ing techniques. Traditional supervised machine learning algorithms such as Support Vector Ma-

chines (SVM), K-Nearest Neighbors (KNN), Naive Bayes, and decision trees effectively address

data extraction, matching, and indoor localization classification challenges. These methods require

a training phase where a model is built based on labeled data. The model learns the mapping rela-

tionship between input features (e.g., RSSI measurements) and the corresponding output (e.g., lo-

cation coordinates) by analyzing hidden layers within the network architecture. This trained model

can then be used for accurate localization during online testing. With the increasing complexity of

indoor networks and the availability of larger datasets, more advanced supervised machine learning

techniques based on neural networks (NN) have been proposed.

Architectures such as Artificial Neural Networks (ANN), Convolutional Neural Networks

(CNN), Deep Neural Networks (DNN), and Recurrent Neural Networks (RNN) offer improved

capabilities for learning complex relationships in data. These models excel at feature extraction

and representation learning, enhancing localization accuracy. The training phase, which involves

optimizing network parameters, allows for rapid learning and the development of reliable models

for subsequent online testing. Fingerprinting techniques have also gained prominence in machine

learning-based localization.

These methods utilize collected Received Signal Strength Indicator (RSSI) data or employ

RSSI prediction techniques to create a fingerprint database. During the testing phase, the col-

lected RSSI measurements are matched against the pre-built database to estimate the position
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accurately. Fingerprinting techniques have shown superior performance in complex network sce-

narios where traditional trilateration methods may be limited. In contrast to supervised learning,

unsupervised methods are employed for dynamic updates of network weights or biases in real-time

online phases, reducing the need for extensive training.

These unsupervised methods, such as clustering algorithms like K-means or expectation-

maximization and anomaly detection techniques like isolation forest, allow for autonomous adap-

tation and learning from data during online testing. They eliminate the necessity for manual pa-

rameter updates and are well-suited for scenarios where the network environment is subject to

changes or where labeled training data is scarce. Machine-learning methods, both supervised and

unsupervised, offer powerful tools for indoor localization. They enable accurate positioning by

leveraging training data, pre-built fingerprint databases, and dynamic online learning, contributing

to enhanced localization accuracy, adaptability, and autonomy in indoor environments.

Role of Machine Learning

Machine learning (ML) methods play a crucial role in indoor localization and typically in-

volve an offline training phase followed by a validation or testing process. In the training phase,

a substantial amount of collected data is utilized to update and optimize the parameters of the ML

model, including weights and biases. This iterative process helps improve the model’s performance

by learning patterns and relationships within the data. The remaining data is reserved for system

verification and position prediction, ensuring the effectiveness of the trained system in real-world

scenarios. ML methods can be categorized into supervised and unsupervised approaches. In su-

pervised learning, algorithms such as artificial neural networks (ANN) [11], K-nearest neighbors

(KNN) [12], decision trees [13], and support vector machines (SVM) [13, 14, 15] are employed.

These methods utilize labeled data, where the input features like received signal strength indica-

tion (RSSI) or distance measurements, are associated with known positions or classes. The ML

model learns to classify or regress the data, refining the RSSI or distance information to improve

the accuracy of trilateration or other positioning techniques.
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Unsupervised learning methods, on the other hand, do not rely on labeled data. Instead, they

leverage clustering algorithms like K-means [16] or expectation maximization (EM) to uncover

patterns and structures within the unlabeled data. These methods enable real-time trilateration

and positioning without human intervention, making them suitable for dynamic environments or

scenarios where labeled training data is limited. Using ML techniques in indoor localization offers

promising solutions for robust and efficient positioning. By leveraging the power of supervised

and unsupervised learning, ML methods can enhance the accuracy and reliability of trilateration,

facilitate real-time localization without human intervention, and adapt to changing environments

or network conditions. This enables more robust and efficient indoor localization systems that can

meet the demands of various applications and scenarios.

Neural Networks

Neural networks (NN) have emerged as a prominent branch of machine learning (ML) meth-

ods extensively explored for indoor localization. These NN architectures, including feed-forward/artificial

neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks (RNN),

and deep neural networks (DNN), have shown great promise in improving the accuracy and ro-

bustness of indoor localization systems. Feed-forward neural networks (ANN) consist of intercon-

nected layers of neurons, where information flows in a unidirectional manner from input to output.

They can learn complex relationships between input features and output predictions, making them

suitable for tasks such as regression and classification in indoor localization.

Convolutional neural networks (CNN), on the other hand, are specifically designed for pro-

cessing structured grid-like data, such as images or sensor data like RSSI features. They utilize

convolutional layers to automatically extract spatial features from the input data, enabling effec-

tive feature representation and localization in scenarios where spatial information plays a crucial

role. Recurrent neural networks (RNNs) are well-suited for processing sequential data and cap-

turing temporal dependencies. They have been successfully applied in indoor localization tasks

where the temporal evolution of sensor data, such as time-series RSSI measurements, is essential
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for accurate positioning. However, it can encounter issues like the vanishing gradient problem and

difficulty processing lengthy sequences.

Deep neural networks (DNN) refer to neural networks with multiple hidden layers. Deep

learning techniques, enabled by DNN architectures, have revolutionized the ML field and have

been extensively used in indoor localization. By incorporating more hidden layers, DNNs can learn

hierarchical representations of the input data, allowing for better feature extraction and higher-level

abstractions. Consequently, DNN is often combined with other ML methods like CNN and SVM

for complex localization scenarios [6].

Ultrasonic and InfraRed

In recent times, there has been a growing interest in accurately estimating the indoor position

of mobile devices, given their wide range of applications in today’s world. Numerous technologies

have been employed to address this challenge, including ultrasonic [17, 18], InfraRed (IR) [19],

ultra-wideband (UWB, IEEE 802.15.4a) [20], WiFi (wireless local area network IEEE 802.11)

[21] and Bluetooth [22].

Ultrasonic and infrared (IR) approaches offer a cost-effective solution with high precision

but usually only provide proximity detection and rely on a direct line of sight (LOS) between the

transmitter and receiver. In contrast, technologies like WiFi and Bluetooth, commonly used for

proximity beacons, have limitations. Bluetooth, for example, has a shorter range of typically 5-10

meters, necessitating a dense deployment of nodes to cover larger nodes.

Ultra-Wideband (UWB) technology provides excellent ranging accuracy but suffers from a

low data rate and a limited installed base. On the other hand, WiFi positioning holds significant ap-

peal due to the widespread deployment of WiFi-enabled devices. Substantial existing WiFi devices

make WiFi-based positioning particularly attractive and promising for indoor location estimation

[23]. Indoor localization techniques encompass a variety of methods, some of which include wifi-

based localization, Bluetooth-based localization, inertial measurement unit (IMU) localization,

visual-based localization, ultrasonic-based localization, magnetic field-based localization, radio
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frequency identification (RFID) localization, dead reckoning localization, and optical-based local-

ization. The underlying principles of these techniques vary and can be used alone or in combination

to achieve accurate indoor localization.

Digital Fingerprinting

Digital fingerprinting is undoubtedly a popular technique used to tackle the challenge of in-

door localization. In a fingerprinting-based approach, a comprehensive database is initially con-

structed by capturing detailed measurements of the indoor environment. Subsequently, real-time

location inference is acquired by comparing newly collected measurements with the data stored

in the database [24]. The process typically involves the following steps: Database Construction,

Fingerprinting, and Comparison and Inference. By employing this digital fingerprinting approach,

indoor localization systems can leverage the previously collected data to estimate the real-time

location of mobile devices within the indoor environment.

Numerous indoor fingerprinting systems currently use WiFi-received signal strength (RSS)

values as the basis for their fingerprints. This approach is popular due to its simplicity and minimal

hardware requirements. An example of such a system is Radar, the first fingerprinting system to

utilize RSS and employ a deterministic method for location estimation [25].

RSS Methods

Radar’s use of WiFi RSS fingerprints and deterministic location estimation provides a prac-

tical and efficient approach to indoor localization. However, it’s worth noting that other finger-

printing systems may employ variations or incorporate additional factors to enhance accuracy or

overcome limitations associated with WiFi RSS-based techniques. An example of an RSS-based

approach is Horus, which utilizes a probabilistic method to achieve better localization accuracy

compared to Radar [26]. However, RSS-based methods suffer from two main disadvantages.

Firstly, RSS values exhibit high randomness, and their correlation with propagation distance is
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weak due to effects such as shadowing fading and multipath interference. Secondly, RSS val-

ues provide only coarse information obtained by averaging the amplitudes of all incoming signals

without utilizing channel information from different subcarriers. Consequently, localization based

solely on RSS values often leads to suboptimal performance [24].

Compared to RSS-based methods, fingerprinting techniques that utilize CSI offer potential

advantages in higher localization accuracy. By leveraging the detailed channel information, such

as amplitude, phase, and frequency response, the system can overcome the limitations associated

with RSS-based methods, including the randomness of RSS values and the lack of fine-grained

distance estimation.

RSSI (Received Signal Strength Indication) is widely used as a significant indicator for indoor

positioning. It is a valuable metric for estimating the distance between anchor points and the

current position, particularly in distance-based localization models like trilateration. Accumulating

RSSI measurements from multiple anchor points can help the system estimate the distance or range

between each anchor point and the target device. These distance estimates are then used to calculate

the device’s position using trilateration algorithms or other distance-based localization models.

While RSSI measurements are susceptible to various challenges in indoor environments, such as

interference, multipath effects, noise, and changing channel conditions, recent research has focused

on complementing RSSI with CSI (Channel State Information) to enhance the precision of indoor

localization [27]. CSI provides more detailed information about the wireless channel, including

amplitude, phase, and frequency response. With the incorporation of CSI alongside RSSI, indoor

localization systems can benefit from a richer dataset that captures the various complexities of the

wireless channel.

Incorporating additional measurement parameters alongside RSSI and CSI like RTT, DOA

(Direction of Arrival)/AOA (Angle of Arrival), TDOA, and TOA [28, 29] can provide a more

comprehensive and multi-dimensional view of the wireless signals in the indoor environment.

Localization algorithms that account for these parameters can leverage the extra information to
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enhance accuracy and robustness, especially in challenging scenarios with multipath propagation,

interference, and dynamic channel conditions.

Inertial Measurement Units

Indoor location tracking can be achieved using inertial sensor units (IMUs), which provide

motion and orientation information. While IMUs can offer comparable or higher accuracy com-

pared to WiFi-based techniques, they come with a higher cost due to specialized hardware require-

ments. IMUs also suffer from error accumulation over time and require periodic recalibration. In

contrast, WiFi-based techniques utilizing RSSI or CSI are more cost-effective, leveraging existing

infrastructure and devices. The choice between IMU-based and WiFi-based approaches depends

on specific requirements, budget constraints, and the desired trade-off between accuracy and cost

in the given indoor localization scenario.

Indoor localization techniques using off-the-shelf smartphone sensors, like SmartPDR [30],

have inconsistent accuracy due to sensor limitations and environmental factors. Efforts are un-

derway to improve reliability through sensor fusion and advanced algorithms. SmartPDR utilizes

smartphone sensors like accelerometers, gyroscopes, and magnetometers for traditional dead reck-

oning. It employs step event detection, heading direction estimation, and step length estimation

to compute displacement. However, the accuracy of SmartPDR’s indoor localization model can

be affected by sensor limitations and environmental factors. Enhancements are being explored to

improve reliability and accuracy through sensor fusion and advanced algorithms.

Trilateration Method

Trilateration, a classic geometric-based approach for indoor localization, faces challenges

due to multipath effects, nonlinear interference, and noise in raw data (e.g., RSSI measurements).

Additional processing and classification are required to minimize localization errors caused by

these factors. The survey encompasses techniques for LOS (light-of-sight) and NLOS (non-line-

of-sight) scenarios, considering diverse indoor network structures and channel conditions. The
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authors investigate various input measurement data types, including RSSI, TDOA, DOA, and RTT,

and their applicability to different application scenarios.

The survey discusses RSSI-based fingerprinting techniques employing supervised machine

learning methods such as SVM, KNN, and NN, primarily focusing on the offline training phases.

Additionally, utilizing unsupervised methods like isolation forest, k-means, and expectation max-

imization enhances localization accuracy during online testing phases. The survey extensively

explores Bayesian filtering methods, encompassing linear Kalman filters (LKF) and nonlinear

stochastic filters like extended KF, cubature KF, unscented KF, and particle filters. The paper

emphasizes the suitability of nonlinear methods for dynamic localization models. It goes beyond

localization accuracy to discuss significant performance features including scalability, stability, re-

liability, and algorithmic complexity. The paper takes a comprehensive perspective to compare

existing techniques and practical localization models, aiming to improve localization accuracy

while simultaneously reducing system complexity [6].

Filter-Based Methods

Filter-based methods, such as the particle filter (PF) and Kalman filter (KF), are widely used

in indoor localization and offer practical solutions to estimate the position and trajectory of a

mobile device. These methods typically involve three main steps: prediction, measurement, and

assimilation. The Kalman filter is a widely adopted filter-based method that operates under the

assumption of a linear system model and Gaussian noise. It uses a uni-modal Single Gaussian

Model (SGM) to represent the state estimate and provides an optimal solution for linear systems.

The Kalman filter relies on linear functions and matrix operations to update the state estimate based

on prediction and measurement information. However, its performance can be limited in strongly

non-linear scenarios where the linear assumption does not hold.

The extended Kalman filter (EKF) is commonly used in indoor localization to address the non-

linearity challenge. The EKF approximates non-linear functions through linearization, enabling the

estimation of non-linear state dynamics. It operates by propagating the mean and covariance of the
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state estimate through a series of linear transformations. While the EKF can handle non-linear

systems, it may suffer from performance degradation if the linearization introduces significant

errors. An alternative to the EKF is the unscented Kalman filter (UKF), which offers a sub-optimal

solution for non-linear indoor localization. The UKF avoids the linearization step and directly

approximates the probability distribution using a set of carefully chosen sigma points. These sigma

points capture the mean and covariance information and propagate through non-linear functions,

resulting in more accurate state estimation compared to the EKF. The UKF is particularly suitable

for scenarios with moderate non-linearities, where the linearization assumption of the EKF may

not hold [6].

Indoor Positioning

With the recent surge in interest regarding indoor localization, a multitude of research endeav-

ors have emerged, seeking to leverage the currently available technology to tackle this challenge.

In contrast to outdoor localization, where GPS-assisted methods have proven effective, they fall

short in providing accurate indoor positioning. This disparity primarily arises from the restricted

coverage range of indoor networks and the complexities associated with channel fading issues. As

a result, several studies are exploring alternative approaches and innovative techniques to overcome

these limitations and improve the accuracy of indoor localization systems. The field of indoor lo-

calization has witnessed the emergence of various technologies [31, 32, 33] playing significant

roles in achieving accurate positioning. Prominent among these technologies are WiFi, Bluetooth,

Zigbee, UWB (Ultra-wideband), RFID (Radio-identification), Ultrasound, and iBeacons.

These technologies have garnered attention and are actively utilized in diverse indoor local-

ization applications, each offering unique advantages and addressing specific requirements based

on factors like range, precision, power consumption, and deployment flexibility. The availability of

multiple options allows for choosing the most suitable technology depending on the specific needs

and constraints of the indoor localization scenario. Indoor positioning can be classified into two
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distinct categories: Line of Sight (LOS) and Non-Line of Sight (NLOS), based on the deployment

and coverage range of access points (APs) within the indoor environment.

When analyzing localization in these scenarios, it becomes crucial to consider a myriad of

attenuation and channel models influenced by factors such as the presence of obstacles like walls,

including their number, thickness, and material properties. To accurately estimate distances, it is

essential to collect distance indication data while accounting for these attenuation factors within

different fading channel scenarios. This enables more robust and reliable indoor localization by

accounting for the impact of obstacles and channel conditions on the propagation of wireless sig-

nals.

Our Indoor Localization technology

Our indoor localization technique is based on the standard IEEE 802.11 WLAN protocols,

particularly the IEEE 802.11mc amendment, published as an amendment to the 802.11−2012 pro-

tocol and eventually included in the 802.11−2016 WLAN standard protocol. The IEEE 802.11mc

protocol was proposed to enhance the time measurement technique previously introduced in IEEE

802.11v and was named the fine time measurement (FTM) technique. The FTM technique revolu-

tionizes distance measurement in indoor localization by addressing the limitations of the traditional

received signal strength indication (RSSI) technique, known for its susceptibility to various envi-

ronmental factors and inaccuracies. By incorporating time-of-flight measurements, FTM enables

WiFi devices to determine their distance from an access point with improved precision.

The FTM technique measures the duration of a frame to travel through the air between a WiFi

device and an access point. This time measurement is then utilized to calculate the distance be-

tween the device and the access point. By performing these distance measurements with multiple

access points whose locations are known, the precise location of the WiFi device can be determined

[1] through techniques such as trilateration or fingerprinting. This breakthrough in indoor local-

ization has been implemented in Android smartphones, including the flagship smartphone Google
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Pixel 2, which leverages the WiFi-based FTM feature. This capability enables smartphones to ac-

curately measure the distance between the device and an access point or between two smartphones.

By utilizing FTM and the standardized IEEE 802.11mc protocol, our indoor localization technique

offers enhanced accuracy and reliability for various applications and scenarios.
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Chapter 5

System Design

In this chapter, we will delve into the design of our indoor localization technique, which uti-

lizes smartphone-based IEEE 802.11mc fine time measurement (FTM). The significance of indoor

navigation and tracking systems in various applications today cannot be overstated. Our indoor

localization design encompasses three key techniques: Android WiFi Aware technology, Android

WiFi Fine Time Measurement (FTM) based on round trip time computation, and a location estima-

tion algorithm employing the Trilateration/Multilateration technique along with the sophisticated

grid method algorithm. The subsequent sections of this chapter will provide a comprehensive

overview of each of these techniques, outlining their functionalities and implementation details.

5.1 Android WiFi Aware Technology

Our indoor localization technique was specifically designed for the Android operating sys-

tem, leveraging the capabilities of standard WiFi Aware and WiFi location with RTT techniques

available in the Android 9.0 OS, also known as Android Pie [34]. The WiFi RTT feature, which

forms the foundation of our technique, is based on the fine time measurement (FTM) technique

standardized by the IEEE 802.11mc protocol in the 802.11 − 2016 WLAN protocol. While the

WiFi RTT feature can be utilized independently without the support of WiFi Aware, we inte-

grated the WiFi Aware technique into our approach to enable connectivity between smartphone

devices solely through WiFi, without the need for access points or additional infrastructure modi-

fications. By incorporating WiFi Aware, smartphone devices can seamlessly discover and connect

with neighboring devices, even operating in ad-hoc mode, without relying on an access point for

routing purposes.
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Our technique utilizes the WiFi Aware service to facilitate device discovery, while the WiFi

RTT technique is employed to measure the round trip times (RTTs) and calculate the distance be-

tween each device within the cluster. This combined approach enables our technique to accurately

estimate distances and establish connectivity among devices, enhancing the overall effectiveness

and functionality of our indoor localization system.

The Android Aware system is a feature within the Android operating system that empowers

applications to gather information about the user’s surroundings and context. This includes data

such as the user’s location, activity level, nearby Bluetooth devices, and other environmental fac-

tors. By providing a set of application programming interfaces (API), the Android Aware system

allows developers to create context-aware apps that can adapt to the user’s current situation and

deliver personalized experiences. With the Aware API, developers can build apps that dynamically

adjust their settings based on the user’s location or activity or provide relevant notifications based

on nearby Bluetooth devices. The Android Aware system prioritizes user privacy, ensuring that

users have control over which apps can access their contextual data and the ability to revoke access

at any time.

In terms of networking, the WiFi Aware feature operates by forming clusters with neighboring

devices or creating a new cluster if the device is the first in a given area. This clustering behavior

is managed by the WiFi Aware system service, with apps having no control over it. The cluster-

ing mechanism applies to the entire device, facilitating communication and interaction between

devices in the vicinity. By leveraging the Android Aware system and its networking capabilities,

developers can create innovative apps that make use of contextual information to enhance the user

experience while maintaining user privacy and control over their data [35].

A network cluster is a group of interconnected devices or computers that work together to

perform a specific task or provide a specific service. The devices in a network cluster typically

communicate with each other to coordinate their activities and share resources. An Android Aware

network cluster refers to a group of interconnected devices or computers running the Android

operating system, that are able to communicate with each other and share contextual data using
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the Android Aware feature. Such a network cluster could be used, for example, to enable context-

aware services or applications that rely on shared contextual data from multiple devices in the

network. In our system, we use android aware network cluster to manage the network and to

discover the nearby devices that are within this network cluster. The smartphones in these network

clusters are divided into 2 types based on their functionality. A publisher is a smartphone in an

android aware network cluster capable of broadcasting messages to all the subscribers within the

same network. And a subscriber is a smartphone in an Android aware network cluster capable

of receiving broadcast messages from all the publishers within the same network. Once the WiFi

Aware technique is turned on, the device is capable of becoming either a publisher or a subscriber

of a WiFi Aware cluster network. In our indoor localization system design, we made the reference

nodes (smartphone devices that have already obtained their indoor location) publishers and the

target nodes (smartphone devices that are seeking their indoor location) as subscribers.

Within the network cluster, there can be multiple publishers and subscribers. Publishers have

the ability to broadcast messages to subscribers, allowing them to subscribe and establish a con-

nection. When a subscriber chooses to subscribe to a publisher, a PeerHandle is generated by the

publisher. The subscriber can then use this PeerHandle to establish a connection or send messages

to the publisher even without a formal connection. In our indoor localization system, we utilize

this generated PeerHandle to facilitate round-trip time communication and compute the distance

between the publisher and subscriber. The publisher broadcasts messages to make all in-range

subscriber smartphones aware of its presence, typically for a duration of 15 to 20 seconds. If a

subscriber intends to communicate with the publisher, a PeerHandle is generated to facilitate the

connection. Otherwise, the publisher smartphone goes dormant until it is reactivated to broadcast

messages. This approach helps conserve battery power as continuous broadcasting would consume

a significant amount of energy. However, for our experiments focusing on testing the accuracy of

the indoor localization system, battery performance is not a primary concern. Thus, we periodically

reactivate the publisher smartphone to continuously broadcast messages during these experiments.
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The content of the publisher’s broadcast message can vary based on the specific application

requirements. For example, it can include a simple greeting message, the name of the network

cluster, or information related to a specific hospital ward. In our system, we include the position

information of the publisher smartphone within the broadcast message. This position information

plays a crucial role in determining the location of the subscriber smartphone using the round trip

time distance computed using the Android WiFi Fine Time Measurement (FTM) technique.

Upon receiving a broadcast message from a publisher, the subscriber smartphone has two

options: it can choose to subscribe to the publisher, establish a connection for communication, or

it can directly perform the WiFi Fine Time Measurement (FTM) technique to compute the distance

to the publisher smartphone. In our system, we opt for the latter approach, calculating the distance

between the subscriber and publisher directly without establishing a connection. This method

allows us to avoid the time delays associated with connection handshaking.

A subscriber smartphone has the capability to perform the FTM technique with multiple pub-

lishers simultaneously, enabling distance calculations between the subscriber and each respective

publisher smartphone. Once the subscriber has performed the FTM with at least three publisher

smartphones, it can proceed with the localization grid method to compute the location. It is im-

portant to note that only three publishers in-range are required to achieve an acceptable level of

location accuracy. Increasing the number of publishers in range can further enhance the accuracy

of localization. However, there is a tradeoff between the number of publishers and the perfor-

mance of the system. As the number of publishers increases, the time required for the subscriber

to collect all the FTM distances also increases, potentially leading to a decrease in overall system

performance. Thus, finding the right balance is crucial to ensure optimal accuracy and system

efficiency.

In our system design, we have established criteria to determine whether a smartphone will

function as a publisher or a subscriber. Within an Android WiFi Aware network cluster, smart-

phones that have already determined their locations are designated as publisher smartphones.

These publishers play a crucial role in assisting the subscriber smartphones in computing their
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own locations using the WiFi Fine Time Measurement (FTM) technique and the localization grid

method algorithm. On the other hand, smartphones that have yet to determine their locations within

the network cluster are classified as subscriber smartphones. These subscribers opportunistically

communicate with the publisher smartphones and leverage the FTM technique to compute their

own locations. By distinguishing between publishers and subscribers, our system optimizes the

utilization of available resources and ensures efficient collaboration among smartphones in the

network cluster. This division of roles facilitates the accurate determination of locations for all

smartphones involved in the indoor localization process.

When a subscriber smartphone establishes communication with a publisher smartphone in

our system, the publisher smartphone generates a PeerHandle for identification purposes. This

choice of using a PeerHandle instead of the MAC address of the smartphone is driven by privacy

concerns. MAC addresses are unique to each smartphone and cannot be changed, making them

potentially traceable to individual users. In contrast, PeerHandles offer a higher level of privacy

protection. They are periodically updated each time they are generated, which is an inherent fea-

ture of the Android Aware network system. This mechanism helps to safeguard the privacy of

users by ensuring that their identities remain protected during communication within the network

cluster. By using PeerHandles instead of MAC addresses, our system prioritizes user privacy while

maintaining effective communication between smartphones.

The android WiFi aware APIs let apps perform the following operations:

Discover other devices

The Android Aware API provides a mechanism for discovering nearby devices within a net-

work cluster. The process begins with a device publishing one or more discoverable services.

When another device subscribes to one or more of these services and enters the Wi-Fi range of the

publisher, the subscriber receives a notification indicating the discovery of a matching publisher.

Once the subscriber identifies a publisher, it has two options: it can either send a short message

to the publisher or establish a network connection with the discovered device. This bidirectional
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communication allows devices to concurrently act as both publishers and subscribers within the

network cluster. By utilizing this API, our system enables devices to efficiently discover and in-

teract with each other based on their published services, facilitating seamless communication and

collaboration within the indoor localization network.

Create a network connection

Once two devices have discovered each other using the Android Aware API, they can estab-

lish a bi-directional Wi-Fi Aware network connection without the need for an access point. This

means that the devices can directly communicate with each other using Wi-Fi technology, forming

a network between themselves. The establishment of this network connection allows for efficient

and direct data exchange between the two devices, enabling seamless communication and collab-

oration. This capability enhances the functionality of our indoor localization system, as it enables

devices within the network cluster to exchange important information for localization purposes

without relying on external infrastructure or intermediaries.[35]

5.2 Android WiFi Fine Time Measurement (FTM) based on Round trip time computation

The introduction of the IEEE 802.11mc fine time measurement (FTM) feature in the WiFi

standard has revolutionized indoor localization capabilities. By leveraging round-trip time (RTT)

measurements, FTM enables precise location determination in indoor environments. It achieves

this by utilizing time stamps in Wi-Fi frames to estimate the time of flight of signals between

mobile devices and Wi-Fi access points. The IEEE 802.11mc amendment encompasses various

other features besides FTM. For instance, enhanced beacon frames provide more accurate and

frequent updates of access point locations. Additionally, a standardized interface facilitates the

exchange of location information between devices and access points. These advancements have

greatly enhanced the accuracy and efficiency of indoor localization, opening doors to applications

like asset tracking, indoor navigation, and location-based services.
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Android has integrated the IEEE 802.11mc FTM technique into its operating system, making

it readily accessible to developers through the LocationManager API. When an Android appli-

cation requests location updates, the LocationManager triggers a signal to nearby Wi-Fi access

points. These access points respond with Wi-Fi frames that include time stamps. Android utilizes

these timestamps to calculate the RTT of the signal and, subsequently, the distance between the

mobile device and the access point, taking the speed of light into account. Notably, this com-

munication can occur directly between Android smartphone devices in ad-hoc mode, eliminating

the need for access points. The Android LocationManager API provides access to both raw FTM

measurements and location estimates derived from these measurements. This integration empow-

ers developers to leverage FTM for indoor localization within their applications, enhancing user

experiences and enabling a wide range of location-based functionalities.

The Android WiFi Fine Time Measurement (FTM) technique, available in the Android 9.0 op-

erating system, allows for distance measurement between a smartphone device and a WiFi Round

Trip Time (RTT) capable access point (AP), or between peer WiFi Aware devices. This is achieved

by computing the RTT through the packet travel between devices, as illustrated in Figure 5.1.

When the communication is between a smartphone and an access point, only the smartphone

is capable of measuring the distance. This approach maintains the privacy of smartphone devices.

However, in our indoor localization technique, we leverage the WiFi Aware technique discussed

earlier in Section 5.1 for discovery and connectivity among peer smartphone devices. This in-

troduces trust within the network cluster, enabling any smartphone device within the cluster to

compute the distance using the WiFi RTT technique [36]. To address the time clock synchronicity

issue, we cannot solely rely on one-way time differences to compute the distance between smart-

phones. Instead, we employ the Round-Trip-Time (RTT) measurement, as depicted in Figure 5.1.

Synchronizing time clocks on smartphone devices would require significant processing power and

drain battery life extensively. In RTT estimation, the clock offset is opposite when the signal trav-

els back from the smartphone or access point compared to the initial request, allowing for accurate

distance calculations.
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Figure 5.1: WiFi Fine Time Measurement (FTM) using Round Trip Time (RTT) estimation

The RTT measurement technique is a fundamental component of the IEEE 802.11mc WiFi

protocol’s Fine Time Measurement (FTM) technique [37]. It overcomes the challenges of time

clock synchronization and enables precise distance measurements, contributing to the overall ac-

curacy and reliability of our indoor localization system.

2 ∗ d = ((t4 − t1)− (t3 − t2)) ∗ c (5.1)

The fine time measurement (FTM) is computed according to Equation 5.1. In this equation,

d represents the distance between two WiFi Aware smartphone devices, and t1, t2, t3, and t4 rep-

resent the timestamps captured at each interval of the FTM technique, as illustrated in Figure 5.1.

The speed of light is denoted by c.

In our indoor localization design, once the Android WiFi Aware connection is established and

the publishers are part of the cluster, the target node (subscriber) is designated as the master. The

master initiates the WiFi RTT communication to estimate the distance by collecting the RTT data

from the reference nodes (publishers), which act as slaves in this context.
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5.3 Location Estimation Algorithm based on GPS Trilateration

Indoor GPS navigation is known to be unreliable and performs poorly due to the limited pen-

etration of satellite signals inside buildings [38]. While GPS cannot be used effectively indoors,

our indoor navigation technique employs a trilateration method similar to GPS. By utilizing An-

droid WiFi Aware and Android WiFi RTT techniques, we can calculate the distances between the

target node (master) and the reference nodes (slaves). Once we have obtained these distances using

the WiFi RTT technique from three or more neighboring devices within the WiFi Aware network-

ing cluster, we apply the multilateration technique, illustrated in Figure 5.2, which is akin to the

GPS positioning technique. This allows us to determine the location of the target node (master).

In Figure 5.2, R1, R2, and R3 represent the reference nodes with locations (x1, y1), (x2, y2), and

(x3, y3), respectively, while T represents the target node with location (xT , yT ). Assuming that the

distances between the reference nodes and the target node are denoted as d1, d2, and d3 for R1, R2,

and R3 respectively, the location of the target node T can be computed using Equation 5.2.

Figure 5.2: GPS Trilateration technique
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(xT − x1)
2 + (yT − y1)

2 = d21

(xT − x2)
2 + (yT − y2)

2 = d22

(xT − x3)
2 + (yT − y3)

2 = d23

(5.2)

Once the distances between the target node and the reference nodes are determined using

Equation 5.1, our indoor localization technique proceeds to compute the location of the target

node using a location estimation algorithm. This algorithm solves an optimization problem that

arises from the intersection of circles formed by taking the distance between the target node and

reference nodes as the radii, and the reference node locations as the centers. Ideally, if all these

circles intersect at a single point, it would represent the estimated location of the target node.

However, in real-world scenarios, such a perfect intersection is rare due to various factors.

To solve this optimization problem, we employ the concept of the center of gravity. This

technique helps to reduce the error in the location estimation by considering the center of gravity

as the result. The center of gravity (COG) is akin to the centroid of a cluster of points, assuming

each point has unit mass. It should be noted that the center of gravity and center of mass for any

arbitrary body are equivalent. In our technique, we utilize the COG method to calculate the center

of a cluster of target node positions generated after each iteration, utilizing Equation 5.3.

C =

∑N
i=1 Pi

N
(5.3)

In Equation 5.2, C represents the Center of gravity of the cluster of estimated target node po-

sitions, N is the total number of iterations/Grid Points and Pi is the target node position coordinate

of the ith iteration.

5.4 Sophisticated Grid Method Algorithm

We have developed a technique called the grid method to determine the position of the target

node (subscriber smartphone) using the coordinates of the reference peer nodes (publisher smart-

phones) and the distances obtained from smartphone-based WiFi Fine Time Measurement (FTM).
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This method utilizes multilateration, where we calculate the intersection area of concentric circles

(donut circles) formed by using the coordinates of the reference peer nodes as centers and the WiFi

FTM distances as radii. To define these concentric circles or donut circles, we introduce the con-

cept of ”donut widths”. Starting with the WiFi FTM distance as the radius, we subtract 20% of

the radius to obtain the lower donut boundary and add 20% of the radius to obtain the upper donut

boundary. These boundaries delineate a ”donut-shaped” region of space around the target node

(subscriber smartphone).

These concentric circles are then overlaid onto a grid composed of 1m-by-1m grid points.

By considering only the intersection area of all the circle donuts, we focus on the region with the

highest probability of containing the position of the target node. We extract all the grid points

within this intersection area. Subsequently, we employ the Center-of-Gravity (COG) technique to

calculate the center of this cluster of grid points. This center represents the estimated position of

the target node obtained through the Grid method. Figure 5.3 illustrates the Grid method with grid

points and reference nodes using multilateration in a Matlab figure.

Figure 5.3: Plot of all the grid points in the intersection area including the reference node and real
target node positions

5.5 Modes of Operation based on Smartphone WiFi FTM technology

There are two modes of operation and the details are discussed in the following sections.
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5.5.1 Ad-Hoc Mode

The Android-aware technology enables a mode where smartphones can establish communi-

cation and compute round-trip time (RTT) data without relying on an Access Point (AP). In this

mode, smartphones can operate as either publishers or subscribers within the network. The deci-

sion to become a publisher is based on whether the smartphone’s location is known. If the location

is known, the smartphone can function as a publisher; otherwise, it will operate as a subscriber.

Publishers continuously broadcast their presence in the network, allowing subscribers to locate and

establish communication for RTT ranging. Subscribers can identify publishers using their MAC

addresses or PeerHandles, which are broadcasted by the publishers. Once a subscriber success-

fully establishes a connection with at least three publishers, it can determine its own location using

multilateration and the Grid method. After completing this process, the subscriber smartphone can

transition to becoming a publisher, offering its services to other subscribers within the network.

This mode enables smartphones to seamlessly switch between being publishers and subscribers,

facilitating efficient communication and location determination within the Android-aware network.

5.5.2 AP Mode

In this mode of communication, the process is akin to Ad-Hoc mode, but with a distinction:

instead of a Publisher, it is the Access Point (AP) that broadcasts messages in the network. The

purpose of this broadcast is to allow subscriber smartphones to discover the AP and initiate WiFi

RTT ranging. APs are WiFi routers equipped with WiFi RTT-capable hardware, while subscribers

are standard smartphones. Just like in Ad-Hoc mode, subscribers have the ability to become pub-

lishers once they compute their own location. The network can consist of a combination of APs

and publishers, providing a variety of options for subscribers to discover and range in order to

compute their respective locations. This mode facilitates efficient communication and location

determination by leveraging both APs and publishers within the network.
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5.6 Modes of Operations based on the FireFighter Localization Application

The determination of these modes of operation was based on an extensive research process

that involved conducting over a hundred in-person interviews with firefighters. The primary ob-

jective of these interviews was to gain a deep understanding of the firefighters’ work environment,

the specific rules and guidelines they follow during fire scenes, and their tasks as part of the Rapid

Intervention Team (RIT). By gathering insights directly from firefighters, we were able to identify

the most relevant modes of operation for the smartphone application. These modes were designed

to align with the specific needs and requirements of firefighters in their operational contexts. Addi-

tionally, the performance of the smartphone application and the level of accuracy required for the

position information were also taken into consideration during this research process. Overall, the

insights gathered from the interviews played a crucial role in determining the modes of operation

and ensuring that the smartphone application meets the specific needs of firefighters in terms of

performance and accuracy.

5.6.1 MayDay Mode

In the MayDay mode of operation, the smartphone application operates at its maximum per-

formance level to provide the most accurate real-time location information for all firefighters work-

ing in the fire scene environment. This mode is specifically designed for critical scenarios where

firefighters may find themselves trapped inside without a clear escape route. When a MayDay

signal is issued by the Fire Chief, indicating that a firefighter is in distress, the Rapid Intervention

Team (RIT) is deployed to locate and rescue the firefighter. The MayDay mode of the indoor local-

ization system is optimized to prioritize performance and accuracy over preserving the smartphone

device’s battery life. In this mode, the Android application works diligently to determine the most

precise position for the target node, ensuring that the RIT can quickly and accurately locate and

rescue the firefighter in need.
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5.6.2 Battery Saving Mode

In this mode of operation, the emphasis is not on achieving the highest level of accuracy in

position determination, as it is in the MayDay scenario. Instead, the focus is on balancing the ac-

curacy of the position information with the conservation of battery energy. Firefighters are actively

engaged in firefighting and rescue operations, including civilian rescue missions. Therefore, the

system operates in a mode where the collection of WiFi RTT data for position estimation is per-

formed at regular intervals rather than in real time. This approach allows for an acceptable level of

accuracy while optimizing the energy consumption of the smartphone’s battery. By collecting RTT

data periodically, the application strikes a balance between providing useful position information

and conserving the device’s battery power for extended operational duration.
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Chapter 6

Experimental Setup

6.1 Implementation

In this section, we will delve into the implementation details of our indoor localization tech-

nique. The technique can be divided into two main parts: the RTT distance estimation and the

location estimation using sophisticated algorithms. Let’s explore each part in more depth.

The first part of our indoor localization technique leverages two key technologies: Android

WiFi Aware and Android WiFi RTT. These technologies, discussed in detail in sections 5.1 and

5.2 respectively, form the foundation of our approach. Android WiFi Aware enables devices to

discover and communicate with each other without relying on an internet connection or traditional

access points. This functionality allows our system to establish communication and exchange data

between the target device and reference nodes. Android WiFi RTT, on the other hand, provides

precise distance measurement capabilities by utilizing the Round-Trip-Time (RTT) technique. It

allows us to calculate the time taken for signals to travel between the target device and reference

nodes, enabling accurate distance estimation.

By integrating these technologies, we are able to obtain reliable RTT distance estimates,

which serve as crucial input for the subsequent location estimation process. In the following sec-

tions, we will delve deeper into the algorithms and methodologies employed for location estima-

tion, enabling us to determine the precise position of the target device based on the RTT distance

data.

To evaluate the accuracy and performance of our indoor localization technique, we conducted

extensive testing at the Auburn University Shelby Center. The testing area was carefully divided

into three distinct zones, each designed to simulate different indoor scenarios and assess various

aspects of our technique.
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Figure 6.1: Auburn University Shelby Center Hallway Blueprint showing the testing location for
Line-of-Sight (LOS) Scenario

The first zone, depicted in Figure 6.1, focused on testing indoor localization in a hallway

environment. This zone allowed us to assess the accuracy and effectiveness of our technique in a

straightforward Line-of-Sight (LOS) scenario. By conducting tests in this controlled setting, we

could gather valuable data to validate our approach. Expanding beyond the hallway environment,

we proceeded to the next testing zone, as illustrated in Figure 6.2. This zone encompassed both the

multiroom and hallway areas of the Shelby Center. By incorporating multiple rooms and a hallway,

we aimed to evaluate the performance of our technique in more complex indoor environments. This
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Figure 6.2: Auburn University Shelby Center Hallway and room Blueprint showing the testing
location for non-Line-of-Sight (NLOS) Scenario

zone facilitated testing in both Line-of-Sight (LOS) and non-Line-of-Sight (non-LOS) scenarios,

simulating real-world conditions where obstacles and signal obstructions are present.

Finally, we designated a separate testing zone solely for multiroom scenarios, as depicted in

Figure 6.2. This zone allowed us to assess the performance of our technique in a setting where

multiple rooms are involved, each posing unique challenges for indoor localization. By examining

the results in this zone, we gained insights into the scalability and adaptability of our technique

when applied to larger indoor spaces. By carefully designing these testing zones and conducting

experiments within them, we were able to comprehensively evaluate the capabilities of our indoor
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localization technique across different indoor scenarios. The collected data and observations served

as a crucial basis for assessing the accuracy, robustness, and suitability of our technique for real-

world applications.

Table 6.1: Android Smartphone Specification
Specification Value
Smartphone Name Google Pixel 2
Processor Qualcomm MSM8998 Snapdragon 835
CPU Frequency 2.35 GHz
Communication Frequency 2.4 GHz
Wireless Protocol IEEE 802.11 mc
OS Kernel Android 9.0 (Pie)

Figure 6.3: Android Smartphone RTT distance estimate result

Our indoor localization technique utilizes the capabilities of Android WiFi Aware and WiFi

RTT, implemented on Google Pixel 2 smartphones running the Android 9.0 operating system, also

known as Android Pie. To develop the indoor localization application, we followed the guide-

lines provided by the Android standard development kit (SDK) using the Android Studio software

platform.
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The application interface captures the distance between smartphones and displays it on the

screen, as shown in Figure 6.3. This interface allows users to visualize the real-time distance

measurements obtained through the WiFi RTT technique.

The accuracy of the estimated location and the distance measurements using WiFi RTT are

thoroughly examined and analyzed in the Performance Analysis chapter, as referenced in Chap-

ter 7. This analysis provides detailed insights into the performance of our technique in terms of

location accuracy and RTT distance measurement accuracy.

For real-world testing, we selected smartphones that meet the necessary specifications. The

specifications of the smartphones used in our experiments are listed in Table 6.1, providing a com-

prehensive overview of the hardware details that contributed to the implementation and evaluation

of our indoor localization technique.

6.2 Case Study: Mobility Scenario Strategy

This section focuses on various indoor positioning and navigation scenarios that can poten-

tially result in poor accuracy or uncertain outcomes. We will explore the strategies employed by our

technique to address these challenges. By examining these scenarios, we aim to provide a clearer

understanding of the behavior of our smartphone-based indoor localization technique utilizing fine

time measurement (FTM).

6.2.1 What if all the reference smartphone devices are aligned in the same direction?

The GPS technique faces a particular issue called Geometric Dilution of Precision (GDOP),

as illustrated in Figure 6.4, where all the satellites align in a single direction. This alignment

prevents the trilateration technique from finding a unique intersection point to accurately determine

the location of the GPS receiver, resulting in diminished position accuracy. Consequently, the

precision of the location becomes diluted. Similarly, our localization technique may encounter

similar challenges, leading to reduced accuracy in estimating the position.
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Figure 6.4: Android Smartphone RTT distance estimate result

6.2.2 How do smartphone devices obtain their initial location information?

As mentioned previously, our technique leverages the WiFi Aware feature offered by the An-

droid operating system to discover and establish connections with nearby smartphones. To acquire

the initial location information, our technique relies on the GPS functionality present in every

smartphone device. If any device within the cluster can establish communication with a device

capable of obtaining GPS coordinates (typically located outside the building), the initial location

information is acquired through this approach. This strategy is particularly useful in firefighter

scenarios where the fire chief, who often coordinates the task from outside, can provide GPS coor-

dinates.

6.2.3 What if there is no reference smartphone device in range?

In certain scenarios, it is plausible for the target smartphone devices to be out of range from

other smartphones that can communicate using WiFi RTT technology. In such situations, the sys-

tem needs to resort to alternative techniques, such as the Pedestrian Dead Reckoning (Inertial sen-

sor units) system available in smartphones, to generate location information until a nearby smart-

phone comes within range of the target device. This scenario is often encountered in firefighter
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environments, and it is advantageous to develop a system that incorporates multiple localization

technologies to ensure a more robust and reliable solution, rather than relying solely on a single

system.

6.2.4 How many reference smartphone devices are required to obtain acceptable location

accuracy?

Through a series of extensive indoor localization experiments conducted at Auburn University

Shelby Center, we have determined that in order to achieve satisfactory location accuracy of less

than 2m, it is necessary to have at least three reference nodes within the proximity of the target

node. These reference nodes play a crucial role in providing the necessary signal measurements

and data for precise localization calculations. By ensuring the presence of a sufficient number of

reference nodes, we can enhance the accuracy and reliability of our indoor localization system.

6.3 Experimentation Setup to measure the error propagation in Smartphone WiFi RTT

localization

Error propagation refers to the phenomenon where errors that occur in one part of a system can

propagate or spread throughout the entire system, potentially causing more errors or disruptions. In

a WiFi network, error propagation can occur due to various factors such as interference from other

electronic devices, physical obstructions like walls or buildings, and distance between the access

point and the device. When errors occur in the transmission of data between the access point

and a device, they can propagate and cause further errors in subsequent transmissions, leading to

degraded network performance, dropped connections, and reduced data throughput. In a multi-

hop wireless network, error propagation can occur when a transmission error in one node can

affect the entire network. To measure error propagation in such a network, researchers typically

use simulation-based approaches that involve modeling the network and evaluating its performance

under various conditions. This involves developing simulation models that consider the network

topology, channel characteristics, and the type of error-correction scheme used in the network.
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Our error propagation system is specifically designed to assess the extent to which errors prop-

agate in the estimated location when employing smartphone-based WiFi FTM and a sophisticated

grid method. To evaluate error propagation, we introduce an error at the first hop subscriber and

measure the resulting error at each subsequent multi-hop neighbor. This enables us to determine

the propagation behavior of errors within our system. For instance, if there is a 5% estimated error

in the location of the first hop subscriber smartphone, we intentionally introduce this error into the

system when estimating the location of the second hop subscriber smartphone. We then analyze

and compare the error values obtained with and without introducing the initial error, allowing us

to calculate the percentage of error propagation throughout the system.

To conduct our experiment, we performed indoor tests involving multiple smartphones uti-

lizing WiFi FTM-based localization. Additionally, we conducted error propagation measurements

in a scenario where the first publisher smartphone obtained its location information from GPS

while situated outside the building, assisting the localization process of the subscriber smartphone

located inside. We carried out these experiments up to the fourth hop neighbor, systematically

evaluating the error propagation at each stage.
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Chapter 7

Performance Evaluation

This chapter presents the findings of a real-world experiment focused on indoor localization,

specifically utilizing Google Pixel 2 smartphones. The experiment involved measuring the Round-

Trip Time (RTT) distance using the Android WiFi RTT technique. The tests were conducted in

three distinct testing zones within the Auburn University Shelby Center, as discussed in detail in

section 6.1.

To provide a visual reference, the specific testing zones are highlighted in Figures 6.1 and

6.2, showcasing their locations on the Shelby Center blueprint map. These figures offer a clear

depiction of the areas where the experiments took place, aiding in understanding the spatial context

of the findings.

7.1 Evaluating the Effectiveness of Smartphone WiFi RTT for Precise Indoor Distance

Measurement

The initial real-world testing phase focused on evaluating the distance measurement capabil-

ities of publisher and subscriber smartphones in the Auburn University Shelby Center Hallway.

For each test, the smartphones were positioned precisely 5 meters apart, and the WiFi Round-Trip

Time (RTT) distance measurement technique was employed. During each experiment, a set of 10

RTT distance measurements were collected and recorded for analysis.

Figure 7.1 illustrates the plot of Average RTT measured distances against the corresponding

experiment numbers. These experiments were conducted on different days and involved smart-

phones positioned 5 meters apart in various sections of the hallway. Distance measurements were

quantified in millimeters.
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Analysis of the plot reveals a standard deviation of 0.56 meters for the average RTT distances,

indicating a moderate level of variation around the mean distance. Furthermore, the 95th percentile

confidence interval of 0.49 meters reflects a high level of confidence in the reliability of the RTT

measurements. This narrow range suggests that the actual average RTT distance is likely to fall

within this interval with a high degree of predictability.

However, it is important to note that experiments 1, 2, and 5 exhibit a relatively higher error

rate in the Average RTT distance measurements. These observations can be attributed to WiFi

multipath issues, as these experiments were conducted in the corners of the hallway where the

smartphones were surrounded by walls. The presence of walls introduces reflections and interfer-

ence, leading to a less accurate estimation of the RTT distance in these specific scenarios.

Figure 7.1: Auburn University Shelby Center Hallway Line-of-Sight (LOS) RTT measurement of
smartphones 5 meters apart with 95% confidence interval

The findings from Figure 7.1 are further supported by the results depicted in Figure 7.2,

which presents a similar plot with smartphones positioned 10 meters apart in the Auburn Uni-

versity Shelby Center Hallway.
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In this case, the standard deviation of the average RTT distances, as shown in the plot, is

calculated to be 0.54 meters. This indicates a comparable level of variability to the measurements

taken at 5 meters distance. Similarly, the 95th percentile confidence interval is determined to be

0.40 meters, reflecting a high level of confidence and predictability in the RTT measurements,

aligning closely with the 5-meter RTT distance measurements.

These consistent statistical measures across the two distances, 5 meters and 10 meters, provide

further assurance of the reliability and accuracy of the RTT measurements for distance estimation.

The confidence level in the RTT measurements remains consistently high regardless of the in-

creased distance between the smartphones, supporting the robustness of the WiFi RTT technique

in indoor distance measurement scenarios.

Figure 7.2: Auburn University Shelby Center Hallway Line-of-Sight (LOS) RTT measurement of
smartphones 10 meters apart with 95% confidence interval

Figure 7.3 and Figure 7.4 depict plots similar to the previously discussed figures, but with

measurements taken at distances of 15 meters and 20 meters, respectively.

In the plot representing the 15-meter distance measurement (Figure 7.3), the standard devia-

tion of the average RTT distances is calculated to be 0.62 meters. This value indicates a slightly
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higher level of variation compared to the previous distances. Furthermore, the 95th percentile con-

fidence interval for this plot is determined to be 0.46 meters, emphasizing the predictability and

reliability of the RTT measurements within this range.

Moving to the 20-meter distance measurement (Figure 7.4), the standard deviation of the

average RTT distances is found to be 0.47 meters. This value suggests a relatively lower level of

variation compared to the 15-meter distance. Similarly, the 95th percentile confidence interval is

calculated to be 0.35 meters, indicating a high level of confidence in the accuracy and reliability of

the RTT measurements within this interval.

These results demonstrate that as the distance between smartphones increases, there is a slight

increase in the variability of the average RTT distances. Nevertheless, the confidence intervals

remain relatively narrow, signifying the consistency and reliability of the RTT measurements even

at larger distances.

Figure 7.3: Auburn University Shelby Center Hallway Line-of-Sight (LOS) RTT measurement of
smartphones 15 meters apart with 95% confidence interval

Figure 7.5 presents a comprehensive comparison between the Average Round-Trip Time

(RTT) distance measurements and the actual distances of the smartphones at 5, 10, 15, and 20
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Figure 7.4: Auburn University Shelby Center Hallway Line-of-Sight (LOS) RTT measurement of
smartphones 20 meters apart with 95% confidence interval

meters. This plot enables a direct evaluation of the consistency and accuracy of the RTT distance

measurements.

Upon careful analysis, it becomes evident that the average RTT distance measurements closely

align with the real distances, as depicted by the linear line in the plot. This linear relationship in-

dicates that the average RTT distance measurements provide a reliable estimation of the actual

distances between the smartphones.

Furthermore, the standard deviations for the average RTT distances at each of the four dis-

tances are similar. Specifically, the standard deviations are calculated to be 0.41, 0.40, 0.46, and

0.35 meters for the 5, 10, 15, and 20-meter distances, respectively. These consistent standard

deviations across different distances affirm the reliability and precision of the RTT distance mea-

surements.

An additional observation from the data is that the error rate in the RTT distances is relatively

higher at lower distances between the smartphones compared to the error rate at greater distances.

This discrepancy can be attributed to the impact of multipath errors. At shorter distances, the
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influence of multipath errors is more pronounced, leading to a higher error rate in the RTT dis-

tance measurements. In contrast, at greater distances, the multipath errors become less significant,

resulting in a lower error rate in the RTT distance measurements.

In summary, the findings from this analysis highlight the consistency, accuracy, and robustness

of the average RTT distance measurements, as they closely align with the actual distances. The

similar standard deviations across different distances further reinforce the reliability of the RTT

measurements. Additionally, the observations regarding the error rates shed light on the impact

of multipath errors on RTT distance estimation, emphasizing the need for careful consideration of

distance and environmental factors in such measurements.

Figure 7.5: Auburn University Shelby Center Hallway Line-of-Sight (LOS) RTT measurement of
all the distances with 95% confidence interval

The second phase of real-world testing took place in the room 2323 of the Auburn University

Shelby Center, focusing on measuring the distance between the publisher and subscriber smart-

phones. To ensure consistency, the smartphones were handheld precisely 5 meters apart, and the

WiFi Round-Trip Time (RTT) distance measurement technique was employed.
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The data collection process followed the same methodology as the initial testing conducted

in the hallway. This approach ensured a standardized approach to gathering the necessary data for

analysis and comparison. By maintaining uniformity in the data collection procedure, it became

possible to assess the performance of the WiFi RTT distance measurement technique in a different

indoor environment.

Overall, the second testing phase aimed to provide additional insights into the accuracy and

reliability of the WiFi RTT distance measurements. By conducting the experiments in room 2323,

the study sought to explore any variations or similarities in the results obtained compared to the

previous hallway testing scenario.

Figure 7.6: Auburn University Shelby Center inside room Line-of-Sight (LOS) RTT measurement
of smartphones 5 meters apart with 95% confidence interval

Figure 7.6 provides a detailed visualization of the Average Round-Trip Time (RTT) measured

distance plot against different experiment numbers. The plot showcases the measurements obtained

from smartphones positioned 5 meters apart in various sections of the room and conducted on

different days. The distances, accurately recorded in millimeters, serve as crucial indicators of the

signal propagation characteristics in the environment.
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Analyzing the plot, we observe that the average RTT distances display a certain level of vari-

ation, as indicated by the standard deviation of 1.33 meters. This statistical measure suggests that

the average RTT values tend to deviate from the mean distance by approximately 1.33 meters.

However, despite this variability, the 95th percentile confidence interval of 0.98 meters instills con-

fidence in the reliability of the RTT measurements. This means that there is a high level of certainty

that the actual average RTT distance falls within this narrow range.

It is worth noting that experiment 4 stands out with a relatively higher error rate in the RTT

distance measurements. This occurrence can be attributed to the presence of WiFi multipath issues.

In this specific experiment, the smartphones were positioned in the corner of the room, surrounded

by walls. The walls could have caused reflections and interference, leading to an increased er-

ror rate in the RTT measurements. This finding highlights the impact of environmental factors

on wireless signal propagation and emphasizes the importance of considering such factors in the

analysis and interpretation of RTT data.

Figure 7.7: Auburn University Shelby Center inside room Line-of-Sight (LOS) RTT measurement
of smartphones 10 meters apart with 95% confidence interval
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Figure 7.7 provides a plot similar to Figure 7.6, but with the smartphones positioned 10 meters

apart within the room. This plot enables a comparison of the Average Round-Trip Time (RTT)

measured distances at different distances, shedding light on the reliability and consistency of the

RTT measurements in the specific environment.

Analyzing the plot, we find that the standard deviation of the average RTT distances is calcu-

lated to be 1.88 meters. This value indicates a moderate level of variability in the RTT measure-

ments, similar to that observed at the 5-meter distance. Additionally, the 95th percentile confidence

interval is determined to be 1.39 meters, suggesting a high level of confidence in the accuracy and

reliability of the RTT measurements within this interval.

However, it is important to note that experiment 2 exhibits a relatively higher error rate in

the Average RTT distance measurements. This can be attributed to the WiFi multipath issue en-

countered during this specific experiment. The smartphones were positioned diagonally across the

room, near the corner where both devices were surrounded by walls. The presence of walls and the

resulting multipath interference likely contributed to the higher error rate observed in this scenario.

Overall, the findings from this analysis support the predictability and reliability of the RTT

measurements, even at a distance of 10 meters. The standard deviation and confidence interval

values align with those observed at the 5-meter distance, suggesting the consistent performance

of the WiFi RTT technique in the indoor environment. However, it is crucial to consider environ-

mental factors, such as multipath interference, as they can impact the accuracy of the RTT distance

measurements in specific scenarios.

Figure 7.8 presents a plot similar to Figure 7.6, but with the smartphones positioned 5 meters

apart in a different room within the Shelby Center. This comparison allows for an assessment of

the Average Round-Trip Time (RTT) measured distances in a distinct indoor environment.

Analyzing the plot, we find that the standard deviation of the average RTT distances is cal-

culated to be 0.85 meters. This value indicates a slightly higher level of variability compared to

the RTT distance measurements in room 2323. However, the 95th percentile confidence interval of
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Figure 7.8: Auburn University Shelby Center inside room Line-of-Sight (LOS) RTT measurement
of smartphones 5 meters apart with 95% confidence interval

0.63 meters reflects a high level of confidence in the accuracy and reliability of the RTT measure-

ments within this interval.

Remarkably, the RTT measurements in room 2319 exhibit better performance compared to

the measurements conducted in room 2323. This improvement may be attributed to the reduced

clutter and obstacles present in room 2319. The lesser number of obstructions in the environment

likely contributes to a more reliable and consistent signal propagation, resulting in improved RTT

distance measurements.

These findings highlight the predictability and reliability of the RTT measurements conducted

in room 2319, with a lower standard deviation and narrower confidence interval compared to the

measurements in room 2323. The influence of environmental factors, such as clutter and obsta-

cles, is underscored, emphasizing the significance of the physical environment in determining the

accuracy and performance of the RTT distance measurements.

The third phase of real-world testing was carried out in the transitional area between the

hallway and room 2323 of the Auburn University Shelby Center. The primary objective was to
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measure the distance between the publisher and subscriber smartphones in this specific setup. To

ensure accuracy and consistency, the smartphones were handheld precisely 6 meters apart, with

one smartphone positioned in the hallway and the other inside room 2323. The WiFi Round-Trip

Time (RTT) distance measurement technique was employed to collect the necessary data.

The data collection process for this testing phase followed the same methodology as the pre-

vious experiments, ensuring uniformity and comparability across the different scenarios. By main-

taining consistency in the data collection approach, the study aimed to evaluate the performance

and reliability of the WiFi RTT distance measurements in this particular transitional environment.

Overall, this phase of testing provided valuable insights into the accuracy and effectiveness

of the WiFi RTT distance measurements when the smartphones were located in the transitional

space between the hallway and room 2323. The collected data served as a basis for analysis and

comparison with the previous testing scenarios, allowing us to assess any variations or similarities

in the performance of the RTT measurements in this unique setting.

Figure 7.9: Auburn University Shelby Center between the hallway and room Line-of-Sight (LOS)
RTT measurement of smartphones 6 meters apart with 95% confidence interval
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Figure 7.9 presents an Average Round-Trip Time (RTT) measured distance plot against the

experiment number, depicting the results obtained from smartphones positioned 6 meters apart in

different areas and on different days. In this setup, the smartphones were in Line-of-Sight (LOS)

with each other, with the line of sight passing through the door.

The plot provides valuable insights into the RTT measurements performed in this scenario.

The measured distances, recorded in millimeters, serve as crucial indicators of the signal propaga-

tion characteristics within the environment. Analyzing the plot, we find that the standard deviation

of the average RTT distances is calculated to be 0.62 meters. This value suggests a moderate level

of variability in the RTT measurements.

Furthermore, the 95th percentile confidence interval, determined to be 0.46 meters, indicates

a high level of confidence in the accuracy and reliability of the RTT measurements within this

range. These findings emphasize that the RTT measurements are predictably reliable, bolstering

confidence in the accuracy of the distance measurements obtained using the WiFi RTT technique

in this LOS setup. The combination of a relatively low standard deviation and a narrow confidence

interval affirms the consistent and dependable nature of the RTT measurements.

Figure 7.10 illustrates a comparable plot to Figure 7.9, with smartphones positioned 6 meters

apart in non-line-of-sight (NLOS) areas. Unlike the LOS setup, in this scenario, the smartphones

were required to communicate through walls to measure the Round-Trip Time (RTT) distances

accurately. Analyzing the plot, we observe that the standard deviation of the average RTT distance

is calculated to be 1.46 meters. This value indicates a higher level of variability in the RTT mea-

surements compared to the LOS setup. Additionally, the wider 95th percentile confidence interval

of 1.17 meters suggests a slightly lower level of confidence in the accuracy and reliability of the

RTT measurements within this range, in comparison to the LOS measurements.

These findings highlight the impact of obstacles, such as walls, on the reliability and accu-

racy of the RTT measurements. The requirement for smartphones to communicate through walls,

as opposed to thin and clear doors, introduces additional signal attenuation and multipath effects,
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Figure 7.10: Auburn University Shelby Center between the hallway and room Non Line-of-Sight
(NLOS) RTT measurement of smartphones 6 meters apart with 95% confidence interval

which contribute to the increased variability in the RTT measurements. Consequently, the reliabil-

ity and accuracy of the RTT distance measurements experience a downgrade in the NLOS scenario

compared to the LOS setup. Nevertheless, despite the challenges posed by NLOS conditions, the

RTT measurements remain predictably reliable, and there is still a high level of confidence in their

accuracy.

In the fourth phase of real-world testing, the distance between the publisher and subscriber

smartphones was measured within room 2323 of the Auburn University Shelby Center. For this

particular experiment, the smartphones were handheld precisely 6 meters apart while both individ-

uals were seated on chairs. The WiFi Round-Trip Time (RTT) distance measurement technique

was employed to capture the necessary data. The primary objective of this experiment was to

evaluate the performance and error rate of the RTT distance measurement when the smartphones

were positioned closer to the ground. By conducting the measurements while seated, we aimed

to simulate a scenario where users interact with their smartphones in a seated position, potentially

affecting the accuracy of the distance measurements.
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The data collection process followed the same methodology as the previous testing, ensuring

consistency and comparability across the different experimental setups. By conducting the mea-

surements in room 2323 and maintaining consistency in the data collection approach, we could

assess any variations or similarities in the performance of the RTT measurements in this specific

setting.

Figure 7.11: Auburn University Shelby Center inside room Line-of-Sight (LOS) with both phones
held while sitting on a chair RTT measurement of smartphones 6 meters apart with 95% confidence
interval

Figure 7.11 presents an Average Round-Trip Time (RTT) measured distance plot against the

experiment number. Each experiment represents the measurement of smartphones placed 6 meters

apart in various sections of the room on different days. It’s important to note that the smartphones

were positioned in a Line-of-Sight (LOS) configuration, meaning there were no significant obstruc-

tions between them. The distances were accurately measured in millimeters, serving as crucial data

points to assess the signal propagation characteristics within the environment.

Upon analyzing the plot, we observe that the standard deviation of the average RTT distance

is calculated to be 2.57 meters. This value indicates a substantial level of variability in the RTT
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measurements. Furthermore, the wider 95th percentile confidence interval of 1.9 meters suggests a

relatively lower level of confidence in the accuracy and reliability of the RTT measurements within

this range.

These findings indicate that the RTT measurements in this setup are predictably unreliable,

and there is a relatively lower level of confidence in the accuracy of the distance measurements

obtained using the WiFi RTT technique. The significant variability in the measurements and the

wide confidence interval highlight the challenges and limitations encountered in accurately captur-

ing the distance between smartphones placed 6 meters apart when the smartphones are close to the

ground indicating a higher level of interference from the multipath error.

Figure 7.12: Average RTT measurement of smartphones 5 meters apart in Auburn University
Shelby center hallway with varying number of RTT distances used for Averaging result

Figure 7.12 illustrates a graph depicting the impact of different numbers of raw Round-Trip

Time (RTT) distances on the average RTT distance between smartphones. The purpose of this

experiment was to determine the optimal number of raw RTT distance measurements required to

achieve an acceptable level of accuracy while considering the system’s performance.
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The data collection process followed the same methodology as the previous testing, ensuring

consistency and comparability. Figure 7.12 demonstrates that the average RTT distance between

smartphones exhibits improved accuracy as the number of raw RTT distance measurements in-

creases. By increasing the number of measurements, the system can achieve a more reliable and

accurate estimation of the distance between the smartphones. This finding is significant as it con-

tributes to enhancing the precision of location computation for smartphones using the grid method

algorithm.

Through analysis, it was determined that collecting 10 raw RTT distances between smart-

phones and subsequently computing the average RTT distance provides a solid foundation for

accurate distance computation. This finding aids in refining the accuracy of location estimation for

smartphones, enabling more reliable and precise tracking using the grid method algorithm.

Overall, this experiment highlights the importance of collecting an optimal number of raw

RTT distance measurements to improve the accuracy of distance computation between smart-

phones. By identifying the ideal number of measurements, we can enhance the performance and

reliability of the system, enabling more accurate localization and facilitating the effective imple-

mentation of location-based services.

The fifth real-world testing took place in the Auburn University Shelby Center hallway to

evaluate the distance between the publisher and subscriber smartphones. In this experiment, the

smartphones were held exactly 20 meters apart, and three smartphones were positioned in the

hallway in a Line-of-Sight (LOS) configuration. The WiFi Round-Trip Time (RTT) distance mea-

surement technique was utilized to capture the distances accurately.

Within this setup, two publisher smartphones were placed on opposite sides of the hallway,

while the subscriber smartphone was located in the middle, as depicted in Figure 6.1. The objective

of this experiment was to assess the performance and error rate of the RTT distance measurement

when the subscriber smartphone simultaneously measured the RTT distances to both publisher

smartphones.
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The data collection process for this experiment followed the same methodology as the previ-

ous testing, ensuring consistency and comparability in the results obtained. By employing the WiFi

RTT technique, the experiment aimed to gather accurate distance measurements and analyze the

performance of the system in this specific scenario. The experiment yielded valuable insights into

the performance and error rate of the RTT distance measurement when the subscriber smartphone

was tasked with measuring the distances to both publisher smartphones simultaneously.

Figure 7.13: Average RTT measurement of smartphones 20 meters apart in Auburn University
Shelby center hallway with simultaneous RTT communication with two publisher smartphones

Figure 7.13 provides a graph depicting the Average Round-Trip Time (RTT) distances mea-

sured simultaneously by the subscriber smartphone from two publisher smartphones in the Auburn

University Shelby Center hallway. The data collection process for this graph followed the same

methodology as the previous testing, which resulted in the collection of RTT distances showcased

in Figure 7.4.

The distances in the graph are measured in millimeters. The standard deviation of the aver-

age RTT distances shown in the plot is 0.38 meters, and the 95th percentile confidence interval is
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0.21 meters. Figure 7.13 presents the average RTT distances obtained from a total of 12 experi-

ments. The first six experiments correspond to measurements from publisher number 1, while the

remaining six experiments correspond to measurements from publisher number 2.

Notably, Figure 7.13 reveals that the average RTT distances achieved in this simultaneous

measurement scenario demonstrate a similar level of performance and accuracy when compared to

the experiment involving a single publisher and subscriber smartphone measurement, as depicted in

Figure 7.4. These findings suggest that conducting simultaneous RTT distance measurements from

multiple publisher smartphones does not significantly impact the performance or accuracy of the

average RTT distances obtained. The comparable results obtained from both scenarios indicate that

the system is capable of maintaining consistent and reliable measurements, even when measuring

distances from multiple sources simultaneously.

This approach ensures the reliability and validity of the obtained results and allows for mean-

ingful comparisons and analysis of the system’s performance in multi-publisher scenarios.

7.2 Evaluating the effectiveness of Smartphone WiFi FTM based on RTT Location Mea-

surement

In this section, we will thoroughly examine the accuracy of smartphone WiFi RTT-based

location computation. Our approach involves utilizing the average WiFi RTT distances between

Publisher and Subscriber smartphones, which serve as crucial input for an efficient grid method

localization algorithm. By leveraging these components in conjunction, we aim to achieve precise

and reliable location estimation. By carefully collecting and averaging these RTT distances, we

can derive a more accurate representation of the actual physical distance between the devices.

To further enhance the accuracy of our location estimation, we employ an efficient grid

method localization algorithm. This algorithm takes into account the measured RTT distances

and employs advanced mathematical techniques to determine the precise location of the devices

within a defined grid or coordinate system.
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Figure 7.14: Auburn University Shelby Center Line-of-Sight location estimation using eight Ref-
erence nodes

The initial real-world experiment took place in the Auburn University Shelby Center Hallway,

involving the deployment of publisher and subscriber smartphones at distances of 5, 10, 15, and 20

meters apart. The RTT distances between all publishers and the subscriber were captured, enabling

the subscriber to estimate its own location using the sophisticated grid method discussed in Section

5.4.

Figure 7.14 presents a blueprint of the hallway, showcasing the positions of each publisher

smartphone denoted by blue squares. Additionally, it illustrates both the actual and estimated

location of the subscriber smartphone (referred to as the target smartphone). The accuracy of the

estimated location, achieved through the utilization of smartphone WiFi RTT technology and the

involvement of eight publisher smartphones, is measured at 2.28 meters. However, it should be

noted that the accuracy of the estimated location was compromised in this scenario due to the
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specific arrangement of the publishers. As illustrated in Figure 7.14, all publisher smartphones

were aligned in a singular direction, leading to a case of poor dilution of precision (PDoP), as

explained in detail in Section 6.2. This alignment adversely affected the accuracy of the estimated

location.

Figure 7.15: Auburn University Shelby Center Line-of-Sight location estimation using four Refer-
ence nodes

Figure 7.15 depicts the layout of an experiment where the subscriber smartphone device lever-

ages the assistance of four publisher smartphones for localization using WiFi RTT technology

alongside the grid method algorithm. Notably, the reduced number of publisher smartphones in

this experiment leads to a significant degradation in location accuracy compared to the previous

experiment shown in Figure 7.14.
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In this setup, the accuracy of the estimated location is measured at 5.5 meters, a noticeable

increase compared to the previous experiment’s accuracy of 2.28 meters. The decline in accu-

racy can be attributed to the limited number of publisher smartphones available to assist in the

localization process. With fewer reference points, the ability to precisely determine the subscriber

smartphone’s location is compromised.

The accuracy of the subscriber smartphone’s location, determined through the utilization of

WiFi RTT technology with the grid method algorithm, is influenced by two main factors: the

accuracy of the RTT distances and the spatial distribution of the publisher smartphones within

the area of interest. Despite the presence of an error rate of approximately 10% in the average

RTT distance measurements between the publisher and subscriber, the resulting location accuracy

remains within the range of under 3 meters.

However, it is worth noting that in the specific experiment conducted within the Auburn Uni-

versity Shelby Center hallway, the accuracy of the location estimation was adversely affected by

the Dilution of Precision (DOP) error. This error arises from the spatial distribution of the publisher

smartphones, which can lead to a reduction in the accuracy of the overall localization process.

The second real-world testing aimed to assess the performance of the WiFi RTT technology

in different areas of the Auburn University Shelby Center, including Room 2323, Room 2319, and

the hallway. For this testing, the publisher and subscriber smartphones were positioned at distances

of 5, 10,, and 15 meters from each other. The experiment area and setup are visualized in Figure

6.2, providing a clear overview of the testing environment.

Figure 7.16 showcases the results of the second real-world testing conducted in different areas

of Auburn University Shelby Center, including Room 2323, Room 2319, and the hallway. The

figure illustrates the locations of the publisher smartphones represented by blue squares, along

with the real location of the subscriber smartphone (target smartphone) and its estimated location

using WiFi RTT technology.

Notably, the accuracy of the estimated smartphone location with the presence of six publisher

smartphones is remarkably high, measuring only 0.37 meters. This level of accuracy is achieved
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Figure 7.16: Auburn University Shelby Center location estimation using six Reference nodes with
publisher and subscriber being in different non-Line-of-Sight (NLOS) areas

even in a Non-line-of-sight (NLOS) situation, where obstacles may hinder direct signal propaga-

tion. The figure highlights the effectiveness of the grid method algorithm aided by the distributed

placement of the publisher smartphones, which mitigates the dilution of precision (DOP) error and

contributes to the accurate location estimation.

Figure 7.17 presents the results of another experiment conducted in various areas of Auburn

University Shelby Center, including Room 2323, Room 2319, and the hallway. The figure illus-

trates the locations of the publisher smartphones aiding the subscriber smartphone in estimating its

location using WiFi RTT technology.

Despite having only four publisher smartphones in this experiment, the accuracy of the es-

timated smartphone location is still notable, measuring 3.89 meters. Compared to the previous

experiment depicted in Figure 7.15, the accuracy is considerably improved. This improvement
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Figure 7.17: Auburn University Shelby Center location estimation using four Reference nodes
with publisher and subscriber being in different non-Line-of-Sight (NLOS) areas

can be attributed to the effective distribution of the publisher smartphones around the subscriber

smartphone, which helps minimize the dilution of precision (DOP) error. As a result, the location

accuracy is enhanced even with a reduced number of publisher smartphones.

7.3 Evaluating the error propagation of Smartphone WiFi FTM based on RTT Location

Measurement

In this section, we focus on analyzing the error propagation characteristics of our smartphone-

based indoor localization system. Initially, we conduct a localization experiment involving a sub-

scriber smartphone and five publisher smartphones that assist in the localization process. It’s im-

portant to note that all five publisher smartphones serve as first-hop neighbors, meaning that their

self-location information is error-free. Figure 7.18 visually represents the results, showcasing the
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high accuracy of our indoor localization technology with an estimated error of only 1.1 meters

in the subscriber’s location. Since there are no errors in the location information provided by the

publisher smartphones, the resulting error in the subscriber smartphone’s location is minimal.

Figure 7.18: Auburn University Shelby Center location estimation using five publisher smart-
phones and no error in the publisher smartphone locations

To further investigate the error propagation in our indoor localization system, we conducted

an additional experiment where we induced the error observed in the previous experiment. In the

previous experiment, all the publisher smartphones served as first-hop neighbors and had error-

free locations. In this new experiment, we examined the location estimation of the subscriber

smartphone when aided by second-hop publisher neighbors. Each publisher’s location was induced

with an error of 1.1 meters, which was determined in the previous first-hop neighbor experiment.

The results are illustrated in Figure 7.19. It can be observed that the error in the estimated

location of the subscriber smartphone has doubled, resulting in an error of 2.13 meters. This finding
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suggests that if the subscriber smartphone communicates with a second-hop publisher smartphone,

which obtained its location from the first-hop publishers earlier in time, the error in the estimated

location is doubled. This highlights the significance of error propagation when multiple hops are

involved in the localization process.

Figure 7.19: Auburn University Shelby Center location estimation using five publisher smart-
phones and one hop error in the publisher smartphone location as obtained from the first hop error
propagation experiment

Furthermore, we extended our experiments to investigate the error propagation in the esti-

mated smartphone location when the publisher smartphones acted as third and fourth-hop neigh-

bors, respectively. The results are presented in Figure 7.20 and Figure 7.21, displaying the error in

the estimated location of the subscriber smartphone.

From the figures, it is evident that the error propagation follows a consistent pattern of dou-

bling with each subsequent hop count of the publisher smartphone aiding the localization process.
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In the case of the third-hop neighbor, the error in the estimated location reaches 24.98 meters,

while for the fourth-hop neighbor, it increases to 48.38 meters. These findings highlight the cumu-

lative effect of error propagation as the number of hops increases, emphasizing the importance of

mitigating errors at each stage of the localization process.

Figure 7.20: Auburn University Shelby Center location estimation using five publisher smart-
phones and second hop error in the publisher smartphone location as obtained from the second hop
error propagation experiment

Based on the error propagation experiments conducted in our smartphone-based indoor local-

ization system, we can draw several conclusions.

Firstly, the experiments clearly demonstrate that errors in the location estimation of publisher

smartphones can propagate and affect the accuracy of the subscriber smartphone’s location esti-

mation. As the publisher smartphones act as aids in the localization process, any error introduced

in their location information can lead to a corresponding increase in the error of the subscriber

smartphone’s location estimation. Secondly, the results show a consistent pattern of doubling in
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Figure 7.21: Auburn University Shelby Center location estimation using five publisher smart-
phones and third hop error in the publisher smartphone location as obtained from the third hop
error propagation experiment

the error magnitude with each subsequent hop count of the publisher smartphone. This indicates

that the error propagation follows a cumulative trend, with the error increasing exponentially as

the number of hops between publisher and subscriber smartphones increases.

These findings emphasize the importance of minimizing errors at each stage of the localiza-

tion process and highlight the need for accurate localization of the publisher smartphones to ensure

reliable and precise location estimation for the subscriber smartphone. Mitigating errors in the ini-

tial localization of the publisher smartphones can significantly reduce the overall error propagation

and improve the accuracy of the subscriber smartphone’s location estimation. Overall, these er-

ror propagation experiments provide valuable insights into the potential sources of error and their
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impact on the accuracy of smartphone-based indoor localization systems. By understanding the

characteristics of error propagation, researchers and system designers can develop strategies to

mitigate errors and enhance the overall performance of indoor localization systems.
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Chapter 8

Conclusions

Indoor localization and tracking have become indispensable for various applications, ranging

from assisting users in navigating complex indoor environments to ensuring efficient asset track-

ing and robust security systems. In this research, we introduce a novel smartphone-based indoor

localization technique that harnesses the power of IEEE 802.11mc fine time measurement (FTM),

which represents the next generation of indoor navigation and tracking systems. By leveraging

this advanced technology, we aim to address the challenges associated with indoor localization

and provide accurate and reliable positioning information.

Our FTM-based technique is designed with scalability and adaptability in mind. A notable

advantage is that it does not rely on additional hardware or infrastructure, as it utilizes existing

WiFi access points. This makes it highly cost-effective and easy to deploy compared to other

indoor localization methods that often require specialized equipment or infrastructure investments.

By leveraging the ubiquitous presence of WiFi access points, our technique can be readily applied

to a variety of indoor environments, making it a versatile solution for different applications and

scenarios.

The results of our research demonstrate the superior performance of the FTM-based technique

in terms of accuracy. Our approach leverages the precise estimation of the round-trip time (RTT)

distances through FTM, enabling highly accurate position estimation. Extensive real-world exper-

iments conducted in typical university campus environments reveal that our technique achieves an

impressive localization error of less than 1.5 meters in 95% of cases. This level of accuracy is

crucial for many indoor applications, ensuring users can rely on precise location information to

navigate indoor spaces or track assets with confidence.
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One key advantage of our FTM-based technique is its superiority over other WiFi-based ap-

proaches. Unlike traditional methods that compute distance estimation at the MAC layer, which

can introduce software delays and inaccuracies, our technique operates at the physical layer through

dedicated hardware units. This hardware-based approach eliminates software-related delays and

ensures faster and more accurate distance measurements. The improved efficiency and accuracy of

our distance estimation contribute to the overall performance enhancement of the indoor localiza-

tion system, offering users a reliable and precise positioning experience.

In conclusion, our FTM-based technique for indoor localization and tracking exhibits signif-

icant promise and presents several advantages. Its high accuracy, coupled with its scalability and

adaptability, positions it as an attractive solution for diverse indoor applications. The fact that it

does not require additional hardware or infrastructure simplifies its implementation and reduces

costs. Furthermore, future work will focus on further refining the technique’s accuracy and per-

formance, exploring potential enhancements to overcome specific challenges in different indoor

environments. By continuing to advance this innovative approach, we can unlock its potential for

improving indoor navigation, asset tracking, security systems, and other domains requiring precise

indoor localization capabilities.
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Chapter 9

Future Work

Although our FTM-based indoor localization and tracking technique has yielded promising

outcomes, there are still opportunities for refinement and additional research. In the following

section, we explore several potential directions for future work:

Improving Accuracy and Robustness

Enhancing the accuracy and robustness of our FTM-based technique is a significant area for

future exploration. While our technique has demonstrated impressive accuracy in typical univer-

sity campus environments, it may face challenges when deployed in different settings with varying

signal propagation characteristics or interference. To overcome these limitations and ensure the

adaptability of our technique, further research is necessary. This research should focus on im-

proving the robustness of our approach, optimizing it for diverse environments, and addressing

potential challenges related to signal propagation and interference. By doing so, we can enhance

the performance and applicability of our FTM-based technique across a wider range of indoor

environments.

Multi-Modal Localization

Future research can also focus on investigating the potential benefits of integrating FTM-

based localization with other modalities, such as Bluetooth Low Energy (BLE) beacons or Inertial

Measurement Units (IMUs). By combining multiple localization techniques, we can leverage the

strengths of each modality to enhance the accuracy and reliability of indoor localization systems.

For instance, BLE beacons can provide additional reference points and help overcome challenges
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posed by signal propagation in complex environments. Similarly, IMUs can capture motion and

orientation data, complementing the static measurements obtained from FTM-based localization.

By integrating these modalities, we can create a comprehensive and robust indoor localization so-

lution that offers improved accuracy, even in challenging signal environments. Further exploration

in this area will unlock new possibilities for enhancing the performance and versatility of indoor

localization systems.

Real-Time Tracking and Navigation

While our current FTM-based technique excels in accurate position estimation, it does not

offer real-time tracking or navigation capabilities. To address this limitation, future research can

focus on exploring the potential of utilizing our technique for real-time tracking and navigation

purposes. This would involve not only refining the position estimation accuracy but also develop-

ing efficient algorithms for path planning and guidance. By incorporating real-time tracking and

navigation features, our FTM-based technique can become a valuable tool for applications such

as indoor navigation, asset tracking, and interactive location-based services. This direction of re-

search would require considering factors such as real-time data processing, continuous updating of

position estimates, and seamless integration with user interfaces for intuitive guidance. The suc-

cessful integration of real-time tracking and navigation capabilities would significantly enhance

the practicality and usability of our FTM-based technique in various indoor environments.

Privacy and Security

Lastly, it is essential to address the important concerns of privacy and security when working

with any location-based technology. In order to ensure the widespread adoption and acceptance

of our FTM-based indoor localization and tracking technique, future research should prioritize the

development of privacy-preserving and secure methodologies.

One potential avenue for future work is the exploration of privacy-enhancing techniques that

allow users to maintain control over their location information. This could involve implementing
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techniques such as data anonymization, encryption, and access control mechanisms to safeguard

the privacy of individuals’ location data. By incorporating privacy-preserving measures into our

FTM-based technique, we can alleviate concerns regarding the potential misuse or unauthorized

access to sensitive location information.

Additionally, it is crucial to address security concerns to protect the integrity and reliability of

the indoor localization system. Future research efforts should focus on developing robust security

measures, including authentication mechanisms, data integrity checks, and secure communication

protocols. By implementing these security measures, we can ensure that the indoor localization

and tracking system is resilient to potential attacks or unauthorized manipulations.

Overall, by dedicating attention to privacy and security considerations, we can enhance the

trustworthiness and acceptance of our FTM-based indoor localization and tracking technique.

Through ongoing research and development, we can create a framework that not only achieves

high accuracy and performance but also prioritizes the privacy and security of individuals’ loca-

tion data.

In conclusion, our FTM-based technique for indoor localization and tracking has demon-

strated promising results and holds significant potential for various applications. However, there is

still ample room for further research and development in order to enhance its accuracy, robustness,

and security.

Continued research efforts can focus on refining the algorithms and methodologies employed

in our technique to achieve even higher levels of accuracy in indoor localization. This can in-

volve exploring advanced signal processing techniques, machine learning algorithms, and statisti-

cal modeling approaches to improve the precision and reliability of the position estimation.

Moreover, the robustness of our technique can be further enhanced by investigating strategies

to mitigate the impact of environmental factors, such as signal interference, multipath propagation,

and dynamic obstacles. By developing adaptive algorithms that can adapt to different environ-

mental conditions, our technique can maintain high performance across a wide range of indoor

settings.
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In addition, there is a need to address the security aspects of indoor localization and tracking

systems. Further research can focus on developing secure protocols, encryption mechanisms, and

access control mechanisms to safeguard the privacy and integrity of the collected location data. By

integrating robust security measures, we can ensure the trustworthiness and confidentiality of the

indoor localization system.

Overall, through ongoing research and development, we can continue to advance the field of

indoor localization and tracking, resulting in more accurate, robust, and secure solutions. With the

potential to revolutionize indoor navigation, asset tracking, and security, our FTM-based technique

lays the foundation for a new era of indoor positioning technology.
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Appendix A

Indoor Localization Fine Time Measurement Android Application Source Code

1 /* Class to maintain the Android App to conduct the Android Aware

Scan and

2 Run the FTM technique.

3 Author: Abhishek Kulkarni (aak0010)

4 */

5 public class MainActivity extends AppCompatActivity {

6

7 private class ScanWifiNetworkReceiver extends BroadcastReceiver {

8

9 @Override

10 public void onReceive(final Context context, final Intent

intent) {

11 final List<ScanResult> wifiNetworks = wifiManager.

getScanResults();

12 Timber.d("received scan result. %s, size: %d", intent.

toString(), wifiNetworks.size());

13 lblSearchHint.setVisibility(View.GONE);

14 wifiNetworkAdapter.setWifiNetworks(wifiManager.

getScanResults());

15 }

16 }

17

18 private static final int REQUEST_ENABLE_LOCATION = 8956;
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19

20 public static boolean isLocationEnabled(@NonNull final Context

context) {

21 LocationManager lm = (LocationManager) context.

getSystemService(Context.LOCATION_SERVICE);

22 return lm.isLocationEnabled();

23 }

24

25 @BindView(R.id.coordinator)

26 CoordinatorLayout coordinatorLayout;

27 @BindView(R.id.fab)

28 FloatingActionButton fab;

29 @BindView(R.id.lblSearchHint)

30 TextView lblSearchHint;

31 @BindView(R.id.listWifiNetworks)

32 RecyclerView listWifiNetworks;

33 @BindView(R.id.toolbar)

34 Toolbar toolbar;

35 @BindView(R.id.txtCapabilities)

36 TextView txtCapabilities;

37 @BindView(R.id.txtDeviceToAPSupported)

38 TextView txtDeviceToApSupported;

39 @BindView(R.id.aware_button)

40 Button button;

41 @BindView(R.id.rttResultView)

42 TextView rttResultView;

43 private LocationPermissionController permissionController;

44 private WifiRttManager rttManager;

45 private WifiManager wifiManager;
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46 private WifiNetworkAdapter wifiNetworkAdapter;

47 private ScanWifiNetworkReceiver wifiNetworkReceiver;

48 private Context mContext;

49 private Handler mHandler;

50

51 private static final String TAG = "MainActivity";

52 public static final String AWARE_SERVICE_NAME = "LIMLAB-AWARE-

SERVICE";

53

54 @Override

55 public boolean onCreateOptionsMenu(Menu menu) {

56 menu.add(getString(R.string.version_info_app, BuildConfig.

VERSION_NAME, BuildConfig.VERSION_CODE));

57 return true;

58 }

59

60 @Override

61 public void onRequestPermissionsResult(final int requestCode,

@NonNull final String[] permissions,

62 @NonNull final int[]

grantResults) {

63 if (permissionController.onRequestPermissionsResult(

requestCode, permissions, grantResults)) {

64 startWifiScan();

65 } else {

66 super.onRequestPermissionsResult(requestCode, permissions

, grantResults);

67 }

68 }
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69

70 @Override

71 protected void onActivityResult(final int requestCode, final int

resultCode, final Intent data) {

72 if (requestCode == REQUEST_ENABLE_LOCATION) {

73 if (resultCode == RESULT_OK) {

74 startWifiScan();

75 } else {

76 Snackbar.make(coordinatorLayout, R.string.

location_service_disabled, Snackbar.LENGTH_SHORT).setAction

77 (android.R.string.ok, view ->

startEnableLocationServicesActivity()).show();

78 }

79 return;

80 }

81 super.onActivityResult(requestCode, resultCode, data);

82 }

83

84 @SuppressLint("WrongConstant")

85 @Override

86 protected void onCreate(Bundle savedInstanceState) {

87 super.onCreate(savedInstanceState);

88 setContentView(R.layout.activity_main);

89 ButterKnife.bind(this);

90 setSupportActionBar(toolbar);

91 permissionController = new LocationPermissionController();

92 fab.setOnClickListener(view -> startWifiScan());

93 wifiManager = (WifiManager) getApplicationContext().

getSystemService(Context.WIFI_SERVICE);
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94 wifiNetworkReceiver = new ScanWifiNetworkReceiver();

95 rttManager = (WifiRttManager) getSystemService(Context.

WIFI_RTT_RANGING_SERVICE);

96 initUI();

97 mContext = this; //context initialization to setup the

android aware Broadcast receiver

98

99 button.setOnClickListener(v -> invokeAndroidAware());

100 }

101

102 private void showShortMessage(String message) {

103 Toast.makeText(mContext, message, Toast.LENGTH_SHORT).show();

104 }

105 private void invokeAndroidAware() {

106 /*Android Aware Core Method */

107 WifiAwareManager wifiAwareManager =

108 (WifiAwareManager)this.getSystemService(Context.

WIFI_AWARE_SERVICE);

109 IntentFilter filter =

110 new IntentFilter(WifiAwareManager.

ACTION_WIFI_AWARE_STATE_CHANGED);

111 BroadcastReceiver myReceiver = new BroadcastReceiver() {

112 @Override

113 public void onReceive(Context context, Intent intent) {

114 if (wifiAwareManager.isAvailable()) {

115 showShortMessage("Wifi is On");

116 }

117 }

118 };
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119

120 if (wifiAwareManager.isAvailable()) {

121 Toast.makeText(this, "WiFi Aware is available", Toast.

LENGTH_SHORT).show();

122 wifiAwareManager.attach(new PublisherAttachCallback(this)

, mHandler); // initialization of Publisher

123 wifiAwareManager.attach(new SubscriberAttachCallback(this

), mHandler); // initialization of Subscriber

124 }

125 mContext.registerReceiver(myReceiver, filter);

126 }

127

128 @Override

129 protected void onStop() {

130 super.onStop();

131 try {

132 unregisterReceiver(wifiNetworkReceiver);

133 } catch (IllegalArgumentException e) {

134 }

135 }

136

137 private void handleLocationServiceDisabled() {

138 Snackbar.make(coordinatorLayout, R.string.

location_service_disabled, Snackbar.LENGTH_INDEFINITE)

139 .setAction(android.R.string.ok, view ->

startEnableLocationServicesActivity())

140 .show();

141 }

142
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143 private void initUI() {

144 txtDeviceToApSupported.setText(String.valueOf(wifiManager.

isDeviceToApRttSupported()));

145 txtCapabilities.setText(getString(R.string.rtt_available,

rttManager.isAvailable()));

146 rttResultView.setText(getString(R.string.rtt_results));

147 listWifiNetworks.setLayoutManager(new LinearLayoutManager(

this));

148 listWifiNetworks.setItemAnimator(new DefaultItemAnimator());

149 listWifiNetworks.setHasFixedSize(true);

150 listWifiNetworks.setVisibility(View.GONE);

151 wifiNetworkAdapter = new WifiNetworkAdapter(

getApplicationContext());

152 listWifiNetworks.setAdapter(wifiNetworkAdapter);

153 wifiNetworkAdapter.setClickListener(wifiNetwork -> {

154 startActivity(SelectedActivity.builtIntent(wifiNetwork,

getApplicationContext()));

155 });

156 lblSearchHint.setVisibility(View.VISIBLE);

157 }

158

159 private void startEnableLocationServicesActivity() {

160 Intent enableLocationIntent = new Intent(Settings.

ACTION_LOCATION_SOURCE_SETTINGS);

161 startActivityForResult(enableLocationIntent,

REQUEST_ENABLE_LOCATION);

162 }

163

164 private void startWifiScan() {
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165 if (!permissionController.checkLocationPermissions(

getApplicationContext())) {

166 permissionController.requestLocationPermission(this,

coordinatorLayout);

167 return;

168 }

169 if (!isLocationEnabled(getApplicationContext())) {

170 handleLocationServiceDisabled();

171 return;

172 }

173 if (!wifiManager.isWifiEnabled()) {

174 Snackbar.make(coordinatorLayout, R.string.enable_wifi,

Snackbar.LENGTH_LONG).show();

175 return;

176 }

177 listWifiNetworks.setVisibility(View.VISIBLE);

178 IntentFilter filter = new IntentFilter(WifiManager.

SCAN_RESULTS_AVAILABLE_ACTION);

179 registerReceiver(wifiNetworkReceiver, filter);

180 final boolean successful = wifiManager.startScan();

181 Timber.d("Started scan successful: %b", successful);

182 }

183 }

Source Code A.1: Central Control Module for Indoor Localization App Activities

1 /* Class to maintain Publisher activities.

2 Author: Abhishek Kulkarni (aak0010)

3 */

4 public class PublisherAttachCallback extends AttachCallback {
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5

6 private static final String TAG = "PublisherAttachCallback";

7 private static final boolean DBG = true;

8 private static final String PublisherID = "Publisher #1";

9

10 private PublishDiscoverySession mPublisherSession;

11 private final Context mContext;

12

13 public PublisherAttachCallback(Context context) {

14 this.mContext = context;

15 }

16

17 private void showShortMessage(String message) {

18 Toast.makeText(mContext, message, Toast.LENGTH_SHORT).show();

19 }

20

21 @Override

22 public void onAttachFailed() {

23 showShortMessage(TAG + "onAttachFailed");

24 }

25

26 @Override

27 public void onAttached(WifiAwareSession session) {

28

29 showShortMessage("onAttach");

30 PublishConfig config = new PublishConfig.Builder()

31 .setServiceName(MainActivity.AWARE_SERVICE_NAME)

32 .setRangingEnabled(true)

33 .build();
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34

35 session.publish(config, new DiscoverySessionCallback() {

36

37 @Override

38 public void onPublishStarted(@NonNull

PublishDiscoverySession session) {

39 showShortMessage(TAG + " onPublishStarted");

40 DataCollectionFile.dataFile(TAG + " PublisherStarted

" + " Time: " + System.nanoTime(), mContext);

41 }

42

43 @Override

44 public void onServiceDiscovered(PeerHandle peerHandle,

45 byte[]

serviceSpecificInfo, List<byte[]> matchFilter){

46 int messageId = 1234;

47 showShortMessage("Location: " + locationInfo + "

PeerHandle: " + peerHandle);

48 DataCollectionFile.dataFile(TAG + " The Publisher

Location: " + locationInfo, mContext);

49 mPublisherSession.sendMessage(peerHandle, messageId,

locationInfo.getBytes());

50 }

51

52 @Override

53 public void onMessageReceived(PeerHandle peerHandle, byte

[] message) {

54 String str = new String(message, StandardCharsets.

UTF_8);
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55 String[] msgSubscriberSplit = str.split("-");

56 String msgTransmissionTime = String.valueOf((System.

nanoTime() - Long.parseLong(msgSubscriberSplit[1]))/1_000_000_000

.0);

57 showShortMessage(TAG + " onMessageReceived : " + str)

;

58 DataCollectionFile.dataFile(TAG + " PublisherID: " +

PublisherID + " SubscriberID: " + msgSubscriberSplit[0] + "

TransmissionTime: " + msgTransmissionTime, mContext);

59 }

60 }, null);

61 }

62 }

Source Code A.2: Initiation and Management of Publisher Role in Indoor Localization App

1 /* Class to maintain Subscriber tasks

2 Author: Abhishek Kulkarni (aak0010)

3 */

4 public class SubscriberAttachCallback extends AttachCallback {

5

6 private static final String TAG = "SubscriberAttachCallback";

7 private static final boolean DBG = true;

8 private static final String SubscriberID = "Subscriber #1";

9 private final Context mContext;

10 private SubscribeDiscoverySession mSubscribeDiscoverySession;

11 private final RttRangingManager rangingManager;

12 private PeerHandle publisherPeerHandle;

13 private static Disposable rangingDisposable;

14
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15

16 public SubscriberAttachCallback(Context context) {

17 this.mContext = context;

18 this.rangingManager = new RttRangingManager(context);

19 }

20

21 private void showShortMessage(String message) {

22 Toast.makeText(mContext, message, Toast.LENGTH_SHORT).show();

23 }

24 private void beginRttRanging() {

25 rangingDisposable = rangingManager.startRanging(

publisherPeerHandle)

26 .repeat(10)

27 .subscribeOn(Schedulers.io())

28 .observeOn(AndroidSchedulers.mainThread())

29 .subscribe();

30 }

31

32 public static void stopRttRanging() {

33 if (rangingDisposable == null) {

34 return;

35 }

36 rangingDisposable.dispose();

37 }

38

39 @Override

40 public void onAttachFailed() {

41 showShortMessage("onAttachFailed");

42 }
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43

44 @Override

45 public void onAttached(WifiAwareSession session) {

46

47 SubscribeConfig config = new SubscribeConfig.Builder()

48 .setServiceName(MainActivity.AWARE_SERVICE_NAME)

49 .setMinDistanceMm(10)

50 .build();

51

52 session.subscribe(config, new DiscoverySessionCallback() {

53

54 @Override

55 public void onSubscribeStarted(@NonNull

SubscribeDiscoverySession session) {

56 mSubscribeDiscoverySession = session;

57 DataCollectionFile.dataFile(TAG + " The Subscriber

Session Started at: " + System.nanoTime(), mContext);

58 }

59

60 @Override

61 public void onServiceDiscovered(PeerHandle peerHandle,

62 byte[]

serviceSpecificInfo, List<byte[]> matchFilter) {

63 DataCollectionFile.dataFile("PeerHandle: " +

peerHandle, mContext);

64 publisherPeerHandle = peerHandle;

65 beginRttRanging();

66 }

67
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68 @Override

69 public void onMessageSendSucceeded(int messageId) {

70 showShortMessage("The message has been successfully

sent: " + messageId);

71 }

72

73 @Override

74 public void onMessageSendFailed(int messageId) {

75 showShortMessage("The message sending Failed: " +

messageId);

76 }

77 }, null);

78 }

79 }

Source Code A.3: Initiation and Management of Subscriber Role in Indoor Localization App

1 /* Class to control all the Location permission needed to perform FTM

.

2 Author: Abhishek Kulkarni (aak0010)

3 */

4 public class LocationPermissionController {

5

6 private static final int REQUEST_LOCATION_PERMISSION = 8545;

7

8 public boolean checkLocationPermissions(final Context context) {

9 return ContextCompat.checkSelfPermission(context, Manifest.

permission.ACCESS_COARSE_LOCATION) ==

10 PackageManager.PERMISSION_GRANTED && ContextCompat.

checkSelfPermission(context, Manifest.permission
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11 .ACCESS_FINE_LOCATION) == PackageManager.

PERMISSION_GRANTED;

12 }

13

14 public boolean onRequestPermissionsResult(final int requestCode,

@NonNull final String[] permissions,

15 @NonNull final int[] grantResults) {

16 if (requestCode == REQUEST_LOCATION_PERMISSION) {

17 return verifyPermissions(grantResults);

18 }

19 return false;

20 }

21

22 public void requestLocationPermission(final Activity activity,

final View snackbarContainer) {

23 if (ActivityCompat.shouldShowRequestPermissionRationale(

activity, Manifest.permission.ACCESS_COARSE_LOCATION) ||

24 ActivityCompat.shouldShowRequestPermissionRationale(

activity, Manifest.permission

25 .ACCESS_FINE_LOCATION)) {

26 Snackbar.make(snackbarContainer, R.string.

permission_location_description, Snackbar.LENGTH_INDEFINITE)

27 .setAction(android.R.string.ok, view ->

requestPermissions(activity)).show();

28 } else {

29 requestPermissions(activity);

30 }

31 }

32
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33 private void requestPermissions(final Activity activity) {

34 ActivityCompat.requestPermissions(activity,

35 new String[]{Manifest.permission.

ACCESS_COARSE_LOCATION, Manifest.permission.ACCESS_FINE_LOCATION},

36 REQUEST_LOCATION_PERMISSION);

37 }

38

39 private boolean verifyPermissions(int[] grantResults) {

40 if (grantResults.length < 1) {

41 return false;

42 }

43

44 for (int result : grantResults) {

45 if (result != PackageManager.PERMISSION_GRANTED) {

46 return false;

47 }

48 }

49 return true;

50 }

51 }

Source Code A.4: Location Permission Controller: Managing RTT Process Permissions in the

Indoor Localization App

1 package com.tigermail.aak0010.rttmanager;

2 public class RttManagerApplication extends Application {

3 @Override

4 public void onCreate() {

5 super.onCreate();

6 Timber.plant(new Timber.DebugTree());
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7 }

8 }

Source Code A.5: RTT Manager: Controlling RTT Data Collection and Processing in the Indoor

Localization App

1 /* Class to maintain and perfrom the RTT ranging using the list of

PeerHandles

2 or AP.

3 Author: Abhishek Kulkarni (aak0010)

4 */

5 public class RttRangingManager {

6

7 private final Executor mainExecutor;

8 private final WifiRttManager rttManager;

9 private final Context mContext;

10 private static final String TAG = "RttRangingManager";

11 private int counter = 0;

12

13 @SuppressLint("WrongConstant")

14 public RttRangingManager(final Context context) {

15 rttManager = (WifiRttManager) context.getSystemService(

Context.WIFI_RTT_RANGING_SERVICE);

16 mainExecutor = context.getMainExecutor();

17 this.mContext = context;

18 }

19

20 private void showShortMessage(String message) {

21 Toast.makeText(mContext, message, Toast.LENGTH_SHORT).show();

22 }
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23 @SuppressLint("MissingPermission")

24 public Single<List<RangingResult>> startRanging(

25 @NonNull final PeerHandle peerHandle) {

26 return Single.create(emitter -> {

27 final RangingRequest request = new RangingRequest.Builder

()

28 .addWifiAwarePeer(peerHandle)

29 .build();

30 final RangingResultCallback callback = new

RangingResultCallback() {

31 @Override

32 public void onRangingFailure(final int i) {

33 emitter.onError(new RuntimeException("The WiFi-

Ranging failed with error code: " + i));

34 }

35

36 @Override

37 public void onRangingResults(final List<RangingResult

> result) {

38 if (result.isEmpty()) {

39 counter++;

40 showShortMessage(" Failed PeerHandle: " +

peerHandle);

41 DataCollectionFile.dataFile(TAG + " The

ranging result is empty ", mContext);

42 }

43 DataCollectionFile.logRangingResult(result,

mContext);

44 if(counter > 10) {
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45 showShortMessage("Counter: " + counter);

46 SubscriberAttachCallback.stopRttRanging();

47 }

48 emitter.onSuccess(result);

49 }

50 };

51 rttManager.startRanging(request, mainExecutor, callback);

52 });

53 }

54

55 }

Source Code A.6: RTT Ranging Manager: Initiating and Collecting Distance in the Indoor

Localization App

1 /* Class to maintain and initialise the RTT ranging task.

2 Author: Abhishek Kulkarni (aak0010)

3 */

4 public class SelectedActivity extends AppCompatActivity {

5

6 private static final String EXTRA_WIFI_NETWORK = "WIFI_NETWORK";

7

8 public static Intent builtIntent(final ScanResult wifiNetwork,

Context context) {

9 Intent intent = new Intent(context, SelectedActivity.class);

10 intent.putExtra(EXTRA_WIFI_NETWORK, wifiNetwork);

11 return intent;

12 }

13

14 @BindView(R.id.rttResultView)
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15 TextView rttResultView;

16 @BindView(R.id.startButton)

17 Button startButton;

18 @BindView(R.id.stopButton)

19 Button stopButton;

20 private Disposable rangingDisposable;

21 private RttRangingManager rangingManager;

22 private PeerHandle wifiNetwork;

23

24

25 @Override

26 protected void onCreate(Bundle savedInstanceState) {

27 super.onCreate(savedInstanceState);

28 setContentView(R.layout.activity_selected);

29 ButterKnife.bind(this);

30 rangingManager = new RttRangingManager(getApplicationContext

());

31 readIntentExtras();

32 initUI();

33 }

34

35 @Override

36 protected void onStop() {

37 super.onStop();

38 stopRanging();

39 }

40

41 private String buildLogString(final RangingResult result) {
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42 String resultString = getString(R.string.log, result.

getRangingTimestampMillis(), result.getRssi(), result

43 .getDistanceMm(), rttResultView.getText()

44 .toString());

45 if (resultString.length() > 5000) {

46 return resultString.substring(0, 5000);

47 }

48 return resultString;

49 }

50

51

52 private void initStartButtonListener() {

53 startButton.setOnClickListener(view -> onStartButtonClicked()

);

54

55 }

56

57 private void initStopButtonListener() {

58 stopButton.setOnClickListener(view -> stopRanging());

59

60 }

61

62 private void initUI() {

63 setTitle(getString(R.string.selected_activity_title,

wifiNetwork));

64 initStartButtonListener();

65 initStopButtonListener();

66 }

67
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68 private void onStartButtonClicked() {

69 rttResultView.setText("");

70

71 rangingDisposable = rangingManager.startRanging(wifiNetwork)

72 .repeat()

73 .subscribeOn(Schedulers.io())

74 .observeOn(AndroidSchedulers.mainThread())

75 .subscribe(this::writeOutput,

76 throwable -> {

77 Timber.e(throwable, "An unexpected error

occurred while start ranging.");

78 Snackbar.make(rttResultView, throwable.

getMessage(), Snackbar.LENGTH_LONG).show();

79 });

80 }

81

82 private void readIntentExtras() {

83 Bundle extras = getIntent().getExtras();

84 wifiNetwork = (PeerHandle) extras.get(EXTRA_WIFI_NETWORK);

85 }

86

87 private void stopRanging() {

88 if (rangingDisposable == null) {

89 return;

90 }

91 rangingDisposable.dispose();

92 }

93
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94 private void writeOutput(@NonNull final List<RangingResult>

result) {

95 if (result.isEmpty()) {

96 Timber.d("EMPTY ranging result received.");

97 return;

98 }

99 for (RangingResult res : result) {

100 rttResultView.setText(buildLogString(res));

101 Timber.d("Result: %d RSSI: %d Distance: %d mm", res.

getRangingTimestampMillis(), res.getRssi(), res

102 .getDistanceMm());

103 }

104 }

105

106 }

Source Code A.7: Selected Activity Controller: Managing Activities in AP Mode for the Indoor

Localization App

1 /* Class to maintain a file log to collect data for any application

running

2 in the App: Android Aware, RTT experiment data etc.

3 Author: Abhishek Kulkarni (aak0010)

4 */

5 public class DataCollectionFile {

6

7 /* To save the File in the Android Storage */

8

9 public static void dataFile(String data, Context context) {
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10 // ****************************************** Directory

Creation *************************

11 // Data file is controlled and put into the correct directory

in the Internal Data Folder of the App.

12 String currentDate = new SimpleDateFormat("MM-dd-yyyy",

Locale.getDefault()).format(new Date());

13 File file = new File(context.getFilesDir(), "AndroidAware" +

"-" + currentDate);

14 final File fileName = new File(file, "

AndroidAwareDataCollection.txt");

15 if(!file.exists()){

16 file.mkdir();

17 }

18 try {

19 FileOutputStream fileOutputStream = new FileOutputStream(

fileName, true);

20 OutputStreamWriter outputStreamWriter = new

OutputStreamWriter(fileOutputStream);

21 outputStreamWriter.write(data + "\n");

22 outputStreamWriter.close();

23 fileOutputStream.flush();

24 fileOutputStream.close();

25 }

26 catch (IOException e) {

27 Timber.e("File write failed: " + e.toString());

28 }

29 }

30
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31 public static void logRangingResult(@NonNull List<RangingResult>

result, Context context) {

32 for (RangingResult res : result) {

33 if(res.getStatus() == RangingResult.STATUS_SUCCESS) {

34 Toast.makeText(context, "RTT_Result Log Success",

Toast.LENGTH_SHORT).show();

35 dataFile("PeerHandle: " + res.getPeerHandle() +

36 " RTT Attempt: " + res.

getNumAttemptedMeasurements() +

37 " RTT Succ Attempt: " + res.

getNumSuccessfulMeasurements() +

38 " Distance: " + res.getDistanceMm() +

"mm " +

39 " Dist StdDev: " + res.

getDistanceStdDevMm() + "mm ",

40 context);

41 } else {

42 Toast.makeText(context, "RTT_Result failed", Toast.

LENGTH_SHORT).show();

43 }

44 }

45 }

46 }

Source Code A.8: Indoor Localization App Data collection file to log all the distance data for

processing

1 % replace with an image of your choice

2 img = imread(’ShelbyHall.png’);

3

121



4 % set the range of the axes

5 % The image will be stretched to this.

6 min_x = 0:(56.38);

7 %min_x = 0:10;

8 %max_x = 100;

9 min_y = 0:(57.10);

10 %min_y = 0:10;

11 %max_y = 100;

12

13 %Reading the file for Node co-ordinates

14 Data = dlmread(’Display_File.txt’);

15 % Extract data to plot.

16 Array_Size = length(Data);

17 Ref_x = Data(1:((Array_Size-2)/2));

18 Ref_y = Data((((Array_Size-2)/2) +1): (Array_Size-2));

19 Estimated_Tx = Data(Array_Size-1);

20 Estimated_Ty = Data(Array_Size);

21 Tx = 49;

22 Ty = 40;

23 %plot(x,y,’b-*’,’linewidth’,1.5);

24

25 % Flip the image upside down before showing it

26 imagesc(min_x,min_y,flip(img,1));

27

28 % NOTE: if your image is RGB, you should use flipdim(img, 1) instead

of flipud.

29 hold on;

30 plot(Ref_x,Ref_y,’sg’,’MarkerSize’,15, ’MarkerFaceColor’,’b’);

31 a = [1:(Array_Size/2)-1]’; b = num2str(a); c = cellstr(b);
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32 text(Ref_x, Ref_y, c);

33 plot(Estimated_Tx,Estimated_Ty,’or’,’MarkerSize’,15, ’MarkerFaceColor

’,’r’);

34 text(Estimated_Tx,Estimated_Ty, ’E’);

35 plot(Tx,Ty,’ob’,’MarkerSize’,15, ’MarkerFaceColor’,’g’);

36 text(Tx,Ty, ’T’);

37 % set the y-axis back to normal.

38 set(gca,’ydir’,’normal’);

39 grid on;

40 hold off;

Source Code A.9: Location Image Generation: MATLAB File for Auburn University Shelby

Center in Indoor Localization App

1 /* Sophisticated Grid Method to compute the location of subscriber

Smartphone

2 using the location information from the publisher smartphones and

the RTT

3 distance obtained from the FTM technique.

4 Author: Abhishek Kulkarni (aak0010)

5 */

6 //Writing the contents of the file

7 func Writing(X []float64, Y []float64, Tx float64, Ty float64) {

8 f, err := os.Create("Display_File.txt")

9 if err != nil {

10 fmt.Println(err)

11 }

12 defer f.Close()

13 if err == nil {

14
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15 for _, sx := range X{

16 Data_StrX := strconv.FormatFloat(sx, ’g’, -1, 64)

17 f.WriteString(Data_StrX)

18 f.WriteString("\n")

19 }

20 for _, sy := range Y{

21 Data_StrY := strconv.FormatFloat(sy, ’g’, -1, 64)

22 f.WriteString(Data_StrY)

23 f.WriteString("\n")

24 }

25 f.WriteString(strconv.FormatFloat(Tx, ’g’, -1, 64))

26 f.WriteString("\n")

27 f.WriteString(strconv.FormatFloat(Ty, ’g’, -1, 64))

28 f.WriteString("\n")

29 f.Sync()

30 }

31 }

32

33 //GridMethod

34 func Grid(X []float64, Y []float64, R []float64) {

35 //All the arrays are to store the intersection points of the

reference donuts

36 var (

37 IntsecX1st, IntsecX2nd, IntsecX3rd, IntsecX4th, IntsecX5th []

float64

38 IntsecY1st, IntsecY2nd, IntsecY3rd, IntsecY4th, IntsecY5th []

float64

39 MidptX, MidptY []

float64
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40 R_in, R_out []

float64

41 )

42 const ( // These intial value are the startying point of the grid

point calculation

43 INITIAL_X = -100 // These need to be assigned using the

reference node co-ordinates later

44 INITIAL_Y = -100

45 DIVISION_SIZE = 200

46 )

47 //Calculation of Grid points and storing it in MidptX and MidptY

respectively

48 Xtemp := float64(INITIAL_X)

49 Ytemp := float64(INITIAL_Y)

50

51 for i := 1; i <= (DIVISION_SIZE - 1); i++ {

52 MidptX = append(MidptX,((Xtemp + (Xtemp + float64(1))) / float64

(2)))

53 MidptY = append(MidptY, ((Ytemp + (Ytemp + float64(1))) / float64

(2)))

54 Xtemp++

55 Ytemp++

56 }

57 // Initialisation of Seperate Intersection array counters for

seperate intersecting donuts

58 var (

59 intcnt1st = 0

60 intcnt2nd = 0

61 intcnt3rd = 0

125



62 intcnt4th = 0

63 intcnt5th = 0

64 )

65 //Sum total of all intersection points to calculate the Center-of-

Gravity

66 var (

67 SumIntsecX1st float64 = 0

68 SumIntsecX2nd float64 = 0

69 SumIntsecX3rd float64 = 0

70 SumIntsecX4th float64 = 0

71 SumIntsecX5th float64 = 0

72 SumIntsecY1st float64 = 0

73 SumIntsecY2nd float64 = 0

74 SumIntsecY3rd float64 = 0

75 SumIntsecY4th float64 = 0

76 SumIntsecY5th float64 = 0

77 )

78

79 //Calculating the Donut Radius from the RTT distance

80 var N = len(R) // Number of reference nodes

81 for i := 0; i <= (N-1); i++ {

82 R_in = append(R_in, (R[i] - (0.20 * R[i])))

83 R_out = append(R_out, (R[i] + (0.20 * R[i])))

84 }

85

86 //Calculating the grid points in the intersection area of donuts

87 for x := 0; x <= (DIVISION_SIZE - 2); x++ {

88 for y := 0; y <= (DIVISION_SIZE - 2); y++ {

89 flag := 0
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90 for Refcnt := 0; Refcnt <= (N-1); Refcnt++ {

91 var DSqr = ((X[Refcnt] - MidptX[x]) * (X[Refcnt] - MidptX[x])

) + ((Y[Refcnt] - MidptY[y]) * (Y[Refcnt] - MidptY[y]))

92 if DSqr < (R_out[Refcnt]*R_out[Refcnt]) && DSqr > (R_in[

Refcnt]*R_in[Refcnt]) {

93 flag += 1

94 }

95 }

96 switch flag {

97 case N:

98 IntsecX1st = append(IntsecX1st, MidptX[x])

99 IntsecY1st = append(IntsecY1st, MidptY[y])

100 SumIntsecX1st += IntsecX1st[intcnt1st]

101 SumIntsecY1st += IntsecY1st[intcnt1st]

102 intcnt1st += 1

103 break

104 case N - 1:

105 IntsecX2nd = append(IntsecX2nd, MidptX[x])

106 IntsecY2nd = append(IntsecY2nd, MidptY[y])

107 SumIntsecX2nd += IntsecX2nd[intcnt2nd]

108 SumIntsecY2nd += IntsecY2nd[intcnt2nd]

109 intcnt2nd += 1

110 break

111 case N - 2:

112 IntsecX3rd = append(IntsecX3rd, MidptX[x])

113 IntsecY3rd = append(IntsecY3rd, MidptY[y])

114 SumIntsecX3rd += IntsecX3rd[intcnt3rd]

115 SumIntsecY3rd += IntsecY3rd[intcnt3rd]

116 intcnt3rd += 1

127



117 break

118 case N - 3:

119 IntsecX4th = append(IntsecX4th, MidptX[x])

120 IntsecY4th = append(IntsecY4th, MidptY[y])

121 SumIntsecX4th += IntsecX4th[intcnt4th]

122 SumIntsecY4th += IntsecY4th[intcnt4th]

123 intcnt4th += 1

124 break

125 case N - 4:

126 IntsecX5th = append(IntsecX5th, MidptX[x])

127 IntsecY5th = append(IntsecY5th, MidptY[y])

128 SumIntsecX5th += IntsecX5th[intcnt5th]

129 SumIntsecY5th += IntsecY5th[intcnt5th]

130 intcnt5th += 1

131 break

132 default:

133 break

134 }

135 }

136

137 }

138 //To avoid the Divide by Zero error in the Node position

calculation

139 if len(IntsecX5th) == 0 {

140 intcnt5th = 1

141 }

142 if len(IntsecX4th) == 0 {

143 intcnt4th = 1

144 }
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145 if len(IntsecX3rd) == 0 {

146 intcnt3rd = 1

147 }

148 if len(IntsecX2nd) == 0 {

149 intcnt2nd = 1

150 }

151 if len(IntsecX1st) == 0 {

152 intcnt1st = 1

153 }

154 //Weights for COG method (Need to analyse the weight techniques

from different papers)

155 const (

156 W1st float64 = float64(4)/float64(11)

157 W2nd float64 = float64(3)/float64(11)

158 W3rd float64 = float64(2)/float64(11)

159 W4th float64 = float64(1)/float64(11)

160 W5th float64 = float64(1)/float64(11)

161 )

162 IntsecX_COG := (((SumIntsecX1st)/float64(intcnt1st)) * W1st+((

SumIntsecX2nd)/float64(intcnt2nd)) * W2nd+((SumIntsecX3rd)/float64

(intcnt3rd)) * W3rd+((SumIntsecX4th)/float64(intcnt4th)) * W4th+((

SumIntsecX5th)/float64(intcnt5th)) * W5th)

163 IntsecY_COG := (((SumIntsecY1st)/float64(intcnt1st)) * W1st + ((

SumIntsecY2nd)/float64(intcnt2nd)) * W2nd + ((SumIntsecY3rd)/

float64(intcnt3rd)) * W3rd + ((SumIntsecY4th)/float64(intcnt4th))

* W4th + ((SumIntsecY5th)/float64(intcnt5th)) * W5th)
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164 }

Source Code A.10: Location Computation: Go Language Source File for Computing Location

with Sophisticated Grid Method
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