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Abstract

In this thesis we develop the now-standard tool of elementary submodels and apply the

technique to topological function spaces. We show that many cardinal relations regarding func-

tion spaces hold in suitable models. Furthermore, we give an example of a function space and

submodel in which the tightness increases when passing to the model and prove that it is con-

sistent that perfect normality is downwards preserved in submodels.
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Chapter 1

Introduction

Since the seminal paper of Alan Dow [Dow88], elementary submodels have found many ap-

plications in set-theoretic topology as a method of simplifying proofs which use a “closing

off” argument. Elementary submodels allow us to easily define approximations of topological

spaces we are interested in, and thus simplify our analysis. Many of these proofs work by

finding a “small” approximation to a space and then showing that the approximation reflects

enough information of the original space. Once we have done that, calculations done in the

approximation can be used to prove results about the original space.

We make this idea rigorous using some important historical facts from set theory and logic.

The standard set-theoretic universe, V is built recursively. However, by Gödel’s Incompleteness

Theorems, ZFC cannot prove the existence of a model of ZFC. So, we must take some (suffi-

ciently large) initial segment of this universe in which to do study our approximations. Once

we have truncated the universe to some tractable level, we can use the Löwenheim-Skolem

Theorem to get submodels of arbitrary size, containing as many parameters as we would like.

Within the submodel M , we can define a new topology on X ∩M , which allows M to

reason aboutX . Cp-theory was developed notably by Alexander Arkhangel’skii, culminating in

the 1992 book Toplological Function Spaces. It studies the relationships betweenX and the set

of continuous maps from X to R, denoted Cp(X), with the topology of pointwise convergence.

In [JT98], Lúcia Junqueira and Franklin Tall compiled many results about the relationships

between X and XM depending on the properties of X and M . In this thesis, we prove related

results in the specific case of Cp(X).
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Chapter 2

Elementary Submodels

2.1 First Order Logic

In this section, we give an introduction to the necessary logic and model theory. More back-

ground on this material can be found in the classic text [Kun11], and this presentation very

closely follows Chapter 4 of [HSW99] and [Gil21]. To start, we need to define the language of

set theory. The language, denoted L, consists of

(a) connectives: ¬,∧,∨, =⇒ , ⇐⇒

(b) quantifiers: ∀,∃

(c) infinitely many variables vi

(d) the symbols = and ∈ which denote equality and membership. For our purposes, we will

also have a well-ordering < on our structures.

Formulas are built inductively. The atomic formulas are (vi = vj), (vi ∈ vj), and (vi < vj).

Then, if ϕ and φ are formulas, ¬ϕ and ϕ ∗ φ are formulas where star is any of the other

connectives. Additionally, (∃viφ) and (∀vjφ) are formulas. Variables in a formula are of two

types. If a variable appears in the scope of a quantifier, then it is bound, otherwise it is free.

For example, in the formula ∃v0 v0 ∈ v1, the variable v0 is bound, while v1 is free. All of our

formulas will be well-formed: variables which appear free will always appear free.

Formulas can be thought of as expressing properties of their free variables, and if a formula

has no free variables, it should be either true or false. If a formula has no free variables, it is
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called a sentence. A collection of sentences is called a theory, and the elements of a theory T

are its axioms.

Definition 2.1. A structure A = (A,∈, <) consists of a non-empty set A called the universe,

an inclusion relation ∈, and a well-ordering <.

Let A be a structure. If φ(v0, . . . , vn−1) is a formula with free variables v0, . . . , vn−1, and

a0, . . . , an−1 is a collection of elements of A, we want to define the formula

A |= φ(a0, . . . , an)

to mean that the property expressed by φ of the parameters is true. We define these formulas

by induction on complexity. That is, we start with the atomic formula:

A |= vi ∈ vj(a0, . . . , an−1) ⇐⇒ ai ∈ aj

A |= vi = vj(a0, . . . , an−1) ⇐⇒ ai = aj

A |= vi < vj(a0, . . . , an−1) ⇐⇒ ai < aj

The definitions extend naturally to the quantifiers and connectives. As an example, we say

A |= ∃vnψ(a0, . . . , an−1) ⇐⇒ ∃a ∈ A A |= ψ(a0, . . . , an−1, a)

Now, if the universal (with regards to A!) closure ∀v⃗φ of a formula φ is provable in A, then

we say A models φ, denoted A |= φ. Similarly, if A models every sentence of a theory T , we

write A |= T .

Definition 2.2. If A = (A,∈, <A) and B = (B,∈, <B) are structures, we say that A is a

substructure of B if A ⊆ B and the well-ordering on A is the induced well-order from <B. A

is an elementary substructure of B if for every formula φ and for every a0, . . . , an−1 ∈ A we

have

A |= φ(a0, . . . , an−1) ⇐⇒ B |= φ(a0, . . . , an−1)
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In other words, for A to be an elementary substructure of B means that A and B agree

about the properties of elements of A. The following is a convenient characterization of ele-

mentary substructures which we will use to prove the next theorem.

Lemma 2.1 (Tarski-Vaught Criterion). Assume that A ⊆ B. Then A ⪯ B if and only if for any

formula ψ and for any a0, . . . , an−1 ∈ A

B |= ∃xnψ(a0, . . . , an−1) =⇒ (∃a ∈ A) B |= ψ(a0, . . . , an−1, a)

Theorem 2.1 (Downward Löwenheim-Skolem). Let A and B be infinite structures such that

A ⊆ B and Y ⊆ B. Then there exists and elementary substructure M ⪯ B such that A ⊆ M,

Y ⊆M and |M | = max{|A|, |Y |}

Proof. Let M0 = Y ∪A, and let κ = |M0|. By the previous lemma, we only need to make sure

that the structure we construct contains witnesses to all existential statements that B models.

So, for every formula φ and set a0, . . . , an−1 ∈ M0 such that B |= ∃xφ(a0, . . . , an−1), we

choose a witness a. Let M∗
0 be the set of all of these witnesses. Clearly M0 ⊆M∗

0 , and we just

need to check that we didn’t increase the cardinality. However, |[M0]
<ω| = |M0|, and there are

only countably many formulas, so everything works. Let M1 = M∗
0 , and analogously define

Mn+1 from Mn. Set M = ∪n∈ωMn as the universe of M with the inherited well-order. Then

by construction and the Tarski-Vaught criterion, M ⪯ B.

This theorem will allow us to put all of the relevant information into a submodel of desired

cardinality.

2.2 H(θ)

We would like to say that we are taking submodels of the set theoretic universe V which satisfy

ZFC. Unfortunately, by Gödel’s famous theorem, ZFC cannot prove the existence of such

a model. However, we can get sufficiently good approximations of the universive satisfying

nearly all of ZFC.
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Definition 2.3. A set x is transitive if y ∈ x implies y ⊆ x. We define tc(x) to be the transitive

closure of x, the intersection of all transitive sets containing x. For any cardinal κ, let H(κ)

be the collection of all sets x such that |tc(x)| < κ

When κ is regular and uncountable, H(κ) is a model of ZFC minus the power set axiom.

Suppose that M is transitive, and φ is a formula. We define the relativization of φ to

M , denoted φM by induction on the complexity of the formula. For atomic formula, nothing

changes, i.e. (x ∈ y)M is just x ∈ y. For formula built using connectives, we have

(¬φ)M is ¬(φM) and (φ ∨ ϕ)M is φM ∨ ψM .

Quantifiers just become restricted to M . That is, (∃xφ)M becomes (∃x ∈M)φ.

Definition 2.4. A formula φ(v0, . . . , vn−1) is called absolute for M if

∀x0, . . . , xn−1 ∈M (φ ⇐⇒ φM)

is provable in ZF .

So, if formulas are absolute, then what the model (eitherH(θ) or some M ⪯ H(θ) for our

purposes) witnesses about elements of the model is actually true in the set theoretic universe.

However, for any proof, we only need finitely many statements.

Theorem 2.2 (Reflection Principle). Let φi for i = 0, . . . , n be finitely many formulas. Then

there exists θ uncountable such that for every each φi is absolute for H(θ).

In applications of submodels to topology, we know beforehand the cardinalities of all of

the objects we would like to consider. Thus, we can pick θ big enough so that H(θ) satisfies

“enough” power set. At this point, H(θ) is for our purposes a true model of the universe, and

so what H(θ) “thinks” about objects is really true.

One of the most important properties of elementary submodels of H(θ) is closure under

definability.
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Definition 2.5. Suppose that M ⪯ H(θ), that φ(x, a0, . . . , an−1) is a formula, and that

a0, . . . , an−1 ∈M . Then the set

b := {x ∈ H(θ) : H(θ) |= φ(x, a0, . . . , an−1)}

is said to be definable by parameters from M .

Lemma 2.2. If M ⪯ H(θ), and b ∈ H(θ) is definable by parameters from M , then b ∈M .

Proof. We have

H(θ) |= ∃ z ∀x (x ∈ z ⇐⇒ φ(x, a0, . . . , an−1)).

By elementarity, M models the same thing. So, there exists c ∈M such that

c = {x ∈ H(θ) : H(θ) |= φ(x, a0, . . . , an−1)}.

By Extensionality, b = c.

This lemma is extremely useful, and immediately gives us the following:

Lemma 2.3. Suppose that M ⪯ H(θ). Then the following are members of M if they are

members of H(θ):

(a) ω,R,Q. Additionally, ω ⊆M

(b) κ+ for any cardinal κ ∈M

(c) |b| for any b ∈M

(d) dom(f), ran(f), and f |b for any b ∈M and function f ∈M

(e) f(b) for any function f ∈M and b ∈M ∩ dom(f)

In general, it is not always true that x ∈ M implies x ⊆ M or vice-versa. Many times

though, small elements are subsets.

Lemma 2.4. Suppose that M ⪯ H(θ), and that κ ⊆ M and κ ∈ M . If x ∈ M is such that

|x| = κ, then x ⊆M
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Proof. Since |x| = κ, we have

H(θ) |= ∃ f : κ→ x (f is bijective).

The two parameters of this, κ and x, are both in M , so we have

M |= ∃ f : κ→ x (f is bijective).

And now we can repeatedly apply the Lemma.

However, sometimes it is beneficial to have small subsets be elements as well. We can

construct such models and not increase the size of the model by too much.

Lemma 2.5. Suppose θ > c, andX ⊆ H(θ) is such that |X| ≤ c. Then there exists M ⪯ H(θ)

such that X ⊆M , |M | = c, and [M ]ω ⊆M .

There are similar lemmas for other cardinals, but this one will be sufficient for our pur-

poses. In general, if a model has the property that [M ]κ ⊆ M , then we say that M is κ-closed.

In particular, we can use this lemma to say thatM can reason about countable covers, networks,

etc. Going forward, we will slightly abuse notation and drop the distinction between M and

M and only write M .
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Chapter 3

Function Spaces

3.1 Basic Facts about Cp(X)

Given a T3 1
2

topological space ⟨X, τ⟩, we will be concerned with the following function space:

Definition 3.1. Cp(X) is the set of continuous functions from X to R with the topology of

pointwise convergence. A basic open set is of the form

B(f, x1, . . . , xn, ϵ) := {g ∈ Cp(X) : ∀i ≤ n |g(xi)− f(xi)| < ϵ},

and we denote this standard basis Bp = {B(f, x1, . . . , xn, ϵ) : f ∈ Cp(X) ∧ ϵ ∈ R}.

Cp(X) is a dense subspace of RX with the product topology, almost immediately by the

definition and the fact that X is completely regular. In fact, if X is discrete, then the two

spaces are equal. An important property of these function spaces is that we can embed X into

Cp(Cp(X)) using the evaluation map:

j : X → Cp(Cp(X))

given by

x 7→ j(x) : Cp(X) → R

where j(x) is ”evaluate at x”: j(x)(f) = f(x).

In addition to topological structure, the space Cp(X) has algebraic structure, making it

into a topological ring under function addition and multiplication, meaning that addition and
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multiplication by elements are continuous maps. The algebraic properties of Cp(X) will be

important for the analysis in the next section, as seen by the following fact:

Lemma 3.1. Topological groups are homogeneous.

Proof. Let G be a topological group, and x, y ∈ G arbitrary. Then, since the group operation

is continuous, φxy : G→ G defined by a 7→ ax−1y is a homeomorphism sending x to y.

This means that when considering local cardinal functions such as (pseudo)character, it

suffices to look at, for example, the function which is everywhere 0. We now recall the defini-

tions of the cardinal functions we will look at. All of the definitions are standard and can be

found in [Ark92] or [HOD84]

Definition 3.2. Let X be an arbitrary space.

(a) The weight of X , denoted w(X), is the minimum cardinality of a basis.

(b) The character of X , denoted χ(X), is the supremum over all points x ∈ X of the mini-

mum cardinality of a local base at x.

(c) The pseudocharacter of X , denoted ψ(X) is the supremum over all points x ∈ X of the

minimum cardinality of a family of open sets γ such that ∩ γ = {x}.

(d) The tightness ofX , denoted t(X), is the supremum over all points x ∈ X of the minimum

cardinality κ such that x ∈ A implies that there exists B ⊆ A with |B| ≤ κ and x ∈ B.

(e) A network for X is a collection of sets N such that for every x ∈ X and U open with

x ∈ U , there exists N ∈ N with x ∈ N ⊆ U . The netweight, denoted nw(X) is the

minimum cardinality of a network.

(f) The i-weight, denoted iw(X), is the minimum weight of a space Y such that there exists

a bijective continuous f : X → Y .

(g) The density, denoted d(X), is the minimum cardinality of a dense subspace of X .

(h) The Lindelöf number ofX , denoted L(X), is the smallest cardinal κ such that every open

cover U of X has a subcover of cardinality κ.
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Some of these cardinal functions, such as weight, netweight, and i-weight, are monotone,

meaning that if Y ⊆ X , then ϕ(Y ) ≤ ϕ(X) where ϕ is one of those cardinal functions. For

cardinal functions ϕ which are not monotone, it makes sense to define a new cardinal function

hϕ = sup{ϕ(Y ) : Y ⊆ X}, the hereditary version. It is easily seen that the weight is an upper

bound on all of the other cardinal functions listed, and this fits with the fact that a basis carries

all of the necessary information about a topological space. We also have some elementary facts.

Lemma 3.2. d(X) ≤ nw(X)

Lemma 3.3. nw(X) = nw(Cp(X))

Proof. Let N be a network for X , and let B be a countable basis for R. We will define a

network for Cp(X) as follows. For every S1, . . . , Sk ∈ N and U1, . . . , Uk ∈ B define

W (S1, . . . , Sk, U1, . . . , Uk) := {f ∈ Cp(X) : ∀i ≤ k [f(Si) ⊆ Ui]}.

Let NCp be the collection of all such sets as the choices range over N and B. Pick f ∈ Cp(X)

and let W (f, x1, . . . , xn, ϵ) be an arbitrary open set. Pick Ui ∈ B such that f(xi) ∈ Ui ⊆

Bϵ(f(xi)). By continuity, Vi = f−1(Ui) is open, so we can pick Si ∈ N such that xi ∈ Si ⊆ Vi.

Then

W (S1, . . . , Sk, U1, . . . , Uk) ⊆ W (f, x1, . . . , xn, ϵ).

This proves that NCp is a network. Since |NCp | = |N |, we get that nw(Cp(X)) ≤ nw(X).

From the above discussion and the fact that net-weight is monotone, we get that

nw(X) ≤ nw(Cp(Cp(X))) ≤ nw(Cp(X)).

Lemma 3.4. iw(X) ≥ ψ(X).
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Proof. Pick x ∈ X arbitrary, and let f : X → Y be a condensation. Fix a basis B for Y such

that |B| = w(Y ), and let x ∈ X be arbitrary. Define

Bx := {U ∈ B : f(x) ∈ U}.

I claim that ⋂
U∈Bx

f−1(U) = {x}.

Clearly, x is in the intersection. If y ̸= x, then f(y) ̸= f(x), so there exists U ∈ Bx such that

f(y) ̸∈ U . Then y ̸∈ f−1(U).

3.2 XM and Cp(X)M

Given a topological space ⟨X, τ⟩ and a submodel M ⪯ H(θ), there are two interesting topolo-

gies to put on X ∩M . The first is the standard subspace topology, i.e. {U ∩M : U ∈ τ}.

However, it is often advantageous to consider the following submodel topology:

{U ∩M : U ∈ τ ∩M}.

Now M can reason about open sets since they are elements of M , and we denote X ∩M with

this topology by XM . Note that this is in general a coarser topology. Useful results can be

derived by comparing X ∩M and XM . Here we prove some important facts about Cp(X)M .

Lemma 3.5. (1) Bp ∩M = {B(f, F, n) : f ∈M, F ⊆M}.

(2) Cp(X)M densely embeds into Cp(XM) (hence in RX∩M ).

(3) The canonical embedding j : X → CpCp(X) is an element of M and j|M is an

embedding of XM into (CpCp(X))M .

Proof. (1) If F ⊆ M , then F ∈ M , and together with f ∈ M they give B(f, F, n) ∈ M . On

the other hand, if B is a basic open set in M then there are f, F, n such that B = B(f, F, n)

and by elementarity, they can be picked in M .

11



(2) Define ϕ : Cp(X)M → Cp(XM) to be the restriction map: ϕ(f) = f |M for each

f ∈ Cp(X)M . We need to check that for each f ∈ Cp(X)M , we have that ϕ(f) : XM → R is

continuous. Both the standard basis B of R and f are in M , and for all f ∈ M , and U ∈ B,

f−1(U) is definable, thus in M . Therefore,

H(θ) |= ∀U ∈ B (f−1(U) ∈ τ)

and by elementarity,

M |= ∀U ∈ B (f−1(U) ∈ τ).

This shows that ϕ truly maps into Cp(XM). Further ϕ is injective. Suppose that f ̸= g. Then

H(θ) |= ∃x ∈ X (f(x) ̸= g(x))

and by elementarity

M |= ∃x ∈ X (f(x) ̸= g(x))

which is equivalent to

H(θ) |= ∃x ∈ X ∩M (f(x) ̸= g(x)).

Thus, ϕ(f) ̸= ϕ(g). Part (1) immediately implies that ϕ is an embedding. It remains to show

that the image is dense. Fix a finite F ∈ X ∩M , and ϵ > 0. Then for each x ∈ F , there exists

qx ∈ Q∩Bϵ(x) (remember that Q ⊆M ), and thus we can find f ∈ Cp(X) such that f(x) = qx

for each x ∈ F . By elementarity, there must exist such an f in M .

(3) The space CpCp(X) and its standard base are in M and j is definable from X,Cp(X),

andCpCp(X) and thus is an element ofM . Since j : X → CpCp(X) is an embedding and bases

of X and CpCp(X) are elements of M , elementarity implies that j|M : XM → (CpCp(X))M

is also an embedding.

Part 2 of this lemma is very useful. In particular, it implies that if ϕ is a monotone cardinal

function, then ϕ(Cp(X)M) ≤ ϕ(Cp(XM)). Using information about XM , we can use known
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results on function spaces to calculate cardinal functions of Cp(XM) since it is just the usual

function space of XM . Thus, we get many results about Cp(X)M .

Lemma 3.6. Cp(X)M is a topological ring.

The homogeneity of Cp(X)M will be important in the next section.

3.3 Downwards preservation in Cp(X)M

In this section, we try to answer analogous questions from [JT98] for Cp(X). Namely, under

what circumstances does Cp(X) having property P imply that Cp(X)M have property P . First,

we investigate cardinal functions.

Proposition 3.1. |XM | = χ(Cp(X)M) = w(Cp(X)M).

Proof. We adjust the standard proof.

By Lemma 3.5 part (2), we have

χ(Cp(X)M) ≤ w(Cp(X)M) ≤ w(RX∩M) ≤ |X ∩M | = |XM |

Suppose χ(Cp(X)M) < |X ∩M |. Let f0 be the everywhere zero function on X . Since

Cp(X)M is a topological ring and f0 ∈ M , f0 witnesses our assumption: there is a local base

γ ⊆ Bp ∩M at 0X consisting of sets of the form B(f0, F, n), such that |γ| < |X ∩M |. Let

W =
⋃
{F : B(f0, F, n) ∈ γ}. Then |W | < |X ∩M |. By Lemma 3.5 part (1), W ⊆ X ∩M .

Pick x ∈ (X ∩ M)\W and let B = B(f0, {x}, 1). Then B ∈ M ∩ Bp. Fix any finite

F ⊆ W ⊆ M . Then there is g ∈ Cp(X) that maps all of F to zero and x to 1. Since all

parameters are in M , we can assume g ∈ M . So g ∈ Cp(X)M ∩ V for all V ∈ γ but g /∈ B.

This contradicts γ being a local base.

Proposition 3.2. nw(XM) = nw(Cp(X)M).

Proof. We know nw(XM) = nw(Cp(XM)). By Lemma 3.5 part (2), it follows that nw(Cp(X)M) ≤

nw(Cp(XM)). So we have nw(Cp(X)M) ≤ nw(XM).

On the other hand, this inequality together with Lemma 3.5 part (3) gives nw(XM) ≤

nw((CpCp(X))M) ≤ nw(Cp(X)M).
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Lemma 3.7. Let Y ⊆ XM . If Y ∈M , then Y
XM

= Y
X ∩M .

Proof. Take x ∈ Y
X ∩M . Then for all open V containing x, we have V ∩Y ̸= ∅, in particular

for such V ∈M . Now suppose that x ∈ Y
XM . Then

M |= ∀V ∈ τ (x ∈ V =⇒ V ∩ Y ̸= ∅)

which depends only on elements in M , so it is true in the universe.

Lemma 3.8. The following are modifications of well-known theorems found in [Ark92].

(a) iw(Cp(X)M) ≤ d(XM).

(b) If κ = ψ(Cp(X)M) and [M ]κ ⊆ M then d(XM) ≤ ψ(Cp(X)M). Moreover, d(XM) =

iw(Cp(X)M) = ψ(Cp(X)M).

Proof. For (1), let λ = d(XM) and take Y such that Y = XM and |Y | ≤ λ. Then w(Cp(Y )) ≤

RY ≤ λ and the restriction map πY : Cp(XM) → Z ⊆ Cp(Y ) is a condensation. By Lemma 3.5

part 2, there is an embedding ϕ : Cp(X)M → Cp(XM). So the composition πY ◦ϕ : Cp(X)M →

Z1 ⊆ Cp(Y ) is also a condensation. Then we have,

iw(Cp(X)M) ≤ w(Z1) ≤ w(Cp(Y )) ≤ λ.

For (2), let κ = ψ(Cp(X)M) and let f0 ∈ Cp(X) be the constantly zero function. Then

f0 ∈ Cp(X)M . Fix a family γ of basic open sets of Cp(X)M such that
⋂
γ = {f0} and |γ| ≤ κ.

Since each B(f0, F, n) ∈ γ is an element of M , we get that F ⊆ M as well. So, the set

Y =
⋃

B(f0,F,n)∈γ F ⊆M ∩X and |Y | ≤ κ. Since Mκ ⊆M we have Y ∈M .

Next we show that Y
XM

= XM . Suppose not. Then by Lemma 3.7 we can pick x ∈

XM\(Y X ∩M), and since XM ⊆ M , we get that x /∈ Y
X

. Since X, Y ∈ M we have that

Y
X ∈ M as well1, and therefore there exists g ∈ Cp(X) ∩M = Cp(X)M such that g(x) = 1

and g(Y ) = {0}. So, g ∈
⋂
γ, g ∈ Cp(X)M and g ̸= f – a contradiction.

1Y
X

is definable
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The equality d(XM) = iw(Cp(X)M) = ψ(Cp(X)M) follows from Lemma 3.6 applied to

the space Cp(X)M

Theorem 3.1. From [JT98]:

(a) Let f ∈ {c, hL, hd, χ, ψ, s, w}. Then f(XM) ≤ f(X).

(b) Let f ∈ {L, t}. Then both of the inequalities f(X) < f(XM) and f(X) > f(XM) are

possible.

Our first goal will be to exhibit an example of a function space witnessing number (2).

The following can be found in chapter 2 of [Ark92].

Theorem 3.2 (Pytkeev-Arkhangel’skii). t(Cp(X)) = sup{L(Xn) : n ∈ ω}

Note that this immediately implies that if X is compact, then Cp(X) has countable tight-

ness. Now, we prove the following “submodel version” of a specific case:

Theorem 3.3. If t(Cp(X)M) = ω, then L(XM) = ω.

Proof. The proof follows the proof of Theorem 3.2 with appropriate modifications. Let U

be an open cover of XM . We say µ ∈ [τM ]<ω is U-small if for every V ∈ µ there exists

U ∈ U such that V ⊆ U . Note that each such µ is an element of M while U might not

necessarily be. Every open set in XM is a trace down of an open set in X , so by V ↑, we mean

the set that traces down to V . Denote by E the set of all U-small families. For µ ∈ E , let

Aµ = {f ∈ Cp(X)M : f(X \ ∪µ↑) = 0}, and let A = ∪µ∈EAµ. We want to show that

A
XM

= Cp(X)M .

Let f ∈ Cp(X)M and K ⊆ XM finite. By previous lemma, these sets form a basis of

Cp(X)M , and we can just consider A
X ∩M . Let θK be a finite subset of U covering K. For

each x ∈ K, let Wx = ∩{V ∈ θK : x ∈ V }, and consider the family µK := {Wx : x ∈ K}.

Take a function g ∈ Cp(X)M such that g ↾ K = f ↾ K and g(X \∪µ↑
K) = 0. Since θK is finite

and K ∈ M , then µ↑
K ∈ M , and so we can pick such g ∈ M by elementarity. Then g ∈ AµK

,

so f ∈ A.
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Consider the function f1 ≡ 1 ∈ Cp(X)M . Then there is a subset B ⊆ A such that B is

countable and f1 ∈ B
XM . Then there is a countable E0 ⊆ E such that B ⊆ ∪µ∈E0Aµ. Fix

µ ∈ E0. For each V ∈ µ, fix UV ∈ U such that V ⊆ UV , and let Vµ := {UV : V ∈ µ}. Then Vµ

is finite, and so V := ∪µ∈E0Vµ is countable. We will show that V covers XM .

Fix x ∈ XM , and let U = {f ∈ Cp(X)M : f(x) > 0}. Then f1 ∈ U , and since f1 ∈ B,

we get that U ∩ B ̸= ∅. Thus, there exists µ ∈ E0 such that there exists g ∈ U ∩ Aµ. Since

g(x) ̸= 0, we get that x ∈ ∪µ↑, and thus there exists U ∈ Vµ containing x.

Our example makes use of the following theorem:

Theorem 3.4. If M is countably closed, and X is compact, then XM is countably compact.

Proof. Let U = {Ui ∩M : i ∈ ω} be an open cover of X ∩M such that each Ui ∈ M . By

countable closure, the set U ′ = {Ui : i ∈ ω} is an element of M . Thus,

M |= ∀x ∈ X ∃U ∈ U ′ (x ∈ U).

By elementarity, this is true in the universe, and we can find a finite subcover which traces

down to the submodel.

Example 3.1 (7.6 from [JT98]). Let X = 2c with the usual topology. Let M be an elementary

submodel of H(θ) such that [M ]ω ⊆ M , |M | = c, X ∈ M , c ⊆ M , and also such that M

includes a dense subset of X . Then XM is a subspace of X . However, |X ∩M | < |X|, and so

XM cannot be closed (since it is dense). Therefore it is not compact, but by Theorem 3.4, XM

is countably compact and thus not Lindelöf.

By the converse of the theorem above, we get that t(Cp(X)) = ω. However, since

L(XM) > ω, certainly t(Cp(X)M) > ω.

The following theorem of Tkachuk [Tka95] shows that, consistently, T6 is downwards

preserved for function spaces.

Theorem 3.5 (PFA). If Cp(X) is T6, then (Cp(X))ω is hereditarily Lindelöf.

16



Tkachuk’s theorem only relies on the statement “There are no S-spaces”, and by a famous

theorem of Todorcevic, PFA implies this statement. Since hL(XM) ≤ hL(X) for allX andM ,

we get that Cp(X)M is hereditarily Lindelöf, and thus T6. This is in contrast with the situation

for arbitrary spaces, where there is a ZFC example of a T5 space X and a submodel M such

that XM is not even T4.
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Birkhäuser Basel, 1999. ISBN: 978-3-0346-0330-0. DOI: 10.1007/978-3-

18



0346-0330-0_2. URL: https://doi.org/10.1007/978-3-0346-

0330-0_2.

[Ges02] Stefan Geschke. “Applications of Elementary Submodels in General Topology”.

In: Synthese 133 (2002), pp. 31–41. DOI: https://doi.org/10.1023/A:

1020819407308.

[Wil04] Stephen Willard. General Topology. Dover, 2004. ISBN: 9780486434797.

[Kun11] Kenneth Kunen. Set theory. English. Vol. 34. Stud. Log. (Lond.) London: College

Publications, 2011. ISBN: 978-1-84890-050-9.

[Gil21] Thomas Gilton. “Topology Seminar”. Notes from a talk on applications of sub-

models to topology. 2021.

19


